[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022234797A1 - Heat generation device - Google Patents

Heat generation device Download PDF

Info

Publication number
WO2022234797A1
WO2022234797A1 PCT/JP2022/018979 JP2022018979W WO2022234797A1 WO 2022234797 A1 WO2022234797 A1 WO 2022234797A1 JP 2022018979 W JP2022018979 W JP 2022018979W WO 2022234797 A1 WO2022234797 A1 WO 2022234797A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
hydrogen
flow path
heat generating
layer
Prior art date
Application number
PCT/JP2022/018979
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 村上
豊治 大畑
康弘 岩村
岳彦 伊藤
英樹 吉野
Original Assignee
株式会社クリーンプラネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリーンプラネット filed Critical 株式会社クリーンプラネット
Publication of WO2022234797A1 publication Critical patent/WO2022234797A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/12Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type using desorption of hydrogen from a hydride
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to an integrated heat generation/heat exchange type heat generating device that simultaneously generates heat and exchanges heat.
  • the present applicant et al. have proposed that, in a heat generating device provided with a heat generating element using a hydrogen storage metal or the like, the heat generating element is configured by a support and a multilayer film supported by the support, and the heat generating element It was found that heat is generated when hydrogen is absorbed by the heating element and when hydrogen is released from the heating element. Based on such findings, the applicant of the present application and others previously proposed a heat generating device and a heat utilization system (see Patent Document 3).
  • the support of the heating element is composed of at least one of a porous body, a hydrogen-permeable membrane, and a proton dielectric.
  • the multilayer film of the heating element includes a first layer having a thickness of less than 1000 nm made of a hydrogen storage metal or a hydrogen storage alloy, and a thickness made of a hydrogen storage metal, a hydrogen storage alloy, or ceramics different from the first layer. It is constructed by alternately stacking second layers of less than 1000 nm.
  • FIG. 19 shows an example of the heat generating device proposed in Patent Document 3. As shown in FIG.
  • FIG. 19 is a block diagram showing the basic configuration of the heat generating device 201 proposed in Patent Document 3.
  • the heating device 201 includes a control section 202, a sealed container 203, a heating element 205, an electric heater 209 as heating means, a temperature control section T, and a hydrogen circulation line L0.
  • the heating element 205 is housed inside the sealed container 203 .
  • the sealed container 203 is housed inside a containment container 225 insulated by heat insulating material 224 .
  • An electric heater 209 is wound around the sealed container 203 .
  • the output of the electric heater 209 is controlled by the temperature controller T.
  • the temperature adjustment unit T is composed of a temperature sensor 211 that detects the temperature of the heating element 205 and a control unit 202 that controls the output of the power supply 210 based on the temperature of the heating element 205 detected by the temperature sensor 211.
  • the inside of the sealed container 203 is partitioned into a first chamber R1 and a second chamber R2 by a heating element 205.
  • An introduction pipe 213 of the hydrogen circulation line L0 is connected to the first chamber R1.
  • a recovery pipe 219 of the hydrogen circulation line L0 is connected to the second chamber R2.
  • a circulation pump 212, a buffer tank 215, a pressure control valve 216, and a filter 217 are connected to the hydrogen circulation line L0. ing.
  • the circulation pump 212 and the pressure regulating valve 216 are electrically connected to the controller 202 and their operations are controlled by the controller 202 .
  • the containment vessel 225 includes a supply pipe 226 for supplying the heat medium heated by the heat generated by the heat generating device 201 to a heat utilization device (heat load) not shown, and a supply pipe 226 for supplying heat to the heat utilization device.
  • a recovery pipe 227 for recovering the heat medium is connected.
  • the electric heater 209 whose output is controlled by the control unit 202 heats the heat generating element 205 to an optimum temperature, and the circulation pump 212 is driven to move the hydrogen-based gas to the hydrogen circulation line.
  • the hydrogen-based gas is introduced into the first chamber R1 of the sealed container 203 from the introduction pipe 213 of L0, the hydrogen contained in this hydrogen-based gas permeates the heating element 205 and moves to the second chamber R2.
  • the heating element 205 generates heat (excess heat) that is larger than the amount of heat required to heat the heating element 205 by the electric heater 209 .
  • the heat medium supplied into the containment vessel 225 is heated by the excess heat.
  • the heated heat medium is supplied to a heat utilization device (not shown) through the supply pipe 226, whereby the heat utilization device uses excess heat as a heat source to perform required work (eg, power generation).
  • required work eg, power generation
  • the heat medium whose temperature has been lowered by applying heat to the heat utilization device is returned to the containment vessel 225 through the recovery pipe 219 and recovered.
  • the above operation is continuously repeated, and the heat generated in the heat generating device 201 is supplied to the heat utilization device via the heat medium and used for required work such as power generation.
  • the heat generated by the heating element 205 is transmitted to the heat medium in the containment vessel 225 via the hydrogen-based gas in the closed vessel 203 and the closed vessel 203 to heat the heat medium. Therefore, the heat transfer path from the heat generating element 205 to the heat medium is long, and the heat generated by the heat generating element 205 cannot be efficiently recovered by the heat medium, and there is room for improvement in this respect as well. .
  • a heat generating device includes a heating element that generates heat by occluding and releasing hydrogen; A first flow path, a second flow path through which the permeated gas containing hydrogen that has permeated the heating element flows, and a second flow path in which a heat medium that exchanges heat with the permeated gas that flows through the second flow path flows.
  • the second flow path, the heating element, and the first flow path are sequentially and symmetrically stacked on both sides of the third flow path from the third flow path.
  • a laminated structure and heating means for heating the heating element are provided.
  • a second flow path through which a permeated gas containing hydrogen that has permeated a heating element flows in order from the third flow path, a heating element, a heating element, and a heating element.
  • It has a laminated structure constructed by sequentially and symmetrically laminating first flow paths into which hydrogen-based gas for supplying hydrogen to the body is introduced.
  • the heating element, the first channel, the second channel, and the third channel are laminated at high density. Therefore, according to the present invention, heat can be efficiently generated, the generated heat can be efficiently recovered by the heat medium, and miniaturization and compactness can be achieved.
  • FIG. 1 is a block diagram showing the basic configuration of a heat generating device according to a first embodiment
  • FIG. 1 is an exploded perspective view of a heat generating module according to a first embodiment
  • FIG. 1 is an exploded perspective view of a laminated structure according to a first embodiment
  • FIG. 1 is a plan view of an electric heater according to a first embodiment
  • FIG. 2 is a cross-sectional view showing the configuration of a heating element according to the first embodiment
  • FIG. 4 is a schematic diagram illustrating a mechanism of excessive heat generation in the heating element according to the first embodiment
  • FIG. 5 is a cross-sectional view showing Modification 1 of the heating element
  • FIG. 1 is a block diagram showing the basic configuration of a heat generating device according to a first embodiment
  • FIG. 1 is an exploded perspective view of a heat generating module according to a first embodiment
  • FIG. 1 is an exploded perspective view of a laminated structure according to a first embodiment
  • FIG. 1 is a plan view of an electric
  • FIG. 7 is a cross-sectional view showing Modification 2 of the heating element; BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structure of the heat utilization system which concerns on 1st Embodiment.
  • FIG. 6 is a block diagram showing the basic configuration of a heat generating device according to a second embodiment;
  • FIG. 8 is an exploded perspective view of a laminated structure according to a second embodiment;
  • FIG. 11 is a block diagram showing the basic configuration of a heat generating device according to a third embodiment;
  • FIG. 11 is an exploded perspective view of a laminated structure according to a third embodiment;
  • FIG. 11 is a block diagram showing the basic configuration of a heat generating device according to a fourth embodiment;
  • FIG. 11 is an exploded perspective view of a laminated structure according to a fourth embodiment;
  • FIG. 5 is a schematic plan view showing Modification 1 of the heat generating module.
  • FIG. 8 is a schematic plan view showing Modification 2 of the heat generating module.
  • FIG. 11 is a schematic plan view showing Modification 3 of the heat generating module.
  • 1 is a block diagram showing the basic configuration of a heat generating device proposed in Patent Document 3; FIG.
  • FIG. 1 is a block diagram showing the basic configuration of a heat generating device 1 according to the first embodiment.
  • the heat generating device 1 includes a heat generating module M1, a temperature control section T, a hydrogen circulation line L1, a control section 2, and a sealed container 3.
  • connection points of black circles indicate connections between members.
  • the heat generating module M1 is housed inside the sealed container 3.
  • the heat generating module M1 includes two laminated structures 4 and one electric heater 9. As shown in FIG.
  • the laminated structure 4 includes a heating element 5 that generates heat by occluding and releasing hydrogen, a first channel 6 into which a hydrogen-based gas containing hydrogen is introduced and that supplies hydrogen to the heating element 5 , and the heating element 5 .
  • permeated hydrogen a permeated gas containing permeated hydrogen
  • the hydrogen-based gas contains isotopes of hydrogen. At least one of hydrogen gas and deuterium gas is used as the hydrogen-based gas. Hydrogen gas includes a mixture of naturally occurring hydrogen and deuterium, ie, a mixture with a proportion of hydrogen of 99.985% and a proportion of deuterium of 0.015%. In FIG.
  • the hydrogen-based gas that supplies hydrogen to the heating element 5 is described as “hydrogen”
  • the permeated gas containing permeated hydrogen that has permeated the heating element 5 is described as “permeated hydrogen”. It should be noted that, in manufacturing the heat generating module M1, it is desirable to diffusion-bond each member. A detailed configuration of the heat generating module M1 will be described later.
  • the temperature adjustment unit T adjusts the temperature of the heating element 5 to maintain the heating element 5 at a temperature at which it can generate heat (for example, 50° C. to 1500° C.).
  • the temperature adjustment unit T includes an electric heater 9, a power supply 10 that supplies electric power to the electric heater 9, a temperature sensor 11 such as a thermocouple that detects the temperature of the electric heater 9, and the temperature detected by the temperature sensor 11. and a control unit 2 for controlling the output of the power supply 10 .
  • the hydrogen circulation line L1 introduces a hydrogen-based gas containing hydrogen into the first flow path 6 provided in the laminated structure 4 of the heat generating module M1, and permeates the heat generating element 5 from the first flow path 6.
  • the operation of recovering permeated gas containing permeated hydrogen that has been moved to the second channel 7 by the heat generated by the heating element 5 and returning it to the first channel 6 is repeated.
  • the hydrogen circulation line L1 includes an introduction pipe 12 for introducing a hydrogen-based gas into the first flow path 6 provided in the laminated structure 4 of the heat generating module M1, and a second flow path provided in the laminated structure 4 of the heat generating module M1. It has a recovery pipe 13 for recovering the permeated gas from the passage 7 and a circulation pump 14 connected to the introduction pipe 12 and the recovery pipe 13 .
  • the heat generating module M1 and the hydrogen circulation line L1 form a closed loop in which gas circulates.
  • the introduction pipe 12 is connected to the discharge port of the circulation pump 14 .
  • the introduction pipe 12 has a branch pipe 15 connected to each first flow path 6 provided in each laminated structure 4 of the heat generating module M1.
  • the hydrogen-based gas in the introduction pipe 12 is introduced into the first flow path 6 via the branch pipe 15 .
  • the recovery pipe 13 is connected to the suction port of the circulation pump 14 .
  • the recovery pipe 13 has branch pipes 16 respectively connected to the second flow paths 7 provided in the laminated structures 4 of the heat generating module M1.
  • the permeating gas in the second flow path 7 is heated by the heating element 5 to a high temperature, recovered to the recovery pipe 13 via each branch pipe 16, and reused as a hydrogen-based gas for supplying hydrogen to the heating element 5. be done.
  • the circulation pump 14 circulates the hydrogen-based gas between the heating module M1 and the hydrogen circulation line L1, which constitute a closed loop.
  • a metal bellows pump for example, is used as the circulation pump 14 .
  • the circulation pump 14 is electrically connected to the controller 2 and its operation is controlled by a control signal from the controller 2 .
  • a buffer tank 17 , a pressure regulating valve 18 , and a filter 19 are provided in the middle of the introduction pipe 12 .
  • the buffer tank 17 stores the hydrogen-based gas and absorbs fluctuations in the flow rate of the hydrogen-based gas.
  • the pressure regulating valve 18 is electrically connected to the control unit 2, and adjusts the pressure of the hydrogen-based gas supplied from the buffer tank 17 by adjusting the degree of opening according to a control signal from the control unit 2. fulfill a function.
  • the filter 19 is for removing impurities contained in the hydrogen-based gas.
  • the amount of hydrogen that permeates the heating element 5 depends on the temperature of the heating element 5, the pressure difference between both sides of the heating element 5, and the surface condition of the heating element 5. If it is contained, the impurities may adhere to the surface of the heating element 5 and deteriorate the surface condition of the heating element 5 .
  • the surface condition of the heat generating body 5 deteriorates, the adsorption and dissociation of hydrogen molecules on the surface of the heat generating body 5 are hindered, resulting in a decrease in the amount of hydrogen permeation.
  • Examples of substances that inhibit the adsorption and dissociation of hydrogen molecules on the surface of the heating element 5 include water (including water vapor), hydrocarbons (methane, ethane, methanol, ethanol, etc.), C, S, Si, and the like. . Therefore, the filter 19 removes at least water (including water vapor), hydrocarbons, C, S, and Si as impurities. Since the filter 19 removes impurities contained in the hydrogen-based gas, a reduction in the amount of hydrogen permeating through the heating element 5 is suppressed.
  • the control section 2 is electrically connected to each section of the heating device 1 and controls the operation of each section.
  • the control unit 2 includes a CPU (Central Processing Unit), a storage unit such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the CPU executes various arithmetic processes using programs and data stored in ROM and RAM.
  • the closed container 3 is configured as a hollow container made of stainless steel (SUS), for example.
  • the material of the sealed container 3 is preferably a material having heat resistance and pressure resistance, such as carbon steel, austenitic stainless steel, or heat-resistant non-ferrous alloy steel.
  • the material of the sealed container 3 may be a material that reflects radiant heat generated by the heating element 5, which will be described later, such as nickel (Ni), copper (Cu), molybdenum (Mo), or the like.
  • the shape of the sealed container 3 is a square tube in this embodiment, it is not limited to this, and may be a square tube other than the square tube, a cylinder, an elliptical tube, or the like.
  • FIG. 2 is an exploded perspective view of the heat generating module M1
  • FIG. 3 is an exploded perspective view of the laminated structure 4
  • FIG. 4 is a plan view of the electric heater 9. As shown in FIG.
  • the heat generating module M1 is configured by stacking two laminated structures 4 in two stages in the vertical direction (the Z-axis direction in FIG. 2).
  • the lowermost first channel 6 of the upper laminated structure 4 and the uppermost first channel 6 of the lower laminated structure 4 face each other.
  • the heat generating module M1 is formed in a quadrangular prism shape in the example shown in FIG.
  • the upper surface in the Z-axis direction is the plane
  • the lower surface in the Z-axis direction is the bottom surface
  • the left surface in the Y-axis direction is the front surface
  • the Y-axis direction is The right surface is the rear surface
  • the right surface in the X-axis direction is the right surface
  • the left surface in the X-axis direction is the left surface.
  • the first flow path 6 is composed of a flat plate portion 6a and a wall portion 6b provided on the flat plate portion 6a.
  • the flat plate portion 6a and the wall portion 6b are made of, for example, stainless steel.
  • the flat plate portion 6a is formed in a square shape in plan view.
  • the wall portion 6b is provided on three of the four edge portions of the flat plate portion 6a. In FIG. 3, the wall portions 6b are provided at the left and right edge portions in the X-axis direction and the right edge portion in the Y-axis direction among the four edge portions of the flat plate portion 6a.
  • the wall portion 6b forming the lower first flow path 6 protrudes upward in the Z-axis direction, and the wall portion 6b forming the upper first flow path 6 protrudes downward in the Z-axis direction.
  • a hydrogen inlet 6c is provided on the front surface of the first flow path 6 (the left side surface in the Y-axis direction), that is, on one of the four edge portions of the flat plate portion 6a where the wall portion 6b is not provided. is provided.
  • the hydrogen inlet 6c is connected to the branch pipe 15 of the hydrogen circulation line L1 (see FIG. 1).
  • the rear surface of the first flow path 6 (the right side surface in the Y-axis direction) is composed of a wall portion 6b.
  • the second flow path 7 is composed of a flat plate portion 7a and a wall portion 7b provided on the flat plate portion 7a.
  • the flat plate portion 7a and the wall portion 7b are made of, for example, stainless steel.
  • the flat plate portion 7a is formed in a square shape in plan view.
  • the wall portion 7b is provided on three of the four edge portions of the flat plate portion 7a. In FIG. 3, the wall portion 7b is provided on the left and right edge portions in the X-axis direction and the left edge portion in the Y-axis direction among the four edge portions of the flat plate portion 7a.
  • the wall portion 7b forming the lower second flow path 7 protrudes downward in the Z-axis direction, and the wall portion 7b forming the upper second flow path 7 protrudes upward in the Z-axis direction.
  • a hydrogen recovery port 7c is provided on the back surface of the second flow path 7 (the right side surface in the Y-axis direction), that is, on one of the four edge portions of the flat plate portion 7a where the wall portion 7b is not provided. is provided.
  • the hydrogen recovery port 7c provided on the back surface of the second flow path 7 on the lower side is hidden behind the plane of the paper.
  • the hydrogen recovery port 7c is connected to the branch pipe 16 of the hydrogen circulation line L1 (see FIG. 1).
  • the third flow path 8 is formed in a flat plate shape and includes two flat plate portions 8a arranged with a gap therebetween, and two walls provided between the two flat plate portions 8a and arranged with a gap therebetween. 8b.
  • the flat plate portion 8a and the wall portion 8b are made of, for example, stainless steel.
  • the flat plate portions 8a are formed in a rectangular shape in a plan view, and are arranged vertically in the Z-axis direction.
  • the wall portions 8b are provided on two edge portions of the four edge portions of the flat plate portion 8a that face each other. In FIG. 3, the wall portions 8b are provided at the left and right edge portions in the Y-axis direction among the four edge portions of the flat plate portion 8a.
  • a heat medium inlet 8c is provided on the right side surface (the right side surface in the X-axis direction) of the third flow path 8, and the heat medium recovery port 8c is provided on the left side surface (the left side surface in the X-axis direction) of the third flow path 8.
  • a mouth 8d is provided.
  • the heat medium inlet 8c is connected to a branch pipe 31e (see FIG. 1) of the heat medium circulation line L2, which will be described later.
  • the heat medium recovery port 8d is connected to a branch pipe 31f (see FIG. 1) of the heat medium circulation line L2, which will be described later.
  • the third flow path 8 forms part of the heat medium circulation line L2.
  • the electric heater 9 is provided between the two facing first flow paths 6 of the two laminated structures 4 stacked one above the other, that is, between the lowermost first flow path 6 and the lower side of the upper laminated structure 4 . is provided between the uppermost first channel 6 of the laminated structure 4 (see FIG. 2).
  • the electric heater 9 heats the heating element 5 to a temperature capable of generating heat (eg, 50° C. to 1500° C.) via the first flow path 6 .
  • a temperature capable of generating heat eg, 50° C. to 1500° C.
  • the electric heater 9 is composed of a flat base 9a and a heating wire 9b provided on the base 9a.
  • the base 9a is formed in the shape of a rectangular flat plate made of a metal having a high heat resistance such as molybdenum or nickel, a high heat resistance alloy, or ceramics such as alumina or silicon carbide having a high heat resistance and no reactivity with hydrogen.
  • the heating wires 9b are attached to both sides of the base 9a while being repeatedly bent. If the material of the base 9a is conductive such as metal, the heating wire 9b is attached to the base 9a via insulating ceramics.
  • the heating wire 9b is made of a material with high electrical resistance, such as metal such as molybdenum or tungsten.
  • the electric heater 9 is configured by attaching the heating wires 9b to both sides of the base 9a, but it may be configured by attaching the heating wires 9b to only one side of the base 9a.
  • a temperature sensor 11 (see FIG. 1) is provided on the base 9a, and a power source 10 (see FIG. 1) is connected to the heating wire 9b.
  • the electric heater 9 may be configured by arranging a thin ribbon-like surface heater on the base 9a instead of the heating wire 9b.
  • FIG. 5 is a sectional view showing the configuration of the heating element 5. As shown in FIG.
  • the heating element 5 has a support 5A and a multilayer film 5B.
  • the support 5A is composed of a hydrogen storage metal, a hydrogen storage alloy, or a proton dielectric.
  • the hydrogen storage metal Ni, Pd, V, Nb, Ta, Ti, etc. are used, for example.
  • LaNi 5 , CaCu 5 , MgZn 2 , ZrNi 2 , ZrCr 2 , TiFe, TiCo, Mg 2 Ni, Mg 2 Cu, etc. are used as hydrogen storage alloys.
  • Proton dielectrics include, for example, BaCeO 3 system (eg Ba(Ce 0.95 Y 0.05 )O 3-6 ), SrCeO 3 system (eg Sr(Ce 0.95 Y 0.05 )O 3 ⁇ 6 ), CaZrO 3 system (e.g. Ca(Zr 0.95 Y 0.05 )O 3- ⁇ ), SrZrO 3 system (e.g. Sr(Zr 0.9 Y 0.1 )O 3- ⁇ ), ⁇ Al 2 O 3 , ⁇ Ga 2 O 3 and the like are used.
  • BaCeO 3 system eg Ba(Ce 0.95 Y 0.05 )O 3-6
  • SrCeO 3 system eg Sr(Ce 0.95 Y 0.05 )O 3 ⁇ 6
  • CaZrO 3 system e.g. Ca(Zr 0.95 Y 0.05 )O 3- ⁇
  • SrZrO 3 system e.g. Sr(Zr 0.9 Y
  • the support 5A may be composed of a porous material or a hydrogen permeable membrane.
  • the porous body has a large number of pores with a size that allows passage of the hydrogen-based gas.
  • the porous body is composed of materials such as metals, non-metals, and ceramics, for example.
  • the porous body is preferably made of a material that does not inhibit the exothermic reaction between hydrogen and the multilayer film 5B.
  • the hydrogen-permeable membrane is made of a material that allows hydrogen to permeate.
  • a hydrogen-absorbing metal or a hydrogen-absorbing alloy is preferable.
  • Hydrogen-permeable membranes include those having a mesh sheet.
  • the multilayer film 5B is formed on the support 5A.
  • the multilayer film 5B is formed on both surfaces (the left end surface and the right end surface in FIG. 5) of the support 5A in this embodiment.
  • FIG. 5 shows only the multilayer film 5B formed on one surface (left end surface in FIG. 5) of the support 5A, and is formed on the other surface (right end surface in FIG. 5) of the support 5A. Illustration of the multilayer film 5B is omitted.
  • the multilayer film 5B is not limited to being formed on both sides of the support 5A, and may be formed only on one side of the support 5A or only on the other side of the support 5A.
  • the multilayer film 5B has a first layer 51 made of a hydrogen storage metal or hydrogen storage alloy, and a second layer 52 made of a different hydrogen storage metal, hydrogen storage alloy, or ceramics from the first layer 51. is doing.
  • a different material interface 53 is formed between the first layer 51 and the second layer 52 .
  • the multilayer film 5B is formed on the support 5A as a ten-layer film structure in which five first layers 51 and five second layers 52 are alternately laminated in this order.
  • the number of first layers 51 and second layers 52 is arbitrary.
  • the multilayer film 5B may be formed on the support 5A as a multilayer film structure in which a plurality of second layers 52 and first layers 51 are alternately laminated in this order.
  • the multilayer film 5B has at least one first layer 51 and at least one second layer 52, and one or more different material interfaces 53 formed between the first layer 51 and the second layer 52. I wish I had.
  • the first layer 51 is composed of, for example, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co, and alloys thereof.
  • the alloy forming the first layer 51 is preferably composed of two or more of Ni, Pd, Cu, Mn, Cr, Fe, Mg, and Co.
  • Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co may be added with an additive element.
  • the second layer 52 is composed of, for example, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co, alloys thereof, or SiC.
  • an alloy composed of two or more of Ni, Pd, Cu, Mn, Cr, Fe, Mg, and Co is preferable.
  • Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co may be added with an additive element.
  • first layer 51 and the second layer 52 when the types of elements are expressed as "first layer-second layer", Pd--Ni, Ni--Cu, Ni--Cr, Ni--Fe, Ni-- A combination of Mg and Ni—Co is preferred.
  • second layer 52 is made of ceramic, a combination of Ni—SiC is preferable.
  • the thicknesses of the first layer 51 and the second layer 52 that constitute the multilayer film 5B of the heating element 5 are each preferably less than 1000 nm. When each thickness of the first layer 51 and the second layer 52 is less than 1000 nm, the first layer 51 and the second layer 52 can maintain a nanostructure without exhibiting bulk properties. Incidentally, when the thickness of each of the first layer 51 and the second layer 52 is 1000 nm or more, it becomes difficult for hydrogen to permeate the multilayer film 5B. Each thickness of the first layer 51 and the second layer 52 is preferably less than 500 nm. When each thickness of the first layer 51 and the second layer 52 is less than 500 nm, the first layer 51 and the second layer 52 can maintain a nanostructure that does not exhibit any bulk properties.
  • the heating element 5 is configured so that hydrogen permeates through the multilayer film 5B while hopping.
  • the foreign material interface 53 formed between the first layer 51 and the second layer 52 is permeable to hydrogen.
  • dotted arrows indicate how hydrogen permeates the multilayer film 5B while hopping.
  • FIG. 6 is a schematic diagram explaining the mechanism of excessive heat generation in the heating element 5.
  • FIG. FIG. 6 shows that the first layer 51 and the second layer 52 of the multilayer film 5B of the heating element 5 are composed of a hydrogen storage metal having a face-centered cubic structure, and the hydrogen in the metal lattice of the first layer 51 is different. It shows how the particles pass through the material interface 53 and migrate into the metal lattice of the second layer 52 .
  • hydrogen is supplied to the heating element 5, the support 5A and the multilayer film 5B occlude hydrogen.
  • the heating element 5 maintains a state in which hydrogen is occluded by the support 5A and the multilayer film 5B.
  • the heating of the heating element 5 by the electric heater 9 is started, the hydrogen occluded in the support 5A and the multilayer film 5B is released.
  • hydrogen is light and undergoes quantum diffusion while hopping between sites (octahedral sites and tetrahedral sites) occupied by hydrogen in substances A and B.
  • the heating element 5 generates heat (excess heat) greater than the amount heated by the electric heater 9 by permeating the heterogeneous substance interface 53 by hydrogen quantum diffusion or by hydrogen permeating the heterogeneous substance interface 53 by diffusion. Occur.
  • the first flow is arranged so that one surface (front surface) of the heating element 5 faces the first flow path 6 and the other surface (back surface) of the heating element 5 faces the second flow path 7 .
  • the channel 6, the heating element 5, and the second channel 7 are layered in this order. Therefore, the pressure in the first channel 6 is increased by introducing the hydrogen-based gas, and the pressure in the second channel 7 is decreased by recovering the permeating gas. As a result, the pressure of hydrogen in the first flow passage 6 (referred to as “hydrogen partial pressure”) becomes higher than the hydrogen partial pressure in the second flow passage 7, and the hydrogen pressure difference (“hydrogen partial pressure”) on both sides of the heating element 5 pressure difference”) occurs.
  • a plate-like support 5A is prepared, a vapor deposition apparatus is used to vaporize a hydrogen-absorbing metal or hydrogen-absorbing alloy that becomes the first layer 51 and the second layer 52, and the vapor-phase state is obtained. It is manufactured by depositing a hydrogen storage metal or hydrogen storage alloy on the surface of the support 5A, and alternately forming the first layer 51 and the second layer 52 as films. In this case, it is preferable to continuously form the first layer 51 and the second layer 52 in a vacuum state. As a result, only a different material interface 53 is formed between the first layer 51 and the second layer 52 without forming a natural oxide film.
  • a Ni plate for example, is used as the support 5A.
  • the vapor deposition device may be a physical vapor deposition device for vapor-depositing a hydrogen-absorbing metal or a hydrogen-absorbing alloy on the surface of the support 5A by a physical method, or a physical vapor-depositing device for vapor-depositing a hydrogen-absorbing metal or a hydrogen-absorbing alloy on the surface of the support 5A by a chemical method.
  • a chemical vapor deposition apparatus or the like is used.
  • a sputtering device, a vacuum deposition device, or the like is used as the physical vapor deposition device.
  • an ALD (Atomic Layer Deposition) device or the like is used as a chemical vapor deposition device.
  • the first layer 51 and the second layer 52 may be alternately formed on the surface of the support 5A using thermal spraying, spin coating, spray coating, dipping, or electroplating.
  • the heating element 5 comprises a multilayer film 5B by alternately laminating first layers 51 and second layers 52 on a support 5A. is not limited to this. Modifications 1 and 2 of the heating element will be described with reference to FIGS. 7 and 8. FIG.
  • the heating element 60 has a support 60A and a multilayer film 60B. Since the structure of the support 60A is the same as that of the support 5A, the description of the support 60A is omitted.
  • the multilayer film 60B is formed on the support 60A.
  • the multilayer film 60B further includes a third layer 63 made of a hydrogen absorbing metal, a hydrogen absorbing alloy, or ceramics different from the first layer 61 and the second layer 62. have.
  • the structure of the first layer 61 is the same as that of the first layer 51
  • the structure of the second layer 62 is the same as that of the second layer 52, so the description of the first layer 61 and the second layer 62 is omitted.
  • a different material interface 64 is formed between the first layer 61 and the second layer 62 .
  • a different material interface 65 is formed between the first layer 61 and the third layer 63 .
  • the foreign substance interface 64 and the foreign substance interface 65 are permeable to hydrogen.
  • the heating element 60 generates excess heat as hydrogen permeates the dissimilar material interface 64 and the dissimilar material interface 65 by quantum diffusion or hydrogen diffuses through the dissimilar material interface 64 and the dissimilar material interface 65 .
  • the multilayer film 60B is formed on the support 60A as a multilayer film structure in which the first layer 61 is provided between the second layer 62 and the third layer 63.
  • the multilayer film 60B includes a first layer 61, a second layer 62, a first layer 61, and a third layer 63 in this order on one surface (upper end surface in FIG. 7) of a support 60A. alternately stacked.
  • the multilayer film 60B has a different film structure from the example shown in FIG. It may be formed as a multi-layer film structure in which two layers 62 are alternately laminated in this order.
  • the multilayer film 60B is not limited to being formed on one surface of the support 60A (upper surface in FIG.
  • the multilayer film 60B may have one or more third layers 63 .
  • the third layer 63 is, for example, Ni, Pd, Cu, Cr, Fe, Mg, Co, alloys thereof, or SiC, CaO , Y2O3 , TiC, LaB6 , SrO, or BaO. It is composed by
  • the alloy forming the third layer 63 is preferably composed of two or more of Ni, Pd, Cu, Cr, Fe, Mg, and Co. As the alloy forming the third layer 63, Ni, Pd, Cu, Cr, Fe, Mg, Co may be added with an additive element.
  • the third layer 63 is preferably made of any one of CaO , Y2O3, TiC, LaB6 , SrO and BaO.
  • the heating element 60 having the third layer 63 made of one of CaO, Y 2 O 3 , TiC, LaB 6 , SrO, and BaO has an increased amount of hydrogen storage, and a foreign substance interface 64 and a foreign substance Since the amount of hydrogen permeating through the interface 65 increases, the output of excess heat generated by the heating element 60 can be increased.
  • the thickness of the third layer 63 is preferably less than 1000 nm. If the thickness of the third layer 63 is less than 1000 nm, the third layer 63 can maintain a nanostructure without exhibiting bulk properties.
  • the third layer 63 made of any one of CaO, Y2O3, TiC, LaB6, SrO and BaO preferably has a thickness of 10 nm or less. When the thickness of the third layer 63 is 10 nm or less, the multilayer film 60B can easily transmit hydrogen.
  • the third layer 63 made of one of CaO, Y 2 O 3 , TiC, LaB 6 , SrO, and BaO may be formed like an island instead of being formed like a complete film.
  • the first layer 61 and the third layer 63 are preferably formed continuously in a vacuum state. As a result, only a different material interface 65 is formed between the first layer 61 and the third layer 63 without forming a natural oxide film.
  • first layer-third layer-second layer Pd-CaO-Ni, Pd-Y 2O3 - Ni, Pd-TiC-Ni, Pd-LaB6 - Ni, Ni - CaO - Cu, Ni-Y2O3-Cu, Ni-TiC-Cu, Ni-LaB6 - Cu, Ni-Co -Cu, Ni-CaO-Cr, Ni-Y 2 O 3 -Cr, Ni-TiC-Cr, Ni-LaB 6 -Cr, Ni-CaO-Fe, Ni-Y 2 O 3 -Fe, Ni-TiC- Fe, Ni—LaB 6 —Fe, Ni—Cr—Fe, Ni—CaO—Mg, Ni—Y 2 O 3 —Mg, Ni—TiC—Mg, Ni—LaB 6 —Mg, Ni—CaO—Mg, Ni—CaO—Mg, Ni—Y 2 O 3 —Mg, Ni—TiC—Mg, Ni
  • the heating element 70 has a support 70A and a multilayer film 70B. Since the structure of the support 70A is the same as that of the support 5A, the description of the support 70A is omitted.
  • the multilayer film 70B is formed on the support 70A.
  • the multilayer film 70B includes, in addition to the first layer 71, the second layer 72, and the third layer 73, a hydrogen storage metal, a hydrogen storage alloy, or a hydrogen storage alloy different from the first layer 71, the second layer 72, and the third layer 73. It further has a fourth layer 74 made of ceramics.
  • the structure of the first layer 71 is the same as that of the first layer 51
  • the structure of the second layer 72 is the same as that of the second layer 52
  • the structure of the third layer 73 is the same as that of the third layer 63. Descriptions of the first layer 71, the second layer 72, and the third layer 73 are omitted.
  • a different material interface 75 is formed between the first layer 71 and the second layer 72 .
  • a different material interface 76 is formed between the first layer 71 and the third layer 73 .
  • a different material interface 77 is formed between the first layer 71 and the fourth layer 74 .
  • the foreign substance interface 75, the foreign substance interface 76, and the foreign substance interface 77 are permeable to hydrogen.
  • hydrogen permeates the foreign substance interface 75 , the foreign substance interface 76 , and the foreign substance interface 77 by quantum diffusion, or the hydrogen passes through the foreign substance interface 75 , the foreign substance interface 76 , and the foreign substance interface 77 . Diffusion generates excess heat.
  • the multilayer film 70B has a second layer 72, a third layer 73, and a fourth layer 74 laminated in an arbitrary order, and a first layer 71 between the second layer 72, the third layer 73, and the fourth layer 74, respectively. is formed on the support 70A as a multi-layer film structure provided with .
  • the multilayer film 70B includes a first layer 71, a second layer 72, a first layer 71, a third layer 73, a first A layer 71 and a fourth layer 74 are alternately laminated in this order.
  • the multilayer film 70B has a different film structure from the example shown in FIG.
  • a multi-layer film structure in which three layers 73, first layers 71, and second layers 72 are alternately laminated in this order may be formed.
  • the multilayer film 70B is not limited to being formed on one surface of the support 70A (upper end surface in FIG. 8), but the other surface of the support 70A (lower end surface in FIG. 8) or both surfaces of the support 70A ( 8).
  • the numbers of the first layer 71, the second layer 72, the third layer 73, and the fourth layer 74 are arbitrary.
  • the multilayer film 70 ⁇ /b>B may have one or more fourth layers 74 and one or more different material interfaces 77 between the first layer 71 and the fourth layer 74 .
  • the fourth layer 74 is, for example, Ni, Pd, Cu, Cr, Fe, Mg, Co, and alloys thereof, or SiC, CaO, Y 2 O 3 , TiC, LaB 6 , SrO, or BaO. It is composed by
  • the alloy forming the fourth layer 74 is preferably composed of two or more of Ni, Pd, Cu, Cr, Fe, Mg, and Co. As the alloy forming the fourth layer 74, Ni, Pd, Cu, Cr, Fe, Mg, Co may be added with an additive element.
  • the fourth layer 74 is preferably made of one of CaO , Y2O3, TiC, LaB6 , SrO and BaO.
  • the heating element 70 having the fourth layer 74 made of one of CaO, Y 2 O 3 , TiC, LaB 6 , SrO, and BaO has an increased amount of hydrogen storage, a Since the amount of hydrogen permeating through the interface 76 and the interface 77 of different substances increases, the output of excess heat generated by the heating element 70 can be increased.
  • the thickness of the fourth layer 74 is preferably less than 1000 nm. If the thickness of the fourth layer 74 is less than 1000 nm, the fourth layer 74 can maintain a nanostructure without exhibiting bulk properties.
  • the thickness of the fourth layer 74 made of any one of CaO, Y 2 O 3 , TiC, LaB 6 , SrO and BaO is preferably 10 nm or less. When the thickness of the fourth layer 74 is 10 nm or less, the multilayer film 70B can easily transmit hydrogen.
  • the fourth layer 74 made of any one of SiC, CaO, Y 2 O 3 , TiC, LaB 6 , SrO, and BaO may be formed like an island instead of being formed like a complete film. good.
  • the first layer 71 and the fourth layer 74 are preferably formed continuously in a vacuum state. As a result, only a different material interface 77 is formed between the first layer 71 and the fourth layer 74 without forming a natural oxide film.
  • first layer 71 As for the combination of the first layer 71, the second layer 72, the third layer 73, and the fourth layer 74, if the types of elements are indicated as "first layer-fourth layer-third layer-second layer", Combinations of Ni--CaO--Cr--Fe, Ni--Y 2 O 3 --Cr--Fe, Ni--TiC--Cr--Fe and Ni--LaB 6 --Cr--Fe are preferred.
  • the hydrogen-based gas discharged from the circulation pump 14 flows through the introduction pipe 12 of the hydrogen circulation line L1 and the four branches branched from the introduction pipe 12. It flows through the pipe 15 and is introduced into each first flow path 6 formed in each laminated structure 4 of the heat generating module M1.
  • the pressure fluctuation of the hydrogen-based gas is suppressed by the buffer tank 17 while flowing through the introduction pipe 12, and the pressure is adjusted to a predetermined value by the pressure regulating valve 18.
  • the electric heater 9 of the heat generating module M1 generates heat by the electric power supplied from the power source 10, and the temperature (for example, 50° C. to 1500° C.) at which the heating element 5 can generate heat through the hydrogen-based gas in the first flow path 6. heat to The temperature of the heating element 5 is adjusted to an appropriate value by controlling the output of the power supply 10 by the control unit 2 based on the temperature detected by the temperature sensor 11 .
  • the electric heater 9 is provided between the first flow passages 6 facing each other in the two laminated structures 4, the heat of the electric heater 9 is not dissipated to the surroundings by heat radiation from the sealed container 3. .
  • the electric heater 9 is provided in the central portion of the heat generating module M1, the entire heat generating module M1 is efficiently heated. Therefore, the heating element 5 is efficiently heated to an appropriate temperature, and the power consumption associated with the heating of the heating element 5 can be kept low.
  • the hydrogen contained in the hydrogen-based gas introduced into each first channel 6 of the heat generating module M1 permeates the heating element 5 and flows into the second channel 7 as described above.
  • the heating element 5 generates heat by permeating hydrogen from the first channel 6 to the second channel 7 .
  • Permeated gas containing hydrogen (permeated hydrogen) that has permeated each heat generating element 5 of the heat generating module M1 and is used for heat generation by the heat generating element 5 flows out from each second flow path 7 to each branch pipe 16 and is recovered. After merging in the pipe 13 , the gas is sucked into the circulation pump 14 and recovered, and reused as a hydrogen-based gas for supplying hydrogen to each heating element 5 . Thereafter, the same operation is repeated, and hydrogen contained in the hydrogen-based gas is used for heat generation by the heating elements 5 of the heat generating module M1 while the hydrogen-based gas circulates through the hydrogen circulation line L1. As described above, in the present embodiment, the hydrogen-based gas continuously circulates through the hydrogen circulation line L1 forming a closed loop.
  • the high-temperature permeated gas containing the permeated hydrogen is recovered and circulated in the hydrogen circulation line L1 to be reused as a hydrogen-based gas that supplies hydrogen to each heating element 5, supercooling of each heating element 5 is suppressed. , the heat generation of each heating element 5 is maintained or accelerated.
  • the heat medium flowing through each of the third flow paths 8 of the heat generating module M1 is heated by exchanging heat with the high-temperature permeating gas flowing through the two second flow paths 7 arranged on both sides of the third flow path 8. be. Since the heat medium is efficiently heated by taking heat from the high-temperature permeating gas flowing through the two second flow paths 7, the heat recovery efficiency is enhanced. Therefore, the heat generating module M1 has a heat generating function of generating heat by permeating hydrogen through the heat generating element 5, and a heat exchanging function of exchanging heat between the permeated gas containing permeated hydrogen that has permeated the heat generating element 5 and the heat medium. Combines The heat generating device 1 including the heat generating module M1 has a form of integrated heat generation and heat exchange.
  • the heat medium heated by heat exchange with the high-temperature permeating gas in the second flow path 7 in the course of flowing through each third flow path 8 passes through the branch pipe 31f from each third flow path 8 and joins in the first pipe 31a. After that, it is supplied to the later-described heat utilization device 30 through the first pipe 31a.
  • the heat utilization device 30 uses the heat supplied from the heat medium to perform required work such as power generation. That is, the heat medium heated by the heat generating device 1 is used as a heat source for the heat utilization device 30 . Then, the heat medium whose temperature has been lowered by supplying heat to the heat utilization device 30 is returned to the heat generating module M1 through the fourth pipe 31d, and is heated again in the heat generating module M1. Thereafter, similar operations are continuously repeated to continuously drive the heat utilization device 30 .
  • the second flow path 7, the heating element 5, the first It is provided with a laminated structure 4 configured by sequentially and symmetrically laminating flow paths 6 and an electric heater 9 for heating a heating element 5 .
  • Each laminated structure 4 is configured by laminating a heating element 5, a first channel 6, a second channel 7, and a third channel 8 at high density. Therefore, according to the heat generating device 1 of the present embodiment, heat can be efficiently generated, and the size and size of the device can be reduced.
  • the heat generated by the heating element 5 is generated by the heat medium flowing through the third flow path 8 and the high temperature flowing through the second flow paths 7 arranged on both sides of the third flow path 8. is efficiently given to the heat medium by heat exchange with the permeated gas. Therefore, the heat generating device 1 can efficiently recover the heat generated in the heat generating body 5 by the heat medium.
  • the heat generating device 1 includes two laminated structures 4 in this embodiment, it may be provided with one or more laminated structures 4, and a plurality of laminated structures 4 of three or more may be arranged in multiple stages. It may be configured by stacking on. By increasing the number of laminated structures 4, the heat generating device 1 can generate heat more efficiently and achieve higher output.
  • the electric heater 9 is configured in a plate shape and provided between the two laminated structures 4. However, for example, it is configured as a cylindrical electric furnace and provided so as to cover the entire heat generating module. Also good.
  • FIG. 9 is a block diagram showing the configuration of the heat utilization system 20 according to this embodiment.
  • the heat utilization system 20 includes a heat generating device 1 and a heat utilization device 30.
  • the heat utilization device 30 is an example of a device that generates power using a heat medium heated by heat generated in the heat generating device 1 as a heat source.
  • the heat utilization device 30 includes a heat medium circulation line L ⁇ b>2 , a gas turbine 32 , a steam generator 33 , a steam turbine 34 , a Stirling engine 35 and a thermoelectric conversion section 36 .
  • the heat medium circulation line L2 the gas turbine 32, the steam generator 33, the steam turbine 34, the Stirling engine 35, and the thermoelectric conversion section 36 will be described below.
  • the heat medium circulation line L2 constitutes a closed loop for circulating the heat medium among the heat generating module M1, the gas turbine 32, the steam generator 33, the steam turbine 34, the Stirling engine 35, and the thermoelectric conversion section 36 of the heat generating device 1.
  • the heat medium circulation line L2 includes a first pipe 31a extending from the heat medium recovery port 8d (see FIG. 3) of the third flow path 8 of the heat generating module M1 and connected to the gas turbine 32, A second pipe 31b connecting the turbine 32 and the steam generator 33; a third pipe 31c connecting the steam generator 33 and the Stirling engine 35; and a fourth pipe 31d connected to the heat medium inlet 8c.
  • a circulation pump 37 and a flow control valve 38 are provided in the middle of the first pipe 31a.
  • a metal bellows pump or the like is used as the circulation pump 37 .
  • a variable leak valve or the like is used for the flow control valve 38 .
  • the heat medium circulation line L2 is two branch pipes that connect the heat medium inlets 8c (see FIG. 3) of the two third flow paths 8 constituting the heat generating module M1 and the fourth pipe 31d. 31e, and two branch pipes 31f connecting the heat medium recovery ports 8d (see FIG. 3) of the two third flow paths 8 constituting the heat generating module M1 and the first pipe 31a.
  • the gas turbine 32 comprises a compressor 32a and a turbine 32b coaxially connected.
  • the gas turbine 32 is driven by a heat medium introduced from the first pipe 31a.
  • a generator 40 is connected to the output shaft of the turbine 32b.
  • the steam generator 33 includes an internal pipe 33a connected to the second pipe 31b, a heat exchange pipe 33b facing the internal pipe 33a, and a steam pipe 33c connecting the heat exchange pipe 33b and the inlet of the steam turbine 34. , and a feed water pipe 33 d connecting the heat exchange pipe 33 b and the outlet of the steam turbine 34 .
  • the steam generator 33 heats the boiler water by heat exchange between the heat medium flowing through the internal pipe 33a and the boiler water flowing through the heat exchange pipe 33b to generate high-temperature, high-pressure steam.
  • the water supply pipe 33d is provided with a condenser and a water supply pump (not shown). 33 d of water supply piping cools the steam discharged
  • the steam turbine 34 is driven by high-pressure steam generated by the steam generator 33 .
  • a generator 50 is connected to the output shaft of the steam turbine 34 .
  • the Stirling engine 35 includes a cylinder 35a, a displacer piston 35b, a power piston 35c, a flow path 35d, and a crank portion 35e.
  • the inside of the cylinder 35a is divided into an expansion space S1 and a compression space S2 by the displacer piston 35b.
  • a working fluid is enclosed in the expansion space S1 and the compression space S2.
  • helium gas hydrogen-based gas, air, or the like is used. In this embodiment, helium gas is used.
  • the flow path 35d is provided outside the cylinder 35a, and communicates the expansion space S1 and the compression space S2.
  • the flow path 35d allows working fluid to flow between the expansion space S1 and the compression space S2.
  • the flow path 35d includes a high temperature section 35f, a low temperature section 35g, and a regenerator 35h.
  • the working fluid in the expansion space S1 passes through the high temperature section 35f, the regenerator 35h, and the low temperature section 35g in order and flows into the compression space S2.
  • the working fluid in the compression space S2 flows into the expansion space S1 through the low temperature section 35g, the regenerator 35h, and the high temperature section 35f in sequence.
  • the high temperature section 35f is a heat exchanger for heating the working fluid.
  • a heat transfer tube 35i is provided outside the high temperature portion 35f.
  • the heat transfer pipe 35i connects the third pipe 31c and the fourth pipe 31d, and circulates the heat medium from the third pipe 31c to the fourth pipe 31d.
  • the heat medium flows from the third pipe 31c to the heat transfer tube 35i, the heat of the heat medium is transferred to the high temperature portion 35f, and the working fluid passing through the high temperature portion 35f is heated.
  • the low temperature section 35g is a heat exchanger for cooling the working fluid.
  • a cooling pipe 35j is provided outside the low temperature section 35g.
  • the cooling pipe 35j is connected to a cooling medium supply unit (not shown) that supplies a cooling medium such as water, and allows the cooling medium supplied from the cooling medium supply unit to flow. As the cooling medium flows through the cooling pipe 35j, the working fluid passing through the low temperature portion 35g is cooled by the cooling medium taking away heat.
  • the regenerator 35h is a heat exchanger for heat storage.
  • the regenerator 35h is provided between the high temperature section 35f and the low temperature section 35g.
  • the regenerator 35h receives and accumulates heat from the working fluid that has passed through the high temperature portion 35f when the working fluid moves from the expansion space S1 to the compression space S2. Further, the regenerator 35h gives the accumulated heat to the working fluid that has passed through the low temperature section 35g to heat the working fluid when the working fluid moves from the compression space S2 to the expansion space S1.
  • the crank portion 35e is provided at the other end of the cylinder 35a, and includes a crankshaft rotatably supported by a crankcase (not shown), a rod connected to the displacer piston 35b, a rod connected to the power piston 35c, and a rod connected to the power piston 35c.
  • a connecting member or the like for connecting the rod and the crankshaft is provided.
  • the crank portion 35e converts the reciprocating linear motion of the displacer piston 35b and the power piston 35c into rotary motion.
  • a generator 80 is connected to the crankshaft of the Stirling engine 35 .
  • thermoelectric conversion unit 36 converts the heat of the heat medium flowing through the fourth pipe 31d into electric power using the Seebeck effect.
  • the thermoelectric conversion unit 36 converts, for example, heat of a heat medium of 300° C. or less into electric power.
  • the thermoelectric conversion part 36 is formed in a cylindrical shape and arranged so as to cover the outer circumference of the fourth pipe 31d.
  • the thermoelectric conversion section 36 includes a thermoelectric conversion module 36a provided on the inner surface and a cooling section 36b provided on the outer surface.
  • the thermoelectric conversion module 36a is formed by a heat receiving substrate facing the fourth pipe 31d, a heat receiving side electrode provided on the heat receiving substrate, a heat dissipation substrate facing the cooling portion 36b, a heat dissipation side electrode provided on the heat dissipation substrate, and a p-type semiconductor. It includes a p-type thermoelectric element made of an n-type semiconductor, an n-type thermoelectric element made of an n-type semiconductor, and the like.
  • the thermoelectric conversion module 36a has p-type thermoelectric elements and n-type thermoelectric elements arranged alternately, and the adjacent p-type thermoelectric elements and n-type thermoelectric elements are electrically connected by the heat-receiving side electrode and the heat-dissipating side electrode. It is connected to the.
  • leads are electrically connected to a p-type thermoelectric element arranged at one end and an n-type thermoelectric element arranged at the other end through heat radiation side electrodes.
  • the cooling part 36b is configured by, for example, a pipe through which cooling water flows.
  • the thermoelectric conversion unit 36 generates electric power according to the temperature difference generated between the inner surface and the outer surface.
  • the heat generated by the permeation of hydrogen through each heat generating element 5 of the heat generating module M1 is applied to the heat medium flowing through each third flow path 8, and the heat medium reaches a predetermined temperature. heated. Then, when the circulation pump 37 provided in the first pipe 31a of the heat utilization device 30 is driven, the heated heat medium flows through the third flow paths 8 and the branch pipes 31f of the heat generating module M1 that form a closed loop. , the first pipe 31a, the second pipe 31b, the third pipe 31c, the fourth pipe 31d, and each branch pipe 31e.
  • the gas turbine 32, the steam turbine 34, the Stirling engine 35, and the thermoelectric converter 36 are sequentially driven by receiving the heat supplied from the heat medium to generate the required power.
  • the flow control valve 38 controls the flow rate of the heat medium based on the temperature detected by the temperature sensor 11 . That is, when the temperature of the heating element 5 detected by the temperature sensor 11 exceeds the appropriate upper limit temperature, the flow control valve 38 increases the circulation flow rate of the heat medium to suppress the temperature rise of the heating element 5 . Further, when the temperature of the heating element 5 detected by the temperature sensor 11 is below the appropriate lower limit temperature, the flow control valve 38 reduces the circulation flow rate of the heat medium to suppress the temperature drop of the heating element 5 .
  • a high-temperature (for example, 600° C. to 1500° C.) heat medium that is heated by the heat generating module M1 of the heat generating device 1 and flows from each third flow path 8 through each branch pipe 31f to the first pipe 31a is supplied to the gas turbine 32. It is introduced and compressed by the compressor 32 a of the gas turbine 32 . The compressed heat medium expands and flows through the turbine 32b, thereby rotating the turbine 32b and rotating the generator 40 connected to the output shaft of the turbine 32b to generate the required power. That is, part of the heat possessed by the heat medium is converted into kinetic energy of the gas turbine 32 , and this kinetic energy is converted into electrical energy by the generator 40 .
  • the heat medium discharged from the gas turbine 32 to the second pipe 31b exchanges heat with the boiler water flowing through the heat exchange pipe 33b in the process of flowing through the internal pipe 33a of the steam generator 33, thereby heating the boiler water. do.
  • high-temperature (300° C. to 700° C.) and high-pressure steam is generated from the boiler water, and this steam is supplied to the steam turbine 34 through the steam pipe 33c.
  • the steam turbine 34 is rotationally driven by the steam, and the rotation of the steam turbine 34 simultaneously rotationally drives the power generator 50 to generate the required power. That is, part of the heat possessed by the heat medium is converted into kinetic energy of the steam turbine 34 , and this kinetic energy is converted into electrical energy by the generator 50 .
  • the steam whose temperature has been lowered by driving the steam turbine 34 is cooled in a condenser (not shown) and returned to boiler water.
  • This boiler water flows from the feed water pipe 33d to the heat exchange pipe 33b of the steam generator 33, is heated by heat exchange with the heat medium flowing through the internal pipe 33a, and becomes steam again.
  • the heat medium having a temperature of 300° C. to 1000° C. which is used to generate steam in the course of flowing through the internal pipe 33a of the steam generator 33, is supplied from the internal pipe 33a through the third pipe 31c to the Stirling engine 35. It serves to drive the Stirling engine 35 by its action.
  • the crankshaft of the Stirling engine 35 is rotationally driven, and the generator 80 connected to the crankshaft is also rotationally driven to generate the required power. That is, part of the heat possessed by the heat medium is converted into kinetic energy of the Stirling engine 35 and this kinetic energy is converted into electrical energy by the generator 80 .
  • the heat medium used to drive the Stirling engine 35 is supplied to the thermoelectric conversion unit 36 through the fourth pipe 31d, and part of the heat of this heat medium is converted into electric power by the Seebeck effect as described above. That is, part of the heat of the heat medium is converted into electrical energy by the thermoelectric conversion section 36 .
  • the heat medium whose temperature has been lowered by being used for power generation in the thermoelectric conversion unit 36 is returned from the fourth pipe 31d through each branch pipe 31e to each third flow path 8 of the heat generating module M1. After that, the same action is continuously repeated, the heat generated in the heat generating module M1 is recovered by the heat medium, and the heat energy is converted into electric energy.
  • the heat recovered by the heat medium drives the gas turbine 32, the steam turbine 34, and the Stirling engine 35, and the kinetic energy thereof is converted into electric energy by the generators 40, 50, and 80, and the thermoelectric conversion section 36 directly converts thermal energy into electrical energy
  • the heat utilization device 30 may be configured by arbitrarily combining the gas turbine 32, the steam turbine 34, the Stirling engine 35, and the thermoelectric conversion section 36.
  • the heat generated by the heat generating device 1 can be used for other purposes other than power generation, such as combustion air supplied to a boiler. Used for preheating, heating of absorption liquid that has absorbed CO2 by chemical absorption method, heating of raw material gas containing CO2 and H2 in methane production equipment, heat pump system, heat transport system, cold heat ( refrigeration) system, etc. can do.
  • the electric heater 9 is arranged between the two first flow paths 6 facing each other in the two upper and lower laminated structures 4. As shown in 11 , two electric heaters 9 and one third flow path 8 are arranged between two first flow paths 6 facing each other in the two upper and lower laminated structures 4 .
  • the third flow path 8 is arranged in the center of the heat generating module M1 in the vertical direction.
  • a total of two electric heaters 9 are arranged on both sides (upper and lower surfaces) of the third flow path 8 so as to sandwich the third flow path 6 vertically.
  • a fourth pipe 31d is connected via a branch pipe 31e to the inlet side of the third flow path 8 arranged so as to be sandwiched between the two upper and lower electric heaters 9, and the outlet side of the third flow path 8 is connected to the first pipe 31a via a branch pipe 31f.
  • FIG. 10 is a block diagram showing the basic configuration of a heat generating device 1' according to the second embodiment
  • FIG. 11 is an exploded perspective view of a laminated structure 4 according to the second embodiment.
  • the same elements as those shown in FIG. 2 are denoted by the same reference numerals, and the repetitive description of the same elements will be omitted.
  • the heat medium flowing through the third flow paths 8 of each laminated structure 4 and the permeation of high temperature flowing through the second flow paths 7 arranged on both sides of the third flow paths 8 Through heat exchange with hydrogen, heat generated in each heating element 5 is recovered (extracted) by the heat medium. In this case, it is considered that the heat generated in the heating element 5 is difficult to be transmitted because the pressure in each of the second flow paths 7 is low, and the heat recovery efficiency of the heat medium flowing through the third flow paths 8 is low.
  • the heat generated in the heating element 5 is transmitted more easily.
  • two electric heaters 9 and one third flow channel 8 are arranged between the two first flow channels 6 facing each other in the upper and lower laminated structures 4.
  • the heat of the heating element 5 is easily transferred to the heat medium flowing through the third flow path 8 arranged between the two second flow paths 6 and located at the center in the vertical direction via the upper and lower first flow paths 6 and the electric heater 9 . Therefore, the heat recovery efficiency of the heat medium flowing through the third flow path 8 in the center in the vertical direction is increased, and as a result, the heat exchange efficiency of the heat generating device 1' that also functions as a heat exchanger is increased.
  • the electric heater 9 is turned on when the heating device 1′ starts up (starting), and is turned off after the heating element 5 generates heat.
  • the amount of heat generated by the electric heater 9 may be adjusted while the electric heater 5 is kept ON.
  • the electric heaters 9 are arranged above and below the third flow path 8 in order to balance the heating of each heating element 5. You may arrange
  • FIG. 12 is a block diagram showing the basic configuration of the heating device 90 according to the third embodiment.
  • the heat generating device 90 includes a heat generating module M2, a temperature control section T, a hydrogen circulation line L1, a non-permeating hydrogen recovery line L3, a control section 2, and a closed vessel 3.
  • the same reference numerals are assigned to the same configurations as in the first embodiment, and the description thereof will be omitted as appropriate.
  • the heat generating module M2 includes two laminated structures 94 and one electric heater 9.
  • Each laminated structure 94 includes a heating element 5 that generates heat by occluding and releasing hydrogen, a first flow path 96 into which a hydrogen-based gas containing hydrogen is introduced and that supplies hydrogen to the heating element 5 , the heating element 5
  • the second flow path 7 , the heating element 5 , and the first flow path 96 are sequentially and symmetrically laminated on both sides of the third flow path 8 in this order from the third flow path 8 .
  • the heat generating module M2 is formed in a quadrangular prism shape in this example.
  • the heat generating module M2 is configured by stacking two laminated structures 94 vertically in two stages.
  • the lowermost first channel 96 of the upper laminated structure 94 and the uppermost first channel 96 of the lower laminated structure 94 face each other.
  • the electric heater 9 is provided between the two facing first flow paths 96 of the two laminated structures 94 stacked one above the other, that is, the lowermost first flow path 96 of the upper laminated structure 94 and the lower side is provided between the uppermost first channel 96 of the laminated structure 94 and the first channel 96 .
  • the non-permeating hydrogen recovery line L3 is a hydrogen-based gas introduced into each first flow path 96 in each laminated structure 94 of the heat generating module M2, which does not permeate each heat generating element 5 and generates heat from the heat generating element 5. It is for recovering the non-permeating gas containing non-permeating hydrogen not supplied to the first flow path 96 from the first flow path 96 and returning the recovered non-permeating gas to the first flow path 96 .
  • the non-permeable gas containing non-permeable hydrogen that does not permeate the heating element 5 is described as "non-permeable hydrogen".
  • the non-permeating hydrogen recovery line L3 has a recovery pipe 97 for recovering the non-permeating gas from the first channel 96 provided in the laminated structure 94 of the heat generating module M2.
  • the recovery pipe 97 connects with the recovery pipe 13 that constitutes the hydrogen circulation line L1.
  • the recovery pipe 97 is connected to the recovery pipe 13 on the upstream side (suction side) of the circulation pump 14 in FIG. good.
  • the recovery pipe 97 has a branch pipe 98 connected to each first flow path 96 provided in each laminated structure 94 of the heat generating module M2.
  • the non-permeating gas in the first flow path 96 is heated by the heating element 5 to a high temperature, recovered to the recovery pipe 97 via the branch pipe 98, and merged with the permeating gas flowing through the recovery pipe 13 constituting the hydrogen circulation line L1. After that, it is again introduced into each first channel 96 from the introduction pipe 12 and the branch pipe 15 and reused as a hydrogen-based gas for supplying hydrogen to the heating element 5 .
  • the laminated structure 94 has the same configuration as the laminated structure 4 of the first and second embodiments except that the configuration of the first flow path 96 is different.
  • the configuration of the first flow path 96 will be described below.
  • the first flow path 96 includes a flat plate portion 96a and a wall portion 96b provided on the flat plate portion 96a.
  • the flat plate portion 96a and the wall portion 96b are made of stainless steel, for example.
  • the flat plate portion 96a is formed in a rectangular shape in plan view.
  • the wall portions 96b are provided on two of the four edge portions of the flat plate portion 96a that face each other. In FIG. 13, the wall portions 96b are provided at the left and right edge portions in the X-axis direction among the four edge portions of the flat plate portion 96a.
  • the wall portion 96b forming the lower first flow path 96 protrudes upward in the Z-axis direction, and the wall portion 96b forming the upper first flow path 96 protrudes downward in the Z-axis direction.
  • a hydrogen introduction port 96c is provided on the front surface (the left surface in the Y-axis direction) of the first flow passage 96, and a hydrogen recovery port 96d is provided on the back surface of the first flow passage 96 (the right surface in the Y-axis direction). is provided.
  • the hydrogen inlet 96c is connected to the branch pipe 15 (see FIG. 12) of the hydrogen circulation line L1.
  • the hydrogen recovery port 96d is connected to the branch pipe 98 (see FIG. 12) of the non-permeated hydrogen recovery line L3.
  • the hydrogen recovery port 96d provided on the back surface of the upper first flow path 96 is hidden behind the plane of the paper.
  • the heating device 90 according to the third embodiment has a laminated structure in which the heating element 5, the first channel 96, the second channel 7, and the third channel 8 are laminated at high density.
  • a body 94 is provided. Therefore, according to the heat generating device 90 according to the third embodiment, heat can be efficiently generated in the same manner as the heat generating devices 1 and 1' according to the first and second embodiments, and the heat generating device 90 can be small and compact. can be improved.
  • the hydrogen-based gas continuously circulates through the hydrogen circulation line L1 that constitutes a closed loop.
  • the non-permeated hydrogen recovery line L3 is connected to the hydrogen circulation line L1
  • a high-temperature permeated gas containing permeated hydrogen and a high-temperature non-permeated gas containing non-permeated hydrogen are recovered, and the hydrogen circulation line L1 is recovered. Since it is circulated and reused as a hydrogen-based gas that supplies hydrogen to each heat generating element 5 , overcooling of each heat generating element 5 is suppressed, and heat generation of each heat generating element 5 is maintained or accelerated.
  • the heat generated by the heating element 5 passes through the heat medium flowing through the third flow path 8 and the second flow paths 7 arranged on both sides of the third flow path 8. It is efficiently given to the heat medium by heat exchange with the flowing hot permeate gas. Therefore, the heat generating device 90 can efficiently recover the heat generated in the heat generating body 5 by the heat medium.
  • the heat generating device 90 Since the heat generating device 90 is provided with the electric heater 9 at the central portion of the heat generating module M2, the entire heat generating module M2 is efficiently heated. Therefore, according to the heat generating device 90, the heat generating element 5 is efficiently heated to an appropriate temperature, and the power consumption associated with the heating of the heat generating element 5 can be kept low.
  • the permeated gas is recovered from the second flow path 7, but in the fourth embodiment, the heat medium is introduced into the second flow path, and the permeated gas and the permeated gas are recovered from the second flow path. Recover the heat transfer medium.
  • FIG. 14 is a block diagram showing the basic configuration of the heating device 100 according to the fourth embodiment.
  • the heat generating device 100 includes a heat generating module M3, a temperature control section T, a hydrogen circulation line L4, a control section 2, and a sealed container 3.
  • the same reference numerals are assigned to the same configurations as those of the first and second embodiments, and the description thereof will be omitted as appropriate.
  • the heat generating module M3 includes two laminated structures 104 and one electric heater 9.
  • Each laminated structure 104 includes a heat generating element 5 that generates heat by occluding and releasing hydrogen, a first channel 6 into which a hydrogen-based gas containing hydrogen is introduced and that supplies hydrogen to the heat generating element 5, the heat generating element 5
  • a second flow path 107 , a heating element 5 , and a first flow path 6 are sequentially and symmetrically stacked on both sides of the third flow path 8 in this order from the third flow path 8 .
  • the heat generating module M3 is formed in a quadrangular prism shape in this example.
  • the heat generating module M3 is configured by stacking two laminated structures 104 vertically in two stages.
  • the lowermost first channel 6 of the upper laminated structure 104 and the uppermost first channel 6 of the lower laminated structure 104 face each other.
  • the electric heater 9 is provided between the two facing first flow paths 6 of the two laminated structures 104 stacked one above the other, that is, between the lowermost first flow path 6 of the upper laminated structure 104 and the lowermost first flow path 6 .
  • the heat medium circulation line L2 has six branch pipes 31e branched from the fourth pipe 31d. Of the six branch pipes 31e, two branch pipes 31e are connected to the heat medium recovery ports 8d of the two third flow paths 8, and the four branch pipes 31e are connected to the four second flow paths 107. . Therefore, the heat medium flowing through the fourth pipe 31d is introduced into the second flow channel 107 and the third flow channel 8 via each branch pipe 31e.
  • the heat medium introduced into the second flow path 107 is called "first heat medium”
  • the heat medium introduced into the third flow path 8 is called "second heat medium".
  • the first heat medium is introduced into the second flow path 107, and the first heat medium flows together with the permeated gas containing permeated hydrogen that has permeated the heating element 5.
  • FIG. The second heat medium that exchanges heat with the permeating gas flowing through the second flow path 107 and the first heat medium flows through the third flow path 8 .
  • the hydrogen circulation line L4 has an introduction pipe 12, a recovery pipe 13, a circulation pump 14, and a hydrogen separator 108 provided in the middle of the recovery pipe 13.
  • the hydrogen separator 108 is for separating the permeated gas recovered from the second flow path 107 to the recovery pipe 13 via the branch pipe 16 and the first heat medium.
  • the hydrogen separation unit 108 includes a connection pipe 109 branched from the recovery pipe 13 and connected to the fourth pipe 31d of the heat medium circulation line L2, and a hydrogen permeable membrane 110 provided at a connection portion between the recovery pipe 13 and the connection pipe 109. and have.
  • the connection pipe 109 allows the first heat medium that does not permeate the hydrogen permeable membrane 110 to flow into the fourth pipe 31d of the heat medium circulation line L2.
  • the hydrogen permeable membrane 110 is permeable to the permeable gas.
  • the laminated structure 104 has the same configuration as the laminated structure 4 of the first and second embodiments except that the configuration of the second flow path 107 is different.
  • the configuration of the second channel 107 will be described below.
  • the second flow path 107 includes a flat plate portion 107a and a wall portion 107b provided on the flat plate portion 107a.
  • the flat plate portion 107a and the wall portion 107b are made of, for example, stainless steel.
  • the flat plate portion 107a is formed in a rectangular shape in plan view.
  • the wall portions 107b are provided at two edge portions facing each other among the four edge portions of the flat plate portion 107a.
  • the wall portions 107b are provided at the left and right edge portions in the X-axis direction among the four edge portions of the flat plate portion 107a.
  • the wall portion 107b forming the lower second flow path 107 protrudes downward in the Z-axis direction, and the wall portion 107b forming the upper second flow path 107 protrudes upward in the Z-axis direction.
  • a heat medium inlet 107c is provided on the front surface of the second flow path 107 (the left surface in the Y-axis direction), and hydrogen and heat are provided on the back surface of the second flow path 107 (the right surface in the Y-axis direction).
  • a medium recovery port 107d is provided.
  • the heat medium inlet 107c is connected to the branch pipe 31e (see FIG. 12) of the heat medium circulation line L2.
  • the hydrogen and heat medium recovery port 107d is connected to the branch pipe 16 of the hydrogen circulation line L4 (see FIG. 14).
  • the hydrogen and heat medium recovery port 107d provided on the back surface of the second flow path 107 on the lower side is hidden behind the plane of the paper.
  • the heating device 100 according to the fourth embodiment has a laminated structure in which the heating element 5, the first channel 6, the second channel 107, and the third channel 8 are laminated at high density. It has a body 104 . Therefore, according to the heat generating device 100 according to the fourth embodiment, heat can be efficiently generated and the size and size can be reduced, as with the heat generating device 1 according to the first embodiment. .
  • the hydrogen-based gas continuously circulates through the hydrogen circulation line L4 that constitutes a closed loop.
  • the heat generated by the heating element 5 is transferred to the second heat medium flowing through the third flow path 8 and the second flow paths arranged on both sides of the third flow path 8.
  • the heat exchange between the high-temperature permeating gas flowing through 107 and the high-temperature first heat medium is efficiently provided to the second heat medium. Therefore, the heat generating device 100 can efficiently recover the heat generated in the heat generating body 5 by the heat medium.
  • the heat generating modules M1, M2, and M3 according to each of the above embodiments are formed in a quadrangular prism shape, but the shape of the heat generating modules is not limited to this.
  • the heat generating module may be formed in, for example, a polygonal columnar shape other than a square columnar shape, a cylindrical columnar shape, or an elliptical columnar shape.
  • the heat generation module has a direction in which the hydrogen-based gas is introduced into the first flow path, a direction in which the permeated gas flows out from the second flow path, a direction in which the heat medium is introduced into the third flow path, and a direction in which heat is introduced from the third flow path. It is preferable that the directions in which the media flow out are different from each other. As a result, the pipes connected to the first flow path, the second flow path, and the third flow path can be separated from each other, and the piping to the heat generating module can be facilitated.
  • a heat generating module configured such that each direction is different from each other will be described below.
  • the hydrogen-based gas is introduced into the first flow path, and the permeated gas containing the permeated hydrogen that has permeated the heating element is the second gas. It is configured to flow out from the second channel and introduce the heat medium into the third channel.
  • the heat generating module M4 is formed in the shape of an octagonal prism, and the hydrogen-based gas in the first flow path and the hydrogen-based gas in the first flow path flow in different directions orthogonal to three different sets of sides of the octagonal prism.
  • the permeating gas flows through the two passages and the heat medium flows through the third passage.
  • the heat generating module M4 has a direction in which the hydrogen-based gas is introduced into the first flow path, a direction in which the permeating gas flows out from the second flow path, a direction in which the heat medium is introduced into the third flow path, and a direction in which the heat medium is introduced into the third flow path.
  • the directions in which the heat medium flows out from the three flow paths are different from each other.
  • ⁇ Modification 2 of heat generation module> As shown in FIG. 17, in the heat generating module M5, similar to the heat generating module M2 of the third embodiment, the hydrogen-based gas is introduced into the first flow path, and the permeated gas containing the permeated hydrogen that has permeated the heating element is the second gas. Non-permeable gas containing non-permeable hydrogen that has flowed out of the second flow path and has not permeated the heating element flows out of the first flow path, and is configured to introduce the heat medium into the third flow path.
  • the hydrogen-based gas and the non-permeating gas in the first flow path and the non-permeating gas in the second flow path flow in different directions orthogonal to three different sets of sides, each pair of sides of the octagonal prism facing each other.
  • the permeated gas and the heat medium in the third passage flow.
  • the heat generating module M5 has a direction in which the hydrogen-based gas is introduced into the first channel, a direction in which the non-permeating gas flows out from the first channel, a direction in which the permeating gas flows out from the second channel, A direction in which the heat medium is introduced into the third flow path is different from a direction in which the heat medium flows out from the third flow path.
  • the heat generating module M6 introduces the hydrogen-based gas into the first channel, the first heat medium into the second channel, and It is configured such that the permeated gas containing permeated hydrogen that has permeated the heating element and the first heat medium flow out from the second flow path, and the second heat medium is introduced into the third flow path.
  • the heat generating module M6 is configured such that the hydrogen-based gas in the first flow path, the permeated gas in the second flow path, and the permeated gas in the second The first heat medium and the second heat medium in the third passage flow.
  • the heat generating module M6 has a direction in which the hydrogen-based gas is introduced into the first channel, a direction in which the first heat medium is introduced into the second channel, and a permeating gas and the first heat medium from the second channel.
  • the direction in which the heat medium flows out, the direction in which the heat medium is introduced into the third flow path, and the direction in which the heat medium flows out from the third flow path are different from each other.
  • the heat generation module introduces a hydrogen-based gas into the first flow path, introduces the first heat medium into the second flow path, and the permeated gas containing hydrogen permeated through the heating element and the first heat medium are
  • the non-permeable gas containing non-permeable hydrogen that has flowed out of the second flow path and has not permeated the heating element may flow out of the first flow path, and the second heat medium may be introduced into the third flow path. good.
  • heating device 4 94, 104 laminated structure 5, 60, 70 heating element 5A, 60A, 70A support 5B, 60B, 70B multilayer film 51, 61, 71 first layer 52, 62 , 72 second layer 6, 96 first channel 7, 107 second channel 8 third channel 9 electric heater (heating means) 30 Heat utilization device 63, 73 Third layer 74 Fourth layer L1, L4 Hydrogen circulation line L2 Heat medium circulation line L3 Non-permeable hydrogen recovery line M1, M2, M3, M4, M5, M6 Heat generation module T Temperature control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is a heat generation device which efficiently generates heat and efficiently recovers generated heat using a heat medium, and which can be made smaller and more compact. This heat generation device is provided with: a laminated structure (4) having a heat generation element (5) for generating heat by hydrogen absorption and release, a first flow path (6) into which a hydrogen-based gas containing hydrogen is introduced and which supplies hydrogen to the heat generation element (5), a second flow path (7) through which a hydrogen-containing permeation gas that has permeated the heat generation element (5) circulates, and a third flow path (8) through which a heat medium for exchanging heat with the permeation gas flowing through the second flow path (7) circulates, the laminated structure (4) being configured by sequentially and symmetrically laminating, on both sides of the third flow path (8), the second flow path (7), the heat generation element (5), and the first flow path (6) in order from the third flow path (8); and, an electric heater (9) as a heating means for heating the heat generation element (5).

Description

発熱装置heating device
 本発明は、発熱と熱交換とを同時に行う発熱・熱交換一体式の発熱装置に関する。 The present invention relates to an integrated heat generation/heat exchange type heat generating device that simultaneously generates heat and exchanges heat.
 水素吸蔵金属または水素吸蔵合金は、一定の反応条件の下で多量の水素を繰り返して吸蔵及び放出する特性を有し、この水素の吸蔵と放出時にかなりの反応熱を伴うことが知られている。この反応熱を利用したヒートポンプシステム、熱輸送システム、冷熱(冷凍)システムなどの熱利用システムや水素貯蔵システムが提案されている(例えば、特許文献1,2参照)。 It is known that hydrogen storage metals or hydrogen storage alloys have the property of repeatedly absorbing and desorbing a large amount of hydrogen under certain reaction conditions, and that this hydrogen absorption and desorption is accompanied by considerable heat of reaction. . Heat utilization systems such as heat pump systems, heat transport systems, cold heat (refrigeration) systems, and hydrogen storage systems that utilize this heat of reaction have been proposed (see Patent Documents 1 and 2, for example).
 ところで、本出願人などは、水素吸蔵金属などを用いた発熱体を備える発熱装置において、発熱体を、支持体とこの支持体に支持された多層膜とで構成することによって、当該発熱体への水素の吸蔵時と当該発熱体からの水素の放出時に熱が発生する知見を得た。そして、本出願人などは、このような知見に基づいて発熱装置及び熱利用システムを先に提案した(特許文献3参照)。 By the way, the present applicant et al. have proposed that, in a heat generating device provided with a heat generating element using a hydrogen storage metal or the like, the heat generating element is configured by a support and a multilayer film supported by the support, and the heat generating element It was found that heat is generated when hydrogen is absorbed by the heating element and when hydrogen is released from the heating element. Based on such findings, the applicant of the present application and others previously proposed a heat generating device and a heat utilization system (see Patent Document 3).
 具体的には、発熱体の支持体は、多孔質体、水素透過膜、及びプロトン誘電体のうち少なくともいずれかで構成されている。発熱体の多層膜は、水素吸蔵金属または水素吸蔵合金で構成された厚さ1000nm未満の第1層と、第1層とは異なる水素吸蔵金属、水素吸蔵合金、又はセラミックスで構成された厚さ1000nm未満の第2層とを交互に積層することによって構成されている。ここで、特許文献3において提案された発熱装置の一例を図19に示す。 Specifically, the support of the heating element is composed of at least one of a porous body, a hydrogen-permeable membrane, and a proton dielectric. The multilayer film of the heating element includes a first layer having a thickness of less than 1000 nm made of a hydrogen storage metal or a hydrogen storage alloy, and a thickness made of a hydrogen storage metal, a hydrogen storage alloy, or ceramics different from the first layer. It is constructed by alternately stacking second layers of less than 1000 nm. Here, FIG. 19 shows an example of the heat generating device proposed in Patent Document 3. As shown in FIG.
 図19は特許文献3において提案された発熱装置201の基本構成を示すブロック図である。発熱装置201は、制御部202と、密閉容器203と、発熱体205と、加熱手段である電気ヒータ209と、温度調整部Tと、水素循環ラインL0とを備えている。 FIG. 19 is a block diagram showing the basic configuration of the heat generating device 201 proposed in Patent Document 3. The heating device 201 includes a control section 202, a sealed container 203, a heating element 205, an electric heater 209 as heating means, a temperature control section T, and a hydrogen circulation line L0.
 発熱体205は、密閉容器203内に収容されている。密閉容器203は、断熱材224によって断熱された格納容器225内に収容されている。電気ヒータ209は、密閉容器203の周囲に巻装されている。電気ヒータ209の出力は、温度調整部Tによって制御される。温度調整部Tは、発熱体205の温度を検出する温度センサ211と、この温度センサ211によって検出された発熱体205の温度に基づいて電源210の出力を制御する制御部202とによって構成されている。 The heating element 205 is housed inside the sealed container 203 . The sealed container 203 is housed inside a containment container 225 insulated by heat insulating material 224 . An electric heater 209 is wound around the sealed container 203 . The output of the electric heater 209 is controlled by the temperature controller T. The temperature adjustment unit T is composed of a temperature sensor 211 that detects the temperature of the heating element 205 and a control unit 202 that controls the output of the power supply 210 based on the temperature of the heating element 205 detected by the temperature sensor 211. there is
 密閉容器203内は、発熱体205によって第1室R1と第2室R2とに区画されている。第1室R1には、水素循環ラインL0の導入配管213が接続されている。第2室R2には、水素循環ラインL0の回収配管219が接続されている、水素循環ラインL0には、循環ポンプ212と、バッファタンク215と、圧力調整弁216と、フィルタ217とが接続されている。循環ポンプ212と圧力調整弁216は、制御部202に電気的に接続されて当該制御部202によってその動作が制御される。 The inside of the sealed container 203 is partitioned into a first chamber R1 and a second chamber R2 by a heating element 205. An introduction pipe 213 of the hydrogen circulation line L0 is connected to the first chamber R1. A recovery pipe 219 of the hydrogen circulation line L0 is connected to the second chamber R2. A circulation pump 212, a buffer tank 215, a pressure control valve 216, and a filter 217 are connected to the hydrogen circulation line L0. ing. The circulation pump 212 and the pressure regulating valve 216 are electrically connected to the controller 202 and their operations are controlled by the controller 202 .
 格納容器225には、発熱装置201によって発生する熱によって加熱された熱媒体を不図示の熱利用装置(熱負荷)へと供給するための供給配管226と、熱利用装置に熱を供給した後の熱媒体を回収するための回収配管227とが接続されている。 The containment vessel 225 includes a supply pipe 226 for supplying the heat medium heated by the heat generated by the heat generating device 201 to a heat utilization device (heat load) not shown, and a supply pipe 226 for supplying heat to the heat utilization device. A recovery pipe 227 for recovering the heat medium is connected.
 以上のように構成された発熱装置201において、制御部202によって出力が制御される電気ヒータ209によって発熱体205を最適温度に加熱しつつ、循環ポンプ212を駆動して水素系ガスを水素循環ラインL0の導入配管213から密閉容器203の第1室R1へと導入すると、この水素系ガスに含まれる水素が発熱体205を透過して第2室R2へと移動する。このように水素が発熱体205を透過(吸蔵と放出)することによって、発熱体205は、電気ヒータ209で発熱体205を加熱する熱量よりも大きな熱量の熱(過剰熱)を発生する。 In the heat generating device 201 configured as described above, the electric heater 209 whose output is controlled by the control unit 202 heats the heat generating element 205 to an optimum temperature, and the circulation pump 212 is driven to move the hydrogen-based gas to the hydrogen circulation line. When the hydrogen-based gas is introduced into the first chamber R1 of the sealed container 203 from the introduction pipe 213 of L0, the hydrogen contained in this hydrogen-based gas permeates the heating element 205 and moves to the second chamber R2. As hydrogen permeates (absorbs and releases) the heating element 205 in this manner, the heating element 205 generates heat (excess heat) that is larger than the amount of heat required to heat the heating element 205 by the electric heater 209 .
 上述のように発熱体205において過剰熱が発生すると、格納容器225内に供給される熱媒体が過剰熱によって加熱される。加熱された熱媒体が供給配管226を経て不図示の熱利用装置に供給されることによって、熱利用装置が過剰熱を熱源として所要の仕事(例えば、発電)を行う。そして、熱利用装置に熱を与えることによって温度が低下した熱媒体は、回収配管219を経て格納容器225へと戻されて回収される。 When excess heat is generated in the heating element 205 as described above, the heat medium supplied into the containment vessel 225 is heated by the excess heat. The heated heat medium is supplied to a heat utilization device (not shown) through the supply pipe 226, whereby the heat utilization device uses excess heat as a heat source to perform required work (eg, power generation). Then, the heat medium whose temperature has been lowered by applying heat to the heat utilization device is returned to the containment vessel 225 through the recovery pipe 219 and recovered.
 上記動作が連続的に繰り返されて、発熱装置201において発生した熱が、熱媒体を介して熱利用装置へと供給され、発電などの所要の仕事に供される。 The above operation is continuously repeated, and the heat generated in the heat generating device 201 is supplied to the heat utilization device via the heat medium and used for required work such as power generation.
特開昭56-100276号公報JP-A-56-100276 特開昭58-022854号公報JP-A-58-022854 特許第6749035号公報Japanese Patent No. 6749035
 しかしながら、特許文献3において提案された図19に示す発熱装置201においては、熱を発生する発熱体205が高密度で集積した状態で組み込まれていないため、発熱体205が効率良く熱を発生することができず、改善の余地が残されている。 However, in the heat generating device 201 shown in FIG. 19 proposed in Patent Document 3, the heat generating elements 205 that generate heat are not incorporated in a state of being integrated at high density, so the heat generating elements 205 efficiently generate heat. and there is room for improvement.
 また、発熱体205が発生した熱は、密閉容器203内の水素系ガス及び密閉容器203を介して、格納容器225内の熱媒体に伝達され、当該熱媒体を加熱する。このため、発熱体205から熱媒体への熱の伝達経路が長く、発熱体205が発生した熱を熱媒体によって効率良く回収することができず、この点においても改善の余地が残されている。 Also, the heat generated by the heating element 205 is transmitted to the heat medium in the containment vessel 225 via the hydrogen-based gas in the closed vessel 203 and the closed vessel 203 to heat the heat medium. Therefore, the heat transfer path from the heat generating element 205 to the heat medium is long, and the heat generated by the heat generating element 205 cannot be efficiently recovered by the heat medium, and there is room for improvement in this respect as well. .
 本発明は、上記問題に鑑みてなされたもので、熱を効率良く発生し、発生した熱を熱媒体によって効率良く回収するとともに、小型・コンパクト化を図ることができる発熱装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat generating device that can efficiently generate heat, efficiently recover the generated heat using a heat medium, and can be made smaller and more compact. aim.
 上記目的を達成するため、本発明に係る発熱装置は、水素の吸蔵と放出によって熱を発生する発熱体と、前記水素を含む水素系ガスが導入され、前記発熱体に前記水素を供給する第1流路と、前記発熱体を透過した前記水素を含む透過ガスが流通する第2流路と、前記第2流路を流れる前記透過ガスとの間で熱交換を行う熱媒体が流通する第3流路とを有し、前記第3流路の両側に、前記第3流路から順に前記第2流路、前記発熱体、前記第1流路を順次対称的に積層して構成される積層構造体と、前記発熱体を加熱する加熱手段と、を備える。 In order to achieve the above object, a heat generating device according to the present invention includes a heating element that generates heat by occluding and releasing hydrogen; A first flow path, a second flow path through which the permeated gas containing hydrogen that has permeated the heating element flows, and a second flow path in which a heat medium that exchanges heat with the permeated gas that flows through the second flow path flows. The second flow path, the heating element, and the first flow path are sequentially and symmetrically stacked on both sides of the third flow path from the third flow path. A laminated structure and heating means for heating the heating element are provided.
 本発明の発熱装置は、熱媒体が流通する第3流路の両側に、当該第3流路から順に、発熱体を透過した水素を含む透過ガスが流通する第2流路、発熱体、発熱体に水素を供給する水素系ガスが導入される第1流路を順次対称的に積層することにより構成された積層構造体を備えている。積層構造体は、発熱体、第1流路、第2流路、及び第3流路が高密度に積層されている。したがって、本発明によれば、熱を効率良く発生し、発生した熱を熱媒体によって効率良く回収するとともに、小型・コンパクト化を図ることができる。 In the heat generating device of the present invention, on both sides of a third flow path through which a heat medium flows, a second flow path through which a permeated gas containing hydrogen that has permeated a heating element flows, in order from the third flow path, a heating element, a heating element, and a heating element. It has a laminated structure constructed by sequentially and symmetrically laminating first flow paths into which hydrogen-based gas for supplying hydrogen to the body is introduced. In the laminated structure, the heating element, the first channel, the second channel, and the third channel are laminated at high density. Therefore, according to the present invention, heat can be efficiently generated, the generated heat can be efficiently recovered by the heat medium, and miniaturization and compactness can be achieved.
第1実施形態に係る発熱装置の基本構成を示すブロック図である。1 is a block diagram showing the basic configuration of a heat generating device according to a first embodiment; FIG. 第1実施形態に係る発熱モジュールの分解斜視図である。1 is an exploded perspective view of a heat generating module according to a first embodiment; FIG. 第1実施形態に係る積層構造体の分解斜視図である。1 is an exploded perspective view of a laminated structure according to a first embodiment; FIG. 第1実施形態に係る電気ヒータの平面図である。1 is a plan view of an electric heater according to a first embodiment; FIG. 第1実施形態に係る発熱体の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of a heating element according to the first embodiment; 第1実施形態に係る発熱体における過剰熱の発生のメカニズムを説明する模式図である。FIG. 4 is a schematic diagram illustrating a mechanism of excessive heat generation in the heating element according to the first embodiment; 発熱体の変形例1を示す断面図である。FIG. 5 is a cross-sectional view showing Modification 1 of the heating element; 発熱体の変形例2を示す断面図である。FIG. 7 is a cross-sectional view showing Modification 2 of the heating element; 第1実施形態に係る熱利用システムの構成を示すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structure of the heat utilization system which concerns on 1st Embodiment. 第2実施形態に係る発熱装置の基本構成を示すブロック図である。FIG. 6 is a block diagram showing the basic configuration of a heat generating device according to a second embodiment; 第2実施形態に係る積層構造体の分解斜視図である。FIG. 8 is an exploded perspective view of a laminated structure according to a second embodiment; 第3実施形態に係る発熱装置の基本構成を示すブロック図である。FIG. 11 is a block diagram showing the basic configuration of a heat generating device according to a third embodiment; 第3実施形態に係る積層構造体の分解斜視図である。FIG. 11 is an exploded perspective view of a laminated structure according to a third embodiment; 第4実施形態に係る発熱装置の基本構成を示すブロック図である。FIG. 11 is a block diagram showing the basic configuration of a heat generating device according to a fourth embodiment; 第4実施形態に係る積層構造体の分解斜視図である。FIG. 11 is an exploded perspective view of a laminated structure according to a fourth embodiment; 発熱モジュールの変形例1を示す模式的平面図である。FIG. 5 is a schematic plan view showing Modification 1 of the heat generating module. 発熱モジュールの変形例2を示す模式的平面図である。FIG. 8 is a schematic plan view showing Modification 2 of the heat generating module. 発熱モジュールの変形例3を示す模式的平面図である。FIG. 11 is a schematic plan view showing Modification 3 of the heat generating module. 特許文献3において提案された発熱装置の基本構成を示すブロック図である。1 is a block diagram showing the basic configuration of a heat generating device proposed in Patent Document 3; FIG.
 以下に本発明の実施形態を図面に基づいて説明する。 The embodiments of the present invention will be described below based on the drawings.
1.第1実施形態
 [発熱装置]
 図1は第1実施形態に係る発熱装置1の基本構成を示すブロック図である。発熱装置1は、発熱モジュールM1と、温度調整部Tと、水素循環ラインL1と、制御部2と、密閉容器3とを備えている。図1において、黒丸の接続点は、部材同士の接続を示している。
1. First Embodiment [Heat generating device]
FIG. 1 is a block diagram showing the basic configuration of a heat generating device 1 according to the first embodiment. The heat generating device 1 includes a heat generating module M1, a temperature control section T, a hydrogen circulation line L1, a control section 2, and a sealed container 3. In FIG. 1, connection points of black circles indicate connections between members.
 発熱モジュールM1は、密閉容器3の内部に収容されている。発熱モジュールM1は、2つの積層構造体4と、1つの電気ヒータ9とを備えている。積層構造体4は、水素の吸蔵と放出によって熱を発生する発熱体5と、水素を含む水素系ガスが導入され、発熱体5に水素を供給する第1流路6と、発熱体5を透過した水素(以下、透過水素と称する)を含む透過ガスが流通する第2流路7と、第2流路7を流れる透過ガスとの間で熱交換を行う熱媒体が流通する第3流路8とを有し、第3流路8の両側に、当該第3流路8から順に第2流路7、発熱体5、第1流路6を順次対称的に積層して構成されている。電気ヒータ9は、発熱体5を加熱する加熱手段の一例である。ここで、水素系ガスには水素の同位体が含まれる。水素系ガスとしては、軽水素ガスと重水素ガスとの少なくともいずれかが使用される。軽水素ガスは、天然に存在する軽水素と重水素との混合物、すなわち、軽水素の割合が99.985%、重水素の割合が0.015%である混合物を含む。図1では、発熱体5に水素を供給する水素系ガスを「水素」、発熱体5を透過した透過水素を含む透過ガスを「透過水素」と記載している。なお、発熱モジュールM1の製作においては、各部材を拡散接合することが望ましい。発熱モジュールM1の詳細な構成は後述する。 The heat generating module M1 is housed inside the sealed container 3. The heat generating module M1 includes two laminated structures 4 and one electric heater 9. As shown in FIG. The laminated structure 4 includes a heating element 5 that generates heat by occluding and releasing hydrogen, a first channel 6 into which a hydrogen-based gas containing hydrogen is introduced and that supplies hydrogen to the heating element 5 , and the heating element 5 . A second flow path 7 through which a permeated gas containing permeated hydrogen (hereinafter referred to as permeated hydrogen) flows, and a third flow through which a heat medium that exchanges heat between the permeated gas flowing through the second flow path 7 flows. and a second flow path 7, a heating element 5, and a first flow path 6 are sequentially and symmetrically laminated on both sides of the third flow path 8 in order from the third flow path 8. there is The electric heater 9 is an example of heating means for heating the heating element 5 . Here, the hydrogen-based gas contains isotopes of hydrogen. At least one of hydrogen gas and deuterium gas is used as the hydrogen-based gas. Hydrogen gas includes a mixture of naturally occurring hydrogen and deuterium, ie, a mixture with a proportion of hydrogen of 99.985% and a proportion of deuterium of 0.015%. In FIG. 1, the hydrogen-based gas that supplies hydrogen to the heating element 5 is described as "hydrogen", and the permeated gas containing permeated hydrogen that has permeated the heating element 5 is described as "permeated hydrogen". It should be noted that, in manufacturing the heat generating module M1, it is desirable to diffusion-bond each member. A detailed configuration of the heat generating module M1 will be described later.
 温度調整部Tは、発熱体5の温度を調整して当該発熱体5を発熱可能な温度(例えば、50℃~1500℃)に維持する。温度調整部Tは、電気ヒータ9と、電気ヒータ9に電力を供給する電源10と、電気ヒータ9の温度を検出する熱電対などの温度センサ11と、温度センサ11によって検出された温度に基づいて電源10の出力を制御する制御部2とによって構成されている。 The temperature adjustment unit T adjusts the temperature of the heating element 5 to maintain the heating element 5 at a temperature at which it can generate heat (for example, 50° C. to 1500° C.). The temperature adjustment unit T includes an electric heater 9, a power supply 10 that supplies electric power to the electric heater 9, a temperature sensor 11 such as a thermocouple that detects the temperature of the electric heater 9, and the temperature detected by the temperature sensor 11. and a control unit 2 for controlling the output of the power supply 10 .
 水素循環ラインL1は、発熱モジュールM1の積層構造体4に設けられた第1流路6に水素を含む水素系ガスを導入するとともに、第1流路6から発熱体5を透過することによって当該発熱体5の発熱に供されて第2流路7へと移動した透過水素を含む透過ガスを回収して第1流路6へと戻す動作を繰り返すものである。 The hydrogen circulation line L1 introduces a hydrogen-based gas containing hydrogen into the first flow path 6 provided in the laminated structure 4 of the heat generating module M1, and permeates the heat generating element 5 from the first flow path 6. The operation of recovering permeated gas containing permeated hydrogen that has been moved to the second channel 7 by the heat generated by the heating element 5 and returning it to the first channel 6 is repeated.
 水素循環ラインL1は、発熱モジュールM1の積層構造体4に設けられた第1流路6に水素系ガスを導入する導入配管12と、発熱モジュールM1の積層構造体4に設けられた第2流路7から透過ガスを回収する回収配管13と、導入配管12と回収配管13とに接続された循環ポンプ14とを有している。発熱装置1では、発熱モジュールM1と水素循環ラインL1とにより、ガスが循環する閉ループが構成されている。 The hydrogen circulation line L1 includes an introduction pipe 12 for introducing a hydrogen-based gas into the first flow path 6 provided in the laminated structure 4 of the heat generating module M1, and a second flow path provided in the laminated structure 4 of the heat generating module M1. It has a recovery pipe 13 for recovering the permeated gas from the passage 7 and a circulation pump 14 connected to the introduction pipe 12 and the recovery pipe 13 . In the heat generating device 1, the heat generating module M1 and the hydrogen circulation line L1 form a closed loop in which gas circulates.
 導入配管12は、循環ポンプ14の吐出口と接続している。導入配管12は、発熱モジュールM1の各積層構造体4に設けられた各第1流路6にそれぞれ接続された分岐管15を有している。導入配管12の水素系ガスは、分岐管15を介して第1流路6へ導入される。 The introduction pipe 12 is connected to the discharge port of the circulation pump 14 . The introduction pipe 12 has a branch pipe 15 connected to each first flow path 6 provided in each laminated structure 4 of the heat generating module M1. The hydrogen-based gas in the introduction pipe 12 is introduced into the first flow path 6 via the branch pipe 15 .
 回収配管13は、循環ポンプ14の吸入口と接続している。回収配管13は、発熱モジュールM1の各積層構造体4に設けられた各第2流路7にそれぞれ接続された分岐管16を有している。第2流路7の透過ガスは、発熱体5により加熱されて高温となり、各分岐管16を介して回収配管13へ回収され、発熱体5に水素を供給するための水素系ガスとして再利用される。 The recovery pipe 13 is connected to the suction port of the circulation pump 14 . The recovery pipe 13 has branch pipes 16 respectively connected to the second flow paths 7 provided in the laminated structures 4 of the heat generating module M1. The permeating gas in the second flow path 7 is heated by the heating element 5 to a high temperature, recovered to the recovery pipe 13 via each branch pipe 16, and reused as a hydrogen-based gas for supplying hydrogen to the heating element 5. be done.
 循環ポンプ14は、閉ループを構成する発熱モジュールM1と水素循環ラインL1との間で水素系ガスを循環させる。循環ポンプ14としては、例えば、メタルベローズポンプが使用される。循環ポンプ14は、制御部2と電気的に接続しており、制御部2からの制御信号によって動作が制御される。 The circulation pump 14 circulates the hydrogen-based gas between the heating module M1 and the hydrogen circulation line L1, which constitute a closed loop. A metal bellows pump, for example, is used as the circulation pump 14 . The circulation pump 14 is electrically connected to the controller 2 and its operation is controlled by a control signal from the controller 2 .
 導入配管12の途中には、バッファタンク17、圧力調整弁18、及びフィルタ19が設けられている。バッファタンク17は、水素系ガスを貯留して当該水素系ガスの流量の変動を吸収するためのものである。圧力調整弁18は、制御部2と電気的に接続しており、制御部2からの制御信号によって開度が調整されることによって、バッファタンク17から供給される水素系ガスの圧力を調整する機能を果たす。 A buffer tank 17 , a pressure regulating valve 18 , and a filter 19 are provided in the middle of the introduction pipe 12 . The buffer tank 17 stores the hydrogen-based gas and absorbs fluctuations in the flow rate of the hydrogen-based gas. The pressure regulating valve 18 is electrically connected to the control unit 2, and adjusts the pressure of the hydrogen-based gas supplied from the buffer tank 17 by adjusting the degree of opening according to a control signal from the control unit 2. fulfill a function.
 フィルタ19は、水素系ガスに含まれる不純物を除去するためのものである。ここで、発熱体5を透過する水素の量(水素透過量)は、発熱体5の温度、発熱体5の両面側における圧力差、発熱体5の表面状態に依存するが、水素に不純物が含まれている場合には、不純物が発熱体5の表面に付着して当該発熱体5の表面状態を悪化させることがある。発熱体5の表面状態が悪化した場合には、当該発熱体5の表面における水素分子の吸着及び解離が阻害されて水素透過量が減少するという不具合が発生する。発熱体5の表面における水素分子の吸着及び解離を阻害するものとしては、例えば、水(水蒸気を含む)、炭化水素(メタン、エタン、メタノール、エタノールなど)、C、S、Siなどが考えられる。このため、フィルタ19は、不純物として、水(水蒸気を含む)、炭化水素、C、S、及び、Siを少なくとも除去する。水素系ガスに含まれる不純物をフィルタ19が除去することによって、発熱体5における水素透過量の減少が抑制される。 The filter 19 is for removing impurities contained in the hydrogen-based gas. Here, the amount of hydrogen that permeates the heating element 5 (hydrogen permeation amount) depends on the temperature of the heating element 5, the pressure difference between both sides of the heating element 5, and the surface condition of the heating element 5. If it is contained, the impurities may adhere to the surface of the heating element 5 and deteriorate the surface condition of the heating element 5 . When the surface condition of the heat generating body 5 deteriorates, the adsorption and dissociation of hydrogen molecules on the surface of the heat generating body 5 are hindered, resulting in a decrease in the amount of hydrogen permeation. Examples of substances that inhibit the adsorption and dissociation of hydrogen molecules on the surface of the heating element 5 include water (including water vapor), hydrocarbons (methane, ethane, methanol, ethanol, etc.), C, S, Si, and the like. . Therefore, the filter 19 removes at least water (including water vapor), hydrocarbons, C, S, and Si as impurities. Since the filter 19 removes impurities contained in the hydrogen-based gas, a reduction in the amount of hydrogen permeating through the heating element 5 is suppressed.
 制御部2は、発熱装置1の各部と電気的に接続しており、各部の動作を制御する。制御部2は、CPU(Central Processing Unit)、ROM(Read Only Memory)やRAM(Random Access Memory)などの記憶部などを備えている。CPUにおいては、ROMやRAMに格納されているプログラムやデータなどを用いて各種の演算処理が実行される。 The control section 2 is electrically connected to each section of the heating device 1 and controls the operation of each section. The control unit 2 includes a CPU (Central Processing Unit), a storage unit such as a ROM (Read Only Memory) and a RAM (Random Access Memory). The CPU executes various arithmetic processes using programs and data stored in ROM and RAM.
 密閉容器3は、例えばステンレス鋼(SUS)の中空容器として構成されている。密閉容器3の材料は、耐熱性及び耐圧性を有する材料、例えば、炭素鋼、オーステナイト系ステンレス鋼、耐熱性非鉄合金鋼などが好ましい。また、密閉容器3の材料は、後述する発熱体5が発生する輻射熱を反射する材料、例えば、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)などでも良い。密閉容器3の形状は、本実施形態では四角筒状であるが、これに限定されず、四角筒状以外の角筒状、円筒状、楕円筒状などでも良い。 The closed container 3 is configured as a hollow container made of stainless steel (SUS), for example. The material of the sealed container 3 is preferably a material having heat resistance and pressure resistance, such as carbon steel, austenitic stainless steel, or heat-resistant non-ferrous alloy steel. Also, the material of the sealed container 3 may be a material that reflects radiant heat generated by the heating element 5, which will be described later, such as nickel (Ni), copper (Cu), molybdenum (Mo), or the like. Although the shape of the sealed container 3 is a square tube in this embodiment, it is not limited to this, and may be a square tube other than the square tube, a cylinder, an elliptical tube, or the like.
 (発熱モジュール)
 発熱モジュールM1の構成を図2~図5に基づいて以下に説明する。図2は発熱モジュールM1の分解斜視図、図3は積層構造体4の分解斜視図、図4は電気ヒータ9の平面図である。
(heat generation module)
The configuration of the heat generating module M1 will be described below with reference to FIGS. 2 to 5. FIG. 2 is an exploded perspective view of the heat generating module M1, FIG. 3 is an exploded perspective view of the laminated structure 4, and FIG. 4 is a plan view of the electric heater 9. As shown in FIG.
 図2に示すように、発熱モジュールM1は、2つの積層構造体4を上下方向(図2のZ軸方向)に2段に重ねて構成されている。上側の積層構造体4の最下部の第1流路6と下側の積層構造体4の最上部の第1流路6とは相対面している。発熱モジュールM1は、図2に示す例では四角柱状に形成されている。発熱装置1、及び発熱装置1を構成する各部材において、Z軸方向における上側の面を平面、Z軸方向における下側の面を底面、Y軸方向における左側の面を正面、Y軸方向における右側の面を背面、X軸方向における右側の面を右側面、X軸方向における左側の面を左側面とする。 As shown in FIG. 2, the heat generating module M1 is configured by stacking two laminated structures 4 in two stages in the vertical direction (the Z-axis direction in FIG. 2). The lowermost first channel 6 of the upper laminated structure 4 and the uppermost first channel 6 of the lower laminated structure 4 face each other. The heat generating module M1 is formed in a quadrangular prism shape in the example shown in FIG. In the heating device 1 and each member constituting the heating device 1, the upper surface in the Z-axis direction is the plane, the lower surface in the Z-axis direction is the bottom surface, the left surface in the Y-axis direction is the front surface, and the Y-axis direction is The right surface is the rear surface, the right surface in the X-axis direction is the right surface, and the left surface in the X-axis direction is the left surface.
 図3に示すように、第1流路6は、平板状に形成された平板部6aと、平板部6aに設けられた壁部6bとにより構成されている。平板部6a及び壁部6bは、例えばステンレス鋼で形成されている。平板部6aは、平面視において四角形状に形成されている。壁部6bは、平板部6aの4辺の縁部分のうち、3辺の縁部分に設けられている。図3では、壁部6bは、平板部6aの4辺の縁部分のうち、X軸方向における左右の縁部分、及びY軸方向における右側の縁部分に設けられている。下側の第1流路6を構成する壁部6bはZ軸方向の上側に向けて突出し、上側の第1流路6を構成する壁部6bはZ軸方向の下側に向けて突出している。第1流路6の正面(Y軸方向における左側の面)、すなわち平板部6aの4辺の縁部分のうち壁部6bが設けられていない1辺の縁部分には、水素導入口6cが設けられている。水素導入口6cは、水素循環ラインL1の分岐管15と接続する(図1参照)。第1流路6の背面(Y軸方向における右側の面)は壁部6bで構成されている。 As shown in FIG. 3, the first flow path 6 is composed of a flat plate portion 6a and a wall portion 6b provided on the flat plate portion 6a. The flat plate portion 6a and the wall portion 6b are made of, for example, stainless steel. The flat plate portion 6a is formed in a square shape in plan view. The wall portion 6b is provided on three of the four edge portions of the flat plate portion 6a. In FIG. 3, the wall portions 6b are provided at the left and right edge portions in the X-axis direction and the right edge portion in the Y-axis direction among the four edge portions of the flat plate portion 6a. The wall portion 6b forming the lower first flow path 6 protrudes upward in the Z-axis direction, and the wall portion 6b forming the upper first flow path 6 protrudes downward in the Z-axis direction. there is A hydrogen inlet 6c is provided on the front surface of the first flow path 6 (the left side surface in the Y-axis direction), that is, on one of the four edge portions of the flat plate portion 6a where the wall portion 6b is not provided. is provided. The hydrogen inlet 6c is connected to the branch pipe 15 of the hydrogen circulation line L1 (see FIG. 1). The rear surface of the first flow path 6 (the right side surface in the Y-axis direction) is composed of a wall portion 6b.
 第2流路7は、平板状に形成された平板部7aと、平板部7aに設けられた壁部7bとにより構成されている。平板部7a及び壁部7bは、例えばステンレス鋼で形成されている。平板部7aは、平面視において四角形状に形成されている。壁部7bは、平板部7aの4辺の縁部分のうち、3辺の縁部分に設けられている。図3では、壁部7bは、平板部7aの4辺の縁部分のうち、X軸方向における左右の縁部分、及びY軸方向における左側の縁部分に設けられている。下側の第2流路7を構成する壁部7bはZ軸方向の下側に向けて突出し、上側の第2流路7を構成する壁部7bはZ軸方向の上側に向けて突出している。第2流路7の背面(Y軸方向における右側の面)、すなわち平板部7aの4辺の縁部分のうち壁部7bが設けられていない1辺の縁部分には、水素回収口7cが設けられている。図3では、下側の第2流路7の背面に設けられている水素回収口7cが、紙面奥側に隠れている。水素回収口7cは、水素循環ラインL1の分岐管16と接続する(図1参照)。 The second flow path 7 is composed of a flat plate portion 7a and a wall portion 7b provided on the flat plate portion 7a. The flat plate portion 7a and the wall portion 7b are made of, for example, stainless steel. The flat plate portion 7a is formed in a square shape in plan view. The wall portion 7b is provided on three of the four edge portions of the flat plate portion 7a. In FIG. 3, the wall portion 7b is provided on the left and right edge portions in the X-axis direction and the left edge portion in the Y-axis direction among the four edge portions of the flat plate portion 7a. The wall portion 7b forming the lower second flow path 7 protrudes downward in the Z-axis direction, and the wall portion 7b forming the upper second flow path 7 protrudes upward in the Z-axis direction. there is A hydrogen recovery port 7c is provided on the back surface of the second flow path 7 (the right side surface in the Y-axis direction), that is, on one of the four edge portions of the flat plate portion 7a where the wall portion 7b is not provided. is provided. In FIG. 3, the hydrogen recovery port 7c provided on the back surface of the second flow path 7 on the lower side is hidden behind the plane of the paper. The hydrogen recovery port 7c is connected to the branch pipe 16 of the hydrogen circulation line L1 (see FIG. 1).
 第3流路8は、平板状に形成され、互いに隙間をあけて配置された2つの平板部8aと、2つの平板部8aの間に設けられ、互いに隙間をあけて配置された2つの壁部8bとにより構成されている。平板部8a及び壁部8bは、例えばステンレス鋼で形成されている。平板部8aは、平面視において四角形状に形成されており、Z軸方向の上下に配置されている。壁部8bは、平板部8aの4辺の縁部分のうち、互いに対向する2辺の縁部分に設けられている。図3では、壁部8bは、平板部8aの4辺の縁部分のうち、Y軸方向における左右の縁部分に設けられている。第3流路8の右側面(X軸方向における右側の面)には熱媒体導入口8cが設けられ、第3流路8の左側面(X軸方向における左側の面)には熱媒体回収口8dが設けられている。熱媒体導入口8cは、後述する熱媒体循環ラインL2の分岐管31e(図1参照)と接続する。熱媒体回収口8dは、後述する熱媒体循環ラインL2の分岐管31f(図1参照)と接続する。第3流路8は、熱媒体循環ラインL2の一部を構成している。 The third flow path 8 is formed in a flat plate shape and includes two flat plate portions 8a arranged with a gap therebetween, and two walls provided between the two flat plate portions 8a and arranged with a gap therebetween. 8b. The flat plate portion 8a and the wall portion 8b are made of, for example, stainless steel. The flat plate portions 8a are formed in a rectangular shape in a plan view, and are arranged vertically in the Z-axis direction. The wall portions 8b are provided on two edge portions of the four edge portions of the flat plate portion 8a that face each other. In FIG. 3, the wall portions 8b are provided at the left and right edge portions in the Y-axis direction among the four edge portions of the flat plate portion 8a. A heat medium inlet 8c is provided on the right side surface (the right side surface in the X-axis direction) of the third flow path 8, and the heat medium recovery port 8c is provided on the left side surface (the left side surface in the X-axis direction) of the third flow path 8. A mouth 8d is provided. The heat medium inlet 8c is connected to a branch pipe 31e (see FIG. 1) of the heat medium circulation line L2, which will be described later. The heat medium recovery port 8d is connected to a branch pipe 31f (see FIG. 1) of the heat medium circulation line L2, which will be described later. The third flow path 8 forms part of the heat medium circulation line L2.
 電気ヒータ9は、上下に重ねられた2つの積層構造体4の相対面する2つの第1流路6の間、つまり、上側の積層構造体4の最下部の第1流路6と下側の積層構造体4の最上部の第1流路6との間に設けられている(図2参照)。電気ヒータ9は、第1流路6を介して発熱体5を発熱可能な温度(例えば、50℃~1500℃)に加熱する。本実施形態では、発熱モジュールM1の上下方向の中心部分に電気ヒータ9が設けられているため、発熱モジュールM1全体の温度が効率的に上昇する。 The electric heater 9 is provided between the two facing first flow paths 6 of the two laminated structures 4 stacked one above the other, that is, between the lowermost first flow path 6 and the lower side of the upper laminated structure 4 . is provided between the uppermost first channel 6 of the laminated structure 4 (see FIG. 2). The electric heater 9 heats the heating element 5 to a temperature capable of generating heat (eg, 50° C. to 1500° C.) via the first flow path 6 . In this embodiment, since the electric heater 9 is provided in the central portion of the heat generating module M1 in the vertical direction, the temperature of the entire heat generating module M1 rises efficiently.
 図4に示すように、電気ヒータ9は、平板状のベース9aと、ベース9aに設けられた加熱ワイヤー9bとにより構成されている。ベース9aは、耐熱温度の高い、モリブデン、ニッケルなどの金属や高耐熱合金、または高耐熱かつ水素と反応性のないアルミナ、炭化ケイ素などのセラミックスによって構成された矩形平板状に形成されている。加熱ワイヤー9bは、ベース9aの両面に、繰り返し屈曲させた状態で取り付けられている。ベース9aの素材が金属など導電性の場合、加熱ワイヤー9bは、絶縁性セラミックスを介してベース9aに取り付けられる。加熱ワイヤー9bは、電気抵抗の高い材料、例えばモリブデンやタングステンなどの金属によって構成されている。加熱ワイヤー9bを繰り返し屈曲させた状態でベース9aに取り付けることによって、電気ヒータ9の発熱面積が増えて発熱量が高められる。なお、電気ヒータ9は、本実施形態ではベース9aの両面に加熱ワイヤー9bを取り付けて構成したが、加熱ワイヤー9bをベース9aの片面のみに取り付けて構成しても良い。図4には図示していないが、ベース9aには温度センサ11(図1参照)が設けられており、加熱ワイヤー9bには電源10(図1参照)が接続されている。なお、本実施の形態では、電気ヒータ9を、加熱ワイヤー9bに代えて薄いリボン状の面ヒータをベース9aに配置することによって構成してもよい。 As shown in FIG. 4, the electric heater 9 is composed of a flat base 9a and a heating wire 9b provided on the base 9a. The base 9a is formed in the shape of a rectangular flat plate made of a metal having a high heat resistance such as molybdenum or nickel, a high heat resistance alloy, or ceramics such as alumina or silicon carbide having a high heat resistance and no reactivity with hydrogen. The heating wires 9b are attached to both sides of the base 9a while being repeatedly bent. If the material of the base 9a is conductive such as metal, the heating wire 9b is attached to the base 9a via insulating ceramics. The heating wire 9b is made of a material with high electrical resistance, such as metal such as molybdenum or tungsten. By attaching the heating wire 9b to the base 9a in a repeatedly bent state, the heating area of the electric heater 9 is increased and the amount of heat generated is increased. In this embodiment, the electric heater 9 is configured by attaching the heating wires 9b to both sides of the base 9a, but it may be configured by attaching the heating wires 9b to only one side of the base 9a. Although not shown in FIG. 4, a temperature sensor 11 (see FIG. 1) is provided on the base 9a, and a power source 10 (see FIG. 1) is connected to the heating wire 9b. In this embodiment, the electric heater 9 may be configured by arranging a thin ribbon-like surface heater on the base 9a instead of the heating wire 9b.
 <発熱体の構成>
 発熱体5の構成を図5に基づいて説明する。図5は発熱体5の構成を示す断面図である。
<Structure of Heating Element>
The configuration of the heating element 5 will be described with reference to FIG. FIG. 5 is a sectional view showing the configuration of the heating element 5. As shown in FIG.
 図5に示すように、発熱体5は、支持体5Aと多層膜5Bとを有している。支持体5Aは、水素吸蔵金属、水素吸蔵合金、またはプロトン誘電体によって構成されている。水素吸蔵金属としては、例えば、Ni、Pd、V、Nb、Ta、Tiなどが用いられる。水素吸蔵合金としては、例えば、LaNi、CaCu、MgZn、ZrNi、ZrCr、TiFe、TiCo、MgNi、MgCuなどが用いられる。プロトン誘電体としては、例えば、BaCeO系(例えば、Ba(Ce0.950.05)O3-6)、SrCeO系(例えば、Sr(Ce0.950.05)O3-6)、CaZrO系(例えば、Ca(Zr0.950.05)O3ーα)、SrZrO系(例えば、Sr(Zr0.90.1)O3ーα)、βAl、βGaなどが用いられる。 As shown in FIG. 5, the heating element 5 has a support 5A and a multilayer film 5B. The support 5A is composed of a hydrogen storage metal, a hydrogen storage alloy, or a proton dielectric. As the hydrogen storage metal, Ni, Pd, V, Nb, Ta, Ti, etc. are used, for example. For example, LaNi 5 , CaCu 5 , MgZn 2 , ZrNi 2 , ZrCr 2 , TiFe, TiCo, Mg 2 Ni, Mg 2 Cu, etc. are used as hydrogen storage alloys. Proton dielectrics include, for example, BaCeO 3 system (eg Ba(Ce 0.95 Y 0.05 )O 3-6 ), SrCeO 3 system (eg Sr(Ce 0.95 Y 0.05 )O 3 −6 ), CaZrO 3 system (e.g. Ca(Zr 0.95 Y 0.05 )O 3-α ), SrZrO 3 system (e.g. Sr(Zr 0.9 Y 0.1 )O 3-α ), βAl 2 O 3 , βGa 2 O 3 and the like are used.
 支持体5Aは、多孔質体または水素透過膜によって構成しても良い。多孔質体は、水素系ガスの通過を許容する大きさの多数の孔を有する。多孔質体は、例えば、金属、非金属、セラミックスなどの材料で構成されている。多孔質体は、水素と多層膜5Bとの発熱反応を阻害しない材料で構成されることが好ましい。水素透過膜は、水素を透過させる材料で構成されている。水素透過膜の材料としては、水素吸蔵金属または水素吸蔵合金が好ましい。水素透過膜にはメッシュ状のシートを有するものも含まれる。 The support 5A may be composed of a porous material or a hydrogen permeable membrane. The porous body has a large number of pores with a size that allows passage of the hydrogen-based gas. The porous body is composed of materials such as metals, non-metals, and ceramics, for example. The porous body is preferably made of a material that does not inhibit the exothermic reaction between hydrogen and the multilayer film 5B. The hydrogen-permeable membrane is made of a material that allows hydrogen to permeate. As a material for the hydrogen-permeable membrane, a hydrogen-absorbing metal or a hydrogen-absorbing alloy is preferable. Hydrogen-permeable membranes include those having a mesh sheet.
 多層膜5Bは、支持体5Aに形成されている。多層膜5Bは、本実施形態では支持体5Aの両面(図5の左端面及び右端面)に形成されている。図5では、支持体5Aの一方の面(図5の左端面)に形成されている多層膜5Bのみを図示し、支持体5Aの他方の面(図5の右端面)に形成されている多層膜5Bの図示を省略している。なお、多層膜5Bは、支持体5Aの両面に形成する場合に限られず、支持体5Aの一方の面のみ、または支持体5Aの他方の面のみに形成しても良い。 The multilayer film 5B is formed on the support 5A. The multilayer film 5B is formed on both surfaces (the left end surface and the right end surface in FIG. 5) of the support 5A in this embodiment. FIG. 5 shows only the multilayer film 5B formed on one surface (left end surface in FIG. 5) of the support 5A, and is formed on the other surface (right end surface in FIG. 5) of the support 5A. Illustration of the multilayer film 5B is omitted. The multilayer film 5B is not limited to being formed on both sides of the support 5A, and may be formed only on one side of the support 5A or only on the other side of the support 5A.
 多層膜5Bは、水素吸蔵金属または水素吸蔵合金によって構成された第1層51と、第1層51とは異なる水素吸蔵金属、水素吸蔵合金、またはセラミックスによって構成された第2層52とを有している。第1層51と第2層52との間には異種物質界面53が形成されている。 The multilayer film 5B has a first layer 51 made of a hydrogen storage metal or hydrogen storage alloy, and a second layer 52 made of a different hydrogen storage metal, hydrogen storage alloy, or ceramics from the first layer 51. is doing. A different material interface 53 is formed between the first layer 51 and the second layer 52 .
 図5に示す例では、多層膜5Bは、各5つの第1層51と第2層52とがこの順に交互に積層された計10層の膜構造として、支持体5Aに形成されている。第1層51と第2層52の数は任意である。多層膜5Bは、複数の第2層52と第1層51とがこの順に交互に積層された多層の膜構造として、支持体5Aに形成しても良い。多層膜5Bとしては、第1層51と第2層52をそれぞれ少なくとも1層以上有し、第1層51と第2層52との間に形成される異種物質界面53を1つ以上有していれば良い。 In the example shown in FIG. 5, the multilayer film 5B is formed on the support 5A as a ten-layer film structure in which five first layers 51 and five second layers 52 are alternately laminated in this order. The number of first layers 51 and second layers 52 is arbitrary. The multilayer film 5B may be formed on the support 5A as a multilayer film structure in which a plurality of second layers 52 and first layers 51 are alternately laminated in this order. The multilayer film 5B has at least one first layer 51 and at least one second layer 52, and one or more different material interfaces 53 formed between the first layer 51 and the second layer 52. I wish I had.
 第1層51は、例えば、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Co、及びこれらの合金のうちのいずれかによって構成されている。第1層51を構成する合金としては、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Coのうちの2種以上から成るものが好ましい。第1層51を構成する合金としては、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Coに添加元素を添加したものを用いても良い。 The first layer 51 is composed of, for example, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co, and alloys thereof. The alloy forming the first layer 51 is preferably composed of two or more of Ni, Pd, Cu, Mn, Cr, Fe, Mg, and Co. As the alloy forming the first layer 51, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co may be added with an additive element.
 第2層52は、例えば、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Co、及びこれらの合金、或いはSiCのうちのいずれかによって構成されている。第2層52を構成する合金としては、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Coのうちの2種以上から成るものが好ましい。第2層52を構成する合金としては、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Coに添加元素を添加したものを用いても良い。 The second layer 52 is composed of, for example, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co, alloys thereof, or SiC. As the alloy forming the second layer 52, an alloy composed of two or more of Ni, Pd, Cu, Mn, Cr, Fe, Mg, and Co is preferable. As the alloy forming the second layer 52, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co may be added with an additive element.
 第1層51と第2層52との組み合わせとしては、元素の種類を「第1層-第2層」として表示すると、Pd-Ni、Ni-Cu、Ni-Cr、Ni-Fe、Ni-Mg、Ni-Coの組み合わせが好ましい。なお、第2層52をセラミックで構成する場合には、Ni-SiCの組み合わせが好ましい。 As a combination of the first layer 51 and the second layer 52, when the types of elements are expressed as "first layer-second layer", Pd--Ni, Ni--Cu, Ni--Cr, Ni--Fe, Ni-- A combination of Mg and Ni—Co is preferred. When the second layer 52 is made of ceramic, a combination of Ni—SiC is preferable.
 発熱体5の多層膜5Bを構成する第1層51と第2層52の厚さは、各々1000nm未満であることが好ましい。第1層51と第2層52の各厚さが1000nm未満であると、第1層51と第2層52は、バルク特性を示すことのないナノ構造を維持することができる。因みに、第1層51と第2層52の各厚さが1000nm以上である場合には、水素が多層膜5Bを透過しにくくなる。第1層51と第2層52の各厚さは、500nm未満であることが好ましい。第1層51と第2層52の各厚さが500nm未満であると、第1層51と第2層52は、バルク特性を全く示さないナノ構造を維持することができる。 The thicknesses of the first layer 51 and the second layer 52 that constitute the multilayer film 5B of the heating element 5 are each preferably less than 1000 nm. When each thickness of the first layer 51 and the second layer 52 is less than 1000 nm, the first layer 51 and the second layer 52 can maintain a nanostructure without exhibiting bulk properties. Incidentally, when the thickness of each of the first layer 51 and the second layer 52 is 1000 nm or more, it becomes difficult for hydrogen to permeate the multilayer film 5B. Each thickness of the first layer 51 and the second layer 52 is preferably less than 500 nm. When each thickness of the first layer 51 and the second layer 52 is less than 500 nm, the first layer 51 and the second layer 52 can maintain a nanostructure that does not exhibit any bulk properties.
 発熱体5は、図5に示すように、多層膜5B内を水素がホッピングしながら透過するように構成されている。すなわち、第1層51と第2層52との間に形成された異種物質界面53は、水素を透過させる。図5では、多層膜5B内を水素がホッピングしながら透過する様子を、点線の矢印で示している。 As shown in FIG. 5, the heating element 5 is configured so that hydrogen permeates through the multilayer film 5B while hopping. In other words, the foreign material interface 53 formed between the first layer 51 and the second layer 52 is permeable to hydrogen. In FIG. 5, dotted arrows indicate how hydrogen permeates the multilayer film 5B while hopping.
 発熱体5を水素が透過する際の発熱(過剰熱の発生)のメカニズムを図6に基づいて説明する。 The mechanism of heat generation (excess heat generation) when hydrogen permeates the heating element 5 will be described based on FIG.
 図6は発熱体5における過剰熱の発生のメカニズムを説明する模式図である。図6は、発熱体5の多層膜5Bの第1層51及び第2層52が面心立法構造を有する水素吸蔵金属によって構成されており、第1層51の金属格子中の水素が、異種物質界面53を透過して、第2層52の金属格子中に移動する様子を示している。発熱体5に水素が供給されると、支持体5Aと多層膜5Bが水素を吸蔵する。ここで、発熱体5は、水素の供給が停止しても、支持体5Aと多層膜5Bによって水素を吸蔵した状態を維持する。 FIG. 6 is a schematic diagram explaining the mechanism of excessive heat generation in the heating element 5. FIG. FIG. 6 shows that the first layer 51 and the second layer 52 of the multilayer film 5B of the heating element 5 are composed of a hydrogen storage metal having a face-centered cubic structure, and the hydrogen in the metal lattice of the first layer 51 is different. It shows how the particles pass through the material interface 53 and migrate into the metal lattice of the second layer 52 . When hydrogen is supplied to the heating element 5, the support 5A and the multilayer film 5B occlude hydrogen. Here, even if the supply of hydrogen is stopped, the heating element 5 maintains a state in which hydrogen is occluded by the support 5A and the multilayer film 5B.
 そして、電気ヒータ9による発熱体5の加熱が開始されると、支持体5Aと多層膜5Bに吸蔵されている水素が放出される。ここで、水素は軽く、ある物質Aと物質Bの水素が占めるサイト(オクタヘドラルサイトやテトラヘドラルサイト)を水素がホッピングしながら量子拡散することが知られている。発熱体5は、異種物質界面53を水素が量子拡散によって透過し、或いは、異種物質界面53を水素が拡散によって透過することで、電気ヒータ9による加熱量以上の熱量の熱(過剰熱)を発生する。 Then, when the heating of the heating element 5 by the electric heater 9 is started, the hydrogen occluded in the support 5A and the multilayer film 5B is released. Here, it is known that hydrogen is light and undergoes quantum diffusion while hopping between sites (octahedral sites and tetrahedral sites) occupied by hydrogen in substances A and B. The heating element 5 generates heat (excess heat) greater than the amount heated by the electric heater 9 by permeating the heterogeneous substance interface 53 by hydrogen quantum diffusion or by hydrogen permeating the heterogeneous substance interface 53 by diffusion. Occur.
 本実施形態では、発熱体5の一方の面(表面)が第1流路6と対面し、発熱体5の他方の面(裏面)が第2流路7と対面するように、第1流路6、発熱体5、及び第2流路7がこの順に積層されている。このため、第1流路6が水素系ガスの導入により昇圧され、第2流路7が透過ガスの回収により減圧される。これにより、第1流路6の水素の圧力(「水素分圧」と称する)が第2流路7の水素分圧よりも高くなり、発熱体5の両側に水素の圧力差(「水素分圧の差」と称する)が生じる。発熱体5の両側に水素分圧の差が生じると、第1流路6に導入された水素系ガスに含まれる水素分子が発熱体5の一方の面(表面)に吸着し、この水素分子が2つの水素原子に解離し、解離した水素原子が発熱体5の内部へ浸入する。すなわち、発熱体5に水素が吸蔵される。発熱体5の内部に侵入した水素原子は、異種物質界面53を量子拡散によって透過し、或いは、異種物質界面53を拡散によって透過する。発熱体5の低圧側に配された他方の面(裏面)では、発熱体5を透過した水素原子が再結合し、水素分子となって第2流路7へ放出される。すなわち、発熱体5から水素が放出される。このように、発熱体5は、高圧側の第1流路6から低圧側の第2流路7へ水素を透過させることにより、過剰熱を発生する。第1流路6が第2流路7よりも高圧の状態を維持することにより、発熱体5の表面での水素の吸蔵と、発熱体5の裏面での水素の放出とが同時に行われる状態を維持することができる。なお、同時とは、完全に同時であることに限られず、実質的に同時とみなせる程度に僅かな時間内を意味する。水素の吸蔵と放出とが同時に行われることにより、水素が発熱体5を連続的に透過するので、発熱体5から効率的に過剰熱を発生させることができる。 In this embodiment, the first flow is arranged so that one surface (front surface) of the heating element 5 faces the first flow path 6 and the other surface (back surface) of the heating element 5 faces the second flow path 7 . The channel 6, the heating element 5, and the second channel 7 are layered in this order. Therefore, the pressure in the first channel 6 is increased by introducing the hydrogen-based gas, and the pressure in the second channel 7 is decreased by recovering the permeating gas. As a result, the pressure of hydrogen in the first flow passage 6 (referred to as “hydrogen partial pressure”) becomes higher than the hydrogen partial pressure in the second flow passage 7, and the hydrogen pressure difference (“hydrogen partial pressure”) on both sides of the heating element 5 pressure difference”) occurs. When a difference in hydrogen partial pressure occurs on both sides of the heating element 5, hydrogen molecules contained in the hydrogen-based gas introduced into the first flow path 6 are adsorbed on one surface (surface) of the heating element 5, and the hydrogen molecules dissociates into two hydrogen atoms, and the dissociated hydrogen atoms penetrate into the heating element 5 . That is, hydrogen is occluded in the heating element 5 . The hydrogen atoms that have penetrated into the heating element 5 permeate the foreign substance interface 53 by quantum diffusion, or permeate the foreign substance interface 53 by diffusion. On the other surface (back surface) of the heating element 5 located on the low pressure side, the hydrogen atoms that have passed through the heating element 5 are recombined and released into the second flow path 7 as hydrogen molecules. That is, hydrogen is released from the heating element 5 . In this manner, the heating element 5 generates excess heat by permeating hydrogen from the first flow path 6 on the high pressure side to the second flow path 7 on the low pressure side. A state in which hydrogen is absorbed on the surface of the heat generating element 5 and hydrogen is released on the back surface of the heat generating element 5 at the same time by maintaining a state in which the first flow path 6 has a higher pressure than the second flow path 7. can be maintained. Note that "at the same time" is not limited to being completely at the same time, but means within a short period of time to the extent that they can be regarded as being substantially at the same time. Since the absorption and release of hydrogen are performed simultaneously, hydrogen continuously permeates the heating element 5, so that excess heat can be efficiently generated from the heating element 5. FIG.
 <発熱体の製造方法>
 ここで、発熱体5の製造方法の一例について説明する。
<Manufacturing method of heating element>
Here, an example of a method for manufacturing the heating element 5 will be described.
 発熱体5は、板状の支持体5Aを準備し、蒸着装置を用いて、第1層51や第2層52となる水素吸蔵金属または水素吸蔵合金を気相状態とし、この気相状態の水素吸蔵金属または水素吸蔵合金を支持体5Aの表面に付着させ、第1層51と第2層52を交互に成膜することによって製造される。この場合、第1層51と第2層52を真空状態で連続的に成膜することが好ましい。これにより、第1層51と第2層52との間に、自然酸化膜が形成されることなく、異種物質界面53のみが形成される。支持体5Aとしては、例えばNi板が使用される。 For the heating element 5, a plate-like support 5A is prepared, a vapor deposition apparatus is used to vaporize a hydrogen-absorbing metal or hydrogen-absorbing alloy that becomes the first layer 51 and the second layer 52, and the vapor-phase state is obtained. It is manufactured by depositing a hydrogen storage metal or hydrogen storage alloy on the surface of the support 5A, and alternately forming the first layer 51 and the second layer 52 as films. In this case, it is preferable to continuously form the first layer 51 and the second layer 52 in a vacuum state. As a result, only a different material interface 53 is formed between the first layer 51 and the second layer 52 without forming a natural oxide film. A Ni plate, for example, is used as the support 5A.
 蒸着装置としては、水素吸蔵金属または水素吸蔵合金を物理的な方法で支持体5Aの表面に蒸着させる物理蒸着装置や水素吸蔵金属または水素吸蔵合金を化学的な方法で支持体5Aの表面に蒸着させる化学蒸着装置などが用いられる。物理蒸着装置としては、スパッタリング装置や真空蒸着装置などが使用される。化学蒸着装置としては、ALD(Atomic Layer Deposition)装置などが使用される。また、溶射法、スピンコート法、スプレーコート法、ディッピング法、電気めっき法を用いて、支持体5Aの表面に第1層51と第2層52を交互に成膜しても良い。 The vapor deposition device may be a physical vapor deposition device for vapor-depositing a hydrogen-absorbing metal or a hydrogen-absorbing alloy on the surface of the support 5A by a physical method, or a physical vapor-depositing device for vapor-depositing a hydrogen-absorbing metal or a hydrogen-absorbing alloy on the surface of the support 5A by a chemical method. A chemical vapor deposition apparatus or the like is used. A sputtering device, a vacuum deposition device, or the like is used as the physical vapor deposition device. As a chemical vapor deposition device, an ALD (Atomic Layer Deposition) device or the like is used. Alternatively, the first layer 51 and the second layer 52 may be alternately formed on the surface of the support 5A using thermal spraying, spin coating, spray coating, dipping, or electroplating.
 本実施形態に係る発熱体5は、図5に示すように、支持体5Aに対し第1層51と第2層52を交互に積層することによって多層膜5Bを構成しているが、発熱体の構成はこれに限られない。発熱体の変形例1及び変形例2を図7及び図8に基づいて説明する。 As shown in FIG. 5, the heating element 5 according to the present embodiment comprises a multilayer film 5B by alternately laminating first layers 51 and second layers 52 on a support 5A. is not limited to this. Modifications 1 and 2 of the heating element will be described with reference to FIGS. 7 and 8. FIG.
 <発熱体の変形例1>
 図7に示すように、発熱体60は、支持体60Aと多層膜60Bとを有する。支持体60Aの構成は支持体5Aと同じであるため、支持体60Aの説明は省略する。
<Modification 1 of Heating Element>
As shown in FIG. 7, the heating element 60 has a support 60A and a multilayer film 60B. Since the structure of the support 60A is the same as that of the support 5A, the description of the support 60A is omitted.
 多層膜60Bは、支持体60Aに形成されている。多層膜60Bは、第1層61と第2層62に加えて、第1層61及び第2層62とは異なる水素吸蔵金属、水素吸蔵合金、またはセラミックスによって構成された第3層63をさらに有している。第1層61の構成は第1層51と同じであり、第2層62の構成は第2層52と同じであるため、第1層61及び第2層62の説明は省略する。第1層61と第2層62との間には異種物質界面64が形成されている。第1層61と第3層63との間には異種物質界面65が形成されている。異種物質界面64及び異種物質界面65は、異種物質界面53と同様に、水素を透過させる。発熱体60は、異種物質界面64及び異種物質界面65を、水素が量子拡散により透過し、或いは、異種物質界面64及び異種物質界面65を水素が拡散することにより、過剰熱を発生する。 The multilayer film 60B is formed on the support 60A. In addition to the first layer 61 and the second layer 62, the multilayer film 60B further includes a third layer 63 made of a hydrogen absorbing metal, a hydrogen absorbing alloy, or ceramics different from the first layer 61 and the second layer 62. have. The structure of the first layer 61 is the same as that of the first layer 51, and the structure of the second layer 62 is the same as that of the second layer 52, so the description of the first layer 61 and the second layer 62 is omitted. A different material interface 64 is formed between the first layer 61 and the second layer 62 . A different material interface 65 is formed between the first layer 61 and the third layer 63 . Like the foreign substance interface 53, the foreign substance interface 64 and the foreign substance interface 65 are permeable to hydrogen. The heating element 60 generates excess heat as hydrogen permeates the dissimilar material interface 64 and the dissimilar material interface 65 by quantum diffusion or hydrogen diffuses through the dissimilar material interface 64 and the dissimilar material interface 65 .
 多層膜60Bは、第2層62と第3層63との間に第1層61を設けた多層の膜構造として、支持体60Aに形成されている。図7に示す例では、多層膜60Bは、支持体60Aの一方の面(図7の上端面)に、第1層61、第2層62、第1層61、第3層63がこの順に交互に積層されている。多層膜60Bは、図7に示す例とは異なる膜構造、すなわち、支持体60Aの一方の面(図7の上端面)に、第1層61、第3層63、第1層61、第2層62がこの順に交互に積層された多層の膜構造として形成しても良い。多層膜60Bは、支持体60Aの一方の面(図7の上端面)に形成される場合に限られず、支持体60Aの他方の面(図7の下端面)、または支持体60Aの両面(図7の上端面及び下端面)に形成しても良い。なお、第1層61、第2層62、第3層63の数は任意である。多層膜60Bとしては、第3層63を1つ以上有していれば良い。 The multilayer film 60B is formed on the support 60A as a multilayer film structure in which the first layer 61 is provided between the second layer 62 and the third layer 63. In the example shown in FIG. 7, the multilayer film 60B includes a first layer 61, a second layer 62, a first layer 61, and a third layer 63 in this order on one surface (upper end surface in FIG. 7) of a support 60A. alternately stacked. The multilayer film 60B has a different film structure from the example shown in FIG. It may be formed as a multi-layer film structure in which two layers 62 are alternately laminated in this order. The multilayer film 60B is not limited to being formed on one surface of the support 60A (upper surface in FIG. 7), but also on the other surface of the support 60A (lower surface in FIG. 7) or both surfaces of the support 60A ( 7). The numbers of the first layers 61, the second layers 62, and the third layers 63 are arbitrary. The multilayer film 60B may have one or more third layers 63 .
 第3層63は、例えば、Ni、Pd、Cu、Cr、Fe、Mg、Co、及びこれらの合金、或いはSiC、CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成されている。第3層63を構成する合金としては、Ni、Pd、Cu、Cr、Fe、Mg、Coのうちの2種以上から成るものが好ましい。第3層63を構成する合金として、Ni、Pd、Cu、Cr、Fe、Mg、Coに添加元素を添加したものを用いても良い。 The third layer 63 is, for example, Ni, Pd, Cu, Cr, Fe, Mg, Co, alloys thereof, or SiC, CaO , Y2O3 , TiC, LaB6 , SrO, or BaO. It is composed by The alloy forming the third layer 63 is preferably composed of two or more of Ni, Pd, Cu, Cr, Fe, Mg, and Co. As the alloy forming the third layer 63, Ni, Pd, Cu, Cr, Fe, Mg, Co may be added with an additive element.
 特に、第3層63は、CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかにより構成されることが好ましい。CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成された第3層63を有する発熱体60は、水素の吸蔵量が増加し、異種物質界面64及び異種物質界面65を透過する水素の量が増加するため、当該発熱体60が発生する過剰熱の高出力化を図ることができる。 In particular, the third layer 63 is preferably made of any one of CaO , Y2O3, TiC, LaB6 , SrO and BaO. The heating element 60 having the third layer 63 made of one of CaO, Y 2 O 3 , TiC, LaB 6 , SrO, and BaO has an increased amount of hydrogen storage, and a foreign substance interface 64 and a foreign substance Since the amount of hydrogen permeating through the interface 65 increases, the output of excess heat generated by the heating element 60 can be increased.
 第3層63の厚さは、1000nm未満であることが好ましい。第3層63の厚さが1000nm未満であると、第3層63は、バルク特性を示すことのないナノ構造を維持することができる。特に、CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成される第3層63は、厚さが10nm以下であることが好ましい。第3層63の厚さが10nm以下であると、多層膜60Bは、水素を容易に透過させることができる。 The thickness of the third layer 63 is preferably less than 1000 nm. If the thickness of the third layer 63 is less than 1000 nm, the third layer 63 can maintain a nanostructure without exhibiting bulk properties. In particular, the third layer 63 made of any one of CaO, Y2O3, TiC, LaB6, SrO and BaO preferably has a thickness of 10 nm or less. When the thickness of the third layer 63 is 10 nm or less, the multilayer film 60B can easily transmit hydrogen.
 CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成される第3層63は、完全な膜状に形成されることなく、アイランド状に形成されても良い。 The third layer 63 made of one of CaO, Y 2 O 3 , TiC, LaB 6 , SrO, and BaO may be formed like an island instead of being formed like a complete film.
 第1層61と第3層63は、真空状態で連続的に成膜されることが好ましい。これにより、第1層61と第3層63との間に、自然酸化膜が形成されることなく、異種物質界面65のみが形成される。 The first layer 61 and the third layer 63 are preferably formed continuously in a vacuum state. As a result, only a different material interface 65 is formed between the first layer 61 and the third layer 63 without forming a natural oxide film.
 第1層61、第2層62、及び第3層63の組み合わせとしては、元素の種類を「第1層-第3層-第2層」として表示すると、Pd-CaO-Ni、Pd-Y-Ni、Pd-TiC-Ni、Pd-LaB-Ni、Ni-CaO-Cu、Ni-Y-Cu、Ni-TiC-Cu、Ni-LaB-Cu、Ni-Co-Cu、Ni-CaO-Cr、Ni-Y-Cr、Ni-TiC-Cr、Ni-LaB-Cr、Ni-CaO-Fe、Ni-Y-Fe、Ni-TiC-Fe、Ni-LaB-Fe、Ni-Cr-Fe、Ni-CaO-Mg、Ni-Y-Mg、Ni-TiC-Mg、Ni-LaB-Mg、Ni-CaO-Co、Ni-Y-Co、Ni-TiC-Co、Ni-LaB-Co、Ni-CaO-SiC、Ni-Y-SiC、Ni-TiC-SiC、Ni-LaB-SiCのいずれかであることが好ましい。 As a combination of the first layer 61, the second layer 62, and the third layer 63, when the types of elements are expressed as "first layer-third layer-second layer", Pd-CaO-Ni, Pd-Y 2O3 - Ni, Pd-TiC-Ni, Pd-LaB6 - Ni, Ni - CaO - Cu, Ni-Y2O3-Cu, Ni-TiC-Cu, Ni-LaB6 - Cu, Ni-Co -Cu, Ni-CaO-Cr, Ni-Y 2 O 3 -Cr, Ni-TiC-Cr, Ni-LaB 6 -Cr, Ni-CaO-Fe, Ni-Y 2 O 3 -Fe, Ni-TiC- Fe, Ni—LaB 6 —Fe, Ni—Cr—Fe, Ni—CaO—Mg, Ni—Y 2 O 3 —Mg, Ni—TiC—Mg, Ni—LaB 6 —Mg, Ni—CaO—Co, Ni -Y 2 O 3 -Co, Ni-TiC-Co, Ni-LaB 6 -Co, Ni-CaO-SiC, Ni-Y 2 O 3 -SiC, Ni-TiC-SiC, Ni-LaB 6 -SiC It is preferable that
 <発熱体の変形例2>
 図8に示すように、発熱体70は、支持体70Aと多層膜70Bとを有する。支持体70Aの構成は支持体5Aと同じであるため、支持体70Aの説明は省略する。
<Modification 2 of Heating Element>
As shown in FIG. 8, the heating element 70 has a support 70A and a multilayer film 70B. Since the structure of the support 70A is the same as that of the support 5A, the description of the support 70A is omitted.
 多層膜70Bは、支持体70Aに形成されている。多層膜70Bは、第1層71、第2層72、及び第3層73に加えて、第1層71、第2層72、及び第3層73とは異なる水素吸蔵金属、水素吸蔵合金またはセラミックスによって構成された第4層74をさらに有している。第1層71の構成は第1層51と同じであり、第2層72の構成は第2層52と同じであり、第3層73の構成は第3層63と同じであるため、第1層71、第2層72、及び第3層73の説明は省略する。第1層71と第2層72との間には異種物質界面75が形成されている。第1層71と第3層73との間には異種物質界面76が形成されている。第1層71と第4層74との間には異種物質界面77が形成されている。異種物質界面75、異種物質界面76、及び異種物質界面77は、異種物質界面53と同様に、水素を透過させる。発熱体70は、異種物質界面75、異種物質界面76、及び異種物質界面77を、水素が量子拡散により透過し、或いは、異種物質界面75、異種物質界面76、及び異種物質界面77を水素が拡散することにより、過剰熱を発生する。 The multilayer film 70B is formed on the support 70A. The multilayer film 70B includes, in addition to the first layer 71, the second layer 72, and the third layer 73, a hydrogen storage metal, a hydrogen storage alloy, or a hydrogen storage alloy different from the first layer 71, the second layer 72, and the third layer 73. It further has a fourth layer 74 made of ceramics. The structure of the first layer 71 is the same as that of the first layer 51, the structure of the second layer 72 is the same as that of the second layer 52, and the structure of the third layer 73 is the same as that of the third layer 63. Descriptions of the first layer 71, the second layer 72, and the third layer 73 are omitted. A different material interface 75 is formed between the first layer 71 and the second layer 72 . A different material interface 76 is formed between the first layer 71 and the third layer 73 . A different material interface 77 is formed between the first layer 71 and the fourth layer 74 . Like the foreign substance interface 53, the foreign substance interface 75, the foreign substance interface 76, and the foreign substance interface 77 are permeable to hydrogen. In the heating element 70 , hydrogen permeates the foreign substance interface 75 , the foreign substance interface 76 , and the foreign substance interface 77 by quantum diffusion, or the hydrogen passes through the foreign substance interface 75 , the foreign substance interface 76 , and the foreign substance interface 77 . Diffusion generates excess heat.
 多層膜70Bは、第2層72、第3層73、第4層74を任意の順に積層するとともに、第2層72、第3層73、第4層74のそれぞれの間に第1層71を設けた多層の膜構造として、支持体70Aに形成されている。図8に示す例では、多層膜70Bは、支持体70Aの一方の面(図8の上端面)に、第1層71、第2層72、第1層71、第3層73、第1層71、第4層74がこの順に交互に積層されている。多層膜70Bは、図8に示す例とは異なる膜構造、すなわち、支持体70Aの一方の面(図8の上端面)に、第1層71、第4層74、第1層71、第3層73、第1層71、第2層72がこの順に交互に積層された多層の膜構造として形成しても良い。多層膜70Bは、支持体70Aの一方の面(図8の上端面)に形成される場合に限られず、支持体70Aの他方の面(図8の下端面)、または支持体70Aの両面(図8の上端面及び下端面)に形成しても良い。なお、第1層71、第2層72、第3層73、第4層74の数は任意である。多層膜70Bとしては、第4層74を1つ以上有し、第1層71と第4層74との間に異種物質界面77を1つ以上有していれば良い。 The multilayer film 70B has a second layer 72, a third layer 73, and a fourth layer 74 laminated in an arbitrary order, and a first layer 71 between the second layer 72, the third layer 73, and the fourth layer 74, respectively. is formed on the support 70A as a multi-layer film structure provided with . In the example shown in FIG. 8, the multilayer film 70B includes a first layer 71, a second layer 72, a first layer 71, a third layer 73, a first A layer 71 and a fourth layer 74 are alternately laminated in this order. The multilayer film 70B has a different film structure from the example shown in FIG. A multi-layer film structure in which three layers 73, first layers 71, and second layers 72 are alternately laminated in this order may be formed. The multilayer film 70B is not limited to being formed on one surface of the support 70A (upper end surface in FIG. 8), but the other surface of the support 70A (lower end surface in FIG. 8) or both surfaces of the support 70A ( 8). The numbers of the first layer 71, the second layer 72, the third layer 73, and the fourth layer 74 are arbitrary. The multilayer film 70</b>B may have one or more fourth layers 74 and one or more different material interfaces 77 between the first layer 71 and the fourth layer 74 .
 第4層74は、例えば、Ni、Pd、Cu、Cr、Fe、Mg、Co、及びこれらの合金、或いはSiC、CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成されている。第4層74を構成する合金としては、Ni、Pd、Cu、Cr、Fe、Mg、Coのうちの2種以上から成るものであることが好ましい。第4層74を構成する合金として、Ni、Pd、Cu、Cr、Fe、Mg、Coに添加元素を添加したものを用いても良い。 The fourth layer 74 is, for example, Ni, Pd, Cu, Cr, Fe, Mg, Co, and alloys thereof, or SiC, CaO, Y 2 O 3 , TiC, LaB 6 , SrO, or BaO. It is composed by The alloy forming the fourth layer 74 is preferably composed of two or more of Ni, Pd, Cu, Cr, Fe, Mg, and Co. As the alloy forming the fourth layer 74, Ni, Pd, Cu, Cr, Fe, Mg, Co may be added with an additive element.
 特に、第4層74は、CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成されることが好ましい。CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成される第4層74を有する発熱体70は、水素の吸蔵量が増加し、異種物質界面75、異種物質界面76、及び異種物質界面77を透過する水素の量が増加するため、当該発熱体70が発生する過剰熱の高出力化を図ることができる。 In particular, the fourth layer 74 is preferably made of one of CaO , Y2O3, TiC, LaB6 , SrO and BaO. The heating element 70 having the fourth layer 74 made of one of CaO, Y 2 O 3 , TiC, LaB 6 , SrO, and BaO has an increased amount of hydrogen storage, a Since the amount of hydrogen permeating through the interface 76 and the interface 77 of different substances increases, the output of excess heat generated by the heating element 70 can be increased.
 第4層74の厚さは、1000nm未満であることが好ましい。第4層74の厚さが1000nm未満であると、第4層74は、バルク特性を示すことのないナノ構造を維持することができる。特に、CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成される第4層74は、厚さが10nm以下であることが好ましい。第4層74の厚さが10nm以下であると、多層膜70Bは、水素を容易に透過させることができる。 The thickness of the fourth layer 74 is preferably less than 1000 nm. If the thickness of the fourth layer 74 is less than 1000 nm, the fourth layer 74 can maintain a nanostructure without exhibiting bulk properties. In particular, the thickness of the fourth layer 74 made of any one of CaO, Y 2 O 3 , TiC, LaB 6 , SrO and BaO is preferably 10 nm or less. When the thickness of the fourth layer 74 is 10 nm or less, the multilayer film 70B can easily transmit hydrogen.
 SiC、CaO、Y、TiC、LaB、SrO、BaOのうちのいずれかによって構成される第4層74は、完全な膜状に形成されることなく、アイランド状に形成されても良い。 The fourth layer 74 made of any one of SiC, CaO, Y 2 O 3 , TiC, LaB 6 , SrO, and BaO may be formed like an island instead of being formed like a complete film. good.
 第1層71と第4層74は、真空状態で連続的に成膜されることが好ましい。これにより、第1層71と第4層74との間に、自然酸化膜が形成されることなく、異種物質界面77のみが形成される。 The first layer 71 and the fourth layer 74 are preferably formed continuously in a vacuum state. As a result, only a different material interface 77 is formed between the first layer 71 and the fourth layer 74 without forming a natural oxide film.
 第1層71、第2層72、第3層73、及び第4層74の組み合わせとしては、元素の種類を「第1層-第4層-第3層-第2層」として表示すると、Ni-CaO-Cr-Fe、Ni-Y-Cr-Fe、Ni-TiC-Cr-Fe、Ni-LaB-Cr-Feの組み合わせが好ましい。 As for the combination of the first layer 71, the second layer 72, the third layer 73, and the fourth layer 74, if the types of elements are indicated as "first layer-fourth layer-third layer-second layer", Combinations of Ni--CaO--Cr--Fe, Ni--Y 2 O 3 --Cr--Fe, Ni--TiC--Cr--Fe and Ni--LaB 6 --Cr--Fe are preferred.
 (発熱装置の作用)
 次に、以上のように構成された発熱装置1の作用について説明する。
(Action of heating device)
Next, the operation of the heating device 1 configured as described above will be described.
 制御部2からの制御信号によって循環ポンプ14が駆動されると、当該循環ポンプ14から吐出される水素系ガスは、水素循環ラインL1の導入配管12と当該導入配管12から分岐する4本の分岐管15とを流通し、発熱モジュールM1の各積層構造体4に形成された各第1流路6へと導入される。水素系ガスは、導入配管12を流れる過程においてバッファタンク17によって圧力変動が抑制されるとともに、圧力調整弁18によって圧力が所定値に調整される。 When the circulation pump 14 is driven by the control signal from the control unit 2, the hydrogen-based gas discharged from the circulation pump 14 flows through the introduction pipe 12 of the hydrogen circulation line L1 and the four branches branched from the introduction pipe 12. It flows through the pipe 15 and is introduced into each first flow path 6 formed in each laminated structure 4 of the heat generating module M1. The pressure fluctuation of the hydrogen-based gas is suppressed by the buffer tank 17 while flowing through the introduction pipe 12, and the pressure is adjusted to a predetermined value by the pressure regulating valve 18.
 発熱モジュールM1の電気ヒータ9は、電源10から供給される電力によって発熱し、第1流路6内の水素系ガスを介して発熱体5を発熱可能な温度(例えば、50℃~1500℃)に加熱する。発熱体5の温度は、温度センサ11によって検出される温度に基づいて、制御部2によって電源10の出力が制御されることによって、適正な値に調整される。ここで、2つの積層構造体4の対面する第1流路6の間に電気ヒータ9が設けられているため、電気ヒータ9の熱が密閉容器3からの放熱によって周囲に散逸することがない。また、発熱モジュールM1の中心部分に電気ヒータ9が設けられているため、発熱モジュールM1全体が効率的に加熱される。このため、発熱体5が効率良く適正温度に加熱され、発熱体5の加熱に伴う消費電力が低く抑えられる。 The electric heater 9 of the heat generating module M1 generates heat by the electric power supplied from the power source 10, and the temperature (for example, 50° C. to 1500° C.) at which the heating element 5 can generate heat through the hydrogen-based gas in the first flow path 6. heat to The temperature of the heating element 5 is adjusted to an appropriate value by controlling the output of the power supply 10 by the control unit 2 based on the temperature detected by the temperature sensor 11 . Here, since the electric heater 9 is provided between the first flow passages 6 facing each other in the two laminated structures 4, the heat of the electric heater 9 is not dissipated to the surroundings by heat radiation from the sealed container 3. . Further, since the electric heater 9 is provided in the central portion of the heat generating module M1, the entire heat generating module M1 is efficiently heated. Therefore, the heating element 5 is efficiently heated to an appropriate temperature, and the power consumption associated with the heating of the heating element 5 can be kept low.
 発熱モジュールM1の各第1流路6へと導入された水素系ガスに含まれる水素は、前述のように発熱体5を透過して第2流路7へと流入する。発熱体5は、第1流路6から第2流路7へ水素を透過させることによって発熱する。 The hydrogen contained in the hydrogen-based gas introduced into each first channel 6 of the heat generating module M1 permeates the heating element 5 and flows into the second channel 7 as described above. The heating element 5 generates heat by permeating hydrogen from the first channel 6 to the second channel 7 .
 発熱モジュールM1の各発熱体5を透過して当該発熱体5の発熱に供された水素(透過水素)を含む透過ガスは、各第2流路7から各分岐管16へと流出して回収配管13で合流した後、循環ポンプ14に吸引されて回収され、各発熱体5に水素を供給するための水素系ガスとして再利用される。以下、同様の動作が繰り返されて、水素系ガスが水素循環ラインL1を循環する課程で、水素系ガスに含まれる水素が発熱モジュールM1の各発熱体5の発熱に供される。このように、本実施形態においては、閉ループを構成する水素循環ラインL1を水素系ガスが連続して循環するため、発熱体5の発熱に供する水素の補給が抑えられて経済的である。また、透過水素を含む高温の透過ガスを回収し、水素循環ラインL1を循環させて各発熱体5に水素を供給する水素系ガスとして再利用するため、各発熱体5の過冷却が抑制され、各発熱体5の発熱が維持または促進される。 Permeated gas containing hydrogen (permeated hydrogen) that has permeated each heat generating element 5 of the heat generating module M1 and is used for heat generation by the heat generating element 5 flows out from each second flow path 7 to each branch pipe 16 and is recovered. After merging in the pipe 13 , the gas is sucked into the circulation pump 14 and recovered, and reused as a hydrogen-based gas for supplying hydrogen to each heating element 5 . Thereafter, the same operation is repeated, and hydrogen contained in the hydrogen-based gas is used for heat generation by the heating elements 5 of the heat generating module M1 while the hydrogen-based gas circulates through the hydrogen circulation line L1. As described above, in the present embodiment, the hydrogen-based gas continuously circulates through the hydrogen circulation line L1 forming a closed loop. In addition, since the high-temperature permeated gas containing the permeated hydrogen is recovered and circulated in the hydrogen circulation line L1 to be reused as a hydrogen-based gas that supplies hydrogen to each heating element 5, supercooling of each heating element 5 is suppressed. , the heat generation of each heating element 5 is maintained or accelerated.
 発熱モジュールM1の各第3流路8を流れる熱媒体は、第3流路8の両側に配置された2つの第2流路7を流れる高温の透過ガスとの間で熱交換して加熱される。熱媒体は、2つの第2流路7を流れる高温の透過ガスから熱を奪って効率的に加熱されるため、熱回収効率が高められている。したがって、発熱モジュールM1は、発熱体5に水素を透過させることにより発熱を行う発熱機能と、発熱体5を透過した透過水素含む透過ガスと熱媒体との間で熱交換を行う熱交換機能とを兼ね備えている。発熱モジュールM1を備える発熱装置1は、発熱・熱交換一体式の形態を備えている。 The heat medium flowing through each of the third flow paths 8 of the heat generating module M1 is heated by exchanging heat with the high-temperature permeating gas flowing through the two second flow paths 7 arranged on both sides of the third flow path 8. be. Since the heat medium is efficiently heated by taking heat from the high-temperature permeating gas flowing through the two second flow paths 7, the heat recovery efficiency is enhanced. Therefore, the heat generating module M1 has a heat generating function of generating heat by permeating hydrogen through the heat generating element 5, and a heat exchanging function of exchanging heat between the permeated gas containing permeated hydrogen that has permeated the heat generating element 5 and the heat medium. Combines The heat generating device 1 including the heat generating module M1 has a form of integrated heat generation and heat exchange.
 各第3流路8を流れる過程において第2流路7の高温の透過ガスとの熱交換によって加熱された熱媒体は、各第3流路8から分岐管31fを経て第1配管31aで合流した後、この第1配管31aを経て後述の熱利用装置30へと供給される。熱利用装置30は、熱媒体から供給される熱を利用して発電などの所要の仕事を行う。すなわち、発熱装置1で加熱された熱媒体は、熱利用装置30の熱源としての利用に供される。そして、熱利用装置30に熱を供給して温度の下がった熱媒体は、第4配管31dを経て発熱モジュールM1へと戻され、発熱モジュールM1において再び加熱される。以後、同様の動作が連続的に繰り返されて、熱利用装置30が連続的に駆動される。 The heat medium heated by heat exchange with the high-temperature permeating gas in the second flow path 7 in the course of flowing through each third flow path 8 passes through the branch pipe 31f from each third flow path 8 and joins in the first pipe 31a. After that, it is supplied to the later-described heat utilization device 30 through the first pipe 31a. The heat utilization device 30 uses the heat supplied from the heat medium to perform required work such as power generation. That is, the heat medium heated by the heat generating device 1 is used as a heat source for the heat utilization device 30 . Then, the heat medium whose temperature has been lowered by supplying heat to the heat utilization device 30 is returned to the heat generating module M1 through the fourth pipe 31d, and is heated again in the heat generating module M1. Thereafter, similar operations are continuously repeated to continuously drive the heat utilization device 30 .
 以上のように、本実施形態に係る発熱装置1は、熱媒体が流通する第3流路8の両側に、当該第3流路8から順に、第2流路7、発熱体5、第1流路6を順次対称的に積層して構成される積層構造体4と、発熱体5を加熱する電気ヒータ9とを備えている。各積層構造体4は、発熱体5、第1流路6、第2流路7、及び第3流路8が高密度に積層されて構成されている。このため、本実施形態に係る発熱装置1によれば、熱を効率良く発生することができるとともに、小型・コンパクト化を図ることができる。 As described above, in the heat generating device 1 according to the present embodiment, the second flow path 7, the heating element 5, the first It is provided with a laminated structure 4 configured by sequentially and symmetrically laminating flow paths 6 and an electric heater 9 for heating a heating element 5 . Each laminated structure 4 is configured by laminating a heating element 5, a first channel 6, a second channel 7, and a third channel 8 at high density. Therefore, according to the heat generating device 1 of the present embodiment, heat can be efficiently generated, and the size and size of the device can be reduced.
 積層構造体4においては、発熱体5が発生する熱は、第3流路8を流れる熱媒体と、第3流路8を挟んでこれの両側に配置された第2流路7を流れる高温の透過ガスとの熱交換によって、熱媒体に効率良く与えられる。このため、発熱装置1は、発熱体5において発生した熱を熱媒体によって効率良く回収することができる。 In the laminated structure 4, the heat generated by the heating element 5 is generated by the heat medium flowing through the third flow path 8 and the high temperature flowing through the second flow paths 7 arranged on both sides of the third flow path 8. is efficiently given to the heat medium by heat exchange with the permeated gas. Therefore, the heat generating device 1 can efficiently recover the heat generated in the heat generating body 5 by the heat medium.
 なお、発熱装置1は、本実施形態では2つの積層構造体4を備えているが、積層構造体4を1つ以上備えるものであれば良く、3つ以上の複数の積層構造体4を多段に重ねて構成しても良い。発熱装置1は、積層構造体4の数を増やすことによって、一層効率良く熱を発生し、高出力化を図ることができる。 Although the heat generating device 1 includes two laminated structures 4 in this embodiment, it may be provided with one or more laminated structures 4, and a plurality of laminated structures 4 of three or more may be arranged in multiple stages. It may be configured by stacking on. By increasing the number of laminated structures 4, the heat generating device 1 can generate heat more efficiently and achieve higher output.
 電気ヒータ9は、本実施形態では、板状に構成され、2つの積層構造体4の間に設けられているが、例えば筒状の電気炉として構成し、発熱モジュール全体を覆うように設けても良い。 In this embodiment, the electric heater 9 is configured in a plate shape and provided between the two laminated structures 4. However, for example, it is configured as a cylindrical electric furnace and provided so as to cover the entire heat generating module. Also good.
 [熱利用システム]
 図9は本実施形態に係る熱利用システム20の構成を示すブロック図である。
[Heat utilization system]
FIG. 9 is a block diagram showing the configuration of the heat utilization system 20 according to this embodiment.
 図9に示すように、熱利用システム20は、発熱装置1と熱利用装置30とを備えている。ここで、熱利用装置30は、発熱装置1において発生する熱によって加熱された熱媒体を熱源として発電する装置の一例である。熱利用装置30は、熱媒体循環ラインL2と、ガスタービン32と、蒸気発生器33と、蒸気タービン34と、スターリングエンジン35と、熱電変換部36とを備えている。熱媒体循環ラインL2と、ガスタービン32と、蒸気発生器33と、蒸気タービン34と、スターリングエンジン35と熱電変換部36について以下にそれぞれ説明する。 As shown in FIG. 9, the heat utilization system 20 includes a heat generating device 1 and a heat utilization device 30. Here, the heat utilization device 30 is an example of a device that generates power using a heat medium heated by heat generated in the heat generating device 1 as a heat source. The heat utilization device 30 includes a heat medium circulation line L<b>2 , a gas turbine 32 , a steam generator 33 , a steam turbine 34 , a Stirling engine 35 and a thermoelectric conversion section 36 . The heat medium circulation line L2, the gas turbine 32, the steam generator 33, the steam turbine 34, the Stirling engine 35, and the thermoelectric conversion section 36 will be described below.
 (熱媒体循環ライン)
 熱媒体循環ラインL2は、発熱装置1の発熱モジュールM1、ガスタービン32、蒸気発生器33、蒸気タービン34、スターリングエンジン35、及び熱電変換部36の間で熱媒体を循環させる閉ループを構成している。具体的には、この熱媒体循環ラインL2は、発熱モジュールM1の第3流路8の熱媒体回収口8d(図3参照)から延びてガスタービン32に接続された第1配管31aと、ガスタービン32と蒸気発生器33とを接続する第2配管31bと、蒸気発生器33とスターリングエンジン35とを接続する第3配管31cと、スターリングエンジン35から延びて発熱モジュールM1の第3流路8の熱媒体導入口8cに接続された第4配管31dとを備えている。ここで、第1配管31aの途中には、循環ポンプ37と流量制御弁38とが設けられている。循環ポンプ37には、メタルベローズポンプなどが用いられる。流量制御弁38には、バリアブルリークバルブなどが用いられる。本実施形態では、熱媒体循環ラインL2は、発熱モジュールM1を構成する2つの第3流路8の各熱媒体導入口8c(図3参照)と第4配管31dとを接続する2つの分岐管31eと、発熱モジュールM1を構成する2つの第3流路8の各熱媒体回収口8d(図3参照)と第1配管31aとを接続する2つの分岐管31fとを更に備えている。
(heat medium circulation line)
The heat medium circulation line L2 constitutes a closed loop for circulating the heat medium among the heat generating module M1, the gas turbine 32, the steam generator 33, the steam turbine 34, the Stirling engine 35, and the thermoelectric conversion section 36 of the heat generating device 1. there is Specifically, the heat medium circulation line L2 includes a first pipe 31a extending from the heat medium recovery port 8d (see FIG. 3) of the third flow path 8 of the heat generating module M1 and connected to the gas turbine 32, A second pipe 31b connecting the turbine 32 and the steam generator 33; a third pipe 31c connecting the steam generator 33 and the Stirling engine 35; and a fourth pipe 31d connected to the heat medium inlet 8c. Here, a circulation pump 37 and a flow control valve 38 are provided in the middle of the first pipe 31a. A metal bellows pump or the like is used as the circulation pump 37 . A variable leak valve or the like is used for the flow control valve 38 . In this embodiment, the heat medium circulation line L2 is two branch pipes that connect the heat medium inlets 8c (see FIG. 3) of the two third flow paths 8 constituting the heat generating module M1 and the fourth pipe 31d. 31e, and two branch pipes 31f connecting the heat medium recovery ports 8d (see FIG. 3) of the two third flow paths 8 constituting the heat generating module M1 and the first pipe 31a.
 (ガスタービン)
 ガスタービン32は、同軸によって連結されたコンプレッサ32aとタービン32bを備えている。ガスタービン32は、第1配管31aから導入された熱媒体により駆動する。タービン32bの出力軸には発電機40が連結されている。
(gas turbine)
The gas turbine 32 comprises a compressor 32a and a turbine 32b coaxially connected. The gas turbine 32 is driven by a heat medium introduced from the first pipe 31a. A generator 40 is connected to the output shaft of the turbine 32b.
 (蒸気発生器)
 蒸気発生器33は、第2配管31bに接続された内部配管33aと、この内部配管33aに対向する熱交換配管33bと、熱交換配管33bと蒸気タービン34の入口とを接続する蒸気配管33cと、熱交換配管33bと蒸気タービン34の出口とを接続する給水配管33dとを備えている。蒸気発生器33は、内部配管33aを流れる熱媒体と熱交換配管33bを流れる缶水との熱交換により缶水を加熱し、高温・高圧の蒸気を発生する。給水配管33dには、図示しない復水器と給水ポンプが設けられている。給水配管33dは、蒸気タービン34の出口から排出された蒸気を復水器で冷却して缶水に戻し、この缶水を給水ポンプで熱交換配管33bへ戻す。
(steam generator)
The steam generator 33 includes an internal pipe 33a connected to the second pipe 31b, a heat exchange pipe 33b facing the internal pipe 33a, and a steam pipe 33c connecting the heat exchange pipe 33b and the inlet of the steam turbine 34. , and a feed water pipe 33 d connecting the heat exchange pipe 33 b and the outlet of the steam turbine 34 . The steam generator 33 heats the boiler water by heat exchange between the heat medium flowing through the internal pipe 33a and the boiler water flowing through the heat exchange pipe 33b to generate high-temperature, high-pressure steam. The water supply pipe 33d is provided with a condenser and a water supply pump (not shown). 33 d of water supply piping cools the steam discharged|emitted from the exit of the steam turbine 34 with a condenser, returns it to boiler water, and returns this boiler water to the heat exchange piping 33b with a water supply pump.
 (蒸気タービン)
 蒸気タービン34は、蒸気発生器33で発生した高圧・高圧の蒸気により駆動する。蒸気タービン34の出力軸には発電機50が接続されている。
(steam turbine)
The steam turbine 34 is driven by high-pressure steam generated by the steam generator 33 . A generator 50 is connected to the output shaft of the steam turbine 34 .
 (スターリングエンジン)
 スターリングエンジン35は、シリンダ35aと、ディスプレーサピストン35bと、パワーピストン35cと、流路35dと、クランク部35eとを備えている。ここで、シリンダ35aの内部は、ディスプレーサピストン35bによって膨張空間S1と圧縮空間S2とに区画されている。膨張空間S1と圧縮空間S2には作動流体が封入されている。作動流体としては、ヘリウムガス、水素系ガス、空気などが用いられるが、本実施形態では、ヘリウムガスを用いている。
(Stirling engine)
The Stirling engine 35 includes a cylinder 35a, a displacer piston 35b, a power piston 35c, a flow path 35d, and a crank portion 35e. Here, the inside of the cylinder 35a is divided into an expansion space S1 and a compression space S2 by the displacer piston 35b. A working fluid is enclosed in the expansion space S1 and the compression space S2. As the working fluid, helium gas, hydrogen-based gas, air, or the like is used. In this embodiment, helium gas is used.
 流路35dは、シリンダ35aの外部に設けられており、膨張空間S1と圧縮空間S2とを連通させている。流路35dは、膨張空間S1と圧縮空間S2との間で作動流体を流通させる。流路35dは、高温部35fと、低温部35gと、再生器35hとを備えている。膨張空間S1の作動流体は、高温部35f、再生器35h、低温部35gを順次通過して圧縮空間S2へと流入する。圧縮空間S2の作動流体は、低温部35g、再生器35h、高温部35fを順次通過して膨張空間S1に流入する。 The flow path 35d is provided outside the cylinder 35a, and communicates the expansion space S1 and the compression space S2. The flow path 35d allows working fluid to flow between the expansion space S1 and the compression space S2. The flow path 35d includes a high temperature section 35f, a low temperature section 35g, and a regenerator 35h. The working fluid in the expansion space S1 passes through the high temperature section 35f, the regenerator 35h, and the low temperature section 35g in order and flows into the compression space S2. The working fluid in the compression space S2 flows into the expansion space S1 through the low temperature section 35g, the regenerator 35h, and the high temperature section 35f in sequence.
 高温部35fは、作動流体を加熱するための熱交換器である。高温部35fの外部には伝熱管35iが設けられている。伝熱管35iは、第3配管31cと第4配管31dとを接続しており、第3配管31cから第4配管31dへと熱媒体を流通させる。第3配管31cから伝熱管35iへと熱媒体が流れることによって、熱媒体の熱が高温部35fへと伝達され、高温部35fを通過する作動流体が加熱される。 The high temperature section 35f is a heat exchanger for heating the working fluid. A heat transfer tube 35i is provided outside the high temperature portion 35f. The heat transfer pipe 35i connects the third pipe 31c and the fourth pipe 31d, and circulates the heat medium from the third pipe 31c to the fourth pipe 31d. When the heat medium flows from the third pipe 31c to the heat transfer tube 35i, the heat of the heat medium is transferred to the high temperature portion 35f, and the working fluid passing through the high temperature portion 35f is heated.
 低温部35gは、作動流体を冷却するための熱交換器である。低温部35gの外部には冷却管35jが設けられている。冷却管35jは、水などの冷却媒体を供給する不図示の冷却媒体供給部に接続されており、冷却媒体供給部から供給される冷却媒体を流通させる。冷却管35jに冷却媒体が流れることによって、低温部35gを通過する作動流体が冷却媒体に熱を奪われて冷却される。 The low temperature section 35g is a heat exchanger for cooling the working fluid. A cooling pipe 35j is provided outside the low temperature section 35g. The cooling pipe 35j is connected to a cooling medium supply unit (not shown) that supplies a cooling medium such as water, and allows the cooling medium supplied from the cooling medium supply unit to flow. As the cooling medium flows through the cooling pipe 35j, the working fluid passing through the low temperature portion 35g is cooled by the cooling medium taking away heat.
 再生器35hは、蓄熱用の熱交換器である。再生器35hは、高温部35fと低温部35gとの間に設けられている。再生器35hは、作動流体が膨張空間S1から圧縮空間S2へと移動する際に、高温部35fを通過した作動流体から熱を受け取って蓄積する。また、再生器35hは、作動流体が圧縮空間S2から膨張空間S1へと移動する際に、低温部35gを通過した作動流体に対して、蓄積している熱を与えて作動流体を加熱する。 The regenerator 35h is a heat exchanger for heat storage. The regenerator 35h is provided between the high temperature section 35f and the low temperature section 35g. The regenerator 35h receives and accumulates heat from the working fluid that has passed through the high temperature portion 35f when the working fluid moves from the expansion space S1 to the compression space S2. Further, the regenerator 35h gives the accumulated heat to the working fluid that has passed through the low temperature section 35g to heat the working fluid when the working fluid moves from the compression space S2 to the expansion space S1.
 クランク部35eは、シリンダ35aの他端に設けられており、不図示のクランクケースに回転可能に支持されたクランクシャフト、ディスプレーサピストン35bに接続されたロッド、パワーピストン35cに接続されたロッド、各ロッドとクランクシャフトとを連結する連結部材などを備えている。クランク部35eは、ディスプレーサピストン35bとパワーピストン35cの往復直線運動を回転運動に変換する。スターリングエンジン35のクランクシャフトには発電機80が接続されている。 The crank portion 35e is provided at the other end of the cylinder 35a, and includes a crankshaft rotatably supported by a crankcase (not shown), a rod connected to the displacer piston 35b, a rod connected to the power piston 35c, and a rod connected to the power piston 35c. A connecting member or the like for connecting the rod and the crankshaft is provided. The crank portion 35e converts the reciprocating linear motion of the displacer piston 35b and the power piston 35c into rotary motion. A generator 80 is connected to the crankshaft of the Stirling engine 35 .
 (熱電変換部)
 熱電変換部36は、第4配管31dを流通する熱媒体の熱をゼーベック効果を利用して電力に変換する。熱電変換部36は、例えば、300℃以下の熱媒体の熱を電力に変換する。熱電変換部36は、筒状に形成されており、第4配管31dの外周を覆うように配置されている。熱電変換部36は、内面に設けられた熱電変換モジュール36aと、外面に設けられた冷却部36bとを備えている。熱電変換モジュール36aは、第4配管31dに対向する受熱基板、受熱基板に設けられた受熱側電極、冷却部36bに対向する放熱基板、放熱基板に設けられた放熱側電極、p型半導体によって形成されたp型熱電素子、n型半導体によって形成されたn型熱電素子などを備えている。本実施形態では、熱電変換モジュール36aは、p型熱電素子とn型熱電素子とが交互に配列され、隣接するp型熱電素子とn型熱電素子とが受熱側電極と放熱側電極によって電気的に接続されている。また、熱電変換モジュール36aは、一端に配置されたp型熱電素子と他端に配置されたn型熱電素子に対して、リードが放熱側電極を介して電気的に接続されている。冷却部36bは、例えば、冷却水が流通する配管によって構成されている。熱電変換部36は、内面と外面との間に発生する温度差に応じた電力を発生する。
(Thermoelectric conversion part)
The thermoelectric conversion unit 36 converts the heat of the heat medium flowing through the fourth pipe 31d into electric power using the Seebeck effect. The thermoelectric conversion unit 36 converts, for example, heat of a heat medium of 300° C. or less into electric power. The thermoelectric conversion part 36 is formed in a cylindrical shape and arranged so as to cover the outer circumference of the fourth pipe 31d. The thermoelectric conversion section 36 includes a thermoelectric conversion module 36a provided on the inner surface and a cooling section 36b provided on the outer surface. The thermoelectric conversion module 36a is formed by a heat receiving substrate facing the fourth pipe 31d, a heat receiving side electrode provided on the heat receiving substrate, a heat dissipation substrate facing the cooling portion 36b, a heat dissipation side electrode provided on the heat dissipation substrate, and a p-type semiconductor. It includes a p-type thermoelectric element made of an n-type semiconductor, an n-type thermoelectric element made of an n-type semiconductor, and the like. In the present embodiment, the thermoelectric conversion module 36a has p-type thermoelectric elements and n-type thermoelectric elements arranged alternately, and the adjacent p-type thermoelectric elements and n-type thermoelectric elements are electrically connected by the heat-receiving side electrode and the heat-dissipating side electrode. It is connected to the. In the thermoelectric conversion module 36a, leads are electrically connected to a p-type thermoelectric element arranged at one end and an n-type thermoelectric element arranged at the other end through heat radiation side electrodes. The cooling part 36b is configured by, for example, a pipe through which cooling water flows. The thermoelectric conversion unit 36 generates electric power according to the temperature difference generated between the inner surface and the outer surface.
 (熱利用システムの作用)
 次に、以上のように構成された熱利用システム20の作用について説明する。
(Action of heat utilization system)
Next, the operation of the heat utilization system 20 configured as described above will be described.
 発熱装置1において、前述のように発熱モジュールM1の各発熱体5を水素が透過することによって発生した熱が各第3流路8を流れる熱媒体に与えられて、熱媒体が所定の温度に加熱される。そして、熱利用装置30の第1配管31aに設けられた循環ポンプ37が駆動されると、加熱された熱媒体は、閉ループを構成する発熱モジュールM1の各第3流路8、各分岐管31f、第1配管31a、第2配管31b、第3配管31c、第4配管31d、及び各分岐管31eを循環する。この結果、熱媒体からの熱の供給を受けてガスタービン32、蒸気タービン34、スターリングエンジン35及び熱電変換部36が順次駆動されて所要の発電がなされる。このとき、流量制御弁38は、温度センサ11によって検出された温度に基づいて熱媒体の流量を制御する。すなわち、流量制御弁38は、温度センサ11によって検出される発熱体5の温度が適正な上限温度を超えた場合には、熱媒体の循環流量を増やして発熱体5の温度上昇を抑える。また、流量制御弁38は、温度センサ11によって検出される発熱体5の温度が適正な下限温度未満である場合には、熱媒体の循環流量を減らして発熱体5の温度低下を抑える。 In the heat generating device 1, as described above, the heat generated by the permeation of hydrogen through each heat generating element 5 of the heat generating module M1 is applied to the heat medium flowing through each third flow path 8, and the heat medium reaches a predetermined temperature. heated. Then, when the circulation pump 37 provided in the first pipe 31a of the heat utilization device 30 is driven, the heated heat medium flows through the third flow paths 8 and the branch pipes 31f of the heat generating module M1 that form a closed loop. , the first pipe 31a, the second pipe 31b, the third pipe 31c, the fourth pipe 31d, and each branch pipe 31e. As a result, the gas turbine 32, the steam turbine 34, the Stirling engine 35, and the thermoelectric converter 36 are sequentially driven by receiving the heat supplied from the heat medium to generate the required power. At this time, the flow control valve 38 controls the flow rate of the heat medium based on the temperature detected by the temperature sensor 11 . That is, when the temperature of the heating element 5 detected by the temperature sensor 11 exceeds the appropriate upper limit temperature, the flow control valve 38 increases the circulation flow rate of the heat medium to suppress the temperature rise of the heating element 5 . Further, when the temperature of the heating element 5 detected by the temperature sensor 11 is below the appropriate lower limit temperature, the flow control valve 38 reduces the circulation flow rate of the heat medium to suppress the temperature drop of the heating element 5 .
 発熱装置1の発熱モジュールM1によって加熱されて各第3流路8から各分岐管31fを経て第1配管31aへと流れる高温(例えば、600℃~1500℃)の熱媒体は、ガスタービン32に導入され、ガスタービン32のコンプレッサ32aによって圧縮される。そして、圧縮された熱媒体が膨張しながらタービン32bを流れることによって、当該タービン32bが回転駆動され、タービン32bの出力軸に連結された発電機40が回転駆動されて所要の発電がなされる。すなわち、熱媒体が有する熱の一部がガスタービン32の運動エネルギーに変換され、この運動エネルギーが発電機40によって電気エネルギーに変換される。 A high-temperature (for example, 600° C. to 1500° C.) heat medium that is heated by the heat generating module M1 of the heat generating device 1 and flows from each third flow path 8 through each branch pipe 31f to the first pipe 31a is supplied to the gas turbine 32. It is introduced and compressed by the compressor 32 a of the gas turbine 32 . The compressed heat medium expands and flows through the turbine 32b, thereby rotating the turbine 32b and rotating the generator 40 connected to the output shaft of the turbine 32b to generate the required power. That is, part of the heat possessed by the heat medium is converted into kinetic energy of the gas turbine 32 , and this kinetic energy is converted into electrical energy by the generator 40 .
 ガスタービン32から第2配管31bへと吐出された熱媒体は、蒸気発生器33の内部配管33aを流れる過程で、熱交換配管33bを流れる缶水との間で熱交換して缶水を加熱する。これにより、缶水から高温(300℃~700℃)・高圧の蒸気が発生し、この蒸気が蒸気配管33cを経て蒸気タービン34に供給される。この結果、蒸気タービン34が蒸気によって回転駆動され、この蒸気タービン34の回転によって発電機50も同時に回転駆動されて所要の発電がなされる。すなわち、熱媒体が有する熱の一部が蒸気タービン34の運動エネルギーに変換され、この運動エネルギーが発電機50によって電気エネルギーに変換される。なお、蒸気タービン34の駆動に供されて温度の下がった蒸気は、不図示の復水器において冷却されて缶水に戻される。この缶水は、給水配管33dから蒸気発生器33の熱交換配管33bへと流れ、内部配管33aを流れる熱媒体との熱交換によって加熱されて再び蒸気となる。 The heat medium discharged from the gas turbine 32 to the second pipe 31b exchanges heat with the boiler water flowing through the heat exchange pipe 33b in the process of flowing through the internal pipe 33a of the steam generator 33, thereby heating the boiler water. do. As a result, high-temperature (300° C. to 700° C.) and high-pressure steam is generated from the boiler water, and this steam is supplied to the steam turbine 34 through the steam pipe 33c. As a result, the steam turbine 34 is rotationally driven by the steam, and the rotation of the steam turbine 34 simultaneously rotationally drives the power generator 50 to generate the required power. That is, part of the heat possessed by the heat medium is converted into kinetic energy of the steam turbine 34 , and this kinetic energy is converted into electrical energy by the generator 50 . The steam whose temperature has been lowered by driving the steam turbine 34 is cooled in a condenser (not shown) and returned to boiler water. This boiler water flows from the feed water pipe 33d to the heat exchange pipe 33b of the steam generator 33, is heated by heat exchange with the heat medium flowing through the internal pipe 33a, and becomes steam again.
 蒸気発生器33の内部配管33aを流れる過程で蒸気の発生に供された温度300℃~1000℃の熱媒体は、内部配管33aから第3配管31cを経てスターリングエンジン35へと供給され、前述の作用によってスターリングエンジン35の駆動に供される。この結果、スターリングエンジン35のクランクシャフトが回転駆動され、クランクシャフトに連結された発電機80も回転駆動されて所要の発電がなされる。すなわち、熱媒体が有する熱の一部がスターリングエンジン35の運動エネルギーに変換され、この運動エネルギーが発電機80によって電気エネルギーに変換される。 The heat medium having a temperature of 300° C. to 1000° C., which is used to generate steam in the course of flowing through the internal pipe 33a of the steam generator 33, is supplied from the internal pipe 33a through the third pipe 31c to the Stirling engine 35. It serves to drive the Stirling engine 35 by its action. As a result, the crankshaft of the Stirling engine 35 is rotationally driven, and the generator 80 connected to the crankshaft is also rotationally driven to generate the required power. That is, part of the heat possessed by the heat medium is converted into kinetic energy of the Stirling engine 35 and this kinetic energy is converted into electrical energy by the generator 80 .
 スターリングエンジン35の駆動に供された熱媒体は、第4配管31dを経て熱電変換部36へと供給され、この熱媒体の熱の一部が前述のようにゼーベック効果によって電力に変換される。すなわち、熱媒体が有する熱の一部が熱電変換部36によって電気エネルギに変換される。 The heat medium used to drive the Stirling engine 35 is supplied to the thermoelectric conversion unit 36 through the fourth pipe 31d, and part of the heat of this heat medium is converted into electric power by the Seebeck effect as described above. That is, part of the heat of the heat medium is converted into electrical energy by the thermoelectric conversion section 36 .
 そして、熱電変換部36において発電に供されて温度が低下した熱媒体は、第4配管31dから各分岐管31eを経て発熱モジュールM1の各第3流路8へと戻される。以後、同様の作用が連続的に繰り返され、発熱モジュールM1において発生した熱が熱媒体によって回収され、その熱エネルギーが電気エネルギーに変換される。 Then, the heat medium whose temperature has been lowered by being used for power generation in the thermoelectric conversion unit 36 is returned from the fourth pipe 31d through each branch pipe 31e to each third flow path 8 of the heat generating module M1. After that, the same action is continuously repeated, the heat generated in the heat generating module M1 is recovered by the heat medium, and the heat energy is converted into electric energy.
 本実施形態では、熱媒体によって回収された熱によってガスタービン32と蒸気タービン34及びスターリングエンジン35を駆動し、その運動エネルギーを発電機40,50,80によって電気エネルギーに変換するとともに、熱電変換部36によって熱エネルギーを電気エネルギーに直接変換する構成を採用したが、ガスタービン32、蒸気タービン34、スターリングエンジン35、及び熱電変換部36を任意に組み合わせて熱利用装置30を構成しても良い。 In this embodiment, the heat recovered by the heat medium drives the gas turbine 32, the steam turbine 34, and the Stirling engine 35, and the kinetic energy thereof is converted into electric energy by the generators 40, 50, and 80, and the thermoelectric conversion section 36 directly converts thermal energy into electrical energy, but the heat utilization device 30 may be configured by arbitrarily combining the gas turbine 32, the steam turbine 34, the Stirling engine 35, and the thermoelectric conversion section 36.
 以上の実施形態では、熱エネルギーを電気エネルギーに変換する熱利用装置30について説明したが、発熱装置1によって発生する熱は、発電以外の他の用途、例えば、ボイラーに供給される燃焼用空気の予熱、化学吸収法によってCOを吸収した吸収液の加熱、メタン製造装置におけるCOとHを含む原料ガスの加熱などの他、ヒートポンプシステム、熱輸送システム、冷熱(冷凍)システムなどに利用することができる。 Although the heat utilization device 30 that converts thermal energy into electrical energy has been described in the above embodiment, the heat generated by the heat generating device 1 can be used for other purposes other than power generation, such as combustion air supplied to a boiler. Used for preheating, heating of absorption liquid that has absorbed CO2 by chemical absorption method, heating of raw material gas containing CO2 and H2 in methane production equipment, heat pump system, heat transport system, cold heat ( refrigeration) system, etc. can do.
2.第2実施形態
 上記第1実施形態では、上下2つの積層構造体4の相対面する2つの第1流路6の間に電気ヒータ9を配置したが、第2実施形態では、図10及び図11に示すように、上下2つの積層構造体4の相対面する2つの第1流路6の間に2つの電気ヒータ9と1つの第3流路8を配置している。第3流路8は、発熱モジュールM1の上下方向中央に配置されている。ここで、計2つの電気ヒータ9は、第3流路6を上下に挟むように該第3流路8の両側(上下面)に配置されている。そして、上下2つの電気ヒータ9によって挟まれるように配置された第3流路8の入口側には、分岐管31eを介して第4配管31dが接続され、第3流路8の出口側には、分岐管31fを介して第1配管31aが接続されている。
2. Second Embodiment In the first embodiment, the electric heater 9 is arranged between the two first flow paths 6 facing each other in the two upper and lower laminated structures 4. As shown in 11 , two electric heaters 9 and one third flow path 8 are arranged between two first flow paths 6 facing each other in the two upper and lower laminated structures 4 . The third flow path 8 is arranged in the center of the heat generating module M1 in the vertical direction. Here, a total of two electric heaters 9 are arranged on both sides (upper and lower surfaces) of the third flow path 8 so as to sandwich the third flow path 6 vertically. A fourth pipe 31d is connected via a branch pipe 31e to the inlet side of the third flow path 8 arranged so as to be sandwiched between the two upper and lower electric heaters 9, and the outlet side of the third flow path 8 is connected to the first pipe 31a via a branch pipe 31f.
 図10は第2実施形態に係る発熱装置1’の基本構成を示すブロック図、図11は第2実施形態に係る積層構造体4の分解斜視図であり、これらの図においては、図1及び図2において示したものと同一要素には同一符号を付しており、以下、同一要素についての再度の説明は省略する。 FIG. 10 is a block diagram showing the basic configuration of a heat generating device 1' according to the second embodiment, and FIG. 11 is an exploded perspective view of a laminated structure 4 according to the second embodiment. The same elements as those shown in FIG. 2 are denoted by the same reference numerals, and the repetitive description of the same elements will be omitted.
 上記第1実施形態に係る発熱装置1においては、各積層構造体4の第3流路8を流れる熱媒体と第3流路8の両側に配置された第2流路7を流れる高温の透過水素との熱交換によって、各発熱体5において発生した熱が熱媒体によって回収(抜熱)される。この場合、各第2流路7は低圧であるために発熱体5において発生した熱が伝わりにくく、第3流路8を流れる熱媒体による熱回収効率が低いと考えられる。 In the heat generating device 1 according to the first embodiment, the heat medium flowing through the third flow paths 8 of each laminated structure 4 and the permeation of high temperature flowing through the second flow paths 7 arranged on both sides of the third flow paths 8 Through heat exchange with hydrogen, heat generated in each heating element 5 is recovered (extracted) by the heat medium. In this case, it is considered that the heat generated in the heating element 5 is difficult to be transmitted because the pressure in each of the second flow paths 7 is low, and the heat recovery efficiency of the heat medium flowing through the third flow paths 8 is low.
 他方、第1流路6は高圧であるために発熱体5において発生した熱がより伝わり易い。本実施形態においては、前述のように、上下2つの積層構造体4の相対面する2つの第1流路6の間に2つの電気ヒータ9と1つの第3流路8を配置したため、上下2つの第2流路6の間に配置された上下方向中央の第3流路8を流れる熱媒体に上下の第1流路6と電気ヒータ9を介して発熱体5の熱が伝わり易い。したがって、上下方向中央の第3流路8を流れる熱媒体による熱回収効率が高くなり、結果的に、熱交換器としても機能する発熱装置1’の熱交換効率が高くなる。 On the other hand, since the first flow path 6 has a high pressure, the heat generated in the heating element 5 is transmitted more easily. In this embodiment, as described above, two electric heaters 9 and one third flow channel 8 are arranged between the two first flow channels 6 facing each other in the upper and lower laminated structures 4. The heat of the heating element 5 is easily transferred to the heat medium flowing through the third flow path 8 arranged between the two second flow paths 6 and located at the center in the vertical direction via the upper and lower first flow paths 6 and the electric heater 9 . Therefore, the heat recovery efficiency of the heat medium flowing through the third flow path 8 in the center in the vertical direction is increased, and as a result, the heat exchange efficiency of the heat generating device 1' that also functions as a heat exchanger is increased.
 なお、発熱装置1’の立ち上がり時(起動時)においては電気ヒータ9をONし、発熱体5が発熱した後には理想的には電気ヒータ9をOFFするが、発熱体5の温度調節のために電気ヒータ5をONのままとして該電気ヒータ9の発熱量を調整するようにしても良い。また、本実施形態では、各発熱体5に対する加熱のバランスを取るために第3流路8の上下に電気ヒータ9をそれぞれ配置したが、1つの電気ヒータ9を第3流路8の上下いずれか一方のみに配置しても良い。 Ideally, the electric heater 9 is turned on when the heating device 1′ starts up (starting), and is turned off after the heating element 5 generates heat. Alternatively, the amount of heat generated by the electric heater 9 may be adjusted while the electric heater 5 is kept ON. Further, in the present embodiment, the electric heaters 9 are arranged above and below the third flow path 8 in order to balance the heating of each heating element 5. You may arrange|position only to either.
3.第3実施形態
 前記第1実施形態では、発熱体5を透過した透過水素を含む透過ガスを回収しているが、第3実施形態では、透過ガスに加え、発熱体を透過しなかった水素(非透過水素)を含む水素系ガス(以下、非透過ガスと称する)を回収する。
3. Third Embodiment In the first embodiment, permeated gas containing permeated hydrogen that has permeated the heating element 5 is recovered. In the third embodiment, in addition to the permeated gas, hydrogen ( A hydrogen-based gas containing non-permeable hydrogen (hereinafter referred to as non-permeable gas) is recovered.
 図12は第3実施形態に係る発熱装置90の基本構成を示すブロック図である。発熱装置90は、発熱モジュールM2と、温度調整部Tと、水素循環ラインL1と、非透過水素回収ラインL3と、制御部2と、密閉容器3とを備えている。上記第1実施形態と同様の構成については同様の符号を付し、適宜説明を省略する。 FIG. 12 is a block diagram showing the basic configuration of the heating device 90 according to the third embodiment. The heat generating device 90 includes a heat generating module M2, a temperature control section T, a hydrogen circulation line L1, a non-permeating hydrogen recovery line L3, a control section 2, and a closed vessel 3. The same reference numerals are assigned to the same configurations as in the first embodiment, and the description thereof will be omitted as appropriate.
 発熱モジュールM2は、2つの積層構造体94と、1つの電気ヒータ9とを備えている。各積層構造体94は、水素の吸蔵と放出によって熱を発生する発熱体5と、水素を含む水素系ガスが導入され、発熱体5に水素を供給する第1流路96と、発熱体5を透過した水素(透過水素)を含む透過ガスが流通する第2流路7と、第2流路7を流れる透過ガスとの間で熱交換を行う熱媒体が流通する第3流路8とを有し、第3流路8の両側に、当該第3流路8から順に第2流路7、発熱体5、及び第1流路96を順次対称的に積層して構成されている。発熱モジュールM2は、この例では四角柱状に形成されている。 The heat generating module M2 includes two laminated structures 94 and one electric heater 9. Each laminated structure 94 includes a heating element 5 that generates heat by occluding and releasing hydrogen, a first flow path 96 into which a hydrogen-based gas containing hydrogen is introduced and that supplies hydrogen to the heating element 5 , the heating element 5 A second flow path 7 through which a permeated gas containing hydrogen (permeated hydrogen) permeated through the second flow path 7 flows; The second flow path 7 , the heating element 5 , and the first flow path 96 are sequentially and symmetrically laminated on both sides of the third flow path 8 in this order from the third flow path 8 . The heat generating module M2 is formed in a quadrangular prism shape in this example.
 発熱モジュールM2は、2つの積層構造体94を上下方向に2段に重ねて構成されている。上側の積層構造体94の最下部の第1流路96と下側の積層構造体94の最上部の第1流路96とは相対面している。電気ヒータ9は、上下に重ねられた2つの積層構造体94の相対面する2つの第1流路96の間、つまり、上側の積層構造体94の最下部の第1流路96と下側の積層構造体94の最上部の第1流路96との間に設けられている。 The heat generating module M2 is configured by stacking two laminated structures 94 vertically in two stages. The lowermost first channel 96 of the upper laminated structure 94 and the uppermost first channel 96 of the lower laminated structure 94 face each other. The electric heater 9 is provided between the two facing first flow paths 96 of the two laminated structures 94 stacked one above the other, that is, the lowermost first flow path 96 of the upper laminated structure 94 and the lower side is provided between the uppermost first channel 96 of the laminated structure 94 and the first channel 96 .
 非透過水素回収ラインL3は、発熱モジュールM2の各積層構造体94において、各第1流路96へと導入される水素系ガスのうち、各発熱体5を透過しないで当該発熱体5の発熱に供せられなかった非透過水素を含む非透過ガスを第1流路96から回収し、回収した非透過ガスを第1流路96へと戻すためのものである。図12では、発熱体5を透過しない非透過水素を含む非透過ガスを「非透過水素」と記載している。 The non-permeating hydrogen recovery line L3 is a hydrogen-based gas introduced into each first flow path 96 in each laminated structure 94 of the heat generating module M2, which does not permeate each heat generating element 5 and generates heat from the heat generating element 5. It is for recovering the non-permeating gas containing non-permeating hydrogen not supplied to the first flow path 96 from the first flow path 96 and returning the recovered non-permeating gas to the first flow path 96 . In FIG. 12, the non-permeable gas containing non-permeable hydrogen that does not permeate the heating element 5 is described as "non-permeable hydrogen".
 非透過水素回収ラインL3は、発熱モジュールM2の積層構造体94に設けられた第1流路96から非透過ガスを回収する回収配管97を有している。回収配管97は、水素循環ラインL1を構成する回収配管13とを接続している。回収配管97は、図12では回収配管13の循環ポンプ14よりも上流側(吸入側)に接続されているが、回収配管13の循環ポンプ14よりも下流側(吐出側)に接続しても良い。 The non-permeating hydrogen recovery line L3 has a recovery pipe 97 for recovering the non-permeating gas from the first channel 96 provided in the laminated structure 94 of the heat generating module M2. The recovery pipe 97 connects with the recovery pipe 13 that constitutes the hydrogen circulation line L1. The recovery pipe 97 is connected to the recovery pipe 13 on the upstream side (suction side) of the circulation pump 14 in FIG. good.
 回収配管97は、発熱モジュールM2の各積層構造体94に設けられた各第1流路96にそれぞれ接続された分岐管98を有している。第1流路96の非透過ガスは、発熱体5により加熱されて高温となり、分岐管98を介して回収配管97へ回収され、水素循環ラインL1を構成する回収配管13を流れる透過ガスと合流した後、導入配管12及び分岐管15から再び各第1流路96へと導入され、発熱体5に水素を供給するための水素系ガスとして再利用される。 The recovery pipe 97 has a branch pipe 98 connected to each first flow path 96 provided in each laminated structure 94 of the heat generating module M2. The non-permeating gas in the first flow path 96 is heated by the heating element 5 to a high temperature, recovered to the recovery pipe 97 via the branch pipe 98, and merged with the permeating gas flowing through the recovery pipe 13 constituting the hydrogen circulation line L1. After that, it is again introduced into each first channel 96 from the introduction pipe 12 and the branch pipe 15 and reused as a hydrogen-based gas for supplying hydrogen to the heating element 5 .
 積層構造体94は、第1流路96の構成が異なること以外は、上記第1及び第2実施形態の積層構造体4と同じ構成を有する。第1流路96の構成について以下に説明する。 The laminated structure 94 has the same configuration as the laminated structure 4 of the first and second embodiments except that the configuration of the first flow path 96 is different. The configuration of the first flow path 96 will be described below.
 図13は積層構造体94の分解斜視図である。図13に示すように、第1流路96は、平板状に形成された平板部96aと、平板部96aに設けられた壁部96bとにより構成されている。平板部96a及び壁部96bは、例えばステンレス鋼で形成されている。平板部96aは、平面視において四角形状に形成されている。壁部96bは、平板部96aの4辺の縁部分のうち、互いに対向する2辺の縁部分に設けられている。図13では、壁部96bは、平板部96aの4辺の縁部分のうち、X軸方向における左右の縁部分に設けられている。下側の第1流路96を構成する壁部96bはZ軸方向の上側に向けて突出し、上側の第1流路96を構成する壁部96bはZ軸方向の下側に向けて突出している。第1流路96の正面(Y軸方向における左側の面)には、水素導入口96cが設けられ、第1流路96の背面(Y軸方向における右側の面)には、水素回収口96dが設けられている。水素導入口96cは、水素循環ラインL1の分岐管15(図12参照)と接続する。水素回収口96dは、非透過水素回収ラインL3の分岐管98(図12参照)と接続する。図13では、上側の第1流路96の背面に設けられている水素回収口96dが、紙面奥側に隠れている。 13 is an exploded perspective view of the laminated structure 94. FIG. As shown in FIG. 13, the first flow path 96 includes a flat plate portion 96a and a wall portion 96b provided on the flat plate portion 96a. The flat plate portion 96a and the wall portion 96b are made of stainless steel, for example. The flat plate portion 96a is formed in a rectangular shape in plan view. The wall portions 96b are provided on two of the four edge portions of the flat plate portion 96a that face each other. In FIG. 13, the wall portions 96b are provided at the left and right edge portions in the X-axis direction among the four edge portions of the flat plate portion 96a. The wall portion 96b forming the lower first flow path 96 protrudes upward in the Z-axis direction, and the wall portion 96b forming the upper first flow path 96 protrudes downward in the Z-axis direction. there is A hydrogen introduction port 96c is provided on the front surface (the left surface in the Y-axis direction) of the first flow passage 96, and a hydrogen recovery port 96d is provided on the back surface of the first flow passage 96 (the right surface in the Y-axis direction). is provided. The hydrogen inlet 96c is connected to the branch pipe 15 (see FIG. 12) of the hydrogen circulation line L1. The hydrogen recovery port 96d is connected to the branch pipe 98 (see FIG. 12) of the non-permeated hydrogen recovery line L3. In FIG. 13, the hydrogen recovery port 96d provided on the back surface of the upper first flow path 96 is hidden behind the plane of the paper.
 以上のように、第3実施形態に係る発熱装置90は、発熱体5、第1流路96、第2流路7、及び第3流路8が高密度に積層されて構成された積層構造体94を備えている。このため、第3実施形態に係る発熱装置90によれば、上記第1及び第2実施形態に係る発熱装置1,1’と同様に、熱を効率良く発生することができるとともに、小型・コンパクト化を図ることができる。 As described above, the heating device 90 according to the third embodiment has a laminated structure in which the heating element 5, the first channel 96, the second channel 7, and the third channel 8 are laminated at high density. A body 94 is provided. Therefore, according to the heat generating device 90 according to the third embodiment, heat can be efficiently generated in the same manner as the heat generating devices 1 and 1' according to the first and second embodiments, and the heat generating device 90 can be small and compact. can be improved.
 発熱装置90は、閉ループを構成する水素循環ラインL1を水素系ガスが連続して循環するため、発熱体5の発熱に供する水素の補給が抑えられて経済的である。また、非透過水素回収ラインL3が水素循環ラインL1に接続されていることにより、透過水素を含む高温の透過ガスと非透過水素を含む高温の非透過ガスとを回収し、水素循環ラインL1を循環させて各発熱体5に水素を供給する水素系ガスとして再利用するため、各発熱体5の過冷却が抑制され、各発熱体5の発熱が維持または促進される。 In the heating device 90, the hydrogen-based gas continuously circulates through the hydrogen circulation line L1 that constitutes a closed loop. In addition, since the non-permeated hydrogen recovery line L3 is connected to the hydrogen circulation line L1, a high-temperature permeated gas containing permeated hydrogen and a high-temperature non-permeated gas containing non-permeated hydrogen are recovered, and the hydrogen circulation line L1 is recovered. Since it is circulated and reused as a hydrogen-based gas that supplies hydrogen to each heat generating element 5 , overcooling of each heat generating element 5 is suppressed, and heat generation of each heat generating element 5 is maintained or accelerated.
 また、積層構造体94においては、発熱体5が発生する熱は、第3流路8を流れる熱媒体と、第3流路8を挟んでこれの両側に配置された第2流路7を流れる高温の透過ガスとの熱交換によって、熱媒体に効率良く与えられる。このため、発熱装置90は、発熱体5において発生した熱を熱媒体によって効率良く回収することができる。 In the laminated structure 94, the heat generated by the heating element 5 passes through the heat medium flowing through the third flow path 8 and the second flow paths 7 arranged on both sides of the third flow path 8. It is efficiently given to the heat medium by heat exchange with the flowing hot permeate gas. Therefore, the heat generating device 90 can efficiently recover the heat generated in the heat generating body 5 by the heat medium.
 発熱装置90は、発熱モジュールM2の中心部分に電気ヒータ9が設けられているため、発熱モジュールM2全体が効率的に加熱される。このため、発熱装置90によれば、発熱体5が効率良く適正温度に加熱され、発熱体5の加熱に伴う消費電力が低く抑えられる。 Since the heat generating device 90 is provided with the electric heater 9 at the central portion of the heat generating module M2, the entire heat generating module M2 is efficiently heated. Therefore, according to the heat generating device 90, the heat generating element 5 is efficiently heated to an appropriate temperature, and the power consumption associated with the heating of the heat generating element 5 can be kept low.
4.第4実施形態
 上記2実施形態では、第2流路7から透過ガスを回収しているが、第4実施形態では、第2流路に熱媒体を導入し、第2流路から透過ガス及び熱媒体を回収する。
4. Fourth Embodiment In the above two embodiments, the permeated gas is recovered from the second flow path 7, but in the fourth embodiment, the heat medium is introduced into the second flow path, and the permeated gas and the permeated gas are recovered from the second flow path. Recover the heat transfer medium.
 図14は第4実施形態に係る発熱装置100の基本構成を示すブロック図である。発熱装置100は、発熱モジュールM3と、温度調整部Tと、水素循環ラインL4と、制御部2と、密閉容器3とを備えている。上記第1及び第2実施形態と同様の構成については同様の符号を付し、適宜説明を省略する。 FIG. 14 is a block diagram showing the basic configuration of the heating device 100 according to the fourth embodiment. The heat generating device 100 includes a heat generating module M3, a temperature control section T, a hydrogen circulation line L4, a control section 2, and a sealed container 3. The same reference numerals are assigned to the same configurations as those of the first and second embodiments, and the description thereof will be omitted as appropriate.
 発熱モジュールM3は、2つの積層構造体104と、1つの電気ヒータ9とを備えている。各積層構造体104は、水素の吸蔵と放出によって熱を発生する発熱体5と、水素を含む水素系ガスが導入され、発熱体5に水素を供給する第1流路6と、発熱体5を透過した水素(透過水素)を含む透過ガスが流通する第2流路107と、第2流路107を流れる透過ガスとの間で熱交換を行う熱媒体が流通する第3流路8とを有し、第3流路8の両側に、当該第3流路8から順に第2流路107、発熱体5、及び第1流路6を順次対称的に積層して構成されている。発熱モジュールM3は、この例では四角柱状に形成されている。 The heat generating module M3 includes two laminated structures 104 and one electric heater 9. Each laminated structure 104 includes a heat generating element 5 that generates heat by occluding and releasing hydrogen, a first channel 6 into which a hydrogen-based gas containing hydrogen is introduced and that supplies hydrogen to the heat generating element 5, the heat generating element 5 A second flow path 107 through which a permeated gas containing hydrogen (permeated hydrogen) that has permeated the second flow path 107 flows; A second flow path 107 , a heating element 5 , and a first flow path 6 are sequentially and symmetrically stacked on both sides of the third flow path 8 in this order from the third flow path 8 . The heat generating module M3 is formed in a quadrangular prism shape in this example.
 発熱モジュールM3は、2つの積層構造体104を上下方向に2段に重ねて構成されている。上側の積層構造体104の最下部の第1流路6と下側の積層構造体104の最上部の第1流路6とは相対面している。電気ヒータ9は、上下に重ねられた2つの積層構造体104の相対面する2つの第1流路6の間、つまり、上側の積層構造体104の最下部の第1流路6と下側の積層構造体104の最上部の第1流路6との間に設けられている。 The heat generating module M3 is configured by stacking two laminated structures 104 vertically in two stages. The lowermost first channel 6 of the upper laminated structure 104 and the uppermost first channel 6 of the lower laminated structure 104 face each other. The electric heater 9 is provided between the two facing first flow paths 6 of the two laminated structures 104 stacked one above the other, that is, between the lowermost first flow path 6 of the upper laminated structure 104 and the lowermost first flow path 6 . is provided between the uppermost first channel 6 of the laminated structure 104 and the first channel 6 .
 第4実施形態では、熱媒体循環ラインL2は、第4配管31dから6つの分岐管31eが分岐している。6つの分岐管31eのうち、2つの分岐管31eは2つの第3流路8の各熱媒体回収口8dと接続し、4つの分岐管31eは4つの第2流路107と接続している。このため、第4配管31dを流れる熱媒体は、各分岐管31eを介して第2流路107と第3流路8とに導入される。第2流路107に導入される熱媒体を「第1熱媒体」と言い、第3流路8に導入される熱媒体を「第2熱媒体」と言う。したがって、第4実施形態においては、第2流路107は、第1熱媒体が導入され、発熱体5を透過した透過水素を含む透過ガスとともに第1熱媒体が流通する。第3流路8は、第2流路107を流れる透過ガス及び第1熱媒体との間で熱交換を行う第2熱媒体が流通する。 In the fourth embodiment, the heat medium circulation line L2 has six branch pipes 31e branched from the fourth pipe 31d. Of the six branch pipes 31e, two branch pipes 31e are connected to the heat medium recovery ports 8d of the two third flow paths 8, and the four branch pipes 31e are connected to the four second flow paths 107. . Therefore, the heat medium flowing through the fourth pipe 31d is introduced into the second flow channel 107 and the third flow channel 8 via each branch pipe 31e. The heat medium introduced into the second flow path 107 is called "first heat medium", and the heat medium introduced into the third flow path 8 is called "second heat medium". Therefore, in the fourth embodiment, the first heat medium is introduced into the second flow path 107, and the first heat medium flows together with the permeated gas containing permeated hydrogen that has permeated the heating element 5. FIG. The second heat medium that exchanges heat with the permeating gas flowing through the second flow path 107 and the first heat medium flows through the third flow path 8 .
 水素循環ラインL4は、導入配管12と、回収配管13と、循環ポンプ14と、回収配管13の途中に設けられた水素分離部108とを有している。水素分離部108は、第2流路107から分岐管16を介して回収配管13へ回収された透過ガスと第1熱媒体とを分離するためのものである。 The hydrogen circulation line L4 has an introduction pipe 12, a recovery pipe 13, a circulation pump 14, and a hydrogen separator 108 provided in the middle of the recovery pipe 13. The hydrogen separator 108 is for separating the permeated gas recovered from the second flow path 107 to the recovery pipe 13 via the branch pipe 16 and the first heat medium.
 水素分離部108は、回収配管13から分岐し、熱媒体循環ラインL2の第4配管31dと接続する接続配管109と、回収配管13と接続配管109との接続部に設けられた水素透過膜110と有している。接続配管109は、水素透過膜110を透過しない第1熱媒体を熱媒体循環ラインL2の第4配管31dへ流入させる。水素透過膜110は、透過ガスを透過させる。 The hydrogen separation unit 108 includes a connection pipe 109 branched from the recovery pipe 13 and connected to the fourth pipe 31d of the heat medium circulation line L2, and a hydrogen permeable membrane 110 provided at a connection portion between the recovery pipe 13 and the connection pipe 109. and have. The connection pipe 109 allows the first heat medium that does not permeate the hydrogen permeable membrane 110 to flow into the fourth pipe 31d of the heat medium circulation line L2. The hydrogen permeable membrane 110 is permeable to the permeable gas.
 積層構造体104は、第2流路107の構成が異なること以外は、上記第1及び第2実施形態の積層構造体4と同じ構成を有する。第2流路107の構成について以下に説明する。 The laminated structure 104 has the same configuration as the laminated structure 4 of the first and second embodiments except that the configuration of the second flow path 107 is different. The configuration of the second channel 107 will be described below.
 図15は積層構造体104の分解斜視図である。図15に示すように、第2流路107は、平板状に形成された平板部107aと、平板部107aに設けられた壁部107bとにより構成されている。平板部107a及び壁部107bは、例えばステンレス鋼で形成されている。平板部107aは、平面視において四角形状に形成されている。壁部107bは、平板部107aの4辺の縁部分のうち、互いに対向する2辺の縁部分に設けられている。図15では、壁部107bは、平板部107aの4辺の縁部分のうち、X軸方向における左右の縁部分に設けられている。下側の第2流路107を構成する壁部107bはZ軸方向の下側に向けて突出し、上側の第2流路107を構成する壁部107bはZ軸方向の上側に向けて突出している。第2流路107の正面(Y軸方向における左側の面)には、熱媒体導入口107cが設けられ、第2流路107の背面(Y軸方向における右側の面)には、水素及び熱媒体回収口107dが設けられている。熱媒体導入口107cは、熱媒体循環ラインL2の分岐管31e(図12参照)と接続する。水素及び熱媒体回収口107dは、水素循環ラインL4の分岐管16と接続する(図14参照)。図15では、下側の第2流路107の背面に設けられている水素及び熱媒体回収口107dが、紙面奥側に隠れている。 15 is an exploded perspective view of the laminated structure 104. FIG. As shown in FIG. 15, the second flow path 107 includes a flat plate portion 107a and a wall portion 107b provided on the flat plate portion 107a. The flat plate portion 107a and the wall portion 107b are made of, for example, stainless steel. The flat plate portion 107a is formed in a rectangular shape in plan view. The wall portions 107b are provided at two edge portions facing each other among the four edge portions of the flat plate portion 107a. In FIG. 15, the wall portions 107b are provided at the left and right edge portions in the X-axis direction among the four edge portions of the flat plate portion 107a. The wall portion 107b forming the lower second flow path 107 protrudes downward in the Z-axis direction, and the wall portion 107b forming the upper second flow path 107 protrudes upward in the Z-axis direction. there is A heat medium inlet 107c is provided on the front surface of the second flow path 107 (the left surface in the Y-axis direction), and hydrogen and heat are provided on the back surface of the second flow path 107 (the right surface in the Y-axis direction). A medium recovery port 107d is provided. The heat medium inlet 107c is connected to the branch pipe 31e (see FIG. 12) of the heat medium circulation line L2. The hydrogen and heat medium recovery port 107d is connected to the branch pipe 16 of the hydrogen circulation line L4 (see FIG. 14). In FIG. 15, the hydrogen and heat medium recovery port 107d provided on the back surface of the second flow path 107 on the lower side is hidden behind the plane of the paper.
 以上のように、第4実施形態に係る発熱装置100は、発熱体5、第1流路6、第2流路107、及び第3流路8が高密度に積層されて構成された積層構造体104を備えている。このため、第4実施形態に係る発熱装置100によれば、上記第1実施形態に係る発熱装置1と同様に、熱を効率良く発生することができるとともに、小型・コンパクト化を図ることができる。 As described above, the heating device 100 according to the fourth embodiment has a laminated structure in which the heating element 5, the first channel 6, the second channel 107, and the third channel 8 are laminated at high density. It has a body 104 . Therefore, according to the heat generating device 100 according to the fourth embodiment, heat can be efficiently generated and the size and size can be reduced, as with the heat generating device 1 according to the first embodiment. .
 発熱装置100は、閉ループを構成する水素循環ラインL4を水素系ガスが連続して循環するため、発熱体5の発熱に供する水素の補給が抑えられて経済的である。 In the heat generating device 100, the hydrogen-based gas continuously circulates through the hydrogen circulation line L4 that constitutes a closed loop.
 また、積層構造体104においては、発熱体5が発生する熱は、第3流路8を流れる第2熱媒体と、第3流路8を挟んでこれの両側に配置された第2流路107を流れる高温の透過ガス及び高温の第1熱媒体との熱交換によって、第2熱媒体に効率良く与えられる。このため、発熱装置100は、発熱体5において発生した熱を熱媒体によって効率良く回収することができる。 In the laminated structure 104, the heat generated by the heating element 5 is transferred to the second heat medium flowing through the third flow path 8 and the second flow paths arranged on both sides of the third flow path 8. The heat exchange between the high-temperature permeating gas flowing through 107 and the high-temperature first heat medium is efficiently provided to the second heat medium. Therefore, the heat generating device 100 can efficiently recover the heat generated in the heat generating body 5 by the heat medium.
 本発明は、以上説明した各実施形態に適用が限定されるものではなく、特許請求の範囲及び明細書と図面に記載された技術的思想の範囲内で種々の変形が可能であることは勿論である。 The application of the present invention is not limited to the embodiments described above, and various modifications are possible within the scope of the technical ideas described in the claims, the specification and the drawings. is.
 上記各実施形態に係る発熱モジュールM1,M2,M3は、四角柱状に形成されているが、発熱モジュールの形状はこれに限定されない。発熱モジュールは、例えば、四角柱状以外の多角柱状、円柱状、楕円柱状に形成しても良い。 The heat generating modules M1, M2, and M3 according to each of the above embodiments are formed in a quadrangular prism shape, but the shape of the heat generating modules is not limited to this. The heat generating module may be formed in, for example, a polygonal columnar shape other than a square columnar shape, a cylindrical columnar shape, or an elliptical columnar shape.
 発熱モジュールは、第1流路に水素系ガスを導入する方向と、第2流路から透過ガスが流出する方向と、第3流路に熱媒体を導入する方向と、第3流路から熱媒体が流出する方向とが互いに異なるように構成することが好ましい。これにより、第1流路、第2流路、及び第3流路と接続する配管同士を離して配置することができ、発熱モジュールに対する配管が容易化する。上記の各方向が互いに異なるように構成した発熱モジュールを以下に説明する。 The heat generation module has a direction in which the hydrogen-based gas is introduced into the first flow path, a direction in which the permeated gas flows out from the second flow path, a direction in which the heat medium is introduced into the third flow path, and a direction in which heat is introduced from the third flow path. It is preferable that the directions in which the media flow out are different from each other. As a result, the pipes connected to the first flow path, the second flow path, and the third flow path can be separated from each other, and the piping to the heat generating module can be facilitated. A heat generating module configured such that each direction is different from each other will be described below.
 <発熱モジュールの変形例1>
 図16に示すように、発熱モジュールM4は、上記第1実施形態の発熱モジュールM1と同様に、水素系ガスを第1流路に導入し、発熱体を透過した透過水素を含む透過ガスが第2流路から流出し、熱媒体を第3流路に導入するように構成されている。発熱モジュールM4は、八角柱状に形成されており、八角柱の相対向する一対の辺を1組として異なる3組の辺に直交する互いに異なる方向に、第1流路の水素系ガスと、第2流路の透過ガスと、第3通路の熱媒体とが流れる。このように、発熱モジュールM4は、第1流路に水素系ガスを導入する方向と、第2流路から透過ガスが流出する方向と、第3流路に熱媒体を導入する方向と、第3流路から熱媒体が流出する方向とが互いに異なる。
<Modification 1 of heat generation module>
As shown in FIG. 16, in the heat generating module M4, similar to the heat generating module M1 of the first embodiment, the hydrogen-based gas is introduced into the first flow path, and the permeated gas containing the permeated hydrogen that has permeated the heating element is the second gas. It is configured to flow out from the second channel and introduce the heat medium into the third channel. The heat generating module M4 is formed in the shape of an octagonal prism, and the hydrogen-based gas in the first flow path and the hydrogen-based gas in the first flow path flow in different directions orthogonal to three different sets of sides of the octagonal prism. The permeating gas flows through the two passages and the heat medium flows through the third passage. In this way, the heat generating module M4 has a direction in which the hydrogen-based gas is introduced into the first flow path, a direction in which the permeating gas flows out from the second flow path, a direction in which the heat medium is introduced into the third flow path, and a direction in which the heat medium is introduced into the third flow path. The directions in which the heat medium flows out from the three flow paths are different from each other.
 <発熱モジュールの変形例2>
 図17に示すように、発熱モジュールM5は、上記第3実施形態の発熱モジュールM2と同様に、水素系ガスを第1流路に導入し、発熱体を透過した透過水素を含む透過ガスが第2流路から流出し、発熱体を透過しなかった非透過水素を含む非透過ガスが第1流路から流出し、熱媒体を第3流路に導入するように構成されている。発熱モジュールM5は、八角柱の相対向する一対の辺を1組として異なる3組の辺に直交する互いに異なる方向に、第1流路の水素系ガス及び非透過ガスと、第2流路の透過ガスと、第3通路の熱媒体とが流れる。このように、発熱モジュールM5は、第1流路に水素系ガスを導入する方向と、第1流路から非透過ガスが流出する方向と、第2流路から透過ガスが流出する方向と、第3流路に熱媒体を導入する方向と、第3流路から熱媒体が流出する方向とが互いに異なる。
<Modification 2 of heat generation module>
As shown in FIG. 17, in the heat generating module M5, similar to the heat generating module M2 of the third embodiment, the hydrogen-based gas is introduced into the first flow path, and the permeated gas containing the permeated hydrogen that has permeated the heating element is the second gas. Non-permeable gas containing non-permeable hydrogen that has flowed out of the second flow path and has not permeated the heating element flows out of the first flow path, and is configured to introduce the heat medium into the third flow path. In the heat generating module M5, the hydrogen-based gas and the non-permeating gas in the first flow path and the non-permeating gas in the second flow path flow in different directions orthogonal to three different sets of sides, each pair of sides of the octagonal prism facing each other. The permeated gas and the heat medium in the third passage flow. In this way, the heat generating module M5 has a direction in which the hydrogen-based gas is introduced into the first channel, a direction in which the non-permeating gas flows out from the first channel, a direction in which the permeating gas flows out from the second channel, A direction in which the heat medium is introduced into the third flow path is different from a direction in which the heat medium flows out from the third flow path.
 <発熱モジュールの変形例3>
 図18に示すように、発熱モジュールM6は、上記第4実施形態の発熱モジュールM3と同様に、水素系ガスを第1流路に導入し、第1熱媒体を第2流路に導入し、発熱体を透過した透過水素を含む透過ガス及び第1熱媒体が第2流路から流出し、第2熱媒体を第3流路に導入するように構成されている。発熱モジュールM6は、八角柱の相対向する一対の辺を1組として異なる3組の辺に直交する互いに異なる方向に、第1流路の水素系ガスと、第2流路の透過ガス及び第1熱媒体と、第3通路の第2熱媒体とが流れる。このように、発熱モジュールM6は、第1流路に水素系ガスを導入する方向と、第2流路に第1熱媒体を導入する方向と、第2流路から透過ガス及び第1熱媒体が流出する方向と、第3流路に熱媒体を導入する方向と、第3流路から熱媒体が流出する方向とが互いに異なる。
<Modification 3 of heat generation module>
As shown in FIG. 18, the heat generating module M6 introduces the hydrogen-based gas into the first channel, the first heat medium into the second channel, and It is configured such that the permeated gas containing permeated hydrogen that has permeated the heating element and the first heat medium flow out from the second flow path, and the second heat medium is introduced into the third flow path. The heat generating module M6 is configured such that the hydrogen-based gas in the first flow path, the permeated gas in the second flow path, and the permeated gas in the second The first heat medium and the second heat medium in the third passage flow. In this way, the heat generating module M6 has a direction in which the hydrogen-based gas is introduced into the first channel, a direction in which the first heat medium is introduced into the second channel, and a permeating gas and the first heat medium from the second channel. The direction in which the heat medium flows out, the direction in which the heat medium is introduced into the third flow path, and the direction in which the heat medium flows out from the third flow path are different from each other.
 図示しないが、発熱モジュールは、水素系ガスを第1流路に導入し、第1熱媒体を第2流路に導入し、発熱体を透過した透過水素を含む透過ガス及び第1熱媒体が第2流路から流出し、発熱体を透過しなかった非透過水素を含む非透過ガスが第1流路から流出し、第2熱媒体を第3流路に導入するように構成しても良い。 Although not shown, the heat generation module introduces a hydrogen-based gas into the first flow path, introduces the first heat medium into the second flow path, and the permeated gas containing hydrogen permeated through the heating element and the first heat medium are The non-permeable gas containing non-permeable hydrogen that has flowed out of the second flow path and has not permeated the heating element may flow out of the first flow path, and the second heat medium may be introduced into the third flow path. good.
 1,1’,90,100    発熱装置
 4,94,104    積層構造体
 5,60,70    発熱体
 5A,60A,70A   支持体
 5B,60B,70B   多層膜
 51,61,71 第1層
 52,62,72  第2層
 6,96    第1流路
 7,107    第2流路
 8    第3流路
 9    電気ヒータ(加熱手段)
 30   熱利用装置
 63,73   第3層
 74   第4層
 L1,L4   水素循環ライン
 L2   熱媒体循環ライン
 L3   非透過水素回収ライン
 M1,M2,M3,M4,M5,M6    発熱モジュール
 T    温度調整部
1, 1', 90, 100 heating device 4, 94, 104 laminated structure 5, 60, 70 heating element 5A, 60A, 70A support 5B, 60B, 70B multilayer film 51, 61, 71 first layer 52, 62 , 72 second layer 6, 96 first channel 7, 107 second channel 8 third channel 9 electric heater (heating means)
30 Heat utilization device 63, 73 Third layer 74 Fourth layer L1, L4 Hydrogen circulation line L2 Heat medium circulation line L3 Non-permeable hydrogen recovery line M1, M2, M3, M4, M5, M6 Heat generation module T Temperature control unit

Claims (7)

  1.  水素の吸蔵と放出によって熱を発生する発熱体と、前記水素を含む水素系ガスが導入され、前記発熱体に前記水素を供給する第1流路と、前記発熱体を透過した前記水素を含む透過ガスが流通する第2流路と、前記第2流路を流れる前記透過ガスとの間で熱交換を行う熱媒体が流通する第3流路とを有し、前記第3流路の両側に、前記第3流路から順に前記第2流路、前記発熱体、前記第1流路を順次対称的に積層して構成される積層構造体と、
     前記発熱体を加熱する加熱手段と、
    を備える発熱装置。
    a heating element that generates heat by occluding and releasing hydrogen; a first channel into which the hydrogen-containing hydrogen-based gas is introduced and that supplies the hydrogen to the heating element; and the hydrogen that has permeated the heating element. a second flow path through which a permeating gas flows; and a third flow path through which a heat medium that exchanges heat with the permeating gas flowing through the second flow path flows, both sides of the third flow path a laminated structure configured by symmetrically laminating the second flow path, the heating element, and the first flow path in order from the third flow path;
    heating means for heating the heating element;
    A heat generating device comprising:
  2.  複数の前記積層構造体を多段に重ねて発熱モジュールを構成した請求項1に記載の発熱装置。 The heat generating device according to claim 1, wherein a heat generating module is configured by stacking a plurality of said laminated structures in multiple stages.
  3.  前記発熱モジュールの隣接する2つの前記積層構造体の相対面する2つの前記第1流路の間に前記加熱手段を配置した請求項2に記載の発熱装置。 3. The heat generating device according to claim 2, wherein the heating means is arranged between the two facing first flow paths of the two adjacent laminated structures of the heat generating module.
  4.  前記発熱モジュールの隣接する2つの前記積層構造体の相対面する2つの前記第1流路の間に前記加熱手段と前記第3流路を配置した請求項2または3に記載の発熱装置。 The heat generating device according to claim 2 or 3, wherein the heating means and the third flow path are arranged between the two facing first flow paths of the two adjacent laminated structures of the heat generating module.
  5.  前記加熱手段を前記第3流路の両側に配置した請求項4に記載の発熱装置。 The heat generating device according to claim 4, wherein the heating means are arranged on both sides of the third flow path.
  6.  前記発熱モジュールは、前記第1流路に前記水素系ガスを導入する方向と、前記第2流路から前記透過ガスが流出する方向と、前記第3流路に前記熱媒体を導入する方向と、前記第3流路から前記熱媒体が流出する方向とが互いに異なる請求項2~5のいずれか1項に記載の発熱装置。 The heat generation module has a direction in which the hydrogen-based gas is introduced into the first flow path, a direction in which the permeated gas flows out from the second flow path, and a direction in which the heat medium is introduced into the third flow path. 6. The heat generating device according to any one of claims 2 to 5, wherein directions in which the heat medium flows out from the third flow path are different from each other.
  7.  前記加熱手段は、平板状のベースと、前記ベースに設けられた加熱ワイヤーまたはリボン状の面ヒータとにより構成された電気ヒータである請求項1~4のいずれか1項に記載の発熱装置。 The heating device according to any one of claims 1 to 4, wherein the heating means is an electric heater composed of a flat plate-shaped base and a heating wire or ribbon-shaped surface heater provided on the base.
PCT/JP2022/018979 2021-05-07 2022-04-26 Heat generation device WO2022234797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079381A JP2022172989A (en) 2021-05-07 2021-05-07 heating device
JP2021-079381 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234797A1 true WO2022234797A1 (en) 2022-11-10

Family

ID=83932408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018979 WO2022234797A1 (en) 2021-05-07 2022-04-26 Heat generation device

Country Status (3)

Country Link
JP (1) JP2022172989A (en)
TW (1) TW202317923A (en)
WO (1) WO2022234797A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257864A (en) * 1993-03-01 1994-09-16 Nippon Telegr & Teleph Corp <Ntt> Heat generating device
JPH08138845A (en) * 1994-11-07 1996-05-31 Hattori Hiiteingu Kogyo Kk Quartz glass heater and its manufacture
JP2001059659A (en) * 1999-08-19 2001-03-06 Rinnai Corp Heat utilizing system utilizing hydrogen storage alloy
JP2002517307A (en) * 1998-06-10 2002-06-18 バッテル・メモリアル・インスティチュート Micro component assembly for effective fluid contact
JP2005241049A (en) * 2004-02-24 2005-09-08 Calsonic Kansei Corp Heat exchanger
JP5291855B2 (en) * 2001-04-30 2013-09-18 バッテル・メモリアル・インスティテュート Method for separating fluid components from a fluid mixture
WO2020122098A1 (en) * 2018-12-11 2020-06-18 株式会社クリーンプラネット Heat utilization system, and heat generating device
WO2021100784A1 (en) * 2019-11-19 2021-05-27 株式会社クリーンプラネット Heat generation device, heat utilization system and film-like heat generation element
JP2021162227A (en) * 2020-03-31 2021-10-11 株式会社クリーンプラネット Heat generation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257864A (en) * 1993-03-01 1994-09-16 Nippon Telegr & Teleph Corp <Ntt> Heat generating device
JPH08138845A (en) * 1994-11-07 1996-05-31 Hattori Hiiteingu Kogyo Kk Quartz glass heater and its manufacture
JP2002517307A (en) * 1998-06-10 2002-06-18 バッテル・メモリアル・インスティチュート Micro component assembly for effective fluid contact
JP2001059659A (en) * 1999-08-19 2001-03-06 Rinnai Corp Heat utilizing system utilizing hydrogen storage alloy
JP5291855B2 (en) * 2001-04-30 2013-09-18 バッテル・メモリアル・インスティテュート Method for separating fluid components from a fluid mixture
JP2005241049A (en) * 2004-02-24 2005-09-08 Calsonic Kansei Corp Heat exchanger
WO2020122098A1 (en) * 2018-12-11 2020-06-18 株式会社クリーンプラネット Heat utilization system, and heat generating device
WO2021100784A1 (en) * 2019-11-19 2021-05-27 株式会社クリーンプラネット Heat generation device, heat utilization system and film-like heat generation element
JP2021162227A (en) * 2020-03-31 2021-10-11 株式会社クリーンプラネット Heat generation device

Also Published As

Publication number Publication date
TW202317923A (en) 2023-05-01
JP2022172989A (en) 2022-11-17

Similar Documents

Publication Publication Date Title
JP6749035B1 (en) Heat utilization system and heating device
US6508862B1 (en) Apparatus and methods for separation/purification utilizing rapidly cycled thermal swing sorption
US8172913B2 (en) Array of planar membrane modules for producing hydrogen
US6503298B1 (en) Apparatus and methods for hydrogen separation/purification utilizing rapidly cycled thermal swing sorption
CN113167504A (en) Heat utilization system and heat generating device
JP2011168488A (en) Compact device for generating pure hydrogen
JP2008536796A5 (en)
WO2022234800A1 (en) Heat generation cell, heat generation device, and heat utilization system
KR20210100160A (en) Heat Utilization Systems and Heating Devices
JP2000351607A (en) Hydrogen-producing apparatus
WO2022234797A1 (en) Heat generation device
WO2022234798A1 (en) Heat generating device
WO2022234799A1 (en) Heat generation cell, heat generation module, and heat generation device
WO2024225304A1 (en) Heat generating device and heat generating method
JP2024158016A (en) Heat generating device and heat generating method
TWI855013B (en) Heat utilization system and heating device
WO2023026889A1 (en) Heat-generating device and boiler
JPH024521B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798903

Country of ref document: EP

Kind code of ref document: A1