WO2022230403A1 - 金属チタンの製造方法及び金属チタン電析物 - Google Patents
金属チタンの製造方法及び金属チタン電析物 Download PDFInfo
- Publication number
- WO2022230403A1 WO2022230403A1 PCT/JP2022/011426 JP2022011426W WO2022230403A1 WO 2022230403 A1 WO2022230403 A1 WO 2022230403A1 JP 2022011426 W JP2022011426 W JP 2022011426W WO 2022230403 A1 WO2022230403 A1 WO 2022230403A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- mass
- content
- less
- chloride
- Prior art date
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 240
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 240
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 239
- 239000002659 electrodeposit Substances 0.000 title claims abstract description 107
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 67
- 239000002184 metal Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 52
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 114
- 238000004070 electrodeposition Methods 0.000 claims abstract description 102
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims abstract description 70
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 56
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 54
- 150000003839 salts Chemical class 0.000 claims abstract description 54
- 239000004020 conductor Substances 0.000 claims abstract description 47
- 229910010052 TiAlO Inorganic materials 0.000 claims abstract description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 37
- 239000001301 oxygen Substances 0.000 claims abstract description 37
- 229910001629 magnesium chloride Inorganic materials 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 35
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 52
- 238000007670 refining Methods 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 29
- 229910052759 nickel Inorganic materials 0.000 claims description 26
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 17
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 17
- 238000000605 extraction Methods 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 239000011572 manganese Substances 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 239000011777 magnesium Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 8
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 7
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 7
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000292 calcium oxide Substances 0.000 claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- 239000011775 sodium fluoride Substances 0.000 claims description 4
- 235000013024 sodium fluoride Nutrition 0.000 claims description 4
- 239000012535 impurity Substances 0.000 description 39
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 9
- 229910001069 Ti alloy Inorganic materials 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 238000004993 emission spectroscopy Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 235000011164 potassium chloride Nutrition 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 3
- 150000001805 chlorine compounds Chemical group 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- -1 CaCl 2 Chemical compound 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001510 metal chloride Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229940102127 rubidium chloride Drugs 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- 229910001617 alkaline earth metal chloride Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- LWBPNIJBHRISSS-UHFFFAOYSA-L beryllium dichloride Chemical compound Cl[Be]Cl LWBPNIJBHRISSS-UHFFFAOYSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 239000003832 thermite Substances 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/26—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
- C25C3/28—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1263—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
- C22B34/1277—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using other metals, e.g. Al, Si, Mn
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1295—Refining, melting, remelting, working up of titanium
Definitions
- the present invention relates to a method for producing metallic titanium and a metallic titanium electrodeposit.
- the production of titanium metal is carried out by the Kroll method.
- the production involves many steps.
- Patent Literature 1 discloses a method of producing a titanium alloy by heat-treating a raw material containing titanium ore and aluminum and then subjecting the obtained raw material to molten salt electrolysis.
- a chloride bath composed of sodium chloride and potassium chloride is used to refine the titanium alloy.
- a refined titanium product with a predetermined aluminum content and oxygen content is obtained (see Table 3 of Patent Document 1).
- Such refined titanium products have at least a high aluminum content, which makes them unsuitable for the production of other titanium alloy products and titanium metal products, although they can be used as raw materials for aluminum-containing titanium alloy products.
- an object of the present invention is to provide a method for producing metallic titanium by molten salt electrolysis using a conductive material containing titanium, aluminum, oxygen and other impurities.
- the inventors of the present invention conducted various studies to reduce the impurity content (especially the oxygen content) by molten salt electrolysis to obtain a titanium alloy as disclosed in Patent Document 1, for example. It has been found that not only the oxygen content but also the aluminum content can be reduced depending on the composition of the chloride bath used in the molten salt electrolysis.
- molten salt electrolysis is sometimes carried out for the purpose of refining metals and alloys.
- molten salt electrolysis is performed in a chloride bath containing sodium chloride and potassium chloride, as in the production method described in Patent Document 1, the aluminum content cannot be sufficiently reduced.
- a method for producing titanium metal including a refining step of refining a TiAlO conductive material containing titanium, aluminum, and oxygen, wherein the refining step includes the TiAlO conductive material in a chloride bath.
- At least one of the chloride bath used in the crude electrodeposition step and the chloride bath used in the refined electrodeposition step contains 50 mol % of the chloride bath. Contains more than magnesium chloride.
- the chloride bath used in the crude electrodeposition step and at least one chloride bath used in the refined electrodeposition step are magnesium chloride containing 30 mol % or more of magnesium chloride. respectively.
- the chloride bath used in the crude electrodeposition step and at least one chloride bath used in the refined electrodeposition step are magnesium chloride containing 50 mol % or more of magnesium chloride. respectively.
- the TiAlO conductive material is obtained by heat-treating a chemical blend containing a titanium ore containing titanium oxide, aluminum, and a separating agent before the refining step. Further includes an extraction step.
- the molar ratio of titanium oxide, aluminum and separating agent contained in the chemical blend is 3:4-7:2-6.
- the separating agent contains one or more selected from calcium fluoride, calcium oxide and sodium fluoride.
- the metallic titanium has an aluminum content of 100 mass ppm or less and an oxygen content of 500 mass ppm or less.
- the metallic titanium has a nitrogen content of 0.03% by mass or less, a carbon content of 0.01% by mass or less, and an iron content of is 0.010% by mass or less, the magnesium content is 0.05% by mass or less, the nickel content is 0.01% by mass or less, the chromium content is 0.005% by mass or less, and silicon The content is 0.001% by mass or less, the manganese content is 0.05% by mass or less, and the tin content is 0.01% by mass or less.
- a metal titanium electrodeposit having an aluminum content of 5 mass ppm or more and 100 mass ppm or less and an oxygen content of 100 mass ppm or more and 500 mass ppm or less It is a titanium electrodeposit.
- the nitrogen content is 0.001% by mass or more and 0.03% by mass or less, and the carbon content is 0.0004% by mass or more and 0.01% by mass. % or less, the iron content is 0.010 mass % or less, the magnesium content is 0.05 mass % or less, the nickel content is 0.01 mass % or less, and the chromium content is 0.01 mass % or less. 005% by mass or less, a silicon content of 0.001% by mass or less, a manganese content of 0.05% by mass or less, and a tin content of 0.01% by mass or less.
- FIG. 1 A) to (D) are diagrams for explaining refining steps in an embodiment of the method for producing metallic titanium according to the present invention.
- FIG. 1 A) to (D) are diagrams for explaining refining steps in another embodiment of the method for producing metallic titanium according to the present invention.
- FIG. 1 A) to (D) are diagrams for explaining refining steps in another embodiment of the method for producing metallic titanium according to the present invention.
- FIG. 1 A) to (D) are diagrams for explaining refining steps in another embodiment of the method for producing metallic titanium according to the present invention.
- FIG. (A) is a photograph of the titanium-containing electrodeposit after the crude electrodeposition step obtained in Example 1
- (B) is a photograph of the titanium-containing electrodeposit after the crude electrodeposition step obtained in Example 1. It is the photograph obtained by SEM observation of a thing.
- (A) is a photograph of the titanium metal electrodeposit after the purification electrodeposition step obtained in Example 1
- (B) is a photograph of the metal titanium electrodeposit after the purification electrodeposition step obtained in Example 1. It is the photograph obtained by SEM observation of a thing.
- the present invention is not limited to the embodiments described below, and can be embodied by modifying the constituent elements without departing from the spirit of the present invention.
- various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in each embodiment.
- the invention may be formed by omitting some components from all the components shown in the embodiments.
- some members are shown schematically in order to facilitate understanding of the embodiments included in the invention, and the illustrated sizes, positional relationships, etc. may not necessarily be accurate.
- the "metallic titanium electrodeposit" is generally granular in appearance, and when microscopically observed, it often has a three-dimensional shape in which dendritic or polyhedral fine grains are linked (Fig. 9). (B)).
- One embodiment of the method for producing titanium metal according to the present invention includes a refining step to reduce the impurity content. Note that an extraction step may be further included before the refining step. An example of each step will be described below.
- the extraction step heat-treats a chemical blend containing, for example, a titanium ore containing titanium oxide, aluminum, and a separating agent to obtain a TiAlO conductive material. It is considered that the following reactions are utilized by the heat treatment. That is, in the extraction step, a thermite reaction is used to reduce titanium oxide, which is a metal oxide, with aluminum.
- a chemical blend is a raw material mixture for obtaining a TiAlO conductive material. Titanium oxide in titanium ore is not suitable for molten salt electrolysis due to its low electrical conductivity. Therefore, the TiAlO conductive material can be produced by performing the extraction step using titanium ore.
- the TiAlO conductive material Since the TiAlO conductive material has a relatively high electrical conductivity, it can be used in the later-described refining process for producing metallic titanium. In the extraction step, the TiAlO conductive material may be produced by appropriately referring to the known method described in Patent Document 1 (Japanese Patent Publication No. 2015-507696) or the like.
- titanium ore The content of titanium oxide in the titanium ore is not limited, but is, for example, 50% by mass or more, for example 80% by mass or more, for example 90% by mass or more. Titanium ore includes not only those obtained by mining, but also those that have been so-called upgraded. When the titanium oxide content in the titanium ore is low, appropriate treatment such as leaching may be performed to improve the titanium oxide content (that is, upgrade treatment).
- Separating agents are incorporated into the chemical blend for the purpose of separating TiAlO conductors and slag by-products in the extraction process. Those having such a function can be used as a separating agent, but the separating agent preferably contains one or more selected from calcium fluoride, calcium oxide and sodium fluoride. From the viewpoint of morphology, it is more preferable to contain calcium fluoride. Therefore, the separating agent may be calcium fluoride alone.
- the temperature inside the container is, for example, 1500° C. or higher and 1800° C. or lower in an inert gas (eg, Ar) atmosphere.
- examples of materials for the inner wall of the container include carbon, ceramics, and the like.
- TiAlO conductive material The TiAlO conductive material obtained in the extraction step has, for example, a titanium content of 50% by mass or more and 80% by mass or less, an aluminum content of 3% by mass or more and 40% by mass or less, and an oxygen content of 0.5% by mass or more. It is 2% by mass or more and 40% by mass or less.
- the said titanium content is 60 mass % or more as a lower limit.
- the said aluminum content is 5 mass % or more as a lower limit.
- the upper limit of the aluminum content is, for example, 30% by mass or less, for example, 20% by mass or less.
- the lower limit of the oxygen content is, for example, 3% by mass or more, 5% by mass or more, or 8% by mass or more.
- the upper limit of the oxygen content is, for example, 30% by mass or less, for example, 20% by mass or less.
- the method for measuring the impurity content of each component of the TiAlO conductive material the measuring method described in the examples of this specification can be adopted.
- the upper limit of the specific resistance of the TiAlO conductive material may be, for example, 1 ⁇ 10 ⁇ 4 ⁇ m or less from the viewpoint of efficiently performing molten salt electrolysis in the refining process described later for producing metallic titanium.
- the lower limit of the specific resistance may be, for example, 1 ⁇ 10 ⁇ 8 ⁇ m or more.
- the lower limit of the specific resistance may be, for example, 1 ⁇ 10 ⁇ 7 ⁇ m or more, for example, 5 ⁇ 10 ⁇ 7 ⁇ m or more.
- the method for measuring the resistivity of the TiAlO conductive material the measuring method described in the examples of this specification can be adopted.
- the refining process uses an electrolytic device to refine the TiAlO conductive material in order to reduce the impurity content. That is, in the refining process, metallic titanium with high purity is obtained by reducing the contents of mainly aluminum and oxygen in the TiAlO conductive material, as well as other ore-derived elements.
- the refining process includes a crude electrodeposition step and one or more refinement electrodeposition steps in which molten salt electrolysis is performed using an electrode containing the titanium-containing electrodeposit obtained in the crude electrodeposition step.
- electrolytic apparatus 100 In one embodiment, various electrolytic devices can be used.
- An example of the electrolysis apparatus 100 shown in FIG. 1A is of a batch type, and includes an electrolytic bath 110 in the form of a sealed container that stores a chloride bath Bf, and an anode 120 and a cathode 130 that are immersed in the chloride bath Bf. and a power source (not shown) connected to the anode 120 and the cathode 130 via conductive wires to energize the anode 120 and the cathode 130 .
- the electrolytic device 100 usually has a structure that can be opened and closed in order to install or take out the anode and cathode.
- the electrolysis apparatus 100 has an opening for gas supply and exhaust in order to make the space above the chloride bath Bf an inert gas atmosphere.
- the electrolysis apparatus 100 is provided with a heater at an appropriate location so that the chloride bath Bf can be maintained in a molten state by heating.
- the material of the electrolytic bath 110 is not particularly limited as long as it has heat resistance and corrosion resistance.
- the electrodes may further include a bipolar electrode.
- the molten salt that constitutes the chloride bath may contain, for example, 70 mol % or more, such as 80 mol % or more, such as 90 mol % or more of alkali metal chlorides and alkaline earth metal chlorides.
- reasons for not using a fluoride bath, a bromide bath and an iodide bath in place of the chloride bath include high corrosiveness, high environmental load and high cost.
- At least one chloride bath Bf of the chloride bath used in the crude electrodeposition step and the chloride bath used in the refinement electrodeposition step reduces not only the oxygen content but also the aluminum content to produce metallic titanium From the viewpoint of manufacturing, it contains 30 mol% or more of magnesium chloride.
- Using a chloride bath with a high magnesium chloride content can increase the effect of reducing the aluminum content.
- only the chloride bath used in the crude electrodeposition step may contain the predetermined amount of magnesium chloride, or at least Only one chloride bath may contain the predetermined amount of magnesium chloride.
- at least one of the chloride bath used in the crude electrodeposition step and the chloride bath used in the refinement electrodeposition step which is performed one or more times contains the predetermined amount of magnesium chloride.
- the chloride bath used in the crude electrodeposition step and the chloride bath used in the refinement step performed one or more times At least one chloride bath of the baths may each contain the amount of magnesium chloride described above.
- the above chloride bath containing a predetermined amount of magnesium chloride is effective in reducing the aluminum content and oxygen content in the electrodeposit, and the lower limit of the magnesium chloride content is preferably 30 mol % or more. , more preferably 50 mol % or more, still more preferably 80 mol % or more, still more preferably 85 mol % or more, still more preferably 90 mol % or more.
- the chloride bath contains lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl), cesium chloride (CsCl), beryllium chloride (BeCl 2 ), calcium chloride (CaCl 2 ) one or more metal chlorides selected from strontium chloride (SrCl 2 ) and barium chloride (BaCl 2 ), for example 70 mol% or less, for example 50 mol% or less, for example 20 mol% or less, or for example 15 mol% or less , and may further contain, for example, 10 mol % or less. Further, the chloride bath may optionally contain lower titanium chloride, such as titanium dichloride and titanium trichloride.
- the content of the lower titanium chloride may be appropriately adjusted.
- the specific salt type and content can be appropriately determined in consideration of the operating temperature and the like.
- the content on a molar basis is measured by ICP emission spectrometry and atomic absorption spectrometry.
- the content on a molar basis is calculated as follows. After solidifying a molten salt sample collected from the chloride bath, the components of the sample are subjected to ICP emission spectrometry and atomic absorption spectrometry to calculate the content of each metal ion on a molar basis in the chloride bath Bf. do.
- the metal ion content was determined by atomic absorption spectroscopy for Na and K and ICP emission spectroscopy for the others.
- Mm is obtained by adding the content of magnesium ions, the content of sodium ions, the content of potassium ions, the content of calcium ions, the content of lithium ions, and the content of titanium ions.
- the molar content of each component contained in the chloride bath is calculated by dividing the metal ion content of each component by the total metal ion content (Mm) and expressing it as a percentage. can be done.
- the content of chloride is determined based on the content of metal ions contained in the chloride bath.
- Each of the anode 120 and the cathode 130 can be, for example, rod-shaped, a long band that is used while being moved, a cylinder, a plate-shaped, a cylinder or other columnar shape, or a block-shaped shape.
- a TiAlO conductive material as the anode 120 can be melted and cast to form the anode. If the inter-electrode distance between the anode 120 and the cathode 130 is to be set within a specific range, it is preferable that the shapes of the opposing portions of the anode 120 and the cathode 130 are similar in vertical cross section.
- the anode 120 may also be cylindrical. In this case, since the cylindrical anode 120 surrounds the cathode 130, the area where the electrodeposits are produced can be increased.
- a rod-shaped or column-shaped cathode 130 that is rotatable with a fixed axial position may be used, and a plate-shaped anode 120 having an arc-shaped cross section may be used at the opposed portion. Even in this case, the opposing portions of the anode 120 and the cathode 130 can maintain substantially the same inter-electrode distance.
- the anode 120 may be formed by placing the TiAlO conductive material obtained in the above-described extraction process in the form of granules or powder in a metal basket (for example, made of nickel) having a lower ionization tendency than titanium.
- a metal basket for example, made of nickel
- the basket BK has many through holes, and the shape of the basket BK can be treated as the shape of the anode 120 . Further, even if the cage is electrically connected, the cage BK is less likely to elute into the chloride bath Bf, and mainly the TiAlO conductive material is eluted.
- the portion where the TiAlO conductive material or the like is eluted is sometimes described with the symbol of anode.
- the shape of the cathode 130 at least part of the surface of the cathode 130 on which metallic titanium is deposited may be curved.
- metal titanium can be electrodeposited on the surface of the cathode 130 while rotating the cathode 130, which contributes to miniaturization of the apparatus during continuous production.
- the chloride bath used in the crude electrodeposition step has a bath composition containing the aforementioned predetermined amount of magnesium chloride
- the chloride bath used in the refined electrodeposition step contains the above-mentioned predetermined amount of magnesium chloride. composition, or another bath composition that does not contain the predetermined amount of magnesium chloride.
- the chloride bath used in the refinement electrodeposition step has a bath composition containing a predetermined amount of magnesium chloride as described above, the chloride bath used in the crude electrodeposition step contains the above-mentioned predetermined amount of magnesium chloride.
- 1A to 1D to 5A to 5D can be connected to a power supply (not shown), and a control mechanism for the power supply (not shown). is capable of appropriately switching conductive lines for supplying current according to each anode and each cathode.
- molten salt electrolysis is performed in a chloride bath Bf using an electrode containing a TiAlO conductive material to obtain a titanium-containing electrodeposit.
- a nickel cage BK in which a TiAlO conductive material as an anode 120 is placed and a titanium cathode 130 are placed in a chloride bath Bf.
- the control mechanism then supplies current to the anode 120 and the cathode 130 via the conductive line EL connected to the cage BK and the cathode 130, thereby performing molten salt electrolysis.
- the anodes 120 are placed in separate baskets BK, but the anodes may be placed in, for example, ring-shaped nickel baskets (see FIGS. 6A and 7).
- a rod-shaped or plate-shaped anode obtained by casting a TiAlO conductive material may be directly connected to the conductive wire without using a cage.
- the temperature of the chloride bath Bf may be appropriately changed depending on the components in the chloride bath Bf. That is, the temperature of the chloride bath Bf may be appropriately determined from the viewpoints of maintaining the molten state of the chloride bath and eliminating energy loss due to excessive heating. At this time, it is also possible to appropriately determine the temperature of the chloride bath Bf with reference to the melting point of each metal chloride. To give a specific example, the temperature of the chloride bath Bf is controlled within a range of, for example, 450° C. or higher and 900° C. or lower. Also, the current density of the cathode 130 is not particularly limited and may be determined as appropriate.
- the current density of the cathode 130 may be, for example, 0.01 A/cm 2 or more and 5 A/cm 2 or less.
- a pulse current may be used in which an energization stop period is provided in which the current value is set to zero (that is, no energization), and the energization period and the energization stop period are alternately repeated. good.
- the inside of the electrolytic cell 110 is controlled to an inert atmosphere such as argon, for example, from the viewpoint of suppressing an increase in the content of impurities in the titanium-containing electrodeposit due to the contamination of moisture and the like in the air.
- an inert atmosphere such as argon
- the titanium-containing electrodeposit TC formed on the surface of the cathode 130 taken out from the electrolytic cell 110 is recovered by peeling it off with a cutting tool or the like.
- the titanium-containing electrodeposit TC may be washed and dried as described below. Washing and drying may be performed together with the cathode 130 or may be performed after recovery from the cathode 130 .
- the cathode 130 is removed from the electrolytic cell 110, and the cathode 130 and the titanium-containing electrodeposit TC are washed with an acid and/or water to dissolve and remove the molten salt adhering thereto.
- the titanium-containing electrodeposit TC is peeled off from the surface of the cathode 130 with a cutting tool or the like. Then, the titanium-containing electrodeposit TC is placed in a container and vacuum-dried to evaporate moisture.
- ⁇ Purification electrodeposition step> In the refinement electrodeposition step, after the crude electrodeposition step, molten salt electrolysis is performed in a chloride bath Bf using an electrode containing titanium-containing electrodeposits TC. Thus, by further purifying the titanium-containing electrodeposit TC obtained in the crude electrodeposition step, a metal titanium electrodeposit TP having a further reduced impurity content can be obtained.
- the refining electrodeposition step can be performed one or more times, and from the second time onwards, the metallic titanium electrodeposit obtained last time is used as an electrode. For example, as shown in FIG.
- Molten salt electrolysis is then performed by the control mechanism supplying current to the anode 122 and the cathode 130 via the conductive line EL connected to the cage BK and the cathode 130 .
- the cathode 130 may be the same as the cathode 130 used in the crude electrodeposition step, or may be replaced with a new cathode.
- composition of the chloride bath Bf, the temperature of the chloride bath, and the current density in the refinement electrodeposition step are the same as in the crude electrodeposition step, so the explanation is omitted.
- the titanium-containing anode 122 is exhausted as it is eluted into the chloride bath Bf, and a metallic titanium electrode having a reduced impurity content is deposited on the surface of the cathode 130 .
- a precipitate TP is formed. Then, the control mechanism stops the current supply to end the molten salt electrolysis.
- the metal titanium electrodeposit TP formed on the surface of the cathode 130 taken out from the electrolytic cell 110 is recovered by peeling it off with a cutting tool or the like.
- the titanium metal electrodeposit TP may be subjected to the washing and drying described above in the crude electrodeposition step. Washing and drying may be performed together with the cathode 130 or may be performed after recovery from the cathode 130 . This yields titanium metal with reduced aluminum and oxygen content.
- the purification electrodeposition step is performed once, but in order to further reduce the impurity content and further improve the purity of metallic titanium, the purification electrodeposition step is performed.
- a step may be performed multiple times. More specifically, the obtained metal titanium electrodeposit TP is placed in a nickel cage BK in the electrolytic bath 110, and the control mechanism controls the flow between the metal titanium electrodeposit TP as an anode and the titanium cathode 130. Molten salt electrolysis is performed by supplying a current to . Every time such an operation is repeated, it becomes possible to recover titanium metal in which the aluminum content and the oxygen content are more reliably reduced. However, from the viewpoint of manufacturing cost, the number of repetitions may be appropriately selected.
- the purification electrodeposition step is, for example, one or more and five or less times, and for example, one or more and three or less times.
- composition of metallic titanium According to the refining process described above, it is possible to obtain metallic titanium having an aluminum content of 100 mass ppm or less, an oxygen content of 500 mass ppm or less, and a balance of titanium and unavoidable impurities. These unavoidable impurities are often ore-derived impurities and chloride bath-derived components.
- the composition of metallic titanium here corresponds to the titanium purity of so-called industrial pure titanium, and metallic titanium has a low impurity content, for example, the total impurity content is 3000 mass ppm or less.
- the said aluminum content is 50 mass ppm or less as an upper limit.
- the lower limit of the aluminum content is, for example, 10 mass ppm or more, for example 20 mass ppm or more.
- the upper limit of the oxygen content is, for example, 450 mass ppm or less, for example, 400 mass ppm or less.
- the lower limit of the oxygen content is, for example, 100 mass ppm or more, for example 200 mass ppm or more.
- the nitrogen content is 0.03% by mass or less
- the carbon content is 0.01% by mass or less
- the iron content is 0.010% by mass or less
- magnesium content of 0.05% by mass or less nickel content of 0.01% by mass or less
- chromium content of 0.005% by mass or less silicon content of 0.001% by mass or less
- metallic titanium in which the manganese content is further controlled to 0.05% by mass or less and the tin content is controlled to 0.01% by mass or less.
- the lower limit of the nitrogen content is, for example, 0.002% by mass or more, for example 0.003% by mass or more.
- the upper limit of the nitrogen content is, for example, 0.009% by mass or less, for example, 0.008% by mass or less.
- the lower limit of the carbon content is, for example, 0.0006% by mass or more, for example, 0.0008% by mass or more.
- the upper limit of the carbon content is, for example, 0.008% by mass or less, for example, 0.004% by mass or less.
- the upper limit of the iron content is, for example, 0.005% by mass or less, for example 0.003% by mass or less.
- the lower limit of the magnesium content is, for example, 0.001% by mass or more, for example 0.005% by mass or more.
- the upper limit of the nickel content is, for example, 0.008% by mass or less, for example, 0.004% by mass or less.
- the chromium content is, as a lower limit, 0.0005% by mass or more, for example 0.001% by mass or more.
- the upper limit of the silicon content is, for example, 0.0005% by mass or less.
- the manganese content is, as a lower limit, for example 0.001% by mass or more, for example 0.005% by mass or more.
- the upper limit of the manganese content is, for example, 0.03% by mass or less.
- the upper limit of the tin content is, for example, 0.005% by mass or less, for example 0.003% by mass or less. It is presumed that various pure titanium products and titanium alloy products can be obtained at low cost by using metallic titanium produced according to one embodiment of the present invention.
- FIGS. 1(A) to 1(D) Another embodiment is described below.
- the points that are different from the above-described embodiments will be mainly described. That is, the configurations described in the above embodiments can be appropriately applied to the following embodiments.
- the anode and the cathode are arranged at approximately the same height, but the crude electrodeposition step and the refinement electrodeposition step can be performed even if the arrangement of the anode and the cathode is changed. It is possible.
- an embodiment in which the cathode is arranged on the upper side and the anode is arranged on the lower side will be described below. As shown in FIG.
- an electrolytic device 200 for example, a nickel base BS is placed on the bottom of an electrolytic bath 210, and a TiAlO conductive material as an anode 220 is placed on the base BS. A titanium cathode 230 is placed at a higher position.
- the control mechanism supplies current to the anode 220 and the cathode 230 through the conductive line EL connected to the base BS and the cathode 230, thereby performing molten salt electrolysis (rough electrodeposition step).
- the control mechanism stops the current supply to end the molten salt electrolysis.
- the titanium-containing electrodeposit TC formed on the surface of the cathode 230 taken out from the electrolytic bath 210 is recovered by peeling it off with a cutting tool or the like. Note that the titanium-containing electrodeposit TC may be washed and dried as described above. Next, as shown in FIG.
- a nickel-made base BS and a titanium-containing electrodeposit TC as an anode 222 are placed on the base BS at the bottom of the electrolytic cell 210.
- a titanium cathode 230 is placed at a higher position.
- the control mechanism supplies current to the anode 222 and the cathode 230 through the conductive line EL connected to the base BS and the cathode 230, thereby performing molten salt electrolysis (refining electrodeposition step).
- the control mechanism stops the current supply to end the molten salt electrolysis.
- the cathode 230 is taken out from the electrolytic cell 210, and the metal titanium electrodeposit TP formed on the surface of the cathode 230 is washed, peeled off and dried to obtain metal titanium.
- the embodiment shown in FIG. 3 is an embodiment in which at least part of the electrolytic cell is made of nickel and the part made of nickel is used as the cathode.
- metallic titanium can be produced without taking out the titanium-containing electrodeposit TC from the chloride bath Bf.
- a nickel basket BK in which a TiAlO conductive material as an anode 320 is placed is arranged in the electrolytic device 300 . At this time, by making the material of at least the inner wall of the electrolytic cell 310 nickel, the inner wall serves as the cathode 330 during the molten salt electrolysis.
- the control mechanism supplies current to the anode 320 and the cathode 330 via the conductive wire EL connected to the cage BK and the cathode 330, thereby performing molten salt electrolysis (rough electrodeposition step).
- the control mechanism stops the current supply to end the molten salt electrolysis.
- the nickel basket BK is removed from the chloride bath Bf.
- a titanium cathode 335 is placed in the chloride bath Bf.
- the titanium-containing electrodeposit TC formed on the inner wall surface of the nickel electrolytic bath 310 is used as the anode 322 .
- the control mechanism supplies a current to the anode 322 and the cathode 335 via the conductive wire EL connected to the inner wall of the electrolytic cell 310 and the cathode 335 to perform molten salt electrolysis (refining electrodeposition step). .
- the anode 322 is consumed as the anode 322 is eluted into the chloride bath Bf, and a metallic titanium electrodeposit TP having a reduced impurity content is formed on the surface of the cathode 335. is formed. Then, the control mechanism stops the current supply to end the molten salt electrolysis. Next, the cathode 335 is taken out from the electrolytic bath 310, and the metal titanium electrodeposit TP formed on the surface of the cathode 335 is washed, peeled off and dried to obtain metal titanium.
- metallic titanium can be produced without removing the titanium-containing electrodeposit TC from the chloride bath Bf.
- a nickel basket BK in which a TiAlO conductive material as an anode 420 is placed is placed in an electrolysis device 400 .
- two titanium cathodes 430 and 435 are arranged side by side toward the center from the position where the cage BK is arranged.
- the titanium cathode 430 preferably has a large number of holes having openings on the anode 420 side and the titanium cathode 435 side.
- this hole is not particularly limited, and it may be a through hole with a linear cross section, or a hole with a complicated shape such as that of a porous body.
- molten salt electrolysis is carried out by supplying electric current to the anode 420 and the cathode 430 through the conductive wire EL to the basket BK and the cathode 430 to which the control mechanism is connected (crude electrodeposition step).
- the anode 420 is eluted into the chloride bath Bf, the anode 420 is exhausted, and a titanium-containing electrodeposit TC having a reduced impurity content is deposited on the surface of the cathode 430. is formed.
- the control mechanism stops the current supply to end the molten salt electrolysis.
- the cathode 430 (see FIG. 4(B)) having the titanium-containing electrodeposit TC formed on the surface is switched to the anode 424, and the anode whose control mechanism has been switched.
- Molten salt electrolysis is performed by supplying current to 424 and cathode 435 near the center (refining electrodeposition step). At this time, the titanium-containing electrodeposit TC becomes the anode 422 .
- FIG. 4(C) the cathode 430 (see FIG. 4(B)) having the titanium-containing electrodeposit TC formed on the surface is switched to the anode 424, and the anode whose control mechanism has been switched.
- Molten salt electrolysis is performed by supplying current to 424 and cathode 435 near the center (refining electrodeposition step). At this time, the titanium-containing electrodeposit TC becomes the anode 422 .
- the anode 422 and possibly also the anode 424 are depleted as they are eluted into the chloride bath Bf, leaving metal with reduced impurity content on the surface of the cathode 435.
- a titanium electrodeposit TP is formed.
- the control mechanism stops the current supply to end the molten salt electrolysis.
- the cathode 435 is taken out from the electrolytic bath 410, and the metal titanium electrodeposit TP formed on the surface of the cathode 435 is washed, peeled off and dried to obtain metal titanium.
- an electrolytic device 500 is provided with a nickel cage BK in which a TiAlO conductive material as an anode 520 is placed, a titanium cathode 530, and a titanium bipolar electrode 540 in the center. do.
- the titanium bipolar electrode 540 is illustrated as being thick in FIG. 5A, the titanium bipolar electrode 540 may be thin.
- Molten salt electrolysis is performed by a control mechanism supplying current to the anode 520 and the cathode 530 via the conductive line EL connected to the cage BK and the cathode 530 .
- a control mechanism supplying current to the anode 520 and the cathode 530 via the conductive line EL connected to the cage BK and the cathode 530 .
- the anode 520 is consumed, and the titanium-containing electrodeposit TC with reduced impurity content is deposited on the surface of the bipolar electrode 540. Formed on top. Formation of the titanium-containing electrodeposit TC on this bipolar electrode 540 corresponds to the rough electrodeposition step.
- FIG. 5C shows that the cathode 530 side of the bipolar electrode 540 is eluted.
- the bipolar electrode 540 will first elute titanium from the bipolar electrode 540 and then the titanium-containing electrodeposit TC.
- the bipolar electrode 540 and the titanium-containing electrodeposit TC are consumed, and a metal titanium electrodeposit TP with a reduced impurity content is formed on the surface of the cathode 530. (refining electrodeposition step).
- a titanium bipolar electrode is arranged, but instead of the bipolar electrode, for example, a titanium-containing electrodeposit TC obtained by subjecting a TiAlO conductive material to molten salt electrolysis is arranged. This may be a double pole.
- the titanium-containing electrodeposit TC is formed on the surface of the double electrode 540 on the anode 520 side, a hook (not shown) attached to the upper end of the double electrode 540 is hooked with a hanging rod or the like to should be rotated 180 degrees. By doing so, the titanium-containing electrodeposit TC faces the cathode 530 .
- the bipolar electrode and the cathode are described as being made of titanium, but the material can be appropriately changed as long as the electrodeposit can be deposited.
- the bipolar electrode must have conductivity. Therefore, non-conductive materials such as ceramics cannot be used for the bipolar electrodes.
- the bipolar poles may be non-movable or movable as described above.
- electrodeposition and elution can occur simultaneously in the case of a non-movable bipolar electrode, it is preferable to have a large number of holes opening to the anode side and the cathode side.
- electrodeposition and elution can proceed separately, so such holes as described above are unnecessary. Rather, by eliminating the pores, it is possible to avoid a situation in which the electrodeposits enter the pores and require a long time for elution.
- a plurality of crude electrodeposition steps and refinement electrodeposition steps have been described. These can be carried out in combination as appropriate. For example, after carrying out the crude electrodeposition step of the embodiment shown in FIGS. It is also possible to carry out a purification electrodeposition step of
- the metallic titanium electrodeposit according to the present invention can be produced by the method for producing metallic titanium described above, and has a reduced impurity content.
- the metal titanium electrodeposit has a low impurity content, for example, the total impurity content is 3000 ppm by mass or less.
- the metal titanium electrodeposit has an aluminum content of 5 mass ppm or more and 100 mass ppm or less and an oxygen content of 100 mass ppm or more and 500 mass ppm or less, and the balance is titanium and unavoidable It has a composition consisting of impurities. These unavoidable impurities are often ore-derived impurities and chloride bath-derived components.
- the content of each of the above components can also be within the range described above in "Composition of metallic titanium".
- the above-described unavoidable impurities and the like may be specified more specifically. That is, the nitrogen content in the metal titanium electrodeposit is 0.001% by mass or more and 0.03% by mass or less, and the carbon content is 0.0004% by mass or more and 0.01% by mass or less, The iron content is 0.010% by mass or less, the magnesium content is 0.05% by mass or less, the nickel content is 0.01% by mass or less, and the chromium content is 0.005% by mass or less.
- the silicon content may be 0.001% by mass or less, the manganese content may be 0.05% by mass or less, and the tin content may be 0.01% by mass or less.
- the content of each of the above components can also be within the range described above in "Composition of metallic titanium".
- the method for measuring the impurity content of each component of the metal titanium electrodeposit is the same as the method for measuring the impurity content of each component of the TiAlO conductive material described above.
- the particle size distribution of the metal titanium electrodeposit is not particularly limited, but the proportion of the metal titanium electrodeposits that are above the sieve when sieved through a 300 ⁇ m mesh sieve is, on a mass basis, a lower limit of, for example, 60% or more. Yes, and for example 70% or more.
- the upper limit of the ratio of the metal titanium electrodeposits to be on the sieve is, for example, 90% or less, for example, 85% or less.
- the metal titanium electrodeposit is pulverized to such an extent that it does not crush or pulverize, and is sieved using a sieve with an opening of 300 ⁇ m.
- the TiAlO conductive material used in Examples and Comparative Examples to be described later is a chemical blend containing titanium ore containing titanium oxide, aluminum, and calcium fluoride as a separating agent. After heat treatment under the conditions shown below. , was prepared by post-treatment according to a known method (extraction step). In the extraction process, the amount of titanium ore, aluminum and separating agent charged was adjusted so that the molar ratio of titanium oxide:aluminum:separating agent was within the range of 3:4-7:2-6.
- a measurement sample collected from the TiAlO conductive material was subjected to ICP emission spectrometry (PS3520UVDDII, manufactured by HITACHI) for metal components, inert gas fusion-infrared absorption method (TC-436AR, manufactured by LECO) for oxygen, and The impurity content of each component was measured by an inert gas fusion-thermal conductivity method (TC-436AR, manufactured by LECO) and a combustion-infrared absorption method for carbon (EMIA-920V2, manufactured by Horiba, Ltd.). This method of measuring the content of the component is also applied to titanium-containing electrodeposits, metal titanium, and metal titanium electrodeposits.
- ICP emission spectrometry PS3520UVDDII, manufactured by HITACHI
- TC-436AR inert gas fusion-infrared absorption method
- EMIA-920V2 combustion-infrared absorption method for carbon
- Example 1> (Crude electrodeposition) An electrolytic device 600 having the configuration shown in FIGS. 6A and 7 was used. The dimensions and shape of the bath portion of the electrolytic cell 610 of the electrolyzer 600 were 300 mm ⁇ 570 mm deep. Next, 30 kg of magnesium chloride (see Table 3) was put into the electrolytic bath 610 of the electrolyzer 600 and dissolved to obtain a chloride bath Bf. Next, an annular nickel cage BK in which an anode 620 made of 5000 g of TiAlO conductive material was placed was placed. A titanium round bar with a diameter of 50 mm ⁇ 300 mm was prepared as the cathode 630 . The anode 620 and the cathode 630 were arranged such that the height direction of the anode 620 and the cathode 630 was substantially parallel to the depth direction of the chloride bath.
- a control mechanism supplied electric current to the anode 620 and the cathode 630 through a conductive line EL connected to the anode 620 and the cathode 630 to perform molten salt electrolysis in the chloride bath Bf. Seven hours after the start of the current supply, the control mechanism stopped the current supply. Incidentally, as shown in FIG. 6(B), a titanium-containing electrodeposit TC deposited over the entire surface of the cathode 630 was obtained.
- the cathode 630 was pulled up from the electrolytic bath 610, and the cathode 630 and the titanium-containing electrodeposit TC were washed with water to remove adhering molten salt.
- a titanium-containing electrodeposit TC containing metallic titanium was peeled off from the cathode 630 with a cutting tool and recovered. Moisture was evaporated from the titanium-containing electrodeposit TC by vacuum separation.
- a control mechanism supplied electric current to the anode 622 and the cathode 630 via a conductive line EL connected to the anode 622 and the cathode 630 to perform molten salt electrolysis in the chloride bath Bf. Two hours after the start of the current supply, the control mechanism stopped the current supply. In addition, as shown in FIG. 6(D), a metal titanium electrodeposit TP deposited over the entire surface of the cathode 130 was obtained.
- the cathode 130 was pulled up from the electrolytic cell 110, and the cathode 130 and the metal titanium electrodeposit TP were pickled and then washed with water to remove the adhering molten salt.
- the metal titanium electrodeposit TP was peeled off from the cathode 130 with a cutting tool and collected. Moisture was evaporated from the metal titanium electrodeposit TP by vacuum separation.
- Example 2 to 6 and Comparative Examples 1 to 3 were carried out in the same manner as in Example 1, except that the chloride bath shown in Table 3 was used. Note that only Example 6 was subjected to the refinement electrodeposition step twice. After the electrodeposits prepared in each step were washed with water and vacuum-dried in the same manner as in Example 1, the content of impurities and the percentage of sieved deposits were measured. The results are shown in Tables 4 and 5, respectively.
- the metal titanium electrodeposit TP finally obtained by molten salt electrolysis using a TiAlO conductive material having an aluminum content of 11.6 mass% and an oxygen content of 10.3 mass%
- the aluminum content was below 100 ppm by weight and the oxygen content could be reduced to below 500 ppm by weight. That is, it was confirmed that at least one of the chloride bath used for crude electrodeposition and the chloride bath used for refined electrodeposition contained 30 mol % or more of magnesium chloride. . Therefore, it is presumed that high-purity titanium metal can be produced by using such a titanium metal electrodeposit.
- Example 1 the chloride bath used in crude electrodeposition and the chloride bath used in refined electrodeposition contained 100 mol% magnesium chloride, so that It is speculated that the aluminum content and oxygen content could be reduced more reliably. In addition, it is presumed that the aluminum content and the oxygen content in the metal titanium electrodeposit TP could be more reliably reduced by performing the refinement electrodeposition multiple times in Example 6. On the other hand, in Comparative Examples 1 to 3, neither the chloride bath used for crude electrodeposition nor the chloride bath used for refined electrodeposition contained 30 mol % or more of magnesium chloride. Therefore, in Comparative Examples 1 to 3, it is presumed that the aluminum content could not be reduced satisfactorily.
- a method for producing metallic titanium comprising a refining step of refining a TiAlO conductive material containing titanium, aluminum, and oxygen,
- the refining step includes a crude electrodeposition step of obtaining a titanium-containing electrodeposit by performing molten salt electrolysis using an electrode containing the TiAlO conductive material in a chloride bath; After the rough electrodeposition step, one or more refinement electrodeposition steps of performing molten salt electrolysis using an electrode containing the titanium-containing electrodeposit in a chloride bath,
- a method for producing metallic titanium wherein at least one of the chloride bath used in the crude electrodeposition step and the chloride bath used in the refined electrodeposition step contains 30 mol % or more of magnesium chloride.
- a metal titanium electrodeposit A metal titanium electrodeposit having an aluminum content of 5 mass ppm or more and 100 mass ppm or less and an oxygen content of 100 mass ppm or more and 500 mass ppm or less.
- Nitrogen content is 0.001% by mass or more and 0.03% by mass or less
- carbon content is 0.0004% by mass or more and 0.01% by mass or less
- iron content is 0.010% by mass or less wherein the magnesium content is 0.05% by mass or less, the nickel content is 0.01% by mass or less, the chromium content is 0.005% by mass or less, and the silicon content is 0.001% by mass % or less, a manganese content of 0.05% by mass or less, and a tin content of 0.01% by mass or less, the metal titanium electrodeposit according to [10].
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
本明細書において、「金属チタン電析物」は、外観目視で概略粒状であり、ミクロな形状を観察すると樹枝状や多面体状の微細粒が連なった立体的形状を有することが多い(図9(B)参照)。
本発明に係る金属チタンの製造方法の一実施形態においては、不純物含有量を低減する精錬工程を含む。なお、精錬工程前に、抽出工程を更に含んでよい。
以下、各工程の一例を説明する。
抽出工程は、例えば酸化チタンを含有するチタン鉱石と、アルミニウムと、分離剤とを含む化学ブレンドを加熱処理してTiAlO導電材を得る。当該加熱処理により以下の反応が利用されると考えられる。すなわち、当該抽出工程においては、アルミニウムで金属酸化物である酸化チタンの還元を行うテルミット反応を利用している。化学ブレンドとは、TiAlO導電材を得るための原料混合物である。チタン鉱石中の酸化チタンは、導電性が低いことから溶融塩電解に適さない。そのため、チタン鉱石を用いて当該抽出工程を行い、TiAlO導電材を作製することができる。TiAlO導電材は比較的高い導電性を有するので、金属チタンを製造するための後述する精錬工程に用いることができる。なお、当該抽出工程においては、上記特許文献1(特表2015-507696号公報)等に記載された公知の方法を適宜参照してTiAlO導電材を作製すればよい。
チタン鉱石中の酸化チタン含有量は限定されないが、例えば50質量%以上であり、例えば80質量%以上であり、例えば90質量%以上である。なお、チタン鉱石は、採掘により得られたもののみならず、いわゆるアップグレード処理されたものも含まれる。チタン鉱石における酸化チタン含有量が少ない場合はリーチング等適宜の処理を行って酸化チタン含有量を向上させる(すなわち、アップグレード処理する)ことがある。
分離剤は、抽出工程においてTiAlO導電材と副生物であるスラグとを分離する目的で化学ブレンドに混合される。このような機能を有するものを分離剤として使用可能であるが、分離剤はフッ化カルシウム、酸化カルシウム及びフッ化ナトリウムから選ばれる1種以上を含むことが好ましく、その中でも加熱処理中の反応における形態の観点から、フッ化カルシウムを含有することがより好ましい。よって、分離剤はフッ化カルシウム単独であってもよい。
上記化学ブレンドを作製するために、チタン鉱石とアルミニウムと分離剤との投入量が、モル比で例えば酸化チタン:アルミニウム:分離剤=3:4~7:2~6になるように調整する。これにより、化学ブレンドに含まれる酸化チタンとアルミニウムと分離剤とのモル比は、3:4~7:2~6である。
加熱処理条件について、不活性ガス(例えばAr)雰囲気下、容器内部の温度が例えば1500℃以上かつ1800℃以下である。また、容器の内壁の材質としては、耐熱性等の観点から、カーボンやセラミック等が挙げられる。
抽出工程で得られたTiAlO導電材は、例えばチタン含有量が50質量%以上かつ80質量%以下であり、アルミニウム含有量が3質量%以上かつ40質量%以下であり、酸素含有量が0.2質量%以上かつ40質量%以下である。
なお、上記チタン含有量は下限値として例えば60質量%以上である。
また、上記アルミニウム含有量は下限値として例えば5質量%以上である。一方、上記アルミニウム含有量は上限値として例えば30質量%以下、例えば20質量%以下である。
また、上記酸素含有量は下限値として例えば3質量%以上、例えば5質量%以上、また例えば8質量%以上である。一方、上記酸素含有量は上限値として例えば30質量%以下、例えば20質量%以下である。
本発明においてはアルミニウム含有量及び酸素含有量が高いTiAlO導電材であっても、そのような不純物含有量が少なく純度が高い金属チタンを得ることができる。
なお、TiAlO導電材の各成分の不純物含有量の測定方法については、本明細書の実施例に記載の測定方法を採用可能である。
当該TiAlO導電材の比抵抗は、金属チタンを製造するための後述する精錬工程において溶融塩電解を効率良く実施する観点から、上限値として例えば1×10-4Ω・m以下であってよい。また、当該TiAlO導電材は適度に通電可能であればよいので、比抵抗の下限値は例えば1×10-8Ω・m以上であってよい。上記比抵抗は、下限値として例えば1×10-7Ω・m以上であってよく、例えば5×10-7Ω・m以上であってよい。
なお、TiAlO導電材の比抵抗の測定方法については、本明細書の実施例に記載の測定方法を採用可能である。
精錬工程は、不純物含有量を低減するため、電解装置を用いてTiAlO導電材を精錬する。すなわち、当該精錬工程では、TiAlO導電材中の主にアルミニウムおよび酸素、さらにはその他の鉱石由来元素等の含有量を低減することで、純度の高い金属チタンを得る。当該精錬工程は、粗電析ステップと、粗電析ステップで得られたチタン含有電析物を含む電極を用いて溶融塩電解する1回以上の精製電析ステップとを有する。
一実施形態においては、種々の電解装置を用いることができる。図1(A)に示す電解装置100の一例はバッチ式であり、塩化物浴Bfを貯留する密閉容器状の電解槽110と、塩化物浴Bfに浸漬させて配置する陽極120及び陰極130を含む電極と、陽極120及び陰極130に導電線を介して接続されて、該陽極120及び該陰極130に通電する電源(不図示)とを備えるものが挙げられる。図示は省略するが、電解装置100は陽極および陰極を設置し、或いは、取り出す等のために通常は開閉可能の構造である。また、図示は省略するが、塩化物浴Bf上の空間を不活性ガス雰囲気とするために、電解装置100はガスの給排気を行う開口を備える。また、図示は省略するが、電解装置100は適宜の箇所にヒータを備え、加熱により塩化物浴Bfの溶融状態を維持できる。なお、電解槽110の材質は耐熱性及び耐腐食性を有していれば特に限定されるものではない。また、電極には、複極を更に含むこともある。
塩化物浴を構成する溶融塩は、アルカリ金属塩化物及びアルカリ土類金属塩化物を例えば70mol%以上、例えば80mol%以上、例えば90mol%以上含有することがある。なお、本発明において、塩化物浴に替えてフッ化物浴、臭化物浴及びヨウ化物浴を使用しない理由としては、高腐食性、高環境負荷及び高コスト等が挙げられる。
粗電析ステップで使用される塩化物浴及び精製電析ステップで使用される塩化物浴のうち少なくとも1つの塩化物浴Bfは、酸素含有量のみならずアルミニウム含有量をも低減して金属チタンを製造する観点から、30mol%以上の塩化マグネシウムを含有する。塩化マグネシウム含有量が多い塩化物浴を使用することでアルミニウム含有量の低減効果が増大しうる。なお、例えば、粗電析ステップで使用される塩化物浴のみが上記所定量の塩化マグネシウムを含有してよく、又は1回以上実施される精製電析ステップで使用される塩化物浴のうち少なくとも1つの塩化物浴のみが上記所定量の塩化マグネシウムを含有してもよい。また、粗電析ステップで使用される塩化物浴及び1回以上実施される精製電析ステップで使用される塩化物浴のうち少なくとも1つの塩化物浴のみが上記所定量の塩化マグネシウムを含有してもよい。
また、電析物のアルミニウム含有量及び酸素含有量をより確実に低減する観点から、粗電析ステップで使用される塩化物浴及び1回以上実施される精製電析ステップで使用される塩化物浴のうち少なくとも1つの塩化物浴が、それぞれ上記所量の塩化マグネシウムを含有してもよい。
上記の所定量塩化マグネシウムを含有する塩化物浴は電析物中のアルミニウム含有量および酸素含有量の低減に有効であり、下限値として、当該塩化マグネシウム含有量は、好ましくは30mol%以上であり、より好ましくは50mol%以上であり、更に好ましくは80mol%以上であり、更に好ましくは85mol%以上であり、更に好ましくは90mol%以上である。なお、上記塩化物浴には、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、塩化ルビジウム(RbCl)、塩化セシウム(CsCl)、塩化ベリリウム(BeCl2)、塩化カルシウム(CaCl2)、塩化ストロンチウム(SrCl2)、塩化バリウム(BaCl2)から選択される1種以上の金属塩化物を例えば70mol%以下、また例えば50mol%以下、また例えば20mol%以下、また例えば15mol%以下、また例えば10mol%以下更に含有してもよい。さらに、塩化物浴中に任意成分として低級塩化チタンを含ませてよく、該低級塩化チタンとしては二塩化チタン及び三塩化チタン等が挙げられる。なお、該低級塩化チタンの含有量は、適宜調整すればよい。
上記のような塩化物は、操業温度等を考慮して、その具体的な塩の種類や含有量を適宜決定することができる。なお、上記モル基準の含有量は、ICP発光分析及び原子吸光分析により測定する。
ここで、上記のモル基準の含有量は以下のようにして計算する。塩化物浴から採取した溶融塩のサンプルを固化させた後、そのサンプルの成分を、ICP発光分析及び原子吸光分析することにより、塩化物浴Bf中の各金属イオンのモル基準の含有量を算出する。仮に塩化物浴中にMgCl2、NaCl、KCl、CaCl2、LiCl、TiCl2及びTiCl3が含まれていた場合、NaとKは原子吸光分析、その他はICP発光分析により、金属イオンの含有量の合計(Mm)は、マグネシウムイオンの含有量、ナトリウムイオンの含有量、カリウムイオンの含有量、カルシウムイオンの含有量、リチウムイオンの含有量及び、チタンイオンの含有量を足し合わせて求める。塩化物浴中に含まれる各成分のモル基準の含有量は、当該各成分の金属イオンの含有量を当該金属イオンの含有量の合計(Mm)で除して百分率で表すことにより算出することができる。以上、塩化物浴に含まれる金属イオンの含有量に基づき、塩化物の含有量を求める。
陽極120及び陰極130はそれぞれ、例えば、棒状、動かしながら使用する長尺の帯状、筒状、板状若しくは、円柱その他の柱状又は、塊状等のものとすることができる。例えば、陽極120としてのTiAlO導電材を溶解及び鋳造し陽極を形成することができる。なお、陽極120と陰極130の電極間距離を特定の範囲内に設定したい場合は、陽極120と陰極130の対向部位に対する垂直断面での形状を相似形とすることが好ましい。例えば、筒状、棒状、又は柱状の陰極130を使用し、その外側に陽極120を配置する場合、陽極120も筒状としてよい。この場合、筒状の陽極120が陰極130を取り囲むので電析物が生成する面積を大きくできる。また、軸位置を固定して回転可能とした棒状または柱状の陰極130を使用し、対向部位に断面弧状の板状陽極120を使用してよい。この場合でも、陽極120と陰極130の対向部分はほぼ同じ電極間距離を維持できる。
また、チタンよりイオン化傾向が小さい金属製の籠(例えばニッケル製)の中に、先述した抽出工程で得られたTiAlO導電材を粒状や粉状として載置して陽極120を構成してもよい。この場合、籠BKは多数の貫通孔を有し、籠BKの形状を陽極120の形状として取り扱い可能である。また、当該籠に導通を図ったとしても、塩化物浴Bf内に該籠BKが溶出しにくく、主にTiAlO導電材が溶出される。図面を用いた説明では、理解容易のため、TiAlO導電材等が溶出される部分に陽極の符号を付して説明することがある。
また、陰極130の形状としては、金属チタンが析出するその陰極130の表面の少なくとも一部が、曲面形状であってもよい。このような陰極130を使用すると該陰極130を回転等作動させながら金属チタンを陰極130の表面に電析させることができ連続生産時の装置小型化に貢献する。
なお、粗電析ステップにおいて用いられる塩化物浴が先述した所定量の塩化マグネシウムを含有する浴組成である場合、精製電析ステップにおいて用いられる塩化物浴は上記所定量の塩化マグネシウムを含有する浴組成であってよく、上記所定量の塩化マグネシウムを含有しない別の浴組成でもよい。また、精製電析ステップにおいて用いられる塩化物浴が先述した所定量の塩化マグネシウムを含有する浴組成である場合、粗電析ステップにおいて用いられる塩化物浴は上記所定量の塩化マグネシウムを含有する浴組成であってよく、上記所定量の塩化マグネシウムを含有しない別の浴組成でもよい。
また、図1(A)~(D)乃至図5(A)~(D)に示される各導電線は、電源(不図示)にそれぞれ接続可能であり、該電源の制御機構(不図示)は、各陽極及び各陰極に応じて電流を供給する導電線を適宜切り替えることができるものとする。
粗電析ステップは、塩化物浴BfでTiAlO導電材を含む電極を用いて溶融塩電解することでチタン含有電析物を得る。
例えば、粗電析ステップにおいて、図1(A)に示すように、陽極120としてのTiAlO導電材が載置されたニッケル製籠BKと、チタン製陰極130とを塩化物浴Bfにそれぞれ配置する。次いで、制御機構が籠BK及び陰極130に接続された導電線ELを介して該陽極120及び該陰極130に電流を供給することで、溶融塩電解を実施する。
なお、図面上、別々の籠BKにそれぞれ陽極120を載置しているが、例えば、円環状のニッケル製籠に陽極を載置してもよい(図6(A)及び図7参照)。また、籠を使用せずに、TiAlO導電材を鋳造することで得られた棒状又は板状等の陽極を直接、導電線に接続してもよい。
塩化物浴Bfの温度は該塩化物浴Bf内の成分次第で適宜変更すればよい。すなわち、塩化物浴が溶融状態を維持できるようにする、過度の加熱によるエネルギーロスを省く、等の観点から塩化物浴Bfの温度を適宜決定すればよい。この際、各金属塩化物の融点を参考として塩化物浴Bfの温度を適宜決定することも可能である。塩化物浴Bfの温度について、あえて具体例を挙げると、例えば450℃以上かつ900℃以下の範囲内に制御される。
また、陰極130の電流密度は特に限定されず適宜決定すればよい。陰極130の電流密度は、例えば0.01A/cm2以上かつ5A/cm2以下としてよい。陰極130の電流密度は、式:電流密度(A/cm2)=電流(A)÷電解面積(cm2)により算出することができる。ここで、電解面積については、たとえば円筒状の表面を有する陰極の場合、式:電解面積(cm2)=陰極浸漬表面積=陰極直径(cm)×π×陰極高さ(cm)で算出する。
なお、電極に流す電流を、連続的に流すこととする他、電流値をゼロ(すなわち通電しない)にする通電停止期間が設けられて通電期間と通電停止期間が交互に繰り返されるパルス電流としてもよい。
一例として、電解槽110から陰極130を取り出し、その陰極130及びチタン含有電析物TCを酸洗浄及び/又は水洗浄でそれぞれに付着した溶融塩を溶解させて除去する。次いで、陰極130表面からチタン含有電析物TCを切削工具等で剥がす。そして、チタン含有電析物TCを容器に入れて水分等を蒸発させるため真空乾燥する。
精製電析ステップは、粗電析ステップ後、塩化物浴Bfでチタン含有電析物TCを含む電極を用いて溶融塩電解する。これにより、粗電析ステップで得られたチタン含有電析物TCを更に精製することで、不純物含有量が更に低減された金属チタン電析物TPが得られる。精製電析ステップは1回以上実施することができ、2回目以降は、前回得られた金属チタン電析物を電極として用いる。
例えば、図1(C)に示すように、陽極122としてのチタン含有電析物TCが載置されたニッケル製籠BKと、チタン製陰極130とを塩化物浴Bfにそれぞれ配置する。次いで、制御機構が籠BK及び陰極130に接続された導電線ELを介して該陽極122及び該陰極130に電流を供給することで、溶融塩電解を実施する。なお、当該陰極130は、粗電析ステップで使用した陰極130と同じでもよく、新たな陰極に交換してもよい。
これにより、アルミニウム含有量及び酸素含有量が低減された金属チタンが得られる。
上記精錬工程によれば、アルミニウム含有量が100質量ppm以下、酸素含有量が500質量ppm以下、残部チタン及び不可避的不純物からなる組成に制御された金属チタンを得ることができる。この不可避的不純物は、鉱石由来の不純物や、塩化物浴由来の成分であることが多い。ここでいう金属チタンは、その組成がいわゆる工業用純チタンのチタン純度に相当し、金属チタンはその不純物含有量が少なく、例えば不純物含有量の合計は3000質量ppm以下である。
なお、上記アルミニウム含有量は上限値として例えば50質量ppm以下である。一方、上記アルミニウム含有量は下限値として例えば10質量ppm以上、例えば20質量ppm以上である。
また、上記酸素含有量は上限値として例えば450質量ppm以下、例えば400質量ppm以下である。一方、上記酸素含有量は下限値として例えば100質量ppm以上、例えば200質量ppm以上である。
また、更なる一実施形態において、上述した不可避的不純物等をさらに具体的に特定した場合、窒素含有量が0.03質量%以下、炭素含有量が0.01質量%以下、鉄含有量が0.010質量%以下、マグネシウム含有量が0.05質量%以下、ニッケル含有量が0.01質量%以下、クロム含有量が0.005質量%以下、シリコン含有量が0.001質量%以下、マンガン含有量が0.05質量%以下、スズ含有量が0.01質量%以下に更に制御された金属チタンを得ることもできる。
なお、上記窒素含有量は、下限値として例えば0.002質量%以上、例えば0.003質量%以上である。一方、上記窒素含有量は上限値として例えば0.009質量%以下、例えば0.008質量%以下である。
また、上記炭素含有量は、下限値として例えば0.0006質量%以上、例えば0.0008質量%以上である。一方、上記炭素含有量は、上限値として例えば0.008質量%以下であり、例えば0.004質量%以下である。
また、上記鉄含有量は、上限値として例えば0.005質量%以下、例えば0.003質量%以下である。一方、上記マグネシウム含有量は、下限値として例えば0.001質量%以上、例えば0.005質量%以上である。
また、上記ニッケル含有量は、上限値として例えば0.008質量%以下、例えば0.004質量%以下である。
また、上記クロム含有量は、下限値として例えば0.0005質量%以上、例えば0.001質量%以上である。
また、上記シリコン含有量は、上限値として例えば0.0005質量%以下である。
また、上記マンガン含有量は、下限値として例えば0.001質量%以上、例えば0.005質量%以上である。一方、上記マンガン含有量は上限値として例えば0.03質量%以下である。
また、上記スズ含有量は、上限値として例えば0.005質量%以下、例えば0.003質量%以下である。
なお、本発明の一実施形態により製造された金属チタンを使用すれば、種々の純チタン製品やチタン合金製品を安価に得ることができると推察される。
以下に、別の実施形態を説明する。以下で説明する実施形態は、上述の実施形態と相違する点について重点的に説明する。すなわち、上記実施形態で説明した構成は、適宜以下の実施形態に適用することができる。
図1(A)~(D)に示す実施形態は陽極と陰極が概略同じ高さに配置されているが、陽極と陰極の配置を変更しても粗電析ステップおよび精製電析ステップは実施可能である。その一例として、陰極を上側、陽極を下側に配置する実施形態を以下に説明する。図2(A)に示すように、電解装置200に、例えば電解槽210の底部にニッケル製基台BS及び該基台BS上に陽極220としてのTiAlO導電材を載置し、該陽極220よりも高い位置にチタン製陰極230を配置する。次いで、制御機構が基台BS及び陰極230に接続された導電線ELを介して該陽極220及び該陰極230に電流を供給することで、溶融塩電解を実施する(粗電析ステップ)。
次に、図2(B)に示すように、陽極220が塩化物浴Bfに溶出されるにつれ陽極220が消耗され、陰極230の表面上に不純物含有量が低減されたチタン含有電析物TCが形成される。そして、溶融塩電解を終了させるために、制御機構が電流の供給を停止する。
次に、電解槽210から取り出した陰極230の表面上に形成されたチタン含有電析物TCを切削工具で剥がす等して回収する。なお、チタン含有電析物TCに対し、先述した洗浄や乾燥を実施してもよい。
次に、図2(C)に示すように、電解槽210の底部にニッケル製基台BS及び該基台BS上に陽極222としてのチタン含有電析物TCを載置し、該陽極222よりも高い位置にチタン製陰極230を配置する。次いで、制御機構が基台BS及び陰極230に接続された導電線ELを介して該陽極222及び該陰極230に電流を供給することで、溶融塩電解を実施する(精製電析ステップ)。
次に、図2(D)に示すように、チタンを含む陽極222が塩化物浴Bfに溶出されるにつれ陽極222が消耗され、陰極230表面上に不純物含有量が低減された金属チタン電析物TPが形成される。そして、溶融塩電解を終了させるために、制御機構が電流の供給を停止する。
次に、電解槽210から陰極230を取り出し、該陰極230の表面上に形成された金属チタン電析物TPを洗浄、剥離、乾燥を行い、金属チタンを得る。
次に、図3(B)に示すように、陽極320が塩化物浴Bfに溶出されるにつれ陽極320が消耗され、電解槽310の内壁上に不純物含有量が低減されたチタン含有電析物TCが形成される。そして、溶融塩電解を終了させるために、制御機構が電流の供給を停止する。
次に、塩化物浴Bfからニッケル製籠BKを取り出す。
次に、図3(C)に示すように、チタン製陰極335を塩化物浴Bf内に配置する。このとき、ニッケル製電解槽310の内壁表面上に形成されたチタン含有電析物TCを陽極322にする。次いで、制御機構が電解槽310の内壁及び陰極335に接続された導電線ELを介して該陽極322及び該陰極335に電流を供給することで、溶融塩電解を実施する(精製電析ステップ)。
次に、図3(D)に示すように、陽極322が塩化物浴Bfに溶出されるにつれ陽極322が消耗され、陰極335の表面上に不純物含有量が低減された金属チタン電析物TPが形成される。そして、溶融塩電解を終了させるために、制御機構が電流の供給を停止する。
次に、電解槽310から陰極335を取り出し、該陰極335の表面上に形成された金属チタン電析物TPを洗浄、剥離、乾燥を行い、金属チタンを得る。
次に、図4(B)に示すように、陽極420が塩化物浴Bfに溶出されるにつれ陽極420が消耗され、陰極430の表面上に不純物含有量が低減されたチタン含有電析物TCが形成される。そして、溶融塩電解を終了させるために、制御機構が電流の供給を停止する。
次に、図4(C)に示すように、チタン含有電析物TCが表面上に形成された陰極430(図4(B)参照。)から陽極424に切り替え、制御機構が切り替えられた陽極424及び中央部付近の陰極435に電流を供給することで、溶融塩電解を実施する(精製電析ステップ)。このとき、チタン含有電析物TCが陽極422となる。
次に、図4(D)に示すように、陽極422、場合によりさらに陽極424が塩化物浴Bfに溶出されるにつれ陽極が消耗され、陰極435の表面上に不純物含有量が低減された金属チタン電析物TPが形成される。そして、溶融塩電解を終了させるために、制御機構が電流の供給を停止する。
次に、電解槽410から陰極435を取り出し、該陰極435の表面上に形成された金属チタン電析物TPを洗浄、剥離、乾燥を行い、金属チタンを得る。
次に、図5(B)に示すように、陽極520が塩化物浴Bfに溶出されるにつれ陽極520が消耗され、不純物含有量が低減されたチタン含有電析物TCが複極540の表面上に形成される。この複極540へのチタン含有電析物TCの生成が粗電析ステップに該当する。
なお、陽極と陰極の間に電流が流れているので、陽極の溶解と複極の溶解は同時に進行しうる。図5(C)では、複極540の内、陰極530側が溶出することを示している。この実施形態では、複極540は、最初は該複極540由来のチタンを溶出し、その後チタン含有電析物TCを溶出することとなる。
次に、図5(D)に示すように、複極540やチタン含有電析物TCが消耗され、陰極530の表面上に不純物含有量が低減された金属チタン電析物TPが形成される(精製電析ステップ)。次に、溶融塩電解を終了させるために、電流の供給を停止する。
次に、電解槽510から陰極530を取り出し、該陰極530表面上に形成された金属チタン電析物TPを洗浄、剥離、乾燥を行い、金属チタンを得る。
なお、図5(A)においては、チタン製の複極を配置しているが、例えば複極に替えてTiAlO導電材を溶融塩電解することで得られたチタン含有電析物TCを配置してこれを複極としてもよい。
また例えば、陽極520側の複極540の表面上にチタン含有電析物TCが形成された後、該複極540の上端に付いたフック(不図示)に吊るし棒等を引っ掛けて複極540を180度回転すればよい。そうすることで、チタン含有電析物TCが陰極530に向かい合う。
以上の説明において、複極および陰極はチタン製として説明したが、電析物が析出可能であればその材質は適宜変更可能である。なお、複極については導電性を有する必要がある。よって、複極はセラミック等の非導電性材料は使用できない。
複極は上述のとおり、非可動式としてもよいし、可動式としてもよい。非可動式の複極の場合は電析と溶出が同時に起こり得るため、陽極側と陰極側とに開口する孔を多数備えることが好ましい。他方、可動式の複極の場合は電析と溶出とを各々進行させることが可能であるので、上記のような孔は不要である。むしろ、孔を無くすことで孔内に電析物が入り込み溶出に時間がかかるといった事態を回避しうる。
以上のとおり、複数の粗電析ステップ、精製電析ステップを説明した。これらは適宜組合せて実施することも可能であり、例えば図1(A)及び(B)に示す実施形態の粗電析ステップを実施した後、図2(C)及び(D)に示す実施形態の精製電析ステップを実施することも可能である。
本発明に係る金属チタン電析物は、先述した金属チタンの製造方法により製造可能であり、不純物含有量が低減されている。金属チタン電析物はその不純物含有量が少なく、例えば不純物含有量の合計は3000質量ppm以下である。一実施形態において、当該金属チタン電析物は、アルミニウム含有量が5質量ppm以上かつ100質量ppm以下であり且つ酸素含有量が100質量ppm以上かつ500質量ppm以下であり、残部チタン及び不可避的不純物からなる組成を有する。この不可避的不純物は、鉱石由来の不純物や、塩化物浴由来の成分であることが多い。上記各成分の含有量は、さらに、「金属チタンの組成」にて上述した範囲とすることもできる。
なお、金属チタン電析物の各成分の不純物含有量の測定方法については、先述したTiAlO導電材の各成分の不純物含有量の測定方法と同様である。
更なる実施形態において、当該金属チタン電析物の粒度分布は特に限定されないが、300μm目の篩で篩別した際の篩上となる割合が、質量基準で、下限値として例えば60%以上であり、また例えば70%以上である。また、当該金属チタン電析物の前記篩上となる割合は上限値として例えば90%以下であり、例えば85%以下である。
以下、篩別による粒度分布の測定方法の一例を示す。
酸素濃度5体積%以下のアルゴン雰囲気のグローブボックス内で、金属チタン電析物を破砕や粉砕しない程度に解砕し、目開き300μmの篩を用いて篩別する。下記式(1)に示すように、目開き300μmの篩上の金属チタン電析物の質量(A1)を、篩に投入した全質量(Atotal)で除し、割合(α)を百分率で算出する。
α(%)=A1(g)/A(total)×100
まず、後述する実施例および比較例で用いるTiAlO導電材を、酸化チタンを含むチタン鉱石と、アルミニウムと、分離剤としてのフッ化カルシウムとを含む化学ブレンドを下記に示す条件下で加熱処理した後、公知の方法に基づき後処理をして準備した(抽出工程)。当該抽出工程では、チタン鉱石とアルミニウムと分離剤との投入量が、モル比で酸化チタン:アルミニウム:分離剤=3:4~7:2~6の範囲内になるように調整した。当該TiAlO導電材から採取された測定用試料を、金属成分はICP発光分析法(PS3520UVDDII、HITACHI社製)、酸素は不活性ガス融解-赤外線吸収法(TC-436AR、LECO社製)、窒素は不活性ガス融解-熱伝導度法(TC-436AR、LECO社製)、炭素は燃焼-赤外線吸収法(EMIA-920V2、堀場製作所社製)により各成分の不純物含有量を測定した。なお、この成分含有量の測定方法は、チタン含有電析物、金属チタン、金属チタン電析物にも適用する。また、10mm角のブロック形状として採取された別途の測定用試料を2端子測定法(低抵抗計3566-RY、鶴賀電機株式会社製)により比抵抗を測定した。これらの結果を表1に示す。
<TiAlO導電材の製造条件>
チタン鉱石:酸化チタン含有量95質量%
不活性ガス:アルゴンガス
加熱温度:1500℃~1800℃
<実施例1>
(粗電析)
図6(A)及び図7に示した構成を備える電解装置600を使用した。電解装置600の電解槽610の浴部分の寸法形状は、300mmΦ×570mm深さとした。次に、電解装置600の電解槽610内に30kgの塩化マグネシウム(表3参照。)を投入して、これを溶解させて塩化物浴Bfとした。次に、5000gのTiAlO導電材からなる陽極620が載置された円環状のニッケル製籠BKを配置した。また、陰極630としては、径50mm×300mmのチタン丸棒を準備した。なお、陽極620及び陰極630の高さ方向が塩化物浴の深さ方向とほぼ平行になるように、陽極620及び陰極630を配置した。
<電解条件>
電解槽内:Arガス雰囲気
塩化物浴の温度:850℃
電流密度:0.5A/cm2
また、篩別法(目開き300μmの篩を使用)によりチタン含有電析物TCにおける篩上となる割合を測定した。
さらに、チタン含有電析物TCの形状確認のため、カメラで撮影した。また、チタン含有電析物TCの形状確認のため、下記測定条件にてSEM観察した。これらの結果を図8(A)及び図8(B)に示す。
<SEM測定条件>
SEM:型式JSM-7800F、JEOL社製
加速電圧:10kV
倍率:60~1000倍の範囲内
図6(C)に示すように、電解装置600の電解槽610内に30kgの塩化マグネシウム(表3参照。)を投入して、これを溶解させて塩化物浴Bfとした。次に、500gのチタン含有電析物TCからなる陽極622が載置された円環状のニッケル製籠BKを配置した。また、陰極630としては、径50mm×300mmのチタン丸棒を準備した。なお、陽極622及び陰極630の高さ方向が塩化物浴の深さ方向とほぼ平行になるように、陽極622及び陰極630を配置した。
<電解条件>
電解槽内:Arガス雰囲気
塩化物浴の温度:850℃
電流密度:0.5A/cm2
また、篩別法(目開き300μmの篩を使用)により金属チタン電析物TPにおける篩上となる割合を測定した。これらの結果を表5に示す。
さらに、金属チタン電析物TPの形状確認のため、カメラで撮影した。また、金属チタン電析物TPの形状確認のため、下記測定条件にてSEM観察した。これらの結果を図9(A)及び図9(B)に示す。
<SEM測定条件>
SEM:型式JSM-7800F、JEOL社製
加速電圧:10kV
倍率:60~1000倍の範囲内
実施例2~6、比較例1~3においては、表3に示す塩化物浴に変更した点を除き、実施例1と同様にそれぞれ実施した。なお、実施例6のみは精製電析ステップを2回実施した。各ステップで作製した電析物を実施例1と同様に水洗浄及び真空乾燥後、不純物含有量及び篩上となる割合を測定した。その結果を表4及び表5にそれぞれ示す。
実施例1~6において、アルミニウム含有量11.6質量%及び酸素含有量10.3質量%のTiAlO導電材を用いた溶融塩電解により、最終的に得られた金属チタン電析物TP中のアルミニウム含有量は100質量ppm以下であり、且つ酸素含有量は500質量ppm以下まで低減することができた。すなわち、粗電析で使用される塩化物浴及び精製電析で使用される塩化物浴のうち少なくとも1つの塩化物浴が30mol%以上の塩化マグネシウムを含有することが有用であることを確認した。したがって、このような金属チタン電析物を用いれば、純度の高い金属チタンを製造することが可能であると推察される。
特に、実施例1において、粗電析で使用される塩化物浴及び精製電析で使用される塩化物浴が100mol%の塩化マグネシウムを含有していたことで、金属チタン電析物TP中のアルミニウム含有量及び酸素含有量をより確実に低減させることができたと推察される。
また、実施例6において、精製電析を複数回実施したことで、金属チタン電析物TP中のアルミニウム含有量及び酸素含有量をより確実に低減させることができたと推察される。
一方、比較例1~3においては、粗電析で使用される塩化物浴及び精製電析で使用される塩化物浴のいずれも30mol%以上の塩化マグネシウムを含有していなかった。そのため、比較例1~3においては、アルミニウム含有量を良好に低減させることができなかったと推察される。
110、210、310、410、510、610 電解槽
120、122、220、222、320、322、420、422、424、520、620、622 陽極
130、230、330、335、430、435、530、630 陰極
540 複極
Bf 塩化物浴
BK 籠
BS 基台
EL 導電線
TC チタン含有電析物
TP 金属チタン電析物
[1]
チタンと、アルミニウムと、酸素とを含むTiAlO導電材を精錬する精錬工程を含む金属チタンの製造方法であって、
前記精錬工程は、塩化物浴で前記TiAlO導電材を含む電極を用いて溶融塩電解することでチタン含有電析物を得る粗電析ステップと、
該粗電析ステップ後、塩化物浴で前記チタン含有電析物を含む電極を用いて溶融塩電解する1回以上の精製電析ステップとを有し、
前記粗電析ステップで使用される塩化物浴及び精製電析ステップで使用される塩化物浴のうち少なくとも1つの塩化物浴が30mol%以上の塩化マグネシウムを含有する、金属チタンの製造方法。
[2]
前記粗電析ステップで使用される塩化物浴及び精製電析ステップで使用される塩化物浴のうち少なくとも1つの塩化物浴が50mol%以上の塩化マグネシウムを含有する、[1]に記載の金属チタンの製造方法。
[3]
前記粗電析ステップで使用される塩化物浴及び前記精製電析ステップで使用される少なくとも1つの塩化物浴が30mol%以上の塩化マグネシウムをそれぞれ含有する、[1]に記載の金属チタンの製造方法。
[4]
前記粗電析ステップで使用される塩化物浴及び前記精製電析ステップで使用される少なくとも1つの塩化物浴が50mol%以上の塩化マグネシウムをそれぞれ含有する、[1]に記載の金属チタンの製造方法。
[5]
前記精錬工程前に、酸化チタンを含むチタン鉱石と、アルミニウムと、分離剤とを含む化学ブレンドを加熱処理して前記TiAlO導電材を得る抽出工程を更に含む、[1]~[4]のいずれか一つに記載の金属チタンの製造方法。
[6]
前記化学ブレンドに含まれる酸化チタンとアルミニウムと分離剤とのモル比は、3:4~7:2~6である、[5]に記載の金属チタンの製造方法。
[7]
前記分離剤が、フッ化カルシウム、酸化カルシウム及びフッ化ナトリウムから選ばれる1種以上を含有する、[5]又は[6]に記載の金属チタンの製造方法。
[8]
前記金属チタン中の、アルミニウム含有量が100質量ppm以下であり、酸素含有量が500質量ppm以下である、[1]~[7]のいずれか一つに記載の金属チタンの製造方法。
[9]
前記金属チタン中の、窒素含有量が0.03質量%以下であり、炭素含有量が0.01質量%以下であり、鉄含有量が0.010質量%以下であり、マグネシウム含有量が0.05質量%以下であり、ニッケル含有量が0.01質量%以下であり、クロム含有量が0.005質量%以下であり、シリコン含有量が0.001質量%以下であり、マンガン含有量が0.05質量%以下であり、スズ含有量が0.01質量%以下である、[8]に記載の金属チタンの製造方法。
[10]
金属チタン電析物であって、
アルミニウム含有量が5質量ppm以上かつ100質量ppm以下であり、且つ酸素含有量が100質量ppm以上かつ500質量ppm以下である、金属チタン電析物。
[11]
窒素含有量が0.001質量%以上かつ0.03質量%以下であり、炭素含有量が0.0004質量%以上かつ0.01質量%以下であり、鉄含有量が0.010質量%以下であり、マグネシウム含有量が0.05質量%以下であり、ニッケル含有量が0.01質量%以下であり、クロム含有量が0.005質量%以下であり、シリコン含有量が0.001質量%以下であり、マンガン含有量が0.05質量%以下であり、スズ含有量が0.01質量%以下である、[10]に記載の金属チタン電析物。
Claims (11)
- チタンと、アルミニウムと、酸素とを含むTiAlO導電材を精錬する精錬工程を含む金属チタンの製造方法であって、
前記精錬工程は、塩化物浴で前記TiAlO導電材を含む電極を用いて溶融塩電解することでチタン含有電析物を得る粗電析ステップと、
該粗電析ステップ後、塩化物浴で前記チタン含有電析物を含む電極を用いて溶融塩電解する1回以上の精製電析ステップとを有し、
前記粗電析ステップで使用される塩化物浴及び精製電析ステップで使用される塩化物浴のうち少なくとも1つの塩化物浴が30mol%以上の塩化マグネシウムを含有する、金属チタンの製造方法。 - 前記粗電析ステップで使用される塩化物浴及び精製電析ステップで使用される塩化物浴のうち少なくとも1つの塩化物浴が50mol%以上の塩化マグネシウムを含有する、請求項1に記載の金属チタンの製造方法。
- 前記粗電析ステップで使用される塩化物浴及び前記精製電析ステップで使用される少なくとも1つの塩化物浴が30mol%以上の塩化マグネシウムをそれぞれ含有する、請求項1に記載の金属チタンの製造方法。
- 前記粗電析ステップで使用される塩化物浴及び前記精製電析ステップで使用される少なくとも1つの塩化物浴が50mol%以上の塩化マグネシウムをそれぞれ含有する、請求項1に記載の金属チタンの製造方法。
- 前記精錬工程前に、酸化チタンを含むチタン鉱石と、アルミニウムと、分離剤とを含む化学ブレンドを加熱処理して前記TiAlO導電材を得る抽出工程を更に含む、請求項1~4のいずれか一項に記載の金属チタンの製造方法。
- 前記化学ブレンドに含まれる酸化チタンとアルミニウムと分離剤とのモル比は、3:4~7:2~6である、請求項5に記載の金属チタンの製造方法。
- 前記分離剤が、フッ化カルシウム、酸化カルシウム及びフッ化ナトリウムから選ばれる1種以上を含有する、請求項5又は6に記載の金属チタンの製造方法。
- 前記金属チタン中の、アルミニウム含有量が100質量ppm以下であり、酸素含有量が500質量ppm以下である、請求項1~7のいずれか一項に記載の金属チタンの製造方法。
- 前記金属チタン中の、窒素含有量が0.03質量%以下であり、炭素含有量が0.01質量%以下であり、鉄含有量が0.010質量%以下であり、マグネシウム含有量が0.05質量%以下であり、ニッケル含有量が0.01質量%以下であり、クロム含有量が0.005質量%以下であり、シリコン含有量が0.001質量%以下であり、マンガン含有量が0.05質量%以下であり、スズ含有量が0.01質量%以下である、請求項8に記載の金属チタンの製造方法。
- 金属チタン電析物であって、
アルミニウム含有量が5質量ppm以上かつ100質量ppm以下であり、且つ酸素含有量が100質量ppm以上かつ500質量ppm以下である、金属チタン電析物。 - 窒素含有量が0.001質量%以上かつ0.03質量%以下であり、炭素含有量が0.0004質量%以上かつ0.01質量%以下であり、鉄含有量が0.010質量%以下であり、マグネシウム含有量が0.05質量%以下であり、ニッケル含有量が0.01質量%以下であり、クロム含有量が0.005質量%以下であり、シリコン含有量が0.001質量%以下であり、マンガン含有量が0.05質量%以下であり、スズ含有量が0.01質量%以下である、請求項10に記載の金属チタン電析物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023517132A JPWO2022230403A1 (ja) | 2021-04-30 | 2022-03-14 | |
CA3217057A CA3217057A1 (en) | 2021-04-30 | 2022-03-14 | Metal titanium production method and metal titanium electrodeposit |
US18/287,893 US20240191381A1 (en) | 2021-04-30 | 2022-03-14 | Metal Titanium Production Method and Metal Titanium Electrodeposit |
EP22795326.2A EP4332273A1 (en) | 2021-04-30 | 2022-03-14 | Metal titanium production method and metal titanium electrodeposit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021077965 | 2021-04-30 | ||
JP2021-077965 | 2021-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022230403A1 true WO2022230403A1 (ja) | 2022-11-03 |
Family
ID=83848314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011426 WO2022230403A1 (ja) | 2021-04-30 | 2022-03-14 | 金属チタンの製造方法及び金属チタン電析物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240191381A1 (ja) |
EP (1) | EP4332273A1 (ja) |
JP (1) | JPWO2022230403A1 (ja) |
CA (1) | CA3217057A1 (ja) |
WO (1) | WO2022230403A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173065A (ja) * | 1992-12-09 | 1994-06-21 | Japan Energy Corp | Tiの精製方法 |
JP2015507696A (ja) | 2011-12-22 | 2015-03-12 | ユニヴァーサル テクニカル リソース サービシーズ インコーポレイテッド | チタンの抽出および精錬のための装置および方法 |
WO2018159774A1 (ja) * | 2017-03-01 | 2018-09-07 | 国立大学法人京都大学 | チタン箔またはチタン板の製造方法、ならびにカソード電極 |
WO2020044841A1 (ja) * | 2018-08-31 | 2020-03-05 | 東邦チタニウム株式会社 | 金属チタンの製造方法 |
-
2022
- 2022-03-14 CA CA3217057A patent/CA3217057A1/en active Pending
- 2022-03-14 US US18/287,893 patent/US20240191381A1/en active Pending
- 2022-03-14 JP JP2023517132A patent/JPWO2022230403A1/ja active Pending
- 2022-03-14 EP EP22795326.2A patent/EP4332273A1/en active Pending
- 2022-03-14 WO PCT/JP2022/011426 patent/WO2022230403A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173065A (ja) * | 1992-12-09 | 1994-06-21 | Japan Energy Corp | Tiの精製方法 |
JP2015507696A (ja) | 2011-12-22 | 2015-03-12 | ユニヴァーサル テクニカル リソース サービシーズ インコーポレイテッド | チタンの抽出および精錬のための装置および方法 |
WO2018159774A1 (ja) * | 2017-03-01 | 2018-09-07 | 国立大学法人京都大学 | チタン箔またはチタン板の製造方法、ならびにカソード電極 |
WO2020044841A1 (ja) * | 2018-08-31 | 2020-03-05 | 東邦チタニウム株式会社 | 金属チタンの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022230403A1 (ja) | 2022-11-03 |
CA3217057A1 (en) | 2022-11-03 |
EP4332273A1 (en) | 2024-03-06 |
US20240191381A1 (en) | 2024-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fray et al. | Reduction of titanium and other metal oxides using electrodeoxidation | |
JP5226700B2 (ja) | イン・サイチュ生成塩化チタンの金属熱還元法 | |
Tan et al. | Electrochemical sulfur removal from chalcopyrite in molten NaCl-KCl | |
US3114685A (en) | Electrolytic production of titanium metal | |
CA2703400C (en) | Production of tungsten and tungsten alloys from tungsten bearing compounds by electrochemical methods | |
JP3718691B2 (ja) | チタンの製造方法、純金属の製造方法、及び純金属の製造装置 | |
JP2020507011A (ja) | チタン−アルミニウム基合金のためのチタン母合金 | |
JP4763169B2 (ja) | 金属リチウムの製造方法 | |
US20230392273A1 (en) | Method for manufacturing recycled aluminum, manufacturing equipment, manufacturing system, recycled aluminum, and processed aluminum product | |
CN107904626A (zh) | 一种超细钛粉或钛合金粉及其制备方法 | |
JPWO2006098199A1 (ja) | 高融点金属の分離回収方法 | |
WO2022230403A1 (ja) | 金属チタンの製造方法及び金属チタン電析物 | |
WO2023276440A1 (ja) | チタン含有電析物の製造方法及び金属チタン電析物 | |
Kishimoto et al. | Electrorefining of titanium from Bi–Ti alloys in molten chlorides for a new smelting process of titanium | |
JP4198434B2 (ja) | 金属チタンの製錬方法 | |
CN104388986A (zh) | 一种熔盐电解法制备铜镁合金的生产工艺 | |
JP2024064184A (ja) | チタン電析物の製造方法 | |
WO2023007918A1 (ja) | 電析物の製造方法 | |
JP2004360025A (ja) | 直接電解法による金属チタンの製造方法 | |
JP2024032437A (ja) | チタン電析物の製造方法 | |
RU2827173C2 (ru) | Способ получения металлического титана путем восстановления диоксида титана электролизом расплавленной соли | |
WO2020044841A1 (ja) | 金属チタンの製造方法 | |
Haarberg | Electrowinning of Light Metals from Molten Salts Electrolytes | |
JP2024033569A (ja) | チタン箔の製造方法 | |
JP2024063647A (ja) | チタン電析物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22795326 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023517132 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18287893 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3217057 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022795326 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022795326 Country of ref document: EP Effective date: 20231130 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |