WO2022234635A1 - Data analysis device, data analysis method, and recording medium - Google Patents
Data analysis device, data analysis method, and recording medium Download PDFInfo
- Publication number
- WO2022234635A1 WO2022234635A1 PCT/JP2021/017458 JP2021017458W WO2022234635A1 WO 2022234635 A1 WO2022234635 A1 WO 2022234635A1 JP 2021017458 W JP2021017458 W JP 2021017458W WO 2022234635 A1 WO2022234635 A1 WO 2022234635A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- series data
- peak
- analyzing
- data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000007405 data analysis Methods 0.000 title claims description 28
- 230000002159 abnormal effect Effects 0.000 claims abstract description 68
- 238000001228 spectrum Methods 0.000 claims description 32
- 239000011159 matrix material Substances 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 230000004913 activation Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 102220491290 Annexin A1_S34A_mutation Human genes 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
Definitions
- the present invention relates to a data analysis device, data analysis method, and recording medium, and more particularly to a data analysis device, data analysis method, and recording medium for analyzing time-series data.
- Patent Literature 1 a learning model generated by machine learning is used to diagnose the operating state of a machine in real time based on physical quantities detected by sensors.
- non-negative matrix factorization is used to analyze time series data.
- related techniques transform time series data into an amplitude spectrogram and decompose the spectrogram into a basis matrix and an activation matrix. Then, by using the activation matrix as an acoustic feature quantity, abnormal sounds contained in the time-series data are identified.
- NMF approximates a non-negative matrix, which is a spectrogram expression, by the product of lower-dimensional non-negative matrices. Therefore, when the period of peaks in the time-series data is not stable, or in a noisy environment, the accuracy of identifying abnormal sounds in the related technique using NMF decreases.
- the present invention has been made in view of the above problems, and its purpose is to accurately identify abnormal sounds from time-series data of various properties.
- a data analysis apparatus includes determination means for determining properties of time-series data, and selection means for selecting a method for analyzing the time-series data based on the properties of the time-series data. and identification means for identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
- a data analysis method In a data analysis method according to one aspect of the present invention, properties of time-series data are determined, a method for analyzing the time-series data is selected based on the properties of the time-series data, and the selected method is selected. to identify abnormal sounds contained in the time-series data by analyzing the time-series data.
- a recording medium comprises determining properties of time-series data, selecting a technique for analyzing the time-series data based on the properties of the time-series data, and selecting A program is stored for causing a computer to analyze the time-series data using the method to identify abnormal sounds contained in the time-series data.
- abnormal sounds can be accurately identified from time-series data of various properties.
- FIG. 1 is a block diagram showing the configuration of a data analysis device according to Embodiment 1;
- FIG. 4 is a flowchart for explaining the operation of the data analysis device according to Embodiment 1;
- 2 is a block diagram showing the configuration of a data analysis device according to Embodiment 2;
- FIG. 10 is a diagram showing an example of time-series data to be analyzed by the data analysis device according to the second embodiment;
- 9 is a flowchart for explaining the operation of the data analysis device according to Embodiment 2;
- FIG. 11 is a block diagram showing the configuration of a data analysis device according to Embodiment 3; It is a figure which shows an example of the spectrogram converted from time-series data.
- FIG. 10 is a diagram showing an example of time-series data to be analyzed by the data analysis device according to the second embodiment;
- 9 is a flowchart for explaining the operation of the data analysis device according to Embodiment 2;
- FIG. 11 is a
- FIG. 4 is a graph showing an example of a frequency spectrum transformed from a time-width segment of time-series data
- FIG. 10 is a flowchart for explaining the operation of the data analysis device according to Embodiment 3
- FIG. 10 is an example of a graph showing the distribution of scores used to determine the threshold of peak intensity of frequency spectrum
- FIG. 3 is a diagram showing an example of a hardware configuration of a data analysis device according to any one of Embodiments 1-3;
- Embodiment 1 Embodiment 1 will be described with reference to FIGS. 1 and 2.
- FIG. 1 An illustration of an exemplary computing system
- FIG. 1 is a block diagram showing the configuration of an abnormal noise identification device 10 according to the first embodiment.
- the abnormal noise identification device 10 includes a determination section 11 , a selection section 12 , an identification section 13 and a provision section 14 .
- the determination unit 11 determines the nature of time-series data.
- the determination unit 11 is an example of determination means.
- the determination unit 11 tracks peaks in time-series data.
- the determination unit 11 can use well-known peak tracking technology.
- the determination unit 11 measures the time from the first peak of the time-series data to the next peak. Subsequently, the determination unit 11 calculates the time from the second peak to the third peak.
- the determination unit 11 repeatedly calculates the time width (called period) between adjacent peaks in the time-series data. After that, the determination unit 11 calculates fluctuations in the period of peaks in the time-series data. For example, the determining unit 11 calculates the variance or standard deviation of the peak period in the time-series data as an index indicating the magnitude of fluctuation in the peak period in the time-series data.
- the determination unit 11 determines that the time-series data has the property a.
- the determination unit 11 determines that the time series data has the property b (Embodiment 1).
- the determination unit 11 Fourier-transforms the time-series data into a spectrum. The determination unit 11 calculates the peak intensity of the spectrum. Then, when all the peak intensities of the spectrum are equal to or greater than the threshold, the determination unit 11 determines that the time-series data has the property a. On the other hand, when one or more peak intensities of the time-series data are below the threshold, the determination unit 11 determines that the time-series data has property b (second embodiment). Note that the method by which the determination unit 11 determines the nature of the time-series data is not limited to the first and second examples described here.
- the determination unit 11 outputs the determination result of the nature of the time-series data to the selection unit 12 .
- the determination unit 11 also outputs the time-series data to the identification unit 13 .
- the selection unit 12 selects a method for analyzing time series data based on the properties of the time series data.
- the selection unit 12 is an example of selection means.
- the selection unit 12 receives the determination result of the nature of the time-series data from the determination unit 11 .
- the selection unit 12 selects a technique for analyzing the time series data based on the determination result of the properties of the time series data. For example, when the time-series data has property a, the selection unit 12 selects the first method using nonnegative matrix factorization (NMF).
- NMF nonnegative matrix factorization
- a technique using non-negative matrix factorization hereinafter referred to as NMF
- a spectrogram obtained by arranging spectra of time-series data in time order is decomposed into a base matrix and an activation matrix.
- the activation matrix thus obtained is the feature quantity in the first method.
- the selection unit 12 selects the second method using Mel-Frequency Cepstrum Coefficients (MFCC).
- MFCC Mel-frequency cepstrum coefficients
- the MFCC thus obtained is the feature quantity in the second method.
- the selection unit 12 notifies the identification unit 13 of the method (first method or second method) for analyzing the time-series data.
- the identification unit 13 uses the selected method to analyze the time-series data to identify abnormal sounds contained in the time-series data.
- the identification unit 13 is an example of identification means.
- the identification unit 13 receives time-series data from the determination unit 11 . Further, the identifying unit 13 is notified of the method (either the first method or the second method) for analyzing the time-series data from the selecting unit 12 . The identification unit 13 uses the method selected by the selection unit 12 to analyze the time-series data. For example, when the first technique is selected, the identification unit 13 first converts the time-series data into a spectrogram. Then, the identification unit 13 obtains an activation matrix by decomposing the spectrogram using NMF. The identifying unit 13 inputs the obtained activation matrix as a feature quantity to a classifier (hereinafter referred to as a classifier A) that performs machine learning using the activation matrix as a feature quantity. The discriminator A discriminates time-series data based on the input feature amount of the activation matrix, and outputs the discrimination result.
- a classifier hereinafter referred to as a classifier A
- the identification unit 13 first obtains MFCC by performing cepstrum analysis on the time-series data.
- the identifying unit 13 inputs the MFCC obtained by the cepstrum analysis as a feature amount to a classifier (hereinafter referred to as a classifier B) that performs machine learning using the MFCC as a feature amount.
- the discriminator B discriminates the time-series data based on the input MFCC feature amount, and outputs the discrimination result.
- the identification unit 13 identifies time-series data using the identification device A or the identification device B according to the method selected by the selection unit 12 .
- the identification unit 13 may output the time-series data identification result to a subsequent processing unit (not shown), or may provide it to a recording medium or an external device.
- FIG. 2 is a flow chart showing the flow of processing executed by each part of the abnormal noise identification device 10. As shown in FIG.
- time-series data is input to the abnormal sound identification device 10 .
- the time-series data is, for example, acoustic signals generated by collecting sounds emitted by equipment or parts with a microphone in train cars in operation, factories, engine rooms of automobiles, or the like.
- the abnormal sound identification device 10 receives time-series data such as acoustic signals via any wireless or wired network. After that, the abnormal noise identification device 10 starts the following operations.
- the determination unit 11 determines the nature of time-series data (S1). In one example, the determination unit 11 measures the time width (period) from the peak of the time-series data to the next peak. Then, when the magnitude of period fluctuation is equal to or less than the threshold, the determination unit 11 determines that the time-series data has property a. On the other hand, when the magnitude of period fluctuation exceeds the threshold, the determination unit 11 determines that the time-series data has property b. The determination unit 11 outputs the determination result of the nature of the time-series data to the selection unit 12 . The determination unit 11 also outputs the time-series data to the identification unit 13 .
- the selection unit 12 selects a technique for analyzing the time series data based on the properties of the time series data (S2). For example, when the time-series data has property a, the selection unit 12 selects the first technique using NMF. After that, when the time-series data has property b, the selection unit 12 selects the second method using MFCC. The selection unit 12 notifies the identification unit 13 of the method for analyzing the time-series data.
- the identification unit 13 uses the method selected by the selection unit 12 to identify abnormal sounds contained in the time series data by analyzing the time series data (S3).
- the determination unit 11 determines the nature of time-series data.
- the selection unit 12 selects a technique for analyzing time series data based on the properties of the time series data.
- the identification unit 13 identifies abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
- Time-series data contain various types of sounds (including allophones) and noise, and the nature of time-series data also varies.
- the time-series data may include an abnormal sound with large period fluctuations, or the noise may be large (the target sound is small).
- the abnormal sound identification device 10 first determines the nature of the time-series data, and selects a method for analyzing the time-series data based on the determination result. This makes it possible to accurately identify abnormal sounds from time-series data of various properties.
- Embodiment 2 will be described with reference to FIGS. 3 to 5.
- FIG. 2 an example of a method for determining properties of time-series data will be described.
- the description of Embodiment 1 is cited with respect to the configuration described in Embodiment 1, and the description thereof is omitted.
- FIG. 3 is a block diagram showing the configuration of the abnormal noise identification device 20 according to the second embodiment.
- the abnormal noise identification device 20 includes a determination section 21 , a selection section 12 and an identification section 13 .
- the determination unit 21 of the abnormal noise identification device 20 includes a peak detection unit 24 .
- the peak detector 24 detects peaks in the time-series data.
- FIG. 4 illustrates time-series data with property a and time-series data with property b, respectively.
- the peaks detected by the peak detector 24 are indicated by dots (black circles).
- the determination unit 21 determines the nature of the time series data based on the time width (called period) from the detection of the peak of the time series data to the detection of the next peak. .
- the period of peaks in the time series data is represented by the distance between the points indicating the peaks of the time series data (that is, the length of the double arrow).
- the time-series data on the upper side the period of peaks in the time-series data is almost constant. In other words, the time-series data on the upper side has a small period difference (period fluctuation).
- the time-series data on the lower side there are variations in the period of peaks in the time-series data. In other words, the time-series data on the lower side has a large period difference (period fluctuation).
- the determination unit 21 compares the magnitude of the difference in peak periods (period fluctuations) in the time-series data with a predetermined threshold.
- the threshold X is 0.5 when the magnitude of period fluctuation of peaks in time-series data is represented by the deviation of the difference.
- the determination unit 21 determines that the time-series data has the property a.
- the abnormal noise identification device 20 receives time-series data in the same manner as in the first embodiment. After that, the determination unit 21 of the abnormal noise identification device 20 determines the properties of the time-series data as described below.
- the peak detection unit 24 of the determination unit 21 detects peaks in the time-series data (S21).
- the determination unit 21 calculates fluctuations in the period of peaks in the time series data based on the time width between peaks in the time series data (S22).
- the determination unit 21 determines whether or not the magnitude of fluctuation in the period of peaks in the time-series data is equal to or less than a threshold (S23).
- the determination unit 21 determines that the time series data has property a (S24A). On the other hand, when the magnitude of the period fluctuation of the peak in the time series data exceeds the threshold (No in S23), the determination unit 21 determines that the time series data has property b (S24B).
- step S2 the processing of the determination unit 21 ends.
- step S2 the processing of the determination unit 21.
- the determination unit 21 determines the nature of time-series data.
- the selection unit 12 selects a technique for analyzing time series data based on the properties of the time series data.
- the identification unit 13 identifies abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
- Time-series data contain various types of sounds (including allophones) and noise, and the nature of time-series data also varies.
- the time-series data may include an abnormal sound with large period fluctuations, or the noise may be large (the target sound is small).
- the abnormal sound identification device 10 first determines the nature of the time-series data, and selects a method for analyzing the time-series data based on the determination result. This makes it possible to accurately identify abnormal sounds from time-series data of various properties.
- the determination unit 21 includes a peak detection unit 24 that detects peaks in the time-series data.
- the determination unit 21 determines the nature of the time-series data based on the time width from the detection of the peak of the time-series data to the detection of the next peak. From the time width from the detection of the peak of the time-series data to the detection of the next peak, the magnitude of the period fluctuation of the peak in the time-series data can be calculated. Then, by comparing the magnitude of the period fluctuation of the peaks in the time series data with the threshold value, it is found that the period fluctuations of the peaks in the time series data are relatively small and the period fluctuations of the peaks in the time series data are relatively small. Large properties can be determined.
- Embodiment 3 will be described with reference to FIGS. 6 to 9.
- FIG. 3 another example of the method for determining the properties of time-series data will be described.
- the description of Embodiment 1 is cited with respect to the configuration described in Embodiment 1, and the description thereof is omitted.
- FIG. 6 is a block diagram showing the configuration of the abnormal noise identification device 30 according to the third embodiment.
- the abnormal noise identification device 30 includes a determination section 31 , a selection section 12 and an identification section 13 .
- the determination unit 31 of the abnormal noise identification device 30 includes a data conversion unit 34 .
- the data conversion unit 34 converts time-domain signals such as time-series data and waveforms into frequency-domain signals such as spectra and spectrograms. An example of converting time-series data into a spectrogram will be described below.
- Fig. 7 shows an example of a spectrogram converted from time-series data.
- the frequency spectrum intensity is represented by shading.
- the peak of the frequency spectrum is indicated by a thick line (bar).
- FIG. 8 is a graph showing an example of frequency spectrum converted from time-series data.
- a frequency spectrum corresponds to a given time span in the spectrogram.
- the peaks of the frequency spectrum are indicated by dots (black circles) on the graph.
- a sharp and high peak in the frequency spectrum corresponds to the fact that the period of the peak in the original time-series data is almost constant (that is, the fluctuation of the period is small) in the predetermined time width.
- the fact that the peak of the frequency spectrum is dull and low corresponds to the fact that the period of the peak in the original time-series data varies (that is, the fluctuation of the period is large) in the predetermined time width.
- the determination unit 31 determines the nature of the time-series data based on the peak intensity of the frequency spectrum cut out from the spectrogram for each predetermined time width. For example, the determination unit 31 calculates the difference between the peak intensity in the frequency spectrum and the average intensity in a predetermined band around the peak frequency. The determination unit 31 compares the obtained difference and the threshold value Y with each other. In this example, when the difference between the peak intensity in the frequency spectrum and the average intensity in a predetermined band centered on the peak frequency is equal to or greater than the threshold value Y, the determination unit 31 determines that the time-series data has property a. do. On the other hand, when the difference between the peak intensity in the frequency spectrum and the average intensity in the predetermined time span is less than the threshold value Y, the determination unit 31 determines that the time-series data has property b.
- the determination unit 31 By feeding back information about the reliability of the abnormal noise identification result obtained by the identification unit 13 in the subsequent stage to the determination unit 31, the determination unit 31 increases the reliability of the abnormal noise identification result obtained by the identification unit 13. , the threshold Y may be updated.
- the abnormal noise identification device 30 receives time-series data in the same manner as in the first embodiment. After that, the determination unit 31 of the abnormal noise identification device 30 determines the properties of the time-series data as described below.
- the data conversion unit 34 of the determination unit 31 converts the time series data (time domain signal) into a spectrogram (FIG. 7) (frequency domain signal) (S31).
- the determination unit 31 generates a frequency spectrum by cutting out a segment of a predetermined time width from the spectrogram.
- the determination unit 31 calculates peak intensity in the frequency spectrum (S32).
- the determination unit 31 determines whether or not the peak intensity in the frequency spectrum is greater than or equal to the threshold (S33).
- the threshold is the average intensity in a given band centered around the peak frequency.
- the determination unit 31 determines that the time-series data has property a (S34A). On the other hand, when the peak intensity in the frequency spectrum is below the threshold (No in S33), the determination unit 31 determines that the time-series data has property b (S34B).
- the processing of the determination unit 31 ends. After that, the process proceeds to the processing (step S2) of the selection unit 12 described in the first embodiment. In the third embodiment, the description of the process after the process (step S2) of the selection unit 12 is omitted.
- Method for determining threshold a configuration has been described in which the determination unit 31 determines the properties of time-series data by comparing the peak intensity of the frequency spectrum and the threshold.
- a method for determining the threshold of peak intensity of the frequency spectrum will be described.
- FIG. 10 is an example of a graph showing the distribution of scores used to determine the peak intensity threshold of the frequency spectrum.
- the determination unit 31 calculates scores for a large number of learning data that contain the same or approximately the same number of time-series data that have been determined to have property a and time-series data that have been determined to have property b.
- the score here is the difference between the average intensity in a predetermined band around the peak frequency and the peak intensity. From the score calculation results, a score distribution as shown in FIG. 10 is obtained. Based on the score distribution, the determination unit 31 then determines a threshold so that time-series data having property a can be distinguished from time-series data having property b. For example, the determination unit 31 determines twice the maximum score of the time-series data having property b as the threshold.
- the determination unit 31 can determine the properties of the time-series data as described above by using the thresholds determined in this manner.
- the determination unit 31 determines the nature of time-series data.
- the selection unit 12 selects a technique for analyzing time series data based on the properties of the time series data.
- the identification unit 13 identifies abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
- Time-series data contain various types of sounds (including allophones) and noise, and the nature of time-series data also varies.
- the time-series data may include an abnormal sound with large period fluctuations, or the noise may be large (the target sound is small).
- the abnormal sound identification device 10 first determines the nature of the time-series data, and selects a method for analyzing the time-series data based on the determination result. This makes it possible to accurately identify abnormal sounds from time-series data of various properties.
- the determination unit 31 includes a data conversion unit 34 that converts time-series data into a spectrogram.
- the determination unit 31 determines the properties of the time-series data based on the peak intensity of the frequency spectrum cut out from the spectrogram for each predetermined time width. A sharp and strong peak in the frequency spectrum corresponds to a small period fluctuation of the peak in the original time-series data. Then, by comparing the peak intensity of the frequency spectrum with a threshold value, it is determined whether the period fluctuation of the peaks in the time series data is relatively small or the period fluctuations of the peaks in the time series data are relatively large. be able to.
- the identification unit 13 identifies abnormal sounds included in the time-series data using three or more identifiers.
- the identification unit 13 includes a classifier B that performs machine learning using MFCC as a feature quantity, and a classifier that uses DCTC (Discrete Cosine Transform Coefficients) as a feature quantity (hereinafter referred to as a classifier C). used together.
- the identification unit 13 identifies abnormal sounds contained in the time-series data by using the two identifiers, respectively, and compares the reliability of the identification results. When the reliability of the discrimination result by the discriminator B is higher, the discriminating unit 13 outputs the discrimination result by the discriminator B. FIG. On the other hand, when the reliability of the discrimination result by the discriminator C is higher, the discriminating unit 13 outputs the discrimination result by the discriminator C.
- the identification unit 13 may use multiple identifiers according to the location where the acoustic signal that is the source of the time-series data was acquired.
- each discriminator is associated in advance with information indicating different locations.
- the identification unit 13 according to the present modification receives the time-series data as well as information indicating the location associated with the time-series data from the determination unit 11 .
- the identifying unit 13 selects a corresponding classifier from a plurality of classifiers based on the information indicating the location. Then, the identification unit 13 uses the selected identifier to identify abnormal sounds included in the time-series data.
- one of the two discriminators with the higher reliability of the discrimination result is selected, so that the reliability of the discrimination result output by the discrimination unit 13 can be improved.
- Each component of the abnormal noise identifying devices 10, 20, and 30 described in the first to third embodiments represents a functional unit block. Some or all of these components are realized by an information processing device 900 as shown in FIG. 11, for example.
- FIG. 11 is a block diagram showing an example of the hardware configuration of the information processing device 900. As shown in FIG.
- the information processing device 900 includes the following configuration as an example.
- a program 904 that implements the function of each component is stored in advance in, for example, the storage device 905 or the ROM 902, and is loaded into the RAM 903 and executed by the CPU 901 as necessary.
- the program 904 may be supplied to the CPU 901 via the communication network 909 or may be stored in the recording medium 906 in advance, and the drive device 907 may read the program and supply it to the CPU 901 .
- the abnormal noise identifying devices 10, 20, and 30 described in the first to third embodiments are implemented as hardware. Therefore, the same effects as those described in the first to third embodiments can be obtained.
- Determination means for determining properties of time-series data; selection means for selecting a technique for analyzing the time series data based on the properties of the time series data;
- a data analysis device comprising identification means for identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
- the determination means comprises peak detection means for detecting a peak of the time-series data, Supplementary Note 1, wherein the determination means determines the property of the time-series data based on the time width from the detection of the peak of the time-series data to the detection of the next peak.
- the data analysis device described in described in .
- the determination means comprises data conversion means for converting the time-series data into a spectrogram, The data analysis device according to Supplementary Note 1, wherein the determining means determines the property of the time-series data based on the peak intensity of a frequency spectrum extracted from the spectrogram for each predetermined time width.
- the determination means determines the magnitude of variation in the period of the periodic component included in the time-series data, 4.
- the method according to any one of appendices 1 to 3, wherein the selection means selects a method according to the magnitude of the variation in the period from among a plurality of methods for analyzing the time-series data.
- Data analysis device as described.
- Appendix 6 determine the nature of time-series data, selecting a technique for analyzing the time series data based on the properties of the time series data; A data analysis method comprising identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
- Appendix 7 determining the nature of the time series data; selecting a technique for analyzing the time series data based on the properties of the time series data;
- a non-temporary recording medium storing a program for causing a computer to identify abnormal sounds contained in the time-series data by analyzing the time-series data using the selected method.
- the present invention can be used, for example, in an abnormal noise identification device that identifies abnormal sounds emitted by railways, automobile engine rooms, factories, and other equipment or parts.
- abnormal noise identifying device 11 determining unit 12 selecting unit 13 identifying unit 20 abnormal noise identifying device 24 peak detecting unit 30 abnormal noise identifying device 34 data converting unit
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
This invention accurately identifies abnormal sound from time-series data having various characteristics. A determination unit (11) determines a characteristic of time-series data. A selection unit (12) selects a method for analyzing the time-series data on the basis of the characteristic of the time-series data. An identification unit (13) identifies an abnormal sound included in the time-series data by using the selected method to analyze the time-series data.
Description
本発明は、データ分析装置、データ分析方法、および記録媒体に関し、特に、時系列データを分析するデータ分析装置、データ分析方法、および記録媒体に関する。
The present invention relates to a data analysis device, data analysis method, and recording medium, and more particularly to a data analysis device, data analysis method, and recording medium for analyzing time-series data.
鉄道車両、自動車のエンジンルーム、および工場などにおいて、機器や部品の動作状態を監視するための技術が研究されている。例えば、特許文献1に記載の関連する技術では、機械学習によって生成された学習モデルを用いて、センサが検知する物理量に基づいて、機械の動作状態をリアルタイムで診断する。
Research is being conducted on technologies for monitoring the operating status of equipment and parts in railway vehicles, automobile engine compartments, and factories. For example, in the related technology described in Patent Literature 1, a learning model generated by machine learning is used to diagnose the operating state of a machine in real time based on physical quantities detected by sensors.
さらに、他の関連する技術の一例では、時系列データを分析するために、非負値行列因子分解(Non-negative Matrix Factorization: NMF)が用いられる。具体的には、関連する技術では、時系列データを振幅スペクトログラムに変換し、そのスペクトログラムを、基底行列およびアクティベーション行列に分解する。そして、アクティベーション行列を音響特徴量として用いることによって、時系列データに含まれる異音を識別する。
Furthermore, in another example of related technology, non-negative matrix factorization (NMF) is used to analyze time series data. Specifically, related techniques transform time series data into an amplitude spectrogram and decompose the spectrogram into a basis matrix and an activation matrix. Then, by using the activation matrix as an acoustic feature quantity, abnormal sounds contained in the time-series data are identified.
特開2020-204937号公報
Japanese Patent Application Laid-Open No. 2020-204937
NMFは、スペクトログラムの表現である非負値行列を、より低次元の非負値行列の積で近似するものである。そのため、時系列データにおけるピークの周期が安定しない場合、あるいは雑音環境下などでは、NMFを用いる関連する技術は、異音を識別する精度が低下する。
NMF approximates a non-negative matrix, which is a spectrogram expression, by the product of lower-dimensional non-negative matrices. Therefore, when the period of peaks in the time-series data is not stable, or in a noisy environment, the accuracy of identifying abnormal sounds in the related technique using NMF decreases.
本発明は、上記の課題に鑑みてなされたものであり、その目的は、さまざまな性質の時系列データから、異音を正確に識別することにある。
The present invention has been made in view of the above problems, and its purpose is to accurately identify abnormal sounds from time-series data of various properties.
本発明の一態様に係わるデータ分析装置は、時系列データの性質を判定する判定手段と、前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択する選択手段と、選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別する識別手段とを備えている。
A data analysis apparatus according to an aspect of the present invention includes determination means for determining properties of time-series data, and selection means for selecting a method for analyzing the time-series data based on the properties of the time-series data. and identification means for identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
本発明の一態様に係わるデータ分析方法では、時系列データの性質を判定し、前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択し、選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別する。
In a data analysis method according to one aspect of the present invention, properties of time-series data are determined, a method for analyzing the time-series data is selected based on the properties of the time-series data, and the selected method is selected. to identify abnormal sounds contained in the time-series data by analyzing the time-series data.
本発明の一態様に係わる記録媒体は、時系列データの性質を判定することと、前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択することと、選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別することとをコンピュータに実行させるためのプログラムを格納している。
A recording medium according to an aspect of the present invention comprises determining properties of time-series data, selecting a technique for analyzing the time-series data based on the properties of the time-series data, and selecting A program is stored for causing a computer to analyze the time-series data using the method to identify abnormal sounds contained in the time-series data.
本発明の一態様によれば、さまざまな性質の時系列データから、異音を正確に識別することができる。
According to one aspect of the present invention, abnormal sounds can be accurately identified from time-series data of various properties.
本発明を実施するためのいくつかの形態について、以下で説明する。
Several forms for carrying out the present invention will be described below.
〔実施形態1〕
図1~図2を参照して、実施形態1について説明する。 [Embodiment 1]
Embodiment 1 will be described with reference to FIGS. 1 and 2. FIG.
図1~図2を参照して、実施形態1について説明する。 [Embodiment 1]
Embodiment 1 will be described with reference to FIGS. 1 and 2. FIG.
(異音識別装置10)
図1は、本実施形態1に係わる異音識別装置10の構成を示すブロック図である。図1に示すように、異音識別装置10は、判定部11、選択部12、識別部13、および提供部14を備えている。 (Abnormal sound identification device 10)
FIG. 1 is a block diagram showing the configuration of an abnormalnoise identification device 10 according to the first embodiment. As shown in FIG. 1 , the abnormal noise identification device 10 includes a determination section 11 , a selection section 12 , an identification section 13 and a provision section 14 .
図1は、本実施形態1に係わる異音識別装置10の構成を示すブロック図である。図1に示すように、異音識別装置10は、判定部11、選択部12、識別部13、および提供部14を備えている。 (Abnormal sound identification device 10)
FIG. 1 is a block diagram showing the configuration of an abnormal
判定部11は、時系列データの性質を判定する。判定部11は、判定手段の一例である。
The determination unit 11 determines the nature of time-series data. The determination unit 11 is an example of determination means.
第1の例では、判定部11は、時系列データのピークを追跡する。ここでは、判定部11は、周知のピークトラッキング技術を用いることができる。判定部11は、時系列データの1つ目のピークから、次のピークまでの時間を計測する。続いて、判定部11は、2番目のピークから、3番目のピークまでの時間を計算する。繰り返して、判定部11は、時系列データの隣接するピーク間の時間幅(周期と呼ぶ)を計算する。その後、判定部11は、時系列データにおけるピークの周期の揺らぎを計算する。例えば、判定部11は、時系列データにおけるピークの周期の分散または標準偏差を、時系列データにおけるピークの周期の揺らぎの大きさを示す指標として計算する。そして、時系列データにおけるピークの周期の揺らぎの大きさが閾値以下である場合、時系列データは性質aであると、判定部11は判定する。一方、時系列データにおけるピークの周期の揺らぎの大きさが閾値を超える場合、時系列データは性質bであると、判定部11は判定する(実施形態1)。
In the first example, the determination unit 11 tracks peaks in time-series data. Here, the determination unit 11 can use well-known peak tracking technology. The determination unit 11 measures the time from the first peak of the time-series data to the next peak. Subsequently, the determination unit 11 calculates the time from the second peak to the third peak. The determination unit 11 repeatedly calculates the time width (called period) between adjacent peaks in the time-series data. After that, the determination unit 11 calculates fluctuations in the period of peaks in the time-series data. For example, the determining unit 11 calculates the variance or standard deviation of the peak period in the time-series data as an index indicating the magnitude of fluctuation in the peak period in the time-series data. Then, when the magnitude of the period fluctuation of the peak in the time-series data is equal to or less than the threshold, the determination unit 11 determines that the time-series data has the property a. On the other hand, when the magnitude of the period fluctuation of the peak in the time series data exceeds the threshold value, the determination unit 11 determines that the time series data has the property b (Embodiment 1).
第2の例では、判定部11は、時系列データをスペクトルにフーリエ変換する。判定部11は、スペクトルのピーク強度を計算する。そして、判定部11は、スペクトルの全てのピーク強度が閾値以上である場合、時系列データは性質aであると、判定部11は判定する。一方、時系列データの1つ以上のピーク強度が閾値を下回る場合、時系列データは性質bであると、判定部11は判定する(実施形態2)。なお、判定部11が時系列データの性質を判定する手法は、ここで説明した第1の例及び第2の例には限定されない。
In the second example, the determination unit 11 Fourier-transforms the time-series data into a spectrum. The determination unit 11 calculates the peak intensity of the spectrum. Then, when all the peak intensities of the spectrum are equal to or greater than the threshold, the determination unit 11 determines that the time-series data has the property a. On the other hand, when one or more peak intensities of the time-series data are below the threshold, the determination unit 11 determines that the time-series data has property b (second embodiment). Note that the method by which the determination unit 11 determines the nature of the time-series data is not limited to the first and second examples described here.
判定部11は、時系列データの性質の判定結果を、選択部12へ出力する。また、判定部11は、時系列データを識別部13へ出力する。
The determination unit 11 outputs the determination result of the nature of the time-series data to the selection unit 12 . The determination unit 11 also outputs the time-series data to the identification unit 13 .
選択部12は、時系列データの性質に基づき、時系列データを分析するための手法を選択する。選択部12は、選択手段の一例である。
The selection unit 12 selects a method for analyzing time series data based on the properties of the time series data. The selection unit 12 is an example of selection means.
一例では、選択部12は、判定部11から、時系列データの性質の判定結果を受信する。選択部12は、時系列データの性質の判定結果に基づいて、時系列データを分析するための手法を選択する。例えば、時系列データが性質aである場合、選択部12は、非負値行列因子分解(Nonnegative Matrix Factorization: NMF)を用いる第1の手法を選択する。非負値行列因子分解(以下、NMF)を用いる手法では、時系列データのスペクトルを時間順に並べたスペクトログラムを、基底行列およびアクティベーション行列に分解する。こうして得られたアクティベーション行列が、第1の手法での特徴量である。
In one example, the selection unit 12 receives the determination result of the nature of the time-series data from the determination unit 11 . The selection unit 12 selects a technique for analyzing the time series data based on the determination result of the properties of the time series data. For example, when the time-series data has property a, the selection unit 12 selects the first method using nonnegative matrix factorization (NMF). In a technique using non-negative matrix factorization (hereinafter referred to as NMF), a spectrogram obtained by arranging spectra of time-series data in time order is decomposed into a base matrix and an activation matrix. The activation matrix thus obtained is the feature quantity in the first method.
一方、時系列データが性質bである場合、選択部12は、メル周波数ケプストラム係数(Mel-Frequency Cepstrum Coefficients: MFCC)を用いる第2の手法を選択する。メル周波数ケプストラム係数(以下、MFCC)は、時系列データをケプストラム分析することによって得られる重みづけられたケプストラムの低次成分である。こうして得られたMFCCが第2の手法での特徴量である。選択部12は、時系列データを分析するための手法(第1の手法又は第2の手法)を、識別部13へ通知する。
On the other hand, when the time-series data has property b, the selection unit 12 selects the second method using Mel-Frequency Cepstrum Coefficients (MFCC). Mel-frequency cepstrum coefficients (hereinafter MFCC) are weighted cepstrum low-order components obtained by cepstrum analysis of time series data. The MFCC thus obtained is the feature quantity in the second method. The selection unit 12 notifies the identification unit 13 of the method (first method or second method) for analyzing the time-series data.
識別部13は、選択した手法を用いて、時系列データを分析することによって、時系列データに含まれる異音を識別する。識別部13は、識別手段の一例である。
The identification unit 13 uses the selected method to analyze the time-series data to identify abnormal sounds contained in the time-series data. The identification unit 13 is an example of identification means.
一例では、識別部13は、判定部11から、時系列データを受信する。また、識別部13は、選択部12から、時系列データを分析するための手法(第1の手法および第2の手法のいずれか)を通知される。識別部13は、選択部12により選択された手法を用いて、時系列データを分析する。例えば、第1の手法が選択された場合、識別部13は、まず、時系列データをスペクトログラムに変換する。そして、識別部13は、NMFを用いて、スペクトログラムを分解することによって、アクティベーション行列を得る。識別部13は、アクティベーション行列を特徴量として用いて機械学習した識別器(以下、識別器Aと呼ぶ)に、得られたアクティベーション行列を特徴量として入力する。識別器Aは、入力されたアクティベーション行列の特徴量に基づいて、時系列データを識別し、その識別結果を出力する。
In one example, the identification unit 13 receives time-series data from the determination unit 11 . Further, the identifying unit 13 is notified of the method (either the first method or the second method) for analyzing the time-series data from the selecting unit 12 . The identification unit 13 uses the method selected by the selection unit 12 to analyze the time-series data. For example, when the first technique is selected, the identification unit 13 first converts the time-series data into a spectrogram. Then, the identification unit 13 obtains an activation matrix by decomposing the spectrogram using NMF. The identifying unit 13 inputs the obtained activation matrix as a feature quantity to a classifier (hereinafter referred to as a classifier A) that performs machine learning using the activation matrix as a feature quantity. The discriminator A discriminates time-series data based on the input feature amount of the activation matrix, and outputs the discrimination result.
一方、第2の手法が選択された場合、識別部13は、まず、時系列データをケプストラム分析することによって、MFCCを得る。識別部13は、MFCCを特徴量として用いて機械学習した識別器(以下、識別器Bと呼ぶ)に、ケプストラム分析によって得られたMFCCを特徴量として入力する。識別器Bは、入力されたMFCCの特徴量に基づいて、時系列データを識別し、その識別結果を出力する。このようにして、識別部13は、選択部12により選択された手法に応じて、識別器Aまたは識別器Bを用いて、時系列データを識別する。識別部13は、時系列データの識別結果を、後段の処理部(図示せず)へ出力してもよいし、記録媒体又は外部機器へ提供してもよい。
On the other hand, when the second method is selected, the identification unit 13 first obtains MFCC by performing cepstrum analysis on the time-series data. The identifying unit 13 inputs the MFCC obtained by the cepstrum analysis as a feature amount to a classifier (hereinafter referred to as a classifier B) that performs machine learning using the MFCC as a feature amount. The discriminator B discriminates the time-series data based on the input MFCC feature amount, and outputs the discrimination result. In this manner, the identification unit 13 identifies time-series data using the identification device A or the identification device B according to the method selected by the selection unit 12 . The identification unit 13 may output the time-series data identification result to a subsequent processing unit (not shown), or may provide it to a recording medium or an external device.
(異音識別装置10の動作)
図2を参照して、本実施形態1に係わる異音識別装置10の動作を説明する。図2は、異音識別装置10の各部が実行する処理の流れを示すフローチャートである。 (Operation of Abnormal Sound Identification Device 10)
The operation of the abnormalnoise identification device 10 according to the first embodiment will be described with reference to FIG. FIG. 2 is a flow chart showing the flow of processing executed by each part of the abnormal noise identification device 10. As shown in FIG.
図2を参照して、本実施形態1に係わる異音識別装置10の動作を説明する。図2は、異音識別装置10の各部が実行する処理の流れを示すフローチャートである。 (Operation of Abnormal Sound Identification Device 10)
The operation of the abnormal
まず、異音識別装置10へ時系列データが入力される。時系列データは、例えば、運行中の鉄道車両内、工場、自動車のエンジンルーム内などにおいて、機器又は部品が発する音をマイクロフォンにより集音することによって生成された音響信号である。異音識別装置10は、無線又は有線の任意のネットワークを介して、音響信号などの時系列データを受信する。その後、異音識別装置10は、以下の動作を開始する。
First, time-series data is input to the abnormal sound identification device 10 . The time-series data is, for example, acoustic signals generated by collecting sounds emitted by equipment or parts with a microphone in train cars in operation, factories, engine rooms of automobiles, or the like. The abnormal sound identification device 10 receives time-series data such as acoustic signals via any wireless or wired network. After that, the abnormal noise identification device 10 starts the following operations.
図2に示すように、判定部11は、時系列データの性質を判定する(S1)。一例では、判定部11は、時系列データのピークから次のピークまでの時間幅(周期)を測定する。そして、周期の揺らぎの大きさが閾値以下である場合、判定部11は、時系列データが性質aを有すると判定する。一方、周期の揺らぎの大きさが閾値を超える場合、判定部11は、時系列データが性質bを有すると判定する。判定部11は、時系列データの性質の判定結果を、選択部12へ出力する。また、判定部11は、時系列データを識別部13へ出力する。
As shown in FIG. 2, the determination unit 11 determines the nature of time-series data (S1). In one example, the determination unit 11 measures the time width (period) from the peak of the time-series data to the next peak. Then, when the magnitude of period fluctuation is equal to or less than the threshold, the determination unit 11 determines that the time-series data has property a. On the other hand, when the magnitude of period fluctuation exceeds the threshold, the determination unit 11 determines that the time-series data has property b. The determination unit 11 outputs the determination result of the nature of the time-series data to the selection unit 12 . The determination unit 11 also outputs the time-series data to the identification unit 13 .
次に、選択部12は、時系列データの性質に基づいて、時系列データを分析するための手法を選択する(S2)。例えば、時系列データが性質aを有する場合、選択部12は、NMFを用いる第1の手法を選択する。以降、時系列データが性質bを有する場合、選択部12は、MFCCを用いる第2の手法を選択する。選択部12は、時系列データを分析するための手法を、識別部13へ通知する。
Next, the selection unit 12 selects a technique for analyzing the time series data based on the properties of the time series data (S2). For example, when the time-series data has property a, the selection unit 12 selects the first technique using NMF. After that, when the time-series data has property b, the selection unit 12 selects the second method using MFCC. The selection unit 12 notifies the identification unit 13 of the method for analyzing the time-series data.
識別部13は、選択部12により選択された手法を用いて、時系列データを分析することによって、時系列データに含まれる異音を識別する(S3)。
The identification unit 13 uses the method selected by the selection unit 12 to identify abnormal sounds contained in the time series data by analyzing the time series data (S3).
以上で、本実施形態1に係わる異音識別装置10の動作は終了する。
With this, the operation of the abnormal noise identification device 10 according to the first embodiment is completed.
(本実施形態の効果)
本実施形態の構成によれば、判定部11は、時系列データの性質を判定する。選択部12は、時系列データの性質に基づき、時系列データを分析するための手法を選択する。識別部13は、選択した手法を用いて、時系列データを分析することによって、時系列データに含まれる異音を識別する。時系列データにはさまざまな種類の音響(異音を含む)および雑音が含まれており、時系列データの性質もさまざまである。例えば、周期の揺らぎが大きい異音が時系列データに含まれている場合もあるし、雑音が大きい(目的音が小さい)場合もある。 (Effect of this embodiment)
According to the configuration of this embodiment, thedetermination unit 11 determines the nature of time-series data. The selection unit 12 selects a technique for analyzing time series data based on the properties of the time series data. The identification unit 13 identifies abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique. Time-series data contain various types of sounds (including allophones) and noise, and the nature of time-series data also varies. For example, the time-series data may include an abnormal sound with large period fluctuations, or the noise may be large (the target sound is small).
本実施形態の構成によれば、判定部11は、時系列データの性質を判定する。選択部12は、時系列データの性質に基づき、時系列データを分析するための手法を選択する。識別部13は、選択した手法を用いて、時系列データを分析することによって、時系列データに含まれる異音を識別する。時系列データにはさまざまな種類の音響(異音を含む)および雑音が含まれており、時系列データの性質もさまざまである。例えば、周期の揺らぎが大きい異音が時系列データに含まれている場合もあるし、雑音が大きい(目的音が小さい)場合もある。 (Effect of this embodiment)
According to the configuration of this embodiment, the
異音識別装置10は、まず時系列データの性質を判定し、その判定結果に基づき、時系列データを分析するための手法を選択する。これにより、さまざまな性質の時系列データから、異音を正確に識別することができる。
The abnormal sound identification device 10 first determines the nature of the time-series data, and selects a method for analyzing the time-series data based on the determination result. This makes it possible to accurately identify abnormal sounds from time-series data of various properties.
〔実施形態2〕
図3~図5を参照して、実施形態2について説明する。本実施形態2では、時系列データの性質を判定する方法の一例を説明する。本実施形態2では、前記実施形態1で説明した構成に関して、前記実施形態1の説明を引用し、その説明を省略する。 [Embodiment 2]
Embodiment 2 will be described with reference to FIGS. 3 to 5. FIG. In the second embodiment, an example of a method for determining properties of time-series data will be described. In Embodiment 2, the description of Embodiment 1 is cited with respect to the configuration described in Embodiment 1, and the description thereof is omitted.
図3~図5を参照して、実施形態2について説明する。本実施形態2では、時系列データの性質を判定する方法の一例を説明する。本実施形態2では、前記実施形態1で説明した構成に関して、前記実施形態1の説明を引用し、その説明を省略する。 [Embodiment 2]
Embodiment 2 will be described with reference to FIGS. 3 to 5. FIG. In the second embodiment, an example of a method for determining properties of time-series data will be described. In Embodiment 2, the description of Embodiment 1 is cited with respect to the configuration described in Embodiment 1, and the description thereof is omitted.
(異音識別装置20)
図3は、本実施形態2に係わる異音識別装置20の構成を示すブロック図である。図3に示すように、異音識別装置20は、判定部21、選択部12、識別部13を備えている。また、異音識別装置20の判定部21は、ピーク検出部24を備えている。ピーク検出部24は、時系列データのピークを検出する。 (Abnormal sound identification device 20)
FIG. 3 is a block diagram showing the configuration of the abnormalnoise identification device 20 according to the second embodiment. As shown in FIG. 3 , the abnormal noise identification device 20 includes a determination section 21 , a selection section 12 and an identification section 13 . Also, the determination unit 21 of the abnormal noise identification device 20 includes a peak detection unit 24 . The peak detector 24 detects peaks in the time-series data.
図3は、本実施形態2に係わる異音識別装置20の構成を示すブロック図である。図3に示すように、異音識別装置20は、判定部21、選択部12、識別部13を備えている。また、異音識別装置20の判定部21は、ピーク検出部24を備えている。ピーク検出部24は、時系列データのピークを検出する。 (Abnormal sound identification device 20)
FIG. 3 is a block diagram showing the configuration of the abnormal
図4を参照して、時系列データの性質を判定する方法の一例を具体的に説明する。図4は、性質aを有する時系列データ、および性質bを有する時系列データをそれぞれ例示する。図4において、ピーク検出部24が検出するピークは、点(黒塗りの円)で示されている。
An example of a method for determining the properties of time-series data will be specifically described with reference to FIG. FIG. 4 illustrates time-series data with property a and time-series data with property b, respectively. In FIG. 4, the peaks detected by the peak detector 24 are indicated by dots (black circles).
本実施形態2において、判定部21は、時系列データのピークが検出されてから、次のピークが検出されるまでの時間幅(周期と呼ぶ)に基づいて、時系列データの性質を判定する。
In the second embodiment, the determination unit 21 determines the nature of the time series data based on the time width (called period) from the detection of the peak of the time series data to the detection of the next peak. .
図4において、時系列データにおけるピークの周期は、時系列データのピークを示す点と点との間の距離(すなわち両矢印の長さ)で表されている。上側の時系列データでは、時系列データにおけるピークの周期がほぼ一定である。言い換えれば、上側の時系列データは、周期の差分(周期の揺らぎ)が小さい。一方、下側の時系列データでは、時系列データにおけるピークの周期にばらつきがある。言い換えれば、下側の時系列データは、周期の差分(周期の揺らぎ)が大きい。
In FIG. 4, the period of peaks in the time series data is represented by the distance between the points indicating the peaks of the time series data (that is, the length of the double arrow). In the time-series data on the upper side, the period of peaks in the time-series data is almost constant. In other words, the time-series data on the upper side has a small period difference (period fluctuation). On the other hand, in the time-series data on the lower side, there are variations in the period of peaks in the time-series data. In other words, the time-series data on the lower side has a large period difference (period fluctuation).
判定部21は、時系列データにおけるピークの周期の差分(周期の揺らぎ)の大きさと、予め定めた閾値とを比較する。例えば、時系列データにおけるピークの周期の揺らぎの大きさを差分の偏差で表す場合、閾値Xは0.5である。本例では、時系列データにおけるピークの周期の揺らぎがX=0.5以下である場合、判定部21は、時系列データは性質aを有すると判定する。一方、時系列データにおけるピークの周期の揺らぎがX=0.5を超える場合、判定部21は、時系列データは性質bを有すると判定する。
The determination unit 21 compares the magnitude of the difference in peak periods (period fluctuations) in the time-series data with a predetermined threshold. For example, the threshold X is 0.5 when the magnitude of period fluctuation of peaks in time-series data is represented by the deviation of the difference. In this example, when the period fluctuation of the peak in the time-series data is X=0.5 or less, the determination unit 21 determines that the time-series data has the property a. On the other hand, when the period fluctuation of peaks in the time-series data exceeds X=0.5, the determination unit 21 determines that the time-series data has property b.
(異音識別装置20の動作:S1)
図5を参照して、本実施形態2に係わる異音識別装置20の動作を説明する。ここでは、判定部21が実行する処理の流れの詳細、すなわち図2に示すステップS1の内容のみを説明する。 (Operation of Abnormal Sound Identification Device 20: S1)
The operation of the abnormalnoise identifying device 20 according to the second embodiment will be described with reference to FIG. Here, only the details of the flow of processing executed by the determination unit 21, that is, the contents of step S1 shown in FIG. 2 will be described.
図5を参照して、本実施形態2に係わる異音識別装置20の動作を説明する。ここでは、判定部21が実行する処理の流れの詳細、すなわち図2に示すステップS1の内容のみを説明する。 (Operation of Abnormal Sound Identification Device 20: S1)
The operation of the abnormal
前記実施形態1と同様に、異音識別装置20は、時系列データを受信する。その後、異音識別装置20の判定部21は、以下で説明するように、時系列データの性質を判定する。
The abnormal noise identification device 20 receives time-series data in the same manner as in the first embodiment. After that, the determination unit 21 of the abnormal noise identification device 20 determines the properties of the time-series data as described below.
図5に示すように、判定部21のピーク検出部24は、時系列データのピークを検出する(S21)。
As shown in FIG. 5, the peak detection unit 24 of the determination unit 21 detects peaks in the time-series data (S21).
判定部21は、時系列データのピーク間の時間幅に基づいて、時系列データにおけるピークの周期の揺らぎを計算する(S22)。
The determination unit 21 calculates fluctuations in the period of peaks in the time series data based on the time width between peaks in the time series data (S22).
判定部21は、時系列データにおけるピークの周期の揺らぎの大きさが閾値以下であるか否かを判定する(S23)。
The determination unit 21 determines whether or not the magnitude of fluctuation in the period of peaks in the time-series data is equal to or less than a threshold (S23).
時系列データにおけるピークの周期の揺らぎの大きさが閾値以下である場合(S23でYes)、判定部21は、時系列データは性質aを有すると判定する(S24A)。一方、時系列データにおけるピークの周期の揺らぎの大きさが閾値を超える場合(S23でNo)、判定部21は、時系列データは性質bを有すると判定する(S24B)。
When the magnitude of the period fluctuation of the peak in the time series data is equal to or less than the threshold (Yes in S23), the determination unit 21 determines that the time series data has property a (S24A). On the other hand, when the magnitude of the period fluctuation of the peak in the time series data exceeds the threshold (No in S23), the determination unit 21 determines that the time series data has property b (S24B).
以上で、判定部21の処理は終了する。その後、前記実施形態1で説明した選択部12の処理(ステップS2)へ進む。本実施形態2では、選択部12の処理(ステップS2)以降についての説明を省略する。
With this, the processing of the determination unit 21 ends. After that, the process proceeds to the processing (step S2) of the selection unit 12 described in the first embodiment. In the second embodiment, the description of the process after the process (step S2) of the selection unit 12 is omitted.
(本実施形態の効果)
本実施形態の構成によれば、判定部21は、時系列データの性質を判定する。選択部12は、時系列データの性質に基づき、時系列データを分析するための手法を選択する。識別部13は、選択した手法を用いて、時系列データを分析することによって、時系列データに含まれる異音を識別する。時系列データにはさまざまな種類の音響(異音を含む)および雑音が含まれており、時系列データの性質もさまざまである。例えば、周期の揺らぎが大きい異音が時系列データに含まれている場合もあるし、雑音が大きい(目的音が小さい)場合もある。 (Effect of this embodiment)
According to the configuration of this embodiment, thedetermination unit 21 determines the nature of time-series data. The selection unit 12 selects a technique for analyzing time series data based on the properties of the time series data. The identification unit 13 identifies abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique. Time-series data contain various types of sounds (including allophones) and noise, and the nature of time-series data also varies. For example, the time-series data may include an abnormal sound with large period fluctuations, or the noise may be large (the target sound is small).
本実施形態の構成によれば、判定部21は、時系列データの性質を判定する。選択部12は、時系列データの性質に基づき、時系列データを分析するための手法を選択する。識別部13は、選択した手法を用いて、時系列データを分析することによって、時系列データに含まれる異音を識別する。時系列データにはさまざまな種類の音響(異音を含む)および雑音が含まれており、時系列データの性質もさまざまである。例えば、周期の揺らぎが大きい異音が時系列データに含まれている場合もあるし、雑音が大きい(目的音が小さい)場合もある。 (Effect of this embodiment)
According to the configuration of this embodiment, the
異音識別装置10は、まず時系列データの性質を判定し、その判定結果に基づき、時系列データを分析するための手法を選択する。これにより、さまざまな性質の時系列データから、異音を正確に識別することができる。
The abnormal sound identification device 10 first determines the nature of the time-series data, and selects a method for analyzing the time-series data based on the determination result. This makes it possible to accurately identify abnormal sounds from time-series data of various properties.
さらに、本実施形態2の構成によれば、判定部21は、時系列データのピークを検出するピーク検出部24を備えている。判定部21は、時系列データのピークが検出されてから、次のピークが検出されるまでの時間幅に基づいて、時系列データの性質を判定する。時系列データのピークが検出されてから、次のピークが検出されるまでの時間幅より、時系列データにおけるピークの周期の揺らぎの大きさを計算できる。そして、時系列データにおけるピークの周期の揺らぎの大きさと閾値とを比較することによって、時系列データにおけるピークの周期の揺らぎが比較的小さい性質と、時系列データにおけるピークの周期の揺らぎが比較的大きい性質とを判定することができる。
Furthermore, according to the configuration of Embodiment 2, the determination unit 21 includes a peak detection unit 24 that detects peaks in the time-series data. The determination unit 21 determines the nature of the time-series data based on the time width from the detection of the peak of the time-series data to the detection of the next peak. From the time width from the detection of the peak of the time-series data to the detection of the next peak, the magnitude of the period fluctuation of the peak in the time-series data can be calculated. Then, by comparing the magnitude of the period fluctuation of the peaks in the time series data with the threshold value, it is found that the period fluctuations of the peaks in the time series data are relatively small and the period fluctuations of the peaks in the time series data are relatively small. Large properties can be determined.
〔実施形態3〕
図6~図9を参照して、実施形態3について説明する。本実施形態3では、時系列データの性質を判定する方法の他の一例を説明する。本実施形態3では、前記実施形態1で説明した構成に関して、前記実施形態1の説明を引用し、その説明を省略する。 [Embodiment 3]
Embodiment 3 will be described with reference to FIGS. 6 to 9. FIG. In the third embodiment, another example of the method for determining the properties of time-series data will be described. In Embodiment 3, the description of Embodiment 1 is cited with respect to the configuration described in Embodiment 1, and the description thereof is omitted.
図6~図9を参照して、実施形態3について説明する。本実施形態3では、時系列データの性質を判定する方法の他の一例を説明する。本実施形態3では、前記実施形態1で説明した構成に関して、前記実施形態1の説明を引用し、その説明を省略する。 [Embodiment 3]
Embodiment 3 will be described with reference to FIGS. 6 to 9. FIG. In the third embodiment, another example of the method for determining the properties of time-series data will be described. In Embodiment 3, the description of Embodiment 1 is cited with respect to the configuration described in Embodiment 1, and the description thereof is omitted.
(異音識別装置30)
図6は、本実施形態3に係わる異音識別装置30の構成を示すブロック図である。図6に示すように、異音識別装置30は、判定部31、選択部12、識別部13を備えている。また、異音識別装置30の判定部31は、データ変換部34を備えている。データ変換部34は、時系列データや波形などの時間領域の信号を、スペクトルやスペクトログラムといった周波数領域の信号に変換する。以下では、時系列データをスペクトログラムに変換する例を説明する。 (Abnormal sound identification device 30)
FIG. 6 is a block diagram showing the configuration of the abnormalnoise identification device 30 according to the third embodiment. As shown in FIG. 6 , the abnormal noise identification device 30 includes a determination section 31 , a selection section 12 and an identification section 13 . Also, the determination unit 31 of the abnormal noise identification device 30 includes a data conversion unit 34 . The data conversion unit 34 converts time-domain signals such as time-series data and waveforms into frequency-domain signals such as spectra and spectrograms. An example of converting time-series data into a spectrogram will be described below.
図6は、本実施形態3に係わる異音識別装置30の構成を示すブロック図である。図6に示すように、異音識別装置30は、判定部31、選択部12、識別部13を備えている。また、異音識別装置30の判定部31は、データ変換部34を備えている。データ変換部34は、時系列データや波形などの時間領域の信号を、スペクトルやスペクトログラムといった周波数領域の信号に変換する。以下では、時系列データをスペクトログラムに変換する例を説明する。 (Abnormal sound identification device 30)
FIG. 6 is a block diagram showing the configuration of the abnormal
図7は、時系列データから変換されたスペクトログラムの一例を示す。図7に示すスペクトログラムにおいて、周波数スペクトル強度が濃淡で表現されている。また、周波数スペクトルのピークが太線(バー)で示されている。図7に示す例では、周波数スペクトルのピークの一部が、縦軸および横軸に対して傾斜している。これは、ピーク周波数が時間とともに遷移していることを表している。言い換えれば、元の時系列データにおけるピークの周期(=1/ピーク周波数)が揺らいでいる。
Fig. 7 shows an example of a spectrogram converted from time-series data. In the spectrogram shown in FIG. 7, the frequency spectrum intensity is represented by shading. Also, the peak of the frequency spectrum is indicated by a thick line (bar). In the example shown in FIG. 7, part of the peak of the frequency spectrum is tilted with respect to the vertical and horizontal axes. This indicates that the peak frequency is transitioning with time. In other words, the period of peaks (=1/peak frequency) in the original time-series data fluctuates.
図8は、時系列データから変換された周波数スペクトルの一例を示すグラフである。周波数スペクトルは、スペクトログラムにおける所定の時間幅に対応する。図8において、周波数スペクトルのピークは、グラフ上に点(黒塗りの円)で示されている。
FIG. 8 is a graph showing an example of frequency spectrum converted from time-series data. A frequency spectrum corresponds to a given time span in the spectrogram. In FIG. 8, the peaks of the frequency spectrum are indicated by dots (black circles) on the graph.
周波数スペクトルのピークが鋭く高いことは、所定の時間幅において、元の時系列データにおけるピークの周期がほぼ一定である(すなわち周期の揺らぎが小さい)ことと対応する。一方、周波数スペクトルのピークが鈍く低いことは、所定の時間幅において、元の時系列データにおけるピークの周期にばらつきがある(すなわち周期の揺らぎが大きい)ことと対応する。
A sharp and high peak in the frequency spectrum corresponds to the fact that the period of the peak in the original time-series data is almost constant (that is, the fluctuation of the period is small) in the predetermined time width. On the other hand, the fact that the peak of the frequency spectrum is dull and low corresponds to the fact that the period of the peak in the original time-series data varies (that is, the fluctuation of the period is large) in the predetermined time width.
判定部31は、スペクトログラムから所定の時間幅ごとに切り出された周波数スペクトルのピーク強度に基づいて、時系列データの性質を判定する。例えば、判定部31は、周波数スペクトルにおけるピーク強度と、ピーク周波数を中心とする所定の帯域における強度の平均との差分を計算する。判定部31は、得られた差分と閾値Yとを比較する。本例では、周波数スペクトルにおけるピーク強度と、ピーク周波数を中心とする所定の帯域における強度の平均との差分が閾値Y以上である場合、判定部31は、時系列データは性質aを有すると判定する。一方、周波数スペクトルにおけるピーク強度と、所定の時間幅における強度の平均との差分が閾値Y未満である場合、判定部31は、時系列データは性質bを有すると判定する。
The determination unit 31 determines the nature of the time-series data based on the peak intensity of the frequency spectrum cut out from the spectrogram for each predetermined time width. For example, the determination unit 31 calculates the difference between the peak intensity in the frequency spectrum and the average intensity in a predetermined band around the peak frequency. The determination unit 31 compares the obtained difference and the threshold value Y with each other. In this example, when the difference between the peak intensity in the frequency spectrum and the average intensity in a predetermined band centered on the peak frequency is equal to or greater than the threshold value Y, the determination unit 31 determines that the time-series data has property a. do. On the other hand, when the difference between the peak intensity in the frequency spectrum and the average intensity in the predetermined time span is less than the threshold value Y, the determination unit 31 determines that the time-series data has property b.
なお、後段の識別部13による異音の識別結果の信頼度の情報を、判定部31へフィードバックすることによって、判定部31は、識別部13による異音の識別結果の信頼度が上昇するように、閾値Yを更新してもよい。
By feeding back information about the reliability of the abnormal noise identification result obtained by the identification unit 13 in the subsequent stage to the determination unit 31, the determination unit 31 increases the reliability of the abnormal noise identification result obtained by the identification unit 13. , the threshold Y may be updated.
(異音識別装置30の動作:S1)
図9を参照して、本実施形態3に係わる異音識別装置30の動作を説明する。ここでは、判定部31が実行する処理の流れの詳細、すなわち図2に示すステップS1の内容のみを説明する。 (Operation of Abnormal Sound Identification Device 30: S1)
The operation of the abnormalnoise identification device 30 according to the third embodiment will be described with reference to FIG. Here, only the details of the flow of processing executed by the determination unit 31, that is, the contents of step S1 shown in FIG. 2 will be described.
図9を参照して、本実施形態3に係わる異音識別装置30の動作を説明する。ここでは、判定部31が実行する処理の流れの詳細、すなわち図2に示すステップS1の内容のみを説明する。 (Operation of Abnormal Sound Identification Device 30: S1)
The operation of the abnormal
前記実施形態1と同様に、異音識別装置30は、時系列データを受信する。その後、異音識別装置30の判定部31は、以下で説明するように、時系列データの性質を判定する。
The abnormal noise identification device 30 receives time-series data in the same manner as in the first embodiment. After that, the determination unit 31 of the abnormal noise identification device 30 determines the properties of the time-series data as described below.
図9に示すように、判定部31のデータ変換部34は、時系列データ(時間領域の信号)を、スペクトログラム(図7)(周波数領域の信号)に変換する(S31)。
As shown in FIG. 9, the data conversion unit 34 of the determination unit 31 converts the time series data (time domain signal) into a spectrogram (FIG. 7) (frequency domain signal) (S31).
判定部31は、スペクトログラムから、所定の時間幅のセグメントを切り出すことによってごとに、周波数スペクトルを生成する。判定部31は、周波数スペクトルにおけるピーク強度を計算する(S32)。
The determination unit 31 generates a frequency spectrum by cutting out a segment of a predetermined time width from the spectrogram. The determination unit 31 calculates peak intensity in the frequency spectrum (S32).
判定部31は、周波数スペクトルにおけるピーク強度が閾値以上であるか否かを判定する(S33)。例えば、閾値は、ピーク周波数を中心とする所定の帯域における強度の平均である。
The determination unit 31 determines whether or not the peak intensity in the frequency spectrum is greater than or equal to the threshold (S33). For example, the threshold is the average intensity in a given band centered around the peak frequency.
周波数スペクトルにおけるピーク強度が閾値以上である場合(S33でYes)、判定部31は、時系列データは性質aを有すると判定する(S34A)。一方、周波数スペクトルにおけるピーク強度が閾値を下回る場合(S33でNo)、判定部31は、時系列データは性質bを有すると判定する(S34B)。
When the peak intensity in the frequency spectrum is equal to or greater than the threshold (Yes in S33), the determination unit 31 determines that the time-series data has property a (S34A). On the other hand, when the peak intensity in the frequency spectrum is below the threshold (No in S33), the determination unit 31 determines that the time-series data has property b (S34B).
以上で、判定部31の処理は終了する。その後、前記実施形態1で説明した選択部12の処理(ステップS2)へ進む。本実施形態3では、選択部12の処理(ステップS2)以降についての説明を省略する。
With this, the processing of the determination unit 31 ends. After that, the process proceeds to the processing (step S2) of the selection unit 12 described in the first embodiment. In the third embodiment, the description of the process after the process (step S2) of the selection unit 12 is omitted.
(閾値の決定方法)
ここでは、判定部31が、周波数スペクトルのピーク強度と閾値とを比較することによって、時系列データの性質を判定する構成を説明した。ここでは、周波数スペクトルのピーク強度の閾値を決定する方法の一例を説明する。 (Method for determining threshold)
Here, a configuration has been described in which thedetermination unit 31 determines the properties of time-series data by comparing the peak intensity of the frequency spectrum and the threshold. Here, an example of a method for determining the threshold of peak intensity of the frequency spectrum will be described.
ここでは、判定部31が、周波数スペクトルのピーク強度と閾値とを比較することによって、時系列データの性質を判定する構成を説明した。ここでは、周波数スペクトルのピーク強度の閾値を決定する方法の一例を説明する。 (Method for determining threshold)
Here, a configuration has been described in which the
図10は、周波数スペクトルのピーク強度の閾値を決定するために用いられるスコアの分布を示すグラフの一例である。
FIG. 10 is an example of a graph showing the distribution of scores used to determine the peak intensity threshold of the frequency spectrum.
判定部31は、性質aを有すると判定済の時系列データおよび性質bを有すると判定済の時系列データの両方を同数またはほぼ同数ずつ含む多数の学習データについてのスコアを計算する。ここでのスコアは、ピーク周波数を中心とする所定の帯域における強度の平均と、ピーク強度との差分である。スコアの算出結果から、図10に示すようなスコアの分布が得られる。そして、判定部31は、スコアの分布に基づいて、性質aを有する時系列データと、性質bを有する時系列データとを区別できるように、閾値を決定する。例えば、判定部31は、性質bを有する時系列データのスコアの最大値の2倍を閾値に決定する。ある時系列データのスコアが閾値以上である場合、その時系列データは性質aを有する蓋然性が高い一方、ある時系列データのスコアが閾値を下回る場合、その時系列データは性質bを有する蓋然性が高い。判定部31は、このようにして決定された閾値を用いることにより、時系列データの性質を上述のように判定することができる。
The determination unit 31 calculates scores for a large number of learning data that contain the same or approximately the same number of time-series data that have been determined to have property a and time-series data that have been determined to have property b. The score here is the difference between the average intensity in a predetermined band around the peak frequency and the peak intensity. From the score calculation results, a score distribution as shown in FIG. 10 is obtained. Based on the score distribution, the determination unit 31 then determines a threshold so that time-series data having property a can be distinguished from time-series data having property b. For example, the determination unit 31 determines twice the maximum score of the time-series data having property b as the threshold. When the score of certain time-series data is equal to or higher than the threshold, the time-series data has a high probability of having property a. The determination unit 31 can determine the properties of the time-series data as described above by using the thresholds determined in this manner.
(本実施形態の効果)
本実施形態の構成によれば、判定部31は、時系列データの性質を判定する。選択部12は、時系列データの性質に基づき、時系列データを分析するための手法を選択する。識別部13は、選択した手法を用いて、時系列データを分析することによって、時系列データに含まれる異音を識別する。時系列データにはさまざまな種類の音響(異音を含む)および雑音が含まれており、時系列データの性質もさまざまである。例えば、周期の揺らぎが大きい異音が時系列データに含まれている場合もあるし、雑音が大きい(目的音が小さい)場合もある。 (Effect of this embodiment)
According to the configuration of this embodiment, thedetermination unit 31 determines the nature of time-series data. The selection unit 12 selects a technique for analyzing time series data based on the properties of the time series data. The identification unit 13 identifies abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique. Time-series data contain various types of sounds (including allophones) and noise, and the nature of time-series data also varies. For example, the time-series data may include an abnormal sound with large period fluctuations, or the noise may be large (the target sound is small).
本実施形態の構成によれば、判定部31は、時系列データの性質を判定する。選択部12は、時系列データの性質に基づき、時系列データを分析するための手法を選択する。識別部13は、選択した手法を用いて、時系列データを分析することによって、時系列データに含まれる異音を識別する。時系列データにはさまざまな種類の音響(異音を含む)および雑音が含まれており、時系列データの性質もさまざまである。例えば、周期の揺らぎが大きい異音が時系列データに含まれている場合もあるし、雑音が大きい(目的音が小さい)場合もある。 (Effect of this embodiment)
According to the configuration of this embodiment, the
異音識別装置10は、まず時系列データの性質を判定し、その判定結果に基づき、時系列データを分析するための手法を選択する。これにより、さまざまな性質の時系列データから、異音を正確に識別することができる。
The abnormal sound identification device 10 first determines the nature of the time-series data, and selects a method for analyzing the time-series data based on the determination result. This makes it possible to accurately identify abnormal sounds from time-series data of various properties.
さらに、本実施形態3の構成によれば、判定部31は、時系列データをスペクトログラムに変換するデータ変換部34を備えている。判定部31は、スペクトログラムから所定の時間幅ごとに切り出された周波数スペクトルのピーク強度に基づいて、時系列データの性質を判定する。周波数スペクトルのピークが鋭く強いことは、元の時系列データにおけるピークの周期の揺らぎが小さいことと対応する。そして、周波数スペクトルのピーク強度と閾値とを比較することによって、時系列データにおけるピークの周期の揺らぎが比較的小さい性質と、時系列データにおけるピークの周期の揺らぎが比較的大きい性質とを判定することができる。
Furthermore, according to the configuration of Embodiment 3, the determination unit 31 includes a data conversion unit 34 that converts time-series data into a spectrogram. The determination unit 31 determines the properties of the time-series data based on the peak intensity of the frequency spectrum cut out from the spectrogram for each predetermined time width. A sharp and strong peak in the frequency spectrum corresponds to a small period fluctuation of the peak in the original time-series data. Then, by comparing the peak intensity of the frequency spectrum with a threshold value, it is determined whether the period fluctuation of the peaks in the time series data is relatively small or the period fluctuations of the peaks in the time series data are relatively large. be able to.
(変形例)
前記実施形態1~3のいずれかの一変形例では、識別部13は、3つ以上の識別器を用いて、時系列データに含まれる異音を識別する。 (Modification)
In one modified example of any one of the first to third embodiments, theidentification unit 13 identifies abnormal sounds included in the time-series data using three or more identifiers.
前記実施形態1~3のいずれかの一変形例では、識別部13は、3つ以上の識別器を用いて、時系列データに含まれる異音を識別する。 (Modification)
In one modified example of any one of the first to third embodiments, the
例えば、本変形例に係わる識別部13は、MFCCを特徴量として用いて機械学習した識別器Bとともに、DCTC(Discrete Cosine Transform Coefficients)を特徴量とする識別器(以下、識別器Cと呼ぶ)を併用する。識別部13は、2つの識別器のそれぞれによって、時系列データに含まれる異音を識別し、その識別結果の信頼度の大小を比較する。識別器Bによる識別結果の信頼度がより高い場合、識別部13は、識別器Bによる識別結果を出力する。一方、識別器Cによる識別結果の信頼度がより高い場合、識別部13は、識別器Cによる識別結果を出力する。
For example, the identification unit 13 according to this modification includes a classifier B that performs machine learning using MFCC as a feature quantity, and a classifier that uses DCTC (Discrete Cosine Transform Coefficients) as a feature quantity (hereinafter referred to as a classifier C). used together. The identification unit 13 identifies abnormal sounds contained in the time-series data by using the two identifiers, respectively, and compares the reliability of the identification results. When the reliability of the discrimination result by the discriminator B is higher, the discriminating unit 13 outputs the discrimination result by the discriminator B. FIG. On the other hand, when the reliability of the discrimination result by the discriminator C is higher, the discriminating unit 13 outputs the discrimination result by the discriminator C. FIG.
他の変形例では、識別部13は、時系列データの元となる音響信号が取得された場所に応じて、複数の識別器を使い分けてもよい。本変形例では、各識別器と、互いに異なる場所を示す情報とが、予め対応付けられている。本変形例に係わる識別部13は、判定部11から、時系列データとともに、時系列データに紐づけられた場所を示す情報も受信する。識別部13は、場所を示す情報に基づいて、複数の識別器の中から、対応する識別器を選択する。そして、識別部13は、選択した識別器を用いて、時系列データに含まれる異音を識別する。
In another modification, the identification unit 13 may use multiple identifiers according to the location where the acoustic signal that is the source of the time-series data was acquired. In this modified example, each discriminator is associated in advance with information indicating different locations. The identification unit 13 according to the present modification receives the time-series data as well as information indicating the location associated with the time-series data from the determination unit 11 . The identifying unit 13 selects a corresponding classifier from a plurality of classifiers based on the information indicating the location. Then, the identification unit 13 uses the selected identifier to identify abnormal sounds included in the time-series data.
本変形例の構成によれば、2つの識別器のうち、識別結果の信頼度がより高い一方を選択するので、識別部13が出力する識別結果の信頼性を向上させることができる。
According to the configuration of this modified example, one of the two discriminators with the higher reliability of the discrimination result is selected, so that the reliability of the discrimination result output by the discrimination unit 13 can be improved.
〔ハードウェア構成〕
前記実施形態1~3で説明した異音識別装置10,20,30の各構成要素は、機能単位のブロックを示している。これらの構成要素の一部又は全部は、例えば図11に示すような情報処理装置900により実現される。図11は、情報処理装置900のハードウェア構成の一例を示すブロック図である。 [Hardware configuration]
Each component of the abnormal noise identifying devices 10, 20, and 30 described in the first to third embodiments represents a functional unit block. Some or all of these components are realized by an information processing device 900 as shown in FIG. 11, for example. FIG. 11 is a block diagram showing an example of the hardware configuration of the information processing device 900. As shown in FIG.
前記実施形態1~3で説明した異音識別装置10,20,30の各構成要素は、機能単位のブロックを示している。これらの構成要素の一部又は全部は、例えば図11に示すような情報処理装置900により実現される。図11は、情報処理装置900のハードウェア構成の一例を示すブロック図である。 [Hardware configuration]
Each component of the abnormal
図11に示すように、情報処理装置900は、一例として、以下のような構成を含む。
As shown in FIG. 11, the information processing device 900 includes the following configuration as an example.
・CPU(Central Processing Unit)901
・ROM(Read Only Memory)902
・RAM(Random Access Memory)903
・RAM903にロードされるプログラム904
・プログラム904を格納する記憶装置905
・記録媒体906の読み書きを行うドライブ装置907
・通信ネットワーク909と接続する通信インタフェース908
・データの入出力を行う入出力インタフェース910
・各構成要素を接続するバス911
前記実施形態1~3で説明した異音識別装置10,20,30の各構成要素は、これらの機能を実現するプログラム904をCPU901が読み込んで実行することで実現される。各構成要素の機能を実現するプログラム904は、例えば、予め記憶装置905やROM902に格納されており、必要に応じてCPU901がRAM903にロードして実行される。なお、プログラム904は、通信ネットワーク909を介してCPU901に供給されてもよいし、予め記録媒体906に格納されており、ドライブ装置907が当該プログラムを読み出してCPU901に供給してもよい。 - CPU (Central Processing Unit) 901
・ROM (Read Only Memory) 902
・RAM (Random Access Memory) 903
・Program 904 loaded into RAM 903
-Storage device 905 for storing program 904
Adrive device 907 that reads and writes the recording medium 906
- Acommunication interface 908 that connects to the communication network 909
- An input/output interface 910 for inputting/outputting data
Abus 911 connecting each component
Each component of the abnormal noise identifying devices 10, 20, and 30 described in the first to third embodiments is implemented by the CPU 901 reading and executing a program 904 that implements these functions. A program 904 that implements the function of each component is stored in advance in, for example, the storage device 905 or the ROM 902, and is loaded into the RAM 903 and executed by the CPU 901 as necessary. The program 904 may be supplied to the CPU 901 via the communication network 909 or may be stored in the recording medium 906 in advance, and the drive device 907 may read the program and supply it to the CPU 901 .
・ROM(Read Only Memory)902
・RAM(Random Access Memory)903
・RAM903にロードされるプログラム904
・プログラム904を格納する記憶装置905
・記録媒体906の読み書きを行うドライブ装置907
・通信ネットワーク909と接続する通信インタフェース908
・データの入出力を行う入出力インタフェース910
・各構成要素を接続するバス911
前記実施形態1~3で説明した異音識別装置10,20,30の各構成要素は、これらの機能を実現するプログラム904をCPU901が読み込んで実行することで実現される。各構成要素の機能を実現するプログラム904は、例えば、予め記憶装置905やROM902に格納されており、必要に応じてCPU901がRAM903にロードして実行される。なお、プログラム904は、通信ネットワーク909を介してCPU901に供給されてもよいし、予め記録媒体906に格納されており、ドライブ装置907が当該プログラムを読み出してCPU901に供給してもよい。 - CPU (Central Processing Unit) 901
・ROM (Read Only Memory) 902
・RAM (Random Access Memory) 903
・
-
A
- A
- An input/
A
Each component of the abnormal
上記の構成によれば、前記実施形態1~3において説明した異音識別装置10,20,30が、ハードウェアとして実現される。したがって、前記実施形態1~3において説明した効果と同様の効果を奏することができる。
According to the above configuration, the abnormal noise identifying devices 10, 20, and 30 described in the first to third embodiments are implemented as hardware. Therefore, the same effects as those described in the first to third embodiments can be obtained.
〔付記〕
本発明の一態様は、以下の付記のようにも記載されるが、以下に限定されない。 [Appendix]
One aspect of the present invention is also described in the following appendices, but is not limited to the following.
本発明の一態様は、以下の付記のようにも記載されるが、以下に限定されない。 [Appendix]
One aspect of the present invention is also described in the following appendices, but is not limited to the following.
(付記1)
時系列データの性質を判定する判定手段と、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択する選択手段と、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別する識別手段とを備えた
データ分析装置。 (Appendix 1)
Determination means for determining properties of time-series data;
selection means for selecting a technique for analyzing the time series data based on the properties of the time series data;
A data analysis device comprising identification means for identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
時系列データの性質を判定する判定手段と、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択する選択手段と、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別する識別手段とを備えた
データ分析装置。 (Appendix 1)
Determination means for determining properties of time-series data;
selection means for selecting a technique for analyzing the time series data based on the properties of the time series data;
A data analysis device comprising identification means for identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
(付記2)
前記判定手段は、前記時系列データのピークを検出するピーク検出手段を備え、
前記判定手段は、前記時系列データの前記ピークが検出されてから、次のピークが検出されるまでの時間幅に基づいて、前記時系列データの前記性質を判定する
ことを特徴とする付記1に記載のデータ分析装置。 (Appendix 2)
The determination means comprises peak detection means for detecting a peak of the time-series data,
Supplementary Note 1, wherein the determination means determines the property of the time-series data based on the time width from the detection of the peak of the time-series data to the detection of the next peak. The data analysis device described in .
前記判定手段は、前記時系列データのピークを検出するピーク検出手段を備え、
前記判定手段は、前記時系列データの前記ピークが検出されてから、次のピークが検出されるまでの時間幅に基づいて、前記時系列データの前記性質を判定する
ことを特徴とする付記1に記載のデータ分析装置。 (Appendix 2)
The determination means comprises peak detection means for detecting a peak of the time-series data,
Supplementary Note 1, wherein the determination means determines the property of the time-series data based on the time width from the detection of the peak of the time-series data to the detection of the next peak. The data analysis device described in .
(付記3)
前記判定手段は、前記時系列データをスペクトログラムに変換するデータ変換手段を備え、
前記判定手段は、前記スペクトログラムから所定の時間幅ごとに切り出された周波数スペクトルのピーク強度に基づいて、前記時系列データの前記性質を判定する
ことを特徴とする付記1に記載のデータ分析装置。 (Appendix 3)
The determination means comprises data conversion means for converting the time-series data into a spectrogram,
The data analysis device according to Supplementary Note 1, wherein the determining means determines the property of the time-series data based on the peak intensity of a frequency spectrum extracted from the spectrogram for each predetermined time width.
前記判定手段は、前記時系列データをスペクトログラムに変換するデータ変換手段を備え、
前記判定手段は、前記スペクトログラムから所定の時間幅ごとに切り出された周波数スペクトルのピーク強度に基づいて、前記時系列データの前記性質を判定する
ことを特徴とする付記1に記載のデータ分析装置。 (Appendix 3)
The determination means comprises data conversion means for converting the time-series data into a spectrogram,
The data analysis device according to Supplementary Note 1, wherein the determining means determines the property of the time-series data based on the peak intensity of a frequency spectrum extracted from the spectrogram for each predetermined time width.
(付記4)
前記判定手段は、前記時系列データが含む周期成分の周期のばらつきの大きさを判定し、
前記選択手段は、前記時系列データを分析するための複数の手法の中から、前記周期のばらつきの大きさに応じた手法を選択する
ことを特徴とする付記1から3のいずれか1項に記載のデータ分析装置。 (Appendix 4)
The determination means determines the magnitude of variation in the period of the periodic component included in the time-series data,
4. The method according to any one of appendices 1 to 3, wherein the selection means selects a method according to the magnitude of the variation in the period from among a plurality of methods for analyzing the time-series data. Data analysis device as described.
前記判定手段は、前記時系列データが含む周期成分の周期のばらつきの大きさを判定し、
前記選択手段は、前記時系列データを分析するための複数の手法の中から、前記周期のばらつきの大きさに応じた手法を選択する
ことを特徴とする付記1から3のいずれか1項に記載のデータ分析装置。 (Appendix 4)
The determination means determines the magnitude of variation in the period of the periodic component included in the time-series data,
4. The method according to any one of appendices 1 to 3, wherein the selection means selects a method according to the magnitude of the variation in the period from among a plurality of methods for analyzing the time-series data. Data analysis device as described.
(付記5)
前記周期のばらつきの大きさが閾値を下回る場合、前記選択手段は、NMF(Nonnegative Matrix Factorization)を選択する
ことを特徴とする付記4に記載のデータ分析装置。 (Appendix 5)
5. The data analysis apparatus according to appendix 4, wherein the selection means selects NMF (Nonnegative Matrix Factorization) when the magnitude of the period variation is below a threshold.
前記周期のばらつきの大きさが閾値を下回る場合、前記選択手段は、NMF(Nonnegative Matrix Factorization)を選択する
ことを特徴とする付記4に記載のデータ分析装置。 (Appendix 5)
5. The data analysis apparatus according to appendix 4, wherein the selection means selects NMF (Nonnegative Matrix Factorization) when the magnitude of the period variation is below a threshold.
(付記6)
時系列データの性質を判定し、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択し、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別する
データ分析方法。 (Appendix 6)
determine the nature of time-series data,
selecting a technique for analyzing the time series data based on the properties of the time series data;
A data analysis method comprising identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
時系列データの性質を判定し、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択し、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別する
データ分析方法。 (Appendix 6)
determine the nature of time-series data,
selecting a technique for analyzing the time series data based on the properties of the time series data;
A data analysis method comprising identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique.
(付記7)
時系列データの性質を判定することと、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択することと、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別することと
をコンピュータに実行させるためのプログラムを格納した、一時的でない記録媒体。 (Appendix 7)
determining the nature of the time series data;
selecting a technique for analyzing the time series data based on the properties of the time series data;
A non-temporary recording medium storing a program for causing a computer to identify abnormal sounds contained in the time-series data by analyzing the time-series data using the selected method.
時系列データの性質を判定することと、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択することと、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別することと
をコンピュータに実行させるためのプログラムを格納した、一時的でない記録媒体。 (Appendix 7)
determining the nature of the time series data;
selecting a technique for analyzing the time series data based on the properties of the time series data;
A non-temporary recording medium storing a program for causing a computer to identify abnormal sounds contained in the time-series data by analyzing the time-series data using the selected method.
本発明は、例えば、鉄道、自動車のエンジンルーム、工場、その他の機器又は部品が発する異音を識別する異音識別装置に利用することができる。
The present invention can be used, for example, in an abnormal noise identification device that identifies abnormal sounds emitted by railways, automobile engine rooms, factories, and other equipment or parts.
10 異音識別装置
11 判定部
12 選択部
13 識別部
20 異音識別装置
24 ピーク検出部
30 異音識別装置
34 データ変換部 REFERENCE SIGNSLIST 10 abnormal noise identifying device 11 determining unit 12 selecting unit 13 identifying unit 20 abnormal noise identifying device 24 peak detecting unit 30 abnormal noise identifying device 34 data converting unit
11 判定部
12 選択部
13 識別部
20 異音識別装置
24 ピーク検出部
30 異音識別装置
34 データ変換部 REFERENCE SIGNS
Claims (7)
- 時系列データの性質を判定する判定手段と、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択する選択手段と、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別する識別手段とを備えた
データ分析装置。 Determination means for determining properties of time-series data;
selection means for selecting a technique for analyzing the time series data based on the properties of the time series data;
A data analysis device comprising identification means for identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique. - 前記判定手段は、前記時系列データのピークを検出するピーク検出手段を備え、
前記判定手段は、前記時系列データの前記ピークが検出されてから、次のピークが検出されるまでの時間幅に基づいて、前記時系列データの前記性質を判定する
ことを特徴とする請求項1に記載のデータ分析装置。 The determination means comprises peak detection means for detecting a peak of the time-series data,
3. The determining means determines the property of the time-series data based on the time width from the detection of the peak of the time-series data to the detection of the next peak. 2. The data analysis device according to 1. - 前記判定手段は、前記時系列データをスペクトログラムに変換するデータ変換手段を備え、
前記判定手段は、前記スペクトログラムから所定の時間幅ごとに切り出された周波数スペクトルのピーク強度に基づいて、前記時系列データの前記性質を判定する
ことを特徴とする請求項1に記載のデータ分析装置。 The determination means comprises data conversion means for converting the time-series data into a spectrogram,
2. The data analysis apparatus according to claim 1, wherein said determination means determines said property of said time-series data based on peak intensity of a frequency spectrum extracted from said spectrogram for each predetermined time width. . - 前記判定手段は、前記時系列データが含む周期成分の周期のばらつきの大きさを判定し、
前記選択手段は、前記時系列データを分析するための複数の手法の中から、前記周期のばらつきの大きさに応じた手法を選択する
ことを特徴とする請求項1から3のいずれか1項に記載のデータ分析装置。 The determination means determines the magnitude of variation in the period of the periodic component included in the time-series data,
4. The method according to any one of claims 1 to 3, wherein the selecting means selects a method from a plurality of methods for analyzing the time-series data according to the magnitude of variation in the period. The data analysis device described in . - 前記周期のばらつきの大きさが閾値を下回る場合、前記選択手段は、NMF(Nonnegative Matrix Factorization)を選択する
ことを特徴とする請求項4に記載のデータ分析装置。 5. The data analysis apparatus according to claim 4, wherein the selection means selects NMF (Nonnegative Matrix Factorization) when the magnitude of the period variation is below a threshold. - 時系列データの性質を判定し、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択し、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別する
データ分析方法。 Determine the nature of time series data,
selecting a technique for analyzing the time series data based on the properties of the time series data;
A data analysis method comprising identifying abnormal sounds contained in the time-series data by analyzing the time-series data using the selected technique. - 時系列データの性質を判定することと、
前記時系列データの前記性質に基づき、前記時系列データを分析するための手法を選択することと、
選択した前記手法を用いて、前記時系列データを分析することによって、前記時系列データに含まれる異音を識別することと
をコンピュータに実行させるためのプログラムを格納した、一時的でない記録媒体。 determining the nature of the time series data;
selecting a technique for analyzing the time series data based on the properties of the time series data;
A non-temporary recording medium storing a program for causing a computer to identify abnormal sounds contained in the time-series data by analyzing the time-series data using the selected method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/017458 WO2022234635A1 (en) | 2021-05-07 | 2021-05-07 | Data analysis device, data analysis method, and recording medium |
JP2023518568A JPWO2022234635A5 (en) | 2021-05-07 | Data analysis device, data analysis method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/017458 WO2022234635A1 (en) | 2021-05-07 | 2021-05-07 | Data analysis device, data analysis method, and recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022234635A1 true WO2022234635A1 (en) | 2022-11-10 |
Family
ID=83932679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/017458 WO2022234635A1 (en) | 2021-05-07 | 2021-05-07 | Data analysis device, data analysis method, and recording medium |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022234635A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08221117A (en) * | 1995-02-09 | 1996-08-30 | Mitsubishi Electric Corp | Analyzing device for supporting abnormality diagnosis |
JPH0990991A (en) * | 1995-09-27 | 1997-04-04 | Fujitsu Ltd | Speech discrimination device |
JP2009128906A (en) * | 2007-11-19 | 2009-06-11 | Mitsubishi Electric Research Laboratories Inc | Method and system for denoising mixed signal including sound signal and noise signal |
JP2020126021A (en) * | 2019-02-06 | 2020-08-20 | 株式会社日立製作所 | Abnormal sound detector and abnormal sound detection method |
-
2021
- 2021-05-07 WO PCT/JP2021/017458 patent/WO2022234635A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08221117A (en) * | 1995-02-09 | 1996-08-30 | Mitsubishi Electric Corp | Analyzing device for supporting abnormality diagnosis |
JPH0990991A (en) * | 1995-09-27 | 1997-04-04 | Fujitsu Ltd | Speech discrimination device |
JP2009128906A (en) * | 2007-11-19 | 2009-06-11 | Mitsubishi Electric Research Laboratories Inc | Method and system for denoising mixed signal including sound signal and noise signal |
JP2020126021A (en) * | 2019-02-06 | 2020-08-20 | 株式会社日立製作所 | Abnormal sound detector and abnormal sound detection method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022234635A1 (en) | 2022-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8428945B2 (en) | Acoustic signal classification system | |
US8036884B2 (en) | Identification of the presence of speech in digital audio data | |
US20070129941A1 (en) | Preprocessing system and method for reducing FRR in speaking recognition | |
KR101493552B1 (en) | Signal judgment method, signal judgment apparatus, program, and signal judgment system | |
US9704505B2 (en) | Audio signal processing apparatus and method | |
JP2007256153A (en) | System for detecting railway vehicle truck abnormality | |
Alexandre-Cortizo et al. | Application of fisher linear discriminant analysis to speech/music classification | |
US20060165239A1 (en) | Method for determining acoustic features of acoustic signals for the analysis of unknown acoustic signals and for modifying sound generation | |
US8532986B2 (en) | Speech signal evaluation apparatus, storage medium storing speech signal evaluation program, and speech signal evaluation method | |
JP4644250B2 (en) | Apparatus and method for determining the type of chords inherent in a test signal | |
Alonso-Martin et al. | Multidomain voice activity detection during human-robot interaction | |
WO2022234635A1 (en) | Data analysis device, data analysis method, and recording medium | |
JP2012183210A (en) | Electroencephalogram processing apparatus, electroencephalogram processing program and electroencephalogram processing method | |
Chadha et al. | Optimal feature extraction and selection techniques for speech processing: A review | |
KR101092228B1 (en) | System and method for recognizing instrument to classify signal source | |
JP2700143B2 (en) | Voice coding apparatus and method | |
Chou et al. | A multiscale stochastic modeling approach to the monitoring of mechanical systems | |
Suhaimy et al. | Classification of ambulance siren sound with MFCC-SVM | |
Nagathil et al. | Hierarchical audio classification using cepstral modulation ratio regressions based on legendre polynomials | |
Rafi et al. | Exploring Classification of Vehicles Using Horn Sound Analysis: A Deep Learning-Based Approach | |
Lita et al. | Real time system for instrumental sound extraction and recognition | |
JP2002196783A (en) | Discrimination method and apparatus for time series signal | |
JP7420219B2 (en) | Signal analyzer, signal analysis method, and program | |
KR20240081311A (en) | Voice recognition program and method for reducing occupied space | |
Wiśniewski et al. | Improved approach to automatic detection of speech disorders based on the Hidden Markov Models approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21939828 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023518568 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21939828 Country of ref document: EP Kind code of ref document: A1 |