WO2022234703A1 - Geothermal heat utilization system, control device, control method, program - Google Patents
Geothermal heat utilization system, control device, control method, program Download PDFInfo
- Publication number
- WO2022234703A1 WO2022234703A1 PCT/JP2022/005403 JP2022005403W WO2022234703A1 WO 2022234703 A1 WO2022234703 A1 WO 2022234703A1 JP 2022005403 W JP2022005403 W JP 2022005403W WO 2022234703 A1 WO2022234703 A1 WO 2022234703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- well
- water injection
- pipe
- pump
- groundwater
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 217
- 238000002347 injection Methods 0.000 claims abstract description 190
- 239000007924 injection Substances 0.000 claims abstract description 190
- 239000003673 groundwater Substances 0.000 claims abstract description 131
- 238000005086 pumping Methods 0.000 claims abstract description 76
- 230000006870 function Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000015654 memory Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/20—Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T2010/50—Component parts, details or accessories
- F24T2010/56—Control arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Definitions
- the present disclosure relates to a geothermal heat utilization system, a control device, a control method, and a program.
- This application claims priority to Japanese Patent Application No. 2021-78634 filed on May 6, 2021, the content of which is incorporated herein.
- Patent Document 1 a pumping pipe and a return pipe are inserted into each of two wells, groundwater in one well is pumped up through the pumping pipe, and the groundwater after heat utilization is transferred to the other well.
- a groundwater heat exchanger has been proposed in which water is injected through a reduction pipe of
- the present disclosure has been made to solve the above problems, and aims to provide a geothermal heat utilization system, a control device, a control method, and a program that can facilitate flow rate adjustment.
- a geothermal heat utilization system includes a well, a pipe having an end on a side extending to the well, and a heat exchanger provided in the pipe, wherein the pipe has, at the end, a pumping pipe connected to a pump capable of pumping groundwater in the well, and a plurality of water injection pipes each having a flow control valve.
- a control device includes a pump operation control unit that operates a pump provided in one of a pair of wells to pump up groundwater from a pumping pipe provided in one of the wells; provided in each of the plurality of water injection pipes so that the pumped groundwater passes through the heat exchanger and is injected at a predetermined flow rate into the other well through the plurality of water injection pipes provided in the other well. and a valve opening degree control unit that adjusts the opening degree of the flow control valve.
- a control method operates a pump provided in one of a pair of wells so as to pump up groundwater from a pumping pipe provided in one of the wells, and the groundwater pumped up from the pumping pipe is A flow control valve provided in each of the plurality of water injection pipes so that water is injected at a predetermined flow rate into the other well through the heat exchanger and through the plurality of water injection pipes provided in the other well. Adjust the opening.
- a program according to the present disclosure causes a computer to operate a pump provided in the pumping pipe so as to pump groundwater from the pumping pipe provided in one of the wells of a pair of wells, and pumped up from the pumping pipe
- a flow rate adjustment provided in each of the plurality of water injection pipes so that the groundwater passes through the heat exchanger and is injected into the other well at a predetermined flow rate through the plurality of water injection pipes provided in the other well. Execute the method of adjusting the degree of opening of the valve.
- geothermal heat utilization system control device, control method, and program of the present disclosure, it is possible to easily adjust the flow rate.
- FIG. 1 is a diagram showing a schematic configuration of a geothermal heat utilization system according to an embodiment of the present disclosure
- FIG. 1 is a system diagram of a geothermal heat utilization system according to an embodiment of the present disclosure
- FIG. 1 is a block diagram of a control device according to an embodiment of the present disclosure
- FIG. 4 is a flow chart showing procedures of a control method according to an embodiment of the present disclosure
- It is a figure showing an example of hardware constitutions of a computer with which a control device concerning an embodiment of this indication is provided.
- FIG. 1 Configuration of geothermal heat utilization system
- the geothermal heat utilization system 1 mainly includes a well 2 , piping 3 , heat exchanger 4 , and flow control system 7 .
- the geothermal heat utilization system 1 may include a pair of wells 2 .
- a pair of wells 2 extend from above ground OG into aquifer LY.
- the pair of wells 2 comprises a first well 2A and a second well 2B.
- the underground heat utilization system 1 draws up groundwater from one of the first well 2A and the second well 2B, and after heat exchange with the heat exchanger 4, Groundwater after heat exchange is injected into the other.
- the geothermal heat utilization system 1 has two functions, one for pumping up groundwater from the first well 2A and pouring it into the second well 2B, and the other for pumping up groundwater from the second well 2B and pouring it into the first well 2A. It has a driving mode.
- the side from which groundwater is pumped up is referred to as a pumping well 21, and of the first well 2A and the second well 2B, the side to which groundwater is injected is water injection. It is called well 22 . That is, the first well 2A and the second well 2B may function as pumping wells 21 and may function as water injection wells 22, respectively. However, in order to simplify the explanation below, the case where the first well 2A is the pumping well 21, the second well 2B is the water injection well 22, and the heat exchanger 4 performs heat exchange will be mainly explained.
- Each well 2 comprises a casing 2a embedded in a borehole HOL drilled from the surface OG to the aquifer LY underground.
- the casing 2a has a tubular shape extending in the vertical direction.
- Each well 2 has an opening 2c at the top.
- opening 2c may be an opening in the top of casing 2a.
- the casing 2a has a strainer 2b made up of, for example, a plurality of slits.
- the strainer 2b allows the well 2 to take groundwater from the aquifer LY into the casing 2a and return the groundwater from the casing 2a to the aquifer LY.
- the upper opening of the casing 2a may be provided with a well cover (not shown) that closes the opening.
- the pipe 3 has an end on the side extending to the well 2 .
- the piping 3 has a water pumping pipe 71 and a plurality of water injection pipes 75 at its end.
- the pipe 3 may include a pumping pipe 71 and a plurality of water injection pipes 75 at the ends of the pair of wells 2 extending to each well 2 .
- the pipe 3 includes a pumping pipe 71 and a plurality of water injection pipes 75 at both ends of the pair of wells 2 .
- the pipe 3 has a pumping pipe 71 and a plurality of water injection pipes 75 at the end 3a on the side of the first well 2A and the end 3b on the side of the second well 2B.
- the pumping pipe 71 and the plurality of water injection pipes 75 are branched from the ends 3a and 3b of the pipe 3, respectively.
- the pumping pipe 71 extends into the well 2 from the ground OG. Both ends of the pumping pipe 71 may be immersed in the groundwater of the well 2 .
- the pumping pipe 71 pumps groundwater from the well 2 (pumping well 21 ) when the well 2 on the side where the pumping pipe 71 is provided functions as the pumping well 21 .
- a pump 72 is provided in the pumping pipe 71 .
- a pump 72 pumps water from the well 2 to the pipe 3 .
- the pump 72 pumps water from the well 2 to the pipe 3 when the well 2 functions as the pumping well 21 .
- pump 72 may pump groundwater in well 2 into pipe 3 .
- the pump 72 may be provided in the water discharge pipe 71 and immersed in the ground water in each well 2 .
- the pump 72 may be able to change its output by inverter control.
- a check valve 73 is provided in the pumping pipe 71 .
- the check valve 73 is provided closer to the heat exchanger 4 than the pump 72 in the pumping pipe 71 .
- the check valve 73 is provided closer to the pump 72 than the connecting portion between the pumping pipe 71 and the ends 3 a and 3 b of the pipe 3 .
- the check valve 73 prevents part of the injected groundwater from flowing back to the pump 72 when water is injected from the pipe 3 through the water injection pipe 75 in the well 2 on the side where the check valve 73 is provided.
- a plurality of water injection pipes 75 extend into the well 2 from the ground OG. Both ends of each water injection pipe 75 may be immersed in the groundwater of the well 2 .
- two water injection pipes 75 are provided, for example.
- Three or more water injection pipes 75 may be provided.
- the multiple water injection pipes 75 inject groundwater into the well 2 (water injection well 22 ) when the well 2 provided with the multiple water injection pipes 75 functions as the water injection well 22 .
- the plurality of water injection pipes 75 may have different pipe diameters.
- the multiple water injection pipes 75 include a small diameter water injection pipe 75A and a large diameter water injection pipe 75B.
- the small-diameter water injection pipe 75A has a smaller pipe diameter than the large-diameter water injection pipe 75B.
- the large diameter water injection pipe 75B has a larger pipe diameter than the small diameter water injection pipe 75A.
- the small-diameter water injection pipe 75A and the large-diameter water injection pipe 75B may each have a smaller diameter than the water pumping pipe 71 .
- the small-diameter water injection pipe 75A and the large-diameter water injection pipe 75B are arranged so that the sum of the flow channel cross-sectional area of the small-diameter water injection pipe 75A and the flow channel cross-sectional area of the large-diameter water injection pipe 75B is equal to or greater than the flow channel cross-sectional area of the pumping pipe 71.
- a flow control valve 77 is provided in each of the plurality of water injection pipes 75 .
- a small-diameter flow control valve 77A is provided as a flow control valve 77 on the small-diameter water injection pipe 75A.
- a large-diameter flow control valve 77B is provided as the flow control valve 77 on the large-diameter injection pipe 75B.
- the small-diameter flow control valve 77A has a smaller diameter than the large-diameter flow control valve 77B.
- the small-diameter flow control valve 77A has a diameter that matches the pipe diameter of the small-diameter water injection pipe 75A.
- the large-diameter flow control valve 77B has a diameter that matches the diameter of the large-diameter water injection pipe 75B.
- the flow control valve 77 adjusts the flow rate of groundwater flowing through the water injection pipe 75 .
- the flow control valve 77 adjusts the flow rate of groundwater flowing through the water injection pipe 75 provided in the water injection well 22 when the well 2 functions as the water injection well 22 .
- the flow rate of groundwater in the water injection pipe 75 provided with the flow control valve 77 can be adjusted.
- the flow rate control valve 77 may stop the operation of the pump 72 after the flow rate control valve 77 is fully closed. Thereby, the geothermal heat utilization system 1 can stop the operation while the groundwater in the pipe 3 is maintained in a pressurized state.
- a plurality of flow control valves 77 provided in a plurality of water injection pipes 75 can independently adjust the valve opening degree. It is also possible to close the flow control valve 77 of some (one) water injection pipes 75 among the plurality of water injection pipes 75 and pour water into the well 2 on the water injection side only from the other water injection pipe 75 .
- the pipe 3 includes check valves 35a to 35d between the heat exchanger 4 and the pair of wells 2. As shown in FIG. The check valves 35a to 35d allow the groundwater to flow in the same direction to the heat exchanger 4 regardless of whether the groundwater is pumped up from the first well 2A or the second well 2B. so as to control the flow of groundwater in the pipe 3 .
- the groundwater in the pipe 3 flows from the first well 2A through the check valve 35a, the heat exchanger 4, and the check valve 35b in order, and then to the second well 2B. Water is injected. At this time, since the pressure in the pipe 3 is higher on the upstream side (first well 2A side) than the downstream side of the heat exchanger 4, water does not flow through the check valves 35c and 35d.
- the groundwater in the pipe 3 passes through the check valve 35c, the heat exchanger 4, and the check valve 35d in order from the second well 2B and is injected into the first well 2A. be done. At this time as well, water does not flow through the check valves 35a and 35b because the pressure in the pipe 3 is higher on the upstream side (second well 2B side) of the heat exchanger 4 than on the downstream side.
- the heat exchanger 4 exchanges heat between the groundwater in the pipe 3 and the medium on the load equipment 100 side.
- the heat exchanger 4 exchanges heat between the groundwater pumped up from the well 2 and flowing through the piping 3 and the medium on the load equipment 100 side.
- the groundwater flows from the heat exchanger 4 through the piping 3 and is injected into the well 2 .
- the heat exchanger 4 may be provided in the middle of the pipe 3 on the ground OG.
- the geothermal heat utilization system 1 When the water that has passed through the heat exchanger 4 is hot water, the geothermal heat utilization system 1 performs hot water heat storage by injecting hot water into the well 2 . When the water that has passed through the heat exchanger 4 is cold water, the geothermal heat utilization system 1 stores cold water heat by injecting hot water into the well 2 .
- hot water means water with a temperature higher than the initial temperature of the groundwater in the aquifer
- cold water means water with a temperature lower than the initial temperature of the groundwater in the aquifer. That is.
- the initial ground temperature of groundwater in an aquifer is 18°C.
- the flow control system 7 includes a pump controller 74 , the flow control valve 77 and a controller 80 .
- the flow control system 7 adjusts the water injection temperature of the water injection well 22 by adjusting the flow rate of the groundwater that is injected into the water injection well 22 .
- Pump controller 74 controls the operation of pump 72 .
- a pump controller 74 may be provided associated with each well 2 pump 72 .
- the pump controller 74 has an inverter circuit (not shown) and implements inverter control of the pump 72 .
- the pump controller 74 adjusts the rotation speed of the pump 72 by varying the operating frequency of the inverter control by the inverter circuit under the control of the control device 80, which will be described later.
- the pump controller 74 adjusts the rotation speed of the pump 72 by varying the operating frequency of the inverter control by the inverter circuit, and adjusts the flow rate of the groundwater injected into the injection well 22 from the pipe 3 via the heat exchanger 4 .
- the inverter-controlled operating frequency of the pump 72 is also referred to as "the operating frequency of the pump 72".
- the controller 80 adjusts the flow rate of groundwater injected into the injection well 22 .
- the control device 80 adjusts the operating frequency of the pump 72 and the opening degree of the flow control valve 77 so that the temperature of the groundwater injected into the injection well 22 is constant.
- the controller 80 adjusts only the operating frequency of the pump 72 in a region where the operating frequency of the pump 72 is equal to or higher than a predetermined minimum frequency, thereby adjusting the flow rate of groundwater injected into the water injection well 22 .
- controller 80 may be controllably connected to each pump controller 74 .
- controller 80 may be controllably connected to each flow control valve 77 .
- the control device 80 adjusts the flow rate of groundwater injected into the injection well 22 by adjusting the opening degree of the flow control valve 77 .
- the control device 80 reduces the flow rate of the groundwater injected into the injection well 22 by narrowing (reducing) the opening degree of the flow control valve 77 .
- the controller 80 reduces the operating frequency of the pump 72 to the lowest frequency and adjusts the flow rate of the groundwater injected into the water injection well 22 by adjusting the opening of the flow control valve 77. may be kept at the lowest frequency.
- the control device 80 controls the two water injection pipes. 75, only the flow control valve 77 provided in the small-diameter water injection pipe 75A may be opened.
- the control device 80 includes a pump operation control section 81 and a valve opening degree control section 82 .
- the pump operation control unit 81 adjusts the rotation speed of the pump 72 by varying the operating frequency of the inverter control by the inverter circuit of the pump controller 74 .
- the pump operation control unit 81 adjusts the operating frequency of the pump 72 that pumps up groundwater from the pumping well 21 according to the temperature of the groundwater that is injected into the water injection well 22 .
- the pump operation control unit 81 adjusts the flow rate of groundwater injected from the pipe 3 into the injection well 22 by varying the operating frequency of the pump 72 based on a map or the like stored in advance.
- the pump operation control unit 81 determines the difference between the actual injection temperature of the groundwater injected into the water injection well 22 from the pipe 3 and the set temperature.
- the operating frequency of pump 72 is controlled based on the difference.
- the pump operation control unit 81 determines the difference between the actual injection temperature of the groundwater injected into the water injection well 22 from the pipe 3 and the set temperature. The operating frequency of pump 72 is controlled based on the difference.
- the pump operation control unit 81 controls the pump controller 74 so as to adjust the operating frequency (output) of the pump 72 according to the required injection water temperature based on a map or the like stored in advance.
- the pump operation control unit 81 stores, for example, the lower limit of the operating frequency at which the pump 72 can stably operate as the lowest frequency.
- the pump operation control unit 81 controls the pump controller 74 so as to adjust the operation of the pump 72 in a frequency range equal to or higher than a preset minimum frequency.
- the valve opening degree control unit 82 adjusts the flow rate of groundwater in the pipe 3 by opening and closing the flow control valve 77 .
- the valve opening degree control unit 82 adjusts the flow rate of the groundwater in the pipe 3 by adjusting the opening degree of the flow rate adjustment valve 77 .
- the valve opening control unit 82 adjusts the opening of the flow control valve 77 when the operating frequency of the pump 72 has decreased to the lowest frequency.
- the valve opening degree control unit 82 adjusts the opening degree of the flow control valve 77 according to the temperature of the groundwater injected into the water injection well 22 when the operating frequency of the pump 72 becomes the lowest frequency.
- the opening adjustment may be performed only by the small-diameter water injection pipe 75A.
- valve opening degree control section 82 when the operating frequency of the pump 72 is lowered to the lowest frequency and the flow rate of the groundwater to the well 2 on the water injection side is greater than the predetermined flow rate setting reference value, the valve opening degree control section 82 , both the small diameter flow control valve 77A provided in the small diameter water injection pipe 75A and the large diameter flow control valve 77B provided in the large diameter water injection pipe 75B are opened, and both the small diameter water injection pipe 75A and the large diameter water injection pipe 75B are opened. It is also possible to pour water into the well 2 on the water-injection side.
- valve opening degree control section 82 when the operating frequency of the pump 72 is lowered to the lowest frequency and the flow rate of the groundwater to the well 2 on the water injection side is greater than the predetermined flow rate setting reference value, the valve opening degree control section 82 Alternatively, the opening may be adjusted only by the large-diameter flow control valve 77B provided in the large-diameter water injection pipe 75B.
- control device 80 of this embodiment will be described.
- the operation of the control device 80 corresponds to an embodiment of the control method.
- the control device 80 implements each step shown in FIG.
- the pump operation control unit 81 operates the pump 72 to control the pumping pipe of one pumping well 21 of the pair of wells 2.
- Pump up groundwater from 71 (ST01: step of operating the pump). Groundwater pumped up from the pumping well 21 is thereby sent to the heat exchanger 4 through the pipe 3 .
- the groundwater in the pipe 3 exchanges heat with the medium on the load facility 100 side. Groundwater that has passed through the heat exchanger 4 is injected from the water injection pipe 75 into the other water injection well 22 .
- the geothermal heat utilization system 1 injects water through all of the plurality of water injection pipes 75 (the small diameter water injection pipe 75A and the large diameter water injection pipe 75B).
- the valve opening degree control unit 82 may open only the small diameter flow rate adjustment valve 77A and inject water into the injection well 22 only from the small diameter water injection pipe 75A.
- the valve opening degree control section 82 may open the small diameter flow control valve 77A as the operating frequency of the pump 72 increases to increase the water injection flow rate in the small diameter water injection pipe 75A.
- valve opening degree control unit 82 further opens the large-diameter flow control valve 77B in a state where the operating frequency of the pump 72 has increased to some extent, and the small-diameter water injection pipe 75A and the large-diameter water injection pipe 75B flow water into the water injection well 22. You may make it pour water. Thereafter, as the operating frequency of the pump 72 increases, the valve opening control unit 82 may further open the large-diameter flow control valve 77B to increase the water injection flow rate in the large-diameter water injection pipe 75B. .
- the pump operation control unit 81 controls the pumping well 21 according to the set temperature of the groundwater injected into the injection well 22 via the heat exchanger 4.
- the operating frequency of the inverter control of the pump 72 that feeds the groundwater from the well 22 is adjusted (ST02: step of adjusting the operating frequency of the pump). As a result, the flow rate of water injected from the pumped well 21 to the water injection well 22 by the pump 72 is adjusted.
- the pump operation control unit 81 determines whether or not the operating frequency of the inverter control of the pump 72 has decreased to the lowest frequency (ST03: Whether or not the operating frequency of the pump has decreased to the lowest frequency). a step of determining whether or not).
- the process returns to ST02, and the pump operation control section 81 controls the water injection flow rate from the pumping well 21 to the water injection well 22 by the pump 72. continue to adjust
- the valve opening degree control unit 82 increases the diameter
- the opening degree of the flow control valve 77B is adjusted in the closing direction (ST04: step of adjusting the opening degree of the large-diameter flow control valve).
- the valve opening degree control unit 82 adjusts the flow rate of water injected into the water injection well 22 by adjusting the opening degree of the large-diameter flow rate control valve 77B. At this time, the pump operation control unit 81 maintains the inverter control operation frequency of the pump 72 at the lowest frequency. In other words, by closing the large-diameter flow control valve 77B while the operating frequency of the inverter control of the pump 72 is the lowest frequency, the control device 80 further reduces the flow rate of the groundwater injected into the injection well 22.
- the valve opening degree control unit 82 determines whether or not the opening degree of the large diameter flow control valve 77B is fully closed (ST05: the opening degree of the large diameter flow control valve is fully closed). step of determining whether or not). As a result of the determination in ST05, if the opening degree of the large-diameter flow control valve 77B is not fully closed, the process returns to ST04, and the valve opening degree control section 82 continues the processing. If the opening degree of the large-diameter flow control valve 77B is fully closed as a result of the determination in ST05, the flow rate of the groundwater injected into the well 2 is smaller than the flow rate setting reference value. , through only the small-diameter water injection pipe 75A.
- the valve opening degree control unit 82 adjusts the opening degree of the small diameter flow rate control valve 77A in the closing direction according to the set temperature of the groundwater injected into the water injection well 22 (ST06: opening degree of the small diameter flow rate regulation valve ).
- the valve opening degree control unit 82 adjusts the flow rate of water injected into the water injection well 22 by adjusting the opening degree of the small-diameter flow rate control valve 77A. Even at this time, the pump operation control unit 81 maintains the inverter control operation frequency of the pump 72 at the lowest frequency.
- the valve opening degree control unit 82 closes the small diameter flow control valve 77A while injecting water into the water injection well 22 only through the small diameter water injection pipe 75A. go. Thereby, the control device 80 can further reduce the flow rate of the groundwater injected into the injection well 22 .
- the valve opening degree control unit 82 When stopping the operation of the geothermal heat utilization system 1, the valve opening degree control unit 82 fully closes the small-diameter flow control valve 77A and the large-diameter flow control valve 77B, and then the pump operation control unit 81 The operation of the pump 72 is stopped. Thereby, the geothermal heat utilization system 1 can stop the operation while the groundwater in the pipe 3 is maintained in a pressurized state. By keeping the groundwater in the pipe 3 in a pressurized state (positive pressure), entry of foreign matter and oxygen into the pipe 3 from the outside can be suppressed, and corrosion of the pipe 3 can be suppressed.
- the geothermal heat utilization system 1 can send groundwater pumped up from the well 2 by the pump 72 to the heat exchanger 4 through the pumping pipe 71 and the pipe 3 .
- the opening of the flow rate adjustment valve 77 provided in the water injection pipe 75 is By adjusting, the flow rate of the groundwater injected into the well 2 can be adjusted.
- a plurality of water injection pipes 75 are provided.
- a flow control valve 77 is provided for each of the plurality of water injection pipes 75 .
- the geothermal heat utilization system 1 can more finely adjust the flow rate of the groundwater injected into the well 2. can be done.
- the geothermal heat utilization system 1 opens the flow control valves 77 of some of the plurality of water injection pipes 75 and closes the flow control valves 77 of the other water injection pipes 75, and the groundwater injected into the well 2 It is also possible to adjust the flow rate of Therefore, the geothermal heat utilization system 1 can facilitate flow rate adjustment.
- the pump 72 is provided in the pumping pipe 71, and the flow rate adjustment valve 77 is provided in the water injection pipe 75, the user can handle the pumping pipe 71 side, Or it becomes easy to specify the cause of which side of the water injection pipe 75 is causing the trouble.
- the user can replace the pump 72 alone and the flow control valve 77 alone, maintenance can be performed easily and at low cost.
- the pipe 3 includes a pumping pipe 71 and a plurality of water injection pipes 75 at the ends of the pair of wells 2 extending to each of the wells 2 .
- a plurality of water injection pipes 75 are provided at the ends 3a and 3b extending to each well 2, respectively, so that the geothermal heat utilization system 1 can easily adjust the flow rate of groundwater injected into each well 2. can do.
- the geothermal heat utilization system 1 when stopping the operation of the geothermal heat utilization system 1, the geothermal heat utilization system 1 stops the operation of the pump 72 after fully closing the flow rate adjustment valve 77.
- the operation can be stopped while the groundwater in the pipe 3 is maintained in a pressurized state.
- the geothermal heat utilization system 1 keeps the groundwater in the pipe 3 in a pressurized state (positive pressure), thereby suppressing the entry of foreign matter and oxygen into the pipe 3 from the outside and preventing corrosion of the pipe 3. can be suppressed.
- the geothermal heat utilization system 1 further includes a valve opening degree control section 82 that adjusts the opening degree of the flow rate adjustment valve 77 according to the water injection flow rate to the well 2 .
- the geothermal heat utilization system 1 can easily adjust the water injection temperature by adjusting the opening degree of the flow rate adjustment valve 77 with the valve opening degree control unit 82 according to the water injection flow rate to the well 2. .
- the valve opening degree control unit 82 is provided in some of the plurality of water injection pipes 75 when the flow rate of the groundwater injected into the well 2 is smaller than the flow rate setting reference value. Open only the flow control valve 77 that is set.
- the pipe diameter of each water injection pipe 75 and the diameter of the flow control valve 77 provided in each water injection pipe 75 can be reduced. Therefore, in the geothermal heat utilization system 1, when the flow rate of groundwater injected into the well 2 is small, by opening only the flow rate adjustment valves 77 of some of the plurality of water injection pipes 75, It is possible to more finely adjust the flow rate of groundwater in a small flow area.
- the plurality of water injection pipes 75 have different pipe diameters.
- the geothermal heat utilization system 1 adjusts the flow rate of the groundwater injected into the well 2 only with the small diameter flow control valve 77A of the small diameter water injection pipe 75A. It can be performed. Thereby, the geothermal heat utilization system 1 can more finely adjust the flow rate of the groundwater in the low flow rate region.
- the control device 80 includes a pump operation control section 81 and a valve opening degree control section 82 . Accordingly, by operating the pump 72 with the pump operation control unit 81 , the control device 80 can pump up groundwater from the pumping pipe 71 provided in one of the pair of wells 2 . Groundwater pumped up from the pumping pipe 71 passes through the heat exchanger 4 and is injected into the other well 2 from a plurality of water injection pipes 75 . By adjusting the opening degree of the flow control valve 77 provided in each of the plurality of water injection pipes 75 by the valve opening degree control unit 82, the control device 80 adjusts the flow rate of the groundwater injected into the other well 2. easier to do.
- the program for realizing various functions of the control device 80 is recorded in a computer-readable recording medium, and the program recorded in this recording medium is read by a computer system such as a microcomputer. , to perform various processes.
- various processes of the CPU of the computer system are stored in a computer-readable recording medium in the form of programs, and the above various processes are performed by reading and executing the programs by the computer.
- Computer-readable recording media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
- the computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
- a computer 190 provided in the control device 80 includes a processor 195, a memory 196, a storage/playback device 197, an Input Output Interface (hereinafter referred to as "IO I/F”) 198, and communication Interface (hereinafter referred to as “communication I/F”) 199 .
- IO I/F Input Output Interface
- communication I/F communication Interface
- processor 195 may be a CPU.
- the memory 196 may be a medium such as a Random Access Memory (hereinafter referred to as “RAM”) that temporarily stores data used by programs executed by the control device 80 .
- the storage/playback device 197 may be a device for storing data or the like in external media such as a CD-ROM, DVD, or flash memory, or playing back data or the like from the external media.
- the IO I/F 198 may be an interface for inputting/outputting information between the control device 80 and another device.
- the communication I/F 199 may be an interface that performs communication between the control device 80 and another device via a communication line such as the Internet or a dedicated communication line.
- a geothermal heat utilization system 1 includes a well 2, a pipe 3 having an end on the side extending to the well 2, and a heat exchanger 4 provided in the pipe 3.
- the pipe 3 has, at the end, a pumping pipe 71 connected to a pump 72 capable of pumping groundwater in the well 2, and a plurality of water injection pipes 75 each having a flow control valve 77.
- This geothermal heat utilization system 1 can send groundwater pumped from a well 2 by a pump 72 to a heat exchanger 4 through a pumping pipe 71 and a pipe 3 .
- the opening of the flow rate adjustment valve 77 provided in the water injection pipe 75 is By adjusting, the flow rate of the groundwater injected into the well 2 can be adjusted.
- a plurality of water injection pipes 75 are provided.
- a flow control valve 77 is provided for each of the plurality of water injection pipes 75 .
- the geothermal heat utilization system 1 can more finely adjust the flow rate of the groundwater injected into the well 2. can be done.
- the geothermal heat utilization system 1 opens the flow control valves 77 of some of the plurality of water injection pipes 75 and closes the flow control valves 77 of the other water injection pipes 75, and the groundwater injected into the well 2 It is also possible to adjust the flow rate of Therefore, the geothermal heat utilization system 1 can facilitate flow rate adjustment.
- the geothermal heat utilization system 1 is the geothermal heat utilization system 1 of (1), which includes a pair of the wells 2, and the pipes 3 extend to the respective wells 2.
- the end portions 3a and 3b may be provided with the water pumping pipe 71 and a plurality of the water injection pipes 75. As shown in FIG.
- a plurality of water injection pipes 75 are provided at the ends 3a and 3b of the pipe 3 extending to each well 2, so that the geothermal heat utilization system 1 can control the flow rate of the groundwater injected into each well 2. You can make adjustments easier.
- a geothermal heat utilization system 1 is the geothermal heat utilization system 1 of (1) or (2), wherein the flow control valve 77 increases the pressure in the pipe 3. It may be capable of being held under pressure.
- the geothermal heat utilization system 1 when the operation of the geothermal heat utilization system 1 is to be stopped, the geothermal heat utilization system 1 fully closes the flow control valve 77 and then stops the operation of the pump 72 so that the inside of the pipe 3 is Operation can be stopped while the groundwater remains pressurized. In this way, the geothermal heat utilization system 1 keeps the groundwater in the pipe 3 in a pressurized state (positive pressure), thereby suppressing the entry of foreign matter and oxygen into the pipe 3 from the outside and preventing corrosion of the pipe 3. can be suppressed.
- a geothermal heat utilization system 1 according to a fourth aspect is the geothermal heat utilization system 1 according to any one of (1) to (3), wherein the A valve opening degree control unit 82 that adjusts the opening degree of the flow rate adjustment valve 77 may be further provided.
- the geothermal heat utilization system 1 can easily adjust the water injection temperature by adjusting the opening degree of the flow rate adjustment valve 77 with the valve opening degree control unit 82 according to the water injection flow rate to the well 2. .
- a geothermal heat utilization system 1 according to a fifth aspect is the geothermal heat utilization system 1 according to any one of (1) to (4), wherein the valve opening degree control unit 82 controls the well 2, only the flow control valve 77 provided in a part of the plurality of water injection pipes 75 may be opened.
- each water injection pipe 75 the pipe diameter of each water injection pipe 75 and the diameter of the flow control valve 77 provided in each water injection pipe 75 can be reduced. Therefore, in the geothermal heat utilization system 1, when the flow rate of groundwater injected into the well 2 is small, by opening only the flow rate adjustment valves 77 of some of the plurality of water injection pipes 75, It is possible to more finely adjust the flow rate of groundwater in a small flow area.
- a geothermal heat utilization system 1 according to a sixth aspect is the geothermal heat utilization system 1 according to any one of (1) to (5), wherein the plurality of water injection pipes 75 have a pipe diameter of may differ from each other.
- the geothermal heat utilization system 1 adjusts the flow rate of the groundwater injected into the well 2 only with the flow rate adjustment valve 77 of the small-diameter water injection pipe 75. It can be performed. Thereby, the geothermal heat utilization system 1 can more finely adjust the flow rate of the groundwater in the low flow rate region.
- the control device 80 operates the pump 72 provided in the pumping pipe 71 so as to pump up groundwater from the pumping pipe 71 provided in one of the pair of wells 2.
- the groundwater pumped up from the pump operation control unit 81 and the pumping pipe 71 passes through the heat exchanger 4 and passes through the plurality of water injection pipes 75 provided in the other well 2 to the other well 2 at a predetermined flow rate.
- a valve opening degree control unit 82 that adjusts the opening degree of a flow rate adjustment valve 77 provided in each of the plurality of water injection pipes 75 so that water is injected at .
- the control device 80 can pump up groundwater from the pumping pipe 71 provided in one of the pair of wells 2 .
- Groundwater pumped up from the pumping pipe 71 passes through the heat exchanger 4 and is injected into the other well 2 from a plurality of water injection pipes 75 .
- the control device 80 adjusts the flow rate of the groundwater injected into the other well 2. easier to do.
- the control method according to the eighth aspect operates the pump 72 provided in the pumping pipe 71 so as to pump groundwater from the pumping pipe 71 provided in one of the pair of wells 2 . , so that the groundwater pumped up from the water pumping pipe 71 passes through the heat exchanger 4 and is injected into the other well 2 at a predetermined flow rate through a plurality of water injection pipes 75 provided in the other well 2 The opening degree of the flow control valve 77 provided for each of the water injection pipes 75 is adjusted.
- the control method can pump up groundwater from the pumping pipe 71 provided in one of the pair of wells 2 by operating the pump 72 .
- Groundwater pumped up from the pumping pipe 71 passes through the heat exchanger 4 and is injected into the other well 2 from a plurality of water injection pipes 75 .
- the control method can easily adjust the flow rate of the groundwater injected into the other well 2.
- the program according to the ninth aspect instructs the computer 190 to pump up groundwater from the pump 71 provided in one of the pair of wells 2 , the pump 72 provided in the pump 71 . is operated, and the groundwater pumped up from the pumping pipe 71 passes through the heat exchanger 4 and is injected into the other well 2 at a predetermined flow rate through a plurality of water injection pipes 75 provided in the other well 2.
- the method of adjusting the opening degree of the flow control valve 77 provided in each of the plurality of water injection pipes 75 is executed.
- the computer 190 can pump up groundwater from the pumping pipe 71 provided in one of the pair of wells 2 by operating the pump 72 .
- Groundwater pumped up from the pumping pipe 71 passes through the heat exchanger 4 and is injected into the other well 2 from a plurality of water injection pipes 75 .
- the opening degree of the flow control valve 77 provided in each of the plurality of water injection pipes 75 the flow rate of the groundwater injected into the other well 2 can be easily adjusted.
- Step ST02 for operating the pump Step ST03 for adjusting the operating frequency of the pump Step ST04 for determining whether the operating frequency of the pump has decreased to the lowest frequency or not ST04 Step ST05 of adjusting the degree of opening of the large-d
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Road Paving Structures (AREA)
- Pipeline Systems (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
Description
本願は、2021年5月6日に出願された特願2021-78634号に対して優先権を主張し、その内容をここに援用する。 The present disclosure relates to a geothermal heat utilization system, a control device, a control method, and a program.
This application claims priority to Japanese Patent Application No. 2021-78634 filed on May 6, 2021, the content of which is incorporated herein.
しかし、特許文献1に開示された構成では、注水流量の調整は、ポンプのみで行うこととなり、注水流量の調整を、より一層、しやすくすることが望まれる。 In the groundwater heat exchanger disclosed in Patent Document 1, in order to keep the temperature of water injected into the wells constant, it is necessary to adjust the amount of water injected according to the load, outside temperature, and the like.
However, in the configuration disclosed in Patent Literature 1, the adjustment of the water injection flow rate is performed only by the pump, and it is desired to make the adjustment of the water injection flow rate even easier.
本開示に係る地中熱利用システムの実施形態について、図1~図4を参照して説明する。
(地中熱利用システムの構成)
図1、図2に示すように、地中熱利用システム1は、井戸2と、配管3と、熱交換器4と、流量調整システム7とを主に備える。
例えば、地中熱利用システム1は、井戸2を一対備えてもよい。 <Embodiment>
An embodiment of a geothermal heat utilization system according to the present disclosure will be described with reference to FIGS. 1 to 4. FIG.
(Configuration of geothermal heat utilization system)
As shown in FIGS. 1 and 2 , the geothermal heat utilization system 1 mainly includes a well 2 ,
For example, the geothermal heat utilization system 1 may include a pair of
図1に示すように、一対の井戸2は、地上OGから帯水層LY内に延びている。
例えば、一対の井戸2は、第一井戸2Aと、第二井戸2Bとを備える。
地中熱利用システム1は、第一井戸2Aおよび第二井戸2Bのうちの一方から地下水をくみ上げ、熱交換器4で熱交換を行った後、第一井戸2Aおよび第二井戸2Bのうちの他方に熱交換後の地下水を注入する。つまり、地中熱利用システム1は、第一井戸2Aから地下水をくみ上げて第二井戸2Bに注水する場合と、第二井戸2Bから地下水をくみ上げて第一井戸2Aに注水する場合の、2つの運転モードを有する。
ここで以下の説明においては、第一井戸2Aおよび第二井戸2Bのうち、地下水をくみ上げる側を揚水井戸21と称し、第一井戸2Aおよび第二井戸2Bのうち、地下水を注水する側を注水井戸22と、称する。つまり、第一井戸2A、第二井戸2Bは、それぞれ揚水井戸21として機能する場合と、注水井戸22として機能する場合とがある。
ただし、以下においては、説明を簡略化するため、第一井戸2Aを揚水井戸21とし、第二井戸2Bを注水井戸22として、熱交換器4で熱交換を行う場合を中心に説明する。 (Composition of the well)
As shown in FIG. 1, a pair of
For example, the pair of
The underground heat utilization system 1 draws up groundwater from one of the
Here, in the following description, of the
However, in order to simplify the explanation below, the case where the
ケーシング2aは、上下方向に延びる筒状である。 Each
The
例えば、開口2cは、ケーシング2aの上部の開口であってもよい。 Each well 2 has an opening 2c at the top.
For example, opening 2c may be an opening in the top of
ストレーナ2bによって、井戸2は、帯水層LYの地下水をケーシング2aの内部に取り込んだり、ケーシング2aの内部から帯水層LYへ地下水を戻したりできるように構成されている。
例えば、ケーシング2aの上部の開口には、開口を閉塞する井戸蓋(図示無し)が設けられてもよい。 The
The
For example, the upper opening of the
図1、図2に示すように、配管3は、井戸2へ延びる側に端部を有する。
配管3は、端部に、揚水管71と、複数本の注水管75とを備えている。
例えば、配管3は、一対の井戸2の各井戸2へ延びる側の端部に、揚水管71と、複数本の注水管75とを備えてもよい。
例えば、本実施形態において、配管3は、一対の井戸2の双方側の端部に、それぞれ、揚水管71と、複数本の注水管75とを備えている。つまり、配管3は、第一井戸2A側の端部3aと、第二井戸2B側の端部3bとに、それぞれ揚水管71と、複数本の注水管75とを備えている。
揚水管71と、複数本の注水管75とは、配管3の端部3a、3bから、それぞれ分岐して設けられている。 (Piping configuration)
As shown in FIGS. 1 and 2, the
The
For example, the
For example, in this embodiment, the
The
揚水管71は、井戸2の地下水に両端が浸漬されていてもよい。
揚水管71は、揚水管71が設けられた側の井戸2が揚水井戸21として機能する場合に、井戸2(揚水井戸21)から地下水を揚水する。 The
Both ends of the
The pumping
ポンプ72は、井戸2から配管3に揚水する。
例えば、ポンプ72は、井戸2が揚水井戸21として機能する場合に、井戸2から配管3に揚水する。
例えば、ポンプ72は、配管3内へ井戸2内の地下水をくみ上げてもよい。
例えば、ポンプ72は、揚水管71に設けられ、各井戸2内の地下水に浸漬されていてもよい。
例えば、ポンプ72は、インバータ制御により出力を変更できてもよい。 A
A
For example, the
For example,
For example, the
For example, the
逆止弁73は、揚水管71において、ポンプ72よりも熱交換器4側に設けられている。
逆止弁73は、揚水管71と配管3の端部3a、3bとの接続部よりもポンプ72側に設けられている。
逆止弁73は、逆止弁73が設けられた側の井戸2において、配管3から注水管75を通して注水を行う場合に、注水される地下水の一部がポンプ72に逆流するのを抑える。 A
The
The
The
各注水管75は、井戸2の地下水に両端が浸漬されていてもよい。
本実施形態において、注水管75は、例えば2本設けられている。
複数の注水管75は、3本以上が設けられていてもよい。
複数の注水管75は、複数の注水管75が設けられた井戸2が注水井戸22として機能する場合に、井戸2(注水井戸22)に地下水を注水する。 At
Both ends of each
In this embodiment, two
Three or more
The multiple
本実施形態において、複数本の注水管75は、小径注水管75Aと、大径注水管75Bとを備える。
小径注水管75Aは、大径注水管75Bよりも管径が小さい。
大径注水管75Bは、小径注水管75Aよりも管径が大きい。
小径注水管75A、大径注水管75Bは、それぞれ揚水管71よりも管径が小さくてもよい。
小径注水管75A、および大径注水管75Bは、小径注水管75Aの流路断面積と大径注水管75Bの流路断面積との和が、揚水管71の流路断面積以上であるようにしてもよい。 The plurality of
In this embodiment, the multiple
The small-diameter
The large diameter
The small-diameter
The small-diameter
小径注水管75Aには、流量調整弁77として小径流量調整弁77Aが設けられている。
大径注水管75Bには、流量調整弁77として大径流量調整弁77Bが設けられている。
小径流量調整弁77Aは、大径流量調整弁77Bよりも口径が小さい。
小径流量調整弁77Aは、小径注水管75Aの管径に合わせた口径を有している。
大径流量調整弁77Bは、大径注水管75Bの管径に合わせた口径を有している。 A
A small-diameter
A large-diameter
The small-diameter
The small-diameter
The large-diameter
流量調整弁77は、井戸2が注水井戸22として機能する場合に、注水井戸22に設けられた注水管75を流れる地下水の流量を調整する。
流量調整弁77は、その開度を調整することで、流量調整弁77が設けられた注水管75における地下水の流量を調整できる。
流量調整弁77は、地中熱利用システム1の運転を停止する場合に、流量調整弁77を全閉とした後にポンプ72の動作を停止させるようにしてもよい。これにより、地中熱利用システム1は、配管3内の地下水を加圧状態に維持したまま、運転を停止することができる。 The
The
By adjusting the degree of opening of the
When stopping the operation of the geothermal heat utilization system 1 , the flow
複数の注水管75のうち、一部(一方)の注水管75の流量調整弁77を閉じ、他方の注水管75のみから注水側の井戸2に注水するようにしてもよい。 A plurality of
It is also possible to close the
逆止弁35a~35dは、第一井戸2Aから地下水をくみ上げた場合であっても、第二井戸2Bから地下水をくみ上げた場合であっても、地下水が熱交換器4に対し同じ方向に流れるように、配管3における地下水の流れを制御する。 As shown in FIG. 2, the
The
同様に、第二井戸2Bからくみ上げた場合、配管3内の地下水は、第二井戸2Bから、逆止弁35c、熱交換器4、逆止弁35dを順に経由し、第一井戸2Aに注水される。このときも、熱交換器4より上流側(第二井戸2B側)は下流側に比べて配管3内の圧力が大きいため、逆止弁35aや逆止弁35bに水は流れない。 For example, when groundwater is pumped up from the
Similarly, when pumping up from the
熱交換器4は、配管3内の地下水と負荷設備100側の媒体との間で熱交換する。
例えば、熱交換器4は、井戸2からくみ上げられて配管3内を流れる地下水と、負荷設備100側の媒体との間で熱交換する。熱交換が行われた後の地下水は、熱交換器4から配管3内を流れ、井戸2に注水される。
例えば、熱交換器4は、地上OGにおいて、配管3の途中に設けられていてもよい。 (Configuration of heat exchanger)
The
For example, the
For example, the
熱交換器4を経た水が冷水の場合、地中熱利用システム1は、井戸2に温水を注入することにより冷水蓄熱を行う。
ここで「温水」とは、帯水層の地下水の初期地中温度より高い温度の水のことであり、「冷水」とは、帯水層の地下水の初期地中温度より低い温度の水のことである。
例えば、帯水層の地下水の初期地中温度は18℃である。 When the water that has passed through the
When the water that has passed through the
Here, "hot water" means water with a temperature higher than the initial temperature of the groundwater in the aquifer, and "cold water" means water with a temperature lower than the initial temperature of the groundwater in the aquifer. That is.
For example, the initial ground temperature of groundwater in an aquifer is 18°C.
流量調整システム7は、ポンプコントローラ74と、前記流量調整弁77と、制御装置80とを備える。流量調整システム7は、注水井戸22に注水される地下水の流量を調整することによって、注水井戸22の注水温度を調整する。 (Configuration of flow rate adjustment system)
The flow control system 7 includes a
例えば、ポンプコントローラ74は、各井戸2のポンプ72に関連して設けられてもよい。
例えば、ポンプコントローラ74は、インバータ回路(図示無し)を有し、ポンプ72のインバータ制御を実施する。
ポンプコントローラ74は、後述する制御装置80の制御により、インバータ回路によるインバータ制御の動作周波数を変動することで、ポンプ72の回転数を調整する。
ポンプコントローラ74は、インバータ回路によるインバータ制御の動作周波数を変動することで、ポンプ72の回転数を調整し、熱交換器4を経て配管3から注水井戸22に注水する地下水の流量を調整する。
以下、ポンプ72のインバータ制御の動作周波数を「ポンプ72の動作周波数」ともいう。
For example, a
For example, the
The
The
Hereinafter, the inverter-controlled operating frequency of the
制御装置80は、注水井戸22に注水される地下水の流量を調整する。
制御装置80は、注水井戸22に注水される地下水の注水温度が一定となるように、ポンプ72の動作周波数、および流量調整弁77の開度を調整する。
制御装置80は、ポンプ72の動作周波数が、予め定められた最低周波数以上の領域では、ポンプ72の動作周波数のみを調整することで、注水井戸22に注水される地下水の流量を調整する。
例えば、制御装置80は、各ポンプコントローラ74に対し、制御可能に接続されてもよい。 (Configuration of control device)
The
The
The
For example,
例えば、制御装置80は、ポンプ72の動作周波数が最低周波数まで下がった場合、流量調整弁77の開度を調整することで、注水井戸22に注水される地下水の流量を調整する。
制御装置80は、ポンプ72の動作周波数が最低周波数まで下がった場合、流量調整弁77の開度を絞る(小さくする)することで、注水井戸22に注水される地下水の流量を小さくする。
例えば、制御装置80は、ポンプ72の動作周波数が最低周波数まで下がり、流量調整弁77の開度調整によって注水井戸22に注水される地下水の流量を調整している状態では、ポンプ72の動作周波数を最低周波数に保つようにしてもよい。 For example,
For example, when the operating frequency of the
When the operating frequency of the
For example, the
ポンプ動作制御部81は、注水井戸22に注水される地下水の温度に応じて、揚水井戸21から地下水を揚水するポンプ72の動作周波数を調整する。
ポンプ動作制御部81は、予め記憶されたマップ等に基づき、ポンプ72の動作周波数を変動させることで、配管3から注水井戸22に注水される地下水の流量を調整する。
例えば、ポンプ動作制御部81は、負荷設備100側で冷房運転を行い、注水井戸22で温水蓄熱を行う場合、配管3から注水井戸22に注水される地下水の実際の注水温度と設定温度との差に基づいてポンプ72の動作周波数を制御する。
例えば、ポンプ動作制御部81は、負荷設備100側で暖房運転を行い、注水井戸22で冷水蓄熱を行う場合、配管3から注水井戸22に注水される地下水の実際の注水温度と設定温度との差に基づいてポンプ72の動作周波数を制御する。
ポンプ動作制御部81は、予め記憶されたマップ等に基づき、要求される注水温度に応じて、ポンプ72の動作周波数(出力)を調整するようポンプコントローラ74を制御する。
ポンプ動作制御部81は、例えばポンプ72が安定して運転できる動作周波数の下限値を、最低周波数として記憶している。ポンプ動作制御部81は、予め設定された最低周波数以上の周波数領域でポンプ72の動作を調整するようポンプコントローラ74を制御する。 The pump
The pump
The pump
For example, when the
For example, when the
The pump
The pump
弁開度制御部82は、流量調整弁77の開度を調整することで、配管3内の地下水の流量を調整する。
弁開度制御部82は、ポンプ72の動作周波数が、最低周波数まで下がった場合に、流量調整弁77の開度を調整する。
弁開度制御部82は、ポンプ72の動作周波数が最低周波数となった場合に、注水井戸22に注水される地下水の温度に応じて、流量調整弁77の開度を調整する。 The valve opening
The valve opening
The valve
The valve opening
本実施形態では、弁開度制御部82は、ポンプ72の動作周波数が、最低周波数まで下がった状態で、注水側の井戸2に対する地下水の流量が、予め定めた流量設定基準値よりも小さい場合、小径注水管75Aのみで開度調整を行うようにしてもよい。
本実施形態では、弁開度制御部82は、ポンプ72の動作周波数が、最低周波数まで下がった状態で、注水側の井戸2に対する地下水の流量が、予め定めた流量設定基準値よりも大きい場合、小径注水管75Aに設けられた小径流量調整弁77Aと、大径注水管75Bに設けられた大径流量調整弁77Bとの双方を開き、小径注水管75A、及び大径注水管75Bの双方を通して、注水側の井戸2に対する注水を行うようにしてもよい。
本実施形態では、弁開度制御部82は、ポンプ72の動作周波数が、最低周波数まで下がった状態で、注水側の井戸2に対する地下水の流量が、予め定めた流量設定基準値よりも大きい場合、大径注水管75Bに設けられた大径流量調整弁77Bのみで開度調整を行うようにしてもよい。 In this embodiment, when the operating frequency of the
In this embodiment, when the operating frequency of the
In this embodiment, when the operating frequency of the
In this embodiment, when the operating frequency of the
制御装置80の動作は、制御方法の実施形態に相当する。
制御装置80は、図4に示す各ステップを実施する。 The operation of the
The operation of the
The
なお、ポンプ72の起動時、初期の段階では、弁開度制御部82は、小径流量調整弁77Aのみを開き、小径注水管75Aのみから注水井戸22への注水を行うようにしてもよい。その後、弁開度制御部82は、ポンプ72の動作周波数が高まるにつれて、小径流量調整弁77Aを開いていき、小径注水管75Aでの注水流量を増加させていくようにしてもよい。さらに、弁開度制御部82は、ポンプ72の動作周波数がある程度高まった状態で、さらに大径流量調整弁77Bを開き、小径注水管75Aと、大径注水管75Bとで注水井戸22への注水を行うようにしてもよい。その後、弁開度制御部82は、ポンプ72の動作周波数が高まるにつれて、大径流量調整弁77Bをさらに開いていき、大径注水管75Bでの注水流量を増加させていくようにしてもよい。 First, when the
At the initial stage when the
ST03における判定の結果、ポンプ72のインバータ制御の動作周波数が、最低周波数まで低下していた場合、弁開度制御部82は、注水井戸22に注水される地下水の設定温度に応じて、大径流量調整弁77Bの開度を閉じる方向に調整する(ST04:大径流量調整弁の開度を調整するステップ)。弁開度制御部82は、大径流量調整弁77Bの開度を調整することで、注水井戸22への注水流量の調整を行う。このとき、ポンプ動作制御部81は、ポンプ72のインバータ制御の動作周波数を、最低周波数に維持している。つまり、ポンプ72のインバータ制御の動作周波数が最低周波数である状態で、大径流量調整弁77Bを閉じることで、制御装置80は、注水井戸22に注水される地下水の流量を、さらに低下させる。 As a result of the determination in ST03, if the inverter-controlled operating frequency of the
As a result of the determination in ST03, if the operating frequency of the inverter control of the
ST05の判定の結果、大径流量調整弁77Bの開度が全閉でなければ、ST04に戻り、弁開度制御部82は、処理を継続する。
ST05の判定の結果、大径流量調整弁77Bの開度が全閉であれば、井戸2に注水される地下水の流量が流量設定基準値よりも小さい状態であるから、注水井戸22に対する注水は、小径注水管75Aのみを通して行われる。この場合、弁開度制御部82は、注水井戸22に注水される地下水の設定温度に応じて、小径流量調整弁77Aの開度を閉じる方向に調整する(ST06:小径流量調整弁の開度を調整するステップ)。弁開度制御部82は、小径流量調整弁77Aの開度を調整することで、注水井戸22への注水流量の調整を行う。このときも、ポンプ動作制御部81は、ポンプ72のインバータ制御の動作周波数を、最低周波数に維持している。つまり、ポンプ72のインバータ制御の動作周波数が最低周波数である状態で、弁開度制御部82は、小径注水管75Aのみを通して注水井戸22への注水を行いながら、小径流量調整弁77Aを閉じていく。これにより、制御装置80は、注水井戸22に注水される地下水の流量を、さらに低下させることができる。 Following the execution of ST04, the valve opening
As a result of the determination in ST05, if the opening degree of the large-diameter
If the opening degree of the large-diameter
本実施形態によれば、地中熱利用システム1は、井戸2からポンプ72でくみ上げた地下水を、揚水管71、および配管3を通して熱交換器4に送ることができる。他方、地中熱利用システム1は、熱交換器4を経た地下水を、配管3、及び注水管75を通して、井戸2に注水する際、注水管75に設けられた流量調整弁77の開度を調整することで、井戸2に注水される地下水の流量を調整することができる。このとき、注水管75は複数本設けられている。複数本の注水管75は、それぞれ流量調整弁77が備える。このため、複数本の注水管75のそれぞれにおいて、流量調整弁77の開度を調整することによって、地中熱利用システム1は、井戸2に注水される地下水の流量を、より細かく調整することができる。例えば、地中熱利用システム1は、複数本の注水管75の一部の流量調整弁77を開き、他の注水管75の流量調整弁77を閉じるようにして、井戸2に注水される地下水の流量を調整することも可能となる。したがって、地中熱利用システム1は、流量調整をしやすくすることができる。
また、揚水管71にポンプ72が設けられ、注水管75に流量調整弁77が設けられているので、利用者は、何らかのトラブルで、揚水、注水に支障が生じた場合、揚水管71側、又は注水管75側のどちらでトラブルが生じているのか、原因を特定しやすくなる。また、利用者は、ポンプ72単体、流量調整弁77単体で交換することができるので、メンテナンスも、容易かつ低コストで行うことができる。 (Action and effect)
According to this embodiment, the geothermal heat utilization system 1 can send groundwater pumped up from the well 2 by the
In addition, since the
これにより、各井戸2へ延びる側の端部3a、3bに、それぞれ複数本の注水管75が備えられるので地中熱利用システム1は、各井戸2に注水される地下水の流量調整をしやすくすることができる。 Further, according to one example of the present embodiment, the
As a result, a plurality of
これにより、地中熱利用システム1は、井戸2に対する注水流量に応じて、弁開度制御部82で流量調整弁77の開度を調整することで、注水温度を容易に調整することができる。 Further, according to one example of this embodiment, the geothermal heat utilization system 1 further includes a valve opening
As a result, the geothermal heat utilization system 1 can easily adjust the water injection temperature by adjusting the opening degree of the flow
これにより、複数本の注水管75を備えることで、各注水管75の管径、及び各注水管75に設けられた流量調整弁77の口径を小さくすることができる。したがって、地中熱利用システム1は、井戸2に注水される地下水の流量が小さい場合に、複数本の注水管75のうちの一部の注水管75の流量調整弁77のみを開くことで、小流量領域における地下水の流量調整を、より細やかに行うことができる。 Further, according to one example of the present embodiment, the valve opening
Thus, by providing a plurality of
これにより、例えば、地中熱利用システム1は、井戸2に注水される地下水の流量が小さい場合に、小径注水管75Aの小径流量調整弁77Aのみで、井戸2に注水される地下水の流量調整を行うことができる。これにより、地中熱利用システム1は、小流量領域における地下水の流量調整を、より細やかに行うことができる。 Further, according to one example of the present embodiment, the plurality of
As a result, for example, when the flow rate of groundwater injected into the
これにより、ポンプ動作制御部81でポンプ72を動作させることで、制御装置80は、一対の井戸2のうち一方の井戸2に設けられた揚水管71から地下水をくみ上げることができる。揚水管71からくみ上げられた地下水は、熱交換器4を経て、複数本の注水管75から他方の井戸2に注水される。弁開度制御部82で複数本の注水管75のそれぞれに設けられた流量調整弁77の開度を調整することで、制御装置80は、他方の井戸2に注水される地下水の流量を調整しやすくなる。 Further, according to one example of the present embodiment, the
Accordingly, by operating the
なお、上述の実施形態においては、制御装置80の各種機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをマイコンといったコンピュータシステムに読み込ませ、実行することにより各種処理を行うものとしている。ここで、コンピュータシステムのCPUの各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 <Modification>
In the above-described embodiment, the program for realizing various functions of the
例えば、メモリ196は、制御装置80で実行されるプログラムで使用されるデータ等を一時的に記憶するRandom Access Memory(以下、「RAM」という。)等の媒体であってもよい。
例えば、記憶/再生装置197は、CD-ROM、DVD、フラッシュメモリ等の外部メディアへデータ等を記憶したり、外部メディアのデータ等を再生したりするための装置であってもよい。
例えば、IO I/F198は、制御装置80と他の装置との間で情報等の入出力を行うためのインタフェースであってもよい。
例えば、通信I/F199は、インターネット、専用通信回線等の通信回線を介して、制御装置80と他の装置との間で通信を行うインタフェースであってもよい。 For example,
For example, the
For example, the storage/
For example, the IO I/
For example, the communication I/
以上、本開示の実施形態を説明したが、この実施形態は、例として示したものであり、本開示の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、本開示の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、本開示の範囲や要旨に含まれると同様に、本開示の範囲とその均等の範囲に含まれるものとする。 <Other embodiments>
Although the embodiment of the present disclosure has been described above, the embodiment is shown as an example and is not intended to limit the scope of the present disclosure. This embodiment can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the gist of the present disclosure. This embodiment and its modifications are intended to be included in the scope and equivalents of the present disclosure as well as included in the scope and gist of the present disclosure.
実施形態に記載の地中熱利用システム1、制御装置80、制御方法、プログラムは、例えば以下のように把握される。 <Appendix>
The geothermal heat utilization system 1, the
2…井戸
2A…第一井戸
2B…第二井戸
2a…ケーシング
2b…ストレーナ
2c…開口
3…配管
3a…端部
3b…端部
4…熱交換器
7…流量調整システム
21…揚水井戸
22…注水井戸
35a~35d…逆止弁
71…揚水管
72…ポンプ
73…逆止弁
74…ポンプコントローラ
75…注水管
75A…小径注水管
75B…大径注水管
77…流量調整弁
77A…小径流量調整弁
77B…大径流量調整弁
80…制御装置
81…ポンプ動作制御部
82…弁開度制御部
100…負荷設備
190…コンピュータ
195…プロセッサ
196…メモリ
197…記憶/再生装置
198…IO I/F
199…通信I/F
HOL…掘削孔
LY…帯水層
OG…地上
ST01…ポンプを動作させるステップ
ST02…ポンプの動作周波数を調整するステップ
ST03…ポンプの動作周波数が最低周波数まで低下したか否かを判定するステップ
ST04…大径流量調整弁の開度を調整するステップ
ST05…大径流量調整弁の開度が全閉であるか否かを判定するステップ
ST06…小径流量調整弁の開度を調整するステップ 1 Geothermal
199...Communication I/F
HOL Boring hole LY Aquifer OG Aboveground ST01 Step ST02 for operating the pump Step ST03 for adjusting the operating frequency of the pump Step ST04 for determining whether the operating frequency of the pump has decreased to the lowest frequency or not ST04 Step ST05 of adjusting the degree of opening of the large-diameter flow control valve Step ST06 of determining whether or not the degree of opening of the large-diameter flow control valve is fully closed Step ST06 of adjusting the degree of opening of the small-diameter flow control valve
Claims (9)
- 井戸と、
前記井戸へ延びる側に端部を有する配管と、
前記配管に設けられた熱交換器と
を備え、 前記配管は、前記端部に、
前記井戸内の地下水を揚水可能なポンプに接続された揚水管と、
それぞれ流量調整弁を備えた複数本の注水管と、
を備える地中熱利用システム。 a well;
a pipe having an end on a side extending to the well;
a heat exchanger provided in the pipe, wherein the pipe has, at the end,
a pumping pipe connected to a pump capable of pumping groundwater in the well;
A plurality of water injection pipes each equipped with a flow control valve,
geothermal heat utilization system. - 前記井戸を一対備え、
前記配管は、前記各井戸へ延びる側の前記端部に、
前記揚水管と、
複数本の前記注水管と、
を備える、請求項1に記載の地中熱利用システム。 A pair of said wells,
At the end of the pipe extending to each of the wells,
the pumping pipe;
a plurality of said water injection pipes;
The geothermal heat utilization system according to claim 1, comprising: - 前記流量調整弁は、前記配管内の圧力を加圧状態に保持可能である、請求項1または2に記載の地中熱利用システム。 The geothermal heat utilization system according to claim 1 or 2, wherein the flow rate control valve can keep the pressure in the pipe in a pressurized state.
- 前記井戸に対する注水流量に応じて、前記流量調整弁の開度を調整する弁開度制御部をさらに備える、請求項1から3のいずれか一項に記載の地中熱利用システム。 The geothermal heat utilization system according to any one of claims 1 to 3, further comprising a valve opening degree control unit that adjusts the degree of opening of the flow control valve according to the water injection flow rate into the well.
- 前記弁開度制御部は、前記井戸に注水される前記地下水の流量が流量設定基準値よりも小さい場合、複数本の前記注水管のうちの一部に設けられた前記流量調整弁のみを開く、請求項4に記載の地中熱利用システム。 When the flow rate of the groundwater injected into the well is smaller than a flow rate setting reference value, the valve opening degree control unit opens only the flow rate adjustment valve provided in a part of the plurality of water injection pipes. The geothermal heat utilization system according to claim 4.
- 複数本の前記注水管は、管径が互いに異なる、請求項1から5の何れか一項に記載の地中熱利用システム。 The geothermal heat utilization system according to any one of claims 1 to 5, wherein the plurality of water injection pipes have different pipe diameters.
- 一対の井戸のうち一方の前記井戸に設けられた揚水管から地下水をくみ上げるよう、前記揚水管に設けられたポンプを動作させるポンプ動作制御部と、
前記揚水管からくみ上げられた地下水が熱交換器を経て、他方の前記井戸に設けられた複数本の注水管を通して前記他方の井戸に所定の流量で注水されるよう、複数本の前記注水管のそれぞれに設けられた流量調整弁の開度を調整する弁開度制御部とを備える
制御装置。 a pump operation control unit that operates a pump provided in one of a pair of wells to pump up groundwater from the pump provided in one of the wells;
of the plurality of water injection pipes so that the groundwater pumped up from the pumping pipe passes through a heat exchanger and is injected into the other well at a predetermined flow rate through the plurality of water injection pipes provided in the other well. A control device comprising a valve opening degree control section that adjusts the degree of opening of each flow control valve. - 一対の井戸のうち一方の前記井戸に設けられた揚水管から地下水をくみ上げるよう、前記揚水管に設けられたポンプを動作させ、
前記揚水管からくみ上げられた地下水が熱交換器を経て、他方の前記井戸に設けられた複数本の注水管を通して前記他方の井戸に所定の流量で注水されるよう、複数本の前記注水管のそれぞれに設けられた流量調整弁の開度を調整する
制御方法。 Operating a pump provided in the pumping pipe so as to pump groundwater from the pumping pipe provided in one of the wells of a pair of wells;
of the plurality of water injection pipes so that the groundwater pumped up from the pumping pipe passes through a heat exchanger and is injected into the other well at a predetermined flow rate through the plurality of water injection pipes provided in the other well. A control method that adjusts the opening of the flow control valve provided for each. - コンピュータに、
一対の井戸のうち一方の前記井戸に設けられた揚水管から地下水をくみ上げるよう、前記揚水管に設けられたポンプを動作させ、
前記揚水管からくみ上げられた地下水が熱交換器を経て、他方の前記井戸に設けられた複数本の注水管を通して前記他方の井戸に所定の流量で注水されるよう、複数本の前記注水管のそれぞれに設けられた流量調整弁の開度を調整する
方法を実行させるためのプログラム。 to the computer,
Operating a pump provided in the pumping pipe so as to pump groundwater from the pumping pipe provided in one of the wells of a pair of wells;
of the plurality of water injection pipes so that the groundwater pumped up from the pumping pipe passes through a heat exchanger and is injected into the other well at a predetermined flow rate through the plurality of water injection pipes provided in the other well. A program for executing a method for adjusting the opening of the flow control valves provided for each.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237037046A KR20230163493A (en) | 2021-05-06 | 2022-02-10 | Ground heat utilization system, control device, control method, program |
CN202280030403.3A CN117242309A (en) | 2021-05-06 | 2022-02-10 | Geothermal utilization system, control device, control method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-078634 | 2021-05-06 | ||
JP2021078634A JP7096930B1 (en) | 2021-05-06 | 2021-05-06 | Geothermal heat utilization system, control device, control method, program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022234703A1 true WO2022234703A1 (en) | 2022-11-10 |
Family
ID=82319572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/005403 WO2022234703A1 (en) | 2021-05-06 | 2022-02-10 | Geothermal heat utilization system, control device, control method, program |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7096930B1 (en) |
KR (1) | KR20230163493A (en) |
CN (1) | CN117242309A (en) |
WO (1) | WO2022234703A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7478892B1 (en) | 2023-09-26 | 2024-05-07 | 三菱重工サーマルシステムズ株式会社 | Control device, geothermal heat utilization system, control method, and program |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4157730A (en) * | 1975-11-13 | 1979-06-12 | Commissariat A L'energie Atomique | System for the storage and recovery of heat in a captive layer |
US4448237A (en) * | 1980-11-17 | 1984-05-15 | William Riley | System for efficiently exchanging heat with ground water in an aquifer |
US5685362A (en) * | 1996-01-22 | 1997-11-11 | The Regents Of The University Of California | Storage capacity in hot dry rock reservoirs |
CN2639858Y (en) * | 2003-08-15 | 2004-09-08 | 杨鸣 | Device capable of expanding metering range of flow meter |
KR101005231B1 (en) * | 2010-04-27 | 2010-12-31 | (주)넥스지오 | Control system for thermal energy storage in aquifer |
JP2018173257A (en) * | 2017-03-31 | 2018-11-08 | 三菱重工サーマルシステムズ株式会社 | Underground heat utilization system and underground heat utilization method |
CN111457607A (en) * | 2020-05-11 | 2020-07-28 | 北京甜圆农业科技有限公司 | Water source heat pump groundwater recharge system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6124715A (en) * | 1984-07-13 | 1986-02-03 | Kurimoto Iron Works Ltd | Impact type de-energizing tank |
JP5362468B2 (en) | 2009-07-15 | 2013-12-11 | 龍三 大岡 | Groundwater heat exchange method and groundwater heat exchange device |
US9726157B2 (en) | 2012-05-09 | 2017-08-08 | Halliburton Energy Services, Inc. | Enhanced geothermal systems and methods |
JP6124715B2 (en) | 2013-07-08 | 2017-05-10 | 住友重機械工業株式会社 | Microwave ion source and ion extraction unit |
-
2021
- 2021-05-06 JP JP2021078634A patent/JP7096930B1/en active Active
-
2022
- 2022-02-10 KR KR1020237037046A patent/KR20230163493A/en unknown
- 2022-02-10 WO PCT/JP2022/005403 patent/WO2022234703A1/en active Application Filing
- 2022-02-10 CN CN202280030403.3A patent/CN117242309A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4157730A (en) * | 1975-11-13 | 1979-06-12 | Commissariat A L'energie Atomique | System for the storage and recovery of heat in a captive layer |
US4448237A (en) * | 1980-11-17 | 1984-05-15 | William Riley | System for efficiently exchanging heat with ground water in an aquifer |
US5685362A (en) * | 1996-01-22 | 1997-11-11 | The Regents Of The University Of California | Storage capacity in hot dry rock reservoirs |
CN2639858Y (en) * | 2003-08-15 | 2004-09-08 | 杨鸣 | Device capable of expanding metering range of flow meter |
KR101005231B1 (en) * | 2010-04-27 | 2010-12-31 | (주)넥스지오 | Control system for thermal energy storage in aquifer |
JP2018173257A (en) * | 2017-03-31 | 2018-11-08 | 三菱重工サーマルシステムズ株式会社 | Underground heat utilization system and underground heat utilization method |
CN111457607A (en) * | 2020-05-11 | 2020-07-28 | 北京甜圆农业科技有限公司 | Water source heat pump groundwater recharge system |
Also Published As
Publication number | Publication date |
---|---|
CN117242309A (en) | 2023-12-15 |
JP7096930B1 (en) | 2022-07-06 |
KR20230163493A (en) | 2023-11-30 |
JP2022172641A (en) | 2022-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022234703A1 (en) | Geothermal heat utilization system, control device, control method, program | |
US10941677B2 (en) | Power plant and power output increase controlling method for power plant | |
WO2018181586A1 (en) | Geothermal heat utilization system and geothermal heat utilization method | |
US10712106B2 (en) | Cooling tower controlling system and cooling tower controlling method | |
JP7179905B2 (en) | Geothermal heat utilization system, control device, control method, program | |
CN204040107U (en) | A kind of water delivery pumping station system | |
WO2022224555A1 (en) | Geothermal heat utilization system, control device, control method, and program | |
JP7108665B2 (en) | Water injection control system, geothermal heat utilization system, control device, control method, and program | |
JP4701230B2 (en) | Water system power generation equipment | |
CN207348824U (en) | A kind of bit pressuredrop control device | |
JP4667902B2 (en) | Cogeneration system | |
JP2012017950A (en) | Hot water supplying device | |
CN113863433B (en) | Arrangement structure for improving safety of gravity flow water supply engineering and regulation and control method | |
CN112923390B (en) | Parallel flue gas waste heat system and method | |
CN113153463B (en) | Method for improving load response speed of steam turbine set by using water supply system | |
JP4479407B2 (en) | Oil level adjustment device for stationary engine | |
JP6555767B1 (en) | Hot spring centralized management system | |
CN206786018U (en) | A kind of valve sealing structure | |
KR200268931Y1 (en) | Heat storage system | |
KR101439469B1 (en) | heat exchanger for pressure control of heat transfer medium | |
Gimson et al. | What Are Some Best Practices for Starting a Pump in a Distribution System? | |
KR20220068049A (en) | Heater and method of providing hot water | |
CN118498931A (en) | Double-channel multi-stage throttling device and method for deep water high-pressure high-yield gas well | |
JP2001200996A (en) | Receiving pipe cooling holding device of liquefied gas | |
JP2019173425A (en) | Water intake device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22798810 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280030403.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2301006954 Country of ref document: TH |
|
ENP | Entry into the national phase |
Ref document number: 20237037046 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237037046 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11202307817S Country of ref document: SG |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22798810 Country of ref document: EP Kind code of ref document: A1 |