[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022220020A1 - 表面加工構造、表面加工シート、及びプロペラファン - Google Patents

表面加工構造、表面加工シート、及びプロペラファン Download PDF

Info

Publication number
WO2022220020A1
WO2022220020A1 PCT/JP2022/013010 JP2022013010W WO2022220020A1 WO 2022220020 A1 WO2022220020 A1 WO 2022220020A1 JP 2022013010 W JP2022013010 W JP 2022013010W WO 2022220020 A1 WO2022220020 A1 WO 2022220020A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
blocks
fine grooves
inclined surface
width
Prior art date
Application number
PCT/JP2022/013010
Other languages
English (en)
French (fr)
Inventor
ゆい 公文
勝 三角
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021069498A external-priority patent/JP7022238B1/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN202280028621.3A priority Critical patent/CN117157462A/zh
Priority to EP22787945.9A priority patent/EP4325063A4/en
Priority to US18/287,004 priority patent/US12049905B2/en
Publication of WO2022220020A1 publication Critical patent/WO2022220020A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0025Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply
    • F15D1/003Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply comprising surface features, e.g. indentations or protrusions
    • F15D1/0035Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply comprising surface features, e.g. indentations or protrusions in the form of riblets
    • F15D1/004Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply comprising surface features, e.g. indentations or protrusions in the form of riblets oriented essentially parallel to the direction of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material
    • F15D1/12Influencing flow of fluids around bodies of solid material by influencing the boundary layer

Definitions

  • the present disclosure relates to a surface-treated structure, a surface-treated sheet, and a propeller fan.
  • This application claims priority based on Japanese Patent Application No. 2021-69498 filed in Japan on April 16, 2021 and Japanese Patent Application No. 2022-18395 filed in Japan on February 9, 2022, The contents of which are incorporated herein.
  • biomimetics a technology that imitates and uses the various functions of living things.
  • Nature Technology registered trademark
  • Dimple processing is known as a method for processing the surface of rotatable blades.
  • dimples are provided on the rotating blades to increase the surface area of the blades and reduce wind resistance. can be strengthened to increase the rotation of the blades.
  • the fluid may not move efficiently.
  • the dimples increase the surface area of the blades and increase the fluid resistance, which increases the rotational load on the blades, which may hinder the smooth rotation of the blades.
  • the dimples when the blade rotates, the dimples generate turbulent airflow on the surface of the blade, and the turbulent airflow may hinder the movement of the fluid in a certain direction.
  • An object of one aspect of the present disclosure is to provide a surface-treated structure, a surface-treated sheet, and a propeller fan that allow fluid to move efficiently.
  • one aspect of the present disclosure relates to biomimetics because it includes technical ideas focused on the structure of butterfly scale powder and fish scales.
  • a surface-treated structure is a three-dimensional object arranged on a target plane, which is a surface of a target object, and includes a plurality of blocks arranged in a first direction parallel to the target plane, wherein the plurality of Each of the blocks has an inclined surface extending from the upstream side toward the downstream side in the first direction so that the distance from the target surface gradually increases, and the plurality of inclined surfaces of the plurality of blocks are:
  • Each of the plurality of blocks arranged on one line extending in the first direction has a plurality of fine grooves provided on the inclined surface, and the plurality of fine grooves are spaced apart from each other to form the first aligned in a second direction perpendicular to the direction and extending from the upstream side to the downstream side in the first direction, the plurality of fine grooves extending from the upstream end to the downstream end in the first direction on the inclined surface extending at the same depth to the
  • a surface-treated structure is a three-dimensional object arranged on a target plane, which is a surface
  • each of the plurality of blocks has an inclined surface extending from the upstream side toward the downstream side in the first direction so as to gradually increase the distance from the target surface;
  • the plurality of inclined surfaces possessed by the plurality of blocks are aligned on one line extending in the first direction, each of the plurality of blocks has a plurality of fine grooves provided on the inclined surface, and the plurality of The fine grooves are arranged in the second direction at intervals, extend from the upstream side to the downstream side in the first direction, and are arranged in two blocks adjacent to each other in the second direction among the plurality of blocks.
  • a groove-like gap extending in the first direction is formed between the plurality of fine grooves, and the width of each of the plurality of fine grooves in the second direction is smaller than the width of the gap in the second direction.
  • the block is arranged so that the gap constitutes one fluid channel extending in the first direction, and the plurality of fine grooves provided on the inclined surface and the fluid channel are aligned in the second direction. are arranged alternately along the
  • the surface-treated structure is provided on a base material that can be installed on the target surface.
  • a propeller fan includes a rotating shaft portion and blades extending outward from the rotating shaft portion, wherein the surface treatment structure is provided on a surface of the blade, and the first direction is , from the leading edge side to the trailing edge side of the airfoil.
  • FIG. 1 is a partially exploded side view of an electric fan having a propeller fan; FIG. It is the perspective view which looked at the propeller fan from the front side. It is a front view of a propeller fan.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. 3; It is the figure which partially expanded the front surface of a wing. It is the perspective view which expanded the surface processing sheet
  • FIG. 6 is a perspective view partially enlarging the inside of the broken line frame shown in FIG. 5 ; It is the perspective view which expanded one block. 7 is a perspective view partially enlarging the inside of the broken line frame shown in FIG. 6.
  • FIG. FIG. 3 is a schematic plan view of a partially enlarged surface-treated sheet; FIG.
  • FIG. 9 is a schematic front view of the surface-treated sheet shown in FIG. 8;
  • FIG. 9 is a schematic side view of the surface-treated sheet shown in FIG. 8;
  • 1 is a perspective view of a surface processed sheet according to Example 1.
  • FIG. 4 is a table showing the relationship between the surface-treated sheet and the target flow in Example 1.
  • FIG. 1 is a table showing dimensions of a surface-treated sheet according to Example 1.
  • FIG. 1 is a front view of a surface-treated sheet according to Example 1.
  • FIG. 1 is a side view of a surface processed sheet according to Example 1.
  • FIG. 4 is a table showing dimensions of surface-treated sheets according to Examples 2 and 3.
  • FIG. FIG. 11 is a perspective view of a surface-processed sheet according to Example 3;
  • FIG. 11 is a front view of a surface-treated sheet according to Example 3;
  • FIG. 11 is an enlarged perspective view of a block of Example 3 as viewed from the downstream side;
  • FIG. 10 is a schematic side view of a surface-processed sheet according to a first modified example;
  • FIG. 11 is a schematic side view of a surface processed sheet according to a second modified example;
  • FIG. 11 is a schematic side view of a surface-processed sheet according to a third modified example;
  • FIG. 11 is a schematic side view of a surface-treated sheet according to a fourth modified example;
  • FIG. 11 is a perspective view of a surface-processed sheet according to Example 3;
  • FIG. 11 is a front view of a surface-treated sheet according to Example 3;
  • FIG. 11 is an
  • FIG. 11 is a schematic side view of a surface-treated sheet according to a fifth modified example;
  • FIG. 11 is a schematic side view of a surface-treated sheet according to a sixth modified example;
  • FIG. 11 is a schematic plan view of a surface-treated sheet according to a seventh modified example;
  • FIG. 11 is a schematic plan view of a surface-treated sheet according to an eighth modified example;
  • FIG. 21 is a schematic plan view of a surface-treated sheet according to a ninth modification;
  • FIG. 10 is a schematic plan view of a surface-treated sheet according to a tenth modified example;
  • FIG. 21 is a schematic plan view of a surface-treated sheet according to an eleventh modification;
  • FIG. 20 is a schematic front view of a surface-treated sheet according to an eleventh modification;
  • FIG. 1 is a partially exploded side view of an electric fan 1 having a propeller fan 100.
  • the electric fan 1 includes a front guard 2 , a rear guard 3 , a body portion 4 , a stand 5 and a propeller fan 100 .
  • the body portion 4 is supported by a stand 5 and accommodates a drive motor (not shown) inside.
  • a rotary shaft 4A of a drive motor is provided on the front surface of the main body 4.
  • a rotating shaft portion 110 (see FIG. 2 etc.) of the propeller fan 100 is fixed to the rotating shaft 4A using a screw cap 6 .
  • the front guard 2 and the rear guard 3 are provided so as to surround the propeller fan 100 fixed to the main body 4.
  • the rear guard 3 is fixed to the main body 4 so as to cover the rear side (the negative pressure side) of the propeller fan 100 .
  • the front guard 2 is fixed to the rear guard 3 so as to cover the front side (pressure side) of the propeller fan 100 .
  • the stand 5 is provided for placing the electric fan 1 on a floor surface or the like, and supports the main body portion 4 . At a predetermined position of the stand 5, an operation unit (not shown) is provided for turning on/off the electric fan 1, switching the operating state, and the like.
  • the stand 5 may have a swinging function and a height adjusting function of the electric fan 1 .
  • FIG. 2 is a perspective view of the propeller fan 100 viewed from the front side.
  • 3 is a front view of propeller fan 100.
  • the propeller fan 100 has a rotating shaft portion 110 and a plurality of blades 120 .
  • Rotating shaft portion 110 is a boss hub of propeller fan 100 and has a substantially cylindrical shape with a bottom.
  • Each of the plurality of blades 120 has a smoothly curved plate shape.
  • a plurality of blades 120 protrude radially outward of propeller fan 100 from the outer peripheral surface of rotating shaft portion 110 .
  • the plurality of blades 120 are arranged at regular intervals along the circumferential direction of the rotating shaft portion 110 and have the same shape.
  • Propeller fan 100 of this example has seven blades 120 .
  • the propeller fan 100 is driven by the drive motor described above to rotate about the axis of the rotating shaft portion 110 in the counterclockwise rotation direction A when viewed from the front. That is, the plurality of blades 120 rotate in the rotation direction A. As a result, air flows from the suction side, which is the rear side of propeller fan 100 , to the ejection side, which is the front side of propeller fan 100 , and is blown forward of electric fan 1 .
  • FIG. 4A is a cross-sectional view taken along line BB in FIG. 3.
  • FIG. 4B is a partially enlarged view of the front surface 125 of the wing 120.
  • FIG. since the plurality of blades 120 have the same shape, only one blade 120 will be described.
  • airfoil 120 includes leading edge 121 , trailing edge 122 , and peripheral edge 123 .
  • the leading edge 121 is the edge on the downstream side in the rotational direction A of the blade 120 .
  • the front edge portion 121 is curved such that its radial intermediate portion protrudes upstream in the rotational direction A.
  • the trailing edge 122 is the upstream edge in the direction of rotation A of the airfoil 120 .
  • the trailing edge portion 122 is curved such that its radially intermediate portion protrudes upstream in the rotational direction A.
  • the peripheral edge portion 123 is an edge portion extending along the rotation direction A of the blade 120 .
  • the peripheral edge portion 123 connects the radially outer end portion of the front edge portion 121 and the radially outer end portion of the rear edge portion 122 . In the blade 120 as a whole, the distance between the leading edge portion 121 and the trailing edge portion 122 increases toward the radially outer side.
  • the front face 125 of the airfoil 120 is a concavely curved pressure side.
  • the back surface 126 of the airfoil 120 is a convexly curved suction surface.
  • surface-treated sheets 200 are installed on the front surface 125 and rear surface 126, which are the blade surfaces of the blades 120.
  • surface processing sheets 200 are respectively attached to substantially the entire surface of the front surface 125 and substantially the entire surface of the rear surface 126 .
  • the textured sheet 200 may be placed on one of the front surface 125 and back surface 126 .
  • the surface-treated sheet 200 may be installed on part of the front surface 125 or may be installed on part of the back surface 126 .
  • the surface-treated sheet 200 is attached so as to be in surface contact with the front surface 125 of the wing 120 and extends along the front surface 125 .
  • the direction from the leading edge portion 121 side to the trailing edge portion 122 side that is, the direction in which the air flows relative to the rotating blade 120 corresponds to the first direction described later.
  • a radial direction of the blade 120 corresponds to a second direction described later.
  • FIG. 5 is a partially enlarged perspective view of the surface-processed sheet 200.
  • FIG. FIG. 6 is a perspective view partially enlarging the inside of the broken line frame shown in FIG. Below, the upper side, the lower side, the lower left side, the upper right side, the upper left side, and the lower right side in FIG. 5 are defined as the upper side, the lower side, the front side, the rear side, the left side, and the right side, respectively.
  • the example in FIG. 5 is a portion of the surface-treated sheet 200, and is 2 mm in the front-rear direction and 2 mm in the left-right direction.
  • the fine grooves 520 are shown only in one block 500 on the left front side among the plurality of blocks 500 .
  • a surface-treated structure 201 is provided on a base material 202 that can be placed on a target surface, which is the surface of an object.
  • a target surface which is the surface of an object.
  • the surface treatment sheet 200 placed on the front surface 125 of the wing 120 the wing 120 is the target and the front surface 125 is the target surface.
  • the surface-treated sheet 200 of this example is a thin and lightweight flexible sheet. Specifically, the thickness of surface-processed sheet 200 is less than 2000 ⁇ m, for example, about 100 ⁇ m.
  • the base material 202 may be formed of a material that can be fixed to the target surface by adhesion or welding, and includes, for example, at least one selected from the group consisting of resin, rubber, and metal.
  • the resin includes, for example, at least one selected from the group consisting of polypropylene (PP), polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), acrylonitrile-butadiene-styrene (ABS), and urethane.
  • Rubber includes, for example, silicone rubber.
  • the metal includes, for example, at least one selected from the group consisting of aluminum and stainless steel. Since the base material 202 has flexibility that can be deformed according to the surface shape of the target surface, it can be in surface contact with the target surface without gaps.
  • the surface-processed structure 201 has a plurality of blocks 500.
  • a plurality of blocks 500 are three-dimensional objects arranged on the target plane, which is the surface of the target, and are arranged in a first direction parallel to the target plane.
  • the first direction may be a straight direction or a curved direction.
  • a surface textured structure 201 is formed on a substrate 202 .
  • a plurality of blocks 500 are arranged on the target surface via the substrate 202 .
  • the front, rear, left, and right directions of the surface-treated sheet 200 are substantially parallel to the surface direction of the target surface.
  • the upper side of the surface-treated sheet 200 faces away from the target surface.
  • the lower side of the surface-treated sheet 200 faces the target surface side.
  • a plurality of blocks 500 constitute a plurality of block sequences 501 .
  • Each of the plurality of block rows 501 consists of two or more blocks 500 arranged in the first direction.
  • a plurality of block rows 501 are arranged side by side in a second direction orthogonal to the first direction.
  • the second direction may be a straight direction or a curved direction. Therefore, the plurality of blocks 500 are two-dimensionally arranged side by side in the first direction and the second direction on the base material 202 .
  • the propeller fan 100 is mounted on the front surface 125 of the blade 120 so that the front side of the surface processing sheet 200 faces the front edge portion 121 side and the rear side of the surface processing sheet 200 faces the front edge portion 121 side. Therefore, as shown in FIG. 5, the rear direction of the surface processed sheet 200 is parallel to the first direction (see FIG. 4B). The left-right direction of the surface-treated sheet 200 is parallel to the second direction.
  • the blade surface of the blade 120 of this example curves toward the front side of the blade 120 from the leading edge portion 121 side toward the trailing edge portion 122 side. Therefore, as shown in FIGS. 4B and 5, the upward and downward directions of the surface-treated sheet 200 are inclined with respect to the front and rear directions of the wing 120, respectively. Specifically, the upper direction of surface-treated sheet 200 is inclined upstream in the first direction with respect to the front direction of blade 120 .
  • each of the plurality of blocks 500 has an inclined surface 510 extending from the upstream side toward the downstream side in the first direction so that the distance from the target surface gradually increases.
  • the inclined surface 510 is at least a portion of the upward facing surface of the block 500 .
  • the entire upper surface of the block 500 forms an inclined surface 510 inclined upward toward the rear.
  • the plurality of inclined surfaces 510 of the plurality of blocks 500 are arranged on one line V extending in the first direction. Specifically, in each of the plurality of block rows 501, one line V extending in the first direction passes through the inclined surfaces 510 of all the blocks 500 forming the block row 501 in plan view.
  • Line V is a virtual straight line or curve extending parallel to the first direction. In the example of FIG. 6, a line V extending linearly in the rearward direction passes through all the blocks 500 in the block row 501 in plan view.
  • FIG. 7A is an enlarged perspective view of one block 500.
  • FIG. 7B is a perspective view partially enlarging the inside of the broken line frame shown in FIG. 6.
  • FIG. 7A illustration of the fine grooves 520 provided in the block 500 is omitted.
  • the plurality of blocks 500 may be made of a material that can be formed on the base material 202 , and may be made of the same material as the base material 202 or may be made of a material different from the base material 202 .
  • the plurality of blocks 500 may be produced by molding such as injection molding, or may be produced by removal processing such as milling, laser processing, or etching. In this example, microfabrication by etching is performed on the top surface of the base material 202 to produce a plurality of blocks 500 having the same shape.
  • One block 500 will be described below.
  • the inclined surface 510 has a function of contacting air flowing into the front surface 125 when the blade 120 rotates and generating an airflow flowing in the first direction.
  • the block 500 is rectangular parallelepiped long in the first direction so that the slanted surface 510 can guide the air over a longer distance in the first direction.
  • the inclined surface 510 is a plane that inclines so as to become higher toward the downstream side in the first direction.
  • the sloping surface 510 has a relatively large area so that it can sufficiently contact the air flowing into the front surface 125 .
  • the ratio of the total area of the plurality of inclined surfaces 510 in the surface-treated sheet 200 is, for example, 60% or more of the whole.
  • the length of the inclined surface 510 in the first direction is equal to the depth D, which is the length of the block 500 in the first direction.
  • the length of the inclined surface 510 in the second direction is equal to the length of the block 500 in the second direction.
  • the length of the block 500 in the second direction is equal to the groove interval G2 of the block gap 550, which will be described later.
  • the groove interval G2 is the distance between two block gaps 550 adjacent to each other.
  • the inclined surface 510 includes an upstream end 511 and a downstream end 512 in the first direction.
  • the ramp 510 is a plane that slopes linearly from an upstream end 511 at the front end of the ramp 510 to a downstream end 512 at the rear end of the ramp 510 . Therefore, the height H2 of the inclined surface 510 has a minimum value Hmin at the upstream end 511 and a maximum value Hmax at the downstream end 512 . That is, the distance from the target surface to the inclined surface 510 is minimum at the upstream end 511 and maximum at the downstream end 512 .
  • the height H2 of the inclined surface 510 is equal to the height of the block 500. As the height H2 of the upstream end portion 511 is smaller, the contact area between the air flowing into the block 500 from the upstream side in the first direction and the front surface 521 of the block 500 can be made smaller. In this example, since the height H2 of the upstream end portion 511 is the minimum value Hmin, the contact area can be suppressed and the air can smoothly move onto the inclined surface 510 .
  • the inclination angle ⁇ of the inclined surface 510 with respect to the target surface is determined by the height difference and the depth D of the inclined surface 510.
  • the air moving on the tilted surface 510 can be moved to a higher position away from the target surface, but the contact pressure between the air and the tilted surface 510 increases, which may reduce the flow velocity of the air.
  • the inclination angle ⁇ becomes smaller, the decrease in flow velocity of the air moving on the inclined surface 510 can be suppressed, but there is a possibility that the air cannot be moved to a position highly separated from the target surface. From this point of view, the inclination angle ⁇ is within the range of 6 degrees to 27 degrees.
  • the size and shape of the inclined surface 510 are not limited to those illustrated above.
  • the tilt angle ⁇ is not limited to the range of 6 degrees to 27 degrees described above, and may be at least greater than 0 degrees and less than 45 degrees.
  • each of the plurality of blocks 500 has a plurality of fine grooves 520 provided on the inclined surface 510.
  • the top surface of each block 500 includes a plurality of microgrooves 520 .
  • the plurality of fine grooves 520 are spaced apart from each other and arranged in a second direction orthogonal to the first direction, and extend from the upstream side toward the downstream side in the first direction.
  • the plurality of fine grooves 520 has a function of forming an air layer inside the fine grooves 520 by relatively slow air flow. As a result, the air passing near the upper portion of the fine groove 520 can pass through the surface of the air layer formed inside the fine groove 520 so as to slide.
  • the plurality of fine grooves 520 suppress the contact area between the air flowing along the inclined surface 510 and the inclined surface 510, thereby reducing the contact resistance given to the airflow on the inclined surface 510 and allowing the airflow to flow smoothly.
  • the plurality of fine grooves 520 extend to the same depth from the upstream end 511 to the downstream end 512 of the inclined surface 510 in the first direction.
  • a rail-shaped protrusion 530 extending in the first direction is formed between two adjacent micro-grooves 520 among the plurality of micro-grooves 520 .
  • the upper surface of each block 500 includes a plurality of protrusions 530 provided between two adjacent micro-grooves 520 among the plurality of micro-grooves 520 . Therefore, on the inclined surface 510, a plurality of protrusions 530 and a plurality of fine grooves 520 are arranged alternately. The air flowing into the inclined surface 510 flows in the first direction along the upper surfaces of the plurality of protrusions 530 . In this example, since the plurality of fine grooves 520 have the same shape, one fine groove 520 will be described.
  • the length of the fine groove 520 in the second direction is the groove width W1.
  • the groove width W1 of the fine groove 520 is within the range of 0.5 ⁇ m to 600 ⁇ m.
  • the vertical length of the fine groove 520 is the height H1.
  • the height H1 is large, the height relative to the lateral width of the protrusion 530 is large, so the rigidity of the protrusion 530 is reduced, and there is a possibility that the protrusion 530 may easily bend.
  • the height H1 of the fine groove 520 is within the range of 0.5 ⁇ m to 300 ⁇ m.
  • the groove interval G1 is the distance between two fine grooves 520 adjacent to each other, and is equal to the length of the convex portion 530 in the second direction.
  • the groove interval G1 of the fine grooves 520 is within the range of 1 ⁇ m to 800 ⁇ m.
  • the number of fine grooves 520, groove width W1, height H1, and groove interval G1 are not limited to the above examples, and may be values different from the ranges described above.
  • the plurality of fine grooves 520 are not limited to extending in the first direction over the entire inclined surface 510, and extend in the first direction in a portion between the upstream end 511 and the downstream end 512. good too.
  • FIG. 8 is a schematic plan view partially enlarging the surface-processed sheet 200.
  • FIG. 9A is a schematic front view of surface processed sheet 200 shown in FIG.
  • FIG. 9B is a schematic side view of surface processed sheet 200 shown in FIG.
  • four block rows 501 are arranged in the second direction, and four blocks 500 are arranged in the first direction in each block row 501 .
  • each of the plurality of blocks 500 the entire inclined surface 510 is exposed on the upstream side of the block 500 in the first direction.
  • two blocks 500 adjacent in the first direction among the plurality of blocks 500 are divided into an upstream block 500A and a downstream block 500A downstream of the upstream block 500A. Let it be block 500B.
  • the entire inclined surface 510 of the downstream block 500B is exposed without being blocked by other members.
  • downstream end 512 of the inclined surface 510 in the first direction has the greatest distance from the target surface among the blocks 500 . That is, the downstream end 512 of the inclined surface 510 is at the highest position in the block 500 .
  • the upstream end 511 of the inclined surface 510 in the downstream block 500B in the first direction is closer to the target surface than the downstream end 512 in the first direction of the upstream block 500A. That is, the upstream end 511 of the downstream block 500B is positioned lower than the downstream end 512 of the upstream block 500A.
  • a groove-shaped gap 540 extending in the direction crossing the first direction is formed.
  • a gap 540 extending in the second direction is formed between two blocks 500 adjacent to each other in each block row 501 .
  • a groove-like block gap 550 extending in a direction crossing the second direction is formed between two blocks 500 adjacent to each other in the second direction among the plurality of blocks 500 .
  • block gaps 550 extending in the first direction are provided between the blocks 500 of the left block row 501 and the blocks 500 of the right block row 501. is formed.
  • the plurality of blocks 500 two blocks 500 adjacent in the first direction are arranged with the gap 540 interposed therebetween, and two blocks 500 adjacent in the second direction are arranged with the block gap 550 interposed therebetween. Since the plurality of blocks 500 are separated from each other in this manner, the plurality of blocks 500 can be accurately and easily fabricated on the base material 202 compared to, for example, fabricating the plurality of blocks 500 so as to be connected to each other.
  • the length of the block gap 550 in the second direction is the groove width W2.
  • the block gap 550 has a function of forming an air layer between two blocks 500 adjacent in the second direction.
  • the air passing near the upper portion of the block gap 550 can pass through the surface of the air layer formed in the block gap 550 so as to slide.
  • the block gap 550 suppresses the contact area between the air passing near the upper portion of the block gap 550 and the surface-processed sheet 200, thereby reducing the contact resistance given to the airflow above the block gap 550 and allowing the airflow to flow smoothly. established for
  • the air passing through the vicinity becomes easier to flow in. When air flows into the block gap 550 , frictional resistance is generated according to the contact area between the air and the block gap 550 . From this point of view, the groove width W2 of the block gap 550 is within the range of 10 ⁇ m to 600 ⁇ m.
  • the groove width W1 in the second direction of each of the plurality of fine grooves 520 described above is smaller than the groove width W2 in the block gap 550 in the second direction.
  • the flow velocity of the air flowing into the surface-processed sheet 200 varies depending on, for example, the rotational speed of the propeller fan 100 and the like.
  • the relationship between the flow velocity of air toward the grooves and the width of the grooves affects whether an air layer can be effectively formed therein. If an air layer cannot be effectively formed inside the groove, air may flow into the groove and the groove may act as a resistance to block the flow of air.
  • the flow velocity width of the air flowing into the surface-processed sheet 200 is divided into three ranges: low speed range, medium speed range, and high speed range.
  • low speed range the relatively wide block gaps 550 can form an air layer more effectively than the relatively narrow fine grooves 520 .
  • the flow velocity of the inflowing air is in the medium velocity range, both the block gaps 550 and the fine grooves 520 can effectively form an air layer.
  • the fine grooves 520 can form an air layer more effectively than the block gaps 550 .
  • At least one of the block gaps 550 and the fine grooves 520 can effectively form an air layer regardless of the speed range of the air flowing into the surface processed sheet 200 .
  • Such a surface-processed structure 201 can exert a friction-reducing effect over a wide flow velocity range of flowing air.
  • the ratio of the height H1 to the width W1 of the fine groove 520 is called the aspect ratio of the fine groove 520.
  • a ratio of the height H2 to the groove width W2 in the block gap 550 is referred to as the aspect ratio of the block gap 550 .
  • the aspect ratio of the block gaps 550 effective in the low speed range may be smaller than the aspect ratio of the fine grooves 520 effective in the high speed range.
  • the surface area of the block gaps 550 can be made relatively small with respect to the surface area of the fine grooves 520 . Therefore, even if an air layer is not effectively formed in the block gap 550 in a high-speed range, the contact area with the air flowing into the block gap 550 is suppressed, and the friction when the block gap 550 acts as a resistance. Can suppress resistance.
  • the plurality of blocks 500 are arranged such that a plurality of block gaps 550 continuously arranged in the first direction are formed.
  • a plurality of block gaps 550 configure one fluid flow path extending in the first direction.
  • a plurality of blocks 500 are arranged two-dimensionally in a grid pattern on the substrate 202 . Therefore, between two block rows 501 adjacent to each other, a fluid flow path is formed in which a plurality of block gaps 550 are continuously arranged in the first direction.
  • the plurality of fine grooves 520 provided on the upper surface of the block 500 and the fluid channels are alternately arranged along the second direction. The air flowing through this fluid channel smoothly flows in the first direction without meandering.
  • the length of the gap 540 in the first direction is the groove width W3.
  • the air flowing into the surface-treated sheet 200 from the upstream side in the first direction continuously flows along the inclined surfaces 510 of the blocks 500 arranged in the first direction.
  • part of the air may flow into the gap 540 and reduce the air volume.
  • the groove width W3 of the gap 540 is within the range of 300 ⁇ m or less.
  • the air flow in the surface-treated sheet 200 will be explained. As described above, when the propeller fan 100 rotates in the rotation direction A, the air moving relative to the rotating blades 120 flows onto the blade surfaces of the blades 120 . At this time, the air flows from the front edge 121 on the downstream side in the direction of rotation A to the front surface 125 and the rear surface 126 . Although the air flow on the front surface 125 will be described below, the air flow on the back surface 126 is similar.
  • the surface-treated sheet 200 also rotates in the rotation direction A as the blade 120 rotates.
  • the upper direction of the surface-treated sheet 200 is inclined to the front side, which is the upstream side in the first direction, with respect to the front direction of the blade 120 . Therefore, as shown in FIG. 9B, the surface-treated sheet 200 rotating in the direction of rotation A moves forward and upward. Therefore, the air flowing into the front surface 125 moves relatively to the surface processed sheet 200 so as to approach it from the upper front side.
  • air moves from the upstream side to the downstream side in the first direction in the surface-treated sheet 200 as follows.
  • the air directed toward the surface-treated sheet 200 is branched into a plurality of main streams ST1 and a plurality of side streams ST2.
  • the plurality of main streams ST1 most of the air flowing into the surface processed sheet 200 flows above the plurality of blocks 500 occupying most of the surface processed sheet 200 in plan view.
  • the plurality of secondary streams ST2 the rest of the air flowing into the surface processed sheet 200 flows on both left and right sides of the plurality of blocks 500 in plan view. Therefore, on the upper side of the surface-processed sheet 200, the air that has flowed in flows in the first direction so that the main stream ST1 and the side stream ST2 are alternately arranged horizontally.
  • the plurality of main streams ST1 are airflows formed corresponding to the plurality of block rows 501, respectively.
  • the air flows along the sloped surface 510 of the upstream block 500A it leaves the front surface 125 of the wing 120 upwardly as it moves downstream from the upstream end 511 .
  • the inclined surface 510 of each block 500 is provided with the plurality of fine grooves 520 described above. Since the inclined surface 510 has the plurality of fine grooves 520, the outer surface area of the inclined surface 510 is small.
  • the outer surface of the inclined surface 510 is substantially composed of upper end surfaces of the plurality of protrusions 530 . Since the groove width W1 of the plurality of fine grooves 520 is extremely narrow as described above, an air layer is formed in which air is difficult to enter. Therefore, since the air flowing on the inclined surface 510 substantially contacts only the outer surface of the inclined surface 510, the contact area between the inclined surface 510 and the air is suppressed. The contact resistance applied to the airflow on the inclined surface 510 is reduced, and the decrease in flow velocity of the main stream ST1 can be suppressed.
  • the air flows downstream over the downstream end 512 of the upstream block 500A and moves onto the inclined surface 510 of the downstream block 500B.
  • the entire inclined surface 510 of the downstream block 500B is exposed toward the upstream block 500A, and the downstream end 512 is the highest among the upstream blocks 500A. Due to the height difference between the downstream end 512 of the upstream block 500A and the upstream end 511 of the downstream block 500B, the airflow continuously flowing above the upstream block 500A and the downstream block 500B is An air vortex E is generated near the upper side of the upstream end 511 of the side block 500B.
  • the upstream end 511 of the downstream block 500B has a smaller distance from the target surface than the downstream end 512 of the upstream block 500A. Therefore, the air flowing out of the downstream end 512 of the upstream block 500A easily moves to the inclined surface 510 of the downstream block 500B without interfering with the upstream end 511 of the downstream block 500B. Furthermore, since the gap 540 between the upstream block 500A and the downstream block 500B is extremely narrow, the air flowing from the upstream block 500A to the downstream block 500B is suppressed from flowing into the gap 540.
  • each block row 501 the air repeats the movement described above, so that the air moves continuously like bouncing on the inclined surfaces 510 of two or more blocks 500 arranged in the first direction. Rather than moving from upstream end 511 to downstream end 512 at each ramp 510 , air moves from a location downstream of upstream end 511 to downstream end 512 . As a result, the movement distance of the air on each inclined surface 510 in the first direction is suppressed, so that the contact resistance exerted on the airflow on the inclined surface 510 is further reduced.
  • each block row 501 the contact resistance given to the airflow on the inclined surface 510 is relatively small, so the main flow ST1 smoothly flows in the first direction.
  • the flow vortex E suppresses a decrease in flow velocity.
  • the plurality of main streams ST1 flow smoothly and stably while being restrained from deviating from the first direction.
  • the plurality of substreams ST2 are airflows formed between the plurality of block rows 501 in plan view.
  • air flows from the upstream side to the downstream side in the first direction along fluid flow paths formed near the upper portions of the plurality of block gaps 550 arranged in the first direction.
  • the secondary stream ST2 is sandwiched between two main streams ST1 flowing on both left and right sides thereof.
  • the block gaps 550 are wider than the fine grooves 520, and the air vortex E does not occur in the block gaps 550, resulting in a flow velocity difference between the side stream ST2 and the main stream ST1. That is, since the side stream ST2 and the main stream ST1 on both left and right sides of the side stream ST2 have different flow velocities, the side stream ST2 is prevented from deviating from the first direction.
  • the surface-processed sheet 200 air flows in the first direction due to the plurality of main stream ST1 and substream ST2, and different flow velocity distributions occur in the second direction, which is the span direction. That is, in the laminar flow boundary layer on the surface-treated sheet 200, flow velocity stripes are formed in which relatively low-speed layers and high-speed layers are alternately arranged. The momentum of the airflow flowing in the first direction over the surface-treated sheet 200 is diffused in the spanwise direction. As a result, the growth of the turbulent flow region can be delayed as compared with the case where the uniform flow flows on the surface-processed sheet 200 .
  • the plurality of main flows ST1 and substreams ST2 can move smoothly and stably in the first direction.
  • the propeller fan 100 is provided with the surface treatment sheet 200 on the plurality of blades 120, so that the air resistance during rotation is suppressed, and the propeller fan 100 can rotate smoothly, and can accurately blow higher-speed wind in the first direction. can.
  • the surface-finished structure 201 is designed to target two flows among a plurality of flows having different flow velocities.
  • the electric fan 1 can generate a plurality of airflows with different flow velocities for each operation mode.
  • the operation mode of the fan 1 is "fan strong” with a high wind speed (eg, 15 m/s), "fan medium” with a medium wind speed (eg, 10 m/s), and low wind speed (eg, 4 m/s). ), including "fan fan weak" etc.
  • the surface-finished structure 201 is designed for two target flows corresponding to two of these multiple operation modes.
  • the surface-processed structure 201 has fine grooves 520 and block gaps 550 as two types of grooves for controlling airflow. Microgrooves 520 are designed for the faster of the two symmetrical flows. Block gap 550 is designed for the slower of the two symmetrical flows. As a result, the surface-processed structure 201 can smoothly send out the airflow in the same manner as in the above-described embodiment, regardless of which of the two operation modes the electric fan 1 is operating.
  • Example 1 A design example of the surface-processed structure 201 in Example 1 will be described.
  • 10A is a perspective view of the surface-processed sheet 200 according to Example 1.
  • FIG. 10B is a table showing the relationship between the surface-processed sheet 200 and the symmetrical flow in Example 1.
  • FIG. 10C is a table showing dimensions of the surface processed sheet 200 according to Example 1.
  • FIG. 10D is a front view of the surface processed sheet 200 according to Example 1.
  • FIG. 10E is a side view of the surface processed sheet 200 according to Example 1.
  • the surface-processed structure 201 of Example 1 has the same basic structure as the above embodiment.
  • the surface-processed structure 201 of this example has the airflow of “strong fan” (flow rate of 15 m/s) and the airflow of “weak fan” (flow rate of 4 m/s) among the operation modes of the electric fan 1. is designed in the following procedure.
  • the target value of the pitch P for forming the grooves is determined in accordance with the target flow having the faster flow velocity out of the two target flows.
  • the target value of the pitch P1 of the fine grooves 520 is determined according to the airflow of "fan strong". As shown in FIG. 12D, the pitch P1 is equal to the sum of the groove width W1 of one fine groove 520 and the length of one protrusion 530 in the second direction (that is, the groove interval G1).
  • the target value of the pitch P can be calculated by the following (Equation 1) based on the relationship with the target flow.
  • P P'*v/u (Equation 1)
  • P' is the dimensionless pitch P
  • P' 15 to 30 in this example.
  • v is the kinematic viscosity coefficient, which in this example is the kinematic viscosity coefficient of 20° C. air (15.01 ⁇ 10 ⁇ 6 (m/s)).
  • u is the frictional velocity of the target flow in the surface-finished structure 201, which is 15 (m/s) of the "fan-strong" flow velocity in this example.
  • the target value of the pitch P1 of the fine grooves 520 is calculated to be in the range of 15 to 30 ( ⁇ m) based on (Equation 1).
  • the target value of the pitch P for forming the grooves is determined in accordance with the target flow having the lower velocity among the two target flows.
  • the target value of the pitch P2 of the block gaps 550 is determined according to the airflow of "fan weak". As shown in FIG. 12D, the pitch P2 is equal to the sum of the groove width W2 of one block gap 550 and the length of one block 500 in the second direction (that is, the groove gap G2).
  • the target value of the pitch P2 of the block gaps 550 is calculated based on (Equation 1).
  • u is the flow velocity of 4 (m/s) for "weak fan”.
  • the target value of the pitch P2 of the block gaps 550 is calculated to be in the range of 56 to 112 ( ⁇ m).
  • ⁇ Third step Quantity determination of fine grooves 520
  • the number of microgrooves 520 to be provided in each block 500 is determined.
  • the number of fine grooves 520 provided in each block 500 is at least three, more preferably five or more.
  • each block 500 is provided with five microgrooves 520 in this example.
  • ⁇ Fourth step determination of size of fine groove 520
  • a groove width W1 of each fine groove 520 is determined.
  • one fine groove 520 and one protrusion 530 are arranged side by side in the second direction in one pitch P1.
  • the groove width W1 is relatively large and the groove interval G1 is relatively small, the proportion of the fine grooves 520 on the inclined surface 510 of the block 500 is increased, so that the frictional resistance to the fluid flow can be easily suppressed.
  • the groove width W1 is larger than the groove interval G1.
  • the width of each of the plurality of fine grooves 520 in the second direction is greater than the width of each of the plurality of protrusions 530 in the second direction.
  • the plurality of protrusions 530 provided on each block 500 includes two first protrusions forming both ends 513 of the upper surface of the block 500 in the second direction, and a plurality of second protrusions different from the two first protrusions. including the part. In other words, the plurality of second protrusions are arranged between the two first protrusions.
  • a boundary region BR sandwiched between the main stream ST1 and the side stream ST2 is formed above each first convex portion.
  • the boundary region BR is a region where the flow velocity changes along the second direction so that the main stream ST1 and the side stream ST2 are switched.
  • the boundary region BR suppresses mutual interference between the main stream ST1 and the side stream ST2, and allows the entire air stream to flow stably.
  • the boundary region BR is preferably narrow.
  • the size of the boundary region BR depends on the size of the wall width G10, which is the length of each first protrusion in the second direction. From this point of view, the wall width G10 is less than the groove width W1 of the fine groove 520. As shown in FIG.
  • the wall width G10 is equal to or greater than the thickness of the second protrusion (groove interval G1). That is, the width in the second direction of each of the two first protrusions is greater than or equal to the width of each of the plurality of second protrusions in the second direction.
  • the pitch P1 is determined to be 15 (ms) within the range of 15 to 30 ( ⁇ m), which is the target value of the pitch P1 determined in the first step.
  • the groove width W1 is determined to be 10 (ms) and the groove interval G1 is determined to be 5 (ms).
  • the wall width G10 is determined to be 5 (ms), the same as the groove interval G1.
  • the aspect ratio of the groove (that is, the ratio of the height H to the width W of the groove) should be suitably designed.
  • the grooves to be designed in this example are the fine grooves 520 and the block gaps 550 .
  • the height H can be calculated by the following (Equation 2).
  • H H'*v/u (Equation 2)
  • H' is the dimensionless height of H.
  • v and u are the kinematic viscosity coefficient and the friction velocity as in (Equation 1).
  • the aspect ratio of the groove (that is, height H/groove width W) is in the range of 0.5 to 0.7 from the viewpoint of reducing fluid resistance.
  • the groove shape which is the vertical cross-sectional shape of the fine groove 520, is a rectangular shape when viewed from the first direction.
  • the aspect ratio (that is, height H1/groove width W1) of the fine grooves 520 was determined to be 0.5. do.
  • the height H1 of the fine groove 520 can be calculated by multiplying the groove width W1 by 0.5. Since the groove width W1 is 10 (ms), the height H1 is determined to be 5 (ms).
  • the length of the block 500 in the second direction (that is, the groove interval G2) can be calculated.
  • the groove interval G2 is determined to be 80 ( ⁇ m) corresponding to the five fine grooves 520 and the six protrusions 530 provided on the block 500. As shown in FIG. 10C, in this example, the groove interval G2 is determined to be 80 ( ⁇ m) corresponding to the five fine grooves 520 and the six protrusions 530 provided on the block 500. As shown in FIG.
  • a value that satisfies the following first and second conditions is determined as the pitch P2.
  • the pitch P2 is a value that satisfies the condition that "the groove width W2 of the block gap 550 is larger than the groove width W1 of the fine groove 520". This condition is synonymous with the width of each of the plurality of fine grooves 520 in the second direction being less than the width of the block gap 550 in the second direction.
  • the groove width W2 corresponds to the difference between the pitch P2 and the groove interval G2. In other words, the pitch P2 should be a value larger than the sum of the groove interval G2 and the groove width W1.
  • the pitch P2 When the pitch P2 satisfies the first condition, a flow velocity difference is likely to occur between the main stream ST1 caused by the fine grooves 520 and the side stream ST2 caused by the block gaps 550 .
  • the pitch P2 since the groove interval G2 of the block gap 550 is 80 ( ⁇ m) and the groove width W1 of the fine groove 520 is 10 (ms), the pitch P2 should be larger than 90 ( ⁇ m).
  • the pitch P2 is a value that satisfies the condition that "the groove width W2 of the block gap 550 is smaller than the sum of the groove widths W1 of the plurality of fine grooves 520 provided in one block 500".
  • This condition is synonymous with that the width of the block gap 550 in the second direction is less than the sum of the widths of the plurality of fine grooves 520 in the second direction.
  • the pitch P2 should be less than the sum of the groove spacing G2 and the sum of the groove widths W1 of the fine grooves 520 in one block 500 .
  • the region width of the main stream ST1 can be made wider than the region width of the side stream ST2, and the surface processing structure 201 effective in the high speed range can be realized as a whole.
  • the pitch P2 may be less than 130 (.mu.m), which is the sum of the groove widths W1 and 80 (.mu.m), which is the groove interval G2.
  • the range of the target value of the pitch P2 that satisfies the first condition and the second condition is 90 to 112 ( ⁇ m).
  • the pitch P2 may be determined within this range, it is assumed that the pitch P2 is determined to be 112 ( ⁇ m) as shown in FIG. 10C.
  • the groove width W2 of the block gap 550 is 32 ( ⁇ m).
  • the aspect ratio (that is, height H2/groove width W2) of the block gap 550 may also be 0.5 to 0.7 from the viewpoint of fluid resistance reduction as described above.
  • height H2/groove width W2 of block 500 increases in the first direction.
  • the aspect ratio of the block gap 550 also gradually increases from the upstream side toward the downstream side in the first direction. That is, unlike the fine grooves 520, the block gaps 550 change in aspect ratio in the first direction.
  • the aspect ratio at the upstream end of the block gap 550 should be 0.5 or less, and the aspect ratio at the downstream end of the block gap 550 should be 0.7 or more. I wish I had. That is, the aspect ratio of the block gap 550 may increase in the first direction so as to straddle the range of 0.5 to 0.7.
  • the height H2 of the block 500 should be determined so as to satisfy this condition.
  • the aspect ratio at the upstream end of the block gap 550 is determined by the aforementioned groove width W2 (32 ⁇ m) and the height H2 (that is, the minimum value Hmin) of the upstream end 511 of the block 500. be.
  • the minimum value Hmin of the block 500 should be 16 ( ⁇ m) or less so that this aspect ratio is 0.5 or less.
  • the aspect ratio at the downstream end of the block gap 550 is determined by the aforementioned groove width W2 (32 ⁇ m) and the height H2 (that is, maximum value Hmax) of the downstream end 512 of the block 500 .
  • the maximum value Hmax of the block 500 should be 22.4 ( ⁇ m) or more so that this aspect ratio is 0.7 or more.
  • the aspect ratio of the block gap 550 may have a lower limit of 0.3 and an upper limit of 2.5.
  • the minimum value Hmin of the block 500 is determined to be 10 ( ⁇ m) so that the aspect ratio at the upstream end of the block gap 550 is approximately 0.3.
  • the maximum value Hmax of the block 500 is determined to be 60 ( ⁇ m) so that the aspect ratio at the downstream end of the block gap 550 is approximately 1.85.
  • the aspect ratio of the block gap 550 increases from about 0.3 to about 1.85 in the first direction.
  • the height difference S of the inclined surface 510 is the difference between the maximum value Hmax and the minimum value Hmin, that is, 50 ( ⁇ m).
  • the inclination angle ⁇ of the inclined surface 510 is determined by the height difference S and the depth D of the inclined surface 510 . That is, the depth D of the inclined surface 510 may be determined by the height difference S of the inclined surface 510 and the inclination angle ⁇ .
  • the inclination angle ⁇ may be determined within the range of 6 degrees to 27 degrees. In this example, the inclination angle ⁇ is determined to be 14 degrees and the depth D is determined to be 100 ( ⁇ m).
  • the block 500 is elongated in the first direction in which the airflow flows.
  • the inclination angle ⁇ and/or the depth D the height difference S of the inclined surface 510 and the aspect ratio of the block gap 550 may be suitably designed.
  • ⁇ Seventh step determination of the size of the gap 540
  • a groove-shaped gap 540 extending in the second direction is formed between two blocks 500 adjacent in the first direction among the plurality of blocks 500 .
  • a gap 540 is provided between two blocks 500 adjacent in the first direction.
  • the groove width W3 is determined to be 40 ( ⁇ m) which is substantially equal to the height difference S (50 ⁇ m). That is, the height difference S of the block 500 on the upstream side in the first direction of the two blocks 500 is substantially equal to the width of the groove-like gap 540 in the first direction.
  • the surface-processed structure 201 Based on the design values (see FIG. 10C) determined in the first to seventh steps described above, the surface-processed structure 201 in which a plurality of blocks 500 are two-dimensionally arranged is manufactured.
  • the plurality of microgrooves 520 are arranged on the upper surface of the block 500 at a first pitch corresponding to a relatively high first flow velocity among the two different flow velocities.
  • a plurality of block gaps 550 are aligned on the upper surface of the block 500 with a second pitch corresponding to a second relatively slow flow velocity of the two different flow velocities.
  • the first pitch corresponding to the first flow velocity is the pitch P1 corresponding to the high-speed airflow of "Fan Strong”.
  • the second pitch corresponding to the second flow velocity is the pitch P2 corresponding to the low-speed airflow of "fan weak".
  • the surface-treated sheet 200 having the surface-treated structure 201 By attaching the surface-treated sheet 200 having the surface-treated structure 201 to, for example, the blades 120 of the electric fan 1, the following effects can be obtained.
  • the operation mode of the fan 1 is “fan strong”, a high-speed symmetrical flow flows along the surface treatment structure 201 . Since each fine groove 520 is designed for a high-speed symmetrical flow, each fine groove 520 effectively forms an air layer, thereby greatly suppressing the contact resistance to the main stream ST1.
  • the operation mode of the electric fan 1 is “weak electric fan”
  • a low-speed symmetrical flow flows along the surface treatment structure 201 . Since each block gap 550 is designed according to a low-speed symmetrical flow, each block gap 550 effectively forms an air layer, thereby greatly suppressing the contact resistance to the side stream ST2.
  • the surface-finished structure 201 is designed in accordance with the two operation modes of the electric fan 1. Therefore, the main stream ST1 and the secondary stream ST2 are used in both the "strong fan” and “weak fan” operation modes. contact resistance to at least one of is greatly suppressed. As a result, the airflow including the main stream ST1 and the secondary stream ST2 flows smoothly along the surface-processed structure 201 as a whole. Therefore, the surface-processed structure 201 can exert a friction-reducing effect over a wide flow velocity range of flowing air.
  • both ends 513 of the upper surface of the block 500 in the second direction are above the bottoms of the plurality of fine grooves 520 in the cross section of the block 500 extending along the plane perpendicular to the first direction.
  • each end 513 is positioned higher than the bottoms of the plurality of fine grooves 520 in a longitudinal section of the block 500 cut perpendicular to the first direction.
  • Each end portion 513 is a bank-like structure separating the fine groove 520 and the block gap 550 on the upper surface of the block 500 .
  • the height of each end 513 will be equal to or lower than the bottom of the fine groove 520.
  • the height difference at the boundary between the block 500 and the block gap 550 is smaller than when each end 513 is positioned higher than the bottom of the fine groove 520 .
  • the effect of increasing the flow velocity difference between the main stream ST1 and the side stream ST2 may weaken.
  • the upper end faces of the plurality of protrusions 530 form the outer surface of the block 500.
  • the outer surface of block 500 is an imaginary surface that extends along the highest portion of the upper surface of block 500 .
  • the second direction end portions 513 of the upper surface of the block 500 are flush with this outer surface.
  • both ends 513 are included in the upper end surfaces of the first protrusions on both ends of the block 500 in the second direction. This allows the main stream ST1 to flow smoothly along the flat outer surface of the block 500 while increasing the height difference at the boundary between the block 500 and the block gap 550 .
  • the top surface of block 500 may be a flat surface extending, for example, in the first direction and the second direction. Even in this case, a plurality of fine grooves 520 are provided on the upper surface of each block 500, and block gaps 550 are provided between two adjacent blocks 500, thereby achieving the same effect as described above.
  • FIG. 11A is a perspective view of a surface processed sheet 200 according to Example 2.
  • FIG. 11B is a table showing the relationship between the surface-processed sheet 200 and the target flow in Examples 2 and 3.
  • FIG. 11C is a table showing dimensions of surface processed sheets 200 according to Examples 2 and 3.
  • FIG. Differences from the first embodiment will be described below.
  • the surface-processed structure 201 of Example 2 has the same basic structure as the above embodiment.
  • the surface-processed structure 201 of this example has two operation modes of the fan 1: the airflow of “fan strong” (flow velocity 15 m/s) and the airflow of “fan medium” (flow velocity 10 m/s). is designed in the same procedure as in the first embodiment.
  • the target value of the pitch P1 of the fine grooves 520 is calculated to be in the range of 15 to 30 ( ⁇ m) in accordance with the "fan-strong" airflow.
  • ⁇ Second process determination of target value of pitch P corresponding to slow target flow
  • the target value of the pitch P2 of the block gaps 550 is determined in accordance with the airflow "in the electric fan".
  • u in (Equation 1) is the flow velocity 10 (m/s) "in the electric fan”.
  • the target value of the pitch P2 is calculated to be in the range of 22 to 45 ( ⁇ m).
  • each block 500 is provided with five fine grooves 520 .
  • ⁇ Fourth step determination of size of fine groove 520
  • the number of fine grooves 520, the groove width W1, the groove interval G1, and the wall width G10 are determined (see FIG. 11C).
  • the groove shape of the fine groove 520 is rectangular like the first embodiment.
  • the groove interval G2 is determined to be 80 ( ⁇ m) corresponding to the five fine grooves 520 and the six protrusions 530 provided on the block 500 . However, this groove interval G2 is larger than the target value of the pitch P2 of 22 to 45 ( ⁇ m).
  • the groove interval G2 that is, the size of the block 500 exceeds the target value of the pitch P2, and the block gap 550 is within the target value of the pitch P2. may not be placed in
  • the groove width W2 of the block gap 550 is determined by multiplying the groove width W1 of the fine groove 520 by a predetermined value.
  • the predetermined magnification is, for example, in the range of 1 to 5 (excluding 1).
  • 20 ( ⁇ m) obtained by doubling the groove width W1 is determined as the groove interval G2.
  • 100 ( ⁇ m), which is the sum of the groove interval G2 and the groove width W2 is determined as the pitch P2.
  • the height H2 of the block 500 may be determined so that the aspect ratio of the block gap 550 increases in the first direction and spans the range of 0.5 to 0.7. .
  • the minimum value Hmin of the block 500 is determined to be 10 ( ⁇ m) so that the aspect ratio at the upstream end of the block gap 550 is about 0.5.
  • the maximum value Hmax of the block 500 is determined to be 45 ( ⁇ m) so that the aspect ratio at the downstream end of the block gap 550 is about 2.2. Accordingly, as shown in FIG. 11C, the aspect ratio of the block gap 550 increases from about 0.5 to about 2.2 in the first direction.
  • the height difference S of the inclined surface 510 is the difference between the maximum value Hmax and the minimum value Hmin, that is, 35 ( ⁇ m).
  • the inclination angle ⁇ is determined to be 10 degrees and the depth D is determined to be 200 ( ⁇ m).
  • the groove width W3 is determined to be 30 (.mu.m) substantially equal to the height difference S (35 .mu.m).
  • a surface processing structure 201 in which a plurality of blocks 500 are two-dimensionally arranged is manufactured.
  • the plurality of fine grooves 520 are arranged at a first pitch corresponding to the first flow velocity
  • the plurality of block gaps 550 are arranged at a second pitch corresponding to the second flow velocity.
  • the first pitch corresponding to the first flow velocity is the pitch P1 corresponding to the "fan strong" high-speed airflow.
  • the second pitch corresponding to the second flow velocity is the pitch P2 corresponding to the medium-speed airflow "with fan".
  • the surface-processed structure 201 can exert a friction-reducing effect in a wide range of flow velocity of the inflowing air.
  • the end design of the block 500 is the same as that of the first embodiment.
  • FIG. 12A is a perspective view of a surface processed sheet 200 according to Example 3.
  • FIG. 12B is a front view of the surface processed sheet 200 according to Example 3.
  • FIG. 12C is an enlarged perspective view of the block 500 of Example 3 as seen from the downstream side. Differences from the first embodiment will be described below.
  • the surface-processed structure 201 of Example 3 has the same basic structure as the above-described embodiment, but differs in that the fine grooves 520 have a V-shaped groove shape. In the V-shaped fine groove 520, the groove width W1 gradually decreases downward.
  • the surface-processed structure 201 of this example has two operation modes of the fan 1: the airflow of "fan strong" (flow velocity 15 m/s) and the airflow of "fan medium” (flow velocity 10 m/s). is designed in the same procedure as in Example 2 (see FIG. 11B). As a result, design values similar to those of Example 2 are determined (see FIG. 11C). As in the second embodiment, the surface-processed structure 201 can exert a friction-reducing effect over a wide range of flow speeds of inflowing air.
  • the upper surface of the block 500 is the inclined surface 510, so the height H2 increases in the first direction.
  • Both ends 513 of the block 500 are at the same height as the outer surface of the block 500 and are included in the upper end surfaces of the protrusions 530 at both ends in the second direction.
  • the block 500 of this example differs from the above embodiment in the following points.
  • the fine groove 520 extends in the first direction with a constant groove width W1 on the inclined surface 510, as in the above embodiment.
  • the block 500 has a trapezoidal shape in which the upper side is shorter than the lower side when viewed from the first direction.
  • Both side surfaces of the block 500 in the second direction extend obliquely downward from both ends 513 of the upper surface of the block 500 .
  • both side surfaces of the block 500 in the second direction have an increasing angle of inclination with respect to the base material 202 toward the first direction. In other words, the slope of both sides of the block 500 becomes steeper toward the first direction and closer to the vertical plane.
  • the inclination angle of the side surfaces extending obliquely downward from the both ends 513 is about 45 degrees.
  • the inclination angle of the side surfaces extending obliquely downward from the end portions 513 is about 80 degrees. From the front surface 521 to the rear surface 522 of the block 500, the inclination angle of both sides of the block 500 gradually increases.
  • the block 500 has a rectangular shape extending with a constant width in the first direction, as in the above embodiment.
  • the length of the block 500 in the second direction increases as the height H2 of the block 500 increases in the first direction.
  • the block 500 has a trapezoidal shape that widens in the first direction in plan view.
  • the interval (that is, groove width W2) between two blocks 500 adjacent to each other in the second direction becomes narrower in the first direction, so that the side surfaces of each block 500 may connect to each other.
  • the bottom surface of the block gap 550 bulges upward at the portion where the two blocks 500 are connected, and the height difference between the top surface of the block 500 and the bottom surface of the block gap 550 may become smaller.
  • the propeller fan 100 of the electric fan 1 is provided with the surface-treated sheet 200, but the surface-treated sheet 200 may be provided on the surface of the object that comes into contact with the gas or liquid that is the fluid.
  • the surface-treated sheet 200 may be provided on the surface of the object that comes into contact with the gas or liquid that is the fluid.
  • the surface-treated sheet 200 may be provided on the inner surface of the hose for drainage or exhaust, the fluid flowing through the hose can flow smoothly in a desired direction.
  • the surface-processed structure 201 can be easily and accurately provided on the object by installing the surface-processed sheet 200 on the object surface.
  • surface textured structure 201 may be formed directly on the surface of an object such as propeller fan 100 .
  • At least one of the plurality of blocks 500 may not have the plurality of fine grooves 520 formed on the inclined surface 510 .
  • FIG. 15A is a schematic plan view of a surface-treated sheet 200 according to an eleventh modification.
  • FIG. 15B is a schematic front view of surface-treated sheet 200 according to the eleventh modification.
  • each of the plurality of blocks 500 may be provided with the upstream end 511 on the base material 202 so as to have a triangular shape when viewed from the side.
  • the two or more blocks 500 aligned in the first direction in each block row 501 may have a mountain shape extending in the first direction when viewed from the side.
  • each of the plurality of blocks 500 may have a plate shape extending obliquely upward along the first direction from the base material 202 .
  • each of the plurality of blocks 500 may have an arcuate or parabolic shape on the substrate 202 when viewed from the side.
  • the inclined surface 510 in each of the plurality of blocks 500, may be curved in an arc shape or a parabolic shape when viewed from the side.
  • an inclined or curved surface extending from the upstream end 511 at the front end of the block 500 to the downstream end 512 at the upper end of the block 500 functions as the inclined surface 510 .
  • the inclined or curved surface extending from the downstream end 512 to the rear end of the block 500 forms the rear surface 522 of the block 500 .
  • a plurality of blocks 500 may be arranged in a staggered manner as shown in the seventh modification of FIG. 14A.
  • multiple blocks 500 make up multiple block rows 502 .
  • Each of the plurality of block rows 502 consists of two or more blocks 500 arranged in the second direction.
  • a plurality of block rows 502 are arranged side by side in the first direction. Of the two plurality of block rows 502 adjacent in the first direction, one block row 502 is shifted in the second direction by half the block 500 from the other block row 502 .
  • the plurality of inclined surfaces 510 of the plurality of blocks 500 are arranged on one line V extending in the first direction.
  • a line V passing through the left or right part of one block 500 is the right part of the block 500 included in each block row 502 in all block rows 502 in plan view. Or go through the left part. That is, in plan view, line V passes through inclined surfaces 510 of blocks 500 in all block rows 502 .
  • the air directed toward the surface-processed sheet 200 is branched into a plurality of main streams ST1 and a plurality of sub-streams ST2 as follows.
  • Air directed toward the left or right portion of each block 500 flows in a first direction along a corresponding line V, respectively.
  • the air continuously flows along the plurality of inclined surfaces 510 to form a plurality of main flows ST1.
  • other air flows in the first direction alternately through the central portion of the inclined surface 510 and the block gaps 550 .
  • the block gaps 550 are wider than the fine grooves 520, and the block gaps 550 do not generate the air vortex E, so that a plurality of side streams ST2 having different flow velocities from the main stream ST1 are formed.
  • a plurality of main streams ST1 and a plurality of substreams ST2 are alternately arranged in the second direction, so that the flow flows in the first direction on the surface-treated sheet 200.
  • the momentum of the airflow is spread in the spanwise direction. Therefore, the plurality of main streams ST1 and substreams ST2 can smoothly and stably move in the first direction, and higher-speed wind can be accurately blown in the first direction.
  • the plurality of blocks 500 may have different shapes in multiple patterns, or may be randomly arranged.
  • the number and range of blocks 500 through which the line V passes differ depending on the position in the second direction.
  • the air flows along the line V if the number or range of the blocks 500 through which the line V passes is large, the air flows smoothly to form the main stream ST1.
  • the air flows along the line V if the number or range of the blocks 500 through which the line V passes is small, a side stream ST2 having a flow velocity different from that of the main stream ST1 is formed.
  • the plurality of blocks 500 have different shape patterns or are randomly arranged, a plurality of main streams ST1 and a plurality of side streams ST2 are formed, and the main stream ST1 and the side streams ST1 are formed.
  • the formation position of ST2 varies in the second direction. Therefore, in the eighth modified example (see FIG. 14B), as in the above-described embodiment, the plurality of main stream ST1 and substream ST2 can move smoothly and stably in the first direction, and a higher speed wind can Air can be blown in a precise direction.
  • a plurality of blocks 500 long in the second direction may form one block row 501 aligned in the first direction.
  • the air flowing toward the surface-processed sheet 200 continuously flows along the inclined surfaces 510 of the plurality of blocks 500 forming the block row 501, thereby forming the main stream ST1 as a whole.
  • the first direction in which two or more blocks 500 forming each block row 501 are arranged may extend in a curved line. That is, in each block row 501, two or more blocks 500 may be continuously arranged in a curved line in plan view. In this case, each block 500 may be arranged so that its front side faces the upstream side in the first direction and the rear side faces the downstream side in the first direction. Thereby, in each block 500, the inclined surface 510 extends so as to incline upward in the first direction, and the plurality of fine grooves 520 extend substantially parallel to the first direction and linearly.
  • the air directed toward the surface-processed sheet 200 is branched into a plurality of main stream ST1 and a plurality of substreams ST2 and flows in the first direction, so that the same effects as in the above embodiment can be obtained. Play.
  • the plurality of main stream ST1 and the plurality of side streams ST2 also flow in a curved shape corresponding to the fact that the first direction is curved. In this way, by using the function of the surface-processed structure 201 to flow air in a certain direction, it is possible to easily blow air in a desired direction.
  • each of the plurality of blocks 500 may be diamond-shaped in a plan view, and these diamond-shaped blocks 500 may be arranged in a lattice.
  • a gap 560 extending obliquely with respect to the first direction and the second direction is formed between two blocks 500 adjacent to each other.
  • the number of blocks 500 through which the line V passes differs depending on the position in the second direction.
  • the air flows over a certain distance the more blocks 500 the air passes through, the higher the flow velocity of the air for the following reasons.
  • contact resistance is less likely to occur in the air. That is, the air flowing through the gap 560 can easily move without reducing its flow velocity.
  • a plurality of main flows ST1 are formed by the air flowing through the left or right portion of the block 500, and a plurality of substreams ST2 are formed by the air flowing through the central portion of the block 500.
  • a plurality of main streams ST1 and a plurality of side streams ST2 are alternately arranged in the second direction. Therefore, the plurality of main streams ST1 and secondary streams ST2 can smoothly and stably move in the first direction, and higher-speed wind can be blown accurately in the first direction.
  • the plurality of fine grooves 520 may extend downward in a front view and may have a shape that narrows downward.
  • the plurality of protrusions 530 may have a shape that extends so as to curve upward when viewed from the front and that the width narrows upward.
  • the plurality of protrusions 530 may protrude upwardly to a greater height as they are closer to the center in the second direction.
  • Each of the plurality of protrusions 530 may have a shape in which the height increases toward the downstream side in the first direction. Even if the inclined surface 510 is configured in this way, it can exhibit the same function as the inclined surface 510 similar to that of the above-described embodiment.
  • the apexes of the plurality of protrusions 530 have relatively small surface roughness.
  • the bottoms of the plurality of fine grooves 520 have relatively large surface roughness.
  • the air flowing into the inclined surface 510 can easily flow over the protrusions 530 and can be made less likely to flow through the fine grooves 520 .
  • the surface roughness of the protrusions 530 may be relatively small, and the surface roughness of the fine grooves 520 may be relatively large.
  • the case where the fine grooves 520 are provided on the inclined surface 510 of the block 500 is exemplified.
  • block 500 may not have ramp 510 .
  • Microgrooves 520 may not be provided in block 500 .
  • the textured structure 201 includes a plurality of first grooves aligned in the second direction and second grooves extending parallel to the first grooves, narrower than the first grooves and shallower than the first grooves. You may prepare.
  • a plurality of second grooves may be aligned between adjacent first grooves.
  • the first grooves function similarly to the block gaps 550 and the second grooves function similarly to the fine grooves 520, so that a wide range of flow speeds of the inflowing air causes friction. A reduction effect can be exhibited.
  • a surface-treated structure includes A three-dimensional object arranged on a target plane, which is the surface of the target object, comprising a plurality of blocks arranged in a first direction parallel to the target plane, each of the plurality of blocks has an inclined surface extending from the upstream side toward the downstream side in the first direction so that the distance from the target surface gradually increases;
  • the plurality of inclined surfaces of the plurality of blocks are arranged on one line extending in the first direction.
  • Two blocks adjacent in the first direction among the plurality of blocks are an upstream block and a downstream block located downstream of the upstream block, An upstream end portion of the inclined surface in the downstream block in the first direction is located at a smaller distance from the target surface than a downstream end portion in the first direction of the upstream block.
  • Each of the plurality of blocks has a plurality of fine grooves provided on the inclined surface, The plurality of fine grooves are spaced apart from each other and arranged in a second direction orthogonal to the first direction, and extend from the upstream side toward the downstream side in the first direction.
  • the plurality of fine grooves extend from an upstream end to a downstream end of the inclined surface in the first direction.
  • the plurality of blocks are two-dimensionally arranged side by side in the first direction and the second direction;
  • a groove-shaped block gap extending in a direction crossing the second direction is formed between two blocks among the plurality of blocks that are adjacent in the second direction,
  • the width of each of the plurality of fine grooves in the second direction is smaller than the width of the gap in the second direction.
  • the plurality of blocks are arranged such that a plurality of the gaps arranged continuously in the first direction are formed;
  • the plurality of gaps form one fluid channel extending in the first direction.
  • a surface-treated structure includes a plurality of first grooves aligned in the second direction; a second groove extending parallel to the first groove, narrower than the first groove and shallower than the first groove; with A plurality of the second grooves are aligned between the adjacent first grooves.
  • the aspect ratio of the first grooves is smaller than the aspect ratio of the second grooves.
  • a surface-treated sheet according to one aspect of the present disclosure is provided on a substrate positionable on the target surface.
  • a propeller fan according to one aspect of the present disclosure, A rotating shaft and wings extending outward from the rotating shaft, The surface textured structure is provided on the surface of the wing, The first direction is the direction from the leading edge side to the trailing edge side of the blade.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

表面加工構造は、対象物の表面である対象面上に配置された立体物であり、前記対象面と平行な第一方向に並ぶ複数のブロックを備える。前記複数のブロックの各々は、前記第一方向の上流側から下流側に向かって、前記対象面からの距離が漸増するように延びる傾斜面を有する。前記複数のブロックが有する複数の前記傾斜面は、前記第一方向に延びる一つの線上に並ぶ。前記複数のブロックの各々は、前記傾斜面に設けられた複数の微細溝を有する。前記複数の微細溝は、互いに間隔を空けて前記第一方向と直交する第二方向に並び、且つ前記第一方向の上流側から下流側に向かって延びる。前記複数の微細溝は、前記傾斜面における前記第一方向の上流側端部から下流側端部まで同じ深さで延びる。

Description

表面加工構造、表面加工シート、及びプロペラファン
 本開示は、表面加工構造、表面加工シート、及びプロペラファンに関する。本願は、2021年4月16日に日本に出願された特願2021-69498号と、2022年2月9日に日本に出願された特願2022-18395号とに基づき優先権を主張し、その内容をここに援用する。
 近年、生物のもつ多彩な機能を模倣して利用する技術、いわゆるバイオミメティクス(biomimetics)に注目が集まっている。そして、そのような生体模倣技術を電気製品等に採用するモノづくりの一例としてネイチャーテクノロジー(登録商標)が知られている。
 回転可能な羽根の表面を加工する手法として、ディンプル加工が知られている。特許文献1が例示する発電機のように、風や流水などの流体を受けて回転する羽根を利用した装置では、回転する羽根にディンプルを設けることで、羽根の表面積を増加させると共に風の抵抗を強めて、羽根の回転を上げることができる。
特開2003-3945号公報
 しかしながら、例えば送風機やファンのように、原動機の動力を受けた羽根の回転によって流体を移動させる装置では、回転する羽根にディンプルを設けると、流体を効率的に移動できないおそれがある。具体的には、ディンプルによって羽根の表面積が増加して流体の抵抗が強まることで、羽根の回転負荷が大きくなり、羽根の円滑な回転を妨げるおそれがある。また、羽根の回転時にディンプルが羽根の表面に乱気流を生じ、その乱気流が流体の一定方向への移動を妨げるおそれがある。
 本開示の一態様は、流体が効率的に移動できる表面加工構造、表面加工シート、及びプロペラファンを提供することを目的とする。なお、本開示の一態様は、蝶鱗粉や魚鱗の構造に着目した技術的思想を含んでいるため、バイオミメティクスに関係するものである。
 本開示の一態様に係る表面加工構造は、対象物の表面である対象面上に配置された立体物であり、前記対象面と平行な第一方向に並ぶ複数のブロックを備え、前記複数のブロックの各々は、前記第一方向の上流側から下流側に向かって、前記対象面からの距離が漸増するように延びる傾斜面を有し、前記複数のブロックが有する複数の前記傾斜面は、前記第一方向に延びる一つの線上に並び、前記複数のブロックの各々は、前記傾斜面に設けられた複数の微細溝を有し、前記複数の微細溝は、互いに間隔を空けて前記第一方向と直交する第二方向に並び、且つ前記第一方向の上流側から下流側に向かって延び、前記複数の微細溝は、前記傾斜面における前記第一方向の上流側端部から下流側端部まで同じ深さで延びる。
 本開示の一態様に係る表面加工構造は、対象物の表面である対象面上に配置された立体物であり、前記対象面と平行な第一方向と前記第一方向に直交する第二方向とに並ぶ複数のブロックを備え、前記複数のブロックの各々は、前記第一方向の上流側から下流側に向かって、前記対象面からの距離が漸増するように延びる傾斜面を有し、前記複数のブロックが有する複数の前記傾斜面は、前記第一方向に延びる一つの線上に並び、前記複数のブロックの各々は、前記傾斜面に設けられた複数の微細溝を有し、前記複数の微細溝は、互いに間隔を空けて前記第二方向に並び、且つ前記第一方向の上流側から下流側に向かって延び、前記複数のブロックのうちで前記第二方向に隣り合う二つのブロックの間には、前記第一方向に延びる溝状の隙間が形成され、前記複数の微細溝の各々における前記第二方向の幅は、前記隙間における前記第二方向の幅よりも小さく、前記複数のブロックは、前記隙間が前記第一方向に延びる一つの流体流路を構成するように配置され、前記傾斜面に設けられた前記複数の微細溝と、前記流体流路とが、前記第二方向に沿って交互に並ぶように配置される。
 本開示の一態様に係る表面加工シートは、前記表面加工構造が前記対象面上に設置可能な基材に設けられる。
 本開示の一態様に係るプロペラファンは、回転軸部と、前記回転軸部から外方に延びる翼とを備え、前記表面加工構造は、前記翼の表面上に設けられ、前記第一方向は、前記翼の前縁側から後縁側に向かう方向である。
プロペラファンを備えた扇風機の一部分解側面図である。 プロペラファンを正面側から見た斜視図である。 プロペラファンの正面図である。 図3におけるB-B線矢視方向断面図である。 翼の前面を部分的に拡大した図である。 表面加工シートを部分的に拡大した斜視図である。 図5に示す破線枠内を部分的に拡大した斜視図である。 一つのブロックを拡大した斜視図である。 図6に示す破線枠内を部分的に拡大した斜視図である。 表面加工シートを部分的に拡大した模式的な平面図である。 図8に示す表面加工シートの模式的な正面図である。 図8に示す表面加工シートの模式的な側面図である。 実施例1に係る表面加工シートの斜視図である。 実施例1における表面加工シートと対象流との関係を示す表である。 実施例1に係る表面加工シートの寸法を示す表である。 実施例1に係る表面加工シートの正面図である。 実施例1に係る表面加工シートの側面図である。 実施例2に係る表面加工シートの斜視図である。 実施例2,3における表面加工シートと対象流との関係を示す表である。 実施例2,3に係る表面加工シートの寸法を示す表である。 実施例3に係る表面加工シートの斜視図である。 実施例3に係る表面加工シートの正面図である。 実施例3のブロックを下流側から視た拡大斜視図である。 第一変形例に係る表面加工シートの模式的な側面図である。 第二変形例に係る表面加工シートの模式的な側面図である。 第三変形例に係る表面加工シートの模式的な側面図である。 第四変形例に係る表面加工シートの模式的な側面図である。 第五変形例に係る表面加工シートの模式的な側面図である。 第六変形例に係る表面加工シートの模式的な側面図である。 第七変形例に係る表面加工シートの模式的な平面図である。 第八変形例に係る表面加工シートの模式的な平面図である。 第九変形例に係る表面加工シートの模式的な平面図である。 第十変形例に係る表面加工シートの模式的な平面図である。 第十一変形例に係る表面加工シートの模式的な平面図である。 第十一変形例に係る表面加工シートの模式的な正面図である。
 以下、本開示の実施形態について、図面を参照しつつ説明する。なお、図面については、同一又は同等の要素には同一の符号を付し、重複する説明は省略する。
[扇風機1]
 扇風機1を説明する。図1は、プロペラファン100を備えた扇風機1の一部分解側面図である。図1に示すように、扇風機1は、前ガード2、後ガード3、本体部4、スタンド5、及びプロペラファン100を含む。本体部4は、スタンド5によって支持されており、内部に図示しない駆動モータが収容されている。本体部4の前面には、駆動モータの回転軸4Aが設けられている。プロペラファン100の回転軸部110(図2等参照)が、スクリューキャップ6を用いて回転軸4Aに固定される。
 前ガード2及び後ガード3は、本体部4に固定されたプロペラファン100を囲うように設けられる。後ガード3は、プロペラファン100の背面側(負圧面側)を覆うように本体部4に、固定される。前ガード2は、プロペラファン100の正面側(正圧面側)を覆うように、後ガード3に固定される。スタンド5は、床面等に扇風機1を載置するために設けられ、本体部4を支持する。スタンド5の所定位置には、扇風機1のオン/オフや運転状態の切換え等を行なうための図示しない操作部が設けられている。スタンド5は、扇風機1の首ふり機能及び高さ調節機能を有してもよい。
[プロペラファン100]
 プロペラファン100を説明する。図2は、プロペラファン100を正面側から見た斜視図である。図3は、プロペラファン100の正面図である。図2及び図3に示すように、プロペラファン100は、回転軸部110及び複数の翼120を有する。回転軸部110は、プロペラファン100のボスハブであり、有底略円筒状の形状を有する。複数の翼120の各々は、滑らかに曲成された板状である。複数の翼120は、回転軸部110の外周面から、プロペラファン100の径方向外側へ向けて突出する。複数の翼120は、回転軸部110の周方向に沿って等間隔に並び、且つ互いに同一の形状である。本例のプロペラファン100は、7枚の翼120を有する。
 プロペラファン100は、上述した駆動モータに駆動されて、回転軸部110の軸線を回転中心として、正面視で反時計回り方向である回転方向Aに回転する。即ち複数の翼120が回転方向Aに回転する。これにより、プロペラファン100の背面側である吸込側から、プロペラファン100の正面側である噴出側に向けて空気が流れて、扇風機1の前方に向けて送風される。
 複数の翼120の詳細構造を説明する。図4Aは、図3におけるB-B線矢視方向断面図である。図4Bは、翼120の前面125を部分的に拡大した図である。本例では、複数の翼120が互いに同じ形状であるため、一つの翼120について説明する。図2~図4Aに示すように、翼120は、前縁部121、後縁部122、及び周縁部123を含む。
 前縁部121は、翼120における回転方向Aの下流側にある端縁部である。前縁部121は、その径方向の中間部分が回転方向Aの上流側へ突出するように湾曲している。後縁部122は、翼120における回転方向Aの上流側にある端縁部である。後縁部122は、その径方向の中間部分が回転方向Aの上流側へ突出するように湾曲している。周縁部123は、翼120において回転方向Aに沿って延びる端縁部である。周縁部123は、前縁部121の径方向外側の端部と、後縁部122の径方向外側の端部とを結ぶ。翼120は全体として、径方向外側へ向かうに従って、前縁部121と後縁部122との距離が大きくなっている。
 プロペラファン100が回転方向Aに回転することにより、翼120では気流が前縁部121から後縁部122へ向かって流れる。翼120の前面125は、凹状に湾曲した正圧面である。翼120の背面126は、凸状に湾曲した負圧面である。上記の構成において、プロペラファン100が回転すると、前縁部121から翼120の翼面上へ流れ込む空気は、前縁部121から概ね周方向に流れ、後縁部122から流出する。
 プロペラファン100では、翼120の翼面である前面125及び背面126に、表面加工シート200が設置されている。本例では、前面125の略全面と背面126の略全面とに、表面加工シート200が夫々貼り付けられている。これに代えて、表面加工シート200は前面125及び背面126の一方に設置されてもよい。表面加工シート200は、前面125の一部に設置されてもよいし、背面126の一部に設置されてもよい。
 図4Bに示すように、表面加工シート200は、翼120の前面125と面接触するように貼り付けられ、前面125に沿って延びる。本例では、前縁部121側から後縁部122側に向かう方向、つまり回転する翼120に対して空気を相対的に流す方向が、後述の第一方向に対応する。翼120における径方向が、後述の第二方向に対応する。
[表面加工シート200]
 表面加工シート200を説明する。図5は、表面加工シート200を部分的に拡大した斜視図である。図6は、図5に示す破線枠内を部分的に拡大した斜視図である。以下では、図5における上側、下側、左下側、右上側、左上側、右下側を、夫々、表面加工シート200の上側、下側、前側、後側、左側、右側と定義する。図5の例は、表面加工シート200の一部であり、前後方向に2mm及び左右方向に2mmである。図6では、複数のブロック500のうち、左前側にある一つのブロック500のみに微細溝520を図示している。
 図5及び図6に示すように、表面加工シート200では、表面加工構造201が、対象物の表面である対象面上に設置可能な基材202に設けられている。以下では、翼120の前面125上に設置される表面加工シート200を説明するため、翼120が対象物であり、且つ前面125が対象面である。
 本例の表面加工シート200は、薄型軽量の可撓性シートである。具体的には、表面加工シート200の厚みは、2000μm未満であり、一例として100μm程度である。基材202は、対象面に接着又は溶着によって固定できる材質で形成されればよく、例えば、樹脂、ゴム及び金属からなる群より選択される少なくとも1種を含む。樹脂は、例えば、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、アクリロニトリル・ブタジエン・スチレン(ABS)及びウレタンからなる群より選択される少なくとも1種を含む。ゴムは、例えば、シリコンゴムを含む。金属は、例えば、アルミニウム及びステンレス鋼からなる群より選択される少なくとも1種を含む。基材202は、対象面の表面形状に合わせて変形可能な可撓性を有するため、対象面と隙間なく面接触できる。
 表面加工構造201は、複数のブロック500を有する。複数のブロック500は、対象物の表面である対象面上に配置された立体物であり、対象面と平行な第一方向に並ぶ。第一方向は、直線方向でもよいし、曲線方向でも良い。本例では、表面加工構造201が基材202上に形成されている。複数のブロック500は、基材202を介して対象面上に配置される。表面加工シート200の前後左右方向は、対象面の面方向と略平行をなす。表面加工シート200の上側は、対象面とは反対側を向く。表面加工シート200の下側は、対象面側を向く。
 複数のブロック500は、複数のブロック列501を構成する。複数のブロック列501の各々は、第一方向に並んだ二以上のブロック500からなる。複数のブロック列501は、第一方向と直交する第二方向に並んで配置されている。第二方向は、直線方向でもよいし、曲線方向でも良い。従って複数のブロック500は、基材202上において、第一方向及び第二方向に並んで二次元配列される。
 プロペラファン100では、表面加工シート200の前側が前縁部121側を向き、且つ表面加工シート200の後側が前縁部121側を向くように、翼120の前面125上に取り付けられる。そのため、図5に示すように、表面加工シート200の後方向は、第一方向(図4B参照)と平行である。表面加工シート200の左右方向は、第二方向と平行である。
 図4Aに示すように、本例の翼120の翼面は、前縁部121側から後縁部122側に向かって、翼120の正面側に湾曲している。従って、図4B及び図5に示すように、表面加工シート200の上方向及び下方向は、夫々、翼120の正面方向及び背面方向に対して傾斜している。具体的には、表面加工シート200の上方向は、翼120の正面方向に対して、第一方向の上流側に傾斜している。
 図6に示すように、複数のブロック500の各々は、第一方向の上流側から下流側に向かって、対象面からの距離が漸増するように延びる傾斜面510を有する。傾斜面510は、ブロック500のうちで上側を向く面の少なくとも一部である。本例では、ブロック500の上面全体が、後方に向かって上側に傾いた傾斜面510をなす。
 複数のブロック500が有する複数の傾斜面510は、第一方向に延びる一つの線V上に並ぶ。詳細には、複数のブロック列501の各々では、第一方向に延びる一つの線Vが、平面視でブロック列501を構成する全てのブロック500の傾斜面510を通る。線Vは、第一方向と平行に延びる仮想的な直線又は曲線である。図6の例では、後方向へ直線状に延びる線Vが、平面視でブロック列501内の全ブロック500を通る。
 複数のブロック500の詳細構造を説明する。図7Aは、一つのブロック500を拡大した斜視図である。図7Bは、図6に示す破線枠内を部分的に拡大した斜視図である。図7Aでは、ブロック500に設けられた微細溝520の図示を省略している。
 複数のブロック500は、基材202上に形成できる材料で作製されればよく、基材202と同じ材料でも作製されてもよいし、基材202とは異なる材料で作製されてもよい。複数のブロック500は、射出成形等の成形により作製されてもよいし、フライス加工、レーザー加工、エッチング等の除去加工により作製されてもよい。本例では、基材202の上面にエッチングによる微細加工を行って、互いに同じ形状の複数のブロック500が作製される。以下では、一つのブロック500について説明する。
 傾斜面510は、翼120の回転時に前面125に流れ込む空気と接触して、第一方向に流れる気流を生じさせる機能を有する。図7Aの例では、傾斜面510が空気をより長い距離に亘って第一方向に案内できるように、ブロック500は第一方向に長い直方体状である。傾斜面510は、第一方向の下流側に向かって高くなるように傾斜する平面である。
 傾斜面510は、前面125に流れ込む空気と十分に接触できるように、相対的に大きな面積を有する。表面加工シート200を平面視した場合に、表面加工シート200のうちで複数の傾斜面510の総面積が占める割合は、例えば全体の60%以上である。本例では、傾斜面510の第一方向の長さは、ブロック500の第一方向の長さである奥行Dに等しい。傾斜面510の第二方向の長さは、ブロック500の第二方向の長さと等しい。ブロック500の第二方向の長さは、後述のブロック隙間550の溝間隔G2と等しい。溝間隔G2は、互いに隣り合う二つのブロック隙間550間の距離である。
 傾斜面510は、第一方向における上流側端部511及び下流側端部512を含む。図7Aの例では、傾斜面510は、傾斜面510の前端にある上流側端部511から、傾斜面510の後端にある下流側端部512まで、直線的に傾斜する平面である。従って傾斜面510の高さH2は、上流側端部511で最小値Hminとなり、下流側端部512で最大値Hmaxとなる。つまり、対象面から傾斜面510までの距離は、上流側端部511で最小となり、下流側端部512で最大となる。
 傾斜面510の高さH2は、ブロック500の高さと等しい。上流側端部511の高さH2が小さいほど、第一方向の上流側からブロック500に流れ込む空気とブロック500の前面521との接触面積を小さくできる。本例では、上流側端部511の高さH2が最小値Hminであるため、この接触面積を抑制して空気をスムーズに傾斜面510上に移動できる。
 ブロック500では、傾斜面510の高低差と奥行Dとによって、対象面に対する傾斜面510の傾斜角度αが定まる。傾斜角度αが大きいほど、傾斜面510上を移動する空気を対象面から高く離れた位置に移動できる一方、空気と傾斜面510との接触圧が大きくなり、空気の流速が低下するおそれがある。傾斜角度αが小さいほど、傾斜面510上を移動する空気の流速低下を抑制できる一方、空気を対象面から高く離れた位置に移動できないおそれがある。かかる観点から、傾斜角度αは6度~27度の範囲内である。
 なお、傾斜面510のサイズ及び形状は、上記の例示に限定されない。例えば、傾斜角度αは、上述した6度~27度の範囲に限定されず、少なくとも0度よりも大きく且つ45度よりも小さければよい。
 図7Bに示すように、複数のブロック500の各々は、傾斜面510に設けられた複数の微細溝520を有する。換言すると、各ブロック500の上面は、複数の微細溝520を含む。複数の微細溝520は、互いに間隔を空けて第一方向と直交する第二方向に並び、且つ第一方向の上流側から下流側に向かって延びる。複数の微細溝520は、微細溝520の内部に比較的遅い空気の流れによる空気層を形成する機能を有する。その結果、微細溝520の上部付近を通過する空気は、微細溝520の内部に形成される空気層の表面をすべるように通過できる。つまり複数の微細溝520は、傾斜面510に沿って流れる空気と傾斜面510との接触面積を抑制することで、傾斜面510上の気流に与える接触抵抗を低減し、気流をスムーズに流すために設けられる。
 本例では、複数の微細溝520は、傾斜面510における第一方向の上流側端部511から下流側端部512まで同じ深さで延びる。複数の微細溝520のうちで互いに隣り合う二つの微細溝520の間には、第一方向に延びるレール状の凸部530が形成される。換言すると、各ブロック500の上面は、複数の微細溝520のうちで隣り合う二つの微細溝520の間に夫々設けられた複数の凸部530を含む。従って傾斜面510では、複数の凸部530と複数の微細溝520とが交互に並ぶ。傾斜面510に流れ込む空気は、複数の凸部530の上面に沿って第一方向に流れる。本例では、複数の微細溝520が互いに同じ形状であるため、一つの微細溝520について説明する。
 微細溝520の第二方向の長さは、溝幅W1である。溝幅W1が小さいほど、微細溝520の内部に空気層を形成しやすくなる一方、微細溝520の正確な作製が困難になり、且つ空気と傾斜面510との接触面積が大きくなる。溝幅W1が大きいほど、微細溝520の正確な作製が容易となる一方、微細溝520の内部に空気層を形成しにくくなり、微細溝520の上部付近を通過する空気が流入しやすくなる。微細溝520の内部に空気が流入すると、空気と微細溝520との接触面積に応じた摩擦抵抗が発生する。かかる観点から、微細溝520の溝幅W1は0.5μm~600μmの範囲内である。
 微細溝520の上下方向の長さは高さH1である。高さH1が小さいほど、微細溝520の正確な作製が容易になる一方、微細溝520の上部付近を通過する空気が微細溝520内に流入しやすくなる。高さH1が大きいほど、微細溝520内の空気層が深くなって空気層を形成しやすくなる一方、深くなりすぎると空気層が深い位置に形成され、微細溝520の上部が抵抗になると共に、微細溝520の正確な作製が困難となる。更に、高さH1が大きい場合、凸部530の横幅に対する高さが大きくなるため、凸部530の剛性が小さくなり撓み易くなるおそれがある。凸部530が撓むと、微細溝520内の空気層を崩すおそれがある。かかる観点から、微細溝520の高さH1は0.5μm~300μmの範囲内である。
 溝間隔G1は、互いに隣り合う二つの微細溝520間の距離であり、凸部530の第二方向の長さに等しい。溝間隔G1が大きいほど、複数の微細溝520の正確な作製が容易になる一方、傾斜面510に形成可能な微細溝520の数量が減るため、傾斜面510上の気流に与える接触抵抗が大きくなる。溝間隔G1が小さいほど、傾斜面510に形成可能な微細溝520の数量が増えるため、傾斜面510上の気流に与える接触抵抗が小さくなる一方、複数の微細溝520の正確な作製が困難になる。かかる観点から、微細溝520の溝間隔G1は1μm~800μmの範囲内である。
 なお、微細溝520の数量、溝幅W1、高さH1、溝間隔G1は、上記の例示に限定されず、上述した範囲とは異なる値でもよい。複数の微細溝520は、傾斜面510の全体に亘って第一方向に延びる態様に限定されず、上流側端部511と下流側端部512との間の一部において第一方向に延びてもよい。
 複数のブロック500の配置関係を説明する。図8は、表面加工シート200を部分的に拡大した模式的な平面図である。図9Aは、図8に示す表面加工シート200の模式的な正面図である。図9Bは、図8に示す表面加工シート200の模式的な側面図である。図8の例では、四つのブロック列501が第二方向に並び、且つ各ブロック列501では四つのブロック500が第一方向に並ぶ。
 複数のブロック500の各々において、傾斜面510の全体は、ブロック500の第一方向の上流側に露出する。具体的には、図8及び図9Bの例において、複数のブロック500のうちで第一方向に隣り合う二つのブロック500を、上流側ブロック500A、及び上流側ブロック500Aの下流側にある下流側ブロック500Bとする。上流側ブロック500Aの後面522から視て、下流側ブロック500Bの傾斜面510の全体が、他の部材に遮られることなく露出する。
 更に、傾斜面510の第一方向の下流側端部512は、ブロック500のうちで対象面からの距離が最も大きい。つまり、傾斜面510の下流側端部512は、ブロック500のうちで最も高い位置にある。
 また、下流側ブロック500Bにおける傾斜面510の第一方向の上流側端部511は、上流側ブロック500Aにおける第一方向の下流側端部512よりも、対象面からの距離が小さい。つまり、下流側ブロック500Bの上流側端部511は、上流側ブロック500Aの下流側端部512よりも低い位置にある。
 複数のブロック列501の各々では、複数のブロック500のうちで第一方向に隣り合う二つのブロック500の間に、第一方向と交差する方向に延びる溝状の隙間540が形成されている。図8及び図9Bの例では、各ブロック列501において前後に隣り合う二つのブロック500の間に、第二方向に延びる隙間540が形成されている。
 複数のブロック500のうちで第二方向に隣り合う二つのブロック500の間には、第二方向と交差する方向に延びる溝状のブロック隙間550が形成されている。図8及び図9Aの例では、互いに隣り合う二つのブロック列501において、左側のブロック列501のブロック500と、右側のブロック列501のブロック500との間に、第一方向に延びるブロック隙間550が形成されている。
 このように複数のブロック500では、第一方向に隣り合う二つのブロック500が隙間540を挟んで並び、且つ第二方向に隣り合う二つのブロック500がブロック隙間550を挟んで並ぶ。このように複数のブロック500は互いに離隔しているため、例えば複数のブロック500を互いに繋がるように作製するよりも、複数のブロック500を基材202上に正確且つ容易に作製できる。
 図9Aに示すように、ブロック隙間550の第二方向の長さは溝幅W2である。ブロック隙間550は、第二方向に隣り合う二つのブロック500の間に空気層を形成する機能を有する。その結果、ブロック隙間550の上部付近を通過する空気は、ブロック隙間550に形成される空気層の表面をすべるように通過できる。つまりブロック隙間550は、ブロック隙間550の上部付近を通過する空気と表面加工シート200との接触面積を抑制することで、ブロック隙間550上の気流に与える接触抵抗を低減し、気流をスムーズに流すために設けられる。
 溝幅W2が小さいほど、ブロック隙間550に空気層を形成しやすくなる一方、隙間550の正確な作製が困難になり、複数のブロック500を第二方向に並べて作製することが困難となる。溝幅W2が大きいほど、ブロック隙間550の正確な作製が容易となり、複数のブロック500を第二方向に並べて作製しやすい一方、ブロック隙間550に空気層を形成しにくくなり、ブロック隙間550の上部付近を通過する空気が流入しやすくなる。ブロック隙間550に空気が流入すると、空気とブロック隙間550との接触面積に応じた摩擦抵抗が発生する。かかる観点から、ブロック隙間550の溝幅W2は10μm~600μmの範囲内である。
 先述した複数の微細溝520の各々における第二方向の溝幅W1は、ブロック隙間550における第二方向の溝幅W2よりも小さい。ここで、表面加工シート200に流れ込む空気の流速は、例えばプロペラファン100の回転速度等によって異なる。微細溝520及びブロック隙間550のような溝では、その溝に向かう空気の流速と溝の幅との関係が、その内部に空気層を効果的に形成できるか否かに影響する。溝の内部に空気層を効果的に形成できない場合、空気が溝の内部に流入して溝が空気の流れを妨げる抵抗となるおそれがある。
 例えば、表面加工シート200に流れ込む空気の流速幅を、低速域、中速域、高速域の三つに区分けしたとする。流れ込む空気の流速が低速域にある場合、相対的に幅が広いブロック隙間550は、相対的に幅が狭い微細溝520よりも効果的に空気層を形成できる。流れ込む空気の流速が中速域にある場合、ブロック隙間550及び微細溝520は何れも効果的に空気層を形成できる。流れ込む空気の流速が高速域にある場合、微細溝520はブロック隙間550よりも効果的に空気層を形成できる。つまり、表面加工シート200に流れ込む空気の流速が何れの速域にある場合でも、ブロック隙間550及び微細溝520の少なくとも一方によって効果的に空気層を形成できる。このような表面加工構造201によって、流れ込む空気の幅広い流速域に対して摩擦低減効果を発揮できる。
 微細溝520における溝幅W1に対する高さH1の比率を、微細溝520のアスペクト比という。ブロック隙間550における溝幅W2に対する高さH2の比率を、ブロック隙間550のアスペクト比という。低速域に効果的なブロック隙間550のアスペクト比は、高速域に効果的な微細溝520のアスペクト比よりも小さくてもよい。この場合、ブロック隙間550の表面積を、微細溝520の表面積に対して相対的に小さくすることができる。従って、高速域においてブロック隙間550に空気層が効果的に形成されない場合でも、ブロック隙間550の内部に流入する空気との接触面積を抑制して、ブロック隙間550が抵抗となってしまう場合の摩擦抵抗を抑制できる。
 本例では、複数のブロック500は、第一方向に連続して並ぶ複数のブロック隙間550が形成されるように配置される。複数のブロック隙間550は、第一方向に延びる一つの流体流路を構成する。具体的には、図5及び図8に示すように、複数のブロック500は基材202上で格子状に二次元配列されている。そのため、互いに隣り合う二つのブロック列501の間では、複数のブロック隙間550が第一方向に連続して並んだ流体流路が形成される。ブロック500の上面に設けられた複数の微細溝520と、流体流路とは、第二方向に沿って交互に並んでいる。この流体流路を流れる空気は、蛇行することなく第一方向へスムーズに流れる。
 図9Bに示すように、隙間540の第一方向の長さは溝幅W3である。後述するように、第一方向の上流側から表面加工シート200に流れ込む空気は、第一方向に並ぶ複数のブロック500の傾斜面510に沿って連続的に流れる。溝幅W3が大きいほど、複数のブロック500を第一方向に並べて作製しやすい。しかしながら、空気が上流側ブロック500Aの傾斜面510から下流側ブロック500Bの傾斜面510に流れる際に、その空気の一部が隙間540に流入して、気流の風量が落ちるおそれがある。
 一方、溝幅W3が小さいほど、複数のブロック500を作製する際に、互いに隣り合うブロック500が第一方向に繋がる可能性が高くなる。しかしながら、互いに隣り合うブロック500が第一方向に繋がっても、空気を第一方向に流す機能に大きな支障はない。かかる観点から、隙間540の溝幅W3は300μm以下の範囲内である。
 表面加工シート200における空気の流れを説明する。先述したようにプロペラファン100が回転方向Aに回転すると、回転する翼120に対して相対的に移動する空気が、翼120の翼面上へ流れ込む。このとき空気は、回転方向Aの下流側にある前縁部121から、前面125及び背面126に流れ込む。以下、前面125における空気の流れを説明するが、背面126における空気の流れも同様である。
 図8に示すように、翼120の回転に伴って、表面加工シート200も回転方向Aに回転する。本例では、先述したように表面加工シート200の上方向は、翼120の正面方向に対して、第一方向の上流側である前側に傾斜している。従って、図9Bに示すように、回転方向Aに回転する表面加工シート200は、その前側上方に向かって移動する。従って、前面125に流れ込む空気は、表面加工シート200に対して前側上方から近づくように相対的に移動する。
 この場合、空気が表面加工シート200において、以下のように第一方向の上流側から下流側に移動する。図8に示すように、表面加工シート200において、表面加工シート200に向かう空気が、複数の主流ST1と複数の副流ST2とに分岐される。複数の主流ST1では、表面加工シート200に流れ込む空気の大部分が、平面視で表面加工シート200の大部分を占める複数のブロック500の上側を流れる。複数の副流ST2では、表面加工シート200に流れ込む空気の残りが、平面視で複数のブロック500の左右両側を流れる。したがって、表面加工シート200の上側では、主流ST1と副流ST2とが交互に繰り返して左右に並ぶように、流れ込んだ空気が第一方向に流れる。
 図8及び図9Bに示すように、複数の主流ST1は、複数のブロック列501の夫々に対応して形成される気流である。複数の主流ST1の各々では、対応するブロック列501を構成する二以上のブロック500の傾斜面510に沿って、空気が第一方向の上流側から下流側に流れる。具体的には、空気は上流側ブロック500Aの傾斜面510に沿って流れる際、上流側端部511から下流側に移動するに連れて、翼120の前面125から上側に離れる。
 各ブロック500の傾斜面510には、先述した複数の微細溝520が設けられている。傾斜面510は、複数の微細溝520が設けられている分、その外表面の面積が小さい。傾斜面510の外表面は、実質的に複数の凸部530の上端面によって構成される。複数の微細溝520は、先述したように溝幅W1が極めて狭いため、その内部に空気が進入しにくい空気層が形成される。従って、傾斜面510上を流れる空気は、実質的に傾斜面510の外表面のみと接触するため、傾斜面510と空気との接触面積が抑制される。傾斜面510上の気流に与える接触抵抗が低減されて、主流ST1の流速低下を抑制できる。
 更に空気は、上流側ブロック500Aの下流側端部512を超えて下流側に流れ、下流側ブロック500Bの傾斜面510上に移動する。本例では、下流側ブロック500Bの傾斜面510の全体が上流側ブロック500A側へ露出し、且つ下流側端部512が上流側ブロック500Aのうちで最も高い。上流側ブロック500A及び下流側ブロック500Bの上側を連続して流れる気流は、上流側ブロック500Aの下流側端部512と下流側ブロック500Bの上流側端部511との高低差に起因して、下流側ブロック500Bの上流側端部511の上側付近に気流渦Eを生じる。
 これにより、上流側ブロック500Aの傾斜面510を流れる主流ST1は、上流側ブロック500Aの下流側端部512を超えると、気流渦Eの上側を滑るように流れて、下流側ブロック500Bの傾斜面510に移動する。即ち気流渦Eは、主流ST1が上流側ブロック500Aと下流側ブロック500Bとの隙間540に流入することを抑制するため、主流ST1に与える接触抵抗を抑制できる。
 また本例では、下流側ブロック500Bの上流側端部511は、上流側ブロック500Aの下流側端部512よりも、対象面からの距離が小さい。従って、上流側ブロック500Aの下流側端部512から流れ出る空気は、下流側ブロック500Bの上流側端部511に干渉することなく、下流側ブロック500Bの傾斜面510に移動しやすい。更に、上流側ブロック500Aと下流側ブロック500Bとの隙間540が極めて狭いため、上流側ブロック500Aから下流側ブロック500Bに流れる空気が、隙間540に流入することが抑制される。
 各ブロック列501では、空気が上述した移動を繰り返すことで、第一方向に並ぶ二以上のブロック500の傾斜面510を跳ねるように連続して移動する。空気は各傾斜面510において、上流側端部511から下流側端部512まで移動するのではなく、上流側端部511よりも下流側の位置から下流側端部512まで移動する。これにより、各傾斜面510における空気の第一方向の移動距離が抑制されるため、傾斜面510上の気流に与える接触抵抗が更に低減される。
 このように各ブロック列501では、傾斜面510上の気流に与える接触抵抗が相対的に小さいため、主流ST1がスムーズに第一方向に流れる。主流ST1は、上流側ブロック500Aから下流側ブロック500Bに流れる際に、気流渦Eの影響で流速の低下が抑制される。複数の主流ST1は、第一方向から逸れることが抑制されつつ、スムーズに且つ安定して流れる。
 図8及び図9Aに示すように、複数の副流ST2は、平面視で複数のブロック列501の間に形成される気流である。複数の副流ST2の各々では、第一方向に並ぶ複数のブロック隙間550の上部付近で形成される流体流路に沿って、空気が第一方向の上流側から下流側に流れる。副流ST2は、その左右両側を流れる二つの主流ST1に挟まれている。先述したように、ブロック隙間550は微細溝520よりも幅広であり、またブロック隙間550では気流渦Eが生じないため、副流ST2と主流ST1とに流速差が生じる。つまり、副流ST2とその左右両側の主流ST1とは互いに流速が異なるため、副流ST2が第一方向から逸れることが抑制される。
 以上のことから、表面加工シート200では、複数の主流ST1及び副流ST2によって空気が第一方向に流れると共に、スパン方向である第二方向に異なる流速の分布が生じる。つまり、表面加工シート200上における層流境界層内に、相対的な低速層及び高速層が交互に並ぶ流速の縞が形成される。表面加工シート200上で第一方向に流れる気流の運動量が、スパン方向で拡散される。これにより、表面加工シート200上に一様流が流れる場合と比較して、乱流領域の成長を遅らせることができる。
 以上説明したように、上述した表面加工構造201を有する表面加工シート200では、複数の主流ST1及び副流ST2が第一方向へスムーズに且つ安定して移動できる。プロペラファン100は、複数の翼120に表面加工シート200が設けられることで、その回転時の空気抵抗が抑制されてスムーズに回転できると共に、より高速な風を第一方向に向けて正確に送風できる。
 上述した表面加工構造201を設計する手法の一例を説明する。以下の実施例では、表面加工構造201が適用される環境又は製品で生じ得る流体及び流速の流れのうち、表面加工構造201の主対象とする流れを対象流という。表面加工構造201は、互いに流速が異なる複数の流れのうち、二つの流れを対象流として設計される。
 本例の表面加工構造201は扇風機1の翼120に適用されるため、扇風機1では動作モード毎に流速が異なる複数の気流が生じ得る。例えば、扇風機1の動作モードは、風速が高速(例えば15m/s)となる「扇風機強」、風速が中速(例えば10m/s)となる「扇風機中」、風速が低速(例えば4m/s)となる「扇風機弱」等を含む。表面加工構造201は、これらの複数の動作モードのうち、二つの動作モードに対応する二つの対象流に合わせて設計される。
 表面加工構造201は、気流を制御するための二種類の溝として、微細溝520とブロック隙間550とを有する。微細溝520は、二つの対象流のうちで速い方の対象流に合わせて設計される。ブロック隙間550は、二つの対象流のうちで遅い方の対象流に合わせて設計される。これにより表面加工構造201は、扇風機1が二つの動作モードの何れを実行中であっても、上記実施形態と同様に気流をスムーズに送出できる。
(実施例1)
 実施例1における表面加工構造201の設計例を説明する。図10Aは、実施例1に係る表面加工シート200の斜視図である。図10Bは、実施例1における表面加工シート200と対象流との関係を示す表である。図10Cは、実施例1に係る表面加工シート200の寸法を示す表である。図10Dは、実施例1に係る表面加工シート200の正面図である。図10Eは、実施例1に係る表面加工シート200の側面図である。
 図10Aに示すように、実施例1の表面加工構造201は、上記実施形態と同様の基本的構造を有する。本例の表面加工構造201は、図10Bに示すように、扇風機1の動作モードのうち、「扇風機強」の気流(流速15m/s)と「扇風機弱」の気流(流速4m/s)とを対象流として、以下のような手順で設計される。
・第一工程(速い対象流に対応するピッチPの目標値決定)
 二つの対象流のうち、流速が速い方の対象流に合わせて、溝を形成するピッチPの目標値を決定する。本例では、「扇風機強」の気流に合わせて、微細溝520のピッチP1の目標値を決定する。図12Dに示すように、ピッチP1は、一つの微細溝520の溝幅W1と、一つの凸部530の第二方向の長さ(即ち溝間隔G1)とを合わせた長さに等しい。
 一例としてピッチPの目標値は、対象流との関係に基づき、以下の(数1)で算出できる。
P=P´*v/u ・・・ (数1)
 (数1)において、P´はピッチPの無次元化されたものであり、本例ではP´=15~30である。
 vは、動粘度係数であり、本例では20℃空気の動粘度係数(15.01×10-6(m/s))である。
 uは、表面加工構造201における対象流の摩擦速度であり、本例では「扇風機強」の流速15(m/s)である。
 図10Bに示すように、本例では(数1)に基づいて、微細溝520のピッチP1の目標値が15~30(μm)の範囲であると算出される。
・第二工程(遅い対象流に対応するピッチPの目標値決定)
 二つの対象流のうち、流速が遅い方の対象流に合わせて、溝を形成するピッチPの目標値を決定する。本例では、「扇風機弱」の気流に合わせて、ブロック隙間550のピッチP2の目標値を決定する。図12Dに示すように、ピッチP2は、一つのブロック隙間550の溝幅W2と、一つのブロック500の第二方向の長さ(即ち溝間隔G2)とを合わせた長さに等しい。
 本例では(数1)に基づいて、ブロック隙間550のピッチP2の目標値を算出する。この場合、uは「扇風機弱」の流速4(m/s)である。これにより、図10Bに示すように、ブロック隙間550のピッチP2の目標値が、56~112(μm)の範囲であると算出される。
・第三工程(微細溝520の数量決定)
 各ブロック500に設ける微細溝520の数量を決定する。各ブロック500に設ける微細溝520の数量は、少なくとも三つであり、より好適には五つ以上である。図10Dに示すように、本例では各ブロック500に五つの微細溝520が設けられる。
・第四工程(微細溝520のサイズ決定)
 各微細溝520の溝幅W1を決定する。図10Dに示すように、一つのピッチP1には、一つの微細溝520と一つの凸部530とが第二方向に並んで配置される。ここで、溝幅W1が相対的に大きく、且つ溝間隔G1が相対的に小さいほうが、ブロック500の傾斜面510における微細溝520の割合が増えるため、流体の流れに対する摩擦抵抗を抑制しやすい。かかる観点から、溝幅W1は溝間隔G1よりも大きい。換言すると、複数の微細溝520の各々における第二方向の幅は、複数の凸部530の各々における第二方向の幅より大きい。
 各ブロック500に設けた複数の凸部530は、ブロック500の上面の第二方向の両端部513を構成する二つの第一凸部と、二つの第一凸部とは異なる複数の第二凸部とを含む。換言すると、複数の第二凸部は、二つの第一凸部の間に配置されている。各第一凸部の上方では、主流ST1と副流ST2とに挟まれた境界領域BRが形成される。境界領域BRは、主流ST1と副流ST2とが切り替わるように、第二方向に沿って流速が変化する領域である。境界領域BRは、主流ST1と副流ST2の相互干渉を抑制し、気流全体を安定して流す。
 ここで、主流ST1と副流ST2とが蛇行することなく安定して流れるために、各気流の運動量拡散を発生させることが好ましい。この運動量拡散を効率的に発生させるためには、境界領域BRにおいて流速が主流ST1と副流ST2との間で急激に変化することが好ましいため、境界領域BRは狭いほうが好ましい。境界領域BRの大きさは、各第一凸部の第二方向の長さである壁幅G10が大きさに依存する。かかる観点から、壁幅G10は微細溝520の溝幅W1未満である。
 一方、第一凸部は微細溝520を形成する壁部の一部であるため、第一凸部の厚みが小さすぎると耐久性を損なったり、第一凸部の正確な製造が困難となったりするおそれがある。かかる観点から、壁幅G10は第二凸部の厚み(溝間隔G1)以上である。つまり、二つの第一凸部の各々における第二方向の幅は、複数の第二凸部の各々における第二方向の幅以上である。
 本例では、第一工程で決定されたピッチP1の目標値である15~30(μm)の範囲内で、ピッチP1が15(ms)に決定されたものとする。これに基づき、溝幅W1が10(ms)、溝間隔G1が5(ms)に決定されたものとする。壁幅G10は、溝間隔G1と同じく5(ms)に決定されたものとする。
 ここで、気流に対する摩擦抵抗を抑制するためには、溝のアスペクト比(即ち、溝幅Wに対する高さHの比率)を好適に設計すればよい。本例で設計対象となる溝は、微細溝520とブロック隙間550である。高さHは、以下の(数2)で算出できる。
H=H´*v/u ・・・ (数2)
 (数2)において、H´は高さHの無次元化されたものである。v及びuは、(数1)と同様に、動粘度係数及び摩擦速度である。
 溝のアスペクト比(即ち、高さH/溝幅W)は、流体抵抗低減の観点から0.5~0.7の範囲である。
 本例では、微細溝520の縦断面の形状である溝形状が、第一方向から視て矩形状をなす角型である。図10Cに示すように、微細溝520に沿って流れる気流の摩擦抵抗を抑制するため、微細溝520のアスペクト比(即ち、高さH1/溝幅W1)が0.5に決定されたものとする。微細溝520の溝幅W1が決定されると、その溝幅W1を0.5倍することで、微細溝520の高さH1を算出できる。溝幅W1が10(ms)であるため、高さH1は5(ms)に決定される。
・第五工程(ブロック隙間550のサイズ決定)
 上記のように微細溝520の数量、溝幅W1、溝間隔G1、壁幅G10が決定されると、ブロック500の第二方向の長さ(即ち溝間隔G2)を算出できる。図10Cに示すように、本例では、ブロック500に設けられる五つの微細溝520と六つの凸部530に対応して、溝間隔G2が80(μm)に決定される。
 更に、第二工程で決定されたピッチP2の目標値である56~112(μm)の範囲内で、以下の第一条件と第二条件とを満たす値を、ピッチP2に決定する。
 第一条件を説明する。ピッチP2は、「ブロック隙間550の溝幅W2が微細溝520の溝幅W1よりも大きい」という条件を満たす値である。この条件は、複数の微細溝520の各々における第二方向の幅が、ブロック隙間550における第二方向の幅未満であることと同義である。溝幅W2は、ピッチP2と溝間隔G2との差分に相当する。つまりピッチP2は、溝間隔G2と溝幅W1との合計よりも大きい値であればよい。
 ピッチP2が第一条件を満たすことで、微細溝520に起因する主流ST1と、ブロック隙間550に起因する副流ST2との間に、流速差が発生しやすくなる。本例では、ブロック隙間550の溝間隔G2が80(μm)、微細溝520の溝幅W1が10(ms)であるため、ピッチP2は90(μm)よりも大きければよい。
 第二条件を説明する。ピッチP2は、「ブロック隙間550の溝幅W2が、一つのブロック500に設けられた複数の微細溝520の溝幅W1の総和よりも小さい」という条件を満たす値である。この条件は、ブロック隙間550における第二方向の幅が、複数の微細溝520における第二方向の幅の総和未満であることと同義である。つまりピッチP2は、一つのブロック500において、溝間隔G2と各微細溝520の溝幅W1の総和との合計未満であればよい。
 ピッチP2が第二条件を満たすことで、主流ST1の領域幅を副流ST2の領域幅をよりも広くでき、全体として高速域に効果的な表面加工構造201を実現できる。本例では、微細溝520が五つ、溝幅W1が10(ms)であるため、各微細溝520の溝幅W1の総和は50(ms)である。ピッチP2は、この溝幅W1の総和に溝間隔G2である80(μm)を加算した130(μm)未満であればよい。
 従って本例では、ピッチP2の目標値のうちで第一条件及び第二条件を満たす範囲は、90~112(μm)となる。この範囲内でピッチP2を決定すればよいが、図10Cに示すように、ピッチP2が112(μm)に決定されたものとする。この場合、ブロック隙間550の溝幅W2は、32(μm)となる。
・第六工程(ブロック隙間550のアスペクト比決定)
 ブロック隙間550のアスペクト比(即ち、高さH2/溝幅W2)も、先述したように流体抵抗低減の観点から0.5~0.7であればよい。ここで、図10Eに示すように、ブロック500の上面は傾斜面510であるため、ブロック500の高さH2は第一方向に向かって増加する。これに伴い、ブロック隙間550のアスペクト比も、第一方向の上流側から下流側に向かって漸増する。つまり、ブロック隙間550は微細溝520とは異なり、第一方向に向かってアスペクト比が変化する。
 ブロック隙間550の摩擦抵抗を抑制するためには、ブロック隙間550の上流側端部におけるアスペクト比が0.5以下であり、且つブロック隙間550の下流側端部におけるアスペクト比が0.7以上であればよい。つまりブロック隙間550のアスペクト比は、0.5~0.7の範囲を跨ぐように、第一方向に向かって増加すればよい。この条件を満たすように、ブロック500の高さH2が決定されればよい。
 本例では、ブロック隙間550の上流側端部におけるアスペクト比は、先述の溝幅W2(32μm)と、ブロック500の上流側端部511の高さH2(即ち、最小値Hmin)とで決定される。このアスペクト比が0.5以下となるように、ブロック500の最小値Hminは16(μm)以下であればよい。一方、ブロック隙間550の下流側端部におけるアスペクト比は、先述の溝幅W2(32μm)と、ブロック500の下流側端部512の高さH2(即ち、最大値Hmax)とで決定される。このアスペクト比が0.7以上となるように、ブロック500の最大値Hmaxは22.4(μm)以上であればよい。
 ただし、ブロック隙間550のアスペクト比が過剰に大きい又は小さいと、ブロック隙間550の機能を十分に発揮できないおそれがある。そのため、ブロック隙間550のアスペクト比は、その下限を0.3とし、その上限を2.5としてもよい。本例では、ブロック隙間550の上流側端部におけるアスペクト比が0.3程度となるように、ブロック500の最小値Hminが10(μm)に決定されたものとする。ブロック隙間550の下流側端部におけるアスペクト比が1.85程度となるように、ブロック500の最大値Hmaxが60(μm)に決定されたものとする。これにより、図10Cに示すように、ブロック隙間550のアスペクト比は、第一方向に向かって、0.3程度から1.85程度まで増加する。
 上記のブロック500では、傾斜面510の高低差Sが、最大値Hmaxと最小値Hminとの差分、即ち50(μm)となる。先述したように、傾斜面510の高低差Sと奥行Dとによって、傾斜面510の傾斜角度αが定まる。即ち、傾斜面510の高低差Sと傾斜角度αとによって、傾斜面510の奥行Dを定めてもよい。傾斜角度αは6度~27度の範囲で決定されればよいが、本例では傾斜角度αが14度、奥行Dが100(μm)に決定されたものとする。この場合、奥行Dが高さH2及び溝間隔G2よりも大きいため、ブロック500は気流が流れる第一方向に長くなる。なお、傾斜角度α又は/及び奥行Dを調整することで、傾斜面510の高低差Sやブロック隙間550のアスペクト比を好適に設計してもよい。
・第七工程(隙間540のサイズ決定)
 図10Eに示すように、複数のブロック500のうちで第一方向に隣り合う二つのブロック500の間には、第二方向に延びる溝状の隙間540が形成される。第一方向に隣り合う二つのブロック500の間には、隙間540が設けられる。隙間540の溝幅W3と傾斜面510の高低差Sとが略等しい場合に、気流渦E(図9B参照)が効果的に生じやすい。例えば、溝幅W3が高低差Sの0.75~1.25倍の範囲にある場合、溝幅W3と高低差Sとが略等しい。
 そこで本例では、図10Cに示すように、溝幅W3が高低差S(50μm)と略等しい40(μm)に決定される。つまり、二つのブロック500のうちで第一方向の上流側にあるブロック500の高低差Sと、溝状の隙間540における第一方向の幅とが略等しい。
・表面加工構造201の作成及び使用例
 上述した第一~第七工程で決定された設計値(図10C参照)に基づき、複数のブロック500を二次元配置した表面加工構造201を作製する。このように作成された表面加工構造201では、複数の微細溝520は、二つの異なる流速のうちで相対的に速い第一流速に対応する第一ピッチで、ブロック500の上面に並ぶ。複数のブロック隙間550は、二つの異なる流速のうちで相対的に遅い第二流速に対応する第二ピッチで、ブロック500の上面に並ぶ。本例では、第一流速に対応する第一ピッチは、「扇風機強」の高速気流に対応するピッチP1である。第二流速に対応する第二ピッチは、「扇風機弱」の低速気流に対応するピッチP2である。
 上記表面加工構造201を備えた表面加工シート200を、例えば扇風機1の翼120に貼り付けることで、以下の作用を奏する。扇風機1の動作モードが「扇風機強」である場合、高速の対象流が表面加工構造201に沿って流れる。各微細溝520は高速の対象流に合わせて設計されているため、各微細溝520により効果的に空気層が形成されて、主流ST1に対する接触抵抗が大幅に抑制される。一方、扇風機1の動作モードが「扇風機弱」である場合、低速の対象流が表面加工構造201に沿って流れる。各ブロック隙間550は低速の対象流に合わせて設計されているため、各ブロック隙間550により効果的に空気層が形成されて、副流ST2に対する接触抵抗が大幅に抑制される。
 このように表面加工構造201は、扇風機1が有する二つの動作モードに合わせて設計されているため、動作モードが「扇風機強」及び「扇風機弱」の何れの場合でも、主流ST1及び副流ST2の少なくとも一つに対する接触抵抗が大幅に抑制される。これにより、主流ST1及び副流ST2を含む気流は、全体として表面加工構造201に沿ってスムーズに流れる。従って表面加工構造201は、流れ込む空気の幅広い流速域に対して摩擦低減効果を発揮できる。
・ブロック500の端部設計
 先述したように、主流ST1と副流ST2の安定化のため、各気流の運動量拡散を発生することが好ましい。この運動量拡散を発生させるために、主流ST1と副流ST2との流速差が大きいことが好ましい。これを実現するため、互いに隣り合うブロック500の上面とブロック隙間550の底面との高低差を大きくしてもよい。特に、ブロック隙間550とブロック500とは第二方向に並ぶため、ブロック500とブロック隙間550とが隣接する境界において、ブロック500の上面とブロック隙間550の底面との高低差を大きくしてもよい。
 かかる観点から、ブロック500の上面の第二方向の両端部513は、第一方向と垂直な面に沿って延びるブロック500の断面において、複数の微細溝520の底部よりも上方にある。換言すると、ブロック500を第一方向と垂直に切断した縦断面において、各両端部513は複数の微細溝520の底部よりも高い位置にある。各両端部513は、ブロック500の上面において微細溝520とブロック隙間550とを隔てる堤状の構造体である。
 仮に、先述した二つの第一凸部をブロック500の上面に設けない場合、各両端部513の高さが微細溝520の底部以下となる。この場合は、各両端部513が微細溝520の底部よりも高い位置にある場合と比べて、ブロック500とブロック隙間550との境界における高低差が小さくなる。つまり、主流ST1と副流ST2との流速差を大きくする作用が弱まるおそれがある。
 本例では、複数の凸部530の上端面は、ブロック500の外表面を構成する。ブロック500の外表面は、ブロック500の上面のうちで最も高い部分に沿って延びる仮想面である。ブロック500の上面の第二方向の両端部513は、この外表面と同じ高さにある。換言すると、各両端部513は、ブロック500において第二方向の両端にある第一凸部の上端面に含まれる。これにより、ブロック500とブロック隙間550との境界における高低差を大きくしつつ、主流ST1をブロック500の平坦な外表面に沿ってスムーズに流すことができる。
 なお、ブロック500の上面は傾斜面510であるため、主流ST1の流速を向上させて、主流ST1と副流ST2との流速差をより大きくできる。これに代えて、ブロック500の上面は、例えば第一方向及び第二方向に延びる平面でもよい。この場合でも、各ブロック500の上面に複数の微細溝520が設けられ、且つ、隣り合う二つのブロック500の間にブロック隙間550が設けられることで、上述と同様の作用を奏する。
(実施例2)
 実施例2における表面加工構造201の設計例を説明する。図11Aは、実施例2に係る表面加工シート200の斜視図である。図11Bは、実施例2,3における表面加工シート200と対象流との関係を示す表である。図11Cは、実施例2,3に係る表面加工シート200の寸法を示す表である。以下では、実施例1と異なる点を説明する。
 図11Aに示すように、実施例2の表面加工構造201は、上記実施形態と同様の基本的構造を有する。本例の表面加工構造201は、図11Bに示すように、扇風機1の動作モードのうち、「扇風機強」の気流(流速15m/s)と「扇風機中」の気流(流速10m/s)とを対象流として、実施例1と同様の手順で設計される。
・第一工程(速い対象流に対応するピッチPの目標値決定)
 実施例1と同様に「扇風機強」の気流に合わせて、微細溝520のピッチP1の目標値が15~30(μm)の範囲であると算出される。
・第二工程(遅い対象流に対応するピッチPの目標値決定)
 本例では、「扇風機中」の気流に合わせて、ブロック隙間550のピッチP2の目標値を決定する。この場合、(数1)のuは、「扇風機中」の流速10(m/s)である。これにより、図11Bに示すように、ピッチP2の目標値が22~45(μm)の範囲であると算出される。
・第三工程(微細溝520の数量決定)
 実施例1と同様に、各ブロック500に五つの微細溝520が設けられる。
・第四工程(微細溝520のサイズ決定)
 実施例1と同様に、微細溝520の数量、溝幅W1、溝間隔G1、壁幅G10が決定される(図11C参照)。微細溝520の溝形状は、実施例1と同様に角型である。
・第五工程(ブロック隙間550のサイズ決定)
 実施例1と同様に、ブロック500に設けられる五つの微細溝520と六つの凸部530に対応して、溝間隔G2が80(μm)に決定される。しかしながら、この溝間隔G2は、ピッチP2の目標値である22~45(μm)より大きい。このように二つの対象流の流速差が相対的に小さい場合、溝間隔G2(即ち、ブロック500の大きさ)がピッチP2の目標値を超えてしまい、ブロック隙間550をピッチP2の目標値内に配置できない場合がある。
 この場合、微細溝520の溝幅W1を所定倍して、ブロック隙間550の溝幅W2を決定する。所定倍は、例えば1~5倍の範囲(但し、1倍を除く)である。図11Cに示すように、本例では、溝幅W1を2倍した20(μm)が、溝間隔G2に決定されたものとする。これにより、溝間隔G2と溝幅W2とを加算した100(μm)が、ピッチP2に決定される。
・第六工程(ブロック隙間550のアスペクト比決定)
 実施例1と同様に、ブロック隙間550のアスペクト比が第一方向に向かって増加し、且つ0.5~0.7の範囲を跨ぐように、ブロック500の高さH2が決定されればよい。
 本例では、ブロック隙間550の上流側端部におけるアスペクト比が0.5程度となるように、ブロック500の最小値Hminが10(μm)に決定されたものとする。ブロック隙間550の下流側端部におけるアスペクト比が2.2程度となるように、ブロック500の最大値Hmaxが45(μm)に決定されたものとする。これにより、図11Cに示すように、ブロック隙間550のアスペクト比は、第一方向に向かって、0.5程度から2.2程度まで増加する。
 上記のブロック500では、傾斜面510の高低差Sが、最大値Hmaxと最小値Hminとの差分、即ち35(μm)となる。本例では、傾斜角度αが10度、奥行Dが200(μm)に決定されたものとする。
・第七工程(隙間540のサイズ決定)
 本例では、溝幅W3が高低差S(35μm)と略等しい30(μm)に決定される。
・表面加工構造201の作成及び使用例
 上述した第一~第七工程で決定された設計値(図11C参照)に基づき、複数のブロック500を二次元配置した表面加工構造201を作製する。本例の表面加工構造201では、複数の微細溝520は第一流速に対応する第一ピッチで並び、複数のブロック隙間550は第二流速に対応する第二ピッチで並ぶ。第一流速に対応する第一ピッチは、「扇風機強」の高速気流に対応するピッチP1である。第二流速に対応する第二ピッチは、「扇風機中」の中速気流に対応するピッチP2である。この場合、表面加工構造201は実施例1と同様に、流れ込む空気の幅広い流速域に対して摩擦低減効果を発揮できる。なお、ブロック500の端部設計は、実施例1と同様である。
(実施例3)
 実施例3における表面加工構造201の設計例を説明する。図12Aは、実施例3に係る表面加工シート200の斜視図である。図12Bは、実施例3に係る表面加工シート200の正面図である。図12Cは、実施例3のブロック500を下流側から視た拡大斜視図である。以下では、実施例1と異なる点を説明する。
 図12Aに示すように、実施例3の表面加工構造201は、上記実施形態と同様の基本的構造を有するが、微細溝520の溝形状がV型である点が異なる。V型の微細溝520では、下方に向かって溝幅W1が漸減する。本例の表面加工構造201は、実施例2と同様に、扇風機1の動作モードのうち、「扇風機強」の気流(流速15m/s)と「扇風機中」の気流(流速10m/s)とを対象流として、実施例2と同様の手順で設計される(図11B参照)。その結果、実施例2と同様の設計値が決定される(図11C参照)。表面加工構造201は実施例2と同様に、流れ込む空気の幅広い流速域に対して摩擦低減効果を発揮できる。
 本例は上記実施形態と同様に、ブロック500の上面が傾斜面510であるため、高さH2が第一方向に向かって増加している。ブロック500の両端部513は、ブロック500の外表面と同じ高さにあり、且つ第二方向の両端にある凸部530の上端面に含まれる。但し、本例のブロック500は、以下の点が上記実施形態と異なる。
 微細溝520は上記実施形態と同様に、傾斜面510において一定の溝幅W1で第一方向に延びる。ブロック500は上記実施形態と異なり、第一方向から視て、上辺が下辺よりも短い台形状である。ブロック500の第二方向の両側面は、ブロック500の上面の両端部513から斜め下方に延びる。更に、ブロック500の第二方向の両側面は、第一方向に向かって、基材202に対する傾斜角度が大きくなる。換言すると、ブロック500の両側面の傾きは、第一方向に向かって、垂直面に近づくように急峻となる。
 具体的には、図12Bに示すように、ブロック500の上流側を向く前面521では、両端部513から斜め下方に延びる側面の傾斜角度は、45度程度である。一方、図12Cに示すように、ブロック500の下流側を向く後面522では、両端部513から斜め下方に延びる側面の傾斜角度は、80度程度である。ブロック500の前面521から後面522に向かって、ブロック500の両側面の傾斜角度は漸増する。
 上記の構造によれば、ブロック500の高さH2が第一方向に向かって増加していても、ブロック500の第二方向の長さ(即ち溝間隔G2)は一定である。そのため、平面視でブロック500は、上記実施形態と同様に、第一方向に向かって一定幅で延びる矩形状である。
 仮に、ブロック500の第二方向の両側面の傾きが一定である場合、ブロック500の高さH2が第一方向に向かって大きくなるのに伴って、ブロック500の第二方向の長さが大きくなる。この場合、平面視でブロック500は、第一方向に向かって広がる台形状となる。そうすると、第二方向に隣り合う二つのブロック500の間隔(即ち、溝幅W2)が、第一方向に向かって狭くなるため、各ブロック500の側面同士が接続する場合がある。この場合、二つのブロック500が接続した部位において、ブロック隙間550の底面が上方に膨らみ、ブロック500の上面とブロック隙間550の底面との高低差が小さくなるおそれがある。
 これに対して本例では、上述したようにブロック500の両側面の傾きが第一方向に向かって急峻となるため、第二方向に隣り合う二つのブロック500の間隔が一定である。従って、隣り合う二つのブロック500が接続することが抑制されるため、ブロック500の上面とブロック隙間550の底面との高低差を大きくして、主流ST1と副流ST2との流速差を大きくできる。
[備考]
 本開示は上述した実施形態及び変形例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態に夫々開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。更に、各実施形態に夫々開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 上記実施形態では、扇風機1のプロペラファン100に表面加工シート200を設ける場合を例示したが、表面加工シート200は流体である気体又は液体に接触する対象物の表面に設けられればよい。例えば、表面加工シート200をエアコンの室外機ファンに設けることで、省電力且つ静音で効率的に送風できる。また、表面加工シート200を排水又は排気用のホースの内面に設けることで、ホース内を流れる流体をスムーズに且つ所望の方向に流すことができる。
 上記実施形態では、表面加工シート200を対象面に設置することで、表面加工構造201を対象物に容易且つ正確に設けられることを例示した。これに代えて、プロペラファン100のような対象物の表面に、表面加工構造201を直接形成してもよい。複数のブロック500の少なくとも一つは、傾斜面510に複数の微細溝520が形成されなくてもよい。
 表面加工構造201は、各種態様を適用できる。例えば複数のブロック500の形状や配置は、以下のように各種変形が可能である。図13A~図13Fは、夫々、第一~第六変形例に係る表面加工シート200の模式的な側面図である。図14A~図14Dは、夫々、第七~第十変形例に係る表面加工シート200の模式的な平面図である。図15Aは、第十一変形例に係る表面加工シート200の模式的な平面図である。図15Bは、第十一変形例に係る表面加工シート200の模式的な正面図である。
 図13Aの第一変形例が示すように、各ブロック列501において第一方向に並ぶ二以上のブロック500は、互いに繋がってもよい。図13Bの第二変形例が示すように、複数のブロック500の各々は、側面視で三角形状となるように、上流側端部511が基材202上に設けられてもよい。図13Cの第三変形例が示すように、各ブロック列501において第一方向に並ぶ二以上のブロック500は、側面視で第一方向に連なる山型でもよい。
 図13Dの第四変形例が示すように、複数のブロック500の各々は、基材202上から、第一方向に沿って斜め上方に延びる板状でもよい。図13Eの第五変形例が示すように、複数のブロック500の各々は、基材202上において側面視で円弧状又は放物線状に隆起した形状でもよい。図13Fの第六変形例が示すように、複数のブロック500の各々では、傾斜面510が側面視で円弧状又は放物線状に湾曲してもよい。
 なお、第三~第五変形例(図13C~図13E参照)では、ブロック500の前端にある上流側端部511から、ブロック500の上端にある下流側端部512まで延びる傾斜面又は湾曲面が、傾斜面510として機能する。この場合、下流側端部512からブロック500の後端まで延びる傾斜面又は湾曲面が、ブロック500の後面522をなす。
 図14Aの第七変形例が示すように、複数のブロック500は千鳥状に配置されてもよい。本例では、複数のブロック500は、複数のブロック行502を構成する。複数のブロック行502の各々は、第二方向に並んだ二以上のブロック500からなる。複数のブロック行502は、第一方向に並んで配置されている。第一方向に隣り合う二つの複数のブロック行502のうち、一のブロック行502は他のブロック行502に対して、ブロック500の半個分、第二方向にずれている。
 上記実施形態と同様に、複数のブロック500が有する複数の傾斜面510は、第一方向に延びる一つの線V上に並ぶ。具体的には、図14Aに示すように、一のブロック500の左側部分又は右側部分を通る線Vは、平面視で全てのブロック行502において、各ブロック行502に含まれるブロック500の右側部分又は左側部分を通る。つまり、平面視で線Vは、全てのブロック行502においてブロック500の傾斜面510を通る。
 表面加工シート200に向かう空気は、以下のように複数の主流ST1と複数の副流ST2とに分岐される。各ブロック500の左側部分又は右側部分に向かう空気は、夫々対応する線Vに沿って第一方向に流れる。このとき、空気が複数の傾斜面510に沿って連続して流れることで、複数の主流ST1を形成する。一方、それ以外の空気は、傾斜面510の中央部分とブロック隙間550とを交互に経由して第一方向に流れる。先述したように、ブロック隙間550は微細溝520よりも幅広であり、またブロック隙間550では気流渦Eが生じないため、主流ST1とは流速が異なる複数の副流ST2が形成される。
 第七変形例(図14A参照)でも、上記実施形態と同様に、複数の主流ST1と複数の副流ST2とが第二方向に交互に並ぶため、表面加工シート200上で第一方向に流れる気流の運動量がスパン方向で拡散される。従って、複数の主流ST1及び副流ST2が第一方向へスムーズに且つ安定して移動できると共に、より高速な風を第一方向に向けて正確に送風できる。
 図14Bの第八変形例が示すように、複数のブロック500は、複数パターンの異なる形状であってもよいし、ランダムに配置してもよい。この場合、表面加工シート200では、第二方向の位置に応じて、線Vが通るブロック500の数量や範囲が異なる。空気が線Vに沿って流れる場合に、その線Vが通るブロック500の数量や範囲が大きいと、その空気がスムーズに流れることで主流ST1が形成される。一方、空気が線Vに沿って流れる場合に、その線Vが通るブロック500の数量や範囲が小さいと、主流ST1とは流速が異なる副流ST2が形成される。
 上記のように、複数のブロック500の形状パターンが異なったり、複数のブロック500をランダムに配置したりすると、複数の主流ST1と複数の副流ST2とが形成されると共に、主流ST1及び副流ST2の形成位置が第二方向にばらつく。従って、第八変形例(図14B参照)でも、上記実施形態と同様に、複数の主流ST1及び副流ST2が第一方向へスムーズに且つ安定して移動できると共に、より高速な風を第一方向に向けて正確に送風できる。
 図14Cの第九変形例が示すように、第二方向に長い複数のブロック500が、第一方向に並ぶ一つのブロック列501を形成してもよい。この場合、表面加工シート200に向かう空気が、ブロック列501を構成する複数のブロック500の傾斜面510に沿って連続して流れることで、全体として主流ST1を形成する、従って、第九変形例(図14C参照)でも、上記実施形態と同様に、より高速な風を第一方向に向けて正確に送風できる。
 図14Dの第十変形例が示すように、各ブロック列501を構成する二以上のブロック500が並ぶ第一方向は、曲線状に延びてもよい。つまり、各ブロック列501では、二以上のブロック500が、平面視で曲線状に連続して並んでもよい。この場合、各ブロック500は、その前側が第一方向の上流側を向き、その後側が第一方向の下流側を向くように配置されればよい。これにより、各ブロック500では、傾斜面510が第一方向に向かって上側に傾くように延び、且つ複数の微細溝520が実質的に第一方向と平行に且つ直線状に延びる。
 第十変形例(図14D参照)でも、表面加工シート200に向かう空気は、複数の主流ST1と複数の副流ST2とに分岐されて第一方向に流れるため、上記実施形態と同様の作用を奏する。本例では、第一方向が曲線状であることに対応して、複数の主流ST1及び複数の副流ST2も曲線状に流れる。このように、表面加工構造201が空気を一定方向に流す機能を利用することで、所望の方向へ容易に送風できる。
 図15Aの第十一変形例が示すように、複数のブロック500の各々は平面視で菱形状でもよく、これらの菱形状のブロック500を格子状に配置してもよい。互いに隣り合う二つのブロック500の間には、第一方向及び第二方向に対して傾斜して延びる隙間560が形成される。
 この場合、表面加工シート200では、第二方向の位置に応じて、線Vが通るブロック500の数量が異なる。空気が線Vに沿って流れる場合に、その線Vがブロック500の左側部分又は右側部分を通ったほうが、その線Vがブロック500の中央部分を通るよりも、その空気が通るブロック500の数が多くなる。
 ここで、空気が一定距離を流れる場合、その空気が経由するブロック500の数が多いほど、以下の理由により空気の流速が大きくなる。空気が流れる一定距離におけるブロック500の数が多いほど、その一定距離内にある隙間560の数が多くなる。空気が隙間560を流れる際、その空気に接触抵抗が生じにくい。つまり隙間560を流れる空気は、その流速を低下させることなく移動しやすい。
 第十一変形例(図15A参照)では、ブロック500の左側部分又は右側部分を流れる空気によって複数の主流ST1が形成され、ブロック500の中央部分を流れる空気によって複数の副流ST2が形成される。上記実施形態と同様に、複数の主流ST1と複数の副流ST2とが第二方向に交互に並ぶ。そのため、複数の主流ST1及び副流ST2が第一方向へスムーズに且つ安定して移動できると共に、より高速な風を第一方向に向けて正確に送風できる。
 図15Bに示すように、ブロック500の傾斜面510では、複数の微細溝520が、正面視で下方に湾曲するように延び、且つ下方に向かって幅が狭くなる形状でもよい。複数の凸部530は、正面視で上方に湾曲するように延び、且つ上方に向かって幅が狭くなる形状でもよい。複数の凸部530は、第二方向の中心に近いほど、上方への突出高さが大きくてもよい。複数の凸部530の各々は、第一方向の下流側に向かって高さが大きくなる形状であればよい。このように傾斜面510を構成しても、上記実施形態と同様の傾斜面510と同様の機能を発揮できる。
 図15Bの例では、複数の凸部530の頂部は、表面粗さが相対的に小さい。複数の微細溝520の底部は、表面粗さが相対的に大きい。これにより、傾斜面510に流れ込む空気が、凸部530上を流れやすくすると共に、微細溝520内を流れにくくすることができる。なお、上記実施形態及び他の変形例も同様に、凸部530の表面粗さを相対的に小さくしてもよいし、微細溝520の表面粗さを相対的に大きくしてもよい。
 なお、上記実施形態では、微細溝520がブロック500の傾斜面510に設けられた場合を例示した。これに代えて、ブロック500は傾斜面510を有していなくてもよい。微細溝520は、ブロック500に設けられなくてもよい。例えば、表面加工構造201は、第二方向に並ぶ複数の第一の溝と、第一の溝と平行に延び、第一の溝より狭く、且つ第一の溝より浅い第二の溝とを備えてもよい。隣り合う第一の溝の間に、複数の第二の溝が整列してもよい。この場合、上記実施形態と同様に、第一の溝がブロック隙間550と同様に機能し、且つ第二の溝が微細溝520と同様に機能するため、流れ込む空気の幅広い流速域に対して摩擦低減効果を発揮できる。
 本開示によれば、以下のような表面加工構造、表面加工シート、及びプロペラファンを提供できる。
(1)本開示の一態様に係る表面加工構造は、
 対象物の表面である対象面上に配置された立体物であり、前記対象面と平行な第一方向に並ぶ複数のブロックを備え、
 前記複数のブロックの各々は、前記第一方向の上流側から下流側に向かって、前記対象面からの距離が漸増するように延びる傾斜面を有し、
 前記複数のブロックが有する複数の前記傾斜面は、前記第一方向に延びる一つの線上に並ぶ。
(2)前記表面加工構造において、
 前記傾斜面の全体は、前記ブロックの前記第一方向の上流側に露出し、
 前記傾斜面の前記第一方向の下流側端部は、前記ブロックのうちで前記対象面からの距離が最も大きい。
(3)前記表面加工構造において、
 前記複数のブロックのうちで前記第一方向に隣り合う二つのブロックは、上流側ブロック、及び前記上流側ブロックの下流側にある下流側ブロックであり、
 前記下流側ブロックにおける前記傾斜面の前記第一方向の上流側端部は、前記上流側ブロックにおける前記第一方向の下流側端部よりも、前記対象面からの距離が小さい。
(4)前記表面加工構造において、
 前記複数のブロックの各々は、前記傾斜面に設けられた複数の微細溝を有し、
 前記複数の微細溝は、互いに間隔を空けて前記第一方向と直交する第二方向に並び、且つ前記第一方向の上流側から下流側に向かって延びる。
(5)前記表面加工構造において、
 前記複数の微細溝は、前記傾斜面における前記第一方向の上流側端部から下流側端部まで延びる。
(6)前記表面加工構造において、
 前記複数のブロックは、前記第一方向と前記第二方向とに並んで二次元配列され、
 前記複数のブロックのうちで前記第二方向に隣り合う二つのブロックの間には、前記第二方向と交差する方向に延びる溝状のブロック隙間が形成され、
 前記複数の微細溝の各々における前記第二方向の幅は、前記隙間における前記第二方向の幅よりも小さい。
(7)前記表面加工構造において、
 前記複数のブロックは、前記第一方向に連続して並ぶ複数の前記隙間が形成されるように配置され、
 前記複数の隙間は、前記第一方向に延びる一つの流体流路を構成する。
(8)本開示の一態様に係る表面加工構造は、
 第二方向に並ぶ複数の第一の溝と、
 前記第一の溝と平行に延び、前記第一の溝より狭く、且つ前記第一の溝より浅い第二の溝と、
を備え、
 隣り合う前記第一の溝の間に、複数の前記第二の溝が整列する。
(9)前記表面加工構造において、
 前記第一の溝のアスペクト比は、前記第二の溝のアスペクト比よりも小さい。
(10)本開示の一態様に係る表面加工シートは、
 前記表面加工構造が、前記対象面上に設置可能な基材に設けられる。
(11)本開示の一態様に係るプロペラファンは、
 回転軸部と、前記回転軸部から外方に延びる翼とを備え、
 前記表面加工構造は、前記翼の表面上に設けられ、
 前記第一方向は、前記翼の前縁側から後縁側に向かう方向である。

 

Claims (9)

  1.  対象物の表面である対象面上に配置された立体物であり、前記対象面と平行な第一方向に並ぶ複数のブロックを備え、
     前記複数のブロックの各々は、前記第一方向の上流側から下流側に向かって、前記対象面からの距離が漸増するように延びる傾斜面を有し、
     前記複数のブロックが有する複数の前記傾斜面は、前記第一方向に延びる一つの線上に並び、
     前記複数のブロックの各々は、前記傾斜面に設けられた複数の微細溝を有し、
     前記複数の微細溝は、互いに間隔を空けて前記第一方向と直交する第二方向に並び、且つ前記第一方向の上流側から下流側に向かって延び、
     前記複数の微細溝は、前記傾斜面における前記第一方向の上流側端部から下流側端部まで同じ深さで延びる、
     表面加工構造。
  2.  前記傾斜面の全体は、前記ブロックの前記第一方向の上流側に露出し、
     前記傾斜面の前記第一方向の下流側端部は、前記ブロックのうちで前記対象面からの距離が最も大きい、
     請求項1に記載の表面加工構造。
  3.  前記複数のブロックのうちで前記第一方向に隣り合う二つのブロックは、上流側ブロック、及び前記上流側ブロックの下流側にある下流側ブロックであり、
     前記下流側ブロックにおける前記傾斜面の前記第一方向の上流側端部は、前記上流側ブロックにおける前記第一方向の下流側端部よりも、前記対象面からの距離が小さい、
     請求項1又は2に記載の表面加工構造。
  4.  前記複数のブロックは、前記第一方向と前記第二方向とに並んで二次元配列され、
     前記複数のブロックのうちで前記第二方向に隣り合う二つのブロックの間には、前記第一方向に延びる溝状の隙間が形成され、
     前記複数の微細溝の各々における前記第二方向の幅は、前記隙間における前記第二方向の幅よりも小さく、
     前記複数のブロックは、前記隙間が前記第一方向に延びる一つの流体流路を構成するように配置され、
     前記傾斜面に設けられた前記複数の微細溝と、前記流体流路とが、前記第二方向に沿って交互に並ぶように配置される、
     請求項1から3の何れかに記載の表面加工構造。
  5.  前記隙間の深さに対する幅の大きさを示すアスペクト比は、前記微細溝の深さに対する幅の大きさを示すアスペクト比よりも小さく、
     前記幅は前記第二方向の長さであり、且つ前記深さは前記第一方向及び前記第二方向と直交な第三方向の長さである、
     請求項4に記載の表面加工構造。
  6.  対象物の表面である対象面上に配置された立体物であり、前記対象面と平行な第一方向と前記第一方向に直交する第二方向とに並ぶ複数のブロックを備え、
     前記複数のブロックの各々は、前記第一方向の上流側から下流側に向かって、前記対象面からの距離が漸増するように延びる傾斜面を有し、
     前記複数のブロックが有する複数の前記傾斜面は、前記第一方向に延びる一つの線上に並び、
     前記複数のブロックの各々は、前記傾斜面に設けられた複数の微細溝を有し、
     前記複数の微細溝は、互いに間隔を空けて前記第二方向に並び、且つ前記第一方向の上流側から下流側に向かって延び、
     前記複数のブロックのうちで前記第二方向に隣り合う二つのブロックの間には、前記第一方向に延びる溝状の隙間が形成され、
     前記複数の微細溝の各々における前記第二方向の幅は、前記隙間における前記第二方向の幅よりも小さく、
     前記複数のブロックは、前記隙間が前記第一方向に延びる一つの流体流路を構成するように配置され、
     前記傾斜面に設けられた前記複数の微細溝と、前記流体流路とが、前記第二方向に沿って交互に並ぶように配置される、
     表面加工構造。
  7.  前記隙間の深さに対する幅の大きさを示すアスペクト比は、前記微細溝の深さに対する幅の大きさを示すアスペクト比よりも小さく、
     前記幅は前記第二方向の長さであり、且つ前記深さは前記第一方向及び前記第二方向と直交な第三方向の長さである、
     請求項6に記載の表面加工構造。
  8.  請求項1から7の何れかに記載の表面加工構造が、前記対象面上に設置可能な基材に設けられた表面加工シート。
  9.  回転軸部と、前記回転軸部から外方に延びる翼とを備え、
     請求項1から8の何れかに記載の表面加工構造は、前記翼の表面上に設けられ、
     前記第一方向は、前記翼の前縁側から後縁側に向かう方向である、
     プロペラファン。

     
PCT/JP2022/013010 2021-04-16 2022-03-22 表面加工構造、表面加工シート、及びプロペラファン WO2022220020A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280028621.3A CN117157462A (zh) 2021-04-16 2022-03-22 表面加工结构、表面加工片及螺旋桨式风扇
EP22787945.9A EP4325063A4 (en) 2021-04-16 2022-03-22 SURFACE FINISHING STRUCTURE, SURFACE FINISHING FILM AND PROPELLER FAN
US18/287,004 US12049905B2 (en) 2021-04-16 2022-03-22 Surface-processed structure, surface-processed sheet, and propeller fan

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-069498 2021-04-16
JP2021069498A JP7022238B1 (ja) 2021-04-16 2021-04-16 表面加工構造、表面加工シート、及びプロペラファン
JP2022018395 2022-02-09
JP2022-018395 2022-02-09

Publications (1)

Publication Number Publication Date
WO2022220020A1 true WO2022220020A1 (ja) 2022-10-20

Family

ID=83640546

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/013011 WO2022220021A1 (ja) 2021-04-16 2022-03-22 表面加工構造、表面加工シート、及びプロペラファン
PCT/JP2022/013010 WO2022220020A1 (ja) 2021-04-16 2022-03-22 表面加工構造、表面加工シート、及びプロペラファン

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013011 WO2022220021A1 (ja) 2021-04-16 2022-03-22 表面加工構造、表面加工シート、及びプロペラファン

Country Status (4)

Country Link
US (2) US12049905B2 (ja)
EP (2) EP4325063A4 (ja)
JP (1) JPWO2022220021A1 (ja)
WO (2) WO2022220021A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050215A (ja) * 1999-08-11 2001-02-23 浩伸 ▲黒▼川 カルマン渦低減体
JP2009504474A (ja) * 2005-08-10 2009-02-05 キック・オフ・リミテッド 乱流フォイル
JP2010007846A (ja) * 2008-06-30 2010-01-14 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 流動抵抗低減構造
JP2013002636A (ja) * 2011-06-21 2013-01-07 Zhengxin Mei 流線形物体の抵抗力を減少する方法及びその応用
WO2018139049A1 (ja) * 2017-01-24 2018-08-02 株式会社日立製作所 流体機器
JP2021069498A (ja) 2019-10-29 2021-05-06 東芝ライフスタイル株式会社 電気掃除機
JP2022018395A (ja) 2020-07-15 2022-01-27 株式会社タカゾノ 薬剤量り取り装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB379747A (en) * 1931-03-16 1932-09-05 Thomas Murdoch Maccaskie Improvements in or relating to water craft, aircraft or the like
US5114099A (en) * 1990-06-04 1992-05-19 W. L. Chow Surface for low drag in turbulent flow
US5848769A (en) * 1996-08-26 1998-12-15 Minnesota Mining & Manufacturing Company Drag reduction article
JP2002039118A (ja) * 2000-07-26 2002-02-06 Daikin Ind Ltd 気流音低減装置
JP2003003945A (ja) 2001-06-19 2003-01-08 Dmw Japan:Kk 風車の羽にディンプルを付け風の抵抗を増加させる発明
KR20030020731A (ko) * 2001-09-04 2003-03-10 (주)에어로다빈치 펄럭임 운동을 하는 비행체의 날개구조
DE20114878U1 (de) 2001-09-08 2002-03-28 Späth, Bernd, 74248 Ellhofen Oberfläche mit verbesserten Eigenschaften
EP1808508A1 (de) * 2006-01-17 2007-07-18 Siemens Aktiengesellschaft Im Strömungskanal einer Strömungsmaschine anzuordnendes Bauteil und Spritzverfahren zum Erzeugen einer Beschichtung
GB201716178D0 (en) * 2017-10-04 2017-11-15 Rolls Royce Plc Blade or vane for a gas turbine engine
JP7199024B2 (ja) * 2019-01-18 2023-01-05 パナソニックIpマネジメント株式会社 表面部材及び浴室部材
US11614106B2 (en) * 2019-08-21 2023-03-28 Lockheed Martin Corporation Partially submerged periodic riblets
AU2019101286A4 (en) * 2019-10-24 2019-12-05 Jilin University Bionic surface structure for enhancing evaporation heat transfer of liquid film
EP4141218A4 (en) * 2020-04-22 2024-04-03 Nikon Corporation BUCKET, MACHINING SYSTEM AND MACHINING PROCESS
IT202100000296A1 (it) 2021-01-08 2022-07-08 Gen Electric Motore a turbine con paletta avente un insieme di fossette

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050215A (ja) * 1999-08-11 2001-02-23 浩伸 ▲黒▼川 カルマン渦低減体
JP2009504474A (ja) * 2005-08-10 2009-02-05 キック・オフ・リミテッド 乱流フォイル
JP2010007846A (ja) * 2008-06-30 2010-01-14 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 流動抵抗低減構造
JP2013002636A (ja) * 2011-06-21 2013-01-07 Zhengxin Mei 流線形物体の抵抗力を減少する方法及びその応用
WO2018139049A1 (ja) * 2017-01-24 2018-08-02 株式会社日立製作所 流体機器
JP2021069498A (ja) 2019-10-29 2021-05-06 東芝ライフスタイル株式会社 電気掃除機
JP2022018395A (ja) 2020-07-15 2022-01-27 株式会社タカゾノ 薬剤量り取り装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4325063A4

Also Published As

Publication number Publication date
US20240200571A1 (en) 2024-06-20
EP4325064A1 (en) 2024-02-21
JPWO2022220021A1 (ja) 2022-10-20
WO2022220021A1 (ja) 2022-10-20
US20240200570A1 (en) 2024-06-20
EP4325063A4 (en) 2024-08-14
US12049905B2 (en) 2024-07-30
EP4325064A4 (en) 2024-08-14
EP4325063A1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
DK178323B1 (en) Rotor blade for a wind turbine with aerodynamic features
KR101646800B1 (ko) 유체 터빈 시스템
US20220135195A1 (en) Propeller
JP4433093B2 (ja) クロスフローファン及びこれを備えた空気調和機
US8323775B2 (en) Turbulence foil
JP5125518B2 (ja) プロペラファン
WO2017002757A1 (ja) マグナス式推力発生装置
EP0980979A1 (en) Air supplying device
JP2009185803A (ja) プロペラファン
WO2007077968A1 (ja) 伝熱装置
JP5269036B2 (ja) 貫流ファン、およびそれを備えた空気調和機
WO2022220020A1 (ja) 表面加工構造、表面加工シート、及びプロペラファン
JP2022164173A (ja) 表面加工構造、表面加工シート、及びプロペラファン
US20160194076A1 (en) Layer for reducing fluid resistance
JP2011122517A (ja) 多翼遠心ファンおよびそれを用いた空気調和機
JP2016070089A (ja) ファン
CN209945100U (zh) 用于板翅式换热器的散热片
JP5852591B2 (ja) 段差付きサーフェスプロペラ
CN117203433A (zh) 表面加工结构、表面加工片及螺旋桨式风扇
CN110748956A (zh) 气流调节装置和空调器
JP4957774B2 (ja) クロスフローファン及びこれを備えた空気調和機
WO2023116303A1 (zh) 用于减阻/整流的物体表面结构、制备方法及装置
TW202323681A (zh) 風扇裝置
JPH11280404A (ja) ガスタービン冷却翼
CN114607470A (zh) 叶片和燃气轮机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18287004

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022787945

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022787945

Country of ref document: EP

Effective date: 20231116