[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022222615A1 - 触控基板、显示面板及电子设备 - Google Patents

触控基板、显示面板及电子设备 Download PDF

Info

Publication number
WO2022222615A1
WO2022222615A1 PCT/CN2022/079291 CN2022079291W WO2022222615A1 WO 2022222615 A1 WO2022222615 A1 WO 2022222615A1 CN 2022079291 W CN2022079291 W CN 2022079291W WO 2022222615 A1 WO2022222615 A1 WO 2022222615A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrodes
sub
conductive
electrode
Prior art date
Application number
PCT/CN2022/079291
Other languages
English (en)
French (fr)
Inventor
张顺
曾扬
罗昶
张元其
陈天赐
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/274,177 priority Critical patent/US20240094855A1/en
Publication of WO2022222615A1 publication Critical patent/WO2022222615A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • Embodiments of the present disclosure relate to a touch substrate, a display panel, and an electronic device.
  • the touch structure for realizing the touch function includes a touch electrode structure, and the arrangement of the touch electrode structure is an important factor affecting user experience.
  • At least one embodiment of the present disclosure provides a touch substrate including a base substrate and a plurality of first touch electrodes and a plurality of second touch electrodes on the base substrate; the plurality of touch electrodes
  • the first touch electrodes are arranged along a first direction, each of the first touch electrodes extends along a second direction different from the first direction, and the plurality of second touch electrodes are arranged along the second direction,
  • Each of the second touch electrodes extends along the first direction; each of the first touch electrodes and each of the second touch electrodes are spaced apart and insulated from each other; in a direction perpendicular to the base substrate above, each of the first touch electrodes and the plurality of second touch electrodes respectively overlap each other, and each of the second touch electrodes respectively and the plurality of first touch electrodes overlap each other overlapping, so that a plurality of overlapping regions and a plurality of non-overlapping regions are formed between the plurality of first touch electrodes and the plurality of second touch electrodes; the first touch electrodes and the second touch
  • the conductive grid of the first touch electrodes includes at least one first edge, and the first touch electrodes The at least one first edge in the conductive mesh of the second touch electrode and the at least one first edge in the conductive mesh of the second touch electrode are arranged at intervals in the second direction.
  • each of the first edges in the conductive grid of the first touch electrodes is located in the second direction.
  • the conductive meshes of the second touch electrodes are between two adjacent first edges in the second direction.
  • the conductive mesh further includes a second edge extending along the second direction, and the first edge and the second edge are alternately connected to form the described conductive mesh.
  • the conductive grid of the first touch electrodes in the overlapping region, includes at least one second edge, and the second touch electrodes The conductive grid of the first touch electrode is not provided with a second edge that overlaps with the at least one second edge included in the conductive grid of the first touch electrode in a direction perpendicular to the base substrate.
  • the conductive grid of the second touch electrodes includes at least one second edge
  • the conductive grid of the second touch electrodes includes at least one second edge. At least one second edge is spaced from the at least one second edge in the conductive grid of the first touch electrode in the first direction.
  • the first direction is perpendicular to the second direction
  • the conductive grid is a square conductive grid
  • the first touch electrodes include a plurality of first touch sub-electrodes and at least one first connection electrode, and the plurality of first touch sub-electrodes are along the Arranged in the second direction, the first connection electrodes are located between two adjacent first touch sub-electrodes in the second direction, so that the adjacent two first touch sub-electrodes electrical connection;
  • the second touch electrode includes a plurality of second touch sub-electrodes and at least one second connection electrode, the plurality of second touch sub-electrodes are arranged along the first direction, and the second connection The electrodes are located between two adjacent second touch sub-electrodes in the first direction, so that the two adjacent second touch sub-electrodes are electrically connected;
  • the first connection electrode is connected to the The second connection electrodes are respectively located in different conductive layers relative to the base substrate;
  • the first connection electrodes and the second connection electrodes are at least partially located in the overlapping area and perpendic
  • the first connection electrode includes at least one first connection sub-electrode extending along the second direction
  • the second connection electrode includes at least one second connection sub-electrode extending in the direction; in the overlapping region, adjacent conductive meshes in the first touch electrode in the second direction are connected in sequence along the second direction to form the first connection sub-electrodes, and adjacent conductive meshes in the second touch electrodes in the first direction are sequentially connected along the first direction to form the second connection sub-electrodes .
  • the plurality of first connection sub-electrodes in response to the first connection electrode including a plurality of first connection sub-electrodes, the plurality of first connection sub-electrodes are arranged in sequence along the first direction, The extension directions of the plurality of first connection sub-electrodes are substantially parallel to each other; in response to the second connection electrode including a plurality of second connection sub-electrodes, the plurality of second connection sub-electrodes are sequentially arranged along the second direction , the extension directions of the plurality of second connection sub-electrodes are substantially parallel to each other.
  • the centers of the conductive meshes adjacent to the first connection sub-electrodes in the second direction are approximately located along the on the same straight line extending in the second direction.
  • the touch substrate includes a first conductive layer, an insulating layer and a second conductive layer on the base substrate, and the insulating layer is on the first conductive layer.
  • the first conductive layer and the second conductive layer are spaced apart and insulated from each other in a direction perpendicular to the base substrate by the insulating layer;
  • a touch sub-electrode is located in the second conductive layer, the first connection electrode is located in the first conductive layer, and the first touch sub-electrode is connected to the first touch sub-electrode through a via structure at least penetrating through the insulating layer.
  • a connection electrode is connected; the second touch sub-electrode and the second connection electrode are located on the second conductive layer.
  • the via structure is connected to the corresponding first connection sub-electrode through a plurality of conductive meshes in the corresponding first connection sub-electrode.
  • the area of the area enclosed by the conductive grids in the first touch electrodes in the overlapping area is greater than or equal to that in the non-overlapping area
  • the area of the area enclosed by the area; and/or, the area of the area enclosed by the conductive mesh in the second touch electrode in the overlapping area is greater than or equal to that in the non-overlapping area The area enclosed by the .
  • the arrangement density of the conductive meshes in the first touch electrodes in the overlapping area is less than or equal to that in the non-overlapping area arrangement density; and/or, the arrangement density of the conductive meshes in the second touch electrodes in the overlapping area is less than or equal to the arrangement density in the non-overlapping area.
  • the conductive mesh is a metal mesh.
  • the conductive grid includes a closed grid, and further includes a non-closed grid provided with at least one cutout on an edge of the conductive grid; the first In a touch electrode, the number of notches in the conductive mesh in the non-overlapping area is greater than or equal to the number of notches in the conductive mesh in the overlapping area, and/or the second contact In the control electrode, the number of notches in the conductive grids located in the non-overlapping region is greater than or equal to the number of notches in the conductive grids located in the overlapping region.
  • the conductive meshes in the first touch electrodes located in the overlapping region are closed meshes
  • the second touch electrodes located in the conductive meshes are closed meshes.
  • the conductive meshes in the overlapping regions are closed meshes.
  • the touch substrate is configured to be stacked with a display device, and the display device includes a plurality of pixel units arranged in an array, and each of the pixel units includes a plurality of sub-pixels; one conductive grid corresponds to at least one sub-pixel, and the orthographic projection of the at least one sub-pixel on the base substrate is located around the orthographic projection of the corresponding conductive grid on the base substrate within the formed area.
  • the edge of the conductive grid extends in a folded line shape.
  • the plurality of sub-pixels include a first sub-pixel and a second sub-pixel arranged along the second direction, the first sub-pixel and the second sub-pixel
  • the sub-pixels respectively correspond to one conductive grid; the bending direction of the second edge of the conductive grid corresponding to the first sub-pixel, and the bending direction of the second edge of the conductive grid corresponding to the second sub-pixel
  • the folding directions are arranged opposite to each other in the first direction.
  • the plurality of sub-pixels include a first sub-pixel and a third sub-pixel arranged along the first direction, the first sub-pixel and the third sub-pixel
  • the sub-pixels correspond to one conductive grid respectively; the bending direction of the first edge of the conductive grid corresponding to the first sub-pixel, and the bending direction of the first edge of the conductive grid corresponding to the third sub-pixel
  • the folding directions are arranged opposite to each other in the second direction.
  • the distance between each of the sub-pixels and the corresponding edge or vertex of the conductive mesh is within a preset range, and the preset range is 8 ⁇ m ⁇ 15 ⁇ m.
  • the plurality of sub-pixels are respectively configured to provide light of different colors.
  • the first touch electrodes are touch drive electrodes, and the second touch electrodes are touch sensing electrodes; or, the first touch electrodes The electrodes are touch sensing electrodes, and the second touch electrodes are touch driving electrodes.
  • At least one embodiment of the present disclosure further provides a display panel including a display device and the touch substrate according to any embodiment of the present disclosure, wherein the display device and the touch substrate are stacked.
  • At least one embodiment of the present disclosure further provides an electronic device including the display panel described in any embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of the working principle of a mutual capacitive touch structure
  • FIG. 2 is a schematic plan view of a touch substrate provided by some embodiments of the present disclosure.
  • FIG. 3 is a schematic cross-sectional structure diagram of a touch substrate provided by some embodiments of the present disclosure.
  • FIG. 4A and 4B are partially enlarged schematic diagrams of an example of the region RG1 shown in FIG. 2;
  • FIG. 5 is a partial enlarged schematic diagram of a planar structure of a touch substrate provided by some embodiments of the present disclosure
  • FIG. 6A is a schematic diagram of a first connection electrode provided by some embodiments of the present disclosure.
  • 6B is a schematic plan view of a partial structure of a second conductive layer of a touch substrate provided by some embodiments of the present disclosure
  • FIG. 7 is a schematic plan view of a touch substrate for stacking with a display device according to some embodiments of the present disclosure.
  • FIG. 8A is a partially enlarged schematic diagram of an example of the region RG2 shown in FIG. 7;
  • FIG. 8B is a partially enlarged schematic diagram of an example of the region RG3 shown in FIG. 7;
  • FIG. 9 is a schematic diagram of an arrangement manner of a cutout in a grid-like structure provided by some embodiments of the present disclosure.
  • FIG. 10 is a partially enlarged schematic diagram of another example of the region RG1 shown in FIG. 2;
  • FIG. 11 is a schematic diagram of another first connection electrode provided by some embodiments of the present disclosure.
  • FIG. 12A is a schematic plan view of another touch substrate for stacking with a display device according to some embodiments of the present disclosure
  • FIG. 12B is a partially enlarged schematic diagram of an example of the region RG4 shown in FIG. 12A;
  • FIG. 13A is a partially enlarged schematic diagram of still another example of the region RG1 shown in FIG. 2;
  • FIG. 13B is a schematic diagram of still another first connection electrode provided by some embodiments of the present disclosure.
  • FIG. 14 is a schematic block diagram of a display panel according to some embodiments of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a specific example of a display panel provided by some embodiments of the present disclosure.
  • FIG. 16 is a schematic block diagram of an electronic device according to some embodiments of the present disclosure.
  • the drawings in the present disclosure are not drawn strictly to the actual scale.
  • the first touch electrodes, the second touch electrodes, the first touch sub-electrodes, the second touch sub-electrodes, the first connection electrodes, the The numbers of the second connection electrodes, the connection sub-electrodes, and the conductive meshes are not limited to the numbers shown in the figures, and the specific size and number of each structure can be determined according to actual needs.
  • the drawings described in the present disclosure are only schematic structural diagrams.
  • OLED display panels have the characteristics of self-luminescence, high contrast ratio, low energy consumption, wide viewing angle, fast response speed, can be used for flexible panels, wide operating temperature range, simple manufacturing, etc., and have broad development prospects.
  • various functions in the display panel such as a touch function, a fingerprint recognition function, and the like.
  • forming an on-cell touch control structure in an OLED display panel is an implementation method, which enables the OLED display panel to realize touch control by forming the touch control structure on the packaging film of the OLED display panel. Function.
  • the mutual capacitive touch structure includes a plurality of touch electrodes, and the plurality of touch electrodes include touch driving electrodes Tx and touch sensing electrodes Rx extending in different directions.
  • the touch driving electrodes Tx and the touch sensing electrodes Rx cross each other to form mutual capacitances for touch sensing.
  • the touch driving electrodes Tx are used for inputting excitation signals (eg, touch driving signals), and the touch sensing electrodes Rx are used for outputting touch sensing signals.
  • the capacitance value reflecting the coupling points (for example, intersections) of the horizontal and vertical electrodes can be obtained. detection signal.
  • a finger touches a touch screen such as a cover glass
  • the coupling between the touch driving electrodes Tx and the touch sensing electrodes Rx near the touch point is affected, thereby changing the formation between the two electrodes at the intersection point.
  • the capacitance of the mutual capacitance causes the output touch sensing signal to change. According to the data change amount of the touch sensing signal, the corresponding coordinates of the touch point can be calculated.
  • FIG. 1 is a schematic diagram of the working principle of a mutual capacitive touch structure.
  • the touch driving electrodes Tx are applied with touch driving signals, thereby generating electric field lines E, which are received by the touch sensing electrodes Rx to form a reference capacitance.
  • a finger touches the touch screen SCRN since the human body is a conductor, a part of the electric field lines E generated by the touch driving electrodes Tx are guided to the finger to form Finger Capacitance, which reduces the electric field lines received by the touch sensing electrodes Rx E, so the capacitance value between the touch driving electrodes Tx and the touch sensing electrodes Rx decreases.
  • the touch drive circuit TOUC obtains the size of the capacitance value by touching the sensing electrode Rx, and compares the obtained capacitance value with the reference capacitance to obtain the capacitance value change;
  • the position coordinates of the touch capacitor can be used to calculate the corresponding coordinates of the touch point.
  • the touch substrate includes a base substrate and a plurality of first touch electrodes and a plurality of second touch electrodes on the base substrate; a plurality of first touch electrodes The electrodes are arranged along a first direction, each first touch electrode extends along a second direction different from the first direction, a plurality of second touch electrodes are arranged along the second direction, and each second touch electrode extends along the first direction;
  • Each of the first touch electrodes and each of the second touch electrodes are spaced apart and insulated from each other; in the direction perpendicular to the base substrate, each of the first touch electrodes and the plurality of second touch electrodes respectively overlap each other , each second touch electrode overlaps with a plurality of first touch electrodes respectively, so that a plurality of overlapping regions and a plurality of a non-overlapping area;
  • the first touch electrodes and the second touch electrodes respectively include a grid-like structure formed by a plurality of conductive meshes;
  • the conductive meshes include
  • the conductive mesh of the first touch electrodes in the overlapping area, is not provided with a first edge overlapping with the first edge included in the conductive mesh of the second touch electrodes.
  • the first edge that is, the conductive mesh of the first touch electrode in the overlapping area does not include the first edge, or the conductive mesh of the first touch electrode in the overlapping area includes the first edge
  • the first edge in the conductive grid of the first touch electrode does not overlap with the first edge in the conductive grid of the second touch electrode.
  • the overlapping area between the first touch electrodes and the second touch electrodes in the overlapping area can be reduced, which is beneficial to reduce the overlapping area between the first touch electrodes and the second touch electrodes
  • the size of the capacitance that can be formed in the device shortens the required charging time. Therefore, when the value of the capacitance formed in the overlapping area between the first touch electrode and the second touch electrode changes, the time required to obtain the change in the value of the capacitance can be shortened, thereby improving the touch control.
  • the touch sensitivity and accuracy of the substrate are examples of the substrate.
  • FIG. 2 is a schematic plan view of a touch substrate provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic cross-sectional structure of a touch substrate provided by some embodiments of the present disclosure.
  • the touch substrate 10 includes a base substrate 11 and a plurality of first touch electrodes 100 and a plurality of second touch electrodes 200 located on the base substrate 11 .
  • the plurality of first touch electrodes 100 are arranged along the first direction R1, and each of the first touch electrodes 100 extends along a second direction R2 different from the first direction R1.
  • the plurality of second touch electrodes 200 are arranged along the second direction R2, and each second touch electrode 200 extends along the first direction R1.
  • the included angle between the first direction R1 and the second direction R2 may be set between 70° and 90°, including 70° and 90°, for example, the angle between the first direction R1 and the second direction R2
  • the angle can be 70°, 75°, 80°, 85° or 90°, etc.
  • the specific value of the included angle can be set according to the actual situation, which is not specifically limited by the embodiments of the present disclosure.
  • the first direction R1 may be set to be perpendicular to the second direction R2.
  • the first direction R1 may be the column direction of the sub-pixel array in the display panel or the display device
  • the second direction R2 may be the display panel or the column direction of the sub-pixel array in the display device.
  • the row direction of the sub-pixel array in the display device alternatively, the first direction R1 may be the row direction of the display panel or the sub-pixel array in the display device, and the second direction R2 may be the display panel or the sub-pixel array in the display device.
  • the column direction is not limited by the embodiments of the present disclosure.
  • each of the first touch electrodes 100 and the plurality of second touch electrodes 200 respectively overlap each other, and each of the second touch electrodes 100 overlaps with each other.
  • 200 and the plurality of first touch electrodes 100 are respectively overlapped with each other, so that a plurality of overlapping regions OVR and a plurality of non-overlapping regions are formed between the plurality of first touch electrodes 100 and the plurality of second touch electrodes 200 overlapping area.
  • Each first touch electrode 100 and each second touch electrode 200 are spaced apart and insulated from each other, that is, each first touch electrode 100 is connected to other first touch electrodes 100 and a plurality of second touch electrodes 200 are spaced apart and insulated from each other, and each second touch electrode 200 is spaced and insulated from other second touch electrodes 200 and the plurality of first touch electrodes 100 .
  • the first touch electrodes 100 shown in FIG. 2 and FIG. 3 include first touch sub-electrodes 101 and first connection electrodes 102
  • the second touch electrodes 200 include second touch sub-electrodes
  • the touch substrate provided by some embodiments of the present disclosure will be specifically described, but it should be noted that the embodiments of the present disclosure include but are not limited to this.
  • the first touch electrodes 100 include a plurality of first touch sub-electrodes 101 and a plurality of first connection electrodes 102 , and a plurality of first touch sub-electrodes 102 .
  • the electrodes 101 are arranged along the second direction R2, and the first connection electrodes 102 are located between two adjacent first touch sub-electrodes 101 in the second direction R2, so that the adjacent two first touch sub-electrodes 101
  • the first connection electrodes 102 are electrically connected to each other.
  • the second touch electrodes 200 include a plurality of second touch sub-electrodes 201 and a plurality of second connection electrodes 202.
  • the plurality of second touch sub-electrodes 201 are arranged along the first direction R1, and the second connection electrodes 202 are located in the first direction R1. Between two adjacent second touch sub-electrodes 201 in the direction R1 , so that the two adjacent second touch sub-electrodes 201 are electrically connected to each other through the second connection electrodes 202 .
  • first touch sub-electrodes 101 and the first connection electrodes 102 included in the first touch electrodes 100 shown in FIG. 2 and the second touch sub-electrodes included in the second touch electrodes 200 The numbers of the electrodes 201 and the second connection electrodes 202 are only illustrative, and are not specifically limited by the embodiments of the present disclosure.
  • first touch sub-electrodes 101 in the first touch electrodes 100 and the second touch sub-electrodes 201 in the second touch electrodes 200 shown in FIG. 2 are both rhombus-shaped; and in some other embodiments of the present disclosure, the first touch sub-electrodes 101 and the second touch sub-electrodes 201 may also adopt other regular shapes or irregular shapes such as triangles, rectangles, hexagons, octagons, strips, etc. shape, etc., the embodiments of the present disclosure are not limited thereto.
  • the outlines of the bodies of the first touch sub-electrodes 101 and the second touch sub-electrodes 201 may be the same or different from each other.
  • FIG. 4A and 4B are partially enlarged schematic views of an example of the region RG1 shown in FIG. 2 .
  • FIG. 5 is a partially enlarged schematic diagram of a planar structure of a touch substrate provided by some embodiments of the present disclosure.
  • FIG. 5 shows an enlarged schematic diagram of a part of the planar structure in the region RG1 shown in FIG. 2 .
  • 6A is a schematic diagram of a first connection electrode provided by some embodiments of the present disclosure.
  • FIG. 6A is a schematic diagram of the first connection electrode 102 shown in FIG. 4A and FIG. 4B , and FIG. The planar structure of the first connection electrode 102 in the first conductive layer 310 of the FIG.
  • FIG. 6B is a schematic plan view of a partial structure in the second conductive layer of a touch substrate provided by some embodiments of the present disclosure.
  • FIG. 6B shows the first contact located in the second conductive layer 320 shown in FIG. 3 .
  • FIG. 6B shows the first touch sub-electrodes 101, the second touch sub-electrodes 201 and A schematic diagram of the second connection electrode 202 .
  • a dotted frame is used to roughly illustrate the corresponding part.
  • the dotted frame is only used to represent the approximate positions of the first touch sub-electrodes 101 , the first connection electrodes 102 , the second touch sub-electrodes 201 and the second connection electrodes 202 , and is not used to represent Definition of specific dividing edges or boundary lines for each electrode.
  • the first touch electrodes 100 and the second touch electrodes 200 respectively include grid-like structures formed by a plurality of conductive grids 400 .
  • the outlines of the main bodies and the areas of the regions enclosed by the plurality of conductive grids 400 may be the same or different from each other; in the second touch electrodes 200
  • the outline of the main body and the area of the area enclosed by the plurality of conductive grids 400 may be the same or different from each other, which are not specifically limited by the embodiments of the present disclosure.
  • the first edge EDG1 (eg, the first edge EDG11 ) extending along the first direction R1 in the conductive grid 400 of the first touch electrode 100 and the second touch
  • the first edges EDG1 (eg, the first edges EDG12 ) of the conductive grids 400 of the control electrodes 200 extending along the first direction R1 are spaced apart from each other in the second direction R2, so that the conductive grids 400 of the first touch electrodes 100
  • the orthographic projection of the first edge EDG11 extending along the first direction R1 in the conductive grid 400 of the first touch electrodes 100 on the base substrate 11 and the conduction of the second touch electrodes 200 do not overlap, and have a certain distance (the distance greater than 0) from each other in the second direction R2.
  • the overlapping area between the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR can be reduced, thereby helping to reduce the difference between the first touch electrodes 100 and the second touch electrodes 200 .
  • the size of the capacitance that can be formed in the overlapping region OVR shortens the required charging time. Furthermore, when the value of the capacitance formed in the overlap region OVR between the first touch electrode 100 and the second touch electrode 200 changes, the time required to obtain the change in the value of the capacitance can be shortened, thereby improving the Touch sensitivity and accuracy of the touch substrate 10 .
  • the conductive grid 400 of the first touch electrodes 100 located in the overlapping region OVR includes the first edge EDG11; or, in some other embodiments of the present disclosure, The conductive grid 400 of the first touch electrode 100 located in the overlapping region OVR may also not include the first edge EDG11, thereby avoiding the contact with the first edge EDG12 included in the conductive grid 400 of the second touch electrode 200. overlap occurs.
  • the conductive grid 400 includes first edges EDG1 (eg, first edges EDG11 and EDG12 ) extending along a first direction R1 and second edges EDG2 (eg, first edges EDG11 and EDG12 ) extending along a second direction R2
  • first edges EDG1 and EDG12 extending along a first direction R1
  • second edges EDG2 eg, first edges EDG11 and EDG12
  • the second edges EDG21 and EDG22 ) are alternately connected to form the conductive mesh 400 .
  • the first direction R1 may be perpendicular to the second direction R2 to form the conductive mesh 400 with a square body outline shown in FIGS. 4A to 6B , that is, the conductive mesh 400 is a square conductive mesh.
  • the conductive meshes 400 in the first touch electrodes 100 and the second touch electrodes 200 may also adopt, for example, triangles, rhombuses, hexagons, octagons, strips, etc. Other regular shapes or irregular shapes, etc., are not limited by the embodiments of the present disclosure.
  • the second edge EDG2 (ie, the second edge EDG21 ) of the conductive mesh 400 of the first touch electrode 100 extending along the second direction R2
  • the second edge EDG2 (ie, the second edge EDG22 ) extending along the second direction R2 in the conductive mesh 400 of the second touch electrode 200 is spaced apart from each other in the first direction R1, so that the first touch electrode
  • the second edge EDG21 included in the conductive grid 400 of 100 and the second edge EDG22 included in the conductive grid 400 of the second touch electrode 200 do not overlap in the direction R3 perpendicular to the base substrate 11 .
  • the orthographic projection of the second edge EDG21 extending along the second direction R2 in the conductive grid 400 of the first touch electrode 100 on the base substrate 11 and the conduction of the second touch electrode 200 do not overlap, and have a certain distance (the distance is greater than 0) between them in the first direction R1. Furthermore, the overlapping area between the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR can be further reduced.
  • the conductive grid 400 of the second touch electrodes 200 located in the overlapping region OVR includes the second edge EDG22; or, in some other embodiments of the present disclosure, The conductive grid 400 of the second touch electrode 200 located in the overlapping region OVR may also not include the second edge EDG22 , thereby avoiding contact with the second edge EDG21 included in the conductive grid 400 of the first touch electrode 100 overlap occurs.
  • each first edge EDG11 in the conductive grid 400 of the first touch electrode 100 is located at the edge of the second touch electrode 200 in the second direction R2
  • the conductive mesh 400 is between two adjacent first edges EDG12 in the second direction R2.
  • the first edge EDG11 in the conductive grid 400 of the first touch electrode 100 and the first edge in the conductive grid 400 of the second touch electrode 200 are alternately arranged, that is, in the second direction R2, the orthographic projection of the first edge EDG11 in the conductive mesh 400 of the first touch electrode 100 on the base substrate 11 and the conductive mesh of the second touch electrode 200
  • the first edges EDG12 in the grid 400 are alternately arranged with each other between orthographic projections on the base substrate 11 .
  • the overlapping area between the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR can be reduced, which is beneficial to reduce the difference between the first touch electrodes 100 and the second touch electrodes 200 .
  • the size of the capacitance that can be formed in the overlapping area OVR thereby shortening the required charging time, and improving the stability and reliability of signal transmission on the first touch electrode 100 and the second touch electrode 200, thereby The optimization of the overall performance of the touch substrate 10 is achieved.
  • the first connection electrode 102 and the second connection electrode 202 are at least partially located in the overlapping region OVR, for example, the first connection electrode 102 and the second connection electrode 202 are partially located in In the overlapping region OVR and partly in the non-overlapping region.
  • the first connection electrodes 102 and the second connection electrodes 202 are respectively located in different conductive layers relative to the base substrate 11 , and the first connection electrodes 102 and the second connection electrodes 202 are in a direction R3 perpendicular to the base substrate 11 to each other. Partially overlapping, so that capacitance can be formed in the overlapping region OVR between the first connection electrodes 102 of the first touch electrodes 100 and the second connection electrodes 202 of the second touch electrodes 200 . Furthermore, the touch function of the touch substrate 10 is realized by acquiring the change in the value of the capacitance formed in the overlapping region OVR between the first connection electrode 102 and the second connection electrode 202 .
  • the touch substrate 10 includes a first conductive layer 310 , an insulating layer 330 and a second conductive layer 320 on the base substrate 11 , and the insulating layer 330 is located on the first conductive layer 310 and the second conductive layer 320 .
  • the first conductive layer 310 and the second conductive layer 320 are spaced and insulated from each other in the direction R3 perpendicular to the base substrate 11 by the insulating layer 330 .
  • the first touch sub-electrodes 101 are located in the second conductive layer 320 , the first connection electrodes 102 are located in the first conductive layer 310 , and the first touch sub-electrodes 101 are connected to the first connection electrodes 102 through the via structure HS at least penetrating the insulating layer 330 . connect.
  • the second touch sub-electrodes 201 and the second connection electrodes 202 are both located on the second conductive layer 320 .
  • the second connection electrodes 202 are continuously arranged between two adjacent second touch sub-electrodes 201 .
  • each second connection electrode 202 remains continuous and uninterrupted between two adjacent second touch sub-electrodes 201.
  • the second connection electrode 202 may be connected to two adjacent second touch sub-electrodes 201.
  • the 201 is integrally formed, for example, it can be formed by the same material layer (eg, the second conductive layer 320 ) using the same preparation process.
  • the first connection electrode 102 includes two first connection sub-electrodes 1021 arranged side by side along the first direction R1, and the two first connection sub-electrodes 1021 are located in the Between two adjacent first touch sub-electrodes 101 in the two directions R2. Two ends of each first connection sub-electrode 1021 are respectively connected to the two first touch sub-electrodes 101 through the via structure HS, so as to realize signal transmission between the two first touch sub-electrodes 101 .
  • the number, location and arrangement of the via holes included in the via hole structure HS for connecting the first touch sub-electrodes 101 and the corresponding connection sub-electrodes 1021 are not affected. specific restrictions.
  • the via structure HS for connecting the first touch sub-electrodes 101 and the corresponding first connection sub-electrodes 1021 includes 4 via holes. The holes correspond to the four vertices of one conductive mesh 400, respectively.
  • the via structure used to connect the first touch sub-electrodes 101 and the corresponding first connection sub-electrodes 1021 may also be respectively disposed at four vertices corresponding to the "figure-of-eight" structure formed by two adjacent conductive meshes 400 .
  • four via holes are respectively disposed at four vertices that are not shared with each other in the two adjacent conductive meshes 400 , so as to appropriately increase the number of via holes in the vicinity of the via hole structure HS.
  • each sub-pixel 500 and each vertex and edge of the corresponding conductive mesh 400 (for details, please refer to the corresponding descriptions of the examples shown in FIGS. 12A and 12B later), so as to ensure that the In normal display, the risk of color shift between two adjacent sub-pixels 500 can be reduced or avoided.
  • the via holes included in the via hole structure HS may also adopt other suitable setting methods, etc., and the number of via holes included in the via hole structure HS may also be one, 2, 3, 5, 6 or more, etc., which are not specifically limited in the embodiments of the present disclosure.
  • the first connection electrode 102 includes two first connection sub-electrodes 1021 extending along the second direction R2; and in some other embodiments of the present disclosure, the The first connection electrode 102 may also include only one first connection sub-electrode 1021 extending along the second direction R2, or may include 3, 4, 5 or more first connections extending along the second direction R2 Sub-electrodes 1021, the plurality of first connection sub-electrodes 1021 are arranged in sequence along the first direction R1. The embodiment of the present disclosure does not specifically limit the number of the first connection sub-electrodes 1021 included in the first connection electrode 102 .
  • each of the first connection sub-electrodes 1021 in the overlapping region OVR includes two first edges EDG11 arranged in sequence in the second direction R2; while in the present disclosure
  • the number of the first edge EDG11 included in the overlapping region OVR by each of the first connecting sub-electrodes 1021 may also be different from each other, and the number of the first edge EDG11 included in the overlapping region OVR by one first connecting sub-electrode 1021
  • the number of an edge EDG11 may also be 1, 3, 4 or more, or the first connecting sub-electrode 1021 may not be provided with the first edge EDG11 in the overlapping region OVR. There are no specific restrictions.
  • the two first connection sub-electrodes 1021 are arranged in sequence along the first direction R1, and the extending directions of the two first connection sub-electrodes 1021 are substantially parallel, for example, the two first connection sub-electrodes 1021 are The connection sub-electrodes 1021 are respectively extended substantially along the second direction R2 as a whole.
  • each of the first connection sub-electrodes 1021 is composed of a plurality of conductive meshes 400, and in the overlapping region OVR, the centers of the adjacent conductive meshes 400 in the second direction R2 in the first connection sub-electrodes 1021 are approximately centered are located on the same straight line extending along the second direction R2, so that the first connecting sub-electrodes 1021 form a straight ladder-like conductive structure composed of a plurality of conductive meshes 400 between two adjacent first touch sub-electrodes 101 structure.
  • the widths of the plurality of conductive meshes 400 constituting the first connection sub-electrodes 1021 in the first direction R1 may be the same as each other, thereby improving the consistency and stability of signal transmission on the formed straight-ladder conductive structure.
  • the second connection electrode 202 includes three second connection sub-electrodes 2021 arranged side by side along the second direction R2, for example, each second connection sub-electrode 2021 is composed of The first edges EDG12 of the plurality of conductive meshes 400 adjacent in one direction R1 are connected in sequence, so as to form a linear conductive structure extending substantially along the first direction R1 as a whole, thereby realizing the adjacent ones in the first direction R1 signal transmission between the two second touch sub-electrodes 201.
  • the second connection electrode 202 includes three second connection sub-electrodes 2021 extending along the first direction R1; while in other embodiments of the present disclosure , the second connection electrode 202 may include only one second connection sub-electrode 2021 extending along the first direction R1, or may include 2, 4, 5 or more extending along the first direction R1
  • the plurality of second connection sub-electrodes 2021 are arranged in sequence in the second direction R2. The embodiment of the present disclosure does not specifically limit the number of the second connection sub-electrodes 2021 included in the second connection electrode 202 .
  • the second connection electrode 202 is between the two first connection sub-electrodes 1021
  • the plurality of second connection sub-electrodes 2021 are also electrically connected to each other through a plurality of second edges EDG22, and a plurality of first edges EDG12 are correspondingly provided between the plurality of second edges EDG22.
  • a plurality of conductive meshes 400 for connecting the plurality of second connection sub-electrodes 2021 can also be formed between the second connection electrodes 202 between the two first connection sub-electrodes 1021 , thereby The stability and reliability of signal transmission on the second connection electrode 202 are further improved.
  • the distance between the two first connection sub-electrodes 1021 in the first direction R1 can also be reduced, and the second connection electrode 202 is not provided for connecting adjacent electrodes
  • the two first connection sub-electrodes 1021 in the first connection electrodes 102 are located in two adjacent first connection electrodes 1021 in the second direction R2.
  • a touch sub-electrode 101 is connected to the two first touch sub-electrodes 101 respectively, so as to realize signal transmission between the two first touch sub-electrodes 101 .
  • the two first connection sub-electrodes 1021 are arranged substantially in parallel and respectively extend substantially along the second direction R2, so that an approximately straight ladder-shaped connection structure can be formed between two adjacent first touch sub-electrodes 101 .
  • the overall extending directions of the two first connection sub-electrodes 1021 may be completely parallel (for example, 100% parallel) and the second direction R2, thereby forming a straight ladder-shaped connection structure;
  • An included angle greater than 0° may also be formed between the overall extension directions of the connecting sub-electrodes 1021, for example, the value range of the included angle may be greater than 0° and less than or equal to 20°, for example, 2°, 5°, 8°, 10°, 12°, 15°, 18°, etc., which are not specifically limited by the embodiments of the present disclosure.
  • each edge line formed by the first edge EDG11 and extending along the first direction R1 and each edge formed by the second edge EDG21 and extending along the second direction R2 The shape of the line can be a straight line shape, a broken line shape, an arc shape, a curved shape, etc., or a combination of the above shapes or other suitable shapes; the second touch sub-electrodes 201 and the second connection electrodes 202
  • the shape of each edge line formed by the edge EDG12 extending along the first direction R1 and each edge line formed by the second edge EDG22 extending along the second direction R2 may be a linear shape, a broken line shape, an arc shape, a curved shape, etc., Alternatively, it may be a combination of the above-mentioned shapes or other suitable shapes, which are not specifically limited by the embodiments of the present disclosure.
  • the grid-like structures of the first touch electrodes 100 and the second touch electrodes 200 may pass through the first edge EDG1 or the first edge of the conductive grid 400
  • One or more floating electrode portions 301 are formed in the grid-like structure of the first touch electrodes 100 and the second touch electrodes 200 by arranging notches on the two edges EDG2 .
  • the floating electrode portion 301 can be configured to be in a suspended or floating state, for example, the floating electrode portion 301 is not connected to any signal source or conductive structure (eg, the first touch electrode 100 or the second touch electrode 200 ) .
  • the second conductive layer 320 is located on the side of the first conductive layer 310 away from the base substrate 11 .
  • the first conductive layer 310 may also be located on the side of the second conductive layer 320 away from the base substrate 11 .
  • the second conductive layer 320 may be a conductive layer on the side closer to the user than the first conductive layer 310 , and then the first touch sub-electrode 101 , the first touch sub-electrode 101 , the second conductive layer
  • the accuracy of the signals from the user side received on the first touch electrodes 100 and the second touch electrodes 200 can be improved This improves the touch sensitivity and accuracy of the touch substrate 10 .
  • the area of the area enclosed by the conductive mesh 400 in the first touch electrode 100 in the overlapping area OVR is greater than or equal to that in the non-overlapping area.
  • the area of the square area enclosed by the conductive mesh 400 in the first connection electrode 102 in the overlapping region OVR may be larger than that of the conductive mesh 400 in the first connection electrode 102 or the first touch sub-electrode 101 in the non-contact area.
  • the area of the square area enclosed by the overlapping area may be larger than that of the conductive mesh 400 in the first connection electrode 102 or the first touch sub-electrode 101 in the non-contact area.
  • the main outline and area of the square area enclosed by the first connection electrode 102 and the conductive mesh 400 in the first touch sub-electrode 101 in the non-overlapping area are substantially the same as each other.
  • the conductive mesh in the first connection electrode 102 The area of the rectangular area enclosed by the grid 400 in the overlapping area OVR is about 2 unit areas.
  • the area of the area enclosed by the conductive mesh 400 in the second touch electrode 200 in the overlapping area OVR is greater than or equal to that in the non-overlapping area.
  • the area of the square area enclosed by the conductive mesh 400 in the second connection electrode 202 in the overlapping region OVR is greater than or equal to the area of the conductive mesh 400 in the second connection electrode 202 or the second touch sub-electrode 201
  • the main outline and area of the square area enclosed by the second connection electrode 202 and the conductive mesh 400 in the second touch sub-electrode 201 in the non-overlapping area are substantially the same as each other.
  • the conductive mesh in the second connection electrode 202 The area of the square area enclosed by the grid 400 in the overlapping area OVR is about 1 unit area, 2 unit area or 6 unit area.
  • the area of the area enclosed by the conductive mesh 400 in the first touch electrode 100 in the overlapping area OVR greater than or equal to the area enclosed by the non-overlapping area, and making the first The area of the area enclosed by the conductive meshes 400 in the two touch electrodes 200 in the overlapping area OVR is greater than or equal to the area enclosed by the non-overlapping area, which can reduce the size of the first touch electrodes 100 and the The area occupied by each edge (eg, the first edge EDG1 and the second edge EDG2 ) of the conductive grid 400 for transmitting electrical signals in the grid-like structure of the second touch electrodes 200 in the overlapping region OVR. Therefore, the overlapping area between the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR can be further reduced, and the required charging time can be shortened.
  • the arrangement density of the conductive meshes 400 in the first touch electrodes 100 in the overlapping region OVR is less than or equal to that in the non-overlapping region Arrangement density.
  • the number of conductive meshes 400 included in the first sub-region of the grid-like structure of the first touch electrodes 100 is less than or equal to the number of conductive meshes included in the second sub-region The number of grids 400.
  • the arrangement density of the conductive meshes 400 in the second touch electrodes 200 in the overlapping region OVR is less than or equal to that in the non-overlapping region Arrangement density. That is, in a plane parallel to the base substrate 11, for two different sub-regions with the same area and located in the overlapping region OVR and the non-overlapping region, respectively, for example, the third sub-region located in the overlapping region OVR and In the fourth sub-region located in the non-overlapping region, the number of conductive meshes 400 included in the third sub-region of the grid-like structure of the second touch electrodes 200 is less than or equal to that included in the fourth sub-region. The number of conductive meshes 400 .
  • each edge eg, the first edge EDG1 and the second edge EDG2
  • the area occupied in the overlapping region OVR further reduces the overlapping area between the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR, and shortens the required charging time.
  • the conductive mesh 400 is a metal mesh.
  • the material of the metal meshes in the mesh-like structures of the first touch electrodes 100 and the second touch electrodes 200 may include metal materials such as aluminum, molybdenum, copper, and silver, or alloy materials of these metal materials, such as silver Palladium-copper alloy materials, etc., are not specifically limited in the embodiments of the present disclosure.
  • the patterns of the grid-like structures shown in FIG. 2 to FIG. 6B are only exemplary illustrations, and the embodiments of the present disclosure apply to the grids.
  • the number of the conductive meshes 400 formed in the lattice structure and specific pattern features such as shape, outline, size, etc. are not specifically limited.
  • the conductive meshes 400 in the grid-like structure may all be polygons, such as quadrilaterals, and in some other embodiments of the present disclosure, the shapes of the conductive meshes 400 may also be other polygons, such as triangles, pentagons
  • the specific shape, size, etc. of the conductive mesh 400 are not limited in the embodiment of the present disclosure.
  • FIG. 7 is a schematic plan view of a touch substrate for stacking with a display device according to some embodiments of the present disclosure.
  • FIG. 7 shows the first touch electrodes 100 and the second touch electrodes in FIGS. 4A and 4B .
  • FIG. 8A is a partially enlarged schematic diagram of an example of the region RG2 shown in FIG. 7
  • FIG. 8B is a partially enlarged schematic diagram of an example of the region RG3 shown in FIG. 7 .
  • the touch substrate 10 is configured to be stacked with a display device.
  • the display device includes a plurality of pixel units arranged in an array, and each pixel unit includes a plurality of sub-pixels 500 (eg, a sub-pixel 501 ). ⁇ 503).
  • Each sub-pixel 500 corresponds to one conductive grid 400 respectively, and the orthographic projection of each sub-pixel 500 on the base substrate 11 is located in the area enclosed by the orthographic projection of the corresponding conductive grid 400 on the base substrate 11 .
  • one conductive mesh 400 may also correspond to multiple sub-pixels 500, and the orthographic projections of the multiple sub-pixels 500 on the base substrate 11 are all located on the corresponding conductive mesh
  • the grid 400 is in the area enclosed by the orthographic projection on the base substrate 11 .
  • the sub-pixels 501 to 503 in one pixel unit all correspond to the same conductive mesh 400 .
  • the embodiment of the present disclosure does not limit the specific number of sub-pixels 500 corresponding to one conductive grid 400 .
  • the sizes of the plurality of sub-pixels 501 to 503 are different from each other, that is, the area enclosed by the orthographic projections of the plurality of sub-pixels 501 to 503 on the base substrate 11 areas are different from each other.
  • the sub-pixel 501 with the smallest size and the conductive mesh used to set the via structure HS in the touch electrode are used as examples.
  • Grid 400 corresponds.
  • the conductive mesh 400 used for arranging the via structure HS in the touch electrode may also correspond to the sub-pixel 502 or the sub-pixel 503 with a relatively large size.
  • the edge of the conductive mesh 400 extends in a zigzag shape.
  • the first edge EDG1 extending along the first direction R1 and the second edge EDG2 extending along the second direction R2 of the conductive mesh 400 both extend in the shape of a broken line.
  • the bending angle of the edge of the conductive mesh 400 may be 10° ⁇ 20°, further may be 12° ⁇ 18°, such as 12°, 14°, 15°, 16° or 18°, etc.
  • first edge EDG1 and the second edge EDG2 of the conductive mesh 400 may also respectively extend in a curved shape, an arc shape or other suitable shapes, which are not specifically limited in the embodiment of the present disclosure.
  • the edge of the conductive grid 400 by designing the edge of the conductive grid 400 to extend in a folded line shape, an arc shape or a curved shape (eg, a wavy curve shape), the difference between the edges of the conductive grid 400 is different.
  • the locations can have different directions of curvature. In this way, not only can the reflection phenomenon that may be generated at each edge of the conductive grid 400 be reduced, but also the visualization of the touch electrodes in the macroscopic view can be effectively reduced, for example, the visualization phenomenon at the edges of the touch electrodes can be reduced, and the conductive grid 400 can also be weakened.
  • the possible interference between the edges of the touch panel can effectively reduce the brightness difference in the next microscopic direction or in one area, thereby improving the display quality of the display product using the touch substrate.
  • the tangent of the arc-shaped first edge EDG1 and the first edge EDG1 may be about 12° to 18°, for example, it may be about 14°
  • the included angle between the tangent of the arc-shaped second edge EDG2 and the second direction R2 may be about 12° to 18°, for example, it may be around 14°.
  • the included angle between the first edge EDG1 and the first direction R1 and the included angle between the second edge EDG2 and the second direction R2 are set to about 12° to 18° , which can maximize the erasing effect and reduce the edge visualization of the touch electrodes.
  • one of the two first edges EDG1 may be in the shape of a broken line or a curve, and the other may be in the shape of a straight line;
  • One of the second edges EDG2 is in the shape of a broken line or a curve, and the other is in the shape of a straight line, which is not specifically limited in the embodiment of the present disclosure.
  • the plurality of sub-pixels 500 may be respectively configured to provide light of different colors.
  • the plurality of sub-pixels 501 to 503 may be respectively configured to provide light of different colors, such as red light, blue light, green light, etc., respectively. The embodiment does not limit this.
  • the plurality of sub-pixels 501 include a first sub-pixel 5011 and a second sub-pixel 5012 arranged along the second direction R2.
  • the first sub-pixel 5011 and the second sub-pixel 5012 are adjacent to each other in the second direction R2, that is, in the second direction R2, the first sub-pixel 5011 and the second sub-pixel 5012 are adjacent to each other in the second direction R2.
  • No other sub-pixels 501 are disposed between the pixel 5011 and the second sub-pixel 5012 .
  • the bending direction of the second edge EDG2 of the conductive grid 401 corresponding to the first sub-pixel 5011 and the bending direction of the second edge EDG2 of the conductive grid 402 corresponding to the second sub-pixel 5012 are in the first direction R1 set opposite each other.
  • the second edge EDG2 of the conductive mesh 401 is bent to the right (that is, protruding to the right), for example, the second edge EDG2 is in the shape of an approximately V-shaped broken line, and the opening direction of the V-shaped is leftward; the conductive mesh
  • the second edges EDG2 of the grids 402 are all bent to the left (ie, protrude to the left), for example, the second edges EDG2 are in the shape of an approximately V-shaped broken line, and the opening direction of the V-shaped is rightward.
  • the bending direction of the second edge EDG2 of the conductive mesh 401 and the bending direction of the second edge EDG2 of the conductive mesh 402 are opposite to each other in the first direction R1, so as to weaken or avoid the opposite direction in the second direction R2.
  • the risk of color shift may occur between two adjacent sub-pixels 501 .
  • the plurality of sub-pixels 501 further includes a third sub-pixel 5013, and the third sub-pixel 5013 and the first sub-pixel 5011 are arranged along the first direction R1.
  • the first sub-pixel 5011 and the third sub-pixel 5013 are adjacent to each other in the first direction R1, that is, in the first direction R1, the first sub-pixel 5011 and the third sub-pixel 5013 are adjacent to each other in the first direction R1.
  • No other sub-pixels 501 are disposed between the pixel 5011 and the third sub-pixel 5013 .
  • the bending direction of the first edge EDG1 of the conductive grid 401 corresponding to the first sub-pixel 5011 and the bending direction of the first edge EDG1 of the conductive grid 403 corresponding to the third sub-pixel 5013 are in the second direction R2 set opposite each other.
  • the first edge EDG1 of the conductive mesh 401 is bent downward (ie, protrudes downward), for example, the first edge EDG1 is in the shape of an approximately V-shaped broken line, and the opening direction of the V-shaped is upward; the conductive mesh 403
  • the first edges EDG1 of each are bent upwards (ie, protruding upwards), for example, the first edges EDG1 are in the shape of a broken line approximately V-shaped, and the opening direction of the V-shaped is downward.
  • the bending direction of the first edge EDG1 of the conductive mesh 401 and the bending direction of the first edge EDG1 of the conductive mesh 403 are opposite to each other in the second direction R2, so as to weaken or avoid the bending direction in the first direction R1.
  • the risk of color shift may occur between two adjacent sub-pixels 501 .
  • the above-mentioned “bending direction” refers to the overall outline of the edge of the conductive grid 400
  • the above-mentioned “approximately V-shaped” refers to that the overall outline of the edge shape of the conductive grid 400 is approximately V-shaped, forming the V-shape.
  • the two line segments connected to each other may be straight line segments extending in a straight line, and may also be line segments extending in a zigzag shape, a zigzag shape or other suitable shapes.
  • the embodiments of the present disclosure do not limit the specific shapes of the two line segments constituting the edge of the conductive mesh 400.
  • the edges of the two line segments may include straight lines, broken lines, zigzags, triangles, waves, or other shapes. Appropriate shapes, etc., are not specifically limited by the embodiments of the present disclosure.
  • the distance between each sub-pixel 500 and each edge or each vertex of the corresponding conductive mesh 400 is within a preset range.
  • the preset range may be 8 ⁇ m ⁇ 15 ⁇ m.
  • the distance between each sub-pixel 500 and each edge of the corresponding conductive grid 400 may range from 8 ⁇ m to 10 ⁇ m, for example, 9 ⁇ m.
  • the minimum distance between each sub-pixel 500 and each edge of the corresponding conductive grid 400 can be set to 8 ⁇ m ⁇ 10 ⁇ m, for example, 9 ⁇ m, so that the grid pattern in the touch electrode can effectively reduce the possible effects on light extraction performance caused by the grid pattern in the touch electrode. adverse effects.
  • the distance between the sub-pixel 501 and the two first edges EDG1 opposite to each other in the second direction R2 and the The distances between the two opposite second edges EDG2 in the first direction R1 are basically the same, and the distances between the sub-pixels 501 and the vertices of the conductive grid 400 (for example, the vertices CR1 to CR4 ) are basically the same Consistent.
  • the extension length, extension direction, angle, etc. of the first edge EDG1 and the second edge EDG2 of the conductive grid 400 corresponding to the sub-pixel 501 can be appropriately adjusted so that the sub-pixel 501 and the corresponding conductive grid 400
  • the distances between the edges of the conductive grid 400 are kept within a preset range, for example, they are basically approximately the same value;
  • the distances between the sub-pixels 501 and the respective vertices of the corresponding conductive grids 400 are kept within a preset range, for example, they are substantially approximately the same value.
  • the vertex CR1 at the lower left is more to the right than the vertex CR2 at the upper left
  • the vertex CR4 at the lower right is more inclined to the right than the vertex CR3 at the upper right It is more inclined to the left, so that the distances between the sub-pixels 501 and the vertices CR1 to CR4 of the conductive grid 400 are basically the same.
  • the possible interference between the conductive grids 400 and the sub-pixels 500 in the grid-like structures of the first touch electrodes 100 and the second touch electrodes 200 can be reduced or avoided, and the optical performance of the touch substrate 10 can be achieved. further optimization.
  • At least one edge (eg, the first edge EDG1 and/or the second edge EDG2 ) of the conductive mesh 400 may be provided with a cutout, the cutout breaking the annular mesh pattern.
  • the cut can be understood as an imaginary line cutting the first edge EDG1 or the second edge EDG2.
  • FIG. 9 is a schematic diagram of an arrangement manner of a cutout in a grid-like structure provided by some embodiments of the present disclosure.
  • FIG. 9 shows the arrangement of the cutouts in the grid-like structures of the first touch electrodes 100 and the second touch electrodes 200 in FIGS. 4A and 4B .
  • the structure, arrangement, functions, etc. of the touch substrate 10 in the embodiment shown in FIG. 9 are all the same as those in the embodiment shown in FIGS. 2 to 6B . are basically the same or similar, and for specific content, reference may be made to the corresponding descriptions in the embodiments shown in FIG.
  • the conductive mesh 400 includes a closed mesh 420 and a non-closed mesh 430 provided with one or more cutouts 410 on the edge of the conductive mesh 400 .
  • the number of notches 410 in the conductive mesh 400 in the non-overlapping region is greater than or equal to the number of notches 410 in the conductive mesh 400 in the overlapping region OVR;
  • the second touch In the electrode 200 the number of the slits 410 in the conductive mesh 400 located in the non-overlapping region is greater than or equal to the number of the slits 410 located in the conductive mesh 400 located in the overlapping region OVR.
  • the signal transmission load of the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR can be reduced, and the signal transmission effects of the first touch electrodes 100 and the second touch electrodes 200 can be improved.
  • the conductive meshes 400 located in the overlapping region OVR in the first touch electrodes 100 are closed meshes 420
  • the conductive meshes 400 located in the overlapping region OVR in the second touch electrodes 200 are closed grid 420. That is, in the overlapping region OVR, each edge of the conductive mesh 400 is not provided with a cutout, so that the conductive meshes 400 in the overlapping region OVR are all closed meshes 420 . Therefore, the signal transmission load of the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR can be reduced, and the first connection electrode 102 can be improved between two adjacent first touch sub-electrodes 101 .
  • the signal connection effect and the signal connection effect of the second connection electrode 202 between the two adjacent second touch sub-electrodes 201, thereby improving the overlap area OVR of the first touch electrode 100 and the second touch electrode 200 The stability and reliability of the signal transmission.
  • the conductive meshes 400 used for arranging the via structure HS in the first touch electrodes 100 are all closed meshes 420 , that is, the first touch sub-electrodes 101 and the first
  • the conductive meshes 400 in the connection electrodes 102 for arranging the via structure HS to achieve electrical connection with each other are all closed meshes 420 . Therefore, it is beneficial to improve the signal communication effect between the first connection electrodes 102 and the corresponding first touch sub-electrodes 101 , thereby improving the stability and reliability of signal transmission in the first touch electrodes 100 .
  • the first connection electrode 102 includes a plurality of first connection sub-electrodes 1021
  • some of the first connection sub-electrodes 1021 may also be used for setting the
  • the conductive mesh 400 of the hole structure HS is set as a non-closed conductive mesh 430, which is not specifically limited in the embodiment of the present disclosure.
  • FIG. 10 is a partially enlarged schematic diagram of another example of the region RG1 shown in FIG. 2 .
  • the structure, arrangement, function, etc. of the touch substrate 10 in the embodiment shown in FIG. 10 are all the same as those shown in FIGS. 2 to 6B .
  • the illustrated embodiments are basically the same or similar, and for specific contents, reference may be made to the corresponding descriptions in the embodiments illustrated in FIG. 2 to FIG. 6B , and repeated details are not repeated here.
  • two adjacent connection sub-electrodes 1021 in the first connection electrode 102 are in the first direction R1
  • the distance between them can be relatively reduced, and the size of the second connection electrode 202 in the first direction R1 can also be correspondingly reduced.
  • the overlapping area between the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR can be further reduced, and the required charging time can be shortened.
  • FIG. 11 is a schematic diagram of another first connection electrode provided by some embodiments of the present disclosure
  • FIG. 12A is a schematic plan view of another touch substrate provided by some embodiments of the present disclosure for stacking with a display device
  • FIG. 12B is a schematic plan view of A partially enlarged schematic view of an example of the region RG4 shown in FIG. 12A
  • FIG. 11 is a schematic diagram of the first connection electrode 102 shown in FIG. 12A .
  • FIGS. 11 to 12B The structure, arrangement, function, etc.
  • the touch substrate 10 in the example are basically the same as or similar to those in the embodiments shown in FIGS. 2 to 6B and the embodiments shown in FIGS. 7 to 8B .
  • the corresponding descriptions in the embodiments shown in FIG. 2 to FIG. 6B and the embodiments shown in FIG. 7 to FIG. 8B will not be repeated here.
  • connection sub-electrodes 1021 in the first connection electrodes 102 include more conductive elements in the overlapping region OVR compared to the embodiments shown in FIGS. 4A to 6B .
  • the grid 400, and the extension length of the connecting sub-electrodes 1021 in the second direction R2 is correspondingly increased accordingly.
  • the signal transmission load of the first touch electrodes 100 in the overlapping region OVR can be reduced, and the stability and reliability of signal transmission in the overlapping region OVR can be improved.
  • connection sub-electrodes 1021 of the first connection electrodes 102 does not limit the specific quantity of the conductive meshes 400 included in the connection sub-electrodes 1021 of the first connection electrodes 102 .
  • the number of the conductive meshes 400 included in the connection sub-electrodes 1021 may be 1, 2, 3, 4, 5 or more, and the like.
  • the via structure HS connects the plurality of conductive meshes 400 in the sub-electrodes 1021 with the corresponding first through the corresponding first A connecting sub-electrode 1021 is connected.
  • the four via holes in the via hole structure HS are respectively located at four vertices that are not shared with each other in the two conductive meshes 400 arranged adjacently in the second direction R2 in the first connection sub-electrode 1021 , for example, in the At the vertices CR2 and CR3 of the upper conductive mesh 400 and at the vertices CR1 and CR4 of the lower conductive mesh 400 .
  • the conductive grid 400 corresponding to the sub-pixel 502 since the conductive grid 400 corresponding to the sub-pixel 502 only needs to set via holes at the vertices CR1 and CR4 of the conductive grid 400 , therefore The distance between the sub-pixel 502 and each edge EDG1, EDG2 and each vertex CR1-CR4 in the corresponding conductive grid 400 can be appropriately increased; taking the sub-pixel 503 as an example, compared with the one shown in FIG. 8A and FIG. 8B In the example shown, since in the conductive grid 400 corresponding to the sub-pixel 503, only the corresponding via holes need to be provided at the apex of the conductive grid 400 and no via holes are provided at the middle position of the conductive grid 400, such as the edge EDG2.
  • the distance between the sub-pixel 503 and each edge EDG1, EDG2 and each vertex CR1-CR4 in the corresponding conductive grid 400 can also be appropriately increased. In this way, the normal display of each sub-pixel 500 can be ensured, and the risk of possible color shift between two adjacent sub-pixels 500 can be reduced or avoided.
  • FIG. 13A is a partial enlarged schematic diagram of still another example of the region RG1 shown in FIG. 2
  • FIG. 13B is a schematic diagram of still another first connection electrode provided by some embodiments of the present disclosure.
  • FIG. 13B is the schematic diagram shown in FIG. 13A .
  • the edge EDG2 of the conductive grid 400 of the first touch electrode 100 extending along the second direction R2 and the conductive grid of the second touch electrode 200 are spaced apart and alternately arranged in the first direction R1.
  • the grid-like structure of the first touch electrodes 100 does not have an edge EDG1 extending along the first direction R1 in the overlapping region OVR. Therefore, the overlapping area between the first touch electrodes 100 and the second touch electrodes 200 in the overlapping region OVR can be further reduced, and the required charging time can be shortened.
  • the material of the insulating layer 330 may be an inorganic insulating material, for example, the inorganic insulating material is a transparent material.
  • the inorganic insulating material is silicon oxide, silicon nitride, or silicon oxynitride such as silicon oxide, silicon nitride, and silicon oxynitride, or an insulating material including metal oxynitride, such as aluminum oxide and titanium nitride.
  • the material of the insulating layer 330 can also be an organic insulating material to obtain good bending resistance.
  • the organic insulating material is a transparent material.
  • the organic insulating material is OCA optical glue.
  • the organic insulating material may include polyimide (PI), acrylate, epoxy, polymethyl methacrylate (PMMA), and the like.
  • two adjacent second touch sub-electrodes 201 in the first direction R1 may also be connected by a bridge structure, while two adjacent second touch sub-electrodes 201 in the second direction R2 may be connected by a bridge structure.
  • the two first touch sub-electrodes 101 are connected by the first connection electrodes 102 that are located on the same layer and integrally formed with the first touch sub-electrodes 101 , that is, the above-mentioned two adjacent ones in the second direction R2 are connected.
  • the electrical connection mode adopted between the first touch sub-electrodes 101 and the electrical connection mode adopted between the two adjacent second touch sub-electrodes 201 in the first direction R1 can be interchanged with each other.
  • the first touch electrodes 100 and the second touch electrodes 200 are insulated from each other, and the first touch electrodes 100 may be touch drive electrodes, and the second touch electrodes 200 may be touch electrodes.
  • the first touch electrodes 100 may be touch sensing electrodes, and the second touch electrodes 200 may be touch driving electrodes, which are not limited in the embodiments of the present disclosure.
  • each of the first touch electrodes 100 and each of the second touch electrodes 200 may be electrically connected to a signal line, respectively, and connected to a signal line through the signal line.
  • Touch controller or touch integrated circuit Taking the first touch electrode 100 as a touch driving electrode and the second touch electrode 200 as a touch sensing electrode as an example, the touch integrated circuit may be, for example, a touch chip, which is used to provide the first touch electrode 100 Providing touch driving signals and receiving touch sensing signals from the second touch electrodes 200 and processing the received touch sensing signals, for example, providing the processed data/signals to the system controller to realize touch sensing Function.
  • one end of the signal line connected to the touch integrated circuit can be arranged on the same side of the touch area of the display panel, so as to facilitate the connection with the touch integrated circuit;
  • a signal line is respectively set at both ends of the touch control integrated circuit.
  • the touch integrated circuit simultaneously inputs a touch driving signal (bilateral driving) to a first touch electrode 100 through two signal lines, so that the first touch electrode 100 is driven on both sides.
  • the speed of signal loading is increased, so that the detection speed can be increased.
  • At least one embodiment of the present disclosure further provides a display panel including a display device and the touch substrate according to any embodiment of the present disclosure.
  • the display device and the touch substrate are stacked and arranged.
  • FIG. 14 is a schematic block diagram of a display panel according to some embodiments of the present disclosure.
  • the display panel 60 includes a display device 601 and a touch substrate 602 .
  • the display device 601 and the touch substrate 602 may be stacked and disposed, for example, the touch substrate 602 may be the touch substrate described in any embodiment of the present disclosure, such as the touch substrate 10 in the above embodiment.
  • the display panel 60 may further include an encapsulation layer between the display device 601 and the touch substrate 602 , so as to avoid, for example, functional structures or structures in the display device 601 and the touch substrate 602 .
  • Mutual interference that may occur between film materials.
  • FIG. 15 is a schematic structural diagram of a specific example of a display panel 60 provided by some embodiments of the present disclosure.
  • the touch substrate 602 is located on the display side of the display device 601 , for example, the side closer to the user during use.
  • the display panel as an OLED display panel as an example.
  • the OLED display panel may be an On-cell or In-cell touch display panel.
  • the display panel may also be a liquid crystal display panel, and the embodiments of the present disclosure do not limit the specific type of the display panel using the touch substrate provided by the embodiments of the present disclosure.
  • the display device 601 includes a plurality of sub-pixels arranged in an array.
  • the display panel 60 is an OLED display panel, and the plurality of sub-pixels may include green sub-pixels, red sub-pixels, blue sub-pixels, and the like.
  • Each sub-pixel includes a light-emitting element 23 and a pixel driving circuit that drives the light-emitting element 23 to emit light.
  • the embodiments of the present disclosure do not limit the type and specific composition of the pixel driving circuit.
  • the pixel driving circuit may be a current driving type or a voltage driving type, and may be a 2T1C (that is, two transistors and one capacitor, the two
  • the transistor includes a drive transistor and a data write transistor) drive circuit, which can be a drive circuit that further includes a compensation circuit (compensation transistor), a light-emitting control circuit (light-emitting control transistor), a reset circuit (reset transistor), etc. on the basis of 2T1C.
  • FIG. 15 shows a first transistor 24 in the pixel driving circuit that is directly electrically connected to the light-emitting element 23.
  • the first transistor 24 may be a driving transistor configured to operate in a saturated state and control the driving light-emitting element 23 The magnitude of the current that emits light.
  • the first transistor 24 may also be a light-emitting control transistor for controlling whether the current for driving the light-emitting element 23 to emit light flows.
  • the embodiment of the present disclosure does not limit the specific type of the first transistor.
  • the light-emitting element 23 is an organic light-emitting diode, and includes a first electrode 231 , a light-emitting layer 233 and a second electrode 232 .
  • One of the first electrode 231 and the second electrode 232 is an anode and the other is a cathode; for example, the first electrode 231 is an anode and the second electrode 232 is a cathode.
  • the light-emitting layer 233 is an organic light-emitting layer or a quantum dot light-emitting layer.
  • the light-emitting element 23 may include auxiliary functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer in addition to the light-emitting layer 233 .
  • the light emitting element 23 may be a top emission structure
  • the first electrode 231 is reflective and the second electrode 232 is transmissive or semi-transmissive.
  • the first electrode 231 is a high work function material to act as an anode, such as an ITO/Ag/ITO stack structure
  • the second electrode 232 is a low work function material to act as a cathode, such as a semi-transmissive metal or metal alloy
  • the material is, for example, an Ag/Mg alloy material.
  • the first transistor 24 includes a gate electrode 341 , a gate insulating layer 342 , an active layer 343 , a first electrode 344 and a second electrode 345 , and the second electrode 345 is electrically connected to the first electrode 231 of the light emitting element 23 .
  • the embodiments of the present disclosure do not limit the type, material, structure, etc. of the first transistor 24, for example, it may be a top-gate type, a bottom-gate type, and the like.
  • the active layer 343 of the first transistor 24 may be amorphous silicon, polysilicon (low temperature polysilicon and high temperature polysilicon), oxide semiconductor (eg, indium gallium tin oxide (IGZO)), or the like.
  • the first transistor 24 may be an N-type transistor or a P-type transistor.
  • the transistors (eg, the first transistor 24 ) used in the embodiments of the present disclosure may be thin film transistors, field effect transistors, or other switching devices with the same characteristics, and the thin film transistors are used as examples for description in the embodiments of the present disclosure.
  • the source and drain of the transistor used here may be symmetrical in structure, so the source and drain of the transistor may be indistinguishable in structure.
  • one pole is directly described as the first pole, and the other pole is the second pole.
  • the display device 601 further includes a pixel definition layer 322 .
  • the pixel definition layer 322 is disposed on the first electrode 231 of the light-emitting element 23 , and a plurality of openings 321 are formed therein to respectively expose the first electrodes of the plurality of sub-pixels. 231, thereby defining a pixel opening area of each sub-pixel, the light-emitting layer of the sub-pixel is formed in the pixel opening area, and the second electrode 232 is formed as a common electrode (ie, shared by multiple sub-pixels).
  • the display device 601 further includes an encapsulation layer 33 located between the light-emitting element 23 and the touch substrate 602 , and the encapsulation layer 33 is configured to seal the light-emitting element 23 to prevent external moisture and oxygen from entering the The light-emitting element 23 and the driving circuit penetrate and cause damage to devices such as the light-emitting element 23 .
  • the encapsulation layer 33 may be a single-layer structure or a multi-layer structure, for example, including an organic thin film, an inorganic thin film, or a multi-layer structure including alternately stacked organic thin films and inorganic thin films.
  • the display panel 60 further includes a buffer layer 35 located between the display device 601 and the touch substrate 602 .
  • the buffer layer 35 is formed on the encapsulation layer 33 to improve the adhesion between the touch substrate 602 and the display device 601 .
  • the buffer layer 35 may be an inorganic insulating layer.
  • the material of the buffer layer 35 may be silicon nitride, silicon oxide, or silicon oxynitride or the like.
  • the buffer layer 35 may also include a structure in which silicon oxide layers and silicon nitride layers are alternately stacked.
  • the display panel 60 provided by the embodiment of the present disclosure has both a touch function and a display function, and has all the technical effects of the touch substrate provided by the above-mentioned embodiments of the present disclosure, which will not be repeated here.
  • At least one embodiment of the present disclosure further provides an electronic device, where the electronic device includes the display panel described in any embodiment of the present disclosure, for example, may include the above-mentioned display panel 60 .
  • FIG. 16 is a schematic block diagram of an electronic device according to some embodiments of the present disclosure.
  • the electronic device 70 includes a display panel 701 , for example, the display panel 701 can be the display panel described in any embodiment of the present disclosure, such as the display panel 60 in the above-mentioned embodiment.
  • the electronic device 70 may be a display device or a display device having a display function and a touch function, such as an OLED display device, a QLED display device or a liquid crystal display device.
  • the electronic device 70 can be a display, an OLED panel, an OLED TV, a liquid crystal display panel, a liquid crystal display TV, a QLED panel, a QLED TV, electronic paper, a mobile phone, a tablet computer, a notebook computer, a digital photo frame, a navigator, etc. Functional and touch-enabled products or components.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electroluminescent Light Sources (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种触控基板包括衬底基板(11)以及位于衬底基板(11)上的第一触控电极(100)和第二触控电极(200);第一触控电极(100)与第二触控电极(200)之间彼此间隔且绝缘;在垂直于衬底基板(11)的方向(R3)上,第一触控电极(100)与第二触控电极(200)之间彼此交叠,以形成交叠区域(OVR);第一触控电极(100)和第二触控电极(200)分别包括由多个导电网格(400)形成的网格状结构;导电网格(400)包括沿第一方向(R1)延伸的第一边缘(EDG1);在交叠区域(OVR)中,第二触控电极(200)的导电网格(400)中包括第一边缘(EDG12),第一触控电极(100)的导电网格(400)中不设置与第二触控电极(200)的导电网格(400)中包括的第一边(EDG12)重叠的第一边缘(EDG11)。

Description

触控基板、显示面板及电子设备
本申请要求于2021年4月20日递交的PCT国际专利申请PCT/CN2021/088322以及于2021年12月22日递交的中国专利申请第202111582513.4号的优先权,上述申请的全文以引入的方式并入以作为本申请的一部分。
技术领域
本公开的实施例涉及一种触控基板、显示面板及电子设备。
背景技术
具有触控功能的用户界面被广泛地应用在各类电子设备中,例如可以应用于显示面板或显示装置等。用于实现触控功能的触控结构包括触控电极结构,触控电极结构的设置是影响用户体验的重要因素。
发明内容
本公开至少一实施例提供一种触控基板,该触控基板包括衬底基板以及位于所述衬底基板上的多个第一触控电极和多个第二触控电极;所述多个第一触控电极沿第一方向排列,各所述第一触控电极沿不同于所述第一方向的第二方向延伸,所述多个第二触控电极沿所述第二方向排列,各所述第二触控电极沿所述第一方向延伸;各所述第一触控电极与各所述第二触控电极之间彼此间隔且绝缘;在垂直于所述衬底基板的方向上,各所述第一触控电极分别与所述多个第二触控电极之间彼此交叠,各所述第二触控电极分别与所述多个第一触控电极之间彼此交叠,以使所述多个第一触控电极和所述多个第二触控电极之间形成多个交叠区域和多个非交叠区域;所述第一触控电极和所述第二触控电极分别包括由多个导电网格形成的网格状结构;所述导电网格包括沿所述第一方向延伸的第一边缘;在所述交叠区域中,所述第二触控电极的导电网格中包括至少一条第一边缘,且所述第一触控电极的导电网格中不设置与所述第二触控电极的导电网格中包括的所述至少一条第一边缘在垂直于所述衬底基板的方向上重叠的第一边缘。
例如,在本公开一实施例提供的触控基板中,在所述交叠区域中,所述第一触控电极的导电网格中包括至少一条第一边缘,且所述第一触控电极的导电网格中的所述至少一条第一边缘与所述第二触控电极的导电网格中的所述至少一条第一边缘在所述第二方向上间隔设置。
例如,在本公开一实施例提供的触控基板中,在所述交叠区域中,所述第一触控电极的导电网格中的各所述第一边缘在所述第二方向上位于所述第二触控电极的导电网格中在所述第二方向上相邻的两条第一边缘之间。
例如,在本公开一实施例提供的触控基板中,所述导电网格还包括沿所述第二方向 延伸的第二边缘,所述第一边缘和所述第二边缘交替连接以构成所述导电网格。
例如,在本公开一实施例提供的触控基板中,在所述交叠区域中,所述第一触控电极的导电网格中包括至少一条第二边缘,且所述第二触控电极的导电网格中不设置与所述第一触控电极的导电网格中包括的所述至少一条第二边缘在垂直于所述衬底基板的方向上重叠的第二边缘。
例如,在本公开一实施例提供的触控基板中,所述第二触控电极的导电网格中包括至少一条第二边缘,且所述第二触控电极的导电网格中的所述至少一条第二边缘与所述第一触控电极的导电网格中的所述至少一条第二边缘在所述第一方向上间隔设置。
例如,在本公开一实施例提供的触控基板中,所述第一方向垂直于所述第二方向,所述导电网格为方形导电网格。
例如,在本公开一实施例提供的触控基板中,所述第一触控电极包括多个第一触控子电极和至少一个第一连接电极,所述多个第一触控子电极沿所述第二方向排列,所述第一连接电极位于在所述第二方向上相邻的两个第一触控子电极之间,以使所述相邻的两个第一触控子电极电连接;所述第二触控电极包括多个第二触控子电极和至少一个第二连接电极,所述多个第二触控子电极沿所述第一方向排列,所述第二连接电极位于在所述第一方向上相邻的两个第二触控子电极之间,以使所述相邻的两个第二触控子电极电连接;所述第一连接电极与所述第二连接电极分别位于相对于所述衬底基板的不同导电层中;所述第一连接电极与所述第二连接电极至少部分位于所述交叠区域中,且在垂直于所述衬底基板的方向上彼此部分交叠。
例如,在本公开一实施例提供的触控基板中,所述第一连接电极包括沿所述第二方向延伸的至少一个第一连接子电极,所述第二连接电极包括沿所述第一方向延伸的至少一个第二连接子电极;在所述交叠区域中,所述第一触控电极中在所述第二方向上相邻的导电网格之间沿所述第二方向依次连接以形成所述第一连接子电极,所述第二触控电极中在所述第一方向上相邻的导电网格之间沿所述第一方向依次连接以形成所述第二连接子电极。
例如,在本公开一实施例提供的触控基板中,响应于所述第一连接电极包括多个第一连接子电极,所述多个第一连接子电极沿所述第一方向依次排列,所述多个第一连接子电极的延伸方向彼此基本平行;响应于所述第二连接电极包括多个第二连接子电极,所述多个第二连接子电极沿所述第二方向依次排列,所述多个第二连接子电极的延伸方向彼此基本平行。
例如,在本公开一实施例提供的触控基板中,在所述交叠区域中,所述第一连接子电极中在所述第二方向上相邻的导电网格的中心大致位于沿所述第二方向延伸的同一直线上。
例如,在本公开一实施例提供的触控基板中,所述触控基板包括位于所述衬底基板上的第一导电层、绝缘层和第二导电层,所述绝缘层位于所述第一导电层和所述第二导电层之间,所述第一导电层和所述第二导电层通过所述绝缘层在垂直于所述衬底基板的 方向上彼此间隔且绝缘;所述第一触控子电极位于所述第二导电层,所述第一连接电极位于所述第一导电层,所述第一触控子电极通过至少贯穿所述绝缘层的过孔结构与所述第一连接电极连接;所述第二触控子电极和所述第二连接电极位于所述第二导电层。
例如,在本公开一实施例提供的触控基板中,所述过孔结构通过对应的第一连接子电极中的多个导电网格与所述对应的第一连接子电极连接。
例如,在本公开一实施例提供的触控基板中,所述第一触控电极中的导电网格在所述交叠区域中所围成的区域的面积大于或等于在所述非交叠区域中所围成的区域的面积;和/或,所述第二触控电极中的导电网格在所述交叠区域中所围成的区域的面积大于或等于在所述非交叠区域中所围成的区域的面积。
例如,在本公开一实施例提供的触控基板中,所述第一触控电极中的导电网格在所述交叠区域中的排布密度小于或等于在所述非交叠区域中的排布密度;和/或,所述第二触控电极中的导电网格在所述交叠区域中的排布密度小于或等于在所述非交叠区域中的排布密度。
例如,在本公开一实施例提供的触控基板中,所述导电网格为金属网格。
例如,在本公开一实施例提供的触控基板中,所述导电网格包括闭合网格,以及还包括在所述导电网格的边缘上设置至少一个切口的非闭合网格;所述第一触控电极中,位于所述非交叠区域中的导电网格中的切口数量大于或等于位于所述交叠区域中的导电网格中的切口数量,和/或,所述第二触控电极中,位于所述非交叠区域中的导电网格中的切口数量大于或等于位于所述交叠区域中的导电网格中的切口数量。
例如,在本公开一实施例提供的触控基板中,所述第一触控电极中的位于所述交叠区域中的导电网格为闭合网格,所述第二触控电极中的位于所述交叠区域中的导电网格为闭合网格。
例如,在本公开一实施例提供的触控基板中,所述触控基板配置为与显示器件层叠设置,所述显示器件包括呈阵列排布的多个像素单元,每个所述像素单元包括多个子像素;一个导电网格对应于至少一个子像素,且所述至少一个子像素在所述衬底基板上的正投影位于对应的导电网格在所述衬底基板上的正投影所围成的区域内。
例如,在本公开一实施例提供的触控基板中,所述导电网格的边缘呈折线形状延伸。
例如,在本公开一实施例提供的触控基板中,所述多个子像素包括沿所述第二方向排列的第一子像素和第二子像素,所述第一子像素和所述第二子像素分别对应于一个导电网格;与所述第一子像素对应的导电网格的第二边缘的弯折方向,以及与所述第二子像素对应的导电网格的第二边缘的弯折方向在所述第一方向上彼此相对设置。
例如,在本公开一实施例提供的触控基板中,所述多个子像素包括沿所述第一方向排列的第一子像素和第三子像素,所述第一子像素和所述第三子像素分别对应于一个导电网格;与所述第一子像素对应的导电网格的第一边缘的弯折方向,以及与所述第三子像素对应的导电网格的第一边缘的弯折方向在所述第二方向上彼此相对设置。
例如,在本公开一实施例提供的触控基板中,各所述子像素与对应的所述导电网格 的边缘或顶点之间的距离在预设范围内,所述预设范围为8μm~15μm。
例如,在本公开一实施例提供的触控基板中,所述多个子像素分别配置为提供不同颜色的光。
例如,在本公开一实施例提供的触控基板中,所述第一触控电极为触控驱动电极,所述第二触控电极为触控感测电极;或者,所述第一触控电极为触控感测电极,所述第二触控电极为触控驱动电极。
本公开至少一实施例还提供一种显示面板,该显示面板包括显示器件以及本公开任一实施例所述的触控基板,所述显示器件与所述触控基板层叠设置。
本公开至少一实施例还提供一种电子设备,该电子设备包括本公开任一实施例所述的显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种互容式触控结构的工作原理示意图;
图2为本公开一些实施例提供的一种触控基板的平面结构示意图;
图3为本公开一些实施例提供的一种触控基板的截面结构示意图;
图4A和图4B为图2中所示的区域RG1的一种示例的局部放大示意图;
图5为本公开一些实施例提供的一种触控基板的平面结构的局部放大示意图;
图6A为本公开一些实施例提供的一种第一连接电极的示意图;
图6B为本公开一些实施例提供的一种触控基板的第二导电层中的部分结构的平面示意图;
图7为本公开一些实施例提供的一种触控基板用于与显示器件层叠设置的平面示意图;
图8A为图7中所示的区域RG2的一种示例的局部放大示意图;
图8B为图7中所示的区域RG3的一种示例的局部放大示意图;
图9为本公开一些实施例提供的一种网格状结构中的切口的设置方式的示意图;
图10为图2中所示的区域RG1的另一种示例的局部放大示意图;
图11为本公开一些实施例提供的另一种第一连接电极的示意图;
图12A为本公开一些实施例提供的另一种触控基板用于与显示器件层叠设置的平面示意图;
图12B为图12A中所示的区域RG4的一种示例的局部放大示意图;
图13A为图2中所示的区域RG1的再一种示例的局部放大示意图;
图13B为本公开一些实施例提供的再一种第一连接电极的示意图;
图14为本公开一些实施例提供的一种显示面板的示意框图;
图15为本公开一些实施例提供的一种显示面板的具体示例的结构示意图;以及
图16为本公开一些实施例提供的一种电子设备的示意框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开中的附图并不是严格按实际比例绘制,触控基板中的第一触控电极、第二触控电极、第一触控子电极、第二触控子电极、第一连接电极、第二连接电极、连接子电极以及导电网格等的个数也不是限定为图中所示的数量,各个结构的具体尺寸和数量可以根据实际需要进行确定。本公开中所描述的附图仅是结构示意图。
有机发光二极管(OLED)显示面板具有自发光、对比度高、能耗低、视角广、响应速度快、可用于挠曲性面板、使用温度范围广、制造简单等特点,具有广阔的发展前景。为了满足用户多样化的使用需求,在显示面板中集成多种功能,如触控功能、指纹识别功能等具有重要的意义。例如,在OLED显示面板中形成外挂式(on-cell)触控结构是一种实现方式,该方式通过将触控结构形成于OLED显示面板的封装膜之上,从而使OLED显示面板实现触控功能。
例如,以互容式触控结构为例,互容式触控结构包括多个触控电极,该多个触控电极包括沿不同方向延伸的触控驱动电极Tx和触控感测电极Rx,触控驱动电极Tx和触控感测电极Rx在彼此交叉处形成用于触控感测的互电容。触控驱动电极Tx用于输入激励信号(例如触控驱动信号),触控感测电极Rx用于输出触控感测信号。通过向例如纵向延伸的触控驱动电极输入激励信号,从例如横向延伸的触控感测电极接收触控感测信号,这样可以得到反映横向和纵向电极耦合点(例如交叉点)的电容值大小的检测信号。当手指触摸到触摸屏(例如盖板玻璃)时,影响了触摸点附近的触控驱动电极Tx和触控感测电极Rx之间的耦合,从而改变了这两个电极之间在交叉点处形成的互电容的电容量,导致输出的触控感测信号出现变化。根据触控感测信号的数据变化量,可以计算出触摸 点的相应坐标。
图1为一种互容式触控结构的工作原理示意图。如图1所示,在触控驱动电路TOUC的驱动下,触控驱动电极Tx被施加触控驱动信号,并由此产生电场线E,该电场线E被触控感测电极Rx接收形成参考电容。当手指触摸到触摸屏SCRN上时,由于人体是导体,触控驱动电极Tx产生的一部分电场线E被引导至手指形成手指电容(Finger Capacitance),减少了触控感测电极Rx所接收的电场线E,因此触控驱动电极Tx和触控感测电极Rx之间的电容值减小。触控驱动电路TOUC通过触控感测电极Rx来获得上述电容值的大小,并将获得的电容值与参考电容相比较,从而获得电容值变化量;根据该电容值变化量的数据以及结合各个触控电容的位置坐标,可以计算出触摸点的相应坐标。
本公开至少一实施例提供一种触控基板,该触控基板包括衬底基板以及位于衬底基板上的多个第一触控电极和多个第二触控电极;多个第一触控电极沿第一方向排列,各第一触控电极沿不同于第一方向的第二方向延伸,多个第二触控电极沿第二方向排列,各第二触控电极沿第一方向延伸;各第一触控电极与各第二触控电极之间彼此间隔且绝缘;在垂直于衬底基板的方向上,各第一触控电极分别与多个第二触控电极之间彼此交叠,各第二触控电极分别与多个第一触控电极之间彼此交叠,以使多个第一触控电极和多个第二触控电极之间形成多个交叠区域和多个非交叠区域;第一触控电极和第二触控电极分别包括由多个导电网格形成的网格状结构;导电网格包括沿第一方向延伸的第一边缘;在交叠区域中,第二触控电极的导电网格中包括至少一条第一边缘,且第一触控电极的导电网格中不设置与第二触控电极的导电网格中包括的该至少一条第一边缘在垂直于衬底基板的方向上重叠的第一边缘。
在本公开上述实施例提供的触控基板中,在交叠区域中,使第一触控电极的导电网格中不设置与第二触控电极的导电网格中包括的第一边缘重叠的第一边缘,也即,使第一触控电极的位于交叠区域中的导电网格不包括第一边缘,或者在第一触控电极的位于交叠区域中的导电网格包括第一边缘的情况下,使第一触控电极的导电网格中的该第一边缘不与第二触控电极的导电网格中的第一边缘之间产生交叠。由此,可以减少第一触控电极与第二触控电极之间在交叠区域中的交叠面积,进而有利于减小第一触控电极与第二触控电极之间在交叠区域中能够形成的电容的大小,缩短所需的充电时间。由此,在第一触控电极与第二触控电极之间在交叠区域中形成的电容的数值发生变化时,可以缩短获取该电容的数值的变化量所需的时间,从而提升触控基板的触控灵敏度和准确度。
下面,将参考附图详细地说明本公开的实施例。应当注意的是,不同的附图中相同的附图标记将用于指代已描述的相同的元件。
图2为本公开一些实施例提供的一种触控基板的平面结构示意图,图3为本公开一些实施例提供的一种触控基板的截面结构示意图,例如图3为沿图2中所示的A-A’线的截面图。
如图2和图3所示,该触控基板10包括衬底基板11以及位于衬底基板11上的多个 第一触控电极100和多个第二触控电极200。多个第一触控电极100沿第一方向R1排列,各第一触控电极100沿不同于第一方向R1的第二方向R2延伸。多个第二触控电极200沿第二方向R2排列,各第二触控电极200沿第一方向R1延伸。
例如,第一方向R1与第二方向R2之间的夹角可以设置在70°到90°之间,且包括70°和90°,例如,第一方向R1与第二方向R2之间的夹角可以为70°、75°、80°、85°或90°等,夹角的具体数值可以根据实际情况设定,本公开的实施例对此不作具体限制。
例如,在本公开实施例提供的触控基板10中,第一方向R1可以设置为垂直于第二方向R2。当本公开实施例提供的触控基板10应用于例如显示面板或显示装置时,第一方向R1可以为显示面板或显示装置中的子像素阵列的列方向,第二方向R2可以为显示面板或显示装置中的子像素阵列的行方向;或者,第一方向R1可以为显示面板或显示装置中的子像素阵列的行方向,第二方向R2可以为显示面板或显示装置中的子像素阵列的列方向,本公开的实施例对此不作限制。
如图2和图3所示,在垂直于衬底基板11的方向R3上,各第一触控电极100分别与多个第二触控电极200之间彼此交叠,各第二触控电极200分别与多个第一触控电极100之间彼此交叠,以使多个第一触控电极100和多个第二触控电极200之间形成多个交叠区域OVR和多个非交叠区域。
各第一触控电极100与各第二触控电极200之间彼此间隔且绝缘,也即,每个第一触控电极100均与其他第一触控电极100以及多个第二触控电极200之间彼此间隔且绝缘,每个第二触控电极200均与其他第二触控电极200以及多个第一触控电极100之间彼此间隔且绝缘。
下面本公开的实施例以图2和图3中所示的第一触控电极100包括第一触控子电极101和第一连接电极102,第二触控电极200包括第二触控子电极201和第二连接电极202的情形为例,对本公开一些实施例提供的触控基板进行具体说明,但是需要注意的是,本公开的实施例包括但并不仅限于此。
在本公开的一些实施例中,如图2和图3所示,第一触控电极100包括多个第一触控子电极101和多个第一连接电极102,多个第一触控子电极101沿第二方向R2排列,第一连接电极102位于在第二方向R2上相邻的两个第一触控子电极101之间,以使相邻的两个第一触控子电极101通过该第一连接电极102彼此电连接。第二触控电极200包括多个第二触控子电极201和多个第二连接电极202,多个第二触控子电极201沿第一方向R1排列,第二连接电极202位于在第一方向R1上相邻的两个第二触控子电极201之间,以使相邻的两个第二触控子电极201通过第二连接电极202彼此电连接。
需要说明的是,图2中所示的第一触控电极100中包括的第一触控子电极101和第一连接电极102的数量以及第二触控电极200中包括的第二触控子电极201和第二连接电极202的数量均仅是示例性说明,本公开的实施例对此均不作具体限制。
需要说明的是,图2中所示的第一触控电极100中的第一触控子电极101以及第二触控电极200中的第二触控子电极201的主体轮廓均为菱形;而在本公开的其他一些实 施例中,第一触控子电极101和第二触控子电极201也可以采用例如三角形、长方形、六边形、八边形、条形等其他规则形状或不规则形状等,本公开的实施例对此不作限制。例如,第一触控子电极101和第二触控子电极201的主体轮廓可以彼此相同,也可以彼此不同。
图4A和图4B为图2中所示的区域RG1的一种示例的局部放大示意图。图5为本公开一些实施例提供的一种触控基板的平面结构的局部放大示意图,例如图5示出了图2中所示的区域RG1中的部分平面结构的放大示意图。图6A为本公开一些实施例提供的一种第一连接电极的示意图,例如图6A为图4A和图4B中所示的第一连接电极102的示意图,图6A示出了位于图3所示的第一导电层310中的第一连接电极102的平面结构。图6B为本公开一些实施例提供的一种触控基板的第二导电层中的部分结构的平面示意图,例如图6B示出了位于图3所示的第二导电层320中的第一触控子电极101、第二触控子电极201以及第二连接电极202的平面结构,图6B为图4A和图4B中所示的第一触控子电极101、第二触控子电极201以及第二连接电极202的示意图。
需要说明的是,图4A至图6B中为了清楚地表示第一触控子电极101、第一连接电极102、第二触控子电极201和第二连接电极202,用虚线框大致示出了对应的部分。但是,需要注意的是,该虚线框仅用于表示第一触控子电极101、第一连接电极102、第二触控子电极201和第二连接电极202的大致位置,并不是用于表示对各电极的具体划分边缘或边界线的限定。
如图2至图6B所示,第一触控电极100和第二触控电极200分别包括由多个导电网格400形成的网格状结构。例如,在第一触控电极100的网格状结构中,多个导电网格400的主体轮廓、所围成的区域的面积等可以彼此相同,也可以彼此不同;在第二触控电极200的网格状结构中,多个导电网格400的主体轮廓、所围成的区域的面积等可以彼此相同,也可以彼此不同,本公开的实施例对此均不作具体限制。
如图2至图6B所示,在交叠区域OVR中,第一触控电极100的导电网格400中沿第一方向R1延伸的第一边缘EDG1(例如第一边缘EDG11)与第二触控电极200的导电网格400中沿第一方向R1延伸的第一边缘EDG1(例如第一边缘EDG12)在第二方向R2上彼此间隔设置,以使第一触控电极100的导电网格400中包括的第一边缘EDG11与第二触控电极200的导电网格400中包括的第一边缘EDG12之间在垂直于衬底基板11的方向R3上不发生交叠。例如,在交叠区域OVR中,第一触控电极100的导电网格400中沿第一方向R1延伸的第一边缘EDG11在衬底基板11上的正投影与第二触控电极200的导电网格400中沿第一方向R1延伸的第一边缘EDG12在衬底基板11上的正投影之间没有交叠,且彼此之间在第二方向R2上具有一定间距(该间距大于0)。
由此,可以减少第一触控电极100与第二触控电极200之间在交叠区域OVR中的交叠面积,从而有利于减小第一触控电极100与第二触控电极200之间在交叠区域OVR中能够形成的电容的大小,缩短所需的充电时间。进而,在第一触控电极100与第二触控电极200之间在交叠区域OVR中形成的电容的数值发生变化时,可以缩短获取该电容的 数值的变化量所需的时间,从而提升触控基板10的触控灵敏度和准确度。
需要说明的是,在本公开的上述实施例中,第一触控电极100的位于交叠区域OVR中的导电网格400包括第一边缘EDG11;或者,在本公开的其他一些实施例中,第一触控电极100的位于交叠区域OVR中的导电网格400也可以不包括第一边缘EDG11,由此避免与第二触控电极200的导电网格400中包括的第一边缘EDG12之间发生交叠。
例如,如图2至图6B所示,导电网格400包括沿第一方向R1延伸的第一边缘EDG1(例如第一边缘EDG11和EDG12)和沿第二方向R2延伸的第二边缘EDG2(例如第二边缘EDG21和EDG22),第一边缘EDG1和第二边缘EDG2交替连接以构成导电网格400。
例如,第一方向R1可以垂直于第二方向R2,以构成图4A至图6B中所示的主体轮廓为方形的导电网格400,也即该导电网格400为方形导电网格。或者,在本公开的其他一些实施例中,第一触控电极100和第二触控电极200中的导电网格400也可以采用例如三角形、菱形、六边形、八边形、条形等其他规则形状或不规则形状等,本公开的实施例对此不作限制。
例如,如图4A至图6B所示,在交叠区域OVR中,第一触控电极100的导电网格400中沿第二方向R2延伸的第二边缘EDG2(也即,第二边缘EDG21)与第二触控电极200的导电网格400中沿第二方向R2延伸的第二边缘EDG2(也即,第二边缘EDG22)在第一方向R1上彼此间隔设置,以使第一触控电极100的导电网格400中包括的第二边缘EDG21与第二触控电极200的导电网格400中包括的第二边缘EDG22之间在垂直于衬底基板11的方向R3上不发生交叠。例如,在交叠区域OVR中,第一触控电极100的导电网格400中沿第二方向R2延伸的第二边缘EDG21在衬底基板11上的正投影与第二触控电极200的导电网格400中沿第二方向R2延伸的第二边缘EDG22在衬底基板11上的正投影之间没有交叠,且彼此之间在第一方向R1上具有一定间距(该间距大于0)。进而,可以进一步减少第一触控电极100与第二触控电极200之间在交叠区域OVR中的交叠面积。
需要说明的是,在本公开的上述实施例中,第二触控电极200的位于交叠区域OVR中的导电网格400包括第二边缘EDG22;或者,在本公开的其他一些实施例中,第二触控电极200的位于交叠区域OVR中的导电网格400也可以不包括第二边缘EDG22,由此避免与第一触控电极100的导电网格400中包括的第二边缘EDG21之间发生交叠。
例如,如图4A至图6B所示,在交叠区域OVR中,第一触控电极100的导电网格400中的各第一边缘EDG11在第二方向R2上位于第二触控电极200的导电网格400中在第二方向R2上相邻的两条第一边缘EDG12之间。例如,在交叠区域OVR中,在第二方向R2上,第一触控电极100的导电网格400中的第一边缘EDG11与第二触控电极200的导电网格400中的第一边缘EDG12交替设置,也即,在第二方向R2上,第一触控电极100的导电网格400中的第一边缘EDG11在衬底基板11上的正投影与第二触控电极200的导电网格400中的第一边缘EDG12在衬底基板11上的正投影之间彼此交替 排列。由此,既可以减少第一触控电极100与第二触控电极200之间在交叠区域OVR中的交叠面积,有利于减小第一触控电极100与第二触控电极200之间在交叠区域OVR中能够形成的电容的大小,进而缩短所需的充电时间,又可以提升第一触控电极100以及第二触控电极200上的信号传输的稳定性和可靠性,从而实现对触控基板10的整体性能的优化。
例如,以图2至图6B所示的实施例为例,第一连接电极102与第二连接电极202至少部分位于交叠区域OVR中,例如第一连接电极102与第二连接电极202部分位于交叠区域OVR中且部分位于非交叠区域中。
第一连接电极102与第二连接电极202分别位于相对于衬底基板11的不同导电层中,第一连接电极102与第二连接电极202之间在垂直于衬底基板11的方向R3上彼此部分交叠,以使得第一触控电极100的第一连接电102与第二触控电极200的第二连接电极202之间在交叠区域OVR中能够形成电容。进而,通过获取第一连接电极102与第二连接电极202之间在交叠区域OVR中形成的电容的数值的变化,实现触控基板10的触控功能。
例如,结合图2至图6B所示,触控基板10包括位于衬底基板11上的第一导电层310、绝缘层330和第二导电层320,绝缘层330位于第一导电层310和第二导电层320之间,第一导电层310和第二导电层320通过绝缘层330在垂直于衬底基板11的方向R3上彼此间隔且绝缘。第一触控子电极101位于第二导电层320,第一连接电极102位于第一导电层310,第一触控子电极101通过至少贯穿绝缘层330的过孔结构HS与第一连接电极102连接。
例如,第二触控子电极201和第二连接电极202均位于第二导电层320。第二连接电极202在相邻的两个第二触控子电极201之间连续设置。换句话说,各第二连接电极202在相邻的两个第二触控子电极201之间保持连续且不间断,例如第二连接电极202可以与相邻的两个第二触控子电极201一体设置,例如可以采用相同的制备工艺通过同一材料层(例如第二导电层320)形成。
例如,在图4A至图6B所示的实施例中,第一连接电极102包括沿第一方向R1并排设置的两个第一连接子电极1021,该两个第一连接子电极1021位于在第二方向R2上相邻的两个第一触控子电极101之间。每个第一连接子电极1021的两端分别通过过孔结构HS与该两个第一触控子电极101连接,以实现该两个第一触控子电极101之间的信号传输。
需要说明的是,本公开的实施例对用于连接第一触控子电极101与对应的连接子电极1021的过孔结构HS中所包括的过孔的数量、位置、排布方式等均不作具体限制。例如,在图4A和图4B所示的实施例中,用于连接第一触控子电极101与对应的第一连接子电极1021的过孔结构HS中包括4个过孔,该4个过孔分别对应于一个导电网格400的四个顶点。又例如,在后文图11和图12A至图12B以及图13A和图13B所示的实施例中,用于连接第一触控子电极101与对应的第一连接子电极1021的过孔结构HS中的 4个过孔也可以分别设置在对应于两个相邻的导电网格400构成的“8字”型结构的四个顶点处。例如,在图12A和图12B所示的示例中,4个过孔分别设置在该两个相邻的导电网格400中彼此不共用的四个顶点处,以适当增加过孔结构HS附近的各子像素500与对应的导电网格400的各顶点及边缘之间的间距(具体可参见后文中关于图12A和图12B所示的示例的相应描述),从而既可以保证各子像素500的正常显示,又可以减弱或避免相邻的两个子像素500之间可能发生色偏的风险。
或者,在本公开的其他一些实施例中,过孔结构HS中所包括的过孔也可以采用其他适合的设置方式等,过孔结构HS中所包括的过孔的数量也可以为1个、2个、3个、5个、6个或更多个等,本公开的实施例对此不作具体限制。
例如,在图2至图6B所示的实施例中,该第一连接电极102包括沿第二方向R2延伸的两个第一连接子电极1021;而在本公开的其他一些实施例中,该第一连接电极102也可以仅包括沿第二方向R2延伸的一个第一连接子电极1021,或者也可以包括沿第二方向R2延伸的3个、4个、5个或更多个第一连接子电极1021,该多个第一连接子电极1021沿第一方向R1依次排列。本公开的实施例对于第一连接电极102中包括的第一连接子电极1021的数量不作具体限制。
例如,在图2至图6B所示的实施例中,各第一连接子电极1021在交叠区域OVR中均包括在第二方向R2上依次设置的两个第一边缘EDG11;而在本公开的其他一些实施例中,各第一连接子电极1021在交叠区域OVR中包括的第一边缘EDG11的数量也可以彼此不同,并且一个第一连接子电极1021在交叠区域OVR中包括的第一边缘EDG11的数量也可以为1个、3个、4个或更多个等,或者第一连接子电极1021在交叠区域OVR中也可以不设置第一边缘EDG11,本公开的实施例对此均不作具体限制。
例如,参考图2至图6B所示,两个第一连接子电极1021沿第一方向R1依次排列,且该两个第一连接子电极1021的延伸方向基本平行,例如,该两个第一连接子电极1021均分别整体上大致沿第二方向R2延伸。
例如,每个第一连接子电极1021由多个导电网格400构成,并且在交叠区域OVR中,第一连接子电极1021中在第二方向R2上相邻的导电网格400的中心大致位于沿第二方向R2延伸的同一直线上,由此使第一连接子电极1021在相邻的两个第一触控子电极101之间形成由多个导电网格400构成的直梯状导电结构。例如,构成第一连接子电极1021的多个导电网格400在第一方向R1上的宽度可以彼此相同,从而改善形成的直梯状导电结构上的信号传输的一致性和稳定性。
例如,在图2至图6B所示的实施例中,第二连接电极202包括沿第二方向R2并排设置的三个第二连接子电极2021,例如每个第二连接子电极2021由在第一方向R1上相邻的多个导电网格400中的第一边缘EDG12依次连接形成,从而形成整体上大致沿第一方向R1延伸的直线型导电结构,进而实现在第一方向R1上相邻的两个第二触控子电极201之间的信号传输。
需要说明的是,在图2至图6B所示的实施例中,该第二连接电极202包括沿第一方 向R1延伸的三个第二连接子电极2021;而在本公开的其他一些实施例中,该第二连接电极202中也可以仅包括沿第一方向R1延伸的一个第二连接子电极2021,或者也可以包括沿第一方向R1延伸的2个、4个、5个或更多个第二连接子电极2021,该多个第二连接子电极2021在第二方向R2上依次排列。本公开的实施例对于第二连接电极202中包括的第二连接子电极2021的数量不作具体限制。
例如,在图2至图6B所示的实施例中,两个第一连接子电极1021之间在第一方向R1上具有间距,第二连接电极202在两个第一连接子电极1021之间还通过多个第二边缘EDG22将多个第二连接子电极2021之间彼此电连接,并且在该多个第二边缘EDG22之间还相应设置了多个第一边缘EDG12。由此,在交叠区域OVR中,使第二连接电极202在两个第一连接子电极1021之间还可以形成用于连接多个第二连接子电极2021的多个导电网格400,从而进一步提升第二连接电极202上的信号传输的稳定性和可靠性。
需要说明的是,在本公开的其他一些实施例中,两个第一连接子电极1021之间在第一方向R1上的间距也可以缩小,第二连接电极202中不设置用于连接相邻的两个第二连接子电极2021的第二边缘EDG22;或者,两个第一连接子电极1021之间在第一方向R1上的间距也可以进一步增大,以使第二连接电极202中可以设置更多个用于连接相邻的两个第二连接子电极2021的第二边缘EDG22,本公开的实施例对此不作具体限制。
例如,结合图5所示的区域RG1中的部分平面结构的局部放大示意图为例,第一连接电极102中的两个第一连接子电极1021位于在第二方向R2上相邻的两个第一触控子电极101之间,且均分别与该两个第一触控子电极101连接,以实现该两个第一触控子电极101之间的信号传输。例如,该两个第一连接子电极1021基本平行设置且分别大致沿第二方向R2延伸,由此可以在相邻的两个第一触控子电极101之间形成近似直梯状的连接结构。
例如,该两个第一连接子电极1021的整体延伸方向可以完全平行(例如,100%平行)且为第二方向R2,由此以形成直梯状的连接结构;或者,该两个第一连接子电极1021的整体延伸方向之间也可以形成一个大于0°的夹角,例如该夹角的取值范围可以为大于0°且小于等于20°,例如具体可以为2°、5°、8°、10°、12°、15°、18°等,本公开的实施例对此不作具体限制。
例如,第一触控子电极101以及第一连接电极102中由第一边缘EDG11构成的沿第一方向R1延伸的各边缘线以及由第二边缘EDG21构成的沿第二方向R2延伸的各边缘线的形状可以为直线形状、折线形状、弧线形状、曲线形状等,或者也可以为上述形状的组合或其他适合的形状;第二触控子电极201以及第二连接电极202中由第一边缘EDG12构成的沿第一方向R1延伸的各边缘线以及由第二边缘EDG22构成的沿第二方向R2延伸的各边缘线的形状可以为直线形状、折线形状、弧线形状、曲线形状等,或者也可以为上述形状的组合或其他适合的形状,本公开的实施例对此不作具体限制。
例如,在本公开的一些实施例中,如图5所示,第一触控电极100以及第二触控电极200的网格状结构中可以通过在导电网格400的第一边缘EDG1或第二边缘EDG2上 设置切口的方式,在第一触控电极100以及第二触控电极200的网格状结构中形成一个或多个浮置电极部分301。该浮置电极部分301可以配置为处于悬置或浮置状态,例如,该浮置电极部分301不与任何信号源或导电结构(例如第一触控电极100或第二触控电极200)连接。由此,有利于减弱或避免第一触控电极100与第二触控电极200之间、以及第一触控电极100或第二触控电极200与触控基板中的其他走线、器件或结构等之间可能产生的相互干扰,进而提升触控基板的稳定性和可靠性。
例如,在图2至图6B所示的实施例中,第二导电层320位于第一导电层310的远离衬底基板11的一侧。或者,在本公开的其他一些实施例中,也可以是第一导电层310位于第二导电层320的远离衬底基板11的一侧。
例如,在图2至图6B所示的实施例中,第二导电层320可以是相对于第一导电层310更加靠近用户的一侧的导电层,进而在第一触控子电极101、第二触控子电极201以及第二连接电极202均位于第二导电层320的情况下,可以提高第一触控电极100和第二触控电极200上所接收的来自用户一侧的信号的准确性和灵敏性,进而提高触控基板10的触控灵敏度和准确度。
在本公开的一些实施例中,如图4A至图6B所示,第一触控电极100中的导电网格400在交叠区域OVR中所围成的区域的面积大于或等于在非交叠区域中所围成的区域的面积。例如,第一连接电极102中的导电网格400在交叠区域OVR中所围成的方形区域的面积可以大于第一连接电极102或第一触控子电极101中的导电网格400在非交叠区域中所围成的方形区域的面积。
例如,第一连接电极102以及第一触控子电极101中的导电网格400在非交叠区域中所围成的方形区域的主体轮廓、面积等彼此基本相同。以第一连接电极102以及第一触控子电极101中的导电网格400在非交叠区域中所围成的正方形区域的面积为一个单位面积为例,第一连接电极102中的导电网格400在交叠区域OVR中所围成的长方形区域的面积为大约2个单位面积。
在本公开的一些实施例中,如图4A至图6B所示,第二触控电极200中的导电网格400在交叠区域OVR中所围成的区域的面积大于或等于在非交叠区域中所围成的区域的面积。例如,第二连接电极202中的导电网格400在交叠区域OVR中所围成的方形区域的面积大于或等于第二连接电极202或第二触控子电极201中的导电网格400在非交叠区域中所围成的方形区域的面积。
例如,第二连接电极202以及第二触控子电极201中的导电网格400在非交叠区域中所围成的方形区域的主体轮廓、面积等彼此基本相同。以第二连接电极202以及第二触控子电极201中的导电网格400在非交叠区域中所围成的正方形区域的面积为一个单位面积为例,第二连接电极202中的导电网格400在交叠区域OVR中所围成的方形区域的面积为大约1个单位面积、2个单位面积或6个单位面积。
由此,通过使第一触控电极100中的导电网格400在交叠区域OVR中所围成的区域的面积大于或等于在非交叠区域中所围成的区域的面积,且使第二触控电极200中的导 电网格400在交叠区域OVR中所围成的区域的面积大于或等于在非交叠区域中所围成的区域的面积,可以减少第一触控电极100和第二触控电极200的网格状结构中用于传输电信号的导电网格400的各边缘(例如第一边缘EDG1和第二边缘EDG2)在交叠区域OVR中所占据的面积。由此,可以进一步减少第一触控电极100与第二触控电极200之间在交叠区域OVR中的交叠面积,缩短所需的充电时间。
在本公开的一些实施例中,如图4A至图6B所示,第一触控电极100中的导电网格400在交叠区域OVR中的排布密度小于或等于在非交叠区域中的排布密度。例如,在平行于衬底基板11的平面内,对于面积相同且分别位于交叠区域OVR和非交叠区域中的两个不同子区域,例如位于交叠区域OVR中的第一子区域和位于非交叠区域中的第二子区域,第一触控电极100的网格状结构在第一子区域中所包含的导电网格400的数量小于或等于在第二子区域中所包含的导电网格400的数量。
在本公开的一些实施例中,如图4A至图6B所示,第二触控电极200中的导电网格400在交叠区域OVR中的排布密度小于或等于在非交叠区域中的排布密度。也即,在平行于衬底基板11的平面内,对于面积相同且分别位于交叠区域OVR和非交叠区域中的两个不同子区域,例如位于交叠区域OVR中的第三子区域和位于非交叠区域中的第四子区域,第二触控电极200的网格状结构在第三子区域中所包含的导电网格400的数量小于或等于在第四子区域中所包含的导电网格400的数量。
由此,可以减少第一触控电极100和第二触控电极200的网格状结构中用于传输电信号的导电网格400的各边缘(例如第一边缘EDG1和第二边缘EDG2)在交叠区域OVR中所占据的面积,进而进一步减少第一触控电极100与第二触控电极200之间在交叠区域OVR中的交叠面积,缩短所需的充电时间。
在本公开的一些实施例中,该导电网格400为金属网格。例如,第一触控电极100和第二触控电极200的网格状结构中的金属网格的材料可以包括铝、钼、铜、银等金属材料或者这些金属材料的合金材料,例如为银钯铜合金材料等,本公开的实施例对此不作具体限制。
需要说明的是,图2至图6B中所示的网格状结构的图案(例如轮廓、包括的导电网格的个数、尺寸、形状等)只是示例性说明,本公开的实施例对于网格状结构中形成的导电网格400的个数以及例如形状、轮廓、大小等具体图案特征等均不作具体限制。例如,网格状结构中的导电网格400可以均为多边形,例如均为四边形,而在本公开的其他一些实施例中,导电网格400的形状也可以为其他多边形,例如三角形、五边形、六边形等,具体可根据实际需要进行设计,本公开的实施例对导电网格400的具体形状、尺寸等不作限定。
图7为本公开一些实施例提供的一种触控基板用于与显示器件层叠设置的平面示意图,例如图7示出了图4A和图4B中的第一触控电极100以及第二触控电极200与显示器件中的子像素500之间在平行于衬底基板11的平面内的位置对应关系。图8A为图7中所示的区域RG2的一种示例的局部放大示意图,图8B为图7中所示的区域RG3的一 种示例的局部放大示意图。
需要说明的是,除显示器件中的子像素500以外,图7至图8B所示的实施例中的触控基板10的结构、设置方式、功能等均与图2至图6B所示的实施例中的基本相同或相似,具体内容可参考关于图2至图6B所示的实施例中的相应描述,重复之处在此不再赘述。
如图7至图8B所示,该触控基板10配置为与显示器件层叠设置,该显示器件包括呈阵列排布的多个像素单元,每个像素单元包括多个子像素500(例如子像素501~503)。各子像素500分别对应于一个导电网格400,且各子像素500在衬底基板11上的正投影位于对应的导电网格400在衬底基板11上的正投影所围成的区域内。
需要说明的是,在本公开的其他一些实施例中,也可以是一个导电网格400对应于多个子像素500,且多个子像素500在衬底基板11上的正投影均位于对应的导电网格400在衬底基板11上的正投影所围成的区域内。例如,一个像素单元中的子像素501~503均对应于同一个导电网格400。本公开的实施例对于一个导电网格400所对应的子像素500的具体数量不作限制。
例如,在图7至图8B所示的实施例中,多个子像素501~503的尺寸彼此不同,也即,该多个子像素501~503在衬底基板11上的正投影所围成的区域的面积彼此不同。
例如,以图7至图8B所示的实施例中具有不同尺寸的三个子像素501~503为例,其中尺寸相对最小的子像素501与触控电极中用于设置过孔结构HS的导电网格400对应。在本公开的其他一些实施例中,触控电极中用于设置过孔结构HS的导电网格400也可以与尺寸相对较大的子像素502或子像素503对应。这样,可以有助于增加触控电极中用于设置过孔结构HS的导电网格400的各顶点之间的相对距离,从而既有利于触控基板的制备工艺的优化,又可以减弱相邻的过孔结构HS之间可能产生的信号干扰。
例如,导电网格400的边缘呈折线形状延伸。例如,该导电网格400的沿第一方向R1延伸的第一边缘EDG1和沿第二方向R2延伸的第二边缘EDG2均分别呈折线形状延伸。例如,导电网格400的边缘的弯折角度可以为10°~20°,进一步可以为12°~18°,例如可以为12°、14°、15°、16°或18°等。
由此,可以降低或避免第一触控电极100和第二触控电极200的网格状结构与子像素阵列之间可能产生的干涉,进而有利于减弱或避免出现电极可视化现象,从而实现对触控基板10的光学性能的优化。同时,还可以减弱或避免显示画面中可能出现的例如点状、线状或块状的暗态刻蚀纹或摩尔(mura)纹等现象,从而减弱或避免显示画面中可能存在的可视性显示不良,改善画面的显示效果。
例如,导电网格400的第一边缘EDG1和第二边缘EDG2也可以分别呈曲线形状、弧线形状或其他适合的形状延伸,本公开的实施例对此不作具体限制。
本公开实施例提供的触控基板中,通过将导电网格400的边缘设计为呈折线形状、弧线形状或曲线形状(例如波浪形的曲线形状)延伸,导电网格400的边缘上的不同位置处可以具有不同的曲率方向。由此,不仅可以减弱导电网格400的各边缘可能产生的 反射现象,有效降低宏观下触控电极的可视化,例如降低了触控电极的边缘处的可视化现象,同时还可以减弱导电网格400的各边缘之间可能产生的干涉,有效降低微观下一个方向上或一个区域内的亮度差异,从而提升应用该触控基板的显示产品的显示品质。
例如,以导电网格400的第一边缘EDG1和第二边缘EDG2采用弧线形状为例,在第一边缘EDG1与第二边缘EDG2的连接处,弧形的第一边缘EDG1的切线与第一方向R1的夹角可以约为12°至18°,例如可以为14°左右,弧形的第二边缘EDG2的切线与第二方向R2的夹角可以约为12°至18°,例如可以为14°左右。
本公开实施例提供的触控基板中,通过将第一边缘EDG1与第一方向R1之间的夹角以及第二边缘EDG2与第二方向R2之间的夹角设置为12°至18°左右,可以最大限度地提高消影效果,降低触控电极的边缘可视化现象。
需要说明的是,在本公开的其他一些实施例中,对于一个导电网格400,也可以是两个第一边缘EDG1中的一个为折线或曲线形状,另一个为直线形状;也可以是两个第二边缘EDG2中的一个为折线或曲线形状,另一个为直线形状,本公开的实施例对此不作具体限制。
例如,多个子像素500可以分别配置为提供不同颜色的光,例如多个子像素501~503可以分别配置为提供不同颜色的光,例如分别配置为提供红光、蓝光、绿光等,本公开的实施例对此不作限制。
例如,以提供同一颜色的光的多个子像素501为例,如图7和图8A所示,该多个子像素501包括沿第二方向R2排列的第一子像素5011和第二子像素5012。例如,在沿第二方向R2排列的多个子像素501中,第一子像素5011和第二子像素5012在第二方向R2上彼此相邻,也即,在第二方向R2上,第一子像素5011和第二子像素5012之间不设置其他子像素501。与第一子像素5011对应的导电网格401的第二边缘EDG2的弯折方向,以及与第二子像素5012对应的导电网格402的第二边缘EDG2的弯折方向在第一方向R1上彼此相对设置。例如,导电网格401的第二边缘EDG2均向右侧弯折(也即,向右侧突出),例如第二边缘EDG2呈近似V形的折线形状,V型的开口方向向左;导电网格402的第二边缘EDG2均向左侧弯折(也即,向左侧突出),例如第二边缘EDG2呈近似V形的折线形状,V型的开口方向向右。进而,使导电网格401的第二边缘EDG2的弯折方向与导电网格402的第二边缘EDG2的弯折方向在第一方向R1上彼此相反,从而减弱或避免在第二方向R2上相邻的两个子像素501之间可能发生色偏的风险。
例如,如图7和图8A所示,该多个子像素501还包括第三子像素5013,第三子像素5013与第一子像素5011沿第一方向R1排列。例如,在沿第一方向R1排列的多个子像素501中,第一子像素5011和第三子像素5013在第一方向R1上彼此相邻,也即,在第一方向R1上,第一子像素5011和第三子像素5013之间不设置其他子像素501。与第一子像素5011对应的导电网格401的第一边缘EDG1的弯折方向,以及与第三子像素5013对应的导电网格403的第一边缘EDG1的弯折方向在第二方向R2上彼此相对设置。例如,导电网格401的第一边缘EDG1均向下方弯折(也即,向下侧突出),例如第一 边缘EDG1呈近似V形的折线形状,V型的开口方向向上;导电网格403的第一边缘EDG1均向上方弯折(也即,向上侧突出),例如第一边缘EDG1呈近似V形的折线形状,V型的开口方向向下。进而,使导电网格401的第一边缘EDG1的弯折方向与导电网格403的第一边缘EDG1的弯折方向在第二方向R2上彼此相反,从而减弱或避免在第一方向R1上相邻的两个子像素501之间可能发生色偏的风险。
需要说明的是,上述“弯折方向”是指导电网格400的边缘的整体轮廓,例如上述“呈近似V形”是指导电网格400的边缘形状的整体轮廓呈近似V形,构成该V形的两条彼此相接的线段可以为呈直线型延伸的直线段,也可以为呈例如折线型、锯齿型或其他适合的形状延伸的线段。换句话说,本公开的实施例对构成导电网格400的边缘的两条线段的具体形状不作限制,例如两条线段的边缘可以包括直线型、折线型、锯齿形、三角形、波浪形或其他适合的形状等,本公开的实施例对此不作具体限制。
例如,各子像素500与对应的导电网格400的各边缘或各顶点之间的距离均在预设范围内。例如,该预设范围可以为8μm~15μm。例如,进一步而言,各子像素500与对应的导电网格400的各边缘之间的距离范围可以为8μm~10μm,例如为9μm。
例如,各子像素500与对应的导电网格400的各边缘之间的最小距离可以设置为8μm~10μm,例如为9μm,从而可以有效降低触控电极中的网格图案对出光性能可能造成的不良影响。
例如,以图7所示的区域RG3中的子像素501为例,如图8B所示,该子像素501与在第二方向R2上彼此相对的两条第一边缘EDG1之间的间距以及与在第一方向R1上彼此相对的两条第二边缘EDG2之间的间距均基本保持一致,该子像素501与导电网格400的各顶点(例如顶点CR1~CR4)之间的间距均基本保持一致。
例如,可以通过适当调整与该子像素501对应的导电网格400的第一边缘EDG1以及第二边缘EDG2的延伸长度以及延伸方向、角度等,以使该子像素501与对应的导电网格400的各边缘之间的间距均保持在预设范围内,例如均基本近似于同一数值;或者,也可以通过适当调整导电网格400中的各顶点CR1~CR4之间的相对位置,以使该子像素501与对应的导电网格400的各顶点之间的间距均保持在预设范围内,例如均基本近似于同一数值。
例如,如图8B所示,该导电网格400中,位于左下方的顶点CR1相比于位于左上方的顶点CR2更加偏向右侧,位于右下方的顶点CR4相比于位于右上方的顶点CR3更加偏向左侧,以使得该子像素501与导电网格400的各顶点CR1~CR4之间的间距均基本保持一致。进而,可以降低或避免第一触控电极100和第二触控电极200的网格状结构中的导电网格400与子像素500之间可能产生的干涉,实现对触控基板10的光学性能的进一步优化。
例如,在任意一个导电网格400中,导电网格400的至少一个边缘(例如第一边缘EDG1和/或第二边缘EDG2)上可以设置有切口,该切口断开环形的网格图案。例如,该切口可以理解为切割第一边缘EDG1或第二边缘EDG2的假想线。
图9为本公开一些实施例提供的一种网格状结构中的切口的设置方式的示意图。例如图9示出了图4A和图4B中的第一触控电极100以及第二触控电极200的网格状结构中的切口的设置方式。需要说明的是,除导电网格400中的切口410以外,图9所示的实施例中的触控基板10的结构、设置方式、功能等均与图2至图6B所示的实施例中的基本相同或相似,具体内容可参考关于图2至图6B所示的实施例中的相应描述,重复之处在此不再赘述。
在本公开的一些实施例中,如图9所示,该导电网格400包括闭合网格420,以及还包括在导电网格400的边缘上设置一个或多个切口410的非闭合网格430。第一触控电极100中,位于非交叠区域中的导电网格400中的切口410的数量大于或等于位于交叠区域OVR中的导电网格400中的切口410的数量;第二触控电极200中,位于非交叠区域中的导电网格400中的切口410的数量大于或等于位于交叠区域OVR中的导电网格400中的切口410的数量。进而,可以降低第一触控电极100和第二触控电极200在交叠区域OVR中的信号传输负载,改善第一触控电极100和第二触控电极200的信号传输效果。
例如,第一触控电极100中的位于交叠区域OVR中的导电网格400均为闭合网格420,第二触控电极200中的位于交叠区域OVR中的导电网格400均为闭合网格420。也即,在交叠区域OVR中,导电网格400的各边缘上不设置切口,以使交叠区域OVR中的导电网格400均为闭合网格420。由此,可以减少第一触控电极100和第二触控电极200在交叠区域OVR中的信号传输负载,改善第一连接电极102在两个相邻的第一触控子电极101之间的信号连通效果以及第二连接电极202在两个相邻的第二触控子电极201之间的信号连通效果,从而提升第一触控电极100和第二触控电极200在交叠区域OVR中的信号传输的稳定性和可靠性。
需要说明的是,图9中所示的闭合的导电网格420以及非闭合的导电网格430的个数、形状、尺寸等均仅是示例性说明,本公开的实施例对此不作具体限制。
例如,在本公开的上述实施例中,第一触控电极100中用于设置过孔结构HS的导电网格400均为闭合网格420,也即,第一触控子电极101以及第一连接电极102中用于设置过孔结构HS以实现彼此电连接的导电网格400均为闭合网格420。由此,有利于改善第一连接电极102与对应的第一触控子电极101之间的信号连通效果,从而提升第一触控电极100中的信号传输的稳定性和可靠性。
需要说明的是,在本公开的其他一些实施例中,对于第一连接电极102中包括多个第一连接子电极1021的情况,也可以将其中部分第一连接子电极1021中用于设置过孔结构HS的导电网格400设置为非闭合的导电网格430,本公开的实施例对此不作具体限制。
图10为图2中所示的区域RG1的另一种示例的局部放大示意图。需要说明的是,除连接子电极1021之间在第一方向R1上的间距以外,图10所示的实施例中的触控基板10的结构、设置方式、功能等均与图2至图6B所示的实施例中的基本相同或相似,具体内容可参考关于图2至图6B所示的实施例中的相应描述,重复之处在此不再赘述。
例如,如图10所示,根据实际不同需求,相比于图4A和图4B所示的实施例,第一连接电极102中相邻的两个连接子电极1021之间在第一方向R1上的间距可以相对减小,第二连接电极202在第一方向R1上的尺寸也可以相应地减小。进而,可以进一步减小第一触控电极100和第二触控电极200之间在交叠区域OVR中的交叠面积,缩短所需的充电时间。
图11为本公开一些实施例提供的另一种第一连接电极的示意图,图12A为本公开一些实施例提供的另一种触控基板用于与显示器件层叠设置的平面示意图,图12B为图12A中所示的区域RG4的一种示例的局部放大示意图。例如,图11为图12A中所示的第一连接电极102的示意图。需要说明的是,除连接子电极1021中包括的导电网格400的数量以及用于与第一触控子电极101连接的过孔结构HS的设置位置以外,图11至图12B所示的实施例中的触控基板10的结构、设置方式、功能等均与图2至图6B所示的实施例以及图7至图8B所示的实施例中的基本相同或相似,具体内容可参考关于图2至图6B所示的实施例以及图7至图8B所示的实施例中的相应描述,重复之处在此不再赘述。
例如,如图11、图12A以及图12B所示,相比于图4A至图6B所示的实施例,第一连接电极102中的连接子电极1021在交叠区域OVR中包括更多的导电网格400,且该连接子电极1021在第二方向R2上的延伸长度也相应地相对增加。进而,可以降低第一触控电极100在交叠区域OVR中的信号传输负载,提升交叠区域OVR中的信号传输的稳定性和可靠性。
需要说明的是,本公开的实施例对第一连接电极102的连接子电极1021中包括的导电网格400的具体数量不作限制。例如,连接子电极1021中包括的导电网格400的数量可以为1个、2个、3个、4个、5个或更多个等。
例如,如图11至图12B所示,相比于图8A和图8B中所示的示例,过孔结构HS通过对应的第一连接子电极1021中的多个导电网格400与对应的第一连接子电极1021连接。例如,过孔结构HS中的4个过孔分别位于第一连接子电极1021中在第二方向R2上相邻设置的两个导电网格400中彼此不共用的四个顶点处,例如在位于上方的导电网格400的顶点CR2及CR3处以及位于下方的导电网格400的顶点CR1及CR4处。
进而,在图12A和图12B所示的示例中,以子像素501为例,相比于图8A和图8B所示的示例,由于该子像素501对应的导电网格400中只需在该导电网格400的顶点CR2和CR3处设置过孔,因此该子像素501与对应的导电网格400中的各边缘EDG1、EDG2以及各顶点CR1~CR4之间的间距可以被适当增大;以子像素502为例,相比于图8A和图8B所示的示例,由于该子像素502对应的导电网格400中只需在该导电网格400的顶点CR1和CR4处设置过孔,因此该子像素502与对应的导电网格400中的各边缘EDG1、EDG2以及各顶点CR1~CR4之间的间距可以被适当增大;以子像素503为例,相比于图8A和图8B所示的示例,由于在该子像素503对应的导电网格400中,只需在该导电网格400的顶点处设置相应过孔而在该导电网格400的例如边缘EDG2的中间位置不设置过孔,因此该子像素503与对应的导电网格400中的各边缘EDG1、EDG2以及各顶点 CR1~CR4之间的间距也可以被适当增大。由此,既可以保证各子像素500的正常显示,又可以减弱或避免相邻的两个子像素500之间可能发生色偏的风险。
图13A为图2中所示的区域RG1的再一种示例的局部放大示意图,图13B为本公开一些实施例提供的再一种第一连接电极的示意图,例如图13B为图13A中所示的第一连接电极102的示意图。
例如,如图13A和图13B所示,在交叠区域OVR中,第一触控电极100的导电网格400中沿第二方向R2延伸的边缘EDG2与第二触控电极200的导电网格400中沿第二方向R2延伸的边缘EDG2在第一方向R1上彼此间隔且交替设置。并且,第一触控电极100的网格状结构在该交叠区域OVR中不设置沿第一方向R1延伸的边缘EDG1。由此,可以进一步减少第一触控电极100与第二触控电极200之间在交叠区域OVR中的交叠面积,缩短所需的充电时间。
需要说明的是,关于图13A和图13B所示的实施例中的触控基板10的结构、设置方式、功能等具体内容可参考关于图2至图6B所示的实施例中的相应描述,重复之处在此不再赘述。
在本公开的一些实施例中,绝缘层330的材料可以为无机绝缘材料,例如该无机绝缘材料为透明材料。例如该无机绝缘材料为氧化硅、氮化硅、氮氧化硅等硅的氧化物、硅的氮化物或硅的氮氧化物,或者氧化铝、氮化钛等包括金属氮氧化物绝缘材料。
例如,该绝缘层330的材料也可以是有机绝缘材料,以获得良好的耐弯折性。例如,该有机绝缘材料为透明材料。例如,该有机绝缘材料为OCA光学胶。例如,该有机绝缘材料可以包括聚酰亚胺(PI)、丙烯酸酯、环氧树脂、聚甲基丙烯酸甲酯(PMMA)等。
需要说明的是,在其他一些实施例中,也可以是在第一方向R1上相邻的两个第二触控子电极201之间通过桥接结构连接,而在第二方向R2上相邻的两个第一触控子电极101之间通过与第一触控子电极101位于同一层且一体成型设置的第一连接电极102连接,也即,上述在第二方向R2上相邻的两个第一触控子电极101之间采用的电连接方式与在第一方向R1上相邻的两个第二触控子电极201之间采用的电连接方式可以彼此互换。
在本公开的一些实施例中,第一触控电极100和第二触控电极200之间彼此绝缘,可以是第一触控电极100为触控驱动电极,第二触控电极200为触控感测电极;或者,也可以是第一触控电极100为触控感测电极,第二触控电极200为触控驱动电极,本公开的实施例对此不作限制。
例如,当上述触控基板应用于例如显示面板或显示装置时,每个第一触控电极100和每个第二触控电极200可以分别与一条信号线电连接,并通过该信号线连接至触控控制器或触控集成电路。以第一触控电极100为触控驱动电极,第二触控电极200为触控感测电极为例,该触控集成电路例如可以为触控芯片,用于为向第一触控电极100提供触控驱动信号并从第二触控电极200接收触控感测信号以及对接收的触控感测信号进行处理,例如将处理的数据/信号提供给系统控制器,以实现触控感测功能。例如,信号线 与该触控集成电路连接的一端可以均布置在显示面板的触控区的同一侧,以便于与该触控集成电路的连接;或者,也可以在一个第一触控电极100的两端分别设置一条信号线,在工作时该触控集成电路同时通过两条信号线向一个第一触控电极100双向输入触控驱动信号(双边驱动),使得第一触控电极100上信号加载的速度提高,从而可以提高检测速度。
本公开至少一实施例还提供一种显示面板,该显示面板包括显示器件以及本公开任一实施例所述的触控基板。在该显示面板中,显示器件和触控基板层叠设置。
图14为本公开一些实施例提供的一种显示面板的示意框图。例如,如图14所示,该显示面板60包括显示器件601和触控基板602。例如,显示器件601和触控基板602可以层叠设置,例如该触控基板602可以为本公开任一实施例所述的触控基板,例如上述实施例中的触控基板10。
例如,在本公开的一些实施例中,该显示面板60还可以包括位于显示器件601与触控基板602之间的封装层,从而避免显示器件601与触控基板602中的例如功能性结构或膜层材料之间可能产生的相互干扰。
图15为本公开一些实施例提供的一种显示面板60的具体示例的结构示意图。
如图15所示,该触控基板602位于显示器件601的显示侧,例如为在使用过程中更接近用户的一侧。
例如,本实施例以显示面板为OLED显示面板为例进行介绍,例如该OLED显示面板可以为On-cell或In-cell触控显示面板。当然,在其他一些实施例中,该显示面板也可以为液晶显示面板,本公开的实施例对采用本公开实施例提供的触控基板的显示面板的具体类型不作限定。
例如,该显示器件601包括阵列排布的多个子像素。例如,该显示面板60为OLED显示面板,该多个子像素可以包括绿色子像素、红色子像素或蓝色子像素等。每个子像素包括发光元件23以及驱动该发光元件23发光的像素驱动电路。本公开的实施例对于像素驱动电路的类型以及具体组成不作限制,例如,该像素驱动电路可以是电流驱动型也可以是电压驱动型,可以是2T1C(即两个晶体管和一个电容,该两个晶体管包括驱动晶体管以及数据写入晶体管)驱动电路,可以是在2T1C的基础上进一步包括补偿电路(补偿晶体管)、发光控制电路(发光控制晶体管)、复位电路(复位晶体管)等的驱动电路。
为了清楚起见,图15示出了该像素驱动电路中与该发光元件23直接电连接的第一晶体管24,该第一晶体管24可以是驱动晶体管,配置为工作在饱和状态下并控制驱动发光元件23发光的电流的大小。例如,该第一晶体管24也可以为发光控制晶体管,用于控制驱动发光元件23发光的电流是否流过。本公开的实施例对第一晶体管的具体类型不作限制。
例如,发光元件23为有机发光二极管,包括第一电极231、发光层233和第二电极232。第一电极231和第二电极232之一为阳极,另一个为阴极;例如,第一电极231为 阳极,第二电极232为阴极。例如,发光层233为有机发光层或量子点发光层。例如,发光元件23除了发光层233之外还可以包括空穴注入层、空穴传输层、电子注入层、电子传输层等辅助功能层。例如,发光元件23可以为顶发射结构,第一电极231具有反射性而第二电极232具有透射性或半透射性。例如,第一电极231为高功函数的材料以充当阳极,例如为ITO/Ag/ITO叠层结构;第二电极232为低功函数的材料以充当阴极,例如为半透射的金属或金属合金材料,例如为Ag/Mg合金材料。
第一晶体管24包括栅极341、栅极绝缘层342、有源层343、第一极344和第二极345,该第二极345与发光元件23的第一电极231电连接。本公开的实施例对于第一晶体管24的类型、材料、结构等均不作限制,例如其可以为顶栅型、底栅型等。例如,第一晶体管24的有源层343可以为非晶硅、多晶硅(低温多晶硅与高温多晶硅)、氧化物半导体(例如,氧化铟镓锡(IGZO))等。例如,第一晶体管24可以为N型晶体管或P型晶体管。
本公开的实施例中采用的晶体管(例如第一晶体管24)均可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件,本公开的实施例中均以薄膜晶体管为例进行说明。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管除栅极之外的两极,直接描述了其中一极为第一极,另一极为第二极。
如图15示,该显示器件601还包括像素界定层322,该像素界定层322设置于该发光元件23的第一电极231上,其中形成多个开口321,分别暴露多个子像素的第一电极231,从而定义出每个子像素的像素开口区,子像素的发光层形成在该像素开口区,而第二电极232形成为公共电极(即为多个子像素共享)。
如图15示,该显示器件601还包括位于该发光元件23与触控基板602之间的封装层33,该封装层33配置为对发光元件23进行密封,以防止外界的湿气和氧气向该发光元件23及驱动电路渗透而造成对例如发光元件23等器件的损坏。例如,封装层33可以是单层结构或多层结构,例如包括有机薄膜、无机薄膜或者包括有机薄膜及无机薄膜交替层叠的多层结构。
例如,如图15示,该显示面板60还包括位于显示器件601和触控基板602之间的缓冲层35。例如,该缓冲层35形成于封装层33上,以用于提高触控基板602和显示器件601之间的粘合力。例如,该缓冲层35可以为无机绝缘层。例如,该缓冲层35的材料可以是氮化硅、氧化硅或者硅的氮氧化物等。例如,该缓冲层35也可以包括氧化硅层和氮化硅层交替堆叠的结构。
本公开实施例提供的显示面板60同时具有触控功能与显示功能,并且具有本公开上述实施例提供的触控基板的所有技术效果,在此不再赘述。
本公开至少一实施例还提供一种电子设备,该电子设备包括本公开任一实施例所述的显示面板,例如可以包括上述显示面板60。
图16为本公开一些实施例提供的一种电子设备的示意框图。例如,如图16所示, 该电子设备70包括显示面板701,例如该显示面板701可以为本公开任一实施例所述的显示面板,例如上述实施例中的显示面板60。
例如,该电子设备70可以为具有显示功能和触控功能的显示设备或显示装置等,例如为OLED显示装置、QLED显示装置或液晶显示装置。
例如,该电子设备70可以为显示器、OLED面板、OLED电视、液晶显示面板、液晶显示电视、QLED面板、QLED电视、电子纸、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能和触控功能的产品或部件。
还有以下几点需要说明:
(1)本公开实施例的附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种触控基板,包括:
    衬底基板;以及
    位于所述衬底基板上的多个第一触控电极和多个第二触控电极,
    其中,所述多个第一触控电极沿第一方向排列,各所述第一触控电极沿不同于所述第一方向的第二方向延伸,所述多个第二触控电极沿所述第二方向排列,各所述第二触控电极沿所述第一方向延伸;
    各所述第一触控电极与各所述第二触控电极之间彼此间隔且绝缘;
    在垂直于所述衬底基板的方向上,各所述第一触控电极分别与所述多个第二触控电极之间彼此交叠,各所述第二触控电极分别与所述多个第一触控电极之间彼此交叠,以使所述多个第一触控电极和所述多个第二触控电极之间形成多个交叠区域和多个非交叠区域;
    所述第一触控电极和所述第二触控电极分别包括由多个导电网格形成的网格状结构;
    所述导电网格包括沿所述第一方向延伸的第一边缘;
    在所述交叠区域中,所述第二触控电极的导电网格中包括至少一条第一边缘,且所述第一触控电极的导电网格中不设置与所述第二触控电极的导电网格中包括的所述至少一条第一边缘在垂直于所述衬底基板的方向上重叠的第一边缘。
  2. 根据权利要求1所述的触控基板,其中,在所述交叠区域中,所述第一触控电极的导电网格中包括至少一条第一边缘,且所述第一触控电极的导电网格中的所述至少一条第一边缘与所述第二触控电极的导电网格中的所述至少一条第一边缘在所述第二方向上间隔设置。
  3. 根据权利要求2所述的触控基板,其中,在所述交叠区域中,所述第一触控电极的导电网格中的各所述第一边缘在所述第二方向上位于所述第二触控电极的导电网格中在所述第二方向上相邻的两条第一边缘之间。
  4. 根据权利要求1-3任一项所述的触控基板,其中,所述导电网格还包括沿所述第二方向延伸的第二边缘,所述第一边缘和所述第二边缘交替连接以构成所述导电网格。
  5. 根据权利要求4所述的触控基板,其中,在所述交叠区域中,所述第一触控电极的导电网格中包括至少一条第二边缘,且所述第二触控电极的导电网格中不设置与所述第一触控电极的导电网格中包括的所述至少一条第二边缘在垂直于所述衬底基板的方向上重叠的第二边缘。
  6. 根据权利要求5所述的触控基板,其中,所述第二触控电极的导电网格中包括至少一条第二边缘,且所述第二触控电极的导电网格中的所述至少一条第二边缘与所述第一触控电极的导电网格中的所述至少一条第二边缘在所述第一方向上间隔设置。
  7. 根据权利要求4-6任一项所述的触控基板,其中,所述第一方向垂直于所述第二 方向,所述导电网格为方形导电网格。
  8. 根据权利要求4-7任一项所述的触控基板,其中,所述第一触控电极包括多个第一触控子电极和至少一个第一连接电极,所述多个第一触控子电极沿所述第二方向排列,所述第一连接电极位于在所述第二方向上相邻的两个第一触控子电极之间,以使所述相邻的两个第一触控子电极电连接;
    所述第二触控电极包括多个第二触控子电极和至少一个第二连接电极,所述多个第二触控子电极沿所述第一方向排列,所述第二连接电极位于在所述第一方向上相邻的两个第二触控子电极之间,以使所述相邻的两个第二触控子电极电连接;
    所述第一连接电极与所述第二连接电极分别位于相对于所述衬底基板的不同导电层中;
    所述第一连接电极与所述第二连接电极至少部分位于所述交叠区域中,且在垂直于所述衬底基板的方向上彼此部分交叠。
  9. 根据权利要求8所述的触控基板,其中,所述第一连接电极包括沿所述第二方向延伸的至少一个第一连接子电极,所述第二连接电极包括沿所述第一方向延伸的至少一个第二连接子电极;
    在所述交叠区域中,所述第一触控电极中在所述第二方向上相邻的导电网格之间沿所述第二方向依次连接以形成所述第一连接子电极,所述第二触控电极中在所述第一方向上相邻的导电网格之间沿所述第一方向依次连接以形成所述第二连接子电极。
  10. 根据权利要求9所述的触控基板,其中,响应于所述第一连接电极包括多个第一连接子电极,所述多个第一连接子电极沿所述第一方向依次排列,所述多个第一连接子电极的延伸方向彼此基本平行;
    响应于所述第二连接电极包括多个第二连接子电极,所述多个第二连接子电极沿所述第二方向依次排列,所述多个第二连接子电极的延伸方向彼此基本平行。
  11. 根据权利要求9或10所述的触控基板,其中,在所述交叠区域中,所述第一连接子电极中在所述第二方向上相邻的导电网格的中心大致位于沿所述第二方向延伸的同一直线上。
  12. 根据权利要求9-11任一项所述的触控基板,其中,所述触控基板包括位于所述衬底基板上的第一导电层、绝缘层和第二导电层,所述绝缘层位于所述第一导电层和所述第二导电层之间,所述第一导电层和所述第二导电层通过所述绝缘层在垂直于所述衬底基板的方向上彼此间隔且绝缘;
    所述第一触控子电极位于所述第二导电层,所述第一连接电极位于所述第一导电层,所述第一触控子电极通过至少贯穿所述绝缘层的过孔结构与所述第一连接电极连接;
    所述第二触控子电极和所述第二连接电极位于所述第二导电层。
  13. 根据权利要求12所述的触控基板,其中,所述过孔结构通过对应的第一连接子电极中的多个导电网格与所述对应的第一连接子电极连接。
  14. 根据权利要求1-13任一项所述的触控基板,其中,所述第一触控电极中的导电 网格在所述交叠区域中所围成的区域的面积大于或等于在所述非交叠区域中所围成的区域的面积,和/或,
    所述第二触控电极中的导电网格在所述交叠区域中所围成的区域的面积大于或等于在所述非交叠区域中所围成的区域的面积。
  15. 根据权利要求1-14任一项所述的触控基板,其中,所述第一触控电极中的导电网格在所述交叠区域中的排布密度小于或等于在所述非交叠区域中的排布密度,和/或,
    所述第二触控电极中的导电网格在所述交叠区域中的排布密度小于或等于在所述非交叠区域中的排布密度。
  16. 根据权利要求1-15任一项所述的触控基板,其中,所述导电网格为金属网格。
  17. 根据权利要求1-16任一项所述的触控基板,其中,所述导电网格包括闭合网格,以及还包括在所述导电网格的边缘上设置至少一个切口的非闭合网格,
    所述第一触控电极中,位于所述非交叠区域中的导电网格中的切口数量大于或等于位于所述交叠区域中的导电网格中的切口数量,和/或,
    所述第二触控电极中,位于所述非交叠区域中的导电网格中的切口数量大于或等于位于所述交叠区域中的导电网格中的切口数量。
  18. 根据权利要求17所述的触控基板,其中,所述第一触控电极中的位于所述交叠区域中的导电网格为闭合网格,所述第二触控电极中的位于所述交叠区域中的导电网格为闭合网格。
  19. 根据权利要求1-18任一项所述的触控基板,其中,所述触控基板配置为与显示器件层叠设置,所述显示器件包括呈阵列排布的多个像素单元,每个所述像素单元包括多个子像素,
    一个导电网格对应于至少一个子像素,且所述至少一个子像素在所述衬底基板上的正投影位于对应的导电网格在所述衬底基板上的正投影所围成的区域内。
  20. 根据权利要求19所述的触控基板,其中,所述导电网格的边缘呈折线形状延伸。
  21. 根据权利要求20所述的触控基板,其中,所述多个子像素包括沿所述第二方向排列的第一子像素和第二子像素,所述第一子像素和所述第二子像素分别对应于一个导电网格,
    与所述第一子像素对应的导电网格的第二边缘的弯折方向,以及与所述第二子像素对应的导电网格的第二边缘的弯折方向在所述第一方向上彼此相对设置。
  22. 根据权利要求20或21所述的触控基板,其中,所述多个子像素包括沿所述第一方向排列的第一子像素和第三子像素,所述第一子像素和所述第三子像素分别对应于一个导电网格,
    与所述第一子像素对应的导电网格的第一边缘的弯折方向,以及与所述第三子像素对应的导电网格的第一边缘的弯折方向在所述第二方向上彼此相对设置。
  23. 根据权利要求19-22任一项所述的触控基板,其中,各所述子像素与对应的所述导电网格的边缘或顶点之间的距离在预设范围内,所述预设范围为8μm~15μm。
  24. 根据权利要求19-23任一项所述的触控基板,其中,所述多个子像素分别配置为提供不同颜色的光。
  25. 根据权利要求1-24任一项所述的触控基板,其中,所述第一触控电极为触控驱动电极,所述第二触控电极为触控感测电极,或者,
    所述第一触控电极为触控感测电极,所述第二触控电极为触控驱动电极。
  26. 一种显示面板,包括显示器件以及如权利要求1-25任一项所述的触控基板,其中,所述显示器件与所述触控基板层叠设置。
  27. 一种电子设备,包括如权利要求26所述的显示面板。
PCT/CN2022/079291 2021-04-20 2022-03-04 触控基板、显示面板及电子设备 WO2022222615A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/274,177 US20240094855A1 (en) 2021-04-20 2022-03-04 Touch Substrate, Display Panel, and Electronic Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/088322 WO2022222022A1 (zh) 2021-04-20 2021-04-20 显示面板及其制备方法、显示装置
CNPCT/CN2021/088322 2021-04-20
CN202111582513.4 2021-12-22
CN202111582513.4A CN115220605A (zh) 2021-04-20 2021-12-22 触控基板、显示面板及电子设备

Publications (1)

Publication Number Publication Date
WO2022222615A1 true WO2022222615A1 (zh) 2022-10-27

Family

ID=82310315

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/088322 WO2022222022A1 (zh) 2021-04-20 2021-04-20 显示面板及其制备方法、显示装置
PCT/CN2022/079291 WO2022222615A1 (zh) 2021-04-20 2022-03-04 触控基板、显示面板及电子设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088322 WO2022222022A1 (zh) 2021-04-20 2021-04-20 显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (3) US11995256B2 (zh)
CN (3) CN115669277B (zh)
WO (2) WO2022222022A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024187473A1 (zh) * 2023-03-16 2024-09-19 京东方科技集团股份有限公司 显示面板及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114860103A (zh) * 2022-04-12 2022-08-05 武汉华星光电半导体显示技术有限公司 触控传感器、显示面板及电子装置
TWI850735B (zh) * 2022-08-16 2024-08-01 友達光電股份有限公司 觸控感測面板
TWI842256B (zh) * 2022-12-07 2024-05-11 大陸商宸美(廈門)光電有限公司 觸控模組及其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830841A (zh) * 2012-08-14 2012-12-19 北京京东方光电科技有限公司 一种触摸屏、触控显示装置及一种触摸屏的制造方法
US20160103520A1 (en) * 2014-10-13 2016-04-14 Samsung Display Co., Ltd. Touch screen panel
JP2016115152A (ja) * 2014-12-15 2016-06-23 大日本印刷株式会社 タッチパネルセンサおよびタッチパネルセンサの製造方法およびタッチ位置検出機能付き表示装置
CN109375826A (zh) * 2018-12-13 2019-02-22 武汉华星光电半导体显示技术有限公司 一种触控屏、显示装置
CN110308822A (zh) * 2019-07-03 2019-10-08 京东方科技集团股份有限公司 触摸显示面板及其制备方法
US20210097919A1 (en) * 2019-09-30 2021-04-01 Shanghai Tianma AM-OLED Co., Ltd. Display Panel and Display Device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599150B2 (en) 2009-10-29 2013-12-03 Atmel Corporation Touchscreen electrode configuration
EP2662758A3 (en) 2012-05-09 2015-03-04 LG Innotek Co., Ltd. Electrode member and touch window including the same
JP5648934B2 (ja) * 2013-03-12 2015-01-07 大日本印刷株式会社 導電性メッシュ、導電性メッシュシート、タッチパネル装置および画像表示装置
JP6127666B2 (ja) * 2013-04-04 2017-05-17 大日本印刷株式会社 導電性メッシュ、導電性メッシュシート、タッチパネル装置および画像表示装置
CN203376735U (zh) 2013-08-08 2014-01-01 敦泰科技有限公司 一种电容式触摸屏
JP6156742B2 (ja) * 2013-10-01 2017-07-05 大日本印刷株式会社 導電性メッシュ、導電性メッシュシート、タッチパネル装置および画像表示装置
JP6307410B2 (ja) * 2014-10-15 2018-04-04 富士フイルム株式会社 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
TW201616323A (zh) 2014-10-17 2016-05-01 瑞鼎科技股份有限公司 內嵌式互電容觸控面板及其佈局
US9940866B2 (en) * 2015-06-01 2018-04-10 Apple Inc. Electronic device having display with curved edges
KR101845809B1 (ko) * 2015-12-28 2018-05-14 금호전기주식회사 사인곡선 전극패턴을 갖는 터치 스크린 패널 및 터치 스크린 모듈
FR3047959B1 (fr) 2016-02-24 2018-03-23 Continental Automotive France Volant de conduite avec paroi tactile transparente biface
KR102541112B1 (ko) 2016-04-05 2023-06-09 미래나노텍(주) 터치 센서 및 이를 이용한 터치스크린 패널
CN106020547B (zh) 2016-05-26 2019-11-05 京东方科技集团股份有限公司 一种基板、触摸屏和触摸显示装置
CN106953628A (zh) 2017-03-08 2017-07-14 深圳市帝晶光电科技有限公司 一种新型触摸屏按键设计方法
CN107310250B (zh) 2017-07-28 2022-12-27 张家港康得新光电材料有限公司 用于制作触摸屏的印刷网版与触摸屏的制作方法
CN208367661U (zh) * 2018-06-11 2019-01-11 广州视源电子科技股份有限公司 导电膜、触控显示屏以及触控显示装置
CN110858087B (zh) * 2018-08-23 2023-04-28 群创光电股份有限公司 触控式显示装置
CN110752243B (zh) * 2019-10-31 2023-01-10 武汉天马微电子有限公司 一种显示面板、其制作方法及显示装置
CN111625132B (zh) * 2020-05-15 2021-12-03 武汉华星光电半导体显示技术有限公司 显示面板以及显示装置
US11526226B2 (en) * 2020-06-30 2022-12-13 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch control display screen and electronic device
CN111722762A (zh) * 2020-07-15 2020-09-29 武汉华星光电半导体显示技术有限公司 触控显示装置
KR20220089770A (ko) * 2020-12-21 2022-06-29 삼성디스플레이 주식회사 전자 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830841A (zh) * 2012-08-14 2012-12-19 北京京东方光电科技有限公司 一种触摸屏、触控显示装置及一种触摸屏的制造方法
US20160103520A1 (en) * 2014-10-13 2016-04-14 Samsung Display Co., Ltd. Touch screen panel
JP2016115152A (ja) * 2014-12-15 2016-06-23 大日本印刷株式会社 タッチパネルセンサおよびタッチパネルセンサの製造方法およびタッチ位置検出機能付き表示装置
CN109375826A (zh) * 2018-12-13 2019-02-22 武汉华星光电半导体显示技术有限公司 一种触控屏、显示装置
CN110308822A (zh) * 2019-07-03 2019-10-08 京东方科技集团股份有限公司 触摸显示面板及其制备方法
US20210097919A1 (en) * 2019-09-30 2021-04-01 Shanghai Tianma AM-OLED Co., Ltd. Display Panel and Display Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024187473A1 (zh) * 2023-03-16 2024-09-19 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN115669277B (zh) 2024-04-02
US20240094855A1 (en) 2024-03-21
CN115669277A (zh) 2023-01-31
WO2022222022A1 (zh) 2022-10-27
CN115220605A (zh) 2022-10-21
US11995256B2 (en) 2024-05-28
US20240053842A1 (en) 2024-02-15
US20240231528A1 (en) 2024-07-11
CN216956916U (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2022222615A1 (zh) 触控基板、显示面板及电子设备
WO2022057326A1 (zh) 触控结构及触控显示面板、电子装置
US12105905B2 (en) Touch display panel and electronic device
WO2022062879A1 (zh) 触控基板及显示面板
US11782558B2 (en) Touch structure, touch display panel and electronic device
US20240220060A1 (en) Touch structure, display panel and electronic device
US11789571B2 (en) Touch structure, touch display panel and electronic device
TW201743118A (zh) 顯示面板
CN215814106U (zh) 触控基板、显示面板及电子设备
WO2023273388A1 (zh) 触控基板、显示面板及电子设备
US12019833B2 (en) Touch structure, touch display panel and electronic device
WO2022178817A1 (zh) 触控结构、触控显示面板和显示装置
US20230315237A1 (en) Touch structure, display panel, and electronic device
WO2022183438A1 (zh) 触控电极结构、显示面板及电子设备
US20240023407A1 (en) Electronic substrate and electronic device
WO2024092405A1 (zh) 触控结构、触控显示面板和电子装置
CN117322166A (zh) 显示基板及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790724

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18274177

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED (15/02/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 22790724

Country of ref document: EP

Kind code of ref document: A1