[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022220196A1 - Correcting device, measuring instrument, correcting method, and program - Google Patents

Correcting device, measuring instrument, correcting method, and program Download PDF

Info

Publication number
WO2022220196A1
WO2022220196A1 PCT/JP2022/017345 JP2022017345W WO2022220196A1 WO 2022220196 A1 WO2022220196 A1 WO 2022220196A1 JP 2022017345 W JP2022017345 W JP 2022017345W WO 2022220196 A1 WO2022220196 A1 WO 2022220196A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectral sensitivity
measured
light
sensor
error
Prior art date
Application number
PCT/JP2022/017345
Other languages
French (fr)
Japanese (ja)
Inventor
健二 井村
克敏 ▲鶴▼谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020237034736A priority Critical patent/KR20230154273A/en
Priority to JP2023514630A priority patent/JPWO2022220196A1/ja
Priority to CN202280027008.XA priority patent/CN117157510A/en
Publication of WO2022220196A1 publication Critical patent/WO2022220196A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • G01J3/524Calibration of colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting

Definitions

  • the present invention provides a correction device, a measurement device, a correction method, and a correction device for correcting an output error caused by a spectral sensitivity error of a sensor used in a filter-type measurement device for measuring the luminance, chromaticity, etc. of radiated light of a display or the like.
  • a correction device for correcting an output error caused by a spectral sensitivity error of a sensor used in a filter-type measurement device for measuring the luminance, chromaticity, etc. of radiated light of a display or the like.
  • Measuring instruments that measure the luminance, chromaticity, etc. of radiated light from displays, etc. come in spectral and filter types, both of which obtain the tristimulus values of the light to be measured and convert them into luminance, chromaticity, etc.
  • a spectroscopic measuring instrument obtains tristimulus values by multiplying the spectral distribution of the measured light measured by a spectrograph composed of a diffraction grating and a high-sensitivity sensor array, and theoretical color matching functions.
  • This spectroscopic type is in principle excellent in spectral sensitivity accuracy, but has disadvantages such as long measurement time, high cost, and large size.
  • a filter-type measuring instrument which is also called a stimulus value direct reading type, receives the light to be measured with a sensor having a spectral sensitivity that approximates the color matching function, and directly obtains an output correlated with the tristimulus value.
  • This filter-type measuring instrument surpasses spectroscopic-type measuring instruments in terms of measurement speed, and is superior in terms of size and cost.
  • a disadvantage is that the application area is limited.
  • the quality evaluation of displays involves colorimetric measurements of many colored lights. For example, in gamma measurement (EOTF measurement), at least 25 levels of measurement are performed for the four colors B (blue), G (green), R (red), and W (white). As the performance of displays improves, the number of measurements per unit is increasing, and there is a demand for shortening the measurement time.
  • EOTF measurement gamma measurement
  • Patent Document 1 using a calibration matrix of tristimulus values obtained by using the primary lights (three lights of B, G, and R) of the display as the calibration reference lights, arbitrary colors synthesized by additive color mixture of the primary lights Techniques have been disclosed for improving the accuracy of the tristimulus values of the light to be measured.
  • the tristimulus values are obtained by numerical calculation by combining the color matching function and the pre-measured sensor spectral sensitivity of the filter-type luminance meter with the pre-obtained spectral distribution of the primary light of each type of display.
  • a technique is disclosed that eliminates the need to actually measure color values for each type.
  • Patent Document 4 a specific position of the measurement area is measured by both the filter type and the spectrophotometer in the filter type two-dimensional colorimeter, and the correction coefficient obtained from the tristimulus values of both is applied to the entire measurement area.
  • a technique has been proposed that aims to improve the accuracy of two-dimensional colorimetry by doing so.
  • JP-A-06-323910 JP 2012-215570 A Japanese Patent Application No. 2019-39795 JP-A-6-201472
  • Patent Documents 1 to 3 are basically matrix calibration using the color values of the calibration reference light, and high accuracy is achieved only when the light to be measured can be synthesized with the calibration reference light (when additive color mixture is established). cannot be obtained, and there is a limit to suppressing the color value error that is caused by the sensor spectral sensitivity error and depends on the spectral distribution of the light to be measured.
  • the present invention has been made in view of such a technical background.
  • the purpose is to provide a correction device, a measuring device, a correction method, and a program that enable a filter type measuring device to measure any light to be measured with high accuracy and high speed by correcting based on the spectral distribution of and
  • a measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and obtains the characteristics of the light to be measured based on the output of the sensors. , the error in the sensor output due to the spectral sensitivity error from the target spectral sensitivity of the sensor, the target spectral sensitivity; a pre-measured and stored spectral sensitivity of the sensor; a spectral distribution of the light to be measured measured by the spectrograph; A correction device that estimates and corrects from (2) The correction device according to (1) above, wherein the spectrograph has a wavelength pitch and a half width of 4 nm or more.
  • a simulated sensor output S' n,sim is obtained from the spectral distribution I'( ⁇ ) of the light I to be measured measured by the spectrograph and the spectral sensitivity s' n ( ⁇ ) of the sensor n.
  • the light to be measured consists of one or more monochromatic lights or ultra-narrow band lights
  • the correcting device according to item 5, citing item 4, in which the simulated sensor output S' n,sim is estimated by S' n,sim A ⁇ s' n ( ⁇ c ).
  • the correcting device according to (5) or (6) above, further comprising detecting means for detecting whether the light to be measured is composed of one or more of monochromatic light and ultra-narrow band light.
  • the correcting device according to any one of the preceding items 1 to 7, wherein the target spectral sensitivity is standard luminosity, and the measuring device is a luminance meter or an illuminance meter for measuring luminance or illuminance of the object to be measured.
  • the target spectral sensitivity is a color matching function, and the measuring device is a color luminance meter or a color luminance meter for measuring the color characteristics of the object to be measured.
  • a measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and obtains the characteristics of the light to be measured based on the output of the sensors.
  • a measuring instrument comprising the correction device according to any one of the preceding items 1 to 9.
  • (11) A measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and obtains the characteristics of the light to be measured based on the output of the sensors.
  • the spectrograph has a wavelength pitch and a half width of 4 nm or more.
  • the permissible repeatability of the spectrograph is 10 times or more the permissible repeatability of the measuring instrument.
  • a simulated sensor output S' n,sim is obtained from the spectral distribution I'( ⁇ ) of the light I to be measured measured by the spectrograph and the spectral sensitivity s' n ( ⁇ ) of the sensor n.
  • the correction method according to any one of the preceding items 11 to 13, wherein the sensor output S' n is corrected to the corrected sensor output S' n,corr by S' n,corr S' n ⁇ (1 ⁇ R err,n ). .
  • the light to be measured consists of one or more monochromatic lights or ultra-narrow band lights
  • the correction method according to item 15, which quotes item 14, in which the simulated sensor output S' n,sim is estimated by S' n,sim A ⁇ s' n ( ⁇ c ).
  • the correction method according to (15) or (16) above, which comprises detecting means for detecting whether the light to be measured is composed of one or more of monochromatic light and ultra-narrow band light.
  • a measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and obtains characteristics of the light to be measured based on outputs of the sensors. There is The sensor resulting from a spectral sensitivity error of the spectral sensitivity of the sensor from the target spectral sensitivity based on the spectral distribution of the light to be measured measured by the spectrograph, the target spectral sensitivity, and the sensor spectral sensitivity measured in advance.
  • a measuring instrument that estimates and corrects for errors in the output of (22) The measuring instrument according to (21) above, wherein the spectrograph has a wavelength pitch and a half width of 4 nm or more.
  • the error in the sensor output due to the spectral sensitivity error from the target spectral sensitivity of the sensor of the filter type measuring device is corrected to the target without depending on matrix calibration.
  • the spectral sensitivity, the sensor spectral sensitivity measured and stored in advance, and the spectral distribution of the light to be measured measured by the spectrograph are estimated and corrected, so that the light to be measured is synthesized by additive color mixture of the calibration reference light. Even if it is not possible, it is possible to perform highly accurate measurement using a filter-type measuring instrument. Moreover, high-speed measurement is possible without the need to use a highly accurate spectrograph.
  • the wavelength pitch and the half width of the spectrograph are 4 nm or more, so a high-precision spectrograph is unnecessary, and the cost of the spectrograph and the measurement equipment The cost can be reduced and high-speed measurement becomes possible.
  • the allowable repeatable error of the spectrograph is 10 times or more the allowable repeatable error of the measuring instrument, so a highly accurate spectrograph is unnecessary. and the cost of the measuring instrument can be reduced, and high-speed measurement becomes possible.
  • the sensor output error caused by the spectral sensitivity error from the target spectral sensitivity of the sensor of the filter-type measuring device is reliably estimated and corrected. be able to.
  • the error in the output due to the spectral sensitivity error of the sensor can be estimated and corrected.
  • the light to be measured consists of one or more of monochromatic light and ultra-narrow band light.
  • the target spectral sensitivity is the standard luminosity factor, and in the luminance meter or illuminance meter for measuring the luminance or illuminance of the measurement target, the target spectral sensitivity of the sensor Errors in the sensor output due to spectral sensitivity errors from can be estimated and corrected.
  • the target spectral sensitivity is a color-matching function
  • the target spectral sensitivity of the sensor is Errors in sensor output due to spectral sensitivity error from sensitivity can be estimated and corrected.
  • the error in the sensor output due to the spectral sensitivity error from the target spectral sensitivity of the sensor of the filter-type measuring device is combined with the target spectral sensitivity and is measured and stored in advance.
  • a computer can be caused to perform a process of estimating and correcting from the spectral sensitivity of the sensor and the spectral distribution of the light to be measured measured by the spectrograph.
  • the error in the sensor output due to the spectral sensitivity error from the target spectral sensitivity of one or more sensors having spectral sensitivities close to the target spectral sensitivity is reduced.
  • Spectroscopic distributions used in computations to estimate and correct can be measured at high speed with less accurate, less costly spectrographs.
  • FIG. 1 is a schematic configuration diagram of a filter-type measuring instrument according to one embodiment of the present invention
  • FIG. Spectral sensitivities s' x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ) and color matching functions s x ( ⁇ ), s y ( ⁇ ), s z ( ⁇ ) and , spectral sensitivity errors e x ( ⁇ ), e y ( ⁇ ), and e z ( ⁇ ).
  • 2 is a flow chart showing a correction procedure performed by the filter-type measuring instrument of FIG.
  • FIG. 5 is a graph showing errors in tristimulus values before and after correction of primary light of LCD (Liquid Crystal Display) simulated and measured using sensor set b in FIG. 4 ;
  • FIG. FIG. 5 is a graph showing errors in tristimulus values before and after correction of primary light of LCD (Liquid Crystal Display) simulated and measured using sensor set b in FIG. 4 ;
  • FIG. 5 is a graph showing errors in tristimulus values before and after correction of the primary light of an LCD simulated using sensor set c of FIG. 4;
  • FIG. 5 is a graph showing errors in tristimulus values before and after correction of primary light of an OLED (Organic Light Emitting Diode) simulated and measured using the sensor set b of FIG. 4;
  • FIG. 5 is a graph showing errors in tristimulus values before and after correction of OLED primary light simulated using sensor set c of FIG. 4;
  • FIG. 4 is a graph showing spectral distributions of primary light and white light of a typical LCD.
  • FIG. 4 is a graph showing the spectral distribution of primary light and white light of a typical OLED; 1 is a graph showing the spectral distribution of a typical LD (Laser Display) emitted light. 2 is a graph showing the output of a spectrograph with a wavelength pitch and a half width of 4 nm for the spectral distribution of typical LD radiation.
  • FIG. 10 is a schematic configuration diagram of a filter-type measuring instrument according to another embodiment of the present invention;
  • FIG. 4 is a schematic configuration diagram of a filter-type measuring instrument according to still another embodiment of the present invention, where (A) is a side view and (B) is a view of FIG. A viewed from the right.
  • FIG. 10 is a schematic configuration diagram of a filter-type measuring instrument according to another embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram of a filter-type measuring instrument according to still another embodiment of the present invention, where (A) is a side view and (B) is a view
  • FIG. 10 which shows still another embodiment of the present invention, is a schematic configuration diagram when the spectrograph is a spectrophotometer independent of the filter-type measuring instrument.
  • FIG. 10 showing still another embodiment of the present invention is a configuration diagram in which a filter-type measuring instrument, a spectrometer as a spectrograph, and a personal computer (PC) as a correction device are independent of each other.
  • FIG. 10, showing still another embodiment of the present invention is a schematic configuration diagram in which the correction device is a PC independent of the filter-type measuring device.
  • FIG. 1 is a schematic configuration diagram of a filter-type color luminance meter, which is an example of a filter-type measuring instrument 100 according to one embodiment of the present invention.
  • a correction device is built into the filter type colorimeter.
  • the filter-type measuring instrument 100 shown in FIG. and the light to be measured 6 (light to be measured I) emitted from the light source 5 to be measured enters the incident end of the four-branch optical fiber bundle 2 via the lens system 1 .
  • the three filtered sensors n are also referred to as sensors x, y, z.
  • the 4-branch optical fiber bundle 2 is branched into 4 from the middle portion in the length direction, and distributes the light incident from the incident end to the 4 branch portions 21 .
  • the sensors x, y, and z having spectral sensitivities s' x ( ⁇ ), s' y ( ⁇ ), and s' z ( ⁇ ) are provided at the output ends of the three branch portions 21 of the four-branch optical fiber bundle 2, respectively.
  • the light emitted from the emitting end of each branching portion 21 is received by the sensors x, y, and z with filters. Light from the exit end of the remaining one branching portion 21 enters the spectrograph 3 .
  • the spectrograph 3 splits the incident light into wavelengths, and receives the split light at each pixel of the sensor array for each wavelength.
  • Arithmetic control unit 4 controls the entire measuring instrument and estimates and corrects the output error caused by the spectral sensitivity error from the target spectral sensitivity of each of the three sensors x, y, and z. Also functions as a device. The estimation and correction of the output error are performed as described below by the arithmetic control unit 4 operating according to the correction program.
  • sensor outputs S'x , S'y, and S'z are obtained from three types of sensors x, y , and z , and pixel signals pi ( i : pixel number) of the sensor array obtained from the spectrograph 3 are converted into obtained spectral distribution I'( ⁇ ).
  • pixel signals pi i : pixel number
  • the sensor spectral sensitivities s' x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ) and color matching functions s x ( ⁇ ), s y ( ⁇ ), s z ( ⁇ ) may be a storage unit (not shown) in the filter-type measuring instrument 100 or an external storage device. If it is stored in an external storage device, the sensor spectral sensitivity s' x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ) or color matching function s x ( ⁇ ), s y ( ⁇ ), s z ( ⁇ ).
  • Correction algorithm 1 This correction algorithm 1 is a basic algorithm for performing correction.
  • the stored color matching functions s x ( ⁇ ), s y ( ⁇ ), s z ( ⁇ ) and the stored spectral sensitivities s' x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ), the spectral sensitivity errors e x ( ⁇ ), e y ( ⁇ ), and e z ( ⁇ ) are calculated using (Equation 4) to (Equation 6).
  • the spectral sensitivity errors e x ( ⁇ ), e y ( ⁇ ), and e z ( ⁇ ) may be calculated and stored in advance.
  • R err,x E x /S' x,sim (equation 10)
  • Rerr,y Ey / S'y,sim (Formula 11)
  • Rerr,z Ez / S'z,sim (equation 12)
  • Correction of sensor output The sensor outputs S' x , S' y , and S' z measured by the three types of sensors x , y, and z are corrected using (Equation 13) to (Equation 15). ,corr , S' y,corr , S' z,corr .
  • the corrected sensor output is converted into corrected tristimulus values by known arithmetic processing and output from the filter-type measuring instrument 100 .
  • s' x ( ⁇ ), s' y ( ⁇ ), s z ( ⁇ ) are theoretical values, there is no error, and the spectral sensitivities s' x ( ⁇ ), s' y ( ⁇ ) of the sensor measured during manufacturing , s' z ( ⁇ ) can be obtained with the required accuracy by allocating necessary equipment (such as an irradiation monochromator) and time, so that it substantially depends on the accuracy of the spectral distribution I'( ⁇ ).
  • the corrected sensor output S' x,corr , S ' y,corr , S' has limited effect on z,corr and therefore limited effect on the corrected tristimulus values.
  • Accuracy required for spectrograph 3 (concrete example) As described above, the spectral distribution I'( ⁇ ) of the light to be measured 6 measured by the spectrograph 3 is used only for estimating the error to be corrected. The effect on the corrected tristimulus values is limited even if there are measurement repetition errors and absolute value errors.
  • E rep,ttl is the allowable repeatability of the measuring instrument, and R err,max is the maximum value of the output error rate (the ratio of the sensor output error due to the spectral sensitivity error to the sensor output). Then, if other error factors can be ignored, the repeat error E rep,spe of the spectrograph 3 should satisfy E rep,spe ⁇ E rep,ttl /R err,max .
  • E rep,spe is allowed up to 20%.
  • the repeatability error E rep,spe of the spectrograph 3 is at least 10 times the allowable repeatability error E rep,ttl of the measuring instrument ( 1/0.1) is acceptable.
  • the time required for measuring the spectral distribution by the spectrograph 3 can be shortened. At least 10 times the permissible repeatability of stimulus value output means that, in principle, the measurement time is less than 1/10 2 of the time required to obtain tristimulus values from the spectral distribution like a spectrophotometer. do.
  • the optical brightness (NA) and sensitivity of the spectrograph 3 can be lowered, resulting in cost and size reductions.
  • the arithmetic control unit 4 converts the pixel output p i into the spectral distribution I'( ⁇ ) (step #3). Further, the sensor output error E n is estimated from the spectral distribution I′( ⁇ ) and the spectral sensitivity error e n ( ⁇ ) using (Equation 1) to (Equation 12), and the output error rate R err,n is obtained (step #4).
  • the output error rate R err,n is applied to the sensor output S' n according to (Equation 13) to (Equation 15) to obtain the corrected sensor output S' n,corr , which is converted to the corrected tristimulus value and output. (Step #5).
  • the measurement time T spe of the spectrograph 3 in step #2 is obtained from the sensors x, y, ttl in step #1.
  • the measurement time for z is much longer than T fil (typically 2 s versus 0.05 s), in the present embodiment, which allows for large repeatability errors in the spectrograph 3, the measurement time is reduced to T' spe ⁇ T fil .
  • the total measurement time E rep,ttl can be set to the level of the filter-type colorimeter (Since the calculation time of steps #3 to #5 can be ignored, the total measurement time T ttl ⁇ T' spe ⁇ T fil ). .
  • the repeatable error E rep,spe is magnified to 20 times (1/0.05) the allowable repeatability E rep,ttl of the measuring instrument.
  • spectrograph 3 still has a margin of more than 3 times (20 times/6.3 times) in the allowable repeatability error E rep,spe , so trade it with spectrograph 3's optical brightness (NA) and sensitivity. As a result, the size and cost of the spectrograph 3 can be reduced.
  • Wavelength pitch and half width of spectrograph 3 The accuracy of correction according to this embodiment depends on the accuracy of spectral distribution I'( ⁇ ), and therefore the wavelength pitch of spectrograph 3 that measures I'( ⁇ ) and Although it depends on the half-value width, below we will confirm their influence by simulated measurement of LCD and OLED.
  • 4(a), 4(b), and 4(c) show the spectral sensitivities s' of the sensors x, y, and z of the sensor set a with a small spectral sensitivity error and the sensor sets b and c with a large spectral sensitivity error.
  • x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ) and spectral sensitivity errors e x ( ⁇ ), e y ( ⁇ ), e z ( ⁇ ) are converted into color matching functions s x ( ⁇ ), It is a graph shown with s y ( ⁇ ) and s z ( ⁇ ).
  • the left vertical axis is the spectral sensitivity s' x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ) and the color matching function s Values of x ( ⁇ ), s y ( ⁇ ), and s z ( ⁇ ) are shown, and the right vertical axis represents values of spectral sensitivity errors e x ( ⁇ ), e y ( ⁇ ), and e z ( ⁇ ).
  • Tristimulus values of LCD primary lights B, G, and R (spectral distribution is shown in FIG. 9) simulated and measured according to formulas (1) to (12) using sensor set b and sensor set c. 5 and 6 show the errors (absolute values)
  • FIGS. 7 and 8 show errors (absolute values) before and after correction of the tristimulus values of the OLED primary light (the spectral distribution is shown in FIG. 10) simulated and measured. The three bars for each error are the B, G, and R values from left to right.
  • the spectral distribution used for correction in the simulated measurement was measured with an isosceles triangular slit function and six types of spectrographs 3 having wavelength pitches and half-value widths shown in Table 1.
  • are improved from the errors
  • the correction effect is remarkable at 4 to 8 nm, and the spectral sensitivity accuracy is set to the level of a spectral radiance meter, and the amount of light incident on each pixel of the spectrograph 3 is approximately 4 2 to 8 2 times that when both the wavelength pitch and the half value width are 1 nm.
  • correction algorithm 2 This correction algorithm is for the emitted light of a laser display (LD).
  • the finite half-value width of the spectrograph 3 does not cause a large error in the radiant light from LCDs and OLEDs, which have broad spectral distributions as shown in FIGS. ) into the narrowband spectrum shown in FIG. 12, resulting in non-negligible errors.
  • the actual sensor outputs S' x , S' y , S' z from the laser light include the spectral sensitivities s' x ( ⁇ L ), s' y ( ⁇ L ) , s' z ( ⁇ L ), but simulated sensor outputs S′ x,sim , S′ y,sim , which are simulated and measured by (Equation 1) to (Equation 3) using the spectral distribution I′( ⁇ ) of FIG.
  • the spectral sensitivity at wavelengths around the laser wavelength ⁇ L also contributes to S' z,sim , resulting in an error.
  • the measured spectral distribution I'( ⁇ ) of each primary light is narrow as shown in FIG. It has a band spectrum.
  • the centroid wavelengths ⁇ b , ⁇ g , ⁇ r and the integrated intensities A b , Ag , Ar of each narrowband spectrum are obtained in the same manner as described above, and the spectral sensitivities s' x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ) to obtain sensor spectral sensitivities s' x ( ⁇ b ), s' y ( ⁇ g ), s' z ( ⁇ r ) at centroid wavelengths ⁇ p , ⁇ g , and ⁇ r , ... , s' z ( ⁇ b ), s' z ( ⁇ g ), s' z ( ⁇ r ) are obtained, and simulated sensor outputs S
  • the above process can be applied not only to laser light but also to ultra-narrow band light. ) is used. Whether or not the light to be measured is laser light or ultra-narrow band light can be determined by the operator, or can be automatically determined by the arithmetic control unit from the spectral distribution I'( ⁇ ).
  • T(16) 0.00 in the spectral distributions of FIGS. 9 (LCD) and 10 (OLED). 0.80 and 0.72. If T is smaller than a threshold value (for example, 0.1), the arithmetic control unit 4 determines that the light is laser light or ultra-narrow band light.
  • a threshold value for example, 0.1
  • FIG. 13 is a schematic configuration diagram of a filter-type measuring instrument 100 according to another embodiment of the invention. This embodiment differs from the filter-type measuring instrument shown in FIG.
  • the filter-type measuring instrument 100 of FIG. 13 includes a light pipe 22 into which light 6 to be measured from a light source 5 to be measured is incident via a lens system 1 consisting of a plurality of lenses, and a light pipe 22 connected to the output end face of the light pipe 22 . It is equipped with the resin fiber 23 of this. Sensors x, y, and z are arranged at the emission ends of three resin fibers 23 among the four resin fibers 23, and the spectrograph 3 is arranged at the emission end of one resin fiber 23.
  • the luminous flux incident on the light pipe 22 is distributed to four resin fibers 23 at the output end face, and the luminous flux distributed to the three resin fibers 23 is received by each sensor x, y, z, and one resin
  • the spectrograph 3 receives the beam distributed to the fiber 23 .
  • FIGS. 14A and 14B are schematic configuration diagrams of a filter-type measuring instrument 100 according to still another embodiment of the present invention, where (A) is a side view and (B) is a view of (A) viewed from the right.
  • the light 6 to be measured from the light source 5 to be measured is diffused by a dome-shaped diffusion plate 7, and the diffused light is received by three sensors x, y, and z arranged around a central lens 8. At the same time, the diffused light converged by the lens 8 is received by the spectrograph 3 .
  • FIG. 15 shows yet another embodiment of the invention.
  • the filter-type measuring instrument 100 of FIGS. 1, 13 and 14 incorporates three sensors x, y, z, a spectrograph 3, and an arithmetic control section 4 functioning as a correction device.
  • a filter type measuring instrument 100 of FIG. 15 incorporates three sensors x, y, z and an arithmetic control unit 4, and is connected to an independent spectrophotometer 31 as a spectrograph 3 and the like.
  • the light 6 to be measured is measured by three sensors x, y, z and an independent spectrophotometer 31, and these outputs are input to the arithmetic control unit 4, and the three sensors x, y , Estimate and correct the error in the output of z.
  • a filter type color luminance meter etc. as sensors x, y, z, a spectral luminance meter 31 etc. as a spectrograph 3, and a personal computer (PC) 41 etc. as a correction device are respectively may be independent.
  • the PC 41 receives the output of each sensor x, y, z of the filter-type luminance meter 100 and the output of the spectral luminance meter 31 via a network or the like, and Estimate and correct the errors in the outputs of the sensors x, y, z.
  • the three sensors x, y, z and the spectrograph 3 are incorporated in the filter-type measuring instrument 100, and the correction device is configured by an external PC 41 or the like.
  • An external PC 41 may receive the output of each sensor x, y, z and the output of the spectrograph 3 via a network or the like to correct the sensor output.
  • the technique of this embodiment can Using an inexpensive spectrograph with a wavelength pitch and a half-value width of 4 nm or more, preferably 4 to 8 nm, and a permissible repeatability error of 10 times or more than the permissible repeatability error of a measuring instrument, correction can be performed at high speed and with high accuracy.
  • the number of sensors is not limited to three.
  • colorimeters generally have three types of sensors for the color matching functions x , y, and z. or a luminance meter with one type of sensor that approximates the standard luminous efficiency V( ⁇ ).
  • the target spectral sensitivities s' x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ) of the sensors x, y, and z of the filter type measuring instrument 100 are
  • the error of the sensor output due to the spectral sensitivity error from s x ( ⁇ ), s y ( ⁇ ), s z ( ⁇ ) is defined as the target spectral sensitivity s x ( ⁇ ), s y ( ⁇ ), s z ( ⁇ ), sensor spectral sensitivities s' x ( ⁇ ), s' y ( ⁇ ), s' z ( ⁇ ) measured and stored in advance, and spectral distribution I' ( ⁇ ) and corrected.
  • highly accurate measurement is possible even with light to be measured that cannot be synthesized with calibration reference light.
  • high-speed measurement is possible without the need to use a highly accurate spectrograph.
  • the present invention can be used as a correction device that corrects output errors caused by spectral sensitivity errors of sensors used in filter-type measuring instruments that measure the luminance, chromaticity, etc. of radiated light such as displays.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

In a measuring instrument (100), light (6) to be measured is received by one or more sensors (x), (y), (z) having a spectral sensitivity approximating a target spectral sensitivity, and by a spectrograph (3), and a characteristic of the light to be measured is obtained on the basis of outputs from the sensors, wherein errors in the sensor outputs resulting from errors in the spectral sensitivity of the sensors (x), (y), (z) relative to the target spectral sensitivity are estimated from the target spectral sensitivity, the spectral sensitivity of each sensor, measured and stored in advance, and a spectral distribution of the light to be measured, measured by the spectrograph (3), and are corrected.

Description

補正装置、測定器、補正方法及びプログラムCorrection device, measuring instrument, correction method and program
 この発明は、ディスプレイ等の放射光の輝度や色度等を測定するフィルタ型の測定器に使用されるセンサの分光感度誤差に起因する出力の誤差を補正する補正装置、測定器、補正方法及びプログラムに関する。 The present invention provides a correction device, a measurement device, a correction method, and a correction device for correcting an output error caused by a spectral sensitivity error of a sensor used in a filter-type measurement device for measuring the luminance, chromaticity, etc. of radiated light of a display or the like. Regarding the program.
 ディスプレイなどの放射光の輝度や色度等を測定する測定器には分光型とフィルタ型とがあり、いずれも被測定光の三刺激値を求めて輝度や色度などに変換する。 Measuring instruments that measure the luminance, chromaticity, etc. of radiated light from displays, etc. come in spectral and filter types, both of which obtain the tristimulus values of the light to be measured and convert them into luminance, chromaticity, etc.
 分光型の測定器は回折格子や高感度センサアレイなどで構成されるスペクトログラフで測定した被測定光の分光分布と、理論的な等色関数との積和によって三刺激値を得る。この分光型は原理的に分光感度精度で優れるが、測定時間が長く、高価でサイズが大きいといった欠点を有する。 A spectroscopic measuring instrument obtains tristimulus values by multiplying the spectral distribution of the measured light measured by a spectrograph composed of a diffraction grating and a high-sensitivity sensor array, and theoretical color matching functions. This spectroscopic type is in principle excellent in spectral sensitivity accuracy, but has disadvantages such as long measurement time, high cost, and large size.
 一方、刺激値直読型とも呼ばれるフィルタ型の測定器は、等色関数に近似する分光感度を有するセンサで被測定光を受光して、直接、三刺激値に相関する出力を得る。このフィルタ型の測定器は測定速度で分光型の測定器を凌ぎ、サイズ、コスト面でも優れるが、フィルタの分光透過率とフォトダイオードの分光感度でつくられるセンサ分光感度の精度は十分でなく、適用領域が制限されるという欠点がある。 On the other hand, a filter-type measuring instrument, which is also called a stimulus value direct reading type, receives the light to be measured with a sensor having a spectral sensitivity that approximates the color matching function, and directly obtains an output correlated with the tristimulus value. This filter-type measuring instrument surpasses spectroscopic-type measuring instruments in terms of measurement speed, and is superior in terms of size and cost. A disadvantage is that the application area is limited.
 輝度計の主要な応用分野の1つにディスプレイの画像品質の評価のための測定があるが、近年のディスプレイ画像品質の向上に伴い、多くの測定で波長ピッチ1nm、半値幅1~5 nmの高精度分光型並みの分光感度精度が求められようになっている。 One of the major application fields of luminance meters is measurement for evaluation of display image quality. Spectral sensitivity accuracy comparable to that of high-precision spectroscopy is now required.
 また、ディスプレイの品質評価には多数の色光の色彩測定を伴う。例えばガンマ測定(EOTF測定)では、B(青),G(緑),R(赤),W(白)の4色について、少なくとも25段階の測定を行う。ディスプレイの性能向上に伴って1台あたりの測定数はさらに増えつつあり、測定時間の短縮も求められる。 In addition, the quality evaluation of displays involves colorimetric measurements of many colored lights. For example, in gamma measurement (EOTF measurement), at least 25 levels of measurement are performed for the four colors B (blue), G (green), R (red), and W (white). As the performance of displays improves, the number of measurements per unit is increasing, and there is a demand for shortening the measurement time.
 そこで、測定速度で優れるフィルタ型の測定器のセンサ分光感度の精度を改善することが従来より行われている。 Therefore, it has been conventionally practiced to improve the accuracy of the sensor spectral sensitivity of filter-type measuring instruments, which have excellent measurement speed.
 従来技術の多くは、複数の校正基準光を用いて求めた校正マトリクスにより分光感度誤差に起因する誤差を軽減するマトリクス校正法をとっている。この手法は、被測定光を校正基準光で合成できる場合(加法混色が成り立つ場合)に効果的である。 Many of the conventional techniques employ a matrix calibration method that reduces errors caused by spectral sensitivity errors using a calibration matrix obtained using a plurality of calibration reference lights. This method is effective when the light to be measured can be combined with the calibration reference light (when additive color mixture is established).
 例えば特許文献1には、ディスプレイのプライマリ光(B,G,Rの3光)を校正基準光として求めた三刺激値の校正マトリクスを用いて、該プライマリ光の加法混色で合成される任意の被測定光の三刺激値の精度を向上する技術が開示されている。 For example, in Patent Document 1, using a calibration matrix of tristimulus values obtained by using the primary lights (three lights of B, G, and R) of the display as the calibration reference lights, arbitrary colors synthesized by additive color mixture of the primary lights Techniques have been disclosed for improving the accuracy of the tristimulus values of the light to be measured.
 この技術でプライマリ光の分光分布が異なる様々なタイプのディスプレイを校正する場合、タイプごとにプライマリ光の三刺激値を実測し校正マトリクスを得る必要があり、手間がかかる。 When calibrating various types of displays with different spectral distributions of primary light using this technology, it is necessary to actually measure the tristimulus values of the primary light for each type and obtain a calibration matrix, which is time-consuming.
 特許文献2、3には、等色関数と予め測定したフィルタ型色彩輝度計のセンサ分光感度とに、予め求められた各タイプのディスプレイのプライマリ光の分光分布を組み合わせ、数値演算で三刺激値を推定することで、タイプごとに色彩値を実測する作業を不要にする技術が開示されている。 In Patent Documents 2 and 3, the tristimulus values are obtained by numerical calculation by combining the color matching function and the pre-measured sensor spectral sensitivity of the filter-type luminance meter with the pre-obtained spectral distribution of the primary light of each type of display. By estimating , a technique is disclosed that eliminates the need to actually measure color values for each type.
 また、特許文献4には、フィルタ型二次元測色計において測定領域の特定位置をフィルタ型と分光測定器の両方で測定し、両者の三刺激値から求めた補正係数を全測定領域に適用することで二次元測色の精度向上を目指す技術が提案されている。 In addition, in Patent Document 4, a specific position of the measurement area is measured by both the filter type and the spectrophotometer in the filter type two-dimensional colorimeter, and the correction coefficient obtained from the tristimulus values of both is applied to the entire measurement area. A technique has been proposed that aims to improve the accuracy of two-dimensional colorimetry by doing so.
特開平06-323910号公報JP-A-06-323910 特開2012-215570号公報JP 2012-215570 A 特願2019-39795号Japanese Patent Application No. 2019-39795 特開平6-201472号公報JP-A-6-201472
 しかしながら、特許文献1~3の技術は、基本的に校正基準光の色彩値を用いたマトリクス校正であり、被測定光が校正基準光で合成できる場合(加法混色が成り立つ場合)にしか高精度は得られず、センサ分光感度誤差に起因し、被測定光の分光分布に依存する色彩値誤差を抑えることには限界がある。 However, the techniques of Patent Documents 1 to 3 are basically matrix calibration using the color values of the calibration reference light, and high accuracy is achieved only when the light to be measured can be synthesized with the calibration reference light (when additive color mixture is established). cannot be obtained, and there is a limit to suppressing the color value error that is caused by the sensor spectral sensitivity error and depends on the spectral distribution of the light to be measured.
 さらに、OLED(Organic Light Emitting Diode:有機発光ダイオード)のように、放射光の分光分布の温度依存性が大きいディスプレイでは、低輝度と高輝度での自己発熱量の差による素子温度差で分光分布が変化するため、加法混色が成り立たず、マトリクス校正も十分機能しないという問題がある。 Furthermore, in displays such as OLEDs (Organic Light Emitting Diodes), where the spectral distribution of radiated light is highly dependent on temperature, the difference in element temperature due to the difference in self-heating between low and high luminances causes the spectral distribution to changes, there is a problem that additive color mixture does not hold and matrix calibration does not work well.
 また、特許文献4の技術で分光輝度計レベルの精度を実現するためには、内蔵する分光型測定器が分光輝度計レベルの精度を要するので、特許文献4の技術はコストと測定時間の点で限られた応用でしか受け入れられないという問題がある。 In addition, in order to achieve the accuracy of the spectrophotometer level with the technique of Patent Document 4, the built-in spectrophotometer must have the accuracy of the spectrophotometer level. However, there is a problem that it is acceptable only in limited applications.
 この発明は、このような技術的背景に鑑みてなされたものであって、マトリクス校正に依らず、フィルタ型測定器のセンサの分光感度誤差に起因する出力の誤差を分光感度誤差と被測定光の分光分布とに基づいて補正することにより、フィルタ型測定器で任意の被測定光を高精度かつ高速度で測定することを可能とする補正装置、測定器、補正方法及びプログラムの提供を目的とする。 The present invention has been made in view of such a technical background. The purpose is to provide a correction device, a measuring device, a correction method, and a program that enable a filter type measuring device to measure any light to be measured with high accuracy and high speed by correcting based on the spectral distribution of and
 上記目的は以下の手段によって達成される。
(1)被測定光を、目標分光感度に近似する分光感度を有する1個以上のセンサと、スペクトログラフとで受光し、前記センサの出力に基づいて前記被測定光の特性を求める測定器の、前記センサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を、
 前記目標分光感度と、
 予め測定され保存された前記センサの分光感度と、
 前記スペクトログラフで測定された被測定光の分光分布と、
 から推定し、補正する補正装置。
(2)前記スペクトログラフの波長ピッチと半値幅とが4nm以上である前項1に記載の補正装置。
(3)前記スペクトログラフの許容繰返し誤差が、測定器の許容繰返し誤差の10倍以上である前項1または2に記載の補正装置。
(4)1個以上のセンサのうちの任意のセンサnの分光感度s'n(λ)の目標分光感度sn(λ)からの分光感度誤差en(λ)をen(λ)=s'n(λ)-sn(λ)で求め、
 前記スペクトログラフで測定した被測定光Iの分光分布I'(λ)として、前記分光感度誤差en(λ)に起因する前記センサnの出力誤差En
The above objects are achieved by the following means.
(1) A measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and obtains the characteristics of the light to be measured based on the output of the sensors. , the error in the sensor output due to the spectral sensitivity error from the target spectral sensitivity of the sensor,
the target spectral sensitivity;
a pre-measured and stored spectral sensitivity of the sensor;
a spectral distribution of the light to be measured measured by the spectrograph;
A correction device that estimates and corrects from
(2) The correction device according to (1) above, wherein the spectrograph has a wavelength pitch and a half width of 4 nm or more.
(3) The correction device according to (1) or (2) above, wherein the permissible repeatability of the spectrograph is ten times or more the permissible repeatability of the measuring instrument.
(4) The spectral sensitivity error e n (λ) of the spectral sensitivity s' n (λ) of an arbitrary sensor n among the one or more sensors from the target spectral sensitivity s n (λ) to e n (λ)= Obtained by s' n (λ)-s n (λ),
As the spectral distribution I'(λ) of the light I to be measured measured by the spectrograph, the output error E n of the sensor n caused by the spectral sensitivity error e n (λ) is
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
で推定し、
 前記スペクトログラフで測定した被測定光Iの分光分布I'(λ)と、前記センサnの分光感度s'n(λ)とから、模擬センサ出力S'n,sim
estimated by
A simulated sensor output S' n,sim is obtained from the spectral distribution I'(λ) of the light I to be measured measured by the spectrograph and the spectral sensitivity s' n (λ) of the sensor n.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
で推定し、
 被測定光Iを、前記センサnで測定したときの出力誤差率Rerr,nをRerr,n=En/S'n,simで算出し、
 前記センサ出力S'nを、補正センサ出力S'n,corrにS'n,corr= S'n×(1-Rerr,n)で補正する前項1~3のいずれかに記載の補正装置。
(5)被測定光が1つ以上の単色光あるいは極狭帯域光からなる場合に、
 前記スペクトログラフで測定された被測定光の分光分布内の前記単色光あるいは極狭帯域光の各々による狭帯域スペクトルに基づき、該単色光あるいは極狭帯域光の各々の波長と強度とを求め、
 前記目標分光感度とセンサ分光感度とを波長補間して前記波長での目標分光感度とセンサ分光感度とを求め、
 前記波長での目標分光感度とセンサ分光感度と、前記強度とに基づいて、前記分光感度誤差に起因する前記センサ出力の誤差を推定する前項1~4のいずれかに記載の補正装置。
(6)前記狭帯域スペクトルを包含する波長域をRとし、R内の測定波長をλ⊂Rとして、単色光あるいは極狭帯域光の波長λcと強度Aとを以下の式で求め、
estimated by
The output error rate R err,n when the light I to be measured is measured by the sensor n is calculated by R err,n =E n /S' n,sim ,
4. The correction device according to any one of the preceding items 1 to 3, wherein the sensor output S' n is corrected to the corrected sensor output S' n,corr by S' n,corr =S' n ×(1−R err,n ). .
(5) When the light to be measured consists of one or more monochromatic lights or ultra-narrow band lights,
Obtaining the wavelength and intensity of each of the monochromatic light or the ultra-narrow band light based on the narrow band spectrum of the monochromatic light or the ultra-narrow band light in the spectral distribution of the light to be measured measured by the spectrograph;
Obtaining the target spectral sensitivity and the sensor spectral sensitivity at the wavelength by interpolating the target spectral sensitivity and the sensor spectral sensitivity with respect to the wavelength;
5. The correcting device according to any one of the preceding items 1 to 4, wherein an error in the sensor output caused by the spectral sensitivity error is estimated based on the target spectral sensitivity at the wavelength, the sensor spectral sensitivity, and the intensity.
(6) where R is the wavelength range that includes the narrowband spectrum, and λ⊂R is the measurement wavelength within R, the wavelength λc and the intensity A of monochromatic light or ultra-narrowband light are obtained by the following formula,
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 前記分光感度誤差en(λ)を補間して前記波長λcでの分光感度誤差enc)を求めて、センサ出力誤差EnをEn=A・enc)によって推定し、
 模擬センサ出力S'n,simをS'n,sim=A・s'nc)によって推定する前項4を引用する前項5に記載の補正装置。
(7)被測定光が単色光あるいは極狭帯域光の1つ以上からなることを検出する検出手段を備えている前項5または6に記載の補正装置。
(8)前記測定器は、前記目標分光感度が標準視感度であり、測定対象の輝度あるいは照度を測定する輝度計あるいは照度計である前項1~7のいずれかに記載の補正装置。
(9)前記測定器は、前記目標分光感度が等色関数であり、測定対象の色彩特性を測定する色彩輝度計または色彩照度計である前項1~7のいずれかに記載の補正装置。
(10)被測定光を、目標分光感度に近似する分光感度を有する1個以上のセンサと、スペクトログラフとで受光し、前記センサの出力に基づいて前記被測定光の特性を求める測定器であって、前項1~9のいずれかに記載の補正装置を備えている測定器。
(11)被測定光を、目標分光感度に近似する分光感度を有する1個以上のセンサと、スペクトログラフとで受光し、前記センサの出力に基づいて前記被測定光の特性を求める測定器の、前記センサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を、補正装置が、
 前記目標分光感度と、
 予め測定され保存された前記センサの分光感度と、
 前記スペクトログラフで測定された被測定光の分光分布と、
 から推定し、補正する補正方法。
(12)前記スペクトログラフの波長ピッチと半値幅とが4nm以上である前項11に記載の補正方法。
(13)前記スペクトログラフの許容繰返し誤差が、測定器の許容繰返し誤差の10倍以上である前項11または12に記載の補正方法。
(14)1個以上のセンサのうちの任意のセンサnの分光感度s'n(λ)の目標分光感度sn(λ)からの分光感度誤差en(λ)をen(λ)=s'n(λ)-sn(λ)で求め、
 前記スペクトログラフで測定した被測定光Iの分光分布をI'(λ)として、前記分光感度誤差en(λ)に起因する前記センサnの出力誤差En
The spectral sensitivity error e n (λ) is interpolated to obtain the spectral sensitivity error e nc ) at the wavelength λ c , and the sensor output error E n is calculated by E n =A· enc ). presume,
6. The correcting device according to item 5, citing item 4, in which the simulated sensor output S' n,sim is estimated by S' n,sim =A·s' nc ).
(7) The correcting device according to (5) or (6) above, further comprising detecting means for detecting whether the light to be measured is composed of one or more of monochromatic light and ultra-narrow band light.
(8) The correcting device according to any one of the preceding items 1 to 7, wherein the target spectral sensitivity is standard luminosity, and the measuring device is a luminance meter or an illuminance meter for measuring luminance or illuminance of the object to be measured.
(9) The correction device according to any one of the preceding items 1 to 7, wherein the target spectral sensitivity is a color matching function, and the measuring device is a color luminance meter or a color luminance meter for measuring the color characteristics of the object to be measured.
(10) A measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and obtains the characteristics of the light to be measured based on the output of the sensors. A measuring instrument comprising the correction device according to any one of the preceding items 1 to 9.
(11) A measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and obtains the characteristics of the light to be measured based on the output of the sensors. , the error in the sensor output caused by the spectral sensitivity error from the target spectral sensitivity of the sensor, the correction device,
the target spectral sensitivity;
a pre-measured and stored spectral sensitivity of the sensor;
a spectral distribution of the light to be measured measured by the spectrograph;
Correction method to estimate from and correct.
(12) The correction method according to (11) above, wherein the spectrograph has a wavelength pitch and a half width of 4 nm or more.
(13) The correction method according to (11) or (12) above, wherein the permissible repeatability of the spectrograph is 10 times or more the permissible repeatability of the measuring instrument.
(14) The spectral sensitivity error e n (λ) of the spectral sensitivity s′ n (λ) of any sensor n among the one or more sensors from the target spectral sensitivity s n (λ) is e n (λ)= Obtained by s' n (λ)-s n (λ),
Let I'(λ) be the spectral distribution of the light I to be measured measured by the spectrograph, and let the output error E n of the sensor n caused by the spectral sensitivity error e n (λ) be
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
で推定し、
 前記スペクトログラフで測定した被測定光Iの分光分布I'(λ)と、前記センサnの分光感度s'n(λ)とから、模擬センサ出力S'n,sim
estimated by
A simulated sensor output S' n,sim is obtained from the spectral distribution I'(λ) of the light I to be measured measured by the spectrograph and the spectral sensitivity s' n (λ) of the sensor n.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
で推定し、 
 被測定光Iを、前記センサnで測定したときの出力誤差率Rerr,nをRerr,n=En/S'n,simで算出し、
 前記センサ出力S'nを、補正センサ出力S'n,corrにS'n,corr=S'n×(1-Rerr,n)で補正する前項11~13のいずれかに記載の補正方法。
(15)被測定光が1つ以上の単色光あるいは極狭帯域光からなる場合に、
 前記スペクトログラフで測定された被測定光の分光分布内の前記単色光あるいは極狭帯域光の各々による狭帯域スペクトルに基づき、該単色光あるいは極狭帯域光の各々の波長と強度とを求め、
 前記目標分光感度とセンサ分光感度とを波長補間して前記波長での目標分光感度とセンサ分光感度とを求め、
 前記波長での目標分光感度とセンサ分光感度と、前記強度とに基づいて、前記分光感度誤差に起因する前記センサ出力の誤差を推定する前項11~14のいずれかに記載の補正方法。
(16)前記狭帯域スペクトルを包含する波長域をRとし、R内の測定波長をλ⊂Rとして、単色光あるいは極狭帯域光の波長λcと強度Aとを以下の式で求め、
estimated by
The output error rate R err,n when the light I to be measured is measured by the sensor n is calculated by R err,n =E n /S' n,sim ,
14. The correction method according to any one of the preceding items 11 to 13, wherein the sensor output S' n is corrected to the corrected sensor output S' n,corr by S' n,corr =S' n ×(1−R err,n ). .
(15) When the light to be measured consists of one or more monochromatic lights or ultra-narrow band lights,
Obtaining the wavelength and intensity of each of the monochromatic light or the ultra-narrow band light based on the narrow band spectrum of the monochromatic light or the ultra-narrow band light in the spectral distribution of the light to be measured measured by the spectrograph;
Obtaining the target spectral sensitivity and the sensor spectral sensitivity at the wavelength by interpolating the target spectral sensitivity and the sensor spectral sensitivity with respect to the wavelength;
15. The correction method according to any one of the preceding items 11 to 14, wherein an error in the sensor output caused by the spectral sensitivity error is estimated based on the target spectral sensitivity at the wavelength, the sensor spectral sensitivity, and the intensity.
(16) Let R be the wavelength range that includes the narrowband spectrum, and λ⊂R be the measurement wavelength within R, and obtain the wavelength λ c and the intensity A of monochromatic light or ultra-narrow band light by the following formula,
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 前記分光感度誤差en(λ)を補間して前記波長λcでの分光感度誤差enc)を求めて、センサ出力誤差EnをEn=A・enc)によって推定し、
 模擬センサ出力S'n,simをS'n,sim=A・s'nc)によって推定する前項14を引用する前項15に記載の補正方法。
(17)被測定光が単色光あるいは極狭帯域光の1つ以上からなることを検出する検出手段を備えている前項15または16に記載の補正方法。
(18)前記測定器は、前記目標分光感度が標準視感度であり、測定対象の輝度あるいは照度を測定する輝度計あるいは照度計である前項11~17のいずれかに記載の補正方法。
(19)前記測定器は、前記目標分光感度が等色関数であり、測定対象の色彩特性を測定する色彩輝度計または色彩照度計である前項11~17のいずれかに記載の補正方法。
(20)前項11~19のいずれかに記載の補正方法をコンピュータに実行させるためのプログラム。
(21)被測定光を、目標分光感度に近似する分光感度を有する1つ以上のセンサと、スペクトログラフとで受光し、前記センサの出力に基づいて前記被測定光の特性を求める測定器であって、
 前記スペクトログラフで測定された被測定光の分光分布と、前記目標分光感度と予め測定された前記センサ分光感度とから、前記センサの分光感度の目標分光感度からの分光感度誤差に起因する前記センサの出力の誤差を推定し、補正する測定器。
(22)前記スペクトログラフの波長ピッチと半値幅とが4nm以上である前項21に記載の測定器。
(23)前記スペクトログラフの許容繰返し誤差が、測定器の許容繰返し誤差の10倍以上である前項21または22に記載の測定器。
The spectral sensitivity error e n (λ) is interpolated to obtain the spectral sensitivity error e nc ) at the wavelength λ c , and the sensor output error E n is calculated by E n =A· enc ). presume,
16. The correction method according to item 15, which quotes item 14, in which the simulated sensor output S' n,sim is estimated by S' n,sim =A·s' nc ).
(17) The correction method according to (15) or (16) above, which comprises detecting means for detecting whether the light to be measured is composed of one or more of monochromatic light and ultra-narrow band light.
(18) The correction method according to any one of the preceding items 11 to 17, wherein the target spectral sensitivity is standard luminosity, and the measuring device is a luminance meter or an illuminometer for measuring the luminance or illuminance of the object to be measured.
(19) The correction method according to any one of the preceding items 11 to 17, wherein the target spectral sensitivity is a color matching function, and the measuring device is a color luminance meter or a color luminance meter for measuring color characteristics of the object to be measured.
(20) A program for causing a computer to execute the correction method according to any one of (11) to (19) above.
(21) A measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and obtains characteristics of the light to be measured based on outputs of the sensors. There is
The sensor resulting from a spectral sensitivity error of the spectral sensitivity of the sensor from the target spectral sensitivity based on the spectral distribution of the light to be measured measured by the spectrograph, the target spectral sensitivity, and the sensor spectral sensitivity measured in advance. A measuring instrument that estimates and corrects for errors in the output of
(22) The measuring instrument according to (21) above, wherein the spectrograph has a wavelength pitch and a half width of 4 nm or more.
(23) The measuring device according to (21) or (22) above, wherein the permissible repeatability of the spectrograph is ten times or more the permissible repeatability of the measuring device.
 前項(1)及び(11)に記載の発明によれば、フィルタ型測定器のセンサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を、マトリクス校正に依らず、目標分光感度と、予め測定され保存された前記センサ分光感度と、スペクトログラフで測定された被測定光の分光分布と、から推定し、補正するので、被測定光を校正基準光の加法混色で合成できなくてもフィルタ型測定器による高精度な測定が可能となる。しかも、高精度なスペクトログラフを用いる必要がなく高速度の測定が可能となる。 According to the inventions described in the preceding paragraphs (1) and (11), the error in the sensor output due to the spectral sensitivity error from the target spectral sensitivity of the sensor of the filter type measuring device is corrected to the target without depending on matrix calibration. The spectral sensitivity, the sensor spectral sensitivity measured and stored in advance, and the spectral distribution of the light to be measured measured by the spectrograph are estimated and corrected, so that the light to be measured is synthesized by additive color mixture of the calibration reference light. Even if it is not possible, it is possible to perform highly accurate measurement using a filter-type measuring instrument. Moreover, high-speed measurement is possible without the need to use a highly accurate spectrograph.
 前項(2)及び(12)に記載の発明によれば、スペクトログラフの波長ピッチと半値幅とが4nm以上であるから、高精度なスペクトログラフは不要であり、スペクトログラフのコストひいては測定器のコストを安価にするとともに高速度の測定が可能となる。 According to the inventions described in the preceding paragraphs (2) and (12), the wavelength pitch and the half width of the spectrograph are 4 nm or more, so a high-precision spectrograph is unnecessary, and the cost of the spectrograph and the measurement equipment The cost can be reduced and high-speed measurement becomes possible.
 前項(3)及び(13)に記載の発明によれば、スペクトログラフの許容繰返し誤差が、測定器の許容繰返し誤差の10倍以上であるから、高精度なスペクトログラフは不要であり、スペクトログラフのコストひいては測定器のコストを安価にするとともに高速度の測定が可能となる。 According to the inventions described in the preceding paragraphs (3) and (13), the allowable repeatable error of the spectrograph is 10 times or more the allowable repeatable error of the measuring instrument, so a highly accurate spectrograph is unnecessary. and the cost of the measuring instrument can be reduced, and high-speed measurement becomes possible.
 前項(4)及び(14)に記載の発明によれば、フィルタ型測定器のセンサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を、確実に推定し、補正することができる。 According to the inventions described in the preceding items (4) and (14), the sensor output error caused by the spectral sensitivity error from the target spectral sensitivity of the sensor of the filter-type measuring device is reliably estimated and corrected. be able to.
 前項(5)及び(15)に記載の発明によれば、被測定光が1つ以上の単色光あるいは極狭帯域光からなる場合であっても、センサの分光感度誤差に起因する出力の誤差を推定し、補正することができる。 According to the inventions described in the preceding paragraphs (5) and (15), even when the light to be measured is composed of one or more monochromatic lights or ultra-narrow band lights, the error in the output due to the spectral sensitivity error of the sensor can be estimated and corrected.
 前項(6)及び(16)に記載の発明によれば、被測定光が1つ以上の単色光あるいは極狭帯域光からなる場合であっても、センサの分光感度誤差に起因する出力の誤差を確実に推定し、補正することができる。 According to the inventions described in the preceding paragraphs (6) and (16), even when the light to be measured consists of one or more monochromatic lights or ultra-narrow band lights, output errors due to spectral sensitivity errors of the sensor can be reliably estimated and corrected.
 前項(7)及び(17)に記載の発明によれば、被測定光が単色光あるいは極狭帯域光の1つ以上からなることを検出することができる。 According to the inventions described in the preceding paragraphs (7) and (17), it is possible to detect that the light to be measured consists of one or more of monochromatic light and ultra-narrow band light.
 前項(8)及び(18)に記載の発明によれば、目標分光感度が標準視感度であり、測定対象の輝度あるいは照度を測定する輝度計あるいは照度計において、センサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を推定し、補正することができる。 According to the inventions described in the preceding paragraphs (8) and (18), the target spectral sensitivity is the standard luminosity factor, and in the luminance meter or illuminance meter for measuring the luminance or illuminance of the measurement target, the target spectral sensitivity of the sensor Errors in the sensor output due to spectral sensitivity errors from can be estimated and corrected.
 前項(9)及び(19)に記載の発明によれば、目標分光感度が等色関数であり、測定対象の色彩特性を測定する色彩輝度計または色彩照度計において、センサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を推定し、補正することができる。 According to the inventions described in the preceding paragraphs (9) and (19), the target spectral sensitivity is a color-matching function, and in the color luminance meter or color luminance meter for measuring the color characteristics of the object to be measured, the target spectral sensitivity of the sensor is Errors in sensor output due to spectral sensitivity error from sensitivity can be estimated and corrected.
 前項(10)に記載の発明によれば、測定器内で、センサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を推定し、補正することができる。 According to the invention described in the preceding item (10), it is possible to estimate and correct the sensor output error caused by the spectral sensitivity error of the sensor from the target spectral sensitivity within the measuring instrument.
 前項(20)に記載の発明によれば、フィルタ型測定器のセンサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を、目標分光感度と、予め測定され保存された前記センサ分光感度と、スペクトログラフで測定された被測定光の分光分布と、から推定し、補正する処理を、コンピュータに実行させることができる。 According to the invention described in the preceding item (20), the error in the sensor output due to the spectral sensitivity error from the target spectral sensitivity of the sensor of the filter-type measuring device is combined with the target spectral sensitivity and is measured and stored in advance. A computer can be caused to perform a process of estimating and correcting from the spectral sensitivity of the sensor and the spectral distribution of the light to be measured measured by the spectrograph.
 前項(21)~(23)に記載の発明によれば、目標分光感度に近似する分光感度を有する1つ以上のセンサ分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を推定し、補正するための演算に使用される分光分布を、高精度でない、コスト的に安価なスペクトログラフで、高速で測定することができる。 According to the inventions described in the preceding items (21) to (23), the error in the sensor output due to the spectral sensitivity error from the target spectral sensitivity of one or more sensors having spectral sensitivities close to the target spectral sensitivity is reduced. Spectroscopic distributions used in computations to estimate and correct can be measured at high speed with less accurate, less costly spectrographs.
この発明の一実施形態に係るフィルタ型測定器の概略構成図である。1 is a schematic configuration diagram of a filter-type measuring instrument according to one embodiment of the present invention; FIG. 3種類のセンサの分光感度s'x(λ), s'y(λ), s'z(λ)と、等色関数sx(λ), sy(λ), sz(λ)と、分光感度誤差ex(λ), ey(λ), ez(λ)との関係を示すグラフである。Spectral sensitivities s' x (λ), s' y (λ), s' z (λ) and color matching functions s x (λ), s y (λ), s z (λ) and , spectral sensitivity errors e x (λ), e y (λ), and e z (λ). 図1のフィルタ型測定器で実行される補正手順を示すフローチャートである。2 is a flow chart showing a correction procedure performed by the filter-type measuring instrument of FIG. 1; 分光感度誤差が小さいセンサセットaと分光感度誤差が大きいセンサセットbおよびcの3センサの分光感度s'x(λ), s'y(λ), s'z(λ)と分光感度誤差ex(λ), ey(λ), ez(λ)を等色関数sx(λ), sy(λ), sz(λ)とともに示したグラフである。Spectral sensitivity s' x (λ), s' y (λ), s' z (λ) and spectral sensitivity error e of three sensors, sensor set a with small spectral sensitivity error and sensor sets b and c with large spectral sensitivity error 4 is a graph showing x (λ), e y (λ) and e z (λ) together with color matching functions s x (λ), s y (λ) and s z (λ); 図4のセンサセットbを用いて模擬測定したLCD(Liquid Crystal Display:液晶デバイス)のプライマリ光の補正前後の三刺激値の誤差を示すグラフである。FIG. 5 is a graph showing errors in tristimulus values before and after correction of primary light of LCD (Liquid Crystal Display) simulated and measured using sensor set b in FIG. 4 ; FIG. 図4のセンサセットcを用いて模擬測定したLCDのプライマリ光の補正前後の三刺激値の誤差を示すグラフである。FIG. 5 is a graph showing errors in tristimulus values before and after correction of the primary light of an LCD simulated using sensor set c of FIG. 4; FIG. 図4のセンサセットbを用いて模擬測定したOLED(Organic Light Emitting Diode:有機ELデバイス)のプライマリ光の補正前後の三刺激値の誤差を示すグラフである。5 is a graph showing errors in tristimulus values before and after correction of primary light of an OLED (Organic Light Emitting Diode) simulated and measured using the sensor set b of FIG. 4; 図4のセンサセットcを用いて模擬測定したOLEDのプライマリ光の補正前後の三刺激値の誤差を示すグラフである。FIG. 5 is a graph showing errors in tristimulus values before and after correction of OLED primary light simulated using sensor set c of FIG. 4; FIG. 代表的なLCDのプライマリ光と白色光の分光分布を示すグラフである。4 is a graph showing spectral distributions of primary light and white light of a typical LCD. 代表的なOLEDのプライマリ光と白色光の分光分布を示すグラフである。4 is a graph showing the spectral distribution of primary light and white light of a typical OLED; 代表的なLD(Laser Display:レーザディスプレイ)放射光の分光分布を示すグラフである。1 is a graph showing the spectral distribution of a typical LD (Laser Display) emitted light. 代表的なLD放射光の分光分布に対する波長ピッチと半値幅が4nmのスペクトログラフの出力を示すグラフである。2 is a graph showing the output of a spectrograph with a wavelength pitch and a half width of 4 nm for the spectral distribution of typical LD radiation. この発明の他の実施形態に係るフィルタ型測定器の概略構成図ある。FIG. 10 is a schematic configuration diagram of a filter-type measuring instrument according to another embodiment of the present invention; この発明のさらに他の実施形態に係るフィルタ型測定器の概略構成図であり、(A)は側面図、(B)は図Aを右方から見た図である。FIG. 4 is a schematic configuration diagram of a filter-type measuring instrument according to still another embodiment of the present invention, where (A) is a side view and (B) is a view of FIG. A viewed from the right. この発明のさらに他の実施形態を示すもので、スペクトログラフをフィルタ型測定器とは独立した分光輝度計とした場合の概略構成図である。FIG. 10, which shows still another embodiment of the present invention, is a schematic configuration diagram when the spectrograph is a spectrophotometer independent of the filter-type measuring instrument. この発明のさらに他の実施形態を示すもので、フィルタ型測定器と、スペクトログラフとしての分光測定器と、補正装置としてのパーソナルコンピュータ(PC)とがそれぞれ独立している場合の構成図である。FIG. 10, showing still another embodiment of the present invention, is a configuration diagram in which a filter-type measuring instrument, a spectrometer as a spectrograph, and a personal computer (PC) as a correction device are independent of each other. . この発明のさらに他の実施形態を示すもので、補正装置をフィルタ型測定器とは独立したPCとした場合の概略構成図である。FIG. 10, showing still another embodiment of the present invention, is a schematic configuration diagram in which the correction device is a PC independent of the filter-type measuring device.
 以下、この発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1は、この発明の一実施形態に係るフィルタ型測定器100の一例であるフィルタ型色彩輝度計の概略構成図である。この実施形態では、フィルタ型色彩輝度計に補正装置が内蔵されている。 FIG. 1 is a schematic configuration diagram of a filter-type color luminance meter, which is an example of a filter-type measuring instrument 100 according to one embodiment of the present invention. In this embodiment, a correction device is built into the filter type colorimeter.
 図1に示すフィルタ型測定器100は、レンズ系1と、4分岐光ファイバー束2と、3個のフィルタ付センサn(n=x, y, z)と、スペクトログラフ3と、演算制御部4などを備えており、測定対象である被測定光源5から放射された被測定光6(被測定光I)は、レンズ系1を介して4分岐光ファイバー束2の入射端に入射する。以下の説明では、3個のフィルタ付センサnをセンサx, y, zともいう。 The filter-type measuring instrument 100 shown in FIG. , and the light to be measured 6 (light to be measured I) emitted from the light source 5 to be measured enters the incident end of the four-branch optical fiber bundle 2 via the lens system 1 . In the following description, the three filtered sensors n are also referred to as sensors x, y, z.
 4分岐光ファイバー束2は長さ方向の中間部から4分岐されており、入射端から入射した光を4つの分岐部21に分配する。4分岐光ファイバー束2の3つの分岐部21の出射端にはそれぞれ、分光感度s'x(λ), s'y(λ), s'z(λ)をもつ上記センサx, y, zが配置され、各分岐部21の出射端から出射された光はフィルタ付きセンサx, y, zで受光される。残る1つの分岐部21の出射端からの光はスペクトログラフ3に入射する。  The 4-branch optical fiber bundle 2 is branched into 4 from the middle portion in the length direction, and distributes the light incident from the incident end to the 4 branch portions 21 . The sensors x, y, and z having spectral sensitivities s' x (λ), s' y (λ), and s' z (λ) are provided at the output ends of the three branch portions 21 of the four-branch optical fiber bundle 2, respectively. The light emitted from the emitting end of each branching portion 21 is received by the sensors x, y, and z with filters. Light from the exit end of the remaining one branching portion 21 enters the spectrograph 3 .
 スペクトログラフ3は、入射光を各波長に分光し、分光された光をセンサアレイの各画素で波長毎に受光する。 The spectrograph 3 splits the incident light into wavelengths, and receives the split light at each pixel of the sensor array for each wavelength.
 演算制御部4は、測定器の全体を制御するとともに、3種のセンサx, y, zのそれぞれの分光感度の目標分光感度からの分光感度誤差に起因する出力誤差を推定し、補正する補正装置としても機能する。出力誤差の推定、補正は、演算制御部4が補正プログラムに従って動作することにより、以下に示すように行われる。 Arithmetic control unit 4 controls the entire measuring instrument and estimates and corrects the output error caused by the spectral sensitivity error from the target spectral sensitivity of each of the three sensors x, y, and z. Also functions as a device. The estimation and correction of the output error are performed as described below by the arithmetic control unit 4 operating according to the correction program.
 即ち、3種のセンサx, y, zからセンサ出力S'x, S'y, S'zを得るとともに、スペクトログラフ3から得たセンサアレイの画素信号pi(i:画素番号)から変換した分光分布I'(λ)を得る。次に、予め測定され保存されたセンサ分光感度s'x(λ), s'y(λ), s'z(λ)と、予めデータとして与えられ保存されている目標分光感度である等色関数sx(λ), sy(λ), sz(λ)とに基づき、以下に説明する補正アルゴリズムによって、センサ出力S'x, S'y, S'zを補正三刺激値S'x,corr, S'y,corr, S'z,corrに変換する。なお、予め保存されているセンサ分光感度s'x(λ), s'y(λ), s'z(λ)や等色関数sx(λ), sy(λ), sz(λ)の保存先は、フィルタ型測定器100内の図示しない記憶部であっても良いし、外部記憶装置であっても良い。外部記憶装置に保存されている場合は、必要に応じて外部記憶装置からセンサ分光感度s'x(λ), s'y(λ), s'z(λ)や等色関数sx(λ), sy(λ), sz(λ)を取得すれば良い。
[1]補正アルゴリズム1
 この補正アルゴリズム1は補正を行うための基本的なアルゴリズムである。
(1)模擬測定による補正係数の作成
 スペクトログラフ3で測定した被測定光6(被測定光I)の分光分布I'(λ)と、保存されているセンサx, y, zの分光感度s'x(λ), s'y(λ), s'z(λ)とから、(式1)~(式3)で模擬センサ出力S'x,sim, S'y,sim, S'z,simを算出する。
That is, sensor outputs S'x , S'y, and S'z are obtained from three types of sensors x, y , and z , and pixel signals pi ( i : pixel number) of the sensor array obtained from the spectrograph 3 are converted into obtained spectral distribution I'(λ). Next, the pre-measured and stored sensor spectral sensitivities s' x (λ), s' y (λ), s' z (λ), and the target spectral sensitivities previously given and stored as data, color matching Corrected tristimulus values S ' _ Convert to x,corr , S'y, corr , S'z ,corr . The sensor spectral sensitivities s' x (λ), s' y (λ), s' z (λ) and color matching functions s x (λ), s y (λ), s z (λ ) may be a storage unit (not shown) in the filter-type measuring instrument 100 or an external storage device. If it is stored in an external storage device, the sensor spectral sensitivity s' x (λ), s' y (λ), s' z (λ) or color matching function s x (λ ), s y (λ), s z (λ).
[1] Correction algorithm 1
This correction algorithm 1 is a basic algorithm for performing correction.
(1) Creation of correction coefficient by simulated measurement Spectral distribution I'(λ) of measured light 6 (measured light I) measured by spectrograph 3 and stored spectral sensitivities s of sensors x, y, and z From ' x (λ), s' y (λ), s' z (λ), simulated sensor outputs S' x,sim , S' y,sim , S' z ,sim is calculated.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
保存されている等色関数sx(λ), sy(λ), sz(λ)と、保存されているセンサx, y, zの分光感度s'x(λ), s'y(λ), s'z(λ)とから、(式4)~(式6)で分光感度誤差ex(λ), ey(λ), ez(λ)を算出する。この分光感度誤差ex(λ), ey(λ), ez(λ)は予め演算され保存されていても良い。 The stored color matching functions s x (λ), s y (λ), s z (λ) and the stored spectral sensitivities s' x (λ), s' y ( λ), s' z (λ), the spectral sensitivity errors e x (λ), e y (λ), and e z (λ) are calculated using (Equation 4) to (Equation 6). The spectral sensitivity errors e x (λ), e y (λ), and e z (λ) may be calculated and stored in advance.
        ex(λ)= s'x(λ)-sx(λ)  (式4)
        ey(λ)= s'y(λ)-sy(λ)  (式5)
        ez(λ)= s'z(λ)-sz(λ)  (式6)
 等色関数sx(λ), sy(λ), sz(λ)と、各センサx, y, zの分光感度s'x(λ), s'y(λ), s'z(λ)と、分光感度誤差ex(λ), ey(λ), ez(λ)との例を図2のグラフに示す。
e x (λ) = s' x (λ) - s x (λ) (Formula 4)
e y (λ) = s' y (λ) - s y (λ) (equation 5)
e z (λ) = s' z (λ) - s z (λ) (equation 6)
Color matching functions s x (λ), s y (λ), s z (λ) and spectral sensitivities s' x (λ), s' y (λ), s' z ( λ) and spectral sensitivity errors e x (λ), e y (λ), and e z (λ) are shown in the graph of FIG.
 次に、スペクトログラフ3で測定した被測定光6の分光分布I'(λ)と、(式4)~(式6)で算出した分光感度誤差ex(λ), ey(λ), ez(λ)とから、(式7)~(式9)でセンサx, y, zの出力誤差Ex, Ey, Ezを求める。 Next, the spectral distribution I'(λ) of the light 6 to be measured measured by the spectrograph 3, and the spectral sensitivity errors e x (λ), e y (λ), Output errors E x , E y , and E z of sensors x, y, and z are obtained from E z (λ) using (Equation 7) to (Equation 9).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 次に、(式7)~(式9)で算出したセンサx, y, zの出力誤差Ex, Ey, Ezと、(式1)~(式3)で算出した模擬センサ出力S'x,sim, S'y,sim, S'z,simとから、(式10)~(式12)で出力誤差率(単位出力あたりのセンサ出力誤差)Rerr,x, Rerr,y, Rerr,zを求める。 Next, the output errors E x , E y , and E z of the sensors x, y, and z calculated by (Equation 7) to (Equation 9) and the simulated sensor output S calculated by (Equation 1) to (Equation 3) From ' x,sim , S' y,sim , S' z,sim , the output error rate (sensor output error per unit output) R err,x , R err,y , R err,z .
        Rerr,x=Ex/S'x,sim   (式10)
        Rerr,y=Ey/S'y,sim   (式11)
        Rerr,z=Ez/S'z,sim   (式12)
(2)センサ出力の補正
 3種のセンサx, y, zで測定したセンサ出力S'x, S'y, S'zを、(式13)~(式15)で補正センサ出力S'x,corr, S'y,corr, S'z,corrに変換する。補正センサ出力は公知の演算処理で補正三刺激値に変換され、フィルタ型測定器100から出力される。
R err,x =E x /S' x,sim (equation 10)
Rerr,y = Ey / S'y,sim (Formula 11)
Rerr,z = Ez / S'z,sim (equation 12)
(2) Correction of sensor output The sensor outputs S' x , S' y , and S' z measured by the three types of sensors x , y, and z are corrected using (Equation 13) to (Equation 15). ,corr , S' y,corr , S' z,corr . The corrected sensor output is converted into corrected tristimulus values by known arithmetic processing and output from the filter-type measuring instrument 100 .
        S'x,corr=S'x×(1-Rerr,x)  (式13)
        S'y,corr=S'y×(1-Rerr,y)  (式14)
        S'z,corr=S'z×(1-Rerr,z)  (式15)
  (式1)~(式9)が示すように、出力誤差率 Rerr,x, Rerr,y, Rerr,zの精度は、等色関数sx(λ), sy(λ), sz(λ)と分光感度s'x(λ), s'y(λ), s'z(λ)と分光分布I'(λ)の精度に依存する。
S' x,corr =S' x ×(1−R err,x ) (Formula 13)
S' y,corr =S' y ×(1−R err,y ) (Formula 14)
S' z,corr =S' z ×(1−R err,z ) (Formula 15)
As shown by (Equation 1) to (Equation 9), the accuracy of the output error rates R err,x , R err,y , and R err,z is determined by the color matching functions s x (λ), s y (λ), It depends on the accuracy of s z (λ), spectral sensitivities s' x (λ), s' y (λ), s' z (λ) and spectral distribution I'(λ).
 等色関数sx(λ), sy(λ), sz(λ)は理論値なので誤差はなく、製造時に測定されるセンサの分光感度s'x(λ), s'y(λ), s'z(λ)は必要な機器(照射型モノクロメータなど)と時間を充てて必要な精度を得ることができるので、実質的に分光分布I'(λ)の精度に依存する。しかし、出力誤差率は1より十分小さい(Rerr,x, Rerr,y, Rerr,z≪1)ので、分光分布I'(λ)の誤差の補正センサ出力S'x,corr, S'y,corr, S'z,corrへの影響は限定的であり、従って、補正三刺激値への影響は限定的である。
(3)スペクトログラフ3に求められる精度(具体例)
 上述したように、スペクトログラフ3で測定される被測定光6の分光分布I'(λ)は補正すべき誤差の推定にしか用いられないので、分光分布I'(λ)の誤差は補正量の誤差に留まり、測定繰返し誤差や絶対値誤差があっても補正三刺激値への影響は限定的である。
Since the color matching functions s x (λ), s y (λ), s z (λ) are theoretical values, there is no error, and the spectral sensitivities s' x (λ), s' y (λ) of the sensor measured during manufacturing , s' z (λ) can be obtained with the required accuracy by allocating necessary equipment (such as an irradiation monochromator) and time, so that it substantially depends on the accuracy of the spectral distribution I'(λ). However, since the output error rate is sufficiently smaller than 1 (R err,x , R err,y , R err,z <<1), the corrected sensor output S' x,corr , S ' y,corr , S' has limited effect on z,corr and therefore limited effect on the corrected tristimulus values.
(3) Accuracy required for spectrograph 3 (concrete example)
As described above, the spectral distribution I'(λ) of the light to be measured 6 measured by the spectrograph 3 is used only for estimating the error to be corrected. The effect on the corrected tristimulus values is limited even if there are measurement repetition errors and absolute value errors.
 具体的には、フィルタ型センサ100の出力の分光感度誤差に起因する誤差が5%のとき、推定された補正量に20%の誤差があったとしても、補正三刺激値の誤差は、0.05(5%)×0.2(20%)=0.01(1%)に留まる。 Specifically, when the error due to the spectral sensitivity error of the output of the filter type sensor 100 is 5%, even if the estimated correction amount has an error of 20%, the error of the corrected tristimulus value is 0.05. It stays at (5%) x 0.2 (20%) = 0.01 (1%).
 (4)スペクトログラフ3に求められる繰返し精度
 測定器の許容繰り返し誤差をErep,ttl、出力誤差率(分光感度誤差に起因するセンサ出力誤差のセンサ出力に対する比率)の最大値をRerr,maxとすると、他の誤差要因を無視できる場合、スペクトログラフ3の繰り返し誤差Erep,speは、Erep,spe<Erep,ttl/Rerr,max を満足すればよい。
(4) Repeatability required for spectrograph 3 E rep,ttl is the allowable repeatability of the measuring instrument, and R err,max is the maximum value of the output error rate (the ratio of the sensor output error due to the spectral sensitivity error to the sensor output). Then, if other error factors can be ignored, the repeat error E rep,spe of the spectrograph 3 should satisfy E rep,spe <E rep,ttl /R err,max .
 具体的には、Erep,ttl=1%、Rerr,max=5%のとき、Erep,speは20%まで許容される。 Specifically, when E rep,ttl =1% and R err,max =5%, E rep,spe is allowed up to 20%.
 フィルタ型の出力誤差率の最大値 Rerr,maxは、一般的に10%以下なので、スペクトログラフ3の繰返し誤差Erep,speは、測定器の許容繰り返し誤差Erep,ttlの少なくとも10倍(1/0.1)は許容される。 Since the maximum value of the output error rate R err,max of the filter type is generally less than 10%, the repeatability error E rep,spe of the spectrograph 3 is at least 10 times the allowable repeatability error E rep,ttl of the measuring instrument ( 1/0.1) is acceptable.
 分光分布に大きな繰返し誤差を許容できるため、スペクトログラフ3による分光分布測定の時間を短くできる。刺激値出力の許容繰り返し誤差の少なくとも10倍でよいということは、原理的には分光輝度計のように分光分布から三刺激値を求める場合の1/102以下の測定時間でよいことを意味する。 Since a large repeatable error in the spectral distribution can be allowed, the time required for measuring the spectral distribution by the spectrograph 3 can be shortened. At least 10 times the permissible repeatability of stimulus value output means that, in principle, the measurement time is less than 1/10 2 of the time required to obtain tristimulus values from the spectral distribution like a spectrophotometer. do.
 また、分光分布I'(λ)に大きな繰返し誤差を許容できるため、スペクトログラフ3の光学的明るさ(NA)や感度を下げることができ、結果としてコストダウン、サイズダウンができる。 In addition, since a large repetitive error can be allowed in the spectral distribution I'(λ), the optical brightness (NA) and sensitivity of the spectrograph 3 can be lowered, resulting in cost and size reductions.
 (5)補正手順
 図1のフィルタ型測定器100で実行される補正手順を図3のフローチャートに示す。
(5) Correction Procedure A correction procedure executed by the filter-type measuring instrument 100 of FIG. 1 is shown in the flow chart of FIG.
 3個のセンサx, y, zとスペクトログラフ3による被測定光6の測定を同時に開始し、センサ出力S'n (n=x, y, z)と画素出力piを得る(ステップ#1及びステップ#2)。 Measurement of the light 6 to be measured by the three sensors x, y, z and the spectrograph 3 is started at the same time, and the sensor output S'n ( n =x, y , z) and the pixel output pi are obtained (step #1 and step #2).
 両測定が終了すると、演算制御部4は、画素出力piを分光分布I'(λ)に変換する(ステップ#3)。さらに(式1)~(式12)により、分光分布I'(λ)と分光感度誤差en(λ)からセンサ出力誤差Enを推定して、出力誤差率Rerr,nを求める(ステップ#4)。 After both measurements are completed, the arithmetic control unit 4 converts the pixel output p i into the spectral distribution I'(λ) (step #3). Further, the sensor output error E n is estimated from the spectral distribution I′(λ) and the spectral sensitivity error e n (λ) using (Equation 1) to (Equation 12), and the output error rate R err,n is obtained (step #4).
 次いで、(式13)~(式15)により出力誤差率Rerr,nをセンサ出力S'nに適用して補正センサ出力S'n,corrを求め、補正三刺激値に変換して出力する(ステップ#5)。 Next, the output error rate R err,n is applied to the sensor output S' n according to (Equation 13) to (Equation 15) to obtain the corrected sensor output S' n,corr , which is converted to the corrected tristimulus value and output. (Step #5).
 測定器の許容繰り返し誤差Erep,ttlをセンサx, y, zとスペクトログラフ3の各々に求めると、ステップ♯2におけるスペクトログラフ3の測定時間Tspeは、ステップ♯1におけるセンサx, y, zの測定時間Tfilよりかなり長くなる(典型的には0.05sに対し2s)が、スペクトログラフ3に大きな繰り返し誤差を許容する本実施形態では、測定時間をT'spe≒ Tfilまで短縮し、全測定時間Erep,ttlをフィルタ型色彩輝度計レベルにすることができる(ステップ#3~#5の演算時間は無視できるので、全測定時間 Tttl≒ T'spe≒ Tfilとなる)。 When the permissible repeat error E rep,ttl of the measuring instrument is obtained for each of the sensors x, y, z and the spectrograph 3, the measurement time T spe of the spectrograph 3 in step #2 is obtained from the sensors x, y, ttl in step #1. Although the measurement time for z is much longer than T fil (typically 2 s versus 0.05 s), in the present embodiment, which allows for large repeatability errors in the spectrograph 3, the measurement time is reduced to T' spe ≈ T fil . , the total measurement time E rep,ttl can be set to the level of the filter-type colorimeter (Since the calculation time of steps #3 to #5 can be ignored, the total measurement time T ttl ≈ T' spe ≈ T fil ). .
 具体的には、出力誤差率Rerr,n(n=x, y, z)が最大5%であれば、スペクトログラフ3による分光分布I'(λ)に許容される繰返し誤差Erep,speは、測定器の許容繰返し誤差Erep,ttlの20倍(1/0.05)に拡大される。 Specifically, if the output error rate R err,n (n=x, y, z) is 5% at maximum, the repeatable error E rep,spe is magnified to 20 times (1/0.05) the allowable repeatability E rep,ttl of the measuring instrument.
 一方、スペクトログラフ3の測定時間T'spe≒2sをTfilと同じ0.05sまで短縮すれば、分光分布I'(λ)の繰返し誤差は√(2/0.05)=6.3倍になるが、許容繰返し誤差Erep,speの拡大率(20倍)より十分小さく、問題とならない。 On the other hand, if the measurement time T' spe ≈ 2 s of the spectrograph 3 is shortened to 0.05 s, which is the same as T fil , the repetition error of the spectral distribution I'(λ) becomes √(2/0.05) = 6.3 times, but it is acceptable. It is sufficiently smaller than the enlargement ratio (20 times) of the repeat error E rep,spe , and is not a problem.
 この場合、スペクトログラフ3の許容繰返し誤差Erep,speにはなお3倍(20倍/6.3倍)以上の余裕があるので、それをスペクトログラフ3の光学的明るさ(NA)や感度とトレードして、スペクトログラフ3のサイズダウン、コストダウンができる。 In this case, spectrograph 3 still has a margin of more than 3 times (20 times/6.3 times) in the allowable repeatability error E rep,spe , so trade it with spectrograph 3's optical brightness (NA) and sensitivity. As a result, the size and cost of the spectrograph 3 can be reduced.
 (6)スペクトログラフ3の波長ピッチと半値幅
 本実施形態による補正の精度は、分光分布I'(λ)の精度に依存し、従ってI'(λ)を測定するスペクトログラフ3の波長ピッチと半値幅に依存するが、以下ではそれらの影響をLCDとOLEDの模擬測定で確認する。
(6) Wavelength pitch and half width of spectrograph 3 The accuracy of correction according to this embodiment depends on the accuracy of spectral distribution I'(λ), and therefore the wavelength pitch of spectrograph 3 that measures I'(λ) and Although it depends on the half-value width, below we will confirm their influence by simulated measurement of LCD and OLED.
 図4(a)、図4(b)、図4(c)は、分光感度誤差が小さいセンサセットaと分光感度誤差が大きいセンサセットbおよびcのセンサx, y, zの分光感度s'x(λ), s'y(λ), s'z(λ)と分光感度誤差ex(λ), ey(λ), ez(λ)を、等色関数sx(λ), sy(λ), sz(λ)とともに示したグラフである。図4(a)、図4(b)、図4(c)において、左側縦軸は分光感度s'x(λ), s'y(λ), s'z(λ)と等色関数sx(λ), sy(λ), sz(λ)の値を示し、右側縦軸は分光感度誤差ex(λ), ey(λ), ez(λ)の値を示す。 4(a), 4(b), and 4(c) show the spectral sensitivities s' of the sensors x, y, and z of the sensor set a with a small spectral sensitivity error and the sensor sets b and c with a large spectral sensitivity error. x (λ), s' y (λ), s' z (λ) and spectral sensitivity errors e x (λ), e y (λ), e z (λ) are converted into color matching functions s x (λ), It is a graph shown with s y (λ) and s z (λ). In FIGS. 4(a), 4(b), and 4(c), the left vertical axis is the spectral sensitivity s' x (λ), s' y (λ), s' z (λ) and the color matching function s Values of x (λ), s y (λ), and s z (λ) are shown, and the right vertical axis represents values of spectral sensitivity errors e x (λ), e y (λ), and e z (λ).
 センサセットbとセンサセットcを用い、(式1)~(式12)の式に順じて模擬測定したLCDのプライマリ光B,G,R(図9に分光分布を示す)の三刺激値の補正前後の誤差(絶対値)|ΔX|, |ΔY|, |ΔZ|を図5と図6に示す。同様に模擬測定したOLEDのプライマリ光(図10に分光分布を示す)の三刺激値の補正前後の誤差(絶対値)を図7と図8に示す。各誤差の3個の棒グラフは左から順にB,G,Rの値である。 Tristimulus values of LCD primary lights B, G, and R (spectral distribution is shown in FIG. 9) simulated and measured according to formulas (1) to (12) using sensor set b and sensor set c. 5 and 6 show the errors (absolute values) |ΔX|, |ΔY|, and |ΔZ| before and after the correction of . Similarly, FIGS. 7 and 8 show errors (absolute values) before and after correction of the tristimulus values of the OLED primary light (the spectral distribution is shown in FIG. 10) simulated and measured. The three bars for each error are the B, G, and R values from left to right.
 模擬測定での補正に用いた分光分布は、二等辺三角形状のスリット関数と、表1に示す波長ピッチと半値幅をもつ6種のスペクトログラフ3で測定された。 The spectral distribution used for correction in the simulated measurement was measured with an isosceles triangular slit function and six types of spectrographs 3 having wavelength pitches and half-value widths shown in Table 1.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 図5~図8に示すように、スペクトログラフ3の波長ピッチと半値幅が4~12nmでは、LCDとOLEDのどちらでも補正後の誤差|ΔX|, |ΔY|, |ΔZ|は補正前の誤差|ΔXuc|, |ΔYuc|, |ΔZuc|から改善されている。特に4~8nmでは補正効果が著しく、分光感度精度を分光放射輝度計レベルにして、スペクトログラフ3の各画素への入射光量を波長ピッチ、半値幅ともに1nmの場合の略42~82倍にすることができる。 As shown in FIGS. 5 to 8, when the wavelength pitch and half width of Spectrograph 3 are 4 to 12 nm, the corrected errors |ΔX|, |ΔY|, and |ΔZ| are improved from the errors |ΔX uc |, |ΔY uc |, |ΔZ uc |. In particular, the correction effect is remarkable at 4 to 8 nm, and the spectral sensitivity accuracy is set to the level of a spectral radiance meter, and the amount of light incident on each pixel of the spectrograph 3 is approximately 4 2 to 8 2 times that when both the wavelength pitch and the half value width are 1 nm. can be
 つまり、本実施形態では大きな分光分布誤差を許容できるため、スペクトログラフ3の波長ピッチと半値幅を大きくし、各画素への入射光量が増やすことで、さらに測定時間を短縮できる。また、光量増をスペクトログラフ3の光学的明るさ(NA)や感度とトレードして、コストダウン、サイズダウンすることもできる。
[2]補正アルゴリズム2
 この補正アルゴリズムは、レーザディスプレイ(LD:Laser Display)の放射光のための補正アルゴリズムである。
In other words, since a large spectral distribution error can be tolerated in this embodiment, the wavelength pitch and half width of the spectrograph 3 are increased to increase the amount of light incident on each pixel, thereby further shortening the measurement time. It is also possible to trade the increase in light intensity with the optical brightness (NA) and sensitivity of the spectrograph 3 to reduce cost and size.
[2] Correction algorithm 2
This correction algorithm is for the emitted light of a laser display (LD).
 スペクトログラフ3の有限の半値幅は、図9や図10に示すようなブロードな分光分布をもつLCDやOLEDの放射光では大きな誤差要因にならないが、図11に示すLDの放射光(レーザ光)の線スペクトルを図12に示す狭帯域スペクトルに変えるため、無視できない誤差をもたらす。つまり、レーザ光による実際のセンサ出力S'x, S'y, S'zには、レーザ波長λLでの分光感度s'xL), s'yL), s'zL)しか寄与しないが、図12の分光分布I'(λ)を用いて(式1)~(式3)で模擬測定した模擬センサ出力S'x,sim, S'y,sim, S'z,simには、レーザ波長λL周辺の波長での分光感度も寄与して誤差となる。 The finite half-value width of the spectrograph 3 does not cause a large error in the radiant light from LCDs and OLEDs, which have broad spectral distributions as shown in FIGS. ) into the narrowband spectrum shown in FIG. 12, resulting in non-negligible errors. In other words, the actual sensor outputs S' x , S' y , S' z from the laser light include the spectral sensitivities s' xL ), s' yL ) , s' zL ), but simulated sensor outputs S′ x,sim , S′ y,sim , which are simulated and measured by (Equation 1) to (Equation 3) using the spectral distribution I′(λ) of FIG. The spectral sensitivity at wavelengths around the laser wavelength λ L also contributes to S' z,sim , resulting in an error.
 同様に、実際のセンサ出力誤差にもλLでの分光感度誤差exL), eyL), ezL)しか寄与しないが、図12のI'(λ)を用いて(式7)~(式9)で推定されるセンサ出力誤差Ex, Ey, Ezには、レーザ波長λL周辺の波長での分光感度誤差が寄与して誤差となる(半値幅が大きいほど誤差が大きくなる)。 Similarly, only the spectral sensitivity errors e xL ), e yL ), and e zL ) at λ L contribute to the actual sensor output error, but I′(λ) in FIG. The spectral sensitivity errors at wavelengths around the laser wavelength λ L contribute to the sensor output errors E x , E y , and E z estimated by (Equation 7) to (Equation 9) using The larger the half-value width, the larger the error).
 これを回避するために、補正アルゴリズム2では、補正アルゴリズム1の(式1)~(式9)の工程を以下の工程に置き換える。
(1)基本的な工程(被測定光が1つのLD放射光からなる場合)
 まず、スペクトログラフ3によるLD放射光の分光分布I'(λ)の、前記狭帯域スペクトルを包含する波長域をRとして(図12参照)、(式16)の式が与える波長域Rの重心波長λcでレーザ波長を、(式17)の式が与える積分強度Aでレーザ強度を近似する。(式16)及び(式17)の式中、λ⊂RはR内の全測定波長を表す。波長域Rは、例えば、分光分布I'(λ)中のピーク波長を中心にスペクトログラフ3の半値幅wの4倍(±2w)の範囲とすることができる。
In order to avoid this, in the correction algorithm 2, the steps (formula 1) to (formula 9) of the correction algorithm 1 are replaced with the following steps.
(1) Basic process (when the light to be measured consists of one LD radiation light)
First, in the spectral distribution I′(λ) of the LD radiation light obtained by the spectrograph 3, let R be the wavelength region including the narrowband spectrum (see FIG. 12), and the centroid of the wavelength region R given by the formula (16) The laser wavelength is approximated by the wavelength λc , and the laser intensity is approximated by the integral intensity A given by the equation (17). In equations (16) and (17), λ⊂R represents all measured wavelengths in R. The wavelength range R can be, for example, a range four times the half width w of the spectrograph 3 (±2w) around the peak wavelength in the spectral distribution I′(λ).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 保存されているセンサx, y, zの分光感度s'x(λ), s'y(λ), s'z(λ)を補間して重心波長λcでのセンサ分光感度s'xc), s'yc), s'zc)を求め、模擬センサ出力S'x,sim, S'y,sim, S'z,simを(式18)で推定する。 Sensor spectral sensitivity s' x ( λ c ), s' yc ), s' zc ), and estimate the simulated sensor output S' x,sim , S' y,sim , S' z,sim by (Equation 18) .
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 保存されている分光感度誤差ex(λ), ey(λ), ez(λ)を補間して重心波長λcでの分光感度誤差exc), eyc), ezc)を求め、センサ出力誤差Ex, Ey, Ezを(式19)で推定する。 Spectral sensitivity errors e xc ), e yc ) at centroid wavelength λ c by interpolating stored spectral sensitivity errors e x (λ), e y (λ), e z (λ) , e zc ) are obtained, and the sensor output errors E x , E y , E z are estimated by (Equation 19).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 (式18)(式19)には重心波長λc以外の波長成分はなく、模擬センサ出力S'x,sim, S'y,sim, S'z,simにも、センサ出力誤差Ex, Ey, Ezにもλc以外の波長成分の寄与はない。この実施形態でも、レーザ光の分光分布(具体的には重心波長λcと強度A)の誤差の補正センサ出力への影響はごく小さい。
(2)実用的な工程(被測定光がB,G,RのLD放射光からなる場合)
 図11のように被測定光がLDの3つのプライマリ光Ib, Ig, Irを含んでいると、測定された分光分布I'(λ)は図12のように各プライマリ光の狭帯域スペクトルをもつ。上述に順じて各狭帯域スペクトルの重心波長λb, λg, λrと積分強度Ab、Ag、Arを求め、センサの分光感度s'x(λ), s'y(λ), s'z(λ)を補間して重心波長λp, λg, λrでのセンサ分光感度s'xb), s'yg), s'zr), … , s'zb), s'zg), s'zr)を求め、(式20)で模擬センサ出力S'x,sim, S'y,sim, S'z,simを推定する。
(Equation 18) and (Equation 19) have no wavelength components other than the centroid wavelength λ c , and the simulated sensor outputs S′ x,sim , S′ y,sim , S′ z,sim also have sensor output errors E x , E y and E z also have no contribution of wavelength components other than λ c . In this embodiment as well, the influence of the error in the spectral distribution of the laser light (specifically, the centroid wavelength λ c and the intensity A) on the corrected sensor output is very small.
(2) Practical process (when the light to be measured consists of B, G, and R LD radiation)
As shown in FIG. 11, when the light to be measured includes the three primary lights Ib , Ig , and Ir of the LD, the measured spectral distribution I'(λ) of each primary light is narrow as shown in FIG. It has a band spectrum. The centroid wavelengths λ b , λ g , λ r and the integrated intensities A b , Ag , Ar of each narrowband spectrum are obtained in the same manner as described above, and the spectral sensitivities s' x (λ), s' y (λ ), s' z (λ) to obtain sensor spectral sensitivities s' xb ), s' yg ), s' zr ) at centroid wavelengths λ p , λ g , and λ r , … , s' zb ), s' zg ), s' zr ) are obtained, and simulated sensor outputs S' x,sim , S' y,sim , S ' Estimate z,sim .
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 分光感度誤差ex(λ), ey(λ), ez(λ)を補間して重心波長λb, λg, λrでの分光感度誤差exb), exg), exr), … , ezb), ezg), ezr)を求め、(式21)でセンサ出力誤差Ex, Ey, Ezを推定する。 Spectral sensitivity errors e x ( λ ) , e x ( λ g ), e xr ), … , e zb ), e zg ), e zr ) are obtained, and the sensor output errors E x , E y , E Estimate z .
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
(3)LD放射光(極狭帯域光)の判別
 上記の工程はレーザ光だけでなく、極狭帯域光にも適用できるが、それら以外の被測定光には(式1)~(式9)を用いる。被測定光がレーザ光や極狭帯域光か否かは操作者が判別することも、分光分布I'(λ)から演算制御部が自動判別することもできる。例えば、 (式22)の式に示す指標T(Δ)はI'(λ)とI'(λ)をΔnm波長シフトしたI'(λ+Δ)との相関とI'(λ)の自己相関との比であり、例えばΔ=16nmのとき、図12の分光分布ではT(16)=0.00であるが、図9(LCD)および図10(OLED)の分光分布ではT(16)=0.80および0.72になる。演算制御部4はTが閾値(例えば0.1)より小さければレーザ光や極狭帯域光と判断する。
(3) Discrimination of LD synchrotron radiation (ultra-narrow band light) The above process can be applied not only to laser light but also to ultra-narrow band light. ) is used. Whether or not the light to be measured is laser light or ultra-narrow band light can be determined by the operator, or can be automatically determined by the arithmetic control unit from the spectral distribution I'(λ). For example, the index T(Δ) shown in (Equation 22) is the correlation between I'(λ) and I'(λ+Δ) obtained by shifting I'(λ) by Δnm wavelength, and the self of I'(λ). For example, when Δ=16 nm, T(16)=0.00 in the spectral distribution of FIG. 12, but T(16)=0.00 in the spectral distributions of FIGS. 9 (LCD) and 10 (OLED). 0.80 and 0.72. If T is smaller than a threshold value (for example, 0.1), the arithmetic control unit 4 determines that the light is laser light or ultra-narrow band light.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 図13はこの発明の他の実施形態に係るフィルタ型測定器100の概略構成図である。この実施形態では、被測定光6を3個のセンサx, y, zとスペクトログラフ3へ分配する分配手段の点で、図1に示したフィルタ型測定器とは相違している。 FIG. 13 is a schematic configuration diagram of a filter-type measuring instrument 100 according to another embodiment of the invention. This embodiment differs from the filter-type measuring instrument shown in FIG.
 図13のフィルタ型測定器100は、被測定光源5からの被測定光6が複数のレンズからなるレンズ系1を介して入射するライトパイプ22と、ライトパイプ22の出射端面に接続された4本の樹脂ファイバー23を備えている。4本の樹脂ファイバー23の内、3本の樹脂ファイバー23の出射端には、それぞれセンサx, y, zが配置され、1本の樹脂ファイバー23の出射端にはスペクトログラフ3が配置されている。そして、ライトパイプ22に入射した光束を出射端面で4本の樹脂ファイバー23に分配し、3本の樹脂ファイバー23に分配された光束を各センサx, y, zで受光し、1本の樹脂ファイバー23に分配された光束をスペクトログラフ3で受光する。 The filter-type measuring instrument 100 of FIG. 13 includes a light pipe 22 into which light 6 to be measured from a light source 5 to be measured is incident via a lens system 1 consisting of a plurality of lenses, and a light pipe 22 connected to the output end face of the light pipe 22 . It is equipped with the resin fiber 23 of this. Sensors x, y, and z are arranged at the emission ends of three resin fibers 23 among the four resin fibers 23, and the spectrograph 3 is arranged at the emission end of one resin fiber 23. there is Then, the luminous flux incident on the light pipe 22 is distributed to four resin fibers 23 at the output end face, and the luminous flux distributed to the three resin fibers 23 is received by each sensor x, y, z, and one resin The spectrograph 3 receives the beam distributed to the fiber 23 .
 図14はこの発明のさらに他の実施形態に係るフィルタ型測定器100の概略構成図であり、(A)は側面図、(B)は(A)を右方から見た図である。 14A and 14B are schematic configuration diagrams of a filter-type measuring instrument 100 according to still another embodiment of the present invention, where (A) is a side view and (B) is a view of (A) viewed from the right.
 この実施形態では、被測定光源5からの被測定光6をドーム型の拡散板7で拡散させ、拡散光を中央のレンズ8の周りに配置された3個のセンサx, y, zで受光すると共に、レンズ8で収束された拡散光をスペクトログラフ3で受光する。 In this embodiment, the light 6 to be measured from the light source 5 to be measured is diffused by a dome-shaped diffusion plate 7, and the diffused light is received by three sensors x, y, and z arranged around a central lens 8. At the same time, the diffused light converged by the lens 8 is received by the spectrograph 3 .
 図15はこの発明のさらに他の実施形態を示すものである。図1、図13及び図14のフィルタ型測定器100は、3個のセンサx, y, zとスペクトログラフ3と、補正装置として機能する演算制御部4がフィルタ型測定器100に内蔵されていたが、
図15のフィルタ型測定器100には、3個のセンサx, y, zと演算制御部4とが内蔵され、スペクトログラフ3としての独立した分光輝度計31等が接続されている。この実施形態では、被測定光6を3個のセンサx, y, zと独立した分光輝度計31で測定し、これらの出力を演算制御部4に入力して、3個のセンサx, y, zの出力の誤差を推定して補正する。
FIG. 15 shows yet another embodiment of the invention. The filter-type measuring instrument 100 of FIGS. 1, 13 and 14 incorporates three sensors x, y, z, a spectrograph 3, and an arithmetic control section 4 functioning as a correction device. but
A filter type measuring instrument 100 of FIG. 15 incorporates three sensors x, y, z and an arithmetic control unit 4, and is connected to an independent spectrophotometer 31 as a spectrograph 3 and the like. In this embodiment, the light 6 to be measured is measured by three sensors x, y, z and an independent spectrophotometer 31, and these outputs are input to the arithmetic control unit 4, and the three sensors x, y , Estimate and correct the error in the output of z.
 また、図16に示すように、センサx, y, zとしてのフィルタ型色彩輝度計等と、スペクトログラフ3としての分光輝度計31等と、補正装置としてのパーソナルコンピュータ(PC)41等がそれぞれ独立していてもよい。この実施形態では、PC41が、フィルタ型色彩輝度計100の各センサx, y, zの出力と分光輝度計31の出力とを、ネットワーク等を介して受信して、フィルタ型測定器100の各センサx, y, zの出力の誤差を推定して補正する。 Further, as shown in FIG. 16, a filter type color luminance meter etc. as sensors x, y, z, a spectral luminance meter 31 etc. as a spectrograph 3, and a personal computer (PC) 41 etc. as a correction device are respectively may be independent. In this embodiment, the PC 41 receives the output of each sensor x, y, z of the filter-type luminance meter 100 and the output of the spectral luminance meter 31 via a network or the like, and Estimate and correct the errors in the outputs of the sensors x, y, z.
 また、図17に示すように、3個のセンサx, y, zとスペクトログラフ3をフィルタ型測定器100に内蔵させるとともに、補正装置を外部のPC41などにより構成し、フィルタ型測定器内の各センサx, y, zの出力とスペクトログラフ3の出力とを外部のPC41がネットワーク等を介して受信して、センサ出力を補正してもよい。
前述のように、本実施形態の技術は、スペクトログラフ3が高精度でなくても、
波長ピッチと半値幅とが4nm以上好ましくは4~8nmで、許容繰返し誤差が、測定器の許容繰返し誤差の10倍以上の安価なスペクトログラフを使用して、高速かつ高精度で補正できる。
Further, as shown in FIG. 17, the three sensors x, y, z and the spectrograph 3 are incorporated in the filter-type measuring instrument 100, and the correction device is configured by an external PC 41 or the like. An external PC 41 may receive the output of each sensor x, y, z and the output of the spectrograph 3 via a network or the like to correct the sensor output.
As described above, the technique of this embodiment can
Using an inexpensive spectrograph with a wavelength pitch and a half-value width of 4 nm or more, preferably 4 to 8 nm, and a permissible repeatability error of 10 times or more than the permissible repeatability error of a measuring instrument, correction can be performed at high speed and with high accuracy.
 以上の実施形態では、3個のセンサx, y, zを備えたフィルタ型測定器100について説明したが、センサは3個に限定されない。例えば、色彩計では等色関数x, y, zの3種のセンサが一般的であるが、s'x(λ)を短波長側と長波長側の2種のセンサに分けた計4種のセンサを持つ色彩計や、標準視感度V(λ)に近似した1種のセンサをもつ輝度計であってもよく、要は1個以上のセンサを有する測定器であれば良い。 Although the filter-type measuring instrument 100 having three sensors x, y, and z has been described in the above embodiment, the number of sensors is not limited to three. For example, colorimeters generally have three types of sensors for the color matching functions x , y, and z. or a luminance meter with one type of sensor that approximates the standard luminous efficiency V(λ).
 以上説明したように、この実施形態では、フィルタ型測定器100のセンサx, y, zの分光感度s'x(λ), s'y(λ), s'z(λ)の目標分光感度sx(λ), sy(λ), sz(λ)からの分光感度誤差に起因するセンサ出力の誤差を、目標分光感度sx(λ), sy(λ), sz(λ)と、予め測定され保存されたセンサ分光感度s'x(λ), s'y(λ), s'z(λ)と、スペクトログラフ3で測定された被測定光の分光分布I'(λ)とから推定し、補正する。マトリクス校正と異なり、校正基準光で合成できない被測定光でも高精度な測定が可能となる。しかも、高精度なスペクトログラフを用いる必要がなく、高速測定が可能である。 As described above, in this embodiment, the target spectral sensitivities s' x (λ), s' y (λ), s' z (λ) of the sensors x, y, and z of the filter type measuring instrument 100 are The error of the sensor output due to the spectral sensitivity error from s x (λ), s y (λ), s z (λ) is defined as the target spectral sensitivity s x (λ), s y (λ), s z (λ ), sensor spectral sensitivities s' x (λ), s' y (λ), s' z (λ) measured and stored in advance, and spectral distribution I' ( λ) and corrected. Unlike matrix calibration, highly accurate measurement is possible even with light to be measured that cannot be synthesized with calibration reference light. Moreover, high-speed measurement is possible without the need to use a highly accurate spectrograph.
 本願は、2021年4月12日付で出願された日本国特許出願の特願2021-067207号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application claims the priority of Japanese Patent Application No. 2021-067207 filed on April 12, 2021, and the disclosure thereof constitutes a part of this application as it is. .
 本発明は、ディスプレイ等の放射光の輝度や色度等を測定するフィルタ型の測定器に使用されるセンサの分光感度誤差に起因する出力の誤差を補正する補正装置として利用可能である。 The present invention can be used as a correction device that corrects output errors caused by spectral sensitivity errors of sensors used in filter-type measuring instruments that measure the luminance, chromaticity, etc. of radiated light such as displays.
 1  レンズ系
 2  4分岐光ファイバー束
 3  スペクトログラフ
 4  演算制御部
 5  測定対象
 6  被測定光I
 7  拡散板
 8  中央レンズ
 21 分岐部
 22 ライトパイプ
 23 樹脂ファイバー
 31 分光輝度計
 41 補正装置(パーソナルコンピュータ)
 100 フィルタ型測定器
REFERENCE SIGNS LIST 1 lens system 2 4-branch optical fiber bundle 3 spectrograph 4 arithmetic control unit 5 measurement object 6 light I to be measured
7 diffusion plate 8 center lens 21 branching part 22 light pipe 23 resin fiber 31 spectral luminance meter 41 correction device (personal computer)
100 filter type measuring instrument

Claims (23)

  1.  被測定光を、目標分光感度に近似する分光感度を有する1個以上のセンサと、スペクトログラフとで受光し、前記センサの出力に基づいて前記被測定光の特性を求める測定器の、前記センサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を、
     前記目標分光感度と、
     予め測定され保存された前記センサの分光感度と、
     前記スペクトログラフで測定された被測定光の分光分布と、
     から推定し、補正する補正装置。
    The sensor of a measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities approximating a target spectral sensitivity and a spectrograph, and determines characteristics of the light to be measured based on outputs of the sensors. The sensor output error due to the spectral sensitivity error from the target spectral sensitivity of the spectral sensitivity of
    the target spectral sensitivity;
    a pre-measured and stored spectral sensitivity of the sensor;
    a spectral distribution of the light to be measured measured by the spectrograph;
    A correction device that estimates and corrects from
  2.  前記スペクトログラフの波長ピッチと半値幅とが4nm以上である請求項1に記載の補正装置。 The correction device according to claim 1, wherein the spectrograph has a wavelength pitch and a half width of 4 nm or more.
  3.  前記スペクトログラフの許容繰返し誤差が、測定器の許容繰返し誤差の10倍以上である請求項1または2に記載の補正装置。 The correction device according to claim 1 or 2, wherein the permissible repeatability of the spectrograph is ten times or more the permissible repeatability of the measuring instrument.
  4.  1個以上のセンサのうちの任意のセンサnの分光感度s'n(λ)の目標分光感度sn(λ)からの分光感度誤差en(λ)をen(λ)=s'n(λ)-sn(λ)で求め、
     前記スペクトログラフで測定した被測定光Iの分光分布I'(λ)として、前記分光感度誤差en(λ)に起因する前記センサnの出力誤差En
    Figure JPOXMLDOC01-appb-M000001
    で推定し、
     前記被測定光Iの分光分布I'(λ)と、前記センサnの分光感度s'n(λ)とから、模擬センサ出力S'n,sim
    Figure JPOXMLDOC01-appb-M000002
    で推定し、
     被測定光Iを、前記センサnで測定したときの出力誤差率Rerr.nをRerr.n=En/S'n,simで算出し、
     前記センサ出力S'nを、補正センサ出力S'n,corrにS'n,corr= S'n×(1-Rerr.n)で補正する請求項1~3のいずれかに記載の補正装置。
    The spectral sensitivity error e n (λ) of the spectral sensitivity s' n (λ) of any sensor n among the one or more sensors from the target spectral sensitivity s n (λ) is e n (λ)=s' n (λ)-s n (λ),
    As the spectral distribution I'(λ) of the light I to be measured measured by the spectrograph, the output error E n of the sensor n caused by the spectral sensitivity error e n (λ) is
    Figure JPOXMLDOC01-appb-M000001
    estimated by
    A simulated sensor output S' n,sim is obtained from the spectral distribution I'(λ) of the light I to be measured and the spectral sensitivity s' n (λ) of the sensor n.
    Figure JPOXMLDOC01-appb-M000002
    estimated by
    The output error rate R err.n when the light I to be measured is measured by the sensor n is calculated by R err.n =E n /S' n,sim ,
    The correction according to any one of claims 1 to 3, wherein the sensor output S' n is corrected to the corrected sensor output S' n, corr by S' n, corr = S' n ×(1-R err.n ). Device.
  5.  被測定光が1つ以上の単色光あるいは極狭帯域光からなる場合に、
     前記スペクトログラフで測定された被測定光の分光分布内の前記単色光あるいは極狭帯域光の各々による狭帯域スペクトルに基づき、該単色光あるいは極狭帯域光の各々の波長と強度とを求め、
     前記目標分光感度とセンサ分光感度とを波長補間して前記波長での目標分光感度とセンサ分光感度とを求め、
    前記波長での目標分光感度とセンサ分光感度と、前記強度とに基づいて、前記分光感度誤差に起因する前記センサ出力の誤差を推定する請求項1~4のいずれかに記載の補正装置。
    When the light to be measured consists of one or more monochromatic lights or ultra-narrow band lights,
    Obtaining the wavelength and intensity of each of the monochromatic light or the ultra-narrow band light based on the narrow band spectrum of the monochromatic light or the ultra-narrow band light in the spectral distribution of the light to be measured measured by the spectrograph;
    Obtaining the target spectral sensitivity and the sensor spectral sensitivity at the wavelength by interpolating the target spectral sensitivity and the sensor spectral sensitivity with respect to the wavelength;
    The correction device according to any one of claims 1 to 4, wherein an error in the sensor output caused by the spectral sensitivity error is estimated based on the target spectral sensitivity at the wavelength, the sensor spectral sensitivity, and the intensity.
  6.  前記狭帯域スペクトルを包含する波長域をRとし、R内の測定波長をλ⊂Rとして、単色光あるいは極狭帯域光の波長λcと強度Aとを以下の式で求め、
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
     前記分光感度誤差en(λ)を補間して前記波長λcでの分光感度誤差enc)を求めて、センサ出力誤差EnをEn=A・enc)によって推定し、
     模擬センサ出力S'n,simをS'n,sim=A・s'nc)によって推定する請求項4を引用する請求項5に記載の補正装置。
    Let R be the wavelength range that includes the narrowband spectrum, and λ ⊂ R be the measurement wavelength within R, and obtain the wavelength λ c and the intensity A of monochromatic light or ultra-narrow band light by the following formula,
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    The spectral sensitivity error e n (λ) is interpolated to obtain the spectral sensitivity error e nc ) at the wavelength λ c , and the sensor output error E n is calculated by E n =A· enc ). presume,
    6. A correction device according to claim 4, wherein the simulated sensor output S'n,sim is estimated by S'n,sim = A.s'n ( λc ).
  7.  被測定光が単色光あるいは極狭帯域光の1つ以上からなることを検出する検出手段を備えている請求項5または6に記載の補正装置。 7. The correction device according to claim 5 or 6, comprising detection means for detecting whether the light to be measured consists of one or more of monochromatic light and ultra-narrow band light.
  8.  前記測定器は、前記目標分光感度が標準視感度であり、測定対象の輝度あるいは照度を測定する輝度計あるいは照度計である請求項1~7のいずれかに記載の補正装置。 The correction device according to any one of claims 1 to 7, wherein the target spectral sensitivity is standard luminosity, and the measuring device is a luminance meter or an illuminance meter for measuring luminance or illuminance of a measurement target.
  9.  前記測定器は、前記目標分光感度が等色関数であり、測定対象の色彩特性を測定する色彩輝度計または色彩照度計である請求項1~7のいずれかに記載の補正装置。 The correction device according to any one of claims 1 to 7, wherein the target spectral sensitivity is a color matching function, and the measuring device is a color luminance meter or a color luminance meter for measuring the color characteristics of the object to be measured.
  10.  被測定光を、目標分光感度に近似する分光感度を有する1個以上のセンサと、スペクトログラフとで受光し、前記センサの出力に基づいて前記被測定光の特性を求める測定器であって、請求項1~9のいずれかに記載の補正装置を備えている測定器。 Light to be measured is received by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and the characteristics of the light to be measured are determined based on the output of the sensors, A measuring instrument comprising a correction device according to any one of claims 1-9.
  11.  被測定光を、目標分光感度に近似する分光感度を有する1個以上のセンサと、スペクトログラフとで受光し、前記センサの出力に基づいて前記被測定光の特性を求める測定器の、前記センサの分光感度の目標分光感度からの分光感度誤差に起因するセンサ出力の誤差を、補正装置が、
     前記目標分光感度と、
     予め測定され保存された前記センサの分光感度と、
     前記スペクトログラフで測定された被測定光の分光分布と、
     から推定し、補正する補正方法。
    The sensor of a measuring instrument that receives light to be measured by one or more sensors having spectral sensitivities approximating a target spectral sensitivity and a spectrograph, and determines characteristics of the light to be measured based on outputs of the sensors. The correction device corrects the sensor output error caused by the spectral sensitivity error from the target spectral sensitivity of
    the target spectral sensitivity;
    a pre-measured and stored spectral sensitivity of the sensor;
    a spectral distribution of the light to be measured measured by the spectrograph;
    Correction method to estimate from and correct.
  12.  前記スペクトログラフの波長ピッチと半値幅とが4nm以上である請求項11に記載の補正方法。 The correction method according to claim 11, wherein the wavelength pitch and half width of the spectrograph are 4 nm or more.
  13.  前記スペクトログラフの許容繰返し誤差が、測定器の許容繰返し誤差の10倍以上である請求項11または12に記載の補正方法。 The correction method according to claim 11 or 12, wherein the permissible repeatability of the spectrograph is 10 times or more the permissible repeatability of the measuring instrument.
  14.  1個以上のセンサのうちの任意のセンサnの分光感度s'n(λ)の目標分光感度sn(λ)からの分光感度誤差en(λ)をen(λ)=s'n(λ)-sn(λ)で求め、
     前記スペクトログラフで測定した被測定光Iの分光分布をI'(λ)として、前記分光感度誤差en(λ)に起因する前記センサnの出力誤差En
    Figure JPOXMLDOC01-appb-M000005
    で推定し、
     前記スペクトログラフで測定した被測定光Iの分光分布I'(λ)と、前記センサnの分光感度s'n(λ)とから、模擬センサ出力S'n,sim
    Figure JPOXMLDOC01-appb-M000006
    で推定し、
     被測定光Iを、前記センサnで測定したときの出力誤差率Rerr,nをRerr,n=En/S'n,simで算出し、
     前記センサ出力S'nを、補正センサ出力S'n,corrにS'n,corr=S'n×(1-Rerr,n)で補正する請求項11~13のいずれかに記載の補正方法。
    The spectral sensitivity error e n (λ) of the spectral sensitivity s' n (λ) of any sensor n among the one or more sensors from the target spectral sensitivity s n (λ) is e n (λ)=s' n (λ)-s n (λ),
    Let I'(λ) be the spectral distribution of the light I to be measured measured by the spectrograph, and let the output error E n of the sensor n caused by the spectral sensitivity error e n (λ) be
    Figure JPOXMLDOC01-appb-M000005
    estimated by
    A simulated sensor output S' n,sim is obtained from the spectral distribution I'(λ) of the light I to be measured measured by the spectrograph and the spectral sensitivity s' n (λ) of the sensor n.
    Figure JPOXMLDOC01-appb-M000006
    estimated by
    The output error rate R err,n when the light I to be measured is measured by the sensor n is calculated by R err,n =E n /S' n,sim ,
    The correction according to any one of claims 11 to 13, wherein the sensor output S' n is corrected to the corrected sensor output S' n,corr by S' n,corr =S' n ×(1−R err,n ). Method.
  15.  被測定光が1つ以上の単色光あるいは極狭帯域光からなる場合に、
     前記スペクトログラフで測定された被測定光の分光分布内の前記単色光あるいは極狭帯域光の各々による狭帯域スペクトルに基づき、該単色光あるいは極狭帯域光の各々の波長と強度とを求め、
     前記目標分光感度とセンサ分光感度とを波長補間して前記波長での目標分光感度とセンサ分光感度とを求め、
     前記波長での目標分光感度とセンサ分光感度と、前記強度とに基づいて、前記分光感度誤差に起因する前記センサ出力の誤差を推定する請求項11~14のいずれかに記載の補正方法。
    When the light to be measured consists of one or more monochromatic lights or ultra-narrow band lights,
    Obtaining the wavelength and intensity of each of the monochromatic light or the ultra-narrow band light based on the narrow band spectrum of the monochromatic light or the ultra-narrow band light in the spectral distribution of the light to be measured measured by the spectrograph;
    Obtaining the target spectral sensitivity and the sensor spectral sensitivity at the wavelength by interpolating the target spectral sensitivity and the sensor spectral sensitivity with respect to the wavelength;
    The correction method according to any one of claims 11 to 14, wherein an error in the sensor output caused by the spectral sensitivity error is estimated based on the target spectral sensitivity at the wavelength, the sensor spectral sensitivity, and the intensity.
  16.  前記狭帯域スペクトルを包含する波長域をRとし、R内の測定波長をλ⊂Rとして、単色光あるいは極狭帯域光の波長λcと強度Aとを以下の式で求め、
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
     前記分光感度誤差en(λ)を補間して前記波長λcでの分光感度誤差enc)を求めて、センサ出力誤差EnをEn=A・enc)によって推定し、
     模擬センサ出力をS'n,sim=A・s'nc)によって推定する請求項14を引用する請求項15に記載の補正方法。
    Let R be the wavelength range that includes the narrowband spectrum, and λ ⊂ R be the measurement wavelength within R, and obtain the wavelength λ c and the intensity A of monochromatic light or ultra-narrow band light by the following formula,
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    The spectral sensitivity error e n (λ) is interpolated to obtain the spectral sensitivity error e nc ) at the wavelength λ c , and the sensor output error E n is calculated by E n =A· enc ). presume,
    16. A correction method according to claim 15, wherein the simulated sensor output is estimated by S'n,sim =A· s'n ( λc ).
  17.  被測定光が単色光あるいは極狭帯域光の1つ以上からなることを検出する検出手段を備えている請求項15または16に記載の補正方法。 The correction method according to claim 15 or 16, further comprising detecting means for detecting that the light to be measured consists of one or more of monochromatic light and ultra-narrow band light.
  18.  前記測定器は、前記目標分光感度が標準視感度であり、測定対象の輝度あるいは照度を測定する輝度計あるいは照度計である請求項11~17のいずれかに記載の補正方法。 The correction method according to any one of claims 11 to 17, wherein the target spectral sensitivity is standard luminosity, and the measuring device is a luminance meter or an illuminometer for measuring the luminance or illuminance of the object to be measured.
  19.  前記測定器は、前記目標分光感度が等色関数であり、測定対象の色彩特性を測定する色彩輝度計または色彩照度計である請求項11~17のいずれかに記載の補正方法。 The correction method according to any one of claims 11 to 17, wherein the target spectral sensitivity is a color matching function, and the measuring device is a color luminance meter or a color luminance meter for measuring the color characteristics of the object to be measured.
  20.  請求項11~19のいずれかに記載の補正方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the correction method according to any one of claims 11 to 19.
  21.  被測定光を、目標分光感度に近似する分光感度を有する1つ以上のセンサと、スペクトログラフとで受光し、前記センサの出力に基づいて前記被測定光の特性を求める測定器であって、
     前記スペクトログラフで測定された被測定光の分光分布と、前記目標分光感度と予め測定された前記センサ分光感度とから、前記センサの分光感度の目標分光感度からの分光感度誤差に起因する前記センサの出力の誤差を推定し、補正する測定器。
    Light to be measured is received by one or more sensors having spectral sensitivities close to a target spectral sensitivity and a spectrograph, and the characteristics of the light to be measured are determined based on the output of the sensor,
    The sensor resulting from a spectral sensitivity error of the spectral sensitivity of the sensor from the target spectral sensitivity based on the spectral distribution of the light to be measured measured by the spectrograph, the target spectral sensitivity, and the sensor spectral sensitivity measured in advance. A measuring instrument that estimates and corrects for errors in the output of
  22.  前記スペクトログラフの波長ピッチと半値幅とが4nm以上である請求項21に記載の測定器。 The measuring instrument according to claim 21, wherein the spectrograph has a wavelength pitch and a half width of 4 nm or more.
  23.  前記スペクトログラフの許容繰返し誤差が、測定器の許容繰返し誤差の10倍以上である請求項21または22に記載の測定器。 23. The measuring device according to claim 21 or 22, wherein the permissible repeatable error of the spectrograph is 10 times or more the permissible repeatable error of the measuring device.
PCT/JP2022/017345 2021-04-12 2022-04-08 Correcting device, measuring instrument, correcting method, and program WO2022220196A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237034736A KR20230154273A (en) 2021-04-12 2022-04-08 Calibration devices, measuring instruments, calibration methods and programs
JP2023514630A JPWO2022220196A1 (en) 2021-04-12 2022-04-08
CN202280027008.XA CN117157510A (en) 2021-04-12 2022-04-08 Correction device, measurement device, correction method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-067207 2021-04-12
JP2021067207 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022220196A1 true WO2022220196A1 (en) 2022-10-20

Family

ID=83640059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017345 WO2022220196A1 (en) 2021-04-12 2022-04-08 Correcting device, measuring instrument, correcting method, and program

Country Status (4)

Country Link
JP (1) JPWO2022220196A1 (en)
KR (1) KR20230154273A (en)
CN (1) CN117157510A (en)
WO (1) WO2022220196A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201472A (en) * 1993-01-06 1994-07-19 Minolta Camera Co Ltd Two-dimensional colorimeter
JPH09329497A (en) * 1996-04-11 1997-12-22 Olympus Optical Co Ltd Colorimeter and colorimetery
JP2005065601A (en) * 2003-08-25 2005-03-17 Matsushita Electric Works Ltd Optical radiation-evaluating method
JP2007271567A (en) * 2006-03-31 2007-10-18 National Univ Corp Shizuoka Univ Method of specifying color difference stabilizing wavelength of color filter, and program
WO2010021258A1 (en) * 2008-08-22 2010-02-25 コニカミノルタセンシング株式会社 Photometric/colorimetric device
WO2015182571A1 (en) * 2014-05-29 2015-12-03 コニカミノルタ株式会社 Optical characteristic measurement device and optical characteristic measurement method
US20180082659A1 (en) * 2016-09-22 2018-03-22 Apple Inc. Light Sensor With Spectral Sensing and Color Matching Function Channels

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323910A (en) 1993-05-13 1994-11-25 Minolta Camera Co Ltd Light-source-color colorimeter
US9163990B2 (en) 2011-04-01 2015-10-20 X-Rite Switzerland GmbH Color measuring device calibration
JP6963936B2 (en) 2017-08-25 2021-11-10 株式会社トプコン Surveying system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201472A (en) * 1993-01-06 1994-07-19 Minolta Camera Co Ltd Two-dimensional colorimeter
JPH09329497A (en) * 1996-04-11 1997-12-22 Olympus Optical Co Ltd Colorimeter and colorimetery
JP2005065601A (en) * 2003-08-25 2005-03-17 Matsushita Electric Works Ltd Optical radiation-evaluating method
JP2007271567A (en) * 2006-03-31 2007-10-18 National Univ Corp Shizuoka Univ Method of specifying color difference stabilizing wavelength of color filter, and program
WO2010021258A1 (en) * 2008-08-22 2010-02-25 コニカミノルタセンシング株式会社 Photometric/colorimetric device
WO2015182571A1 (en) * 2014-05-29 2015-12-03 コニカミノルタ株式会社 Optical characteristic measurement device and optical characteristic measurement method
US20180082659A1 (en) * 2016-09-22 2018-03-22 Apple Inc. Light Sensor With Spectral Sensing and Color Matching Function Channels

Also Published As

Publication number Publication date
KR20230154273A (en) 2023-11-07
JPWO2022220196A1 (en) 2022-10-20
CN117157510A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6676398B2 (en) Colorimetric system for display inspection
US8144322B2 (en) Spectral characteristic measuring apparatus, method for calibrating spectral characteristic measuring apparatus, and spectral characteristic measuring system
US7466417B2 (en) Process for the colour measurement of printed samples including brighteners
JP5534046B2 (en) SPECTRUM CHARACTERISTIC MEASURING DEVICE, SPECTRICAL CHARACTERISTIC MEASURING DEVICE CORRECTION METHOD, AND PROGRAM
JP4660694B2 (en) Spectrometer wavelength calibration method and spectrometer
US7116417B2 (en) Spectrometer and method for correcting wavelength displacement of spectrometer
US20030133117A1 (en) Method of extended color sense and estimation for rgb led illuminants
Ohno Spectral colour measurement
JP6733667B2 (en) Spectral colorimeter and method for calculating spectral reflectance
WO2022220196A1 (en) Correcting device, measuring instrument, correcting method, and program
JP2015178995A (en) Tone calibration device, imaging device and tone inspection device
US9347823B2 (en) Absolute measurement method and apparatus thereof for non-linear error
WO2021208349A1 (en) Integrating sphere photometer spectral response measurement method and system
JP2010203825A (en) Method for measuring spectral distribution of monitor
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system
JP6555276B2 (en) Stimulus value reading type colorimetry photometer
Eppeldauer et al. Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity
JP6565174B2 (en) Stimulus value direct-reading colorimeter
WO2016181750A1 (en) Spectroscopic color measurement device and method for setting conversion rule
US11976974B2 (en) Spectrometer and computer program
CN112014069B (en) Imaging measuring device
Wang et al. Fast and high-accuracy spectral measurements of LED by linear CCD sensor and software calibration
Karumuri Measurement Uncertainty in an Array Spectroradiometer
Manoocheri et al. 21.3: NIST Colorimetric Calibration Facility for Displays—Part 2
Brown et al. NIST display colorimeter calibration facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514630

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237034736

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034736

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788121

Country of ref document: EP

Kind code of ref document: A1