[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022220612A1 - 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법 - Google Patents

스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법 Download PDF

Info

Publication number
WO2022220612A1
WO2022220612A1 PCT/KR2022/005404 KR2022005404W WO2022220612A1 WO 2022220612 A1 WO2022220612 A1 WO 2022220612A1 KR 2022005404 W KR2022005404 W KR 2022005404W WO 2022220612 A1 WO2022220612 A1 WO 2022220612A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
formula
solvent
compound
chloro
Prior art date
Application number
PCT/KR2022/005404
Other languages
English (en)
French (fr)
Inventor
김성욱
김기대
이수민
최인환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22788467.3A priority Critical patent/EP4306514A4/en
Priority to US18/555,025 priority patent/US20240228441A1/en
Priority to CN202280028512.1A priority patent/CN117136181A/zh
Publication of WO2022220612A1 publication Critical patent/WO2022220612A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles

Definitions

  • the present invention relates to a process for the preparation of key intermediates for the synthesis of sphingosine-1-phosphate receptor agonists.
  • Sphingosine-1-phosphate is produced through the intracellular ceramide pathway, and ceramide, the starting material of this synthetic pathway, has two production pathways, namely, the de novo biosynthetic pathway and It is produced in cells through the degradation of sphingomyelin, a component of the cell membrane.
  • S1P levels in each tissue are regulated by two biosynthetic sphingosine kinases (SphKs) and two biodegradable S1P phosphatases (S1P lyase and lysophospholipid phosphatases).
  • S1P lyase and lysophospholipid phosphatases The produced substance S1P mediates various cellular responses such as cell proliferation, cytoskeletal organization and migration, adhesion- and tight junction assembly, and morphogenesis. it is known They are present in plasma at high concentrations (100-1000 nM) in a form bound to albumin and other plasma proteins, while in tissues at low concentrations.
  • S1P binds to the S1P receptor, a G-protein coupled receptor, and exhibits various biological functions.
  • the sub-types of S1P receptors known to date are S1P1 to S1P5. ) receptor) 1, 5, 3, 6 and 8. These S1P receptors are responsible for leukocyte recirculation, neural cell proliferation, morphological changes, migration, endothelial function, vasoregulation and cardiovascular development ( It is known to be involved in various biological functions such as cardiovascular development.
  • S1P signaling through these receptors plays an important role in a series of responses related to multiple sclerosis, including inflammatory responses and repair processes.
  • nonselective S1P1 agonists have recently It is approved for the treatment of multiple sclerosis.
  • S1P receptors are equally widely expressed in many cells involved in the induction of multiple sclerosis.
  • S1P1 receptors play a very important role in the immune system.
  • the S1P1 receptor is mainly expressed on the surface of lymphocytes such as T cells and B cells, and reacts with S1P to participate in lymphocyte recycling.
  • the S1P concentration is higher in body fluid than in lymphoid tissue, so that lymphocytes leave the lymphoid tissue according to the difference in S1P concentration and circulate along the efferent lymph.
  • the S1P1 receptor of lymphocytes is down-regulated by the S1P1 agonist, the egress of lymphocytes from the lymphoid tissue does not occur, and eventually autoaggressive causing inflammation and tissue damage to the CNS. The infiltration of lymphocytes is reduced, and the therapeutic effect appears in multiple sclerosis.
  • fingolimod a nonselective S1P1 agonist approved as an oral multiple sclerosis treatment, when it is activated by binding to the S1P1 receptor, paradoxically, the receptor is internalized or degraded from the lymphocyte surface, resulting in functional S1P1 It acts as an antagonist.
  • Korean Patent Application Laid-Open No. 10-2014-0104376 discloses a novel compound of Formula 1 effective as an S1P receptor agonist.
  • X is C or N
  • R1 is H or optionally substituted alkyl
  • R2 is H, optionally substituted alkyl, halogen, CN, CF 3 or COCF 3 ,
  • W is C, N, C-alkoxy, C-halogen or C-CN
  • n 0, 1, 2 or 3
  • R3 to R10 are each H, alkyl, halogen, halogenoalkyl or alkoxyalkyl,
  • R11 is H
  • R12 is OH, NH 2 , or to be.
  • reaction may have the following problems in producing a clinical API.
  • the filtered solid was washed sequentially with water and MTBE, respectively, and then dried over nitrogen to 6-(3-chloro-1-isopropyl-1H-indazol-5-ylmethoxy)-3,4-dihydro-2H -Naphthalen-1-one was obtained.
  • Phosphoryl chloride (POCl 3 ) was added to the reactor and the internal temperature was cooled to 0 °C. DMF was slowly added dropwise, and after stirring at an internal temperature of 50° C. for 2 hours, 6-(3-chloro-1-isopropyl-1H-indazol-5-ylmethoxy)-3,4-dihydro-2H-naphthalene -1-one was added and reacted at an internal temperature of 50° C. for 3 hours. Since excessive HCl gas was generated during the reaction, a vent line was installed so that it could be neutralized by installing a NaOH trap.
  • R1 is hydrogen or substituted or unsubstituted alkyl
  • R2 is hydrogen, substituted or unsubstituted alkyl, halogen, CN, CF 3 or COCF 3 ;
  • X is C or N
  • L is a leaving group
  • 1) performing a reduction reaction of the compound of Formula 2 in the presence of an alcohol-based solvent and an alkoxide to obtain a compound of Formula 3, and 2) substituting an alcohol group of the compound of Formula 3 with a leaving group It provides a method for preparing an intermediate compound of the following formula (4) comprising the step.
  • R1 is hydrogen or substituted or unsubstituted alkyl
  • R2 is hydrogen, substituted or unsubstituted alkyl, halogen, CN, CF 3 or COCF 3 ;
  • R3 is substituted or unsubstituted alkyl
  • X is C or N
  • L is a leaving group
  • the 'alkyl' is a substituted alkyl
  • substituents there may be one or more substituents, and the substituents are each independently a group consisting of halogen, cyano, hydroxy, alkyloxy, oxo, unsubstituted sulfonyl and sulfonyl substituted with alkyl. It may be selected from
  • R1 of the above formula is hydrogen or C 1 -C 6 substituted or unsubstituted alkyl
  • R2 is hydrogen, C 1 -C 6 substituted or unsubstituted alkyl, halogen, CN, It may be CF 3 or COCF 3
  • R3 may be C 1 -C 6 substituted or unsubstituted alkyl.
  • R1 may be C 1 -C 4 substituted or unsubstituted alkyl
  • R2 may be halogenyl (F, Cl, Br or I)
  • R3 may be C 1 -C 4 substituted or unsubstituted alkyl, for example methyl.
  • the leaving group (L) is a reactive group that provides a substitution position to the compound of Formula 4 when the compound of Formula 4 is subjected to a substitution reaction with an alcohol-based compound, but is not limited thereto, for example, chlorine (Cl), bromine (Br), iodine (I), methanesulfonate (Oms), p-toluenesulfonate (OTs) and trifluoromethanesulfonate (OTf) may be selected.
  • L may be Br.
  • step 1) a reduction reaction of the compound of Formula 2 is performed in the presence of an alcohol-based solvent and an alkoxide to obtain a compound of Formula 3.
  • step 1) aims to reduce the ester group of the compound of Formula 2 with alcohol.
  • a reducing agent typically used for the reduction of an ester group to an alcohol may be used, and the reducing agent is, for example, sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ) ), borane (BH 3 ), and at least one selected from diisobutylaluminum hydride (DIBAH) may be used, but is not limited thereto.
  • the reduction reaction in step 1) may be performed in a polar solvent to provide high solubility to the compound of Formula 2 and the reducing agent, for example, water, a polar organic solvent, or a mixed solvent thereof.
  • a polar solvent to provide high solubility to the compound of Formula 2 and the reducing agent, for example, water, a polar organic solvent, or a mixed solvent thereof.
  • the reaction solvent for the reduction reaction in step 1) includes an alcohol-based solvent.
  • the alcohol-based solvent may be appropriately selected and used according to the compound of Formula 2 and the reducing agent, for example, methanol, ethanol, n-propane alcohol, isopropane alcohol, n-butanol, sec-butanol, iso-butanol, and At least one selected from tert-butanol may be used, but is not limited thereto.
  • the reaction solvent for the reduction reaction of step 1) may include methanol.
  • the reaction solvent for the reduction reaction of step 1) may include water and tetrahydrofuran (THF).
  • the reducing agent used in the reduction reaction generates hydrogen in a polar solvent, such as an alcohol-based solvent, thereby causing a problem of lowering the stability of the reaction, or inducing over-reduction of the compound of Formula 2 to add an olefin group Reduction may cause problems in the formation of impurities.
  • a polar solvent such as an alcohol-based solvent
  • the present invention provides a manufacturing method for stabilizing the reduction reaction by using the alkoxide as an additive in the reaction in step 1) and reducing the formation of impurities by suppressing over-reduction.
  • the alkoxide may be selected and used independently of the alcohol-based solvent, or an alkoxide corresponding to the alcohol-based solvent may be selected and used.
  • the alkoxide may include one having the same alkyl group as the alkyl group of the alcohol-based solvent.
  • the alcohol-based solvent may include methanol, and the alkoxide may include methoxide.
  • the reducing agent used in the reduction reaction may include a metal cation, wherein the metal ion in the alkoxide may be different from the metal ion of the reducing agent, but may be the same.
  • the alkoxide may include the same metal ion as the metal ion contained in the reducing agent used in the reduction reaction.
  • step 1) may be to perform a reduction reaction of the compound of Formula 2 in the presence of a methanol solvent and sodium methoxide to obtain the compound of Formula 3.
  • the reducing agent may be additionally added according to the progress of the reaction.
  • the solvent that was added together at the beginning of the reaction may be added together, or only the reducing agent may be added without adding a solvent.
  • the reduction reaction is terminated using only the initially added reducing agent without additional input of the reducing agent during the reduction reaction, thereby improving process stability.
  • the present invention is not limited thereto.
  • the process temperature by performing the reduction reaction at a temperature of 60° C. or less, for example, 40° C. to 55° C., 45° C. to 50° C., by using the alkoxide as an additive in step 1). It may exhibit the effect of lowering, but the present invention is not limited thereto.
  • the content of the alkoxide in step 1) may be, for example, 1 to 5 mol%, specifically 2 to 3 mol%, more specifically 2.5 mol%.
  • the purity of the product and the process efficiency may be improved, but the effect of the present invention is not limited thereto.
  • the amount of the alcohol-based solvent used in step 1) is, for example, 0.1 times to 5 times (fold) compared to the compound of Formula 2, for example 0.4 times to 3.6 times, 1 It may be 3 fold to 3 fold, 1.5 fold to 2 fold, or 1.6 fold.
  • the amount of the reducing agent used in step 1) may be, for example, 1 to 5 equivalents, 1.4 to 4.6 equivalents, 2 to 4 equivalents, or 3 equivalents.
  • the reduction reaction in step 1), may be performed using 3 equivalents of NaBH 4 in the presence of 1.6 fold amount of methanol solvent and 2.5 mol% of sodium methoxide.
  • step 1) may further include the step of purifying to improve the purity of the product.
  • the purifying step may be performed under acidic conditions to remove impurities, etc. formed by over-reduction during the reduction reaction of step 1).
  • the acidic condition may be, for example, formed by adding an acid compound to the reaction product, wherein the acid compound may be at least one selected from hydrogen chloride (HCl) and hydrogen bromide (HBr), but is not limited thereto.
  • the acid compound may be at least one selected from hydrogen chloride (HCl) and hydrogen bromide (HBr), but is not limited thereto.
  • the purification step of step 1) may be performed by adding an acid compound to the reaction product and then extracting the organic layer.
  • the purification step of step 1) may be performed by washing the reaction product, adding HCl, stirring, and then extracting the organic layer.
  • the hydrogen chloride to be added may be 3N to 8N, for example, 5N to 7N or 6N.
  • the purification step may be performed at a temperature of 0 °C to 20 °C.
  • the purification step may be performed while maintaining 0 °C.
  • the purification step may be to perform organic layer extraction after additionally adding an organic solvent to the reaction product.
  • the solvent for extracting the organic layer may be appropriately selected and used as needed, for example, toluene, ethyl acetate, methyl tertiary butyl ether, tetrahydrofuran, methanol, dichloromethane, or a mixture thereof may be used. It is not limited.
  • the purification step may be performed in the presence of an organic solvent containing toluene by additionally adding toluene to the reaction product.
  • an organic solvent containing toluene When toluene is added to the reaction product, an acid compound is added, and the organic layer is extracted, the purity of the reaction product may be effectively increased, but the effect of the present invention is not limited thereto.
  • the process of removing the aqueous layer after adding toluene to the reaction product to dissolve the residue, washing with water, adding hydrogen chloride to the organic layer and stirring, and then removing the aqueous layer is performed at least once, for example 2 It may be performed several times.
  • step 2) the alcohol group of the compound of Formula 3 is substituted with a leaving group.
  • the present invention provides a compound of Formula 4, which is a key intermediate in the synthesis of a sphingosine-1-phosphate receptor agonist by replacing the terminal alcohol group of the compound of Formula 3 with a leaving group.
  • a leaving group as in the compound of Formula 4, it is possible to improve the yield of the coupling reaction when synthesizing a sphingosine-1-phosphate receptor agonist thereafter.
  • the 'substituting the alcohol group with a leaving group' may be performed in the presence of a polar organic solvent.
  • the step of replacing the leaving group may be performed in the presence of DCM and MTBE.
  • the step of replacing the leaving group may be performed under a single ether solvent.
  • the leaving group substitution step in an ether-based single solvent, the effect of significantly lowering the production rate of the N2 isomer may be exhibited, but the present invention is not limited thereto.
  • the 'single solvent' indicates that only one kind of solvent is included in the reactor for the leaving group substitution reaction.
  • the inclusion of a trace amount of a heterogeneous solvent at a level that does not substantially affect the yield of the reaction product in the reactor for the leaving group substitution reaction is also not excluded from the single solvent.
  • the inclusion of a heterogeneous solvent in the content can also be viewed as the use of a single solvent.
  • the ether-based solvent is not limited thereto, but for example, dialkyl such as diethyl ether, dipropyl ether, dibutyl ether, diisoamyl ether, ethyl methyl ether, methyl propyl ether, methyl butyl ether, ethyl propyl ether, etc.
  • etheric solvents such as diphenyl ether and anisole;
  • cyclic ether solvents such as tetrahydrofuran and tetrahydropyran, etc. are mentioned.
  • the ether-based single solvent may be methyl tert-butyl ether (MTBE).
  • the compound of Formula 3 and MTBE are mixed and cooled to 0° C., and then reacted with PBr 3 to obtain the compound of Formula 4.
  • the compound of Formula 3 and MTBE are mixed, cooled to 0° C., reacted with PBr 3 , and washed with water and filtered when the reaction is completed to obtain the compound of Formula 4 have.
  • the compound of Formula 2 may be prepared by introducing R1 and R2 substituents to the compound of Formula 5.
  • R1, R2, R3 and X are as defined in Formula 2 above.
  • R1 and R2 may be one in which R1 is substituted and then R2 is substituted, R1 is substituted after R2, or R1 and R2 are simultaneously substituted.
  • R2 in the compound of Formula 5, may be substituted before R1.
  • R1 when bulky R1 is first substituted in the compound of Formula 5, for example, if bulky R1 is first substituted at the 3rd position of indazole where X is N, the production of the N2 isomer is suppressed, and the yield is improved effect can be exhibited.
  • the reaction for introducing the substituents of R1 and R2 may be performed under the same solvent or in different solvent compositions.
  • reaction for introducing the substituents of R1 and R2 may be performed under the same solvent.
  • the reaction solvent of the reaction for introducing the substituents of R1 and R2 may include, for example, an amide-based organic solvent.
  • the amide-based organic solvent may include, for example, at least one selected from dimethylformamide (DMF) and dimethylacetamide (DMA).
  • reaction solvent of the reaction for introducing the substituents of R1 and R2 may include dimethylacetamide.
  • reaction solvent for the reaction for introducing the substituents of R1 and R2 may be dimethylacetamide alone.
  • the decomposition product reacts with the reactant of the synthesis reaction to induce exotherm to generate an excess of impurities, thereby reducing the purity of the reaction product. may occur.
  • the maximum synthesis reaction temperature and the adiabatic temperature increase are higher than the maximum synthesis reaction temperature and the adiabatic temperature increase compared to the synthesis reaction using dimethylacetamide as the reaction solvent. It may be preferable to use dimethylacetamide as the reaction solvent of the synthesis reaction.
  • dimethylamine formed by decomposition of dimethylformamide and N-chlorosuccinimide used to introduce Cl at the R2 position The reaction of (NCS) induces exotherm, and by increasing the internal temperature, an impurity in which Cl is introduced at a position other than R2 may be formed in the compound of Formula 5. Accordingly, there may be a problem of reducing the purity of the compound of Formula 2 and the subsequent process.
  • R1 and R2 substituents are introduced into the compound of Formula 5 and crystallized with a crystallization solvent including an alcohol solvent to prepare the compound of Formula 2 have.
  • the alcohol solvent for the crystallization is not limited thereto, but may be, for example, one or more solvents selected from methanol, ethanol, isopropyl alcohol, and butanol.
  • the solvent for the crystallization may be a mixed solvent of an alcohol solvent and water.
  • a mixed solvent of an alcohol solvent and water as the crystallization solvent, there may be an effect of reducing the yield of the N2 isomer.
  • the volume ratio of the alcohol solvent and water in terms of the yield of Chemical Formula 5 is 5:1 to 1:5, 4:1 to 1:4, 3:1 to 1 :3, 2:1 to 1:2, 2:1 to 1:1, or 1.5:1 to 1:1 may be used.
  • the solvent for the crystallization may be a mixed solvent of ethanol and water.
  • the ethanol and water may be used in an EtOH:H 2 O volume ratio of 2:1 to 1:2, 2:1 to 1:1, 1.5:1 to 1:1, or 1:1.
  • the crystallization solvent is a mixed solvent of an alcohol solvent and water
  • the alcohol solvent and water may be added sequentially or simultaneously during crystallization, respectively.
  • an alcohol solvent such as EtOH
  • EtOH is added to the reaction product in which the substituent is introduced, and then cooled to 0° C. to 20° C., or by adding water at room temperature to crystallize the compound of Formula 5 may be obtained.
  • it may be crystallized after purifying the reaction product in which a substituent is introduced before the crystallization.
  • the crystallization yield can be improved by removing unreacted residual compounds used in the reaction.
  • the purification may be performed using, for example, a polar solvent, and the polar solvent may be, for example, a polar organic solvent, water, or a mixed solvent thereof.
  • the polar organic solvent is not limited thereto, but may be, for example, at least one solvent selected from among ethyl acetate (EA), isopropyl acetate (IPOAc), dichloromethane and hexane.
  • EA ethyl acetate
  • IPAc isopropyl acetate
  • dichloromethane dichloromethane
  • hexane ethyl acetate
  • the reaction product in which the substituent is introduced is purified by a mixed solvent of a polar organic solvent and water and then crystallized so that K 2 CO 3 used in the reaction to introduce the substituent is precipitated together when the reaction product is crystallized. It may be to improve the purity of the crystal by preventing or reducing the amount of precipitation.
  • the compounds prepared according to the present invention can be used as key intermediates for the synthesis of sphingosine-1-phosphate receptor agonists.
  • the compound prepared according to the present invention can be used as a main intermediate in a known synthesis method of a sphingosine-1-phosphate receptor agonist, and can also be used as a main intermediate in a new synthesis method developed after the present application.
  • the use of the present invention is not limited to a particular method of synthesis of a sphingosine-1-phosphate receptor agonist.
  • the compounds prepared according to the present invention can be used for other purposes other than the synthesis of sphingosine-1-phosphate receptor agonists, and the use of the present invention is limited only to the synthesis of sphingosine-1-phosphate receptor agonists. it is not
  • the use of the preparation method of the present invention has the effect of mass-producing the compound of Formula 4 with high purity and high yield.
  • Example 1-1 Synthesis of 3-Chloro-1-isopropyl-1H-indazole-5-carboxylic acid methyl ester (3-Chloro-1-isopropyl-1H-indazole-5-carboxylic acid methyl ester)
  • N-chlorosuccinimide N-chlorosuccinimide
  • DMA dimethylacetamide
  • Example 1-2 Synthesis of (3-Chloro-1-isopropyl-1H-indazol-5-yl)-methanol ((3-Chloro-1-isopropyl-1H-indazol-5-yl)-methanol)
  • the reaction was terminated by satisfying the criteria (3-chloro-1-isopropyl-1H-indazole-5-carboxylic acid methyl ester 2% or less) by performing IPC by HPLC.
  • the reaction solution was cooled to 10° C. or less, quenching was performed by slowly adding 4.5 L of 3N HCl dropwise, followed by distillation under reduced pressure to remove THF and MeOH. 6.8 L of toluene was added to dissolve the residue, and washing was performed twice with 7.8 L and 6.8 L of water.
  • NaOMe sodium methoxide
  • RRT 0.88IMP a compound in which the olefin group of indole is further reduced
  • Table 2 shows the evaluation results of the reaction yield according to the equivalent of NaBH4 and the amount (fold) of MeOH when the amount of NaOMe is fixed to 2.5 mol%.
  • the maximum synthesis reaction temperature was measured to be 91.5°C and the adiabatic temperature rise was 26.5K, and when DMA was added, the maximum synthesis reaction temperature was 67.9°C and the adiabatic temperature increase was 2.9K.
  • the calorific value when DMF was added was measured to be 20.2 kJ, and the calorific value was measured to be 9.8 kJ when DMA was added. It means that it is large and has a high thermal hazard. That is, when DMF is used, it means that there is a lot of heat of reaction generated by the synthesis reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 스핑고신-1-인산 수용체 효능제의 합성을 위하여 유용하게 사용될 수 있는 본 명세서에 기재된 화학식 4의 화합물의 신규한 제조 방법에 관한 것이다.

Description

스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
관련 출원과의 상호 인용
본 출원은 2021년 04월 14일자 한국특허출원 제10-2021-0048767호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원이 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 스핑고신-1-인산 수용체 효능제의 합성을 위한 주요 중간체의 제조방법에 관한 것이다.
스핑고신-1-인산(sphingosine-1-phosphate, S1P)는 세포 내 세라미드 경로(intracellular ceramide pathway)를 통해서 생성되며, 이러한 합성 경로의 출발물질인 세라미드는 두 가지 생성 경로, 즉 de novo 생합성 경로와 세포막 구성물질인 스핑고미엘린(sphingomyelin)의 분해(degradation)을 통해서 세포 내에 생성된다. 각 조직에서의 S1P level은 두 개의 생합성 스핑고신 키나제(sphingosine kinases; SphKs)와 두 개의 생분해 S1P 포스파타제(S1P lyase 및 lysophospholipid phosphatases)에 의해 조절되는데, 스핑고신이 스핑고신 키나제에 의해 인산화(phosphorylation)되면서 생성되는 물질인 S1P는 세포의 증식(proliferation), 세포골격 조직 및 이동(cytoskeletal organization and migration), 부착-(adherence-) 및 tight junction assembly, 그리고 형태발생 (morphogenesis)과 같은 다양한 세포반응을 매개하는 것으로 알려져 있다. 이들은 혈장에서 알부민을 비롯한다른 혈장 단백질에 결합된 형태로 높은 농도(100~1000 nM)로 존재하는 반면 조직에서는 낮은 농도로 존재하고 있다.
S1P는 G-단백질 커플링된 수용체인 S1P 수용체에 결합하여 다양한 생물학적 기능을 나타내는데, 현재까지 알려진 S1P 수용체의 서브-타입은 S1P1~S1P5의 5 가지로 이들은 각각 내피 분화 유전자 수용체(endothelial differentiation gene (EDG) receptor) 1, 5, 3, 6 및 8로 명명된다. 이러한 S1P 수용체들은 백혈구 재순환(leukocyte recirculation), 신경 세포 증식(neural cell proliferation), 형태 변형(morphological changes), 이동(migration), 내피 기능(endothelial function), 맥관긴장조절(vasoregulation) 및 심장혈관계 발생(cardiovascular development)과 같은 다양한 생물학적 기능에 관여하는 것으로 알려져 있다.
최근의 많은 연구에서는, 이들 수용체를 통한 S1P 신호전달과정이 염증반응과 수복(repair) 과정을 포함한 다발성 경화증과 관계된 일련의 반응에 있어 중요한 역할을 하는 것으로 밝히고 있으며, 실제로 비선택적인 S1P1 효능제가 최근 다발성 경화증 치료제로 승인 받았다. S1P 수용체들은 다발성 경화증 유발과 관계된 많은 세포에서 동일하게 널리 발현되는데, 특히 S1P1 수용체는 면역체계에 있어 매우 중요한 역할을 하고 있다. S1P1 수용체는 T세포 및 B세포와 같은 림프구(lymphocyte) 표면에서 주로 발현되며, S1P와 반응하여 림프구의 재순환에 관여하게 된다. 정상 상태에서 S1P 농도는 림프양 조직(lymphoid tissue) 보다 체액에서 더 높기 때문에 림프구는 S1P 농도차에 따라 림프양 조직으로부터 떠나 원심성 림프(efferent lymph)를 따라 순환하게 된다. 그러나, S1P1 효능제에 의해서 림프구의 S1P1 수용체가 하향-조절(down-regulation)되면 림프양 조직으로부터 림프구의 이탈(egress)이 일어나지 않게 되고, 결국 CNS로 염증과 조직 손상을 일으키는 자가공격성(autoaggressive) 림프구의 침윤이 감소하게 되어 다발성 경화증에 치료 효과가 나타나게 된다. 경구용 다발성 경화증 치료제로 허가 받은 비선택적인 S1P1 효능제인 핀골리모드(fingolimod)의 경우, S1P1 수용체에 결합하여 활성화되면 역설적으로 수용체가 림프구 표면으로부터 내재화(internalization) 또는 분해(degradation)되어 기능적인 S1P1 길항(antagonism)으로 작용하게 된다.
이러한 S1P 수용체 효능제와 관련하여, 대한민국 공개특허공보 제10-2014-0104376호에서는 S1P 수용체 효능제로서 효과적인 하기 화학식 1의 신규 화합물을 개시하고 있다.
[화학식 1]
Figure PCTKR2022005404-appb-I000001
상기 화학식 1에서,
X는 C 또는 N 이고,
R1은 H 또는 치환될 수 있는 알킬이고,
R2는 H, 치환될 수 있는 알킬, 할로겐, CN, CF3 또는 COCF3이고,
W는 C, N, C-알콕시, C-할로겐 또는 C-CN 이고,
Q는 CH2O 또는
Figure PCTKR2022005404-appb-I000002
이고,
S는 하기의 잔기로부터 선택된다:
Figure PCTKR2022005404-appb-I000003
Figure PCTKR2022005404-appb-I000004
Figure PCTKR2022005404-appb-I000005
Figure PCTKR2022005404-appb-I000006
Figure PCTKR2022005404-appb-I000007
Figure PCTKR2022005404-appb-I000008
Figure PCTKR2022005404-appb-I000009
Figure PCTKR2022005404-appb-I000010
상기 구조식에서
m, n은 0, 1, 2 또는 3이고,
R3 내지 R10은 각각 H, 알킬, 할로겐, 할로게노 알킬 또는 알콕시 알킬이고,
R11은 H, 이고,
Figure PCTKR2022005404-appb-I000011
R12는 OH, NH2,
Figure PCTKR2022005404-appb-I000012
Figure PCTKR2022005404-appb-I000013
또는
Figure PCTKR2022005404-appb-I000014
이다.
상기 문헌의 구체적인 예시에 있어서, 다음의 반응식 1로 1-[1-클로로-6-(3-클로로-1-아이소프로필-1H-인다졸-5-일메톡시)-3,4-디하이드로-나프탈렌-2-일메틸]피페리딘-4-카르복실산을 제조하는 것을 개시하고 있다(반응식 1에서 "SG35"는 "1-클로로-6-하이드록시-3,4-디하이드로-나프탈렌-2-카르발데히드"를 일컫는다).
[반응식 1]
Figure PCTKR2022005404-appb-I000015
상기 반응식 1에서 1-클로로-6-(3-클로로-1-아이소프로필-1H-인다졸-5-일메톡시)-3,4-디하이드로-나프탈렌-2-카르발데히드를 제조하는 단계를 상세하게 살펴보자면 다음과 같다.
(1-1) (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올의 합성
1H-인다졸-5-카르복실산 메틸에스터를 디메틸포름아미드에 녹이고, 0℃에서 아이소프로필아이오다이드와 소듐 하이드라이드를 천천히 적가한 후에 50℃에서 8시간 동안 교반하였다. 1N 염산용액을 넣고 에틸아세테이트로 추출하였다. 브라인(brine)으로 세척하고 무수 마그네슘 설페이트로 건조한 다음 여과한 여액을 감압 증류하였다. 칼럼 크로마토그래피로 분리하여 1-아이소프로필-1H-인다졸-5-카르복실산 메틸에스터를 얻었다.
상기에서 얻어진 1-아이소프로필-1H-인다졸-5-카르복실산 메틸에스터를 디메틸폴름아미드에 녹이고, N-클로로숙신이미드(NCS)를 적가한 후, 실온에서 18시간 동안 교반하였다. 물을 넣고 에틸아세테이트로 추출하였다. 브라인으로 세척하고 무수 마그네슘설페이트로 건조한 다음 여과한 여액을 감압 증류하였다. 잔류물을 칼럼 크로마토그래피로 분리하여 3-클로로-1-아이소프로필-1H-인다졸-5-카르복실산 메틸 에스터를 얻었다.
상기에서 얻어진 3-클로로-1-아이소프로필-1H-인다졸-5-카르복실산 메틸 에스터를 테트라하이드로퓨란에 녹인 후, 리튬알루미늄보로하이드라이드를 적가하였다. 실온에서 1시간 동안 교반한 후 물과 6N 수산화나트륨 수용액과 물을 차례로 넣었다. 셀라이트를 적가하고 여과한 여액을 감압 증류하였다. 잔류물을 칼럼크로마토그래피로 분리하여 (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올을 얻었다.
(1-2) 1-클로로-6-하이드록시-3,4-디하이드로-나프탈렌-2-카르발데히드의 합성
먼저, 6-메톡시-3,4-디하이드로나프탈렌-1(2H)-온을 톨루엔에 용해한 용액에 N,N-디메틸포름아미드(DMF) 및 염화포스포릴(phosphorous oxychloride, POCl3)를 0℃에서 적가한 다음 70℃에서 6시간 동안 교반하였다. 이 반응 혼합물을 얼음에 부은 다음 에틸 아세테이트로 추출하였다. 유기층을 브라인으로 세척한 후 건조 및 농축하고 나서, 얻어진 잔기를 실리카겔 칼럼 크로마토그래피(헥산:에틸 아세테이트=20:1 내지 10:1)로 정제하여 1-클로로-6-메톡시-3,4-디하이드로-2-나프탈렌카르발데히드를 얻었다.
다음으로 1-클로로-6-메톡시-3,4-디하이드로-2-나프탈렌카르발데히드를 디클로로메탄에 용해한 용액에 알루미늄 클로라이드(AlCl3)를 0℃에서 첨가한 다음 50℃에서 6시간 동안 교반하였다. 이 반응 혼합물을 얼음에 부은 다음 에틸 아세테이트로 추출하였다. 유기층을 건조 및 농축하고 나서, 얻어진 잔기를 실리카겔 칼럼 크로마토그래피(헥산:테트라하이드로퓨란=5:1 내지 3:1)로 정제하여 1-클로로-6-하이드록시-3,4-디하이드로-2-나프탈렌카르발데히드를 얻었다.
(1-3) 1-클로로-6-(3-클로로-1-아이소프로필-1H-인다졸-5-일메톡시)-3,4-디하이드로-나프탈렌-2-카르발데히드의 합성
상기에서 얻은 (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올과 1-클로로-6-하이드록시-3,4-디하이드로-2-나프탈렌카르발데히드를 톨루엔에 녹인 후, 트라이부틸포스핀(PBu3)과 1,1'-(아조디카르보닐)디피페리딘(ADD)를 적가하였다. 실온에서 18시간 동안 교반한 후 과량의 헥산을 넣어주었다. 여과 후 감압 증류하고 잔류물을 칼럼 크로마토그래피로 정제하여 1-클로로-6-(3-클로로-1-아이소프로필-1H-인다졸-5-일메톡시)-3,4-디하이드로-나프탈렌-2-카르발데히드를 얻었다.
그러나 상기 반응은 임상 API를 생산하는데 있어서 다음과 같은 문제가 있을 수 있다.
먼저, 3-클로로-1-아이소프로필-1H-인다졸-5-카르복실산 메틸 에스터를 합성하는 과정에서는 N2 이성질체의 생성 비율에 따른 문제가 있을 수 있고, (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올의 합성에 사용되는 LAH(Lithium aluminium hydride)는 대규모 합성(large scale synthesis)에 사용하기에는 안정성 측면에서 매우 제한적이며, 수분에 쉽게 분해되는 단점을 가지고 있다.
또한, 1-클로로-6-메톡시-3,4-디하이드로-2-나프탈렌카르발데히드를 얻기 위한 빌스마이어-핵 반응(Vilsmeier-Haack reaction) 시 70℃의 고온에서 반응함에 따라 발열 문제가 발생할 수 있다. 그리고, 1-클로로-6-하이드록시-3,4-디하이드로-2-나프탈렌카르발데히드를 얻기 위한 반응에 있어서, AlCl3 사용에 따른 반응기 오염이나 위험 시약의 사용에 따른 안정성 문제가 있을 수 있으며, AlCl3 사용 시 반응 멈춤 또는 부반응 진행으로 batch fail의 발생에 따른 안정성 문제가 있을 뿐 아니라 총 수율도 70%로 수율 개선의 필요성이 있다.
또한, (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올과 1-클로로-6-하이드록시-3,4-디하이드로-나프탈렌-2-카르발데히드의 커플링 반응에 이용되는 1,1'-(아조디카르보닐)디피페리딘(ADD)의 경우 낮은 수율 문제와 비용 측면에서 바람직하지 않다.
이에 따라 본 발명의 발명자들은 상기 1-클로로-6-(3-클로로-1-아이소프로필-1H-인다졸-5-일메톡시)-3,4-디하이드로-나프탈렌-2-카르발데히드와 같은 중간체 화합물을 보다 단순한 공정을 통해 높은 수율로 대량 생산하기 위해 하기 반응식 2과 같은 새로운 합성법을 고안한 바 있다.
[반응식 2]
Figure PCTKR2022005404-appb-I000016
상기 반응식 2에서 1-클로로-6-(3-클로로-1-아이소프로필-1H-인다졸-6-일메톡시)-3,4-디하이드로-나프탈렌-2-카르발데히드를 제조하는 단계를 상세하게 살펴보자면 다음과 같다(반응식 2에서 "SG26"은 "6-하이드록시-3,4-디하이드로-2H-나프탈렌-1-온"을 일컫는다).
(2-1) 5-브로모메틸-3-클로로-1-아이소프로필-1H-인다졸의 합성
반응기에 디클로로메탄(DCM) 및 메틸 tert-부틸 에테르(MTBE) 및 (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올을 투입하고 내부 온도를 0℃까지 냉각시켰다. 반응물에 PBr3를 70분 동안 천천히 적가한 후에 80분 동안 반응을 진행시켰다. HPLC를 이용하여 이온쌍 크로마토그래피(ion-pair chromatography, IPC)를 진행하고 반응이 완결되어(3% > (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올), 수산화나트륨을 120분 동안 천천히 투입하여 반응을 종결시켰다. 반응 혼합물에 DCM을 투입하고 30분 동안 교반한 후, 층분리하여 수층을 제거하고 유기층을 물로 세척 후 유기층을 감압증류하여 5-브로모메틸-3-클로로-1-아이소프로필-1H-인다졸을 얻었다.
(2-2) 6-하이드록시-3,4-디하이드로-2H-나프탈렌-1-온의 합성
반응기에 물에 녹인 HBr 및 6-메톡시-3,4-디하이드로-2H-나프탈렌-1-온을 투입하고 외부온도 120℃에서 52시간 환류반응시켰다. HPLC를 이용하여 IPC를 진행하고 반응이 완결되어(3% > 6-메톡시-3,4-디하이드로-2H-나프탈렌-1-온), 내부온도를 10℃까지 냉각시킨 후 생성된 고체를 여과하였다. 물로 세척 후 질소로 건조하여 6-하이드록시-3,4-디하이드로-2H-나프탈렌-1-온(SG26)을 얻었다.
(2-3) 6-(3-클로로-1-아이소프로필-1H-인다졸-5-일메톡시)-3,4-디하이드로-2H-나프탈렌-1-온의 합성
반응기에 5-브로모메틸-3-클로로-1-아이소프로필-1H-인다졸, 6-하이드록시-3,4-디하이드로-2H-나프탈렌-1-온, K2CO3 및 DMF를 투입하고 내부온도 25℃에서 3시간 반응시켰다. HPLC를 이용하여 IPC를 진행하고, 6-하이드록시-3,4-디하이드로-2H-나프탈렌-1-온이 5% 잔류하여 5-브로모메틸-3-클로로-1-아이소프로필-1H-인다졸을 추가로 투입하여 반응을 완결(1% > 6-하이드록시-3,4-디하이드로-2H-나프탈렌-1-온)시켰다. 반응기에 물을 투입하고 내부온도를 0℃로 냉각시킨 뒤 생성된 고체를 여과하였다. 여과된 고체를 물과 MTBE 각각에 의해 순차적으로 세척한 후 질소로 건조하여 6-(3-클로로-1-아이소프로필-1H-인다졸-5-일메톡시)-3,4-디하이드로-2H-나프탈렌-1-온을 얻었다.
(2-4) 1-클로로-6-(3-클로로-1-아이소프로필-1H-인다졸-6-일메톡시)-3,4-디하이드로-나프탈렌-2-카르발데히드의 합성
반응기에 염화포스포릴(POCl3)를 투입하고 내부온도를 0℃로 냉각시켰다. DMF을 천천히 적가하고, 내부온도 50℃에서 2시간 동안 교반한 후 6-(3-클로로-1-아이소프로필-1H-인다졸-5-일메톡시)-3,4-디하이드로-2H-나프탈렌-1-온을 투입하고 내부온도 50℃에서 3시간 동안 반응시켰다. 반응 중 과량의 HCl 가스가 발생하므로 NaOH 트랩(trap)을 설치하여 중화될 수 있도록 통풍관(vent line)을 설치하였다. HPLC를 이용하여 IPC를 진행하고 반응이 완결되어 내부온도를 0℃로 냉각한 뒤 다른 반응기에 차가운 물, 헥산(Hex) 및 MTBE를 투입하고 위 반응 혼합물을 90분 동안 천천히 적가하여 결정을 생성시켰다. 생성된 고체를 여과하고, 물과 MTBE/HEX 혼합용매 각각에 의해 순차적으로 세척한 후 건조하여 1-클로로-6-(3-클로로-1-아이소프로필-1H-인다졸-6-일메톡시)-3,4-디하이드로-나프탈렌-2-카르발데히드를 얻었다.
위와 같은 반응에 의한다면 N2 이성질체의 생성 비율을 개선하면서, 빌스마이어-핵 반응에 따른 발열 문제를 해소할 수 있을 뿐만 아니라, ADD를 사용하지 않고서도 커플링 반응을 수행할 수 있는 바, 스핑고신-1-인산 수용체 효능제 합성의 핵심 중간체를 화합물의 안정성 및 제조 조건의 안정성을 확보한 상태에서 보다 단순한 공정을 통해 대량 생산할 수 있을 것으로 기대되고 있다.
그러나, 위와 같은 합성법에 의해서 최종 생성되는 물질의 API 공정 시 여전히 불순물을 더욱 저감하여야 할 필요가 있기 때문에, 위와 같은 합성법의 각 공정에 대한 연구가 계속하여 필요한 실정이다.
이에 본 발명의 목적은 우수한 스핑고신-1-인산 수용체 효능제의 새로운 합성법에 있어서 핵심 중간체인 화학식 4의 화합물을 고수율 및 고순도로 생산하기 위한 적합한 방법을 제공하는 것에 있다.
[화학식 4]
Figure PCTKR2022005404-appb-I000017
상기 화학식 4에 있어서,
R1은 수소, 또는 치환 또는 비치환 알킬이고,
R2는 수소, 치환 또는 비치환 알킬, 할로겐, CN, CF3 또는 COCF3이고,
X는 C 또는 N이고,
L은 이탈기(leaving group)이다.
위와 같은 목적을 달성하기 위하여,
본 발명에 따른 일 측면은 1) 알코올계 용매 및 알콕사이드의 존재 하에서 화학식 2의 화합물의 환원 반응을 수행하여 화학식 3의 화합물을 수득하는 단계, 및 2) 화학식 3의 화합물의 알코올기를 이탈기로 치환하는 단계를 포함하는 하기 화학식 4의 중간체 화합물의 제조방법을 제공한다.
[화학식 2]
Figure PCTKR2022005404-appb-I000018
[화학식 3]
Figure PCTKR2022005404-appb-I000019
[화학식 4]
Figure PCTKR2022005404-appb-I000020
상기 화학식 2 내지 화학식 4에 있어서,
R1은 수소, 또는 치환 또는 비치환 알킬이고,
R2는 수소, 치환 또는 비치환 알킬, 할로겐, CN, CF3 또는 COCF3이고,
R3는 치환 또는 비치환된 알킬이고,
X는 C 또는 N이고,
L은 이탈기(leaving group)이다.
상기 '알킬'이 치환된 알킬인 경우 치환기는 하나 이상일 수 있으며, 상기 치환기는 각각 독립적으로 할로겐, 시아노, 하이드록시, 알킬옥시, 옥소, 비치환 설포닐 및 알킬로 치환된 설포닐로 이루어진 군으로부터 선택되는 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 화학식의 R1은 수소, 또는 C1-C6의 치환 또는 비치환 알킬이고, R2는 수소, C1-C6의 치환 또는 비치환 알킬, 할로겐, CN, CF3 또는 COCF3일 수 있다. R3는 C1-C6의 치환 또는 비치환 알킬일 수 있다.
본 발명의 다른 구체예에 따르면, 상기 R1은 C1-C4의 치환 또는 비치환 알킬이고, R2는 할로겐일(F, Cl, Br 또는 I)일 수 있다. R3는 C1-C4의 치환 또는 비치환 알킬, 예를 들어 메틸일 수 있다.
본 발명의 일 구체예에 따르면, 상기 이탈기(L)는 화학식 4의 화합물이 알코올계 화합물과 치환 반응 시 화학식 4의 화합물에 치환 위치를 제공하는 반응기로서, 이에 제한되는 것은 아니나 예를 들어 염소(Cl), 브로민(Br), 아이오딘(I), 메탄설포네이트(Oms), p-톨루엔설포네이트(OTs) 및 트리플루오로메탄설포네이트(OTf)로부터 선택되는 것일 수 있다.
본 발명의 다른 구체예에 따르면, 상기 L은 Br일 수 있다.
본 발명에 있어서, 상기 단계 1)에서는 알코올계 용매 및 알콕사이드의 존재 하에서 화학식 2의 화합물의 환원 반응을 수행하여 화학식 3의 화합물을 수득한다.
구체적으로, 상기 단계 1)은 화학식 2의 화합물의 에스테르기를 알코올로 환원하는 것을 목적으로 한다.
상기 화학식 2의 화합물의 환원 반응을 위해 통상적으로 에스테르기의 알코올로의 환원에 사용하는 환원제를 사용할 수 있으며, 이러한 환원제는 예를 들어 소듐 보로하이드라이드(NaBH4), 리튬 보로하이드라이드(LiBH4), 보레인(BH3) 및 디이소뷰틸알루미늄 하이드라이드(DIBAH)로부터 선택되는 하나 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 1) 단계의 환원 반응은 화학식 2의 화합물 및 환원제에 높은 용해도를 제공하기 위해 극성 용매 하에서 수행할 수 있으며, 예를 들어 물, 극성 유기 용매 또는 이들의 혼합 용매 하에서 수행할 수 있다.
본 발명에 있어서, 상기 1) 단계의 환원 반응을 위한 반응 용매는 알코올계 용매를 포함한다. 상기 알코올계 용매는 화학식 2의 화합물 및 환원제에 따라 적절히 선택하여 사용할 수 있는 것이며, 예를 들어 메탄올, 에탄올, n-프로판알코올, 이소프로판알코올, n-부탄올, sec-부탄올, iso-부탄올, 및 tert-부탄올 중에서 선택되는 1종 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 구체예에 있어서, 상기 1) 단계의 환원 반응을 위한 반응 용매는 메탄올을 포함할 수 있다.
본 발명의 다른 구체예에 있어서, 상기 1) 단계의 환원 반응을 위한 반응 용매는 물 및 테트라하이드로퓨란(THF)을 포함할 수 있다.
본 발명에 있어서, 상기 환원 반응에 사용하는 환원제는 극성 용매, 예컨대 알코올계 용매 중에서 수소를 발생시켜 반응의 안정성을 저하시키는 문제를 야기하거나, 화학식 2의 화합물의 과환원을 유도하여 올레핀기를 추가로 환원시켜 불순물의 형성하는 문제를 야기할 수 있다.
이에 따라, 본 발명은 상기 단계 1)에서 알콕사이드를 반응의 첨가제로 이용하여 환원 반응을 안정화하고, 과환원을 억제하여 불순물의 형성을 저감하는 제조방법을 제공한다.
본 발명의 일 구체예에 있어서, 상기 알콕사이드는 상기 알코올계 용매와 독립적으로 선택하여 사용할 수 있으며, 또는 알코올계 용매에 상응하는 알콕사이드를 선택하여 사용하는 것일 수 있다.
본 발명의 다른 구체예에 있어서, 상기 알콕사이드는 상기 알코올계 용매의 알킬기와 동일한 알킬기를 갖는 것을 포함할 수 있다.
본 발명의 또 다른 구체예에 있어서, 상기 알코올계 용매는 메탄올을 포함하며, 상기 알콕사이드는 메톡사이드를 포함하는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 환원 반응에 사용하는 환원제는 금속 양이온을 포함하는 것일 수 있으며, 이때 상기 알콕사이드 내 금속 이온은 상기 환원제의 금속 이온과 상이할 수도 있으나, 동일한 것일 수 있다.
본 발명의 다른 구체예에 있어서, 상기 알콕사이드는 상기 환원 반응에 이용하는 환원제에 포함되는 금속 이온과 동일한 금속 이온을 포함할 수 있다.
본 발명의 또 다른 구체예에 있어서, 상기 단계 1)은 메탄올 용매 및 소듐 메톡사이드의 존재 하에서 화학식 2의 화합물의 환원 반응을 수행하여 화학식 3의 화합물을 수득하는 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 화학식 2의 화합물의 환원 반응 시 반응 초기에 환원제와 용매를 함께 투입한 후에, 반응의 진행에 따라 추가적으로 환원제를 더 투입하는 것일 수 있다. 추가적으로 환원제를 더 투입할 때 반응 초기에 함께 투입하였던 용매를 함께 추가하거나, 또는 용매를 추가하지 않고 환원제만을 추가할 수도 있다.
본 발명의 다른 구체예에 따르면, 상기 단계 1)에서 알콕사이드를 첨가제로 이용함으로써 환원 반응 도중에 환원제를 추가 투입하는 것 없이 초기에 첨가된 환원제만을 이용하여 환원 반응을 종결하여 공정 안정성을 개선하는 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 다른 구체예에 따르면, 상기 단계 1)에서 알콕사이드를 첨가제로 이용함으로써 60℃ 이하의 온도, 예를 들어 40℃ 내지 55℃, 45℃ 내지 50℃의 온도에서 환원 반응을 수행함으로써 공정 온도를 낮추는 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 구체예에 있어서, 상기 단계 1)에서 알콕사이드의 함량은 예를 들어 1 내지 5 mol%, 구체적으로 2 내지 3 mol%, 보다 구체적으로 2.5 mol%일 수 있다. 알콕사이드를 상기의 함량으로 이용함으로써 생성물의 순도 개선 및 공정 효율을 개선할 수 있으나, 본 발명의 효과가 이에 제한되는 것은 아니다.
본 발명의 다른 구체예에 있어서, 상기 단계 1)에서 알코올계 용매의 사용량은 예를 들어 화학식 2의 화합물 대비 0.1 배(fold) 내지 5배(fold), 예를 들어 0.4배 내지 3.6배, 1배 내지 3배, 1.5배 내지 2배, 또는 1.6배일 수 있다. 알코올계 용매를 상기의 양으로 사용함으로써 생성물의 순도 개선 및 공정 효율을 개선할 수 있으나, 본 발명의 효과가 이에 제한되는 것은 아니다.
본 발명의 또 다른 구체예에 있어서, 상기 단계 1)에서 환원제의 사용량은 예를 들어 1 당량 내지 5 당량, 1.4 당량 내지 4.6 당량, 2 당량 내지 4 당량 또는 3 당량일 수 있다. 환원제를 상기의 양으로 사용함으로써 생성물의 순도 개선 및 공정 효율을 개선할 수 있으며, 특히 환원 공정의 수행 시 반응 초기에 환원제를 투입한 후 공정 도중에 환원제를 추가 투입하지 않고 반응을 완결할 수 있어 공정 안정성을 크게 개선할 수 있으나, 본 발명의 효과가 이에 제한되는 것은 아니다.
본 발명의 또 다른 구체예에 있어서, 상기 단계 1)은 1.6 fold 양의 메탄올 용매 및 2.5 mol%의 소듐 메톡사이드의 존재 하에서 3 당량의 NaBH4를 이용하여 환원 반응을 수행할 수 있다.
본 발명에 있어서, 상기 단계 1)은 생성물의 순도 개선을 위해 정제하는 단계를 더 포함할 수 있다.
상기 정제하는 단계는 상기 단계 1)의 환원 반응 시 과환원에 의해 형성되는 불순물 등을 제거하기 위해 산성 조건에서 수행할 수 있다.
상기 산성 조건은 예컨대 반응 생성물에 산 화합물을 투입하여 형성하는 것일 수 있으며, 이때 상기 산 화합물은 염화수소(HCl) 및 브롬화수소(HBr) 중에서 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 구체예에 있어서, 상기 단계 1)의 정제 단계는 반응 생성물에 산 화합물을 투입한 후 유기층을 추출하여 수행하는 것일 수 있다.
본 발명의 다른 구체예에 있어서, 상기 단계 1)의 정제 단계는 반응 생성물을 세척한 후 HCl을 투입하여 교반 후 유기층을 추출하여 수행하는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 투입하는 염화수소는 3N 내지 8N, 예를 들어 5N 내지 7N 또는 6N인 것을 사용할 수 있다.
본 발명의 일 구체예에 있어서, 상기 정제 단계는 0℃ 내지 20℃의 온도에서 수행하는 것일 수 있다.
본 발명의 다른 구체예에 있어서, 상기 정제 단계는 0℃를 유지하면서 수행하는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 정제 단계는 반응 생성물에 유기 용매를 추가로 투입한 후 유기층 추출을 수행하는 것일 수 있다.
상기 유기층 추출을 위한 용매는 필요에 따라 적절히 선택하여 사용할 수 있으며, 예를 들어 톨루엔, 에틸아세테이트, 메틸터셔리부틸에테르, 테트라하이드로퓨란, 메탄올, 디클로로메탄, 또는 이들의 혼합물을 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 구체예에 있어서, 상기 정제 단계는 반응 생성물에 톨루엔을 추가로 투입하여, 톨루엔 함유 유기 용매의 존재 하에서 수행하는 것일 수 있다. 상기 반응 생성물에 톨루엔을 투입한 후 산 화합물을 투입하고 유기층을 추출하는 경우 반응 생성물의 순도를 효과적으로 높일 수 있으나, 본 발명의 효과가 이에 제한되는 것은 아니다.
본 발명의 다른 구체예에 있어서, 상기 정제 단계는 반응 생성물에 톨루엔을 첨가하여 잔류물을 용해하고 물로 세척한 후 유기층에 염화수소를 투입하여 교반한 후 수층을 제거하는 과정을 1회 이상, 예컨대 2회 수행하는 것일 수 있다.
본 발명에 있어서, 상기 단계 2)에서는 화학식 3의 화합물의 알코올기를 이탈기로 치환한다.
본 발명은 화학식 3의 화합물의 말단 알코올기를 이탈기로 치환함으로써 스핑고신-1-인산 수용체 효능제의 합성에 있어서 핵심 중간체인 화학식 4의 화합물을 제공한다. 화학식 4의 화합물과 같이 이탈기를 포함함으로써 이후 스핑고신-1-인산 수용체 효능제의 합성 시 커플링 반응의 수율을 향상시킬 수 있다.
본 발명의 일 구체예에 있어서, 상기 '알코올기를 이탈기로 치환하는 단계'(이하, '이탈기 치환 단계'라 함)는 극성 유기 용매의 존재 하에서 수행하는 것일 수 있다.
본 발명의 다른 구체예에 있어서, 상기 이탈기 치환 단계는 DCM 및 MTBE의 존재 하에서 수행하는 것일 수 있다.
본 발명의 또 다른 구체예에 있어서, 상기 이탈기 치환 단계는 에테르계 단일 용매 하에서 수행하는 것일 수 있다. 상기 이탈기 치환 단계를 에테르계 단일 용매 하에서 수행함으로써 N2 이성질체의 생성 비율을 현저히 낮추는 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
상기 '단일 용매'는 이탈기 치환 반응을 위한 반응기에 하나의 종류의 용매만이 포함되는 것을 나타낸다. 이때 이탈기 치환 반응을 위한 반응기에 반응 생성물의 수율에 실질적으로 영향을 미치지 않는 수준의 미량의 이종의 용매가 포함되는 것 또한 단일 용매로부터 배제되는 것은 아니다. 예컨대, 이탈기 치환 반응을 위한 총 용매의 부피를 기준으로 5 부피% 이하, 4 부피% 이하, 3 부피% 이하, 2 부피 % 이하, 1 부피 % 이하, 0.5 부피% 이하, 또는 0 부피%(즉, 전혀 포함되지 않음)의 함량으로 이종의 용매가 포함되는 것도 단일 용매의 사용으로 볼 수 있다.
상기 에테르계 용매는 이에 제한되는 것은 아니나, 예를 들어 디에틸에테르, 디프로필에테르, 디부틸에테르, 디이소아밀에테르, 에틸메틸에테르, 메틸프로필에테르, 메틸부틸에테르, 에틸프로필에테르 등의 디알킬에테르계 용매; 디페닐에테르, 아니솔 등의 아릴알릴에테르계 용매; 또는 테트라히드로푸란, 테트라히드로피란 등의 환형 에테르계 용매 등을 들 수 있다.
본 발명의 일 구체예에 있어서, 상기 에테르계 단일 용매는 메틸 터셔리부틸 에테르(methyl tert-butyl ether, MTBE)일 수 있다.
본 발명의 다른 구체예에 있어서, 상기 화학식 3의 화합물과 MTBE를 혼합하고 0℃로 냉각한 후, PBr3와 반응시켜 화학식 4의 화합물을 수득하는 것일 수 있다.
본 발명의 또 다른 구체예에 있어서, 상기 화학식 3의 화합물과 MTBE를 혼합하고 0℃로 냉각한 후 PBr3와 반응시킨 후 반응이 종결되면 물로 세척 및 여과하여 화학식 4의 화합물을 수득하는 것일 수 있다.
본 발명에 따른 다른 측면에서, 상기 화학식 2의 화합물은 화학식 5의 화합물에 R1 및 R2 치환기를 도입하여 제조되는 것일 수 있다.
[화학식 5]
Figure PCTKR2022005404-appb-I000021
상기 R1, R2, R3 및 X는 상기 화학식 2에서 정의한 바와 같다.
상기 R1 및 R2의 치환기는 R1 치환 후 R2 치환, R2 치환 후 R1 치환 또는 R1 및 R2가 동시에 치환되는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 화학식 5의 화합물에 R2가 R1보다 먼저 치환되는 것일 수 있다. 화학식 5의 화합물에 부피가 큰(bulky) R1이 먼저 치환되는 경우 예를 들면 X가 N 인 인다졸의 3번 위치에 부피가 큰 R1이 먼저 치환되면 N2 이성질체의 생성이 억제되고, 수율이 개선되는 효과를 나타낼 수 있다.
상기 R1 및 R2의 치환기를 도입하는 반응은 동일 용매 하에서, 또는 서로 다른 용매 조성에서 수행하는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 R1 및 R2의 치환기를 도입하는 반응은 동일 용매 하에서 수행하는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 R1 및 R2의 치환기를 도입하는 반응의 반응 용매는 예를 들어 아마이드계 유기 용매를 포함할 수 있다. 상기 아마이드계 유기 용매는 예를 들어 디메틸포름아마이드(DMF) 및 디메틸아세트아마이드(DMA) 중에서 선택되는 1종 이상을 포함할 수 있다.
본 발명의 다른 구체예에 있어서, 상기 R1 및 R2의 치환기를 도입하는 반응의 반응 용매는 디메틸아세트아마이드를 포함하는 것일 수 있다.
본 발명의 또 다른 구체예에 있어서, 상기 R1 및 R2의 치환기를 도입하는 반응의 반응 용매는 디메틸아세트아마이드를 단독으로 사용하는 것일 수 있다.
상기 R1 및 R2의 치환기를 도입하는 반응에 있어서, 반응 용매가 불안정하여 분해(decompose)되면 분해 생성물이 합성 반응의 반응물과 반응하여 발열을 유도하여 불순물을 과량 생성하여 반응 생성물의 순도를 저하시키는 문제가 발생할 수 있다. 이러한 측면에서, 디메틸포름아마이드를 반응 용매로 하는 합성 반응 시 최대 합성 반응 온도 및 단열 온도 상승 정도가 디메틸아세트아마이드를 반응 용매로 하는 합성 반응 대비 최대 합성 반응 온도 및 단열 온도 상승 대비 더욱 높기 때문에, 상기 합성 반응의 반응 용매는 디메틸아세트아마이드를 사용하는 것이 바람직할 수 있다.
본 발명의 일 구체예에 있어서, 상기 디메틸포름아마이드 용매 하에서 합성 반응을 수행하는 경우, 디메틸포름아마이드의 분해에 의해 형성되는 디메틸아민과 R2 위치에 Cl을 도입하기 위해 사용하는 N-클로로숙신이미드(NCS)의 반응에 의해 발열이 유도되고, 내부 온도의 상승에 의해 화학식 5의 화합물에 R2 이외의 위치에 Cl이 도입된 불순물을 형성할 수 있다. 이에 따라 화학식 2의 화합물과, 후속 공정의 순도를 저하시키는 문제를 나타낼 수 있다.
본 발명의 일 구체예에 있어서, 상기 R1 및 R2를 도입하는 단계에서 화학식 5의 화합물에 R1 및 R2 치환기를 도입하고 알코올 용매를 포함하는 결정화 용매에 의해 결정화하여 화학식 2의 화합물을 제조하는 것일 수 있다.
상기 결정화를 위한 알코올 용매는 이에 제한되는 것은 아니나, 예를 들어 메탄올, 에탄올, 이소프로필알코올, 및 부탄올 중에서 선택되는 1종 이상의 용매일 수 있다.
본 발명의 일 구체예에 있어서, 상기 결정화를 위한 용매는 알코올 용매 및 물의 혼합 용매일 수 있다. 상기 결정화 용매로서 알코올 용매와 물의 혼합 용매를 이용함으로써 N2 이성질체 수율을 저감하는 효과가 있을 수 있다.
본 발명의 다른 구체예에 있어서, 상기 결정화를 위한 혼합 용매는 화학식 5의 수율의 측면에서 알코올 용매 및 물의 부피비가 5:1 내지 1:5, 4:1 내지 1:4, 3:1 내지 1:3, 2:1 내지 1:2, 2:1 내지 1:1 또는 1.5:1 내지 1:1로 사용되는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 결정화를 위한 용매는 에탄올 및 물의 혼합 용매일 수 있다. 구체적으로, 상기 에탄올과 물이 EtOH:H2O의 부피비 2:1 내지 1:2, 2:1 내지 1:1, 1.5:1 내지 1:1, 또는 1:1로 사용되는 것일 수 있다.
본 발명의 다른 구체예에 있어서, 상기 결정화 용매가 알코올 용매와 물의 혼합 용매일 때 결정화 시 알코올 용매 및 물은 각각 순차적으로, 또는 동시에 투입되는 것일 수 있다.
본 발명의 또 다른 구체예에 있어서, 상기 치환기가 도입된 반응 생성물에 알코올 용매, 예컨대 EtOH를 투입한 후 0℃ 내지 20℃로 냉각한 후, 또는 상온에서 물을 투입하여 결정화함으로써 화학식 5의 화합물을 수득하는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 결정화 전에 치환기가 도입된 반응 생성물을 정제한 후 결정화하는 것일 수 있다. 반응 생성물을 정제함으로써 반응에 이용된 미반응 잔류 화합물을 제거함으로써 결정화 수율을 향상시키는 효과를 나타낼 수 있다.
상기 정제는 예를 들어 극성 용매를 사용하여 수행할 수 있으며, 상기 극성 용매는 예를 들어 극성 유기 용매, 물, 또는 이들의 혼합 용매가 사용될 수 있다.
상기 극성 유기 용매는 이에 제한되는 것은 아니나, 예를 들어 에틸아세테이트(EA), 이소프로필아세테이트(IPOAc), 디클로로메탄 및 헥산 중에서 선택되는 1종 이상의 용매일 수 있다.
본 발명에 따른 일 구체예에 있어서, 상기 치환기가 도입된 반응 생성물을 극성 유기 용매와 물의 혼합 용매에 의해 정제한 후 결정화함으로써 치환기 도입 반응 시 이용된 K2CO3가 반응 생성물의 결정화 시 함께 석출되는 것을 예방 또는 석출량을 감소시켜 결정의 순도를 향상시키는 것일 수 있다.
본 발명에 따라 제조되는 화합물은 스핑고신-1-인산 수용체 효능제의 합성을 위한 주요 중간체로 이용될 수 있다. 본 발명에 따라 제조되는 화합물은 스핑고신-1-인산 수용체 효능제의 공지된 합성 방법의 주요 중간체로 이용될 수 있으며, 본 출원 이후에 개발되는 새로운 합성 방법의 주요 중간체로도 이용될 수 있는 것이지, 본 발명의 용도가 스핑고신-1-인산 수용체 효능제의 특정한 합성 방법에 한정되는 것은 아니다.
또한, 본 발명에 따라 제조되는 화합물은 스핑고신-1-인산 수용체 효능제의 합성 이외에 다른 용도로도 사용될 수 있는 것이며, 본 발명의 용도가 스핑고신-1-인산 수용체 효능제의 합성에만 제한되는 것은 아니다.
본 발명의 제조방법을 이용하면 화학식 4의 화합물을 높은 순도 및 높은 수율로 대량 생산할 수 있는 효과가 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 본 발명이 속한 분야에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
스핑고신-1-인산 수용체 효능제 합성을 위한 중간체 화합물로서 5-브로모메틸-3-클로로-1-아이소프로필-1H-인다졸을 하기 반응식 3에 따라 합성하였다.
[반응식 3]
Figure PCTKR2022005404-appb-I000022
실시예 1-1. 3-클로로-1-아이소프로필-1H-인다졸-5-카르복실산 메틸 에스테르(3-Chloro-1-isopropyl-1H-indazole-5-carboxylic acid methyl ester)의 합성
Figure PCTKR2022005404-appb-I000023
1H-인다졸-5-카르복실산 메틸 에스테르(1H-Indazole-5-carboxylic acid methyl ester) (1.0 kg, 6.58 mol), N-클로로숙신이미드(NCS, 0.95 kg, 7.10 mol(1.25 equiv))를 디메틸아세트아마이드(DMA) 5 L (5 fold)에 녹인 뒤 55℃에서 1시간 반응을 진행하였다.
HPLC 분석결과 1H-인다졸-5-카르복실산 메틸 에스테르 가 1.19% 잔류하여 반응액을 42℃까지 냉각하였다. 반응물에 2-아이오도프로판(iodopropane, 1.83 kg)과 K2CO3(2.35 kg)을 투입한 뒤 55℃로 승온하여 알킬화(alkyaltion) 반응을 3시간동안 진행하였다.
IPC 분석 결과 메틸 3-클로로-1H-인다졸-5-카르복실레이트가 잔류하여 2-아이오도프로판(0.29 kg, 총 사용량 2.2 equiv., 12.49 mol))과 K2CO3(0.35 kg,총 사용량 3.44 equiv., 19.53 mol)을 추가 투입하여 2시간 추가 반응을 진행하였다. IPC 분석결과 메틸 3-클로로-1H-인다졸-5-카르복실레이트가 1.45% 잔류하여 반응물을 상온까지 냉각시켰다.
반응액에 IPOAc 7 L와 물 10 L를 투입하여 10분간 교반 후 층 분리하여 수층을 제거하고 물 5 L로 추가 세척을 진행하여 DMA를 제거하였다. 감압증류하여 IPOAc를 제거하고 잔류물에 EtOH 4 L를 투입하여 녹인 뒤 상온에서 물 4 L를 천천히 적가하여 결정화를 진행하였다. 생성된 고체를 2시간동안 숙성한 뒤 여과를 진행하였고, 물 7 L와 5 L로 2회 세척한 뒤 질소로 건조하여 표제 화합물(1.32 kg,net yield 81%)을 합성하였다.
1H NMR (400MHz, CDCl3): 1.58 (d, 6H), 3.96 (s, 3H), 4.81 (m, 1H), 7.42 (d, 1H), 8.06 (dd, 1H), 8.44 (s, 1H).
실시예 1-2. (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올 ((3-Chloro-1-isopropyl-1H-indazol-5-yl)-methanol)의 합성
Figure PCTKR2022005404-appb-I000024
반응기에 3-클로로-1-아이소프로필-1H-인다졸-5-카르복실산 메틸 에스테르(실시예 1-1, 0.97 kg, 3.84 mol)를 투입하고 THF 5.8 L(6 fold)에 녹인 후 60℃로 가열하였다. 반응 혼합물에 NaBH4(0.36kg, 10.0 mol)와 NaOMe(18 ml, 0.1 mol)를 첨가하고 MeOH 1L를 반응액에 천천히 적가한 뒤 3시간 반응을 진행하였다.
HPLC로 IPC를 진행하여 기준(3-클로로-1-아이소프로필-1H-인다졸-5-카르복실산 메틸 에스테르 2% 이하)을 만족하여 반응을 종결시켰다. 반응액을 10℃ 이하로 냉각하고 3N HCl 4.5L를 천천히 적가하여 quenching을 진행하고 감압 증류하여 THF와 MeOH을 제거하였다. 톨루엔 6.8 L를 투입하여 잔류물을 용해하고 물 7.8 L, 6.8L로 2회 세척을 진행하였다.
유기층에 6 N HCl 6.7 L를 투입하여 0.5 시간 교반 후 층 분리하여 수층을 제거하는 과정을 2회 실시하여 불순물(RRT0.88, RRT 0.91)을 제거하고 감압 증류하여 표제 화합물(0.73 kg, net yield 85%)을 합성하였다.
1H NMR (400MHz, CDCl3): 1.5~1.7 (m, 6H), 1.82 (m, 1H), 3.72 (m, 1H), 4.70~5.10 (m, 2H), 7.30~7.50 (m, 2H), 7.62 (s, 1H).
실시예 1-3: 5-브로모메틸-3-클로로-1-아이소프로필-1H-인다졸 (5-Bromomethyl-3-chloro-1-isopropyl-1H-indazole)의 합성
Figure PCTKR2022005404-appb-I000025
반응기에 MTBE 5.86 L, (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올(실시예 1-2, 0.73 kg, 3.26 mol)를 투입하고 내부 온도를 0℃까지 냉각시켰다. 반응물에 PBr3(0.53 kg, 1.96 mol)를 90분간 천천히 투입하고 180분간 반응을 진행시켰다.
HPLC를 이용하여 IPC를 진행하고 반응이 완결되어 ((3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올: N/D) 1.5N NaOH (5.9 L)를 60분간 천천히 투입하고 30분간 교반하여 반응을 종결시켰다. 반응 혼합물에 염수(brine, 3.7 L)를 투입하여 10분간 교반 및 층 분리하여 수층을 제거하고 염수(3.7 L)로 추가 세척한 뒤 유기층을 감압 증류하여 표제 화합물(0.84 kg, Net yield 90.0%)을 합성하였다.
1H NMR (400MHz, CDCl3): 1.53 (d, 6H), 4.7 (s, 2H), 4.88 (m, 1H), 7.51-7.6 (m, 2H), 7.68 (s, 1H).
실험예 1. (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올의 환원 반응 시 알콕사이드 첨가제의 이용에 따른 생성물의 순도 개선의 평가
종래 공정에 따라 (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올의 환원 반응 시 NaBH4의 환원제 사용에 의해 발생하는 수소 가스로 인해 거품이 반응기 상단까지 올라오는 문제가 관찰되었다. 또한, 환원 반응의 종결까지 공정 중간에 NaBH4를 약 3~4회 추가 투입해야 해서 공정 상의 안정성이 확보되지 않는 문제가 있었다.
이러한 문제는 소듐메톡사이드(NaOMe)를 촉매로 사용하여 NaBH4의 분해(decompose)를 제어하고, 반응 중 생성되는 불순물(RRT 0.88IMP: 인돌의 올레핀기가 추가 환원된 화합물)을 제거할 수 있음이 확인되었다.
이에 추가적으로 알콕사이드 첨가제의 사용량 및 반응 온도에 따른 반응 완결 및 불순물 생성 정도를 평가하여 하기 표 1 및 표 2에 나타내었다.
하기 표 1 및 표 2에서, "SG10"은 "3-클로로-1-아이소프로필-1H-인다졸-5-카르복실산 메틸 에스테르"를 나타내며, "SG15"는 "(3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올"를 나타낸다.
Entry NaOMe
(mol%)
NaBH4
(equiv)
MeOH
(fold)
Temp
(℃)
Time
(h)
SG15 HPLC (% PAR)
RRT
0.88
N2 SG15 SG15 SG10 14.7
Min
RRT
1.44
1 1 2 1.5 50 1 0.20 7.31 43.48 42.68 0.23 0.29
16 0.18 7.26 43.43 42.86 0.20 0.28
+ 0.7 + 0.3 20 0.13 10.63 60.62 24.17 0.32 0.28
2 2.5 2 1.5 50 1 0.06 9.67 55.56 29.48 0.60 0.28
16 0.05 9.62 55.62 29.51 0.55 0.28
+ 0.7 + 0.3 20 0.04 11.40 63.91 20.16 0.90 0.29
3 5 2 1.5 50 1 0.04 9.51 54.62 28.68 2.73 0.26
16 0.05 9,49 54.65 28.80 2.57 0.27
+ 0.7 + 0.3 20 0.03 11.42 63.65 18.47 3.19 0.27
Entry NaBH4
(equiv)
MeOH
(fold)
Temp
(℃)
SG15 HPLC (% PAR)
0.88 N2 SG15 SG15 N2
SG10
SG10 14.7
min
1 3 0.4 50 0.03 5.77 39.46 6.31 44.51 3.80
2 3 2 50 0.04 16.42 81.78 0.18 0.37 1.21
3 3 2 35 0.02 15.40 79.96 0.68 2.96 0.99
4 3 2 65 0.04 16.39 79.05 0.35 0.98 3.18
5 4.6 2 50 0.04 17.27 81.63 0.01 0.02 0.96
6 3 2 50 0.03 15.96 80.17 0.62 2.13 1.11
7 3 3.6 50 0.01 8.03 45.20 4.97 39.53 2.12
8 1.4 2 50 0.01 4.16 26.56 7.18 59.84 2.25
9 3 2 50 0.03 13.97 74.21 1.51 7.95 2.34
10 3 2 50 0.03 15.45 76.78 0.87 3.93 2.93
11 3 2 50 0.03 16.18 80.96 0.14 0.29 2.41
12 2 3 40 0.02 6.64 39.34 5.93 47.38 0.70
13 3 2 50 0.02 16.17 81.26 0.37 1.08 1.09
14 4 1 60 0.04 15.68 78.34 1.12 3.62 1.21
15 4 1 40 0.02 12.62 71.37 2.40 11.88 1.71
16 2 1 40 0.02 12.37 69.71 2.60 13.37 1.93
17 4 3 40 0.02 16.71 82.56 0.01 0.03 0.67
18 4 3 60 0.03 16.77 82.37 0.01 0.01 0.81
19 2 3 60 0.01 6.24 37.46 5.95 47.95 2.40
20 2 1 60 0.04 13.55 73.44 1.83 7.59 3.56
상기 표 1과 같이, NaBH4 초기 당량을 2.0 equiv으로 하여 반응을 진행한 결과 2.5 mol%와 5 mol%에서 동일한 수준의 생성물 전환율을 보였다(entry 2, 3). 2.5 mol%, 5.0 mol% 두 조건에서 반응물("SG10")이 약 29% 잔류한 결과끼리 비교해보면 추후 정제 공정에서 제거되는 산(acid) 부생성물(RRT14.7)은 각각 0.6%와 2.6%로 5 mol%가 더 많은 것을 확인하였다. 이러한 결과를 통해 NaOMe는 2.5 mol%를 사용하는 것이 생성물 순도의 측면에서 더 바람직한 것으로 판단되었다. 위 실험에서는 16시간 후에도 반응이 완결되지 않아 NaOMe 2.5mol% 조건에서 NaBH4 를 3.0 equiv 사용하여 반응을 진행하였으며 반응이 완결됨을 확인할 수 있었다.
상기 표 2는 NaOMe의 사용량을 2.5mol%로 고정하였을 때 NaBH4의 당량과 MeOH의 사용량(fold)에 따른 반응 수율의 평가 결과이다. 표 2의 결과를 통해 NaBH4를 3.0 equiv 사용하고, MeOH를 1.6 fold의 양으로 사용하였을 때 환원 반응 동안 NaBH4의 추가 투입 없이 반응을 완료할 수 있고, 60℃ 미만의 온도, 구체적으로 50℃의 온도에서도 반응을 완료할 수 있음을 확인하였다.
위와 같이 (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올의 환원 반응 시 알콕사이드 첨가제를 이용함에 따라 환원제의 추가 투입 공정에 의한 공정 안정성이 저하되는 문제를 해결하고, 반응 중 수소 가스의 발생을 제어할 수 있음을 확인하였다.
실험예 2. (3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올의 환원 반응 후 산성화 정제에 의한 생성물의 순도 개선의 평가
(3-클로로-1-아이소프로필-1H-인다졸-5-일)-메탄올의 환원 반응 시 반응물이 과환원되면 생성물의 인돌 구조 내 올레핀기가 추가로 환원된 불순물(RRT 0.88 IMP)이 형성되는 문제가 있다.
이러한 불순물은 환원 반응의 종결 후 산성 조건에서 정제 공정을 통해 효과적으로 저감할 수 있음을 확인하였으며, 그 결과를 하기 표 3 및 표 4에 나타내었다.
Run W/U condition Temp
(℃)
Time
(Hour)
Layer SG15 HPLC (% PAR) - 288 nm
RRT
0.88
RRT
0.91
SG15 1.44 New IMP.*
(benzyl-Cl)
Ini. - - - Org. 0.08 8.52 87.11 0.48 0.02
1 6N HCl 20 0.5 Org. 0.02 0.10 89.50 7.00
Run W/U solvent Temp
(℃)
Time
(Hour)
Layer SG15 HPLC (% PAR) - 288 nm
RRT
0.88
RRT
0.91
SG15 1.44 New IMP.*
(benzyl-Cl)
Ini. - - - Org. 0.08 14.58 78.28 0.31 N/D
1 Toluene 0 0.5 Org. 0.004 0.25 94.73 0.39 0.19
2 EtOAc 0 0.5 Org. 0.01 0.57 92.84 0.47 0.10
3 Me-THF 20 0.5 Org. 0.05 11.19 81.53 0.34 0.01
4 MTBE 20 0.5 Org. 0.01 0.96 91.9 0.66 0.08
상기 표 3과 같이, 염산을 사용하여 세척을 진행한 결과 초기 0.08%의 과환원 불순물(RRT 0.88 불순물)은 0.02%로 감소하고, N2 이성질체(RRT 0.91 불순물)는0.1%까지 제거되는 것으로 확인되었다. 다만, 벤질-클로라이드로 예상되는 새로운 불순물(New IMP. Benzyl-Cl)이 발견되었다.표 4는 6N 염산을 사용하여 정제 공정을 수행할 때 추출 용매에 따른 정제 결과를 나타낸다. 상기 표 4와 같이, 정제 공정 시 추출 용매로 톨루엔(toluene)을 사용할 경우 RRT 0.88, RRT 0.91의 불순물을 가장 효과적으로 제거할 수 있음을 확인하였으며, 벤질클로라이드로 예상되는 새로운 불순물의 생성 또한 억제할 수 있음을 확인하였다.
실험예 3. 3-클로로-1-아이소프로필-1H-인다졸-5-카르복실산 메틸 에스테르의 합성 시 치환 반응의 용매의 평가
기존에 디메틸포름아마이드(DMF) 용매 하에서 1H-인다졸-5-카르복실산 메틸 에스테르에 클로라이드 및 아이소프로필의 치환 반응 시 클로라이드-어덕트(Cl-adduct)에 의한 불순물(RRT 1.44)이 형성되며, 이러한 불순물은 후속 공정 시 제거되지 않고 최종 생성물까지 잔류하는 문제가 발견되었다. 또한, 1H-인다졸-5-카르복실산 메틸 에스테르의 클로라이드 및 아이소프로필의 치환 반응 시 발열에 의해 내부 온도가 급격히 올라가는 경우 이러한 불순물의 생성량이 증가하는 경향이 관찰되었다.
이에 따라 반응 용매를 디메틸아세트아마이드(DMA)로 변경하여 동일한 반응을 수행하고, 이를 DMF 하에서 반응을 수행한 경우의 수율과 비교 평가하여 그 결과를 하기 표 5에 나타내었다.
하기 표 5에서, "SG01"은 "1H-인다졸-5-카르복실산 메틸 에스테르"를 나타내며, "SG05"는 "메틸 3-클로로-1H-인다졸-5-카르복실레이트"를 나타낸다.
solvent Temp
(℃)
Time
(hour)
SG05 HPLC (% PAR)
SG01 잔류 RRT 1.44
DMF 65 2 0.35 1.07
DMA 65 2 0.26 0.4
상기 표 5와 같이, 반응 용매를 DMA로 변경함에 따라 반응 완결도를 높이고 불순물의 생성량을 획기적으로 저감함으로써 반응 생성물의 순도를 높일 수 있음을 확인하였다. 이는 DMF는 고온에서 분해되어 디메틸아민(dimethylamine)을 생성시키고, 생성된 디메틸아민이 NCS와 반응함에 따라 발열이 발생하는 문제가 있으나, DMA는 상대적으로 분해율이 낮기 때문인 것으로 유추되었다.위의 결과를 검증하기 위해 안정화 연구를 추가로 수행하였으며, 1H-인다졸-5-카르복실산 메틸 에스테르와 NCS에 DMF 또는 DMA 각각을 투입한 후 65℃로 승온하였을 때 합성 반응이 진행되는 동안 최대로 올라갈 수 있는 온도인 최대 합성 반응 온도(MTSR, Maximum Temperature of Synthesis Reaction)와 이에 따른 단열 온도 상승(△Tad, Adiabatic Temperature Arise)에 대한 온도 변화를 측정한 결과를 하기 표 6에 나타내었다.
Solvent Reaction Temperature (℃) Maximum Temperature of Synthesis Reaction (MTSR, ℃) Adiabatic Temperature Rise
(△Tad, K)
Maximum Technical Temperature (MTT, ℃) Heat of Reaction (qr_hf, kJ)
DMF 65 90.8 25.8 153 20.2
DMA 65 67.6 2.6 165 9.8
표 6과 같이, DMF의 투입한 경우 최대 합성 반응 온도는 91.5℃ 단열온도상승은 26.5K로 측정되었으며 DMA를 투입한 경우 최대 합성 반응 온도는 67.9℃ 단열 온도 상승은 2.9K로 측정되었다. 또한, DMF 투입 시 발열량은 20.2kJ로 측정되었고 DMA 투입 시 발열량은 9.8kJ로 측정되었다.이는, 상기 공정에서 반응 용매로서 DMF를 사용한 경우 DMA를 사용한 경우 보다 합성 반응으로 상승 할 수 있는 온도 상승이 크고 열적 위험성이 높다는 것을 의미한다. 즉, DMF를 사용하였을 때 합성 반응으로 발생되는 반응열이 많다는 것을 의미한다.
이에 따라, RRT1.44를 저감하여 생성물의 순도를 높이기 위해 반응 용매는 DMF 보다 DMA를 사용하는 것이 바람직하며, 이로써 RRT1.44의 생성을 0.5% 이내로 관리함으로써 최종 API인 5-브로모메틸-3-클로로-1-아이소프로필-1H-인다졸에서 0.10%이하 수준으로 관리할 수 있음을 확인하였다.

Claims (11)

1) 알코올계 용매 및 알콕사이드의 존재 하에서 화학식 2의 화합물의 환원 반응을 수행하여 화학식 3의 화합물을 수득하는 단계, 및
2) 화학식 3의 화합물의 알코올기를 이탈기로 치환하는 단계를 포함하는 하기 화학식 4의 중간체 화합물의 제조방법:
[화학식 2]
Figure PCTKR2022005404-appb-I000026
[화학식 3]
Figure PCTKR2022005404-appb-I000027
[화학식 4]
Figure PCTKR2022005404-appb-I000028
상기 화학식 2 내지 화학식 4에 있어서,
R1은 수소, 또는 치환 또는 비치환 알킬이고,
R2는 수소, 치환 또는 비치환 알킬, 할로겐, CN, CF3 또는 COCF3이고,
R3는 치환 또는 비치환된 알킬이고,
X는 C 또는 N이고,
L은 이탈기(leaving group)이다.
청구항 1에 있어서,
R1은 C1-C4의 치환 또는 비치환된 알킬이고,
R2는 할로겐이며,
R3는 C1-C4의 치환 또는 비치환된 알킬이고,
L은 염소(Cl), 브로민(Br), 아이오딘(I), 메탄설포네이트(Oms), p-톨루엔설포네이트(OTs) 및 트리플루오로메탄설포네이트(OTf)로부터 선택되는 이탈기인 것인 제조방법.
청구항 1에 있어서,
단계 1)에서 상기 알콕사이드는 상기 알코올계 용매의 알킬기와 동일한 알킬기를 갖는 것을 포함하는 것인 제조방법.
청구항 3에 있어서,
단계 1)에서 상기 알코올계 용매는 메탄올을 포함하며, 상기 알콕사이드는 메톡사이드를 포함하는 것인 제조방법.
청구항 1에 있어서,
단계 1)에서 상기 알콕사이드는 상기 환원 반응에 이용하는 환원제에 포함되는 금속 이온과 동일한 금속 이온을 포함하는 것인 제조방법.
청구항 1에 있어서,
단계 1)에서 상기 환원제가 소듐 보로하이드라이드(NaBH4), 리튬 보로하이드라이드(LiBH4), 보레인(BH3) 및 디이소뷰틸알루미늄 하이드라이드(DIBAH)로부터 선택되는 것인 제조방법.
청구항 1에 있어서,
단계 1)에서 상기 환원 반응의 종결 후 산성 조건에서 정제하는 단계를 더 포함하는 것인 제조방법.
청구항 7에 있어서,
상기 정제 단계는 0℃ 내지 20℃의 온도에서 수행하는 것인 제조방법.
청구항 7에 있어서,
상기 정제 단계는 톨루엔 함유 유기 용매의 존재 하에서 수행하는 것인 제조방법.
청구항 1에 있어서,
상기 화학식 2의 화합물은 하기 화학식 5의 화합물에 R1 및 R2 치환기를 도입하여 제조되는 것인 제조방법:
[화학식 5]
Figure PCTKR2022005404-appb-I000029
상기 화학식 5에 있어서,
상기 R1, R2, R3 및 X는 청구항 1에 정의된 바와 같다.
청구항 10에 있어서,
상기 치환기를 도입하는 반응은 디메틸아세트아마이드(DMA) 용매의 존재 하에서 수행하는 것인 제조방법.
PCT/KR2022/005404 2021-04-14 2022-04-14 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법 WO2022220612A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22788467.3A EP4306514A4 (en) 2021-04-14 2022-04-14 PROCESS FOR THE PREPARATION OF AN INTERMEDIATE FOR THE SYNTHESIS OF A SPHINGOSINE-1-PHOSPHATE RECEPTOR AGONIST
US18/555,025 US20240228441A1 (en) 2021-04-14 2022-04-14 Method for preparing intermediate for synthesis of sphingosine-1-phosphate receptor agonist
CN202280028512.1A CN117136181A (zh) 2021-04-14 2022-04-14 用于合成鞘氨醇-1-磷酸酯受体激动剂的中间体的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210048767 2021-04-14
KR10-2021-0048767 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022220612A1 true WO2022220612A1 (ko) 2022-10-20

Family

ID=83640845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005404 WO2022220612A1 (ko) 2021-04-14 2022-04-14 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법

Country Status (6)

Country Link
US (1) US20240228441A1 (ko)
EP (1) EP4306514A4 (ko)
KR (1) KR102682352B1 (ko)
CN (1) CN117136181A (ko)
TW (1) TWI825672B (ko)
WO (1) WO2022220612A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784839A (zh) * 2022-11-11 2023-03-14 浙江工业大学 一种4-环己基-3-(三氟甲基)苯甲醇的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140104376A (ko) 2013-02-20 2014-08-28 주식회사 엘지생명과학 스핑고신-1-인산 수용체 효능제, 그의 제조방법 및 그를 활성성분으로서 함유하는 약제학적 조성물
JP2017031098A (ja) * 2015-07-31 2017-02-09 東ソー株式会社 ジアルキルジチエノベンゾジフランの製造方法
KR20170034902A (ko) * 2014-07-16 2017-03-29 라이프에스씨아이 파마슈티컬스, 인크. 치료적 억제 화합물
KR20200145735A (ko) * 2019-06-19 2020-12-30 주식회사 엘지화학 인돌 또는 인다졸 화합물의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002100833A1 (ja) * 2001-06-12 2004-09-24 住友製薬株式会社 Rhoキナーゼ阻害剤
CA2642668C (en) * 2006-02-15 2013-01-08 Allergan, Inc. Indole-3-carboxylic acid amide and ester compounds bearing phenyl groups having sphingosine-1-phosphate (s1p) receptor antagonist biological activity
EP2014653A1 (en) * 2007-06-15 2009-01-14 Bioprojet Novel dicarboxylic acid derivatives as S1P1 receptor agonists
UA107360C2 (en) * 2009-08-05 2014-12-25 Biogen Idec Inc Bicyclic aryl sphingosine 1-phosphate analogs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140104376A (ko) 2013-02-20 2014-08-28 주식회사 엘지생명과학 스핑고신-1-인산 수용체 효능제, 그의 제조방법 및 그를 활성성분으로서 함유하는 약제학적 조성물
KR20170034902A (ko) * 2014-07-16 2017-03-29 라이프에스씨아이 파마슈티컬스, 인크. 치료적 억제 화합물
JP2017031098A (ja) * 2015-07-31 2017-02-09 東ソー株式会社 ジアルキルジチエノベンゾジフランの製造方法
KR20200145735A (ko) * 2019-06-19 2020-12-30 주식회사 엘지화학 인돌 또는 인다졸 화합물의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. P. PRASANTH, JOSEPH EBBIN, A ABHIJITH, D. S. NAIR, IBNUSAUD IBRAHIM, RASKATOV JEVGENIJ, SINGARAM BAKTHAN: "Stabilization of NaBH 4 in Methanol Using a Catalytic Amount of NaOMe. Reduction of Esters and Lactones at Room Temperature without Solvent-Induced Loss of Hydride", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 83, no. 3, 2 February 2018 (2018-02-02), pages 1431 - 1440, XP055977434, ISSN: 0022-3263, DOI: 10.1021/acs.joc.7b02993 *
See also references of EP4306514A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784839A (zh) * 2022-11-11 2023-03-14 浙江工业大学 一种4-环己基-3-(三氟甲基)苯甲醇的制备方法

Also Published As

Publication number Publication date
KR102682352B1 (ko) 2024-07-08
TWI825672B (zh) 2023-12-11
CN117136181A (zh) 2023-11-28
US20240228441A1 (en) 2024-07-11
KR20220142389A (ko) 2022-10-21
EP4306514A1 (en) 2024-01-17
EP4306514A4 (en) 2024-09-11
TW202246234A (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2020145514A1 (ko) L-글루포시네이트 제조 방법
WO2020145627A1 (ko) 글루포시네이트 제조 방법
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
WO2020067800A1 (ko) 유기 발광 소자용 잉크 조성물
WO2011004980A2 (ko) 트리사이클릭 유도체의 제조방법
EP2611776A2 (en) Production method of intermediate compound for synthesizing medicament
WO2022220612A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2016133317A1 (ko) N-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법
EP3262025A1 (en) Novel intermediates for preparing dpp-iv inhibitors, preparing method thereof and preparing method of dpp-iv inhibitors using the same
WO2019066467A1 (ko) (2r)-2-(2-메톡시페닐)-2-(옥산-4-일옥시)에탄-1-올 화합물의 신규 제조방법 및 이에 사용되는 중간체
WO2011154860A1 (en) An improved process for preparing iloperidone
WO2022220610A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2012148246A2 (en) A preparation method of sitagliptin
WO2021118003A1 (ko) 신규 혈관누출 차단제의 고수율 제조방법
EP2621915A2 (en) Novel method of preparing benzoimidazole derivatives
EP3224257A1 (en) Novel method for preparing thienopyrimidine compound and intermediates used therein
WO2014010990A1 (en) Novel pyridine derivatives and method for preparation of intermediate compound for producing sulfonylurea herbicides using the same
WO2022220608A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
EP2635580A2 (en) Hydrate of 1-{(2s)-2-amino-4-[2,4-bis(trifluoromethyl)-5,8-di- hydropyrido[3,4-d]pyrimidin-7(6h)-yl]-4-oxobutyl}-5,5-difluoro-piperidin-2-one tartrate
WO2015102234A1 (ko) 트리알킬 오르소에스테르를 이용한 무수 이온성 액체 직접 합성법 개발
WO2019107943A1 (ko) Jak 저해제 화합물, 및 이의 제조방법
WO2022080812A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조 방법
WO2022220613A1 (ko) 스핑고신-1-인산 수용체 효능제의 신규한 제조방법
WO2016159666A2 (ko) 결정형 및 이의 제조방법
WO2022220611A1 (ko) 스핑고신-1-인산 수용체 효능제의 신규한 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022788467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202317068690

Country of ref document: IN

Ref document number: 18555025

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022788467

Country of ref document: EP

Effective date: 20231011

NENP Non-entry into the national phase

Ref country code: DE