WO2022219843A1 - 電池 - Google Patents
電池 Download PDFInfo
- Publication number
- WO2022219843A1 WO2022219843A1 PCT/JP2021/044435 JP2021044435W WO2022219843A1 WO 2022219843 A1 WO2022219843 A1 WO 2022219843A1 JP 2021044435 W JP2021044435 W JP 2021044435W WO 2022219843 A1 WO2022219843 A1 WO 2022219843A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- negative electrode
- battery according
- electrode layer
- battery
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 303
- 239000013078 crystal Substances 0.000 claims abstract description 111
- 239000003792 electrolyte Substances 0.000 claims abstract description 55
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 25
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 24
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 16
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 14
- 229910052752 metalloid Inorganic materials 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 239000007773 negative electrode material Substances 0.000 claims description 72
- 239000010936 titanium Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 24
- 229910052717 sulfur Inorganic materials 0.000 claims description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 20
- 239000011593 sulfur Substances 0.000 claims description 20
- 229910052727 yttrium Inorganic materials 0.000 claims description 12
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 10
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 claims description 4
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims description 3
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 claims description 3
- 239000002184 metal Substances 0.000 abstract description 11
- 239000013543 active substance Substances 0.000 abstract 2
- 239000002245 particle Substances 0.000 description 43
- 239000000843 powder Substances 0.000 description 35
- 239000000463 material Substances 0.000 description 29
- 238000002360 preparation method Methods 0.000 description 28
- 238000002441 X-ray diffraction Methods 0.000 description 24
- 238000007600 charging Methods 0.000 description 22
- 239000002134 carbon nanofiber Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 19
- 239000007774 positive electrode material Substances 0.000 description 18
- -1 Group 3 elements Inorganic materials 0.000 description 16
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 14
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 14
- 239000002994 raw material Substances 0.000 description 13
- 238000007599 discharging Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000012300 argon atmosphere Substances 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 150000004820 halides Chemical class 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 229910052692 Dysprosium Inorganic materials 0.000 description 6
- 229910052772 Samarium Inorganic materials 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 229910052712 strontium Inorganic materials 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000010277 constant-current charging Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 229910052691 Erbium Inorganic materials 0.000 description 4
- 229910052693 Europium Inorganic materials 0.000 description 4
- 229910052689 Holmium Inorganic materials 0.000 description 4
- 229910052765 Lutetium Inorganic materials 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 4
- 229910052777 Praseodymium Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 229910052771 Terbium Inorganic materials 0.000 description 4
- 229910052775 Thulium Inorganic materials 0.000 description 4
- 229910052769 Ytterbium Inorganic materials 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052795 boron group element Inorganic materials 0.000 description 4
- 229910052800 carbon group element Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910001849 group 12 element Inorganic materials 0.000 description 4
- 229910021480 group 4 element Inorganic materials 0.000 description 4
- 229910021478 group 5 element Inorganic materials 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 150000004678 hydrides Chemical class 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052747 lanthanoid Inorganic materials 0.000 description 4
- 150000002602 lanthanoids Chemical class 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000002203 sulfidic glass Substances 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910000314 transition metal oxide Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 229910013184 LiBO Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229910006025 NiCoMn Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052789 astatine Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920000447 polyanionic polymer Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 229910011255 B2O3 Inorganic materials 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910003317 GdCl3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002227 LISICON Substances 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 1
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910008373 Li-Si-O Inorganic materials 0.000 description 1
- 229910003405 Li10GeP2S12 Inorganic materials 0.000 description 1
- 229910005313 Li14ZnGe4O16 Inorganic materials 0.000 description 1
- 229910010177 Li2MoO3 Inorganic materials 0.000 description 1
- 229910007822 Li2ZrO3 Inorganic materials 0.000 description 1
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910002984 Li7La3Zr2O12 Inorganic materials 0.000 description 1
- 229910010092 LiAlO2 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013406 LiN(SO2CF3)2 Inorganic materials 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910000857 LiTi2(PO4)3 Inorganic materials 0.000 description 1
- 229910008291 Li—B—O Inorganic materials 0.000 description 1
- 229910006757 Li—Si—O Inorganic materials 0.000 description 1
- 229910017299 Mo—O Inorganic materials 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- 229910006020 NiCoAl Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 229910009523 YCl3 Inorganic materials 0.000 description 1
- 229910021601 Yttrium(III) bromide Inorganic materials 0.000 description 1
- 229910007746 Zr—O Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000002593 electrical impedance tomography Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- MEANOSLIBWSCIT-UHFFFAOYSA-K gadolinium trichloride Chemical compound Cl[Gd](Cl)Cl MEANOSLIBWSCIT-UHFFFAOYSA-K 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229940070721 polyacrylate Drugs 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910021561 transition metal fluoride Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten(VI) oxide Inorganic materials O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- PCMOZDDGXKIOLL-UHFFFAOYSA-K yttrium chloride Chemical compound [Cl-].[Cl-].[Cl-].[Y+3] PCMOZDDGXKIOLL-UHFFFAOYSA-K 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This disclosure relates to batteries.
- Patent Document 1 discloses a negative electrode material composed of lithium titanate as a negative electrode active material and a solid electrolyte made of a halide, and an all-solid-state battery using the same.
- Patent Document 1 The conventional battery disclosed in Patent Document 1 has room for improvement in terms of output characteristics.
- the present disclosure provides a battery with improved output characteristics.
- the battery of the present disclosure is a positive electrode layer; a negative electrode layer; an electrolyte layer positioned between the positive electrode layer and the negative electrode layer; with the negative electrode layer includes a negative electrode active material and a first solid electrolyte;
- the electrolyte layer includes a second solid electrolyte, the negative electrode active material contains Li, Ti, and O;
- the first solid electrolyte contains a crystal phase attributed to monoclinic and contains Li, M1, and X1, M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X1 is at least one selected from the group consisting of F, Cl, Br, and I;
- the second solid electrolyte contains a crystal phase attributed to a trigonal crystal and contains Li, M2, and X2, M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X2 is at least one selected from the group consisting of F, Cl, Br and I;
- FIG. 1 shows a cross-sectional view of a battery according to an embodiment of the disclosure.
- FIG. 2 shows a schematic diagram of a pressure forming die used to evaluate the ionic conductivity of solid electrolytes.
- 3 is a graph showing the results of an initial charge/discharge test of the battery according to Example 2.
- Patent Document 1 described in the [Background Art] column discloses a battery including a negative electrode layer using a negative electrode material composed of lithium titanate as a negative electrode active material and a solid electrolyte formed of a halide. ing. Further improvement in output characteristics is demanded for conventional batteries having a negative electrode layer containing such a negative electrode active material and a solid electrolyte. Accordingly, the present inventors have conducted extensive research on improving the output characteristics of a battery having such a configuration.
- the present inventors found that, among the solid electrolytes used in the negative electrode layer and the electrolyte layer, there is a combination of solid electrolytes suitable for improving the charge/discharge rate characteristics, and the output characteristics of the battery can be improved by the combination of solid electrolytes. I have discovered that it can be improved. As a result, the inventors have completed the battery of the present disclosure described below.
- the battery according to the first aspect of the present disclosure includes a positive electrode layer; a negative electrode layer; an electrolyte layer positioned between the positive electrode layer and the negative electrode layer; with the negative electrode layer includes a negative electrode active material and a first solid electrolyte;
- the electrolyte layer includes a second solid electrolyte, the negative electrode active material contains Li, Ti, and O;
- the first solid electrolyte contains a crystal phase attributed to monoclinic and contains Li, M1, and X1, M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X1 is at least one selected from the group consisting of F, Cl, Br, and I;
- the second solid electrolyte contains a crystal phase attributed to a trigonal crystal and contains Li, M2, and X2, M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X2 is at least one selected from the group consisting of F, Cl, Br and I
- both the negative electrode layer and the electrolyte layer contain a halide solid electrolyte containing at least one selected from the group consisting of F, Cl, Br and I. Furthermore, the first solid electrolyte contained in the negative electrode layer contains a crystal phase attributed to monoclinic crystal, and the second solid electrolyte contained in the electrode layer contains a crystal phase attributed to trigonal crystal.
- the charge/discharge rate characteristics of the battery can be improved. Thereby, the battery according to the first aspect has improved output characteristics.
- the first solid electrolyte may be substantially free of sulfur.
- the battery according to the second aspect has excellent safety.
- the second solid electrolyte may be substantially free of sulfur.
- the battery according to the third aspect has excellent safety.
- X1 may be at least one selected from the group consisting of Cl, Br and I.
- the battery according to the fourth aspect has more improved output characteristics.
- X1 may contain Br.
- the battery according to the fifth aspect has more improved output characteristics.
- the first solid electrolyte may be represented by the following compositional formula (1).
- ⁇ 1, ⁇ 1, and ⁇ 1 are each independently a value greater than 0.
- the battery according to the sixth aspect has more improved output characteristics.
- M1 may include Y, for example, in the battery according to any one of the first to sixth aspects.
- the battery according to the seventh aspect has more improved output characteristics.
- the battery according to the eighth aspect has more improved output characteristics.
- the first solid electrolyte is Li 3 YBr 6 , Li 3 YBr 2 Cl 4 , and Li 3 YBr 2 It may be at least one selected from the group consisting of Cl 2 I 2 .
- the battery according to the ninth aspect has more improved output characteristics.
- X2 may be at least one selected from the group consisting of Cl, Br and I.
- the battery according to the tenth aspect has more improved output characteristics.
- X2 may contain Cl.
- the battery according to the eleventh aspect has more improved output characteristics.
- the second solid electrolyte may be represented by the following compositional formula (2).
- ⁇ 2, ⁇ 2, and ⁇ 2 are independently values greater than 0.
- the battery according to the twelfth aspect has more improved output characteristics.
- M2 may include Y in the battery according to any one of the first to twelfth aspects.
- the battery according to the thirteenth aspect has more improved output characteristics.
- the battery according to the fourteenth aspect has more improved output characteristics.
- M2 may contain Y, Ca, and Gd.
- the battery according to the fifteenth aspect has more improved output characteristics.
- the second solid electrolyte may be represented by the following compositional formula (3).
- the battery according to the sixteenth aspect has more improved output characteristics.
- the second solid electrolyte may be Li2.8Ca0.1Y0.6Gd0.4Br2Cl4 .
- the battery according to the seventeenth aspect has more improved output characteristics.
- the negative electrode active material may be lithium titanium oxide.
- the battery according to the eighteenth aspect has more improved output characteristics.
- the negative electrode active material may be Li4Ti5O12 .
- the battery according to the nineteenth aspect has more improved output characteristics.
- the positive electrode layer may contain nickel cobalt lithium manganate.
- the battery according to the twentieth aspect can improve charge/discharge capacity.
- FIG. 1 shows a cross-sectional view of a battery according to an embodiment of the present disclosure.
- a battery 1000 according to this embodiment includes a positive electrode layer 101 , a negative electrode layer 103 and an electrolyte layer 102 .
- the electrolyte layer 102 is located between the positive electrode layer 101 and the negative electrode layer 103 .
- the negative electrode layer 103 contains a negative electrode active material and a first solid electrolyte.
- the negative electrode active material contains Li, Ti, and O.
- the first solid electrolyte contains a crystal phase attributed to monoclinic and contains Li, M1, and X1.
- M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
- X1 is at least one selected from the group consisting of F, Cl, Br, and I.
- the electrolyte layer 102 contains a second solid electrolyte.
- the second solid electrolyte contains a crystal phase attributed to a trigonal crystal and contains Li, M2, and X2.
- M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
- X2 is at least one selected from the group consisting of F, Cl, Br and I.
- the term "metallic element” (i) all elements contained in groups 1 to 12 of the periodic table (excluding hydrogen), and (ii) all elements contained in groups 13 to 16 of the periodic table (with the exception of B, Si, Ge , As, Sb, Te, C, N, P, O, S, and Se). That is, the metal element is a group of elements that can become a cation when forming an inorganic compound with a halogen compound.
- metal element used in this specification is B, Si, Ge, As, Sb, and Te.
- the term "monoclinic” as used in this disclosure refers to ICSD (Inorganic Crystal Structure Database) No. 50182, which has a crystal structure similar to that of Li 3 ErBr 6 and has an X-ray diffraction pattern peculiar to this crystal structure. Therefore, the presence of monoclinic crystals contained in the solid electrolyte is determined based on the X-ray diffraction pattern. At this time, the diffraction angle and/or peak intensity ratio of the diffraction pattern may change from that of Li 3 ErBr 6 depending on the type of element contained in the first solid electrolyte.
- "having a similar crystal structure” means being classified into the same space group and having a close atomic arrangement structure, and does not limit the lattice constant.
- trigonal refers to ICSD (Inorganic Crystal Structure Database) No. No. 50151, which has a similar crystal structure to Li 3 ErCl 6 and has an X-ray diffraction pattern peculiar to this crystal structure. Therefore, the presence of trigonal crystals contained in the solid electrolyte is determined based on the X-ray diffraction pattern. At this time, the diffraction angle and/or peak intensity ratio of the diffraction pattern may change from that of Li 3 ErCl 6 depending on the type of elements contained in the first solid electrolyte.
- both the negative electrode layer 103 and the electrolyte layer 102 contain a halide solid electrolyte containing at least one selected from the group consisting of F, Cl, Br and I. . Furthermore, the first solid electrolyte contained in negative electrode layer 103 contains a crystal phase attributed to monoclinic crystals, and the second solid electrolyte contained in electrolyte layer 102 contains a crystal phase attributed to trigonal crystals. . Since the first solid electrolyte contained in the negative electrode layer 103 and the second solid electrolyte contained in the electrolyte layer 102 have such a configuration, the charge/discharge rate characteristics of the battery 1000 can be improved. Thereby, the output characteristics of the battery 1000 are improved.
- the first solid electrolyte contains Li, M1, and X1.
- a solid electrolyte composed of these elements and having a monoclinic crystal structure has relatively low grain boundary resistance and is relatively soft, so it has excellent filling properties, and even if it is pulverized, the ionic conductivity decreases. hard to do. Therefore, the first solid electrolyte containing a crystal phase belonging to the monoclinic system can maintain the ionic conductivity of the material itself even when it is mixed with the negative electrode active material and pulverized.
- a negative electrode active material containing Li, Ti, and O used for the negative electrode layer 103 is a relatively hard material. Even when the first solid electrolyte is mixed with such a hard negative electrode active material and pulverized, the ionic conductivity of the material itself can be maintained, so deterioration is unlikely. Therefore, the negative electrode layer 103 has improved electrode performance.
- the second solid electrolyte contains Li, M2, and X2.
- a solid electrolyte composed of these elements and having a trigonal crystal structure has a higher grain boundary resistance than a solid electrolyte having a monoclinic crystal structure, and the ionic conductivity decreases when pulverized. It's easy to do.
- the solid electrolyte composed of the above elements and having a trigonal crystal structure has a high ionic conductivity of the material itself.
- the solid electrolyte forming the electrolyte layer 102 is usually used without being mixed with other hard materials such as electrode active materials and pulverized. Therefore, the second solid electrolyte containing a crystalline phase belonging to a trigonal crystal having a relatively high ionic conductivity of the material itself can improve the ionic conductivity of the electrolyte layer 102 .
- the negative electrode layer 103 generally has a slightly inferior ionic conductivity of the material itself, but the grain boundary resistance is relatively low and the ionic conductivity does not easily decrease even when pulverized. a first solid electrolyte having properties.
- the electrolyte layer 102 generally includes a second solid electrolyte whose ion conductivity tends to decrease when pulverized, but whose material itself has high ion conductivity.
- An example of the battery 1000 according to this embodiment is an all-solid battery.
- the all-solid-state battery may be a primary battery or a secondary battery.
- negative electrode layer 103 includes a first solid electrolyte containing Li, M1, and X1.
- the first solid electrolyte contains a crystal phase belonging to monoclinic crystals.
- the main crystal phase in the first solid electrolyte may be a crystal phase belonging to monoclinic crystals.
- the first solid electrolyte may have a monoclinic crystal structure.
- the first solid electrolyte may contain other crystal phases that do not belong to monoclinic crystals.
- the first solid electrolyte may consist essentially of Li, M1, and X1.
- the first solid electrolyte consists essentially of Li, M1, and X1
- the first solid electrolyte may consist only of Li, M1 and X1.
- M1 may contain at least one element selected from the group consisting of Group 1 elements, Group 2 elements, Group 3 elements, Group 4 elements, and lanthanide elements. In addition, M1 may contain at least one element selected from the group consisting of Group 5 elements, Group 12 elements, Group 13 elements, and Group 14 elements in order to increase ionic conductivity.
- Group 1 elements are Na, K, Rb, or Cs.
- group 2 elements are Mg, Ca, Sr or Ba.
- group 3 elements are Sc or Y.
- Group 4 elements are Ti, Zr, or Hf.
- Examples of lanthanide elements are La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
- Examples of Group 5 elements are Nb or Ta.
- An example of a Group 12 element is Zn.
- group 13 elements are Al, Ga or In.
- An example of a Group 14 element is Sn.
- M1 may include Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, At least one element selected from the group consisting of Ho, Er, Tm, Yb, and Lu may be included.
- M1 may contain at least one element selected from the group consisting of Mg, Ca, Sr, Y, Sm, Gd, Dy, and Hf.
- M1 may contain Y in order to further increase ionic conductivity and to have improved output characteristics.
- X1 may contain at least one element selected from the group consisting of Cl, Br, and I in order to have improved output characteristics.
- X1 may contain at least two elements selected from the group consisting of Cl, Br, and I in order to have improved output characteristics.
- X1 may contain Cl, Br, and I in order to have improved output characteristics.
- the first solid electrolyte contains a crystal phase belonging to monoclinic crystals.
- X1 may contain Br so that the solid electrolyte containing Li, M1, and X1 tends to contain a crystal phase attributed to a monoclinic crystal.
- a monoclinic crystal structure is more likely to be formed, for example, when the anion X1 is relatively large. Therefore, when X1 contains Br, a stable monoclinic crystal structure is likely to be formed, and the first solid electrolyte can stably contain a crystal phase attributed to monoclinic. As a result, more improved output characteristics are obtained.
- the first solid electrolyte may be represented by the following compositional formula (1).
- ⁇ 1, ⁇ 1, and ⁇ 1 are each independently a value greater than 0.
- the first solid electrolyte may be Li3YX16 .
- the first solid electrolyte may be Li3YBr6 or Li3YBrxClyI6 - xy . where x and y satisfy 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and 0 ⁇ x+y ⁇ 6.
- the first solid electrolyte may be at least one selected from the group consisting of Li3YBr6 , Li3YBr2Cl4 , and Li3YBr2Cl2I2 .
- the first solid electrolyte is one of these materials, it can stably contain a crystal phase attributed to monoclinic crystals, and can maintain high ionic conductivity even when pulverized. As a result, more improved output characteristics are obtained.
- the shape of the first solid electrolyte is not limited.
- the shape of the first solid electrolyte may be, for example, acicular, spherical, oval, or fibrous.
- the first solid electrolyte may be particulate.
- the first solid electrolyte may be formed to have a pellet or plate shape.
- the first solid electrolyte when the first solid electrolyte is particulate (for example, spherical), the first The solid electrolyte may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- Median size means the particle size when the cumulative volume in a volume-based particle size distribution is equal to 50%.
- a volume-based particle size distribution can be measured by a laser diffraction measurement device or an image analysis device.
- the median diameter may be 0.5 ⁇ m or more and 10 ⁇ m or less. Thereby, the first solid electrolyte has high ionic conductivity.
- the first solid electrolyte for example, contains substantially no sulfur. That the first solid electrolyte does not substantially contain sulfur means that the first solid electrolyte does not contain sulfur as a constituent element, except for sulfur that is unavoidably mixed as an impurity. In this case, sulfur mixed as an impurity in the first solid electrolyte is, for example, 1 mol % or less.
- the first solid electrolyte may not contain sulfur. When the first solid electrolyte does not contain sulfur, the first solid electrolyte does not generate hydrogen sulfide even if it is exposed to the atmosphere, so it is excellent in safety.
- the negative electrode layer 103 may contain negative electrode active material particles 104 and first solid electrolyte particles 105, as shown in FIG.
- the median diameter of the negative electrode active material particles 104 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
- the negative electrode active material particles 104 have a median diameter of 0.1 ⁇ m or more, the negative electrode active material particles 104 and the first solid electrolyte particles 105 are dispersed well in the negative electrode layer 103 . Thereby, the charge/discharge characteristics of the battery 1000 are improved.
- the negative electrode active material particles 104 have a median diameter of 100 ⁇ m or less, the diffusion rate of lithium in the negative electrode active material particles 104 is improved. This allows battery 1000 to operate at high output.
- the negative electrode active material particles 104 may have a larger median diameter than the first solid electrolyte particles 105 . Thereby, in the negative electrode layer 103, the dispersion state of the negative electrode active material particles 104 and the first solid electrolyte particles 105 is improved.
- the first solid electrolyte particles 105 and the negative electrode active material particles 104 may be in contact with each other as shown in FIG.
- the negative electrode layer 103 in this embodiment may include a plurality of first solid electrolyte particles 105 and a plurality of negative electrode active material particles 104 .
- the content of the first solid electrolyte particles 105 may be the same as or different from the content of the negative electrode active material particles 104 .
- the volume ratio Vn representing the volume of the negative electrode active material particles to the total volume of the negative electrode active material particles 104 and the first solid electrolyte particles 105 may be 0.3 or more and 0.95 or less.
- the volume ratio Vn is 0.3 or more, the energy density of the battery 1000 can be improved.
- the volume ratio Vn is 0.95 or less, the output of the battery 1000 can be improved.
- the thickness of the negative electrode layer 103 may be 10 ⁇ m or more and 500 ⁇ m or less.
- the battery 1000 can ensure sufficient energy density. Moreover, when the thickness of the negative electrode layer 103 is 500 ⁇ m or less, the output of the battery 1000 can be improved.
- the negative electrode layer 103 may further contain another solid electrolyte having a different composition or different crystal structure from the first solid electrolyte.
- the mass of the first solid electrolyte with respect to the total mass of the solid electrolytes contained in negative electrode layer 103 may be 1% by mass or more, or may be 50% by mass or more.
- solid electrolytes having a different composition than the first solid electrolyte are sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, or complex hydride solid electrolytes.
- sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, and complex hydride solid electrolytes are the same as examples of solid electrolytes that can be used for positive electrode layer 101 described later.
- the negative electrode active material contained in the negative electrode layer 103 contains Li, Ti, and O.
- the negative electrode active material may be, for example, lithium titanium oxide , such as Li4Ti5O12 .
- Electrolyte layer 102 includes a second solid electrolyte.
- the second solid electrolyte contains Li, M2, and X2.
- the second solid electrolyte contains a crystal phase belonging to a trigonal crystal.
- the main crystal phase in the second solid electrolyte may be a crystal phase belonging to a trigonal crystal.
- the second solid electrolyte may have a trigonal crystal structure.
- the second solid electrolyte may contain other crystal phases that do not belong to the trigonal crystal.
- the second solid electrolyte may consist essentially of Li, M2 and X2.
- the second solid electrolyte consists essentially of Li, M2, and X2
- the second solid electrolyte may consist only of Li, M2 and X2.
- M2 may contain at least one element selected from the group consisting of Group 1 elements, Group 2 elements, Group 3 elements, Group 4 elements, and lanthanide elements. M2 may also contain at least one element selected from the group consisting of Group 5 elements, Group 12 elements, Group 13 elements, and Group 14 elements in order to increase ionic conductivity.
- Group 1 elements are Na, K, Rb, or Cs.
- group 2 elements are Mg, Ca, Sr or Ba.
- group 3 elements are Sc or Y.
- Group 4 elements are Ti, Zr, or Hf.
- Examples of lanthanide elements are La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
- Examples of Group 5 elements are Nb or Ta.
- An example of a Group 12 element is Zn.
- group 13 elements are Al, Ga or In.
- An example of a Group 14 element is Sn.
- M2 may include Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, At least one element selected from the group consisting of Ho, Er, Tm, Yb, and Lu may be included.
- M2 may contain at least one element selected from the group consisting of Mg, Ca, Sr, Y, Sm, Gd, Dy, and Hf.
- M2 may contain Y in order to further increase the ionic conductivity and obtain more improved output characteristics.
- X2 may contain at least one element selected from the group consisting of Br, Cl and I in order to obtain more improved output characteristics.
- X2 may contain at least two elements selected from the group consisting of Cl, Br, and I in order to obtain more improved output characteristics.
- X2 may contain Cl, Br, and I in order to obtain improved output characteristics.
- the second solid electrolyte contains a crystal phase belonging to a trigonal crystal.
- X2 may contain Cl so that the solid electrolyte containing Li, M2, and X2 tends to contain a crystal phase attributed to a trigonal crystal.
- a trigonal crystal structure is more likely to be formed, for example, when the anion X2 is relatively small. Therefore, when X2 contains Cl, a stable trigonal crystal structure is likely to be formed, and the second solid electrolyte can stably contain a crystal phase attributed to a trigonal crystal. As a result, more improved output characteristics are obtained.
- the second solid electrolyte may be represented by the following compositional formula (2).
- ⁇ 2, ⁇ 2, and ⁇ 2 are independently values greater than 0.
- M2 may contain Y, Ca, and Gd in order to obtain improved output characteristics.
- the second solid electrolyte may be represented by the following compositional formula (3).
- the second solid electrolyte may be Li2.8Ca0.1Y0.6Gd0.4Br2Cl4 .
- the second solid electrolyte is this material, it can stably contain a crystal phase attributed to a trigonal crystal. As a result, more improved output characteristics can be obtained.
- the shape of the second solid electrolyte is not limited.
- the shape of the second solid electrolyte may be, for example, acicular, spherical, oval, or fibrous.
- the second solid electrolyte may be particulate.
- the second solid electrolyte may be formed to have a pellet or plate shape.
- the second solid electrolyte when the second solid electrolyte is particulate (for example, spherical), the second solid electrolyte may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- Median size means the particle size when the cumulative volume in a volume-based particle size distribution is equal to 50%.
- a volume-based particle size distribution can be measured by a laser diffraction measurement device or an image analysis device.
- the median diameter may be 0.5 ⁇ m or more and 10 ⁇ m or less. Thereby, the second solid electrolyte has high ionic conductivity.
- the second solid electrolyte for example, contains substantially no sulfur.
- the fact that the second solid electrolyte does not substantially contain sulfur means that the second solid electrolyte does not contain sulfur as a constituent element, except for sulfur that is unavoidably mixed as an impurity.
- sulfur mixed as an impurity in the second solid electrolyte is, for example, 1 mol % or less.
- the second solid electrolyte may not contain sulfur. When the second solid electrolyte does not contain sulfur, the second solid electrolyte does not generate hydrogen sulfide even when exposed to the atmosphere, and is therefore excellent in safety.
- the electrolyte layer 102 may contain the second solid electrolyte as a main component. That is, the electrolyte layer 102 may contain the second solid electrolyte, for example, at a mass ratio of 50% or more (that is, 50% by mass or more) with respect to the entire electrolyte layer.
- the electrolyte layer 102 may contain the second solid electrolyte, for example, at a mass ratio of 70% or more (that is, 70% by mass or more) with respect to the entire electrolyte layer 102 .
- the electrolyte layer 102 may further contain unavoidable impurities.
- the electrolyte layer 102 may contain starting materials used for the synthesis of the second solid electrolyte.
- the electrolyte layer 102 may contain by-products or decomposition products produced during the synthesis of the second solid electrolyte.
- the mass ratio of the second solid electrolyte contained in the electrolyte layer 102 to the electrolyte layer 102 can be substantially 1. “The mass ratio is substantially 1” means that the mass ratio is 1 calculated without considering inevitable impurities that may be contained in the electrolyte layer 102 . That is, the electrolyte layer 102 may be composed only of the second solid electrolyte.
- the electrolyte layer 102 may be composed only of the second solid electrolyte.
- electrolyte layer 102 may contain two or more of the materials listed as the second solid electrolyte.
- the thickness of the electrolyte layer 102 may be 1 ⁇ m or more and 300 ⁇ m or less.
- the electrolyte layer 102 When the electrolyte layer 102 has a thickness of 1 ⁇ m or more, the positive electrode layer 101 and the negative electrode layer 103 are less likely to short-circuit. If the electrolyte layer 102 has a thickness of 300 ⁇ m or less, the battery 1000 can operate at high power.
- the positive electrode layer 101 contains a material capable of intercalating and deintercalating metal ions (for example, lithium ions).
- the positive electrode layer 101 may contain a positive electrode active material.
- positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxyfluorides, transition metal oxysulfides, or transition metal oxynitrides. be.
- lithium-containing transition metal oxides are Li(NiCoAl) O2 , Li( NiCoMn ) O2 , or LiCoO2.
- the manufacturing cost can be reduced and the average discharge voltage can be increased.
- the positive electrode active material may be lithium nickel cobalt manganate.
- the positive electrode layer 101 may contain a solid electrolyte. According to the above configuration, the lithium ion conductivity inside the positive electrode layer 101 is increased, and operation at high output becomes possible.
- solid electrolytes contained in the positive electrode layer 101 are halide solid electrolytes, sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, or complex hydride solid electrolytes.
- the materials exemplified as the above-described first solid electrolyte and second solid electrolyte may be used.
- Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li10GeP2S12 , etc. may be used. Further, LiX', Li 2 O, M'Oq, LipM'Oq, etc. may be added to these.
- X' is at least one selected from the group consisting of F, Cl, Br and I.
- M' is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
- p and q are natural numbers.
- oxide solid electrolytes are (i) NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof; (ii) perovskite-type solid electrolytes such as (LaLi) TiO3 ; ( iii) LISICON - type solid electrolytes such as Li14ZnGe4O16 , Li4SiO4 , LiGeO4 , or elemental substitutions thereof; ( iv) garnet - type solid electrolytes such as Li7La3Zr2O12 or elemental substitutions thereof; (v) Li 3 PO 4 or its N-substituted products (vi) Li 3 N or its H-substituted products, or (vii) Li—B—O compounds such as LiBO 2 , Li 3 BO 3 , Li 2 SO 4 , Li 2 CO 3 or the like added glass or glass ceramics.
- NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof
- polymer solid electrolytes examples include polymer compounds and lithium salt compounds.
- the polymer compound may have an ethylene oxide structure. Since a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further increased.
- lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
- One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
- complex hydride solid electrolytes are LiBH 4 --LiI or LiBH 4 --P 2 S 5 .
- the median diameter of the positive electrode active material particles may be 0.1 ⁇ m or more and 100 ⁇ m or less.
- the positive electrode active material particles and the solid electrolyte particles are dispersed well in the positive electrode layer 101 . Thereby, the charge/discharge characteristics of the battery 1000 are improved.
- the positive electrode active material particles have a median diameter of 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material particles is improved. This allows battery 1000 to operate at high output.
- the median diameter of the positive electrode active material particles may be larger than the median diameter of the solid electrolyte particles. Thereby, a good dispersion state of the positive electrode active material particles and the solid electrolyte particles can be formed.
- the volume ratio Vp representing the volume of the positive electrode active material particles to the total volume of the positive electrode active material particles and the solid electrolyte particles may be 0.3 or more and 0.95 or less.
- the volume ratio Vp is 0.3 or more, the energy density of the battery 1000 can be improved.
- the volume ratio Vp is 0.95 or less, the output of the battery 1000 can be improved.
- the thickness of the positive electrode layer 101 may be 10 ⁇ m or more and 500 ⁇ m or less.
- the battery 1000 can ensure sufficient energy density. Moreover, when the thickness of the positive electrode layer 101 is 500 ⁇ m or less, the output of the battery 1000 can be improved.
- the positive electrode active material may be coated.
- a material with low electronic conductivity can be used as the coating material.
- an oxide material, an oxide solid electrolyte, or the like can be used as the coating material.
- oxide materials are SiO2 , Al2O3 , TiO2 , B2O3 , Nb2O5 , WO3 or ZrO2 .
- oxide solid electrolytes are (i) Li-Nb - O compounds such as LiNbO3; (ii) Li—BO compounds such as LiBO 2 and Li 3 BO 3 ; (iii) Li-Al-O compounds such as LiAlO2 ; (iv) Li-Si-O compounds such as Li 4 SiO 4 ; (v) Li--S--O compounds such as Li 2 SO 4 ; (vi) Li - Ti - O compounds such as Li4Ti5O12 ; (vii) Li - Zr-O compounds such as Li2ZrO3 ; (viii) Li - Mo-O compounds such as Li2MoO3 ; (ix) Li-VO compounds such as LiV 2 O 5 or (x) Li-WO compounds such as Li 2 WO 4 .
- Li-Nb - O compounds such as LiNbO3
- Li—BO compounds such as LiBO 2 and Li 3 BO 3
- Li-Al-O compounds such as LiAlO2
- Oxide solid electrolytes have high ionic conductivity and high potential stability. Therefore, by using the oxide solid electrolyte, the charge/discharge efficiency can be further improved.
- At least one selected from the group consisting of the positive electrode layer 101, the electrolyte layer 102, and the negative electrode layer 103 may contain a binder for the purpose of improving adhesion between particles.
- a binder is used to improve the binding properties of the material that constitutes the electrode.
- Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, carboxymethyl cellulose, and the like.
- Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used.
- two or more binders may be used.
- At least one selected from the group consisting of the positive electrode layer 101 and the negative electrode layer 103 may contain a conductive aid for the purpose of increasing electronic conductivity.
- Examples of conductive aids are (i) graphites such as natural or artificial graphite; (ii) carbon blacks such as acetylene black or ketjen black; (iii) conductive fibers such as carbon or metal fibers; (iv) carbon fluoride, (v) metal powders such as aluminum; (vi) conductive whiskers such as zinc oxide or potassium titanate; (vii) conductive metal oxides such as titanium oxide; or (viii) conductive polymeric compounds such as polyaniline, polypyrrole, or polythiophene.
- the conductive aid (i) or (ii) may be used.
- Examples of the shape of the battery according to this embodiment are coin-shaped, cylindrical, rectangular, sheet-shaped, button-shaped, flat-shaped, and laminated.
- the first solid electrolyte and the second solid electrolyte are manufactured, for example, by the following method.
- Raw material powder is prepared so as to have a compounding ratio of the desired composition.
- the raw material powder may be, for example, a halide.
- the raw material powders may be mixed in a pre-adjusted molar ratio so as to compensate for compositional changes that may occur during the synthesis process.
- the kind of raw material powder is not limited to the above.
- a combination of LiCl and YBr3 , and mixed anion compounds such as LiBr0.5Cl0.5 may be used.
- Mixtures of oxygen-containing raw powders (eg, oxides, hydroxides, sulfates, or nitrates) and halides (eg, ammonium halides) may be used.
- the raw material powder is mixed well using a mortar and pestle, ball mill, or mixer to obtain a mixed powder.
- the raw material powder is then pulverized using the method of mechanochemical milling.
- the raw material powder reacts to obtain the first solid electrolyte and the second solid electrolyte.
- the mixed powder may be fired in vacuum or in an inert atmosphere to obtain the first and second solid electrolytes.
- Firing may be performed, for example, within the range of 100°C or higher and 650°C or lower for 1 hour or longer.
- the composition of the crystal phase in the solid electrolyte (that is, the crystal structure) includes the elements that constitute the solid electrolyte (that is, M1, M2, X1, and X2), the ratio of the constituent elements of the solid electrolyte, and the reaction method between the raw material powders. , and the choice of reaction conditions.
- a monoclinic crystal structure is more likely to be formed when the halogen elements (that is, X1 and X2), which are anions, are relatively large. Therefore, for example, when the anion contains Br, a stable monoclinic crystal structure is likely to be obtained.
- a trigonal crystal structure is more likely to be formed when the halogen elements (that is, X1 and X2), which are anions, are relatively small. Therefore, for example, when the anion contains Cl, a stable trigonal crystal structure is likely to be obtained.
- the composition of the crystal phase in the solid electrolyte can also be determined by adjusting the ratio of the plurality of elements.
- the configuration of the crystal phase in the solid electrolyte can also be determined by adjusting the ratio of the plurality of halogen elements.
- Example 1 (Preparation of first solid electrolyte)
- Example 1 Evaluation of composition of first solid electrolyte
- ICP Inductive Coupled Plasma
- the powder of the first solid electrolyte according to Example 1 was subjected to X-ray diffraction measurement in a dry argon atmosphere having a dew point of -40°C or lower, and an X-ray diffraction pattern was obtained.
- An X-ray diffractometer (MiniFlex 600, manufactured by RIGAKU) was used to analyze the crystal structure. Cu-K ⁇ radiation was used as the X-ray source.
- XRD X-ray diffraction method
- FIG. 2 shows a schematic diagram of a pressure forming die used to evaluate the ionic conductivity of solid electrolytes.
- the pressure forming die 300 had a punch upper part 301 , a frame mold 302 and a punch lower part 303 . Both the punch upper portion 301 and the punch lower portion 303 were made of electronically conductive stainless steel.
- the frame mold 302 was made of insulating polycarbonate.
- the ionic conductivity of the first solid electrolyte according to Example 1 was evaluated by the following method.
- the first solid electrolyte powder according to Example 1 (that is, the solid electrolyte powder 201 in FIG. 2) was filled inside the pressure forming die 300 . Inside the pressing die 300 , a pressure of 300 MPa was applied to the first solid electrolyte according to Example 1 using an upper punch 301 and a lower punch 303 .
- the upper punch 301 and lower punch 303 were connected to a potentiostat (Princeton Applied Research, VersaSTAT4) equipped with a frequency response analyzer.
- the punch upper part 301 was connected to the working electrode and the terminal for potential measurement.
- the punch bottom 303 was connected to the counter and reference electrodes.
- the impedance of the first solid electrolyte was measured by electrochemical impedance measurement at room temperature.
- Example 2 Evaluation of composition of second solid electrolyte
- ICP Inductive Coupled Plasma
- the ionic conductivity of the second solid electrolyte according to Example 1 was measured in the same manner as the first solid electrolyte.
- a laminate consisting of a positive electrode layer, an electrolyte layer, and a negative electrode layer was obtained.
- current collectors made of stainless steel were attached to the top and bottom of the laminate, that is, to the positive electrode layer and the negative electrode layer, and current collector leads were attached to the current collectors.
- an insulating ferrule was used to isolate the inside of the insulating tube from the outside atmosphere and to seal the inside of the tube.
- Example 1 Charge and discharging test
- the battery produced in Example 1 is a cell for a charge/discharge test and corresponds to a half cell of the negative electrode. Therefore, in Example 1, the direction in which Li ions are inserted into the negative electrode and the potential of the half-cell decreases is referred to as charging, and the direction in which the potential increases is referred to as discharging. That is, charging in Example 1 is substantially discharging (that is, in the case of a full cell), and discharging in Example 1 is substantially charging.
- the battery according to Example 1 was placed in a constant temperature bath at 25°C.
- Constant current charging was performed at a current value of 35 ⁇ A, and charging was terminated at a potential of 1.0 V relative to Li.
- a battery according to Reference Example 1 comprising a laminate comprising a positive electrode layer, an electrolyte layer, and a negative electrode layer.
- Li 4 Ti 5 O 12 as the negative electrode active material, Li 3 YBr 2 Cl 4 as the first solid electrolyte, and VGCF as the conductive aid were mixed in the same manner as the negative electrode material preparation method of Example 1.
- a negative electrode material containing Li 4 Ti 5 O 12 :Li 3 YBr 2 Cl 4 :VGCF at a mass ratio of 10:85:5 was prepared.
- a battery according to Reference Example 2 comprising a laminate comprising a positive electrode layer, an electrolyte layer, and a negative electrode layer.
- Example 2 (Preparation of first solid electrolyte) A powder of Li 3 YBr 2 Cl 4 as a solid electrolyte was obtained in the same manner as the method for producing the first solid electrolyte in Example 1.
- Li 4 Ti 5 O 12 as a negative electrode active material, Li 3 YBr 2 Cl 4 as a first solid electrolyte, and VGCF as a conductive aid were prepared in the same manner as the negative electrode material preparation method of Example 1. , Li 4 Ti 5 O 12 :Li 3 YBr 2 Cl 4 :VGCF at a mass ratio of 65:30:5.
- the positive electrode material of Example 2 was produced by mixing these with an agate mortar.
- the battery according to Example 2 was placed in a constant temperature bath at 25°C.
- FIG. 3 is a graph showing the results of the initial charge/discharge test of the battery according to Example 2.
- Li 4 Ti 5 O 12 as a negative electrode active material, Li 3 YBr 2 Cl 4 as a first solid electrolyte, and VGCF as a conductive aid were prepared in the same manner as the negative electrode material preparation method of Example 1. , Li 4 Ti 5 O 12 :Li 3 YBr 2 Cl 4 :VGCF at a mass ratio of 10:85:5.
- a laminate consisting of a positive electrode layer, an electrolyte layer, and a negative electrode layer was obtained.
- current collectors made of stainless steel were attached to the top and bottom of the laminate, that is, to the positive electrode layer and the negative electrode layer, and current collector leads were attached to the current collectors.
- an insulating ferrule was used to isolate the inside of the insulating tube from the outside atmosphere and to seal the inside of the tube.
- the battery according to Reference Example 3 was placed in a constant temperature bath at 25°C.
- Constant current charging was performed at a current value of 17.5 ⁇ A, and charging was terminated at a potential of 1.0 V relative to Li.
- the ionic conductivity of the first solid electrolyte according to Reference Example 4 was measured in the same manner as for the first solid electrolyte according to Example 1.
- the ionic conductivity of the first solid electrolyte at 22° C. was 0.6 ⁇ 10 ⁇ 3 S/cm.
- Li 4 Ti 5 O 12 as a negative electrode active material, Li 3 YBr 6 as a first solid electrolyte, and VGCF as a conductive aid were mixed in the same manner as the negative electrode material preparation method of Example 1.
- a negative electrode material containing 4 Ti 5 O 12 :Li 3 YBr 6 :VGCF at a mass ratio of 10:85:5 was prepared.
- a battery according to Reference Example 4 comprising a laminate comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
- the ionic conductivity of the first solid electrolyte according to Reference Example 5 was measured in the same manner as the first solid electrolyte according to Example 1.
- the ionic conductivity of the first solid electrolyte at 22° C. was 0.3 ⁇ 10 ⁇ 3 S/cm.
- Li 4 Ti 5 O 12 as a negative electrode active material, Li 3 YCl 6 as a first solid electrolyte, and VGCF as a conductive aid were mixed in the same manner as the method for preparing the negative electrode material in Example 1.
- a negative electrode material containing 4 Ti 5 O 12 :Li 3 YCl 6 :VGCF at a mass ratio of 10:85:5 was prepared.
- a battery according to Reference Example 5 comprising a laminate comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
- a battery according to Reference Example 6 comprising a laminate comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
- the battery according to Example 1 is a battery having a negative electrode layer containing Li, Ti, and O as negative electrode active materials.
- the first solid electrolyte contained in the negative electrode layer contains Li, M1, and X1 and contains a crystal phase belonging to the monoclinic system
- the electrolyte layer contains
- the contained second solid electrolyte contains Li, M2, and X2, and has a configuration containing a crystal phase attributed to a trigonal crystal. Note that M1, X1, M2, and X2 are as described above.
- the battery according to Reference Example 1 differs from the battery according to Example 1 in that it has a configuration in which a solid electrolyte containing a crystal phase belonging to a trigonal crystal is used as the first solid electrolyte.
- the battery according to Reference Example 2 has a configuration in which a solid electrolyte containing a crystal phase attributed to monoclinic is used as the second solid electrolyte.
- the battery according to Example 1 had a higher charge capacity when charged at 700 ⁇ A with respect to the charge capacity when charged at 35 ⁇ A.
- the batteries that satisfy the battery configuration of the present disclosure are the batteries of Reference Examples 1 and 2 that do not satisfy the battery configuration of the present disclosure, that is, the batteries that do not use solid electrolytes suitable for the negative electrode layer and the electrolyte layer, respectively. It can be seen that the charge/discharge rate characteristics are improved when compared with . From this result, it can be seen that the battery of the present disclosure can improve the output characteristics.
- Example 1 From the comparison of the results of Example 1 and Reference Example 1 shown in Table 1, as the first solid electrolyte, rather than selecting a solid electrolyte with a high ion conductivity of the material itself, a configuration in which it is mixed with the negative electrode active material It can be seen that the use of a monoclinic material that is compatible with the battery has a higher charge capacity under high load.
- the charge capacity under high load is higher when a solid electrolyte whose material itself has high ionic conductivity is used.
- a solid electrolyte containing Li, M, and X and containing no sulfur is used as the solid electrolyte contained in the negative electrode layer, the electrolyte layer, and the positive electrode layer.
- M is at least one selected from the group consisting of metal elements other than Li and metalloid elements
- X is at least one selected from the group consisting of F, Cl, Br and I. From the results shown in FIG. 3, it has been confirmed that a battery using only such a material as a solid electrolyte can operate stably. Also, the battery according to Example 2 does not use a solid electrolyte containing sulfur. Therefore, the battery according to Example 2 has no risk of reacting with moisture and generating harmful hydrogen sulfide gas.
- the battery of the present disclosure has excellent output characteristics and can be used, for example, as an all-solid lithium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
正極層と、
負極層と、
前記正極層と前記負極層との間に位置する電解質層と、
を備え、
前記負極層は、負極活物質および第1固体電解質を含み、
前記電解質層は、第2固体電解質を含み、
前記負極活物質は、Li、Ti、およびOを含み、
前記第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつLi、M1、およびX1を含み、
M1は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも一つであり、
前記第2固体電解質は、三方晶に帰属される結晶相を含有し、かつLi、M2、およびX2を含み、
M2は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
X2は、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである。
[背景技術]の欄に記載した特許文献1には、負極活物質としてのチタン酸リチウムと、ハロゲン化物で形成された固体電解質とからなる負極材料を用いた負極層を備えた電池が開示されている。このような負極活物質と固体電解質とを含む負極層を備えた従来の電池には、出力特性について、さらなる向上が求められている。そこで、本発明者らは、このような構成を有する電池の出力特性の向上について、鋭意研究を行った。その結果、本発明者らは、負極層および電解質層に用いられる固体電解質には、充放電レート特性の向上に適した固体電解質の組み合わせが存在し、その固体電解質の組み合わせによって電池の出力特性を向上させることができることを新たに見出した。そして、本発明者らは、以下に示す本開示の電池を完成させるに至った。
本開示の第1態様に係る電池は、
正極層と、
負極層と、
前記正極層と前記負極層との間に位置する電解質層と、
を備え、
前記負極層は、負極活物質および第1固体電解質を含み、
前記電解質層は、第2固体電解質を含み、
前記負極活物質は、Li、Ti、およびOを含み、
前記第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつLi、M1、およびX1を含み、
M1は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも一つであり、
前記第2固体電解質は、三方晶に帰属される結晶相を含有し、かつLi、M2、およびX2を含み、
M2は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
X2は、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである。
Liα1M1β1X1γ1 ・・・式(1)
ここで、α1、β1、およびγ1は、それぞれ独立して0より大きい値である。
2.5≦α1≦3.5
0.5≦β1≦1.5
γ1=6
が充足されてもよい。
Liα2M2β2X2γ2 ・・・式(2)
ここで、α2、β2、およびγ2は、それぞれ独立して0より大きい値である。
2.5≦α2≦3.5
0.5≦β2≦1.5
γ2=6
が充足されてもよい。
Li6-2a-3dCaa(Y1-bGdb)dBr6-cClc ・・・(3)
ここで、以下の数式
0<a<3、
0<b<1、
0<c<6、および
0<d<1.5、
が充足される。
以下、本開示の実施形態が、図面を参照しながら説明される。本開示は、以下の実施形態に限定されない。
(i)周期表1族から12族中に含まれるすべての元素(ただし、水素を除く)、および(ii)周期表13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)である。すなわち、金属元素は、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
上述のとおり、負極層103は、Li、M1、およびX1を含む第1固体電解質を含む。第1固体電解質は、単斜晶に帰属する結晶相を含有する。例えば、第1固体電解質における主な結晶相が、単斜晶に帰属される結晶相であってもよい。第1固体電解質は、単斜晶の結晶構造を有していてもよい。第1固体電解質は、単斜晶に帰属しない他の結晶相を含有していてもよい。ここで、例えば第1固体電解質において、単斜晶に帰属される結晶相が主な結晶相であることは、第1固体電解質のX線回折パターンで観測されるピークによって判断することができる。
Liα1M1β1X1γ1 ・・・式(1)
ここで、α1、β1、およびγ1は、それぞれ独立して0より大きい値である。
2.5≦α1≦3.5
0.5≦β1≦1.5
γ1=6
が充足されてもよい。
電解質層102は、第2固体電解質を含む。第2固体電解質は、Li、M2、およびX2を含む。第2固体電解質は、三方晶に帰属する結晶相を含有する。例えば、第2固体電解質における主な結晶相が、三方晶に帰属される結晶相であってもよい。第2固体電解質は、三方晶の結晶構造を有していてもよい。第2固体電解質は、三方晶に帰属しない他の結晶相を含有していてもよい。ここで、例えば第2固体電解質において、三方晶に帰属される結晶相が主な結晶相であることは、第2固体電解質のX線回折パターンで観測されるピークによって判断することができる。
Liα2M2β2X2γ2 ・・・式(2)
ここで、α2、β2、およびγ2は、それぞれ独立して0より大きい値である。
2.5≦α2≦3.5
0.5≦β2≦1.5
γ2=6
が充足されてもよい。
Li6-2a-3dCaa(Y1-bGdb)dBr6-cClc ・・・(3)
ここで、以下の数式
0<a<3、
0<b<1、
0<c<6、および
0<d<1.5、
が充足されてもよい。
正極層101は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。正極層101は、正極活物質を含んでもよい。
(i)LiTi2(PO4)3またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
(iii)Li14ZnGe4O16、Li4SiO4、LiGeO4、またはその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr2O12またはその元素置換体のようなガーネット型固体電解質、
(v)Li3PO4またはそのN置換体
(vi)Li3NまたはそのH置換体、または
(vii)LiBO2、Li3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックス
などである。
(i)LiNbO3などのLi-Nb-O化合物、
(ii)LiBO2、Li3BO3などのLi-B-O化合物、
(iii)LiAlO2などのLi-Al-O化合物、
(iv)Li4SiO4などのLi-Si-O化合物、
(v)Li2SO4などのLi-S-O化合物、
(vi)Li4Ti5O12などのLi-Ti-O化合物、
(vii)Li2ZrO3などのLi-Zr-O化合物、
(viii)Li2MoO3などのLi-Mo-O化合物、
(ix)LiV2O5などのLi-V-O化合物、または
(x)Li2WO4などのLi-W-O化合物
である。
(i)天然黒鉛または人造黒鉛のようなグラファイト類、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
(iii)炭素繊維または金属繊維のような導電性繊維類、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末類、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
(第1固体電解質の作製)
-40℃以下の露点を有する乾燥アルゴン雰囲気下で、原料粉LiBr、YBr3、LiCl、YCl3を、モル比でLi:Y:Br:Cl=3:1:2:4となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理した。以上により、実施例1の第1固体電解質であるLi3YBr2Cl4の粉末を得た。
実施例1の第1固体電解質についてICP(Inductive coupled Plasma)発光分光分析法を用いて組成の評価を行った。その結果、Li/Yが仕込み組成からのずれが3%以内であった。すなわち、実施例1において、遊星型ボールミルによる仕込み組成と、得られた第1固体電解質の組成とは、ほとんど同様であったと言える。
実施例1による第1固体電解質の粉末は、-40℃以下の露点を有する乾燥アルゴン雰囲気中で、X線回析測定に供され、X線回折パターンが得られた。結晶構造の解析には、X線回折装置(RIGAKU社、MiniFlex600)が用いられた。X線源として、Cu-Kα線が用いられた。X線回折法(X-ray Diffraction:XRD)を用いて評価した結果、主な結晶相として単斜晶に帰属されるX線回折パターンが観測された。
図2は、固体電解質のイオン伝導度を評価するために用いられる加圧成形ダイスの模式図を示す。
-40℃以下の露点を有する乾燥アルゴン雰囲気下で、実施例1の第1固体電解質であるLi3YBr2Cl4と、負極活物質としてのLi4Ti5O12と、導電助剤としてのVGCF(Vapor Grown Carbon Fiber)とが、Li4Ti5O12:Li3YBr2Cl4:VGCF=10:85:5の質量比率で秤量された。これらをメノウ乳鉢で混合することで、実施例1の負極材料を作製した。なお、VGCFは、昭和電工株式会社の登録商標である。
-40℃以下の露点を有する乾燥アルゴン雰囲気下で、原料粉としてLiCl、LiBr、YCl3、GdCl3、およびCaBr2が、1:1.8:0.6:0.4:0.1のLiCl:LiBr:YCl3:GdCl3:CaBr2モル比となるように用意された。これらの原料粉が乳鉢中で粉砕され、混合された。このようにして、混合粉が得られた。混合粉は、遊星型ボールミル(フリッチュ社製、P-7型)を用い、12時間、600rpmでミリング処理された。このようにして、実施例1による第2固体電解質の粉末が得られた。実施例1による第2固体電解質は、Li2.8Ca0.1Y0.6Gd0.4Br2Cl4により表される組成を有していた。
実施例1の第2固体電解質についてICP(Inductive coupled Plasma)発光分光分析法を用いて組成の評価を行った。その結果、Li/Yが仕込み組成からのずれが3%以内であった。すなわち、実施例1において、遊星型ボールミルによる仕込み組成と、得られた第2固体電解質の組成とは、ほとんど同様であったと言える。
実施例1による第2固体電解質の粉末は、-40℃以下の露点を有する乾燥アルゴン雰囲気中で、X線回析測定に供され、X線回折パターンが得られた。結晶構造の解析には、X線回折装置(RIGAKU社、MiniFlex600)が用いられた。X線源として、Cu-Kα線が用いられた。X線回折法(X-ray Diffraction:XRD)を用いて評価した結果、主な結晶相として三方晶に帰属されるX線回折パターンが観測された。
実施例1による第2固体電解質のイオン伝導度は、第1固体電解質と同様に測定された。22℃で測定された、実施例1による第2固体電解質のイオン伝導度は、2.9×10-3S/cmであった。
9.5mmの内径を有する絶縁性の筒の中で、実施例1の負極材料41.7mg、実施例1の第2固体電解質160mgが、この順に積層された。得られた積層体に360MPaの圧力が印加され、実施例1による負極材料から形成された負極層、および、実施例1による第2固体電解質から形成された電解質層が作製された。次に、電解質層の負極層と接する側とは反対側に、金属In(厚さ200μm)、金属Li(厚さ300μm)、金属In(厚さ200μm)が順に積層された。得られた積層体に80MPaの圧力が印加され、正極層が形成された。
実施例1による電池を用いて、以下のように充放電試験が行われた。なお、実施例1で作製された電池は充放電試験用のセルであり、負極のハーフセルに相当する。したがって、実施例1は、負極にLiイオンが挿入されてハーフセルの電位が下がる方向を充電といい、電位が上がる方向を放電という。すなわち、実施例1での充電とは実質的には(すなわち、フルセルの場合には)放電であり、実施例1での放電とは実質的には充電である。
(第1固体電解質の作製)
実施例1の第2固体電解質の作製法と同様の方法で、固体電解質であるLi2.8Ca0.1Y0.6Gd0.4Br2Cl4の粉末を得た。
実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti5O12と、第1固体電解質であるLi2.8Ca0.1Y0.6Gd0.4Br2Cl4と、導電助剤としてのVGCFとを、Li4Ti5O12:Li2.8Ca0.1Y0.6Gd0.4Br2Cl4:VGCF=10:85:5の質量比率で含む負極材料を作製した。
実施例1の第2固体電解質の作製方法と同様の方法で、固体電解質であるLi2.8Ca0.1Y0.6Gd0.4Br2Cl4の粉末を得た。
実施例1と同様の方法で、正極層、電解質層、および負極層からなる積層体からなる、参考例1による電池を作製した。
上述の参考例1の電池を用いて、実施例1と同様に充放電試験を行った。充放電結果に基づいて、35μA充電時の充電容量に対する700μA充電時の充電容量を算出した。その結果を、表1に示す。
(第1固体電解質の作製)
実施例1の第1固体電解質の作製方法と同様の方法で、固体電解質であるLi3YBr2Cl4の粉末を得た。
実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti5O12と、第1固体電解質のLi3YBr2Cl4と、導電助剤としてのVGCFとを、Li4Ti5O12:Li3YBr2Cl4:VGCF=10:85:5の質量比率で含む負極材料を作製した。
実施例1の第1固体電解質の作製方法と同様の方法で、固体電解質であるLi3YBr2Cl4の粉末を得た。
実施例1と同様の方法で、正極層、電解質層、および負極層からなる積層体からなる、参考例2による電池を作製した。
上述の参考例2の電池を用いて、実施例1と同様に充放電試験を行った。充放電結果に基づいて、35μA充電時の充電容量に対する700μA充電時の充電容量を算出した。その結果を、表1に示す。
(第1固体電解質の作製)
実施例1の第1固体電解質の作製方法と同様の方法で、固体電解質であるLi3YBr2Cl4の粉末を得た。
実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti5O12と、第1固体電解質であるLi3YBr2Cl4と、導電助剤としてのVGCFとを、Li4Ti5O12:Li3YBr2Cl4:VGCF=65:30:5の質量比率で含む負極材料を作製した。
実施例1の第2固体電解質の作製方法と同様の方法で、固体電解質であるLi2.8Ca0.1Y0.6Gd0.4Br2Cl4の粉末を得た。
-40℃以下の露点を有する乾燥アルゴン雰囲気下で、正極活物質としてのLi(NiCoMn)O2(以下、NCMと表記する)と、実施例2の第1固体電解質であるLi3YBr2Cl4と、導電助剤としてのVGCFとを、NCM:Li3YBr2Cl4:VGCF=83:16:1の質量比率で用意した。これらをメノウ乳鉢で混合することで、実施例2の正極材料を作製した。
9.5mmの内径を有する絶縁性の筒の中で、実施例2の負極材料15.4mg、実施例2の第2固体電解質80mg、実施例2の正極材料8.5mgが、この順に積層された。得られた積層体に360MPaの圧力が印加され、正極層、電解質層、および負極層からなる積層体が作製された。次に、積層体の上下、すなわち正極層および負極層に、ステンレス鋼から形成された集電体が取り付けられ、当該集電体に集電リードが取り付けられた。最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、当該筒の内部が密閉された。このようにして、実施例2による電池が得られた。
上述の実施例2の電池を用いて、以下のように充放電試験を行った。
(第1固体電解質の作製)
実施例1の第1固体電解質の作製方法と同様の方法で、固体電解質であるLi3YBr2Cl4の粉末を得た。
実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti5O12と、第1固体電解質であるLi3YBr2Cl4と、導電助剤としてのVGCFとを、Li4Ti5O12:Li3YBr2Cl4:VGCF=10:85:5の質量比率で含む負極材料を作製した。
9.5mmの内径を有する絶縁性の筒の中で、参考例3の負極材料20.8mg、MSE社製の固体電解質Li6PS5Cl80mgが、この順に積層された。得られた積層体に360MPaの圧力が印加され、参考例3による負極材料から形成された負極層、および、Li6PS5Clから形成された電解質層が作製された。次に、電解質層の負極層と接する側とは反対側に、金属In(厚さ200μm)、金属Li(厚さ300μm)、金属In(厚さ200μm)が順に積層された。得られた積層体に80MPaの圧力が印加され、正極層が形成された。
参考例3による電池を用いて、以下のように充放電試験が行われた。
(第1固体電解質の作製)
-40℃以下の露点を有する乾燥アルゴン雰囲気下で、原料粉LiBrとYBr3とを、モル比でLiBr:YBr3=3:1となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、参考例4の第1固体電解質であるLi3YBr6の粉末を得た。
参考例4による第1固体電解質の粉末は、実施例1と同様の方法で、X線回析測定に供されてX線回折パターンが得られ、さらに結晶構造が解析された。X線回折法を用いて評価を行った結果、主な結晶相として単斜晶に帰属されるX線回折パターンが観測された。
参考例4による第1固体電解質のイオン伝導度は、実施例1による第1固体電解質と同様に測定された。22℃における第1固体電解質のイオン伝導度は、0.6×10-3S/cmであった。
実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti5O12と、第1固体電解質であるLi3YBr6と、導電助剤としてのVGCFとを、Li4Ti5O12:Li3YBr6:VGCF=10:85:5の質量比率で含む負極材料を作製した。
参考例3と同様の方法で、正極層、固体電解質層、負極層からなる積層体からなる、参考例4による電池を作製した。
上述の参考例4の電池を用いて、参考例3と同様に充放電試験を行った。充放電結果に基づいて、17.5μA充電時の充電容量に対する350μA充電時の充電容量を算出した。その結果を、表2に示す。
(第1固体電解質の作製)
-40℃以下の露点を有する乾燥アルゴン雰囲気下で、原料粉LiClとYCl3とを、モル比でLiCl:YCl3=3:1となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、参考例5の第1固体電解質であるLi3YCl6の粉末を得た。
参考例5による第1固体電解質の粉末は、実施例1と同様の方法で、X線回析測定に供されてX線回折パターンが得られ、さらに結晶構造が解析された。X線回折法を用いて評価を行った結果、主な結晶相として三方晶に帰属されるX線回折パターンが観測された。
参考例5による第1固体電解質のイオン伝導度は、実施例1による第1固体電解質と同様に測定された。22℃における第1固体電解質のイオン伝導度は、0.3×10-3S/cmであった。
実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti5O12と、第1固体電解質であるLi3YCl6と、導電助剤としてのVGCFとを、Li4Ti5O12:Li3YCl6:VGCF=10:85:5の質量比率で含む負極材料を作製した。
参考例3と同様の方法で、正極層、固体電解質層、負極層からなる積層体からなる、参考例5による電池を作製した。
上述の参考例5の電池を用いて、参考例3と同様に充放電試験を行った。充放電結果に基づいて、17.5μA充電時の充電容量に対する350μA充電時の充電容量を算出した。その結果を、表2に示す。
(第1固体電解質の作製)
実施例1の第2固体電解質の作製方法と同様の方法で、固体電解質であるLi2.8Ca0.1Y0.6Gd0.4Br2Cl4の粉末を得た。
実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti5O12と、第1固体電解質であるLi2.8Ca0.1Y0.6Gd0.4Br2Cl4と、導電助剤としてのVGCFとを、Li4Ti5O12:Li2.8Ca0.1Y0.6Gd0.4Br2Cl4:VGCF=10:85:5の質量比率で含む負極材料を作製した。
参考例5と同様の方法で、正極層、固体電解質層、負極層からなる積層体からなる、参考例6による電池を作製した。
上述の参考例6の電池を用いて、参考例3と同様に充放電試験を行った。充放電結果に基づいて、17.5μA充電時の充電容量に対する350μA充電時の充電容量を算出した。その結果を、表2に示す。
実施例1による電池は、負極活物質としてLi、Ti、およびOが含まれる負極層を備えている電池である。このような構成に加え、実施例1による電池では、負極層に含まれる第1固体電解質がLi、M1、およびX1を含み、かつ単斜晶に帰属される結晶相を含有し、電解質層に含まれる第2固体電解質がLi、M2、およびX2を含み、かつ三方晶に帰属される結晶相を含有する構成を有する。なお、M1、X1、M2、およびX2は上述のとおりである。一方、参考例1による電池は、第1固体電解質に三方晶に帰属される結晶相を含有する固体電解質が用いられた構成を有する点において、実施例1による電池と異なる。また、参考例2による電池は、第2固体電解質に単斜晶に帰属される結晶相を含有する固体電解質が用いられた構成を有する。実施例1による電池は、参考例1および参考例2による電池と比較すると、35μA充電時の充電容量に対する700μA充電時の充電容量が高かった。この結果から、本開示の電池の構成を満たす電池は、本開示の電池の構成を満たさない参考例1および2の電池、すなわち負極層および電解質層にそれぞれ適した固体電解質が用いられていない電池と比較すると、充放電レート特性が向上することがわかる。この結果から、本開示の電池によれば、出力特性を向上させることができることがわかる。
101 正極層
102 電解質層
103 負極層
104 負極活物質粒子
105 固体電解質粒子
300 加圧成形ダイス
301 パンチ上部
302 枠型
303 パンチ下部
Claims (20)
- 正極層と、
負極層と、
前記正極層と前記負極層との間に位置する電解質層と、
を備え、
前記負極層は、負極活物質および第1固体電解質を含み、
前記電解質層は、第2固体電解質を含み、
前記負極活物質は、Li、Ti、およびOを含み、
前記第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつLi、M1、およびX1を含み、
M1は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも一つであり、
前記第2固体電解質は、三方晶に帰属される結晶相を含有し、かつLi、M2、およびX2を含み、
M2は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
X2は、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである、
電池。 - 前記第1固体電解質は、実質的に硫黄を含まない、
請求項1に記載の電池。 - 前記第2固体電解質は、実質的に硫黄を含まない、
請求項1または2に記載の電池。 - X1は、Cl、BrおよびIからなる群より選ばれる少なくとも一つである、
請求項1から3のいずれか一項に記載の電池。 - X1は、Brを含む、
請求項1から4のいずれか一項に記載の電池。 - 前記第1固体電解質は、下記の組成式(1)により表される、
請求項1から5のいずれか一項に記載の電池。
Liα1M1β1X1γ1 ・・・式(1)
ここで、α1、β1、およびγ1は、それぞれ独立して0より大きい値である。 - M1は、Yを含む、
請求項1から6のいずれか一項に記載の電池。 - 前記組成式(1)において、
2.5≦α1≦3.5
0.5≦β1≦1.5
γ1=6
が充足される、
請求項7に記載の電池。 - 前記第1固体電解質は、Li3YBr6、Li3YBr2Cl4、およびLi3YBr2Cl2I2からなる群より選ばれる少なくとも一つである、
請求項1から8のいずれか一項に記載の電池。 - X2は、Cl、BrおよびIからなる群より選ばれる少なくとも一つである、
請求項1から9のいずれか一項に記載の電池。 - X2は、Clを含む、
請求項1から10のいずれか一項に記載の電池。 - 前記第2固体電解質は、下記の組成式(2)により表される、
請求項1から11のいずれか一項に記載の電池。
Liα2M2β2X2γ2 ・・・式(2)
ここで、α2、β2、およびγ2は、それぞれ独立して0より大きい値である。 - M2は、Yを含む、
請求項1から12のいずれか一項に記載の電池。 - 前記組成式(2)において、以下の数式
2.5≦α2≦3.5
0.5≦β2≦1.5
γ2=6
が充足される、
請求項13に記載の電池。 - M2は、Y、Ca、およびGdを含む、
請求項1から14のいずれか一項に記載の電池。 - 前記第2固体電解質は、以下の組成式(3)により表される、
請求項15に記載の電池。
Li6-2a-3dCaa(Y1-bGdb)dBr6-cClc ・・・(3)
ここで、以下の数式
0<a<3、
0<b<1、
0<c<6、および
0<d<1.5、
が充足される。 - 前記第2固体電解質は、Li2.8Ca0.1Y0.6Gd0.4Br2Cl4、である、
請求項16に記載の電池。 - 前記負極活物質は、リチウムチタン酸化物である、
請求項1から17のいずれか一項に記載の電池。 - 前記負極活物質は、Li4Ti5O12である、
請求項18に記載の電池。 - 前記正極層は、ニッケルコバルトマンガン酸リチウムを含む、
請求項1から19のいずれか一項に記載の電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180096410.9A CN117063318A (zh) | 2021-04-13 | 2021-12-03 | 电池 |
JP2023514326A JPWO2022219843A1 (ja) | 2021-04-13 | 2021-12-03 | |
EP21937036.8A EP4325615A1 (en) | 2021-04-13 | 2021-12-03 | Battery |
US18/466,053 US20230420736A1 (en) | 2021-04-13 | 2023-09-13 | Battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021068043 | 2021-04-13 | ||
JP2021-068043 | 2021-04-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/466,053 Continuation US20230420736A1 (en) | 2021-04-13 | 2023-09-13 | Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022219843A1 true WO2022219843A1 (ja) | 2022-10-20 |
Family
ID=83639530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/044435 WO2022219843A1 (ja) | 2021-04-13 | 2021-12-03 | 電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230420736A1 (ja) |
EP (1) | EP4325615A1 (ja) |
JP (1) | JPWO2022219843A1 (ja) |
CN (1) | CN117063318A (ja) |
WO (1) | WO2022219843A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015065021A (ja) * | 2013-09-25 | 2015-04-09 | 株式会社村田製作所 | 全固体電池 |
WO2018025582A1 (ja) * | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2019146295A1 (ja) | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 負極材料およびそれを用いた電池 |
WO2021039834A1 (ja) * | 2019-08-30 | 2021-03-04 | 昭和電工株式会社 | リチウムイオン伝導性酸化物 |
WO2021199677A1 (ja) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料、それを用いた電池、および固体電解質材料の製造方法 |
-
2021
- 2021-12-03 JP JP2023514326A patent/JPWO2022219843A1/ja active Pending
- 2021-12-03 WO PCT/JP2021/044435 patent/WO2022219843A1/ja active Application Filing
- 2021-12-03 CN CN202180096410.9A patent/CN117063318A/zh active Pending
- 2021-12-03 EP EP21937036.8A patent/EP4325615A1/en active Pending
-
2023
- 2023-09-13 US US18/466,053 patent/US20230420736A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015065021A (ja) * | 2013-09-25 | 2015-04-09 | 株式会社村田製作所 | 全固体電池 |
WO2018025582A1 (ja) * | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2019146295A1 (ja) | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 負極材料およびそれを用いた電池 |
WO2021039834A1 (ja) * | 2019-08-30 | 2021-03-04 | 昭和電工株式会社 | リチウムイオン伝導性酸化物 |
WO2021199677A1 (ja) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料、それを用いた電池、および固体電解質材料の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022219843A1 (ja) | 2022-10-20 |
EP4325615A1 (en) | 2024-02-21 |
CN117063318A (zh) | 2023-11-14 |
US20230420736A1 (en) | 2023-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7182196B2 (ja) | 電池 | |
JP7199038B2 (ja) | 負極材料およびそれを用いた電池 | |
JP7417924B2 (ja) | 固体電解質材料、および、電池 | |
JP7217433B2 (ja) | 正極材料およびそれを用いた電池 | |
WO2019135346A1 (ja) | 正極材料、および、電池 | |
WO2019135318A1 (ja) | 固体電解質材料、および、電池 | |
WO2019135316A1 (ja) | 固体電解質材料、および、電池 | |
WO2019146293A1 (ja) | 電池 | |
CN111201643A (zh) | 电极材料和电池 | |
JP7165898B2 (ja) | 固体電解質材料、および、電池 | |
JP7445874B2 (ja) | 固体電解質材料、およびそれを用いた電池 | |
JP2020109047A (ja) | 固体電解質材料、およびそれを用いた電池 | |
US11955599B2 (en) | Negative electrode material and battery | |
WO2023021836A1 (ja) | 電極および電池 | |
WO2022244445A1 (ja) | 被覆正極活物質、正極材料および電池 | |
WO2023032473A1 (ja) | 正極材料および電池 | |
WO2022259611A1 (ja) | 電極材料および電池 | |
WO2022219843A1 (ja) | 電池 | |
WO2022254796A1 (ja) | 電極材料および電池 | |
WO2022264555A1 (ja) | 電極材料および電池 | |
WO2022264554A1 (ja) | 複合活物質、電極材料、電池、および複合活物質の製造方法 | |
WO2022264659A1 (ja) | 固体電解質材料および電池 | |
WO2022219842A1 (ja) | 負極材料およびそれを用いた電池 | |
WO2022215337A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2023106212A1 (ja) | 電極材料、電極、および電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21937036 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023514326 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180096410.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021937036 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021937036 Country of ref document: EP Effective date: 20231113 |