[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022219843A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2022219843A1
WO2022219843A1 PCT/JP2021/044435 JP2021044435W WO2022219843A1 WO 2022219843 A1 WO2022219843 A1 WO 2022219843A1 JP 2021044435 W JP2021044435 W JP 2021044435W WO 2022219843 A1 WO2022219843 A1 WO 2022219843A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
negative electrode
battery according
electrode layer
battery
Prior art date
Application number
PCT/JP2021/044435
Other languages
English (en)
French (fr)
Inventor
暁彦 相良
将平 楠本
智勝 和田
将慶 植松
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180096410.9A priority Critical patent/CN117063318A/zh
Priority to JP2023514326A priority patent/JPWO2022219843A1/ja
Priority to EP21937036.8A priority patent/EP4325615A1/en
Publication of WO2022219843A1 publication Critical patent/WO2022219843A1/ja
Priority to US18/466,053 priority patent/US20230420736A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to batteries.
  • Patent Document 1 discloses a negative electrode material composed of lithium titanate as a negative electrode active material and a solid electrolyte made of a halide, and an all-solid-state battery using the same.
  • Patent Document 1 The conventional battery disclosed in Patent Document 1 has room for improvement in terms of output characteristics.
  • the present disclosure provides a battery with improved output characteristics.
  • the battery of the present disclosure is a positive electrode layer; a negative electrode layer; an electrolyte layer positioned between the positive electrode layer and the negative electrode layer; with the negative electrode layer includes a negative electrode active material and a first solid electrolyte;
  • the electrolyte layer includes a second solid electrolyte, the negative electrode active material contains Li, Ti, and O;
  • the first solid electrolyte contains a crystal phase attributed to monoclinic and contains Li, M1, and X1, M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X1 is at least one selected from the group consisting of F, Cl, Br, and I;
  • the second solid electrolyte contains a crystal phase attributed to a trigonal crystal and contains Li, M2, and X2, M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X2 is at least one selected from the group consisting of F, Cl, Br and I;
  • FIG. 1 shows a cross-sectional view of a battery according to an embodiment of the disclosure.
  • FIG. 2 shows a schematic diagram of a pressure forming die used to evaluate the ionic conductivity of solid electrolytes.
  • 3 is a graph showing the results of an initial charge/discharge test of the battery according to Example 2.
  • Patent Document 1 described in the [Background Art] column discloses a battery including a negative electrode layer using a negative electrode material composed of lithium titanate as a negative electrode active material and a solid electrolyte formed of a halide. ing. Further improvement in output characteristics is demanded for conventional batteries having a negative electrode layer containing such a negative electrode active material and a solid electrolyte. Accordingly, the present inventors have conducted extensive research on improving the output characteristics of a battery having such a configuration.
  • the present inventors found that, among the solid electrolytes used in the negative electrode layer and the electrolyte layer, there is a combination of solid electrolytes suitable for improving the charge/discharge rate characteristics, and the output characteristics of the battery can be improved by the combination of solid electrolytes. I have discovered that it can be improved. As a result, the inventors have completed the battery of the present disclosure described below.
  • the battery according to the first aspect of the present disclosure includes a positive electrode layer; a negative electrode layer; an electrolyte layer positioned between the positive electrode layer and the negative electrode layer; with the negative electrode layer includes a negative electrode active material and a first solid electrolyte;
  • the electrolyte layer includes a second solid electrolyte, the negative electrode active material contains Li, Ti, and O;
  • the first solid electrolyte contains a crystal phase attributed to monoclinic and contains Li, M1, and X1, M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X1 is at least one selected from the group consisting of F, Cl, Br, and I;
  • the second solid electrolyte contains a crystal phase attributed to a trigonal crystal and contains Li, M2, and X2, M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X2 is at least one selected from the group consisting of F, Cl, Br and I
  • both the negative electrode layer and the electrolyte layer contain a halide solid electrolyte containing at least one selected from the group consisting of F, Cl, Br and I. Furthermore, the first solid electrolyte contained in the negative electrode layer contains a crystal phase attributed to monoclinic crystal, and the second solid electrolyte contained in the electrode layer contains a crystal phase attributed to trigonal crystal.
  • the charge/discharge rate characteristics of the battery can be improved. Thereby, the battery according to the first aspect has improved output characteristics.
  • the first solid electrolyte may be substantially free of sulfur.
  • the battery according to the second aspect has excellent safety.
  • the second solid electrolyte may be substantially free of sulfur.
  • the battery according to the third aspect has excellent safety.
  • X1 may be at least one selected from the group consisting of Cl, Br and I.
  • the battery according to the fourth aspect has more improved output characteristics.
  • X1 may contain Br.
  • the battery according to the fifth aspect has more improved output characteristics.
  • the first solid electrolyte may be represented by the following compositional formula (1).
  • ⁇ 1, ⁇ 1, and ⁇ 1 are each independently a value greater than 0.
  • the battery according to the sixth aspect has more improved output characteristics.
  • M1 may include Y, for example, in the battery according to any one of the first to sixth aspects.
  • the battery according to the seventh aspect has more improved output characteristics.
  • the battery according to the eighth aspect has more improved output characteristics.
  • the first solid electrolyte is Li 3 YBr 6 , Li 3 YBr 2 Cl 4 , and Li 3 YBr 2 It may be at least one selected from the group consisting of Cl 2 I 2 .
  • the battery according to the ninth aspect has more improved output characteristics.
  • X2 may be at least one selected from the group consisting of Cl, Br and I.
  • the battery according to the tenth aspect has more improved output characteristics.
  • X2 may contain Cl.
  • the battery according to the eleventh aspect has more improved output characteristics.
  • the second solid electrolyte may be represented by the following compositional formula (2).
  • ⁇ 2, ⁇ 2, and ⁇ 2 are independently values greater than 0.
  • the battery according to the twelfth aspect has more improved output characteristics.
  • M2 may include Y in the battery according to any one of the first to twelfth aspects.
  • the battery according to the thirteenth aspect has more improved output characteristics.
  • the battery according to the fourteenth aspect has more improved output characteristics.
  • M2 may contain Y, Ca, and Gd.
  • the battery according to the fifteenth aspect has more improved output characteristics.
  • the second solid electrolyte may be represented by the following compositional formula (3).
  • the battery according to the sixteenth aspect has more improved output characteristics.
  • the second solid electrolyte may be Li2.8Ca0.1Y0.6Gd0.4Br2Cl4 .
  • the battery according to the seventeenth aspect has more improved output characteristics.
  • the negative electrode active material may be lithium titanium oxide.
  • the battery according to the eighteenth aspect has more improved output characteristics.
  • the negative electrode active material may be Li4Ti5O12 .
  • the battery according to the nineteenth aspect has more improved output characteristics.
  • the positive electrode layer may contain nickel cobalt lithium manganate.
  • the battery according to the twentieth aspect can improve charge/discharge capacity.
  • FIG. 1 shows a cross-sectional view of a battery according to an embodiment of the present disclosure.
  • a battery 1000 according to this embodiment includes a positive electrode layer 101 , a negative electrode layer 103 and an electrolyte layer 102 .
  • the electrolyte layer 102 is located between the positive electrode layer 101 and the negative electrode layer 103 .
  • the negative electrode layer 103 contains a negative electrode active material and a first solid electrolyte.
  • the negative electrode active material contains Li, Ti, and O.
  • the first solid electrolyte contains a crystal phase attributed to monoclinic and contains Li, M1, and X1.
  • M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X1 is at least one selected from the group consisting of F, Cl, Br, and I.
  • the electrolyte layer 102 contains a second solid electrolyte.
  • the second solid electrolyte contains a crystal phase attributed to a trigonal crystal and contains Li, M2, and X2.
  • M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X2 is at least one selected from the group consisting of F, Cl, Br and I.
  • the term "metallic element” (i) all elements contained in groups 1 to 12 of the periodic table (excluding hydrogen), and (ii) all elements contained in groups 13 to 16 of the periodic table (with the exception of B, Si, Ge , As, Sb, Te, C, N, P, O, S, and Se). That is, the metal element is a group of elements that can become a cation when forming an inorganic compound with a halogen compound.
  • metal element used in this specification is B, Si, Ge, As, Sb, and Te.
  • the term "monoclinic” as used in this disclosure refers to ICSD (Inorganic Crystal Structure Database) No. 50182, which has a crystal structure similar to that of Li 3 ErBr 6 and has an X-ray diffraction pattern peculiar to this crystal structure. Therefore, the presence of monoclinic crystals contained in the solid electrolyte is determined based on the X-ray diffraction pattern. At this time, the diffraction angle and/or peak intensity ratio of the diffraction pattern may change from that of Li 3 ErBr 6 depending on the type of element contained in the first solid electrolyte.
  • "having a similar crystal structure” means being classified into the same space group and having a close atomic arrangement structure, and does not limit the lattice constant.
  • trigonal refers to ICSD (Inorganic Crystal Structure Database) No. No. 50151, which has a similar crystal structure to Li 3 ErCl 6 and has an X-ray diffraction pattern peculiar to this crystal structure. Therefore, the presence of trigonal crystals contained in the solid electrolyte is determined based on the X-ray diffraction pattern. At this time, the diffraction angle and/or peak intensity ratio of the diffraction pattern may change from that of Li 3 ErCl 6 depending on the type of elements contained in the first solid electrolyte.
  • both the negative electrode layer 103 and the electrolyte layer 102 contain a halide solid electrolyte containing at least one selected from the group consisting of F, Cl, Br and I. . Furthermore, the first solid electrolyte contained in negative electrode layer 103 contains a crystal phase attributed to monoclinic crystals, and the second solid electrolyte contained in electrolyte layer 102 contains a crystal phase attributed to trigonal crystals. . Since the first solid electrolyte contained in the negative electrode layer 103 and the second solid electrolyte contained in the electrolyte layer 102 have such a configuration, the charge/discharge rate characteristics of the battery 1000 can be improved. Thereby, the output characteristics of the battery 1000 are improved.
  • the first solid electrolyte contains Li, M1, and X1.
  • a solid electrolyte composed of these elements and having a monoclinic crystal structure has relatively low grain boundary resistance and is relatively soft, so it has excellent filling properties, and even if it is pulverized, the ionic conductivity decreases. hard to do. Therefore, the first solid electrolyte containing a crystal phase belonging to the monoclinic system can maintain the ionic conductivity of the material itself even when it is mixed with the negative electrode active material and pulverized.
  • a negative electrode active material containing Li, Ti, and O used for the negative electrode layer 103 is a relatively hard material. Even when the first solid electrolyte is mixed with such a hard negative electrode active material and pulverized, the ionic conductivity of the material itself can be maintained, so deterioration is unlikely. Therefore, the negative electrode layer 103 has improved electrode performance.
  • the second solid electrolyte contains Li, M2, and X2.
  • a solid electrolyte composed of these elements and having a trigonal crystal structure has a higher grain boundary resistance than a solid electrolyte having a monoclinic crystal structure, and the ionic conductivity decreases when pulverized. It's easy to do.
  • the solid electrolyte composed of the above elements and having a trigonal crystal structure has a high ionic conductivity of the material itself.
  • the solid electrolyte forming the electrolyte layer 102 is usually used without being mixed with other hard materials such as electrode active materials and pulverized. Therefore, the second solid electrolyte containing a crystalline phase belonging to a trigonal crystal having a relatively high ionic conductivity of the material itself can improve the ionic conductivity of the electrolyte layer 102 .
  • the negative electrode layer 103 generally has a slightly inferior ionic conductivity of the material itself, but the grain boundary resistance is relatively low and the ionic conductivity does not easily decrease even when pulverized. a first solid electrolyte having properties.
  • the electrolyte layer 102 generally includes a second solid electrolyte whose ion conductivity tends to decrease when pulverized, but whose material itself has high ion conductivity.
  • An example of the battery 1000 according to this embodiment is an all-solid battery.
  • the all-solid-state battery may be a primary battery or a secondary battery.
  • negative electrode layer 103 includes a first solid electrolyte containing Li, M1, and X1.
  • the first solid electrolyte contains a crystal phase belonging to monoclinic crystals.
  • the main crystal phase in the first solid electrolyte may be a crystal phase belonging to monoclinic crystals.
  • the first solid electrolyte may have a monoclinic crystal structure.
  • the first solid electrolyte may contain other crystal phases that do not belong to monoclinic crystals.
  • the first solid electrolyte may consist essentially of Li, M1, and X1.
  • the first solid electrolyte consists essentially of Li, M1, and X1
  • the first solid electrolyte may consist only of Li, M1 and X1.
  • M1 may contain at least one element selected from the group consisting of Group 1 elements, Group 2 elements, Group 3 elements, Group 4 elements, and lanthanide elements. In addition, M1 may contain at least one element selected from the group consisting of Group 5 elements, Group 12 elements, Group 13 elements, and Group 14 elements in order to increase ionic conductivity.
  • Group 1 elements are Na, K, Rb, or Cs.
  • group 2 elements are Mg, Ca, Sr or Ba.
  • group 3 elements are Sc or Y.
  • Group 4 elements are Ti, Zr, or Hf.
  • Examples of lanthanide elements are La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
  • Examples of Group 5 elements are Nb or Ta.
  • An example of a Group 12 element is Zn.
  • group 13 elements are Al, Ga or In.
  • An example of a Group 14 element is Sn.
  • M1 may include Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, At least one element selected from the group consisting of Ho, Er, Tm, Yb, and Lu may be included.
  • M1 may contain at least one element selected from the group consisting of Mg, Ca, Sr, Y, Sm, Gd, Dy, and Hf.
  • M1 may contain Y in order to further increase ionic conductivity and to have improved output characteristics.
  • X1 may contain at least one element selected from the group consisting of Cl, Br, and I in order to have improved output characteristics.
  • X1 may contain at least two elements selected from the group consisting of Cl, Br, and I in order to have improved output characteristics.
  • X1 may contain Cl, Br, and I in order to have improved output characteristics.
  • the first solid electrolyte contains a crystal phase belonging to monoclinic crystals.
  • X1 may contain Br so that the solid electrolyte containing Li, M1, and X1 tends to contain a crystal phase attributed to a monoclinic crystal.
  • a monoclinic crystal structure is more likely to be formed, for example, when the anion X1 is relatively large. Therefore, when X1 contains Br, a stable monoclinic crystal structure is likely to be formed, and the first solid electrolyte can stably contain a crystal phase attributed to monoclinic. As a result, more improved output characteristics are obtained.
  • the first solid electrolyte may be represented by the following compositional formula (1).
  • ⁇ 1, ⁇ 1, and ⁇ 1 are each independently a value greater than 0.
  • the first solid electrolyte may be Li3YX16 .
  • the first solid electrolyte may be Li3YBr6 or Li3YBrxClyI6 - xy . where x and y satisfy 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and 0 ⁇ x+y ⁇ 6.
  • the first solid electrolyte may be at least one selected from the group consisting of Li3YBr6 , Li3YBr2Cl4 , and Li3YBr2Cl2I2 .
  • the first solid electrolyte is one of these materials, it can stably contain a crystal phase attributed to monoclinic crystals, and can maintain high ionic conductivity even when pulverized. As a result, more improved output characteristics are obtained.
  • the shape of the first solid electrolyte is not limited.
  • the shape of the first solid electrolyte may be, for example, acicular, spherical, oval, or fibrous.
  • the first solid electrolyte may be particulate.
  • the first solid electrolyte may be formed to have a pellet or plate shape.
  • the first solid electrolyte when the first solid electrolyte is particulate (for example, spherical), the first The solid electrolyte may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • Median size means the particle size when the cumulative volume in a volume-based particle size distribution is equal to 50%.
  • a volume-based particle size distribution can be measured by a laser diffraction measurement device or an image analysis device.
  • the median diameter may be 0.5 ⁇ m or more and 10 ⁇ m or less. Thereby, the first solid electrolyte has high ionic conductivity.
  • the first solid electrolyte for example, contains substantially no sulfur. That the first solid electrolyte does not substantially contain sulfur means that the first solid electrolyte does not contain sulfur as a constituent element, except for sulfur that is unavoidably mixed as an impurity. In this case, sulfur mixed as an impurity in the first solid electrolyte is, for example, 1 mol % or less.
  • the first solid electrolyte may not contain sulfur. When the first solid electrolyte does not contain sulfur, the first solid electrolyte does not generate hydrogen sulfide even if it is exposed to the atmosphere, so it is excellent in safety.
  • the negative electrode layer 103 may contain negative electrode active material particles 104 and first solid electrolyte particles 105, as shown in FIG.
  • the median diameter of the negative electrode active material particles 104 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material particles 104 have a median diameter of 0.1 ⁇ m or more, the negative electrode active material particles 104 and the first solid electrolyte particles 105 are dispersed well in the negative electrode layer 103 . Thereby, the charge/discharge characteristics of the battery 1000 are improved.
  • the negative electrode active material particles 104 have a median diameter of 100 ⁇ m or less, the diffusion rate of lithium in the negative electrode active material particles 104 is improved. This allows battery 1000 to operate at high output.
  • the negative electrode active material particles 104 may have a larger median diameter than the first solid electrolyte particles 105 . Thereby, in the negative electrode layer 103, the dispersion state of the negative electrode active material particles 104 and the first solid electrolyte particles 105 is improved.
  • the first solid electrolyte particles 105 and the negative electrode active material particles 104 may be in contact with each other as shown in FIG.
  • the negative electrode layer 103 in this embodiment may include a plurality of first solid electrolyte particles 105 and a plurality of negative electrode active material particles 104 .
  • the content of the first solid electrolyte particles 105 may be the same as or different from the content of the negative electrode active material particles 104 .
  • the volume ratio Vn representing the volume of the negative electrode active material particles to the total volume of the negative electrode active material particles 104 and the first solid electrolyte particles 105 may be 0.3 or more and 0.95 or less.
  • the volume ratio Vn is 0.3 or more, the energy density of the battery 1000 can be improved.
  • the volume ratio Vn is 0.95 or less, the output of the battery 1000 can be improved.
  • the thickness of the negative electrode layer 103 may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the battery 1000 can ensure sufficient energy density. Moreover, when the thickness of the negative electrode layer 103 is 500 ⁇ m or less, the output of the battery 1000 can be improved.
  • the negative electrode layer 103 may further contain another solid electrolyte having a different composition or different crystal structure from the first solid electrolyte.
  • the mass of the first solid electrolyte with respect to the total mass of the solid electrolytes contained in negative electrode layer 103 may be 1% by mass or more, or may be 50% by mass or more.
  • solid electrolytes having a different composition than the first solid electrolyte are sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, or complex hydride solid electrolytes.
  • sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, and complex hydride solid electrolytes are the same as examples of solid electrolytes that can be used for positive electrode layer 101 described later.
  • the negative electrode active material contained in the negative electrode layer 103 contains Li, Ti, and O.
  • the negative electrode active material may be, for example, lithium titanium oxide , such as Li4Ti5O12 .
  • Electrolyte layer 102 includes a second solid electrolyte.
  • the second solid electrolyte contains Li, M2, and X2.
  • the second solid electrolyte contains a crystal phase belonging to a trigonal crystal.
  • the main crystal phase in the second solid electrolyte may be a crystal phase belonging to a trigonal crystal.
  • the second solid electrolyte may have a trigonal crystal structure.
  • the second solid electrolyte may contain other crystal phases that do not belong to the trigonal crystal.
  • the second solid electrolyte may consist essentially of Li, M2 and X2.
  • the second solid electrolyte consists essentially of Li, M2, and X2
  • the second solid electrolyte may consist only of Li, M2 and X2.
  • M2 may contain at least one element selected from the group consisting of Group 1 elements, Group 2 elements, Group 3 elements, Group 4 elements, and lanthanide elements. M2 may also contain at least one element selected from the group consisting of Group 5 elements, Group 12 elements, Group 13 elements, and Group 14 elements in order to increase ionic conductivity.
  • Group 1 elements are Na, K, Rb, or Cs.
  • group 2 elements are Mg, Ca, Sr or Ba.
  • group 3 elements are Sc or Y.
  • Group 4 elements are Ti, Zr, or Hf.
  • Examples of lanthanide elements are La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
  • Examples of Group 5 elements are Nb or Ta.
  • An example of a Group 12 element is Zn.
  • group 13 elements are Al, Ga or In.
  • An example of a Group 14 element is Sn.
  • M2 may include Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, At least one element selected from the group consisting of Ho, Er, Tm, Yb, and Lu may be included.
  • M2 may contain at least one element selected from the group consisting of Mg, Ca, Sr, Y, Sm, Gd, Dy, and Hf.
  • M2 may contain Y in order to further increase the ionic conductivity and obtain more improved output characteristics.
  • X2 may contain at least one element selected from the group consisting of Br, Cl and I in order to obtain more improved output characteristics.
  • X2 may contain at least two elements selected from the group consisting of Cl, Br, and I in order to obtain more improved output characteristics.
  • X2 may contain Cl, Br, and I in order to obtain improved output characteristics.
  • the second solid electrolyte contains a crystal phase belonging to a trigonal crystal.
  • X2 may contain Cl so that the solid electrolyte containing Li, M2, and X2 tends to contain a crystal phase attributed to a trigonal crystal.
  • a trigonal crystal structure is more likely to be formed, for example, when the anion X2 is relatively small. Therefore, when X2 contains Cl, a stable trigonal crystal structure is likely to be formed, and the second solid electrolyte can stably contain a crystal phase attributed to a trigonal crystal. As a result, more improved output characteristics are obtained.
  • the second solid electrolyte may be represented by the following compositional formula (2).
  • ⁇ 2, ⁇ 2, and ⁇ 2 are independently values greater than 0.
  • M2 may contain Y, Ca, and Gd in order to obtain improved output characteristics.
  • the second solid electrolyte may be represented by the following compositional formula (3).
  • the second solid electrolyte may be Li2.8Ca0.1Y0.6Gd0.4Br2Cl4 .
  • the second solid electrolyte is this material, it can stably contain a crystal phase attributed to a trigonal crystal. As a result, more improved output characteristics can be obtained.
  • the shape of the second solid electrolyte is not limited.
  • the shape of the second solid electrolyte may be, for example, acicular, spherical, oval, or fibrous.
  • the second solid electrolyte may be particulate.
  • the second solid electrolyte may be formed to have a pellet or plate shape.
  • the second solid electrolyte when the second solid electrolyte is particulate (for example, spherical), the second solid electrolyte may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • Median size means the particle size when the cumulative volume in a volume-based particle size distribution is equal to 50%.
  • a volume-based particle size distribution can be measured by a laser diffraction measurement device or an image analysis device.
  • the median diameter may be 0.5 ⁇ m or more and 10 ⁇ m or less. Thereby, the second solid electrolyte has high ionic conductivity.
  • the second solid electrolyte for example, contains substantially no sulfur.
  • the fact that the second solid electrolyte does not substantially contain sulfur means that the second solid electrolyte does not contain sulfur as a constituent element, except for sulfur that is unavoidably mixed as an impurity.
  • sulfur mixed as an impurity in the second solid electrolyte is, for example, 1 mol % or less.
  • the second solid electrolyte may not contain sulfur. When the second solid electrolyte does not contain sulfur, the second solid electrolyte does not generate hydrogen sulfide even when exposed to the atmosphere, and is therefore excellent in safety.
  • the electrolyte layer 102 may contain the second solid electrolyte as a main component. That is, the electrolyte layer 102 may contain the second solid electrolyte, for example, at a mass ratio of 50% or more (that is, 50% by mass or more) with respect to the entire electrolyte layer.
  • the electrolyte layer 102 may contain the second solid electrolyte, for example, at a mass ratio of 70% or more (that is, 70% by mass or more) with respect to the entire electrolyte layer 102 .
  • the electrolyte layer 102 may further contain unavoidable impurities.
  • the electrolyte layer 102 may contain starting materials used for the synthesis of the second solid electrolyte.
  • the electrolyte layer 102 may contain by-products or decomposition products produced during the synthesis of the second solid electrolyte.
  • the mass ratio of the second solid electrolyte contained in the electrolyte layer 102 to the electrolyte layer 102 can be substantially 1. “The mass ratio is substantially 1” means that the mass ratio is 1 calculated without considering inevitable impurities that may be contained in the electrolyte layer 102 . That is, the electrolyte layer 102 may be composed only of the second solid electrolyte.
  • the electrolyte layer 102 may be composed only of the second solid electrolyte.
  • electrolyte layer 102 may contain two or more of the materials listed as the second solid electrolyte.
  • the thickness of the electrolyte layer 102 may be 1 ⁇ m or more and 300 ⁇ m or less.
  • the electrolyte layer 102 When the electrolyte layer 102 has a thickness of 1 ⁇ m or more, the positive electrode layer 101 and the negative electrode layer 103 are less likely to short-circuit. If the electrolyte layer 102 has a thickness of 300 ⁇ m or less, the battery 1000 can operate at high power.
  • the positive electrode layer 101 contains a material capable of intercalating and deintercalating metal ions (for example, lithium ions).
  • the positive electrode layer 101 may contain a positive electrode active material.
  • positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxyfluorides, transition metal oxysulfides, or transition metal oxynitrides. be.
  • lithium-containing transition metal oxides are Li(NiCoAl) O2 , Li( NiCoMn ) O2 , or LiCoO2.
  • the manufacturing cost can be reduced and the average discharge voltage can be increased.
  • the positive electrode active material may be lithium nickel cobalt manganate.
  • the positive electrode layer 101 may contain a solid electrolyte. According to the above configuration, the lithium ion conductivity inside the positive electrode layer 101 is increased, and operation at high output becomes possible.
  • solid electrolytes contained in the positive electrode layer 101 are halide solid electrolytes, sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, or complex hydride solid electrolytes.
  • the materials exemplified as the above-described first solid electrolyte and second solid electrolyte may be used.
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li10GeP2S12 , etc. may be used. Further, LiX', Li 2 O, M'Oq, LipM'Oq, etc. may be added to these.
  • X' is at least one selected from the group consisting of F, Cl, Br and I.
  • M' is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
  • p and q are natural numbers.
  • oxide solid electrolytes are (i) NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof; (ii) perovskite-type solid electrolytes such as (LaLi) TiO3 ; ( iii) LISICON - type solid electrolytes such as Li14ZnGe4O16 , Li4SiO4 , LiGeO4 , or elemental substitutions thereof; ( iv) garnet - type solid electrolytes such as Li7La3Zr2O12 or elemental substitutions thereof; (v) Li 3 PO 4 or its N-substituted products (vi) Li 3 N or its H-substituted products, or (vii) Li—B—O compounds such as LiBO 2 , Li 3 BO 3 , Li 2 SO 4 , Li 2 CO 3 or the like added glass or glass ceramics.
  • NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof
  • polymer solid electrolytes examples include polymer compounds and lithium salt compounds.
  • the polymer compound may have an ethylene oxide structure. Since a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further increased.
  • lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • complex hydride solid electrolytes are LiBH 4 --LiI or LiBH 4 --P 2 S 5 .
  • the median diameter of the positive electrode active material particles may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material particles and the solid electrolyte particles are dispersed well in the positive electrode layer 101 . Thereby, the charge/discharge characteristics of the battery 1000 are improved.
  • the positive electrode active material particles have a median diameter of 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material particles is improved. This allows battery 1000 to operate at high output.
  • the median diameter of the positive electrode active material particles may be larger than the median diameter of the solid electrolyte particles. Thereby, a good dispersion state of the positive electrode active material particles and the solid electrolyte particles can be formed.
  • the volume ratio Vp representing the volume of the positive electrode active material particles to the total volume of the positive electrode active material particles and the solid electrolyte particles may be 0.3 or more and 0.95 or less.
  • the volume ratio Vp is 0.3 or more, the energy density of the battery 1000 can be improved.
  • the volume ratio Vp is 0.95 or less, the output of the battery 1000 can be improved.
  • the thickness of the positive electrode layer 101 may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the battery 1000 can ensure sufficient energy density. Moreover, when the thickness of the positive electrode layer 101 is 500 ⁇ m or less, the output of the battery 1000 can be improved.
  • the positive electrode active material may be coated.
  • a material with low electronic conductivity can be used as the coating material.
  • an oxide material, an oxide solid electrolyte, or the like can be used as the coating material.
  • oxide materials are SiO2 , Al2O3 , TiO2 , B2O3 , Nb2O5 , WO3 or ZrO2 .
  • oxide solid electrolytes are (i) Li-Nb - O compounds such as LiNbO3; (ii) Li—BO compounds such as LiBO 2 and Li 3 BO 3 ; (iii) Li-Al-O compounds such as LiAlO2 ; (iv) Li-Si-O compounds such as Li 4 SiO 4 ; (v) Li--S--O compounds such as Li 2 SO 4 ; (vi) Li - Ti - O compounds such as Li4Ti5O12 ; (vii) Li - Zr-O compounds such as Li2ZrO3 ; (viii) Li - Mo-O compounds such as Li2MoO3 ; (ix) Li-VO compounds such as LiV 2 O 5 or (x) Li-WO compounds such as Li 2 WO 4 .
  • Li-Nb - O compounds such as LiNbO3
  • Li—BO compounds such as LiBO 2 and Li 3 BO 3
  • Li-Al-O compounds such as LiAlO2
  • Oxide solid electrolytes have high ionic conductivity and high potential stability. Therefore, by using the oxide solid electrolyte, the charge/discharge efficiency can be further improved.
  • At least one selected from the group consisting of the positive electrode layer 101, the electrolyte layer 102, and the negative electrode layer 103 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, carboxymethyl cellulose, and the like.
  • Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used.
  • two or more binders may be used.
  • At least one selected from the group consisting of the positive electrode layer 101 and the negative electrode layer 103 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • Examples of conductive aids are (i) graphites such as natural or artificial graphite; (ii) carbon blacks such as acetylene black or ketjen black; (iii) conductive fibers such as carbon or metal fibers; (iv) carbon fluoride, (v) metal powders such as aluminum; (vi) conductive whiskers such as zinc oxide or potassium titanate; (vii) conductive metal oxides such as titanium oxide; or (viii) conductive polymeric compounds such as polyaniline, polypyrrole, or polythiophene.
  • the conductive aid (i) or (ii) may be used.
  • Examples of the shape of the battery according to this embodiment are coin-shaped, cylindrical, rectangular, sheet-shaped, button-shaped, flat-shaped, and laminated.
  • the first solid electrolyte and the second solid electrolyte are manufactured, for example, by the following method.
  • Raw material powder is prepared so as to have a compounding ratio of the desired composition.
  • the raw material powder may be, for example, a halide.
  • the raw material powders may be mixed in a pre-adjusted molar ratio so as to compensate for compositional changes that may occur during the synthesis process.
  • the kind of raw material powder is not limited to the above.
  • a combination of LiCl and YBr3 , and mixed anion compounds such as LiBr0.5Cl0.5 may be used.
  • Mixtures of oxygen-containing raw powders (eg, oxides, hydroxides, sulfates, or nitrates) and halides (eg, ammonium halides) may be used.
  • the raw material powder is mixed well using a mortar and pestle, ball mill, or mixer to obtain a mixed powder.
  • the raw material powder is then pulverized using the method of mechanochemical milling.
  • the raw material powder reacts to obtain the first solid electrolyte and the second solid electrolyte.
  • the mixed powder may be fired in vacuum or in an inert atmosphere to obtain the first and second solid electrolytes.
  • Firing may be performed, for example, within the range of 100°C or higher and 650°C or lower for 1 hour or longer.
  • the composition of the crystal phase in the solid electrolyte (that is, the crystal structure) includes the elements that constitute the solid electrolyte (that is, M1, M2, X1, and X2), the ratio of the constituent elements of the solid electrolyte, and the reaction method between the raw material powders. , and the choice of reaction conditions.
  • a monoclinic crystal structure is more likely to be formed when the halogen elements (that is, X1 and X2), which are anions, are relatively large. Therefore, for example, when the anion contains Br, a stable monoclinic crystal structure is likely to be obtained.
  • a trigonal crystal structure is more likely to be formed when the halogen elements (that is, X1 and X2), which are anions, are relatively small. Therefore, for example, when the anion contains Cl, a stable trigonal crystal structure is likely to be obtained.
  • the composition of the crystal phase in the solid electrolyte can also be determined by adjusting the ratio of the plurality of elements.
  • the configuration of the crystal phase in the solid electrolyte can also be determined by adjusting the ratio of the plurality of halogen elements.
  • Example 1 (Preparation of first solid electrolyte)
  • Example 1 Evaluation of composition of first solid electrolyte
  • ICP Inductive Coupled Plasma
  • the powder of the first solid electrolyte according to Example 1 was subjected to X-ray diffraction measurement in a dry argon atmosphere having a dew point of -40°C or lower, and an X-ray diffraction pattern was obtained.
  • An X-ray diffractometer (MiniFlex 600, manufactured by RIGAKU) was used to analyze the crystal structure. Cu-K ⁇ radiation was used as the X-ray source.
  • XRD X-ray diffraction method
  • FIG. 2 shows a schematic diagram of a pressure forming die used to evaluate the ionic conductivity of solid electrolytes.
  • the pressure forming die 300 had a punch upper part 301 , a frame mold 302 and a punch lower part 303 . Both the punch upper portion 301 and the punch lower portion 303 were made of electronically conductive stainless steel.
  • the frame mold 302 was made of insulating polycarbonate.
  • the ionic conductivity of the first solid electrolyte according to Example 1 was evaluated by the following method.
  • the first solid electrolyte powder according to Example 1 (that is, the solid electrolyte powder 201 in FIG. 2) was filled inside the pressure forming die 300 . Inside the pressing die 300 , a pressure of 300 MPa was applied to the first solid electrolyte according to Example 1 using an upper punch 301 and a lower punch 303 .
  • the upper punch 301 and lower punch 303 were connected to a potentiostat (Princeton Applied Research, VersaSTAT4) equipped with a frequency response analyzer.
  • the punch upper part 301 was connected to the working electrode and the terminal for potential measurement.
  • the punch bottom 303 was connected to the counter and reference electrodes.
  • the impedance of the first solid electrolyte was measured by electrochemical impedance measurement at room temperature.
  • Example 2 Evaluation of composition of second solid electrolyte
  • ICP Inductive Coupled Plasma
  • the ionic conductivity of the second solid electrolyte according to Example 1 was measured in the same manner as the first solid electrolyte.
  • a laminate consisting of a positive electrode layer, an electrolyte layer, and a negative electrode layer was obtained.
  • current collectors made of stainless steel were attached to the top and bottom of the laminate, that is, to the positive electrode layer and the negative electrode layer, and current collector leads were attached to the current collectors.
  • an insulating ferrule was used to isolate the inside of the insulating tube from the outside atmosphere and to seal the inside of the tube.
  • Example 1 Charge and discharging test
  • the battery produced in Example 1 is a cell for a charge/discharge test and corresponds to a half cell of the negative electrode. Therefore, in Example 1, the direction in which Li ions are inserted into the negative electrode and the potential of the half-cell decreases is referred to as charging, and the direction in which the potential increases is referred to as discharging. That is, charging in Example 1 is substantially discharging (that is, in the case of a full cell), and discharging in Example 1 is substantially charging.
  • the battery according to Example 1 was placed in a constant temperature bath at 25°C.
  • Constant current charging was performed at a current value of 35 ⁇ A, and charging was terminated at a potential of 1.0 V relative to Li.
  • a battery according to Reference Example 1 comprising a laminate comprising a positive electrode layer, an electrolyte layer, and a negative electrode layer.
  • Li 4 Ti 5 O 12 as the negative electrode active material, Li 3 YBr 2 Cl 4 as the first solid electrolyte, and VGCF as the conductive aid were mixed in the same manner as the negative electrode material preparation method of Example 1.
  • a negative electrode material containing Li 4 Ti 5 O 12 :Li 3 YBr 2 Cl 4 :VGCF at a mass ratio of 10:85:5 was prepared.
  • a battery according to Reference Example 2 comprising a laminate comprising a positive electrode layer, an electrolyte layer, and a negative electrode layer.
  • Example 2 (Preparation of first solid electrolyte) A powder of Li 3 YBr 2 Cl 4 as a solid electrolyte was obtained in the same manner as the method for producing the first solid electrolyte in Example 1.
  • Li 4 Ti 5 O 12 as a negative electrode active material, Li 3 YBr 2 Cl 4 as a first solid electrolyte, and VGCF as a conductive aid were prepared in the same manner as the negative electrode material preparation method of Example 1. , Li 4 Ti 5 O 12 :Li 3 YBr 2 Cl 4 :VGCF at a mass ratio of 65:30:5.
  • the positive electrode material of Example 2 was produced by mixing these with an agate mortar.
  • the battery according to Example 2 was placed in a constant temperature bath at 25°C.
  • FIG. 3 is a graph showing the results of the initial charge/discharge test of the battery according to Example 2.
  • Li 4 Ti 5 O 12 as a negative electrode active material, Li 3 YBr 2 Cl 4 as a first solid electrolyte, and VGCF as a conductive aid were prepared in the same manner as the negative electrode material preparation method of Example 1. , Li 4 Ti 5 O 12 :Li 3 YBr 2 Cl 4 :VGCF at a mass ratio of 10:85:5.
  • a laminate consisting of a positive electrode layer, an electrolyte layer, and a negative electrode layer was obtained.
  • current collectors made of stainless steel were attached to the top and bottom of the laminate, that is, to the positive electrode layer and the negative electrode layer, and current collector leads were attached to the current collectors.
  • an insulating ferrule was used to isolate the inside of the insulating tube from the outside atmosphere and to seal the inside of the tube.
  • the battery according to Reference Example 3 was placed in a constant temperature bath at 25°C.
  • Constant current charging was performed at a current value of 17.5 ⁇ A, and charging was terminated at a potential of 1.0 V relative to Li.
  • the ionic conductivity of the first solid electrolyte according to Reference Example 4 was measured in the same manner as for the first solid electrolyte according to Example 1.
  • the ionic conductivity of the first solid electrolyte at 22° C. was 0.6 ⁇ 10 ⁇ 3 S/cm.
  • Li 4 Ti 5 O 12 as a negative electrode active material, Li 3 YBr 6 as a first solid electrolyte, and VGCF as a conductive aid were mixed in the same manner as the negative electrode material preparation method of Example 1.
  • a negative electrode material containing 4 Ti 5 O 12 :Li 3 YBr 6 :VGCF at a mass ratio of 10:85:5 was prepared.
  • a battery according to Reference Example 4 comprising a laminate comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
  • the ionic conductivity of the first solid electrolyte according to Reference Example 5 was measured in the same manner as the first solid electrolyte according to Example 1.
  • the ionic conductivity of the first solid electrolyte at 22° C. was 0.3 ⁇ 10 ⁇ 3 S/cm.
  • Li 4 Ti 5 O 12 as a negative electrode active material, Li 3 YCl 6 as a first solid electrolyte, and VGCF as a conductive aid were mixed in the same manner as the method for preparing the negative electrode material in Example 1.
  • a negative electrode material containing 4 Ti 5 O 12 :Li 3 YCl 6 :VGCF at a mass ratio of 10:85:5 was prepared.
  • a battery according to Reference Example 5 comprising a laminate comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
  • a battery according to Reference Example 6 comprising a laminate comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
  • the battery according to Example 1 is a battery having a negative electrode layer containing Li, Ti, and O as negative electrode active materials.
  • the first solid electrolyte contained in the negative electrode layer contains Li, M1, and X1 and contains a crystal phase belonging to the monoclinic system
  • the electrolyte layer contains
  • the contained second solid electrolyte contains Li, M2, and X2, and has a configuration containing a crystal phase attributed to a trigonal crystal. Note that M1, X1, M2, and X2 are as described above.
  • the battery according to Reference Example 1 differs from the battery according to Example 1 in that it has a configuration in which a solid electrolyte containing a crystal phase belonging to a trigonal crystal is used as the first solid electrolyte.
  • the battery according to Reference Example 2 has a configuration in which a solid electrolyte containing a crystal phase attributed to monoclinic is used as the second solid electrolyte.
  • the battery according to Example 1 had a higher charge capacity when charged at 700 ⁇ A with respect to the charge capacity when charged at 35 ⁇ A.
  • the batteries that satisfy the battery configuration of the present disclosure are the batteries of Reference Examples 1 and 2 that do not satisfy the battery configuration of the present disclosure, that is, the batteries that do not use solid electrolytes suitable for the negative electrode layer and the electrolyte layer, respectively. It can be seen that the charge/discharge rate characteristics are improved when compared with . From this result, it can be seen that the battery of the present disclosure can improve the output characteristics.
  • Example 1 From the comparison of the results of Example 1 and Reference Example 1 shown in Table 1, as the first solid electrolyte, rather than selecting a solid electrolyte with a high ion conductivity of the material itself, a configuration in which it is mixed with the negative electrode active material It can be seen that the use of a monoclinic material that is compatible with the battery has a higher charge capacity under high load.
  • the charge capacity under high load is higher when a solid electrolyte whose material itself has high ionic conductivity is used.
  • a solid electrolyte containing Li, M, and X and containing no sulfur is used as the solid electrolyte contained in the negative electrode layer, the electrolyte layer, and the positive electrode layer.
  • M is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X is at least one selected from the group consisting of F, Cl, Br and I. From the results shown in FIG. 3, it has been confirmed that a battery using only such a material as a solid electrolyte can operate stably. Also, the battery according to Example 2 does not use a solid electrolyte containing sulfur. Therefore, the battery according to Example 2 has no risk of reacting with moisture and generating harmful hydrogen sulfide gas.
  • the battery of the present disclosure has excellent output characteristics and can be used, for example, as an all-solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示の電池は、正極層と、負極層と、前記正極層と前記負極層との間に位置する電解質層と、を備え、前記負極層は、負極活物質および第1固体電解質を含み、前記電解質層は、第2固体電解質を含み、前記負極活物質は、Li、Ti、およびOを含み、前記第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつLi、M1、およびX1を含み、M1は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも一つであり、前記第2固体電解質は、三方晶に帰属される結晶相を含有し、かつLi、M2、およびX2を含み、M2は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、X2は、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである。

Description

電池
 本開示は、電池に関する。
 特許文献1には、負極活物質としてのチタン酸リチウムと、ハロゲン化物で形成された固体電解質とからなる負極材料、およびそれを用いた全固体電池が開示されている。
国際公開第2019/146295号
 特許文献1に開示されている従来の電池は、出力特性について改善の余地があった。
 本開示は、出力特性が向上した電池を提供する。
 本開示の電池は、
 正極層と、
 負極層と、
 前記正極層と前記負極層との間に位置する電解質層と、
を備え、
 前記負極層は、負極活物質および第1固体電解質を含み、
 前記電解質層は、第2固体電解質を含み、
 前記負極活物質は、Li、Ti、およびOを含み、
 前記第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつLi、M1、およびX1を含み、
 M1は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
 X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも一つであり、
 前記第2固体電解質は、三方晶に帰属される結晶相を含有し、かつLi、M2、およびX2を含み、
 M2は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
 X2は、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである。
 本開示によれば、出力特性が向上した電池を提供できる。
図1は、本開示の実施形態による電池の断面図を示す。 図2は、固体電解質のイオン伝導度を評価するために用いられる加圧成形ダイスの模式図を示す。 図3は、実施例2による電池の初期の充放電試験の結果を示すグラフである。
 (本開示の基礎となった知見)
 [背景技術]の欄に記載した特許文献1には、負極活物質としてのチタン酸リチウムと、ハロゲン化物で形成された固体電解質とからなる負極材料を用いた負極層を備えた電池が開示されている。このような負極活物質と固体電解質とを含む負極層を備えた従来の電池には、出力特性について、さらなる向上が求められている。そこで、本発明者らは、このような構成を有する電池の出力特性の向上について、鋭意研究を行った。その結果、本発明者らは、負極層および電解質層に用いられる固体電解質には、充放電レート特性の向上に適した固体電解質の組み合わせが存在し、その固体電解質の組み合わせによって電池の出力特性を向上させることができることを新たに見出した。そして、本発明者らは、以下に示す本開示の電池を完成させるに至った。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る電池は、
 正極層と、
 負極層と、
 前記正極層と前記負極層との間に位置する電解質層と、
を備え、
 前記負極層は、負極活物質および第1固体電解質を含み、
 前記電解質層は、第2固体電解質を含み、
 前記負極活物質は、Li、Ti、およびOを含み、
 前記第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつLi、M1、およびX1を含み、
 M1は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
 X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも一つであり、
 前記第2固体電解質は、三方晶に帰属される結晶相を含有し、かつLi、M2、およびX2を含み、
 M2は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
 X2は、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである。
 第1態様に係る電池においては、負極層および電解質層が、共に、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つを含むハロゲン化物の固体電解質を含む。さらに、負極層に含まれる第1固体電解質は単斜晶に帰属される結晶相を含有し、かつ電極層に含まれる第2固体電解質は三方晶に帰属される結晶相を含有する。負極層に含まれる第1固体電解質および電解質層に含まれる第2固体電解質がこのような構成を有することにより、電池の充放電レート特性を向上させることができる。これにより、第1態様に係る電池は、向上した出力特性を有する。
 本開示の第2態様において、例えば、第1態様に係る電池では、前記第1固体電解質は、実質的に硫黄を含まなくてもよい。
 第2態様に係る電池は、優れた安全性を有する。
 本開示の第3態様において、例えば、第1または第2態様に係る電池では、前記第2固体電解質は、実質的に硫黄を含まなくてもよい。
 第3態様に係る電池は、優れた安全性を有する。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る電池では、X1は、Cl、BrおよびIからなる群より選ばれる少なくとも一つであってもよい。
 第4態様に係る電池は、より向上した出力特性を有する。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る電池では、X1は、Brを含んでもよい。
 第5態様に係る電池は、より向上した出力特性を有する。
 本開示の第6態様において、例えば第1から第5態様のいずれか1つに係る電池では、前記第1固体電解質は、下記の組成式(1)により表されてもよい。
 Liα1M1β1X1γ1 ・・・式(1)
 ここで、α1、β1、およびγ1は、それぞれ独立して0より大きい値である。
 第6態様に係る電池は、より向上した出力特性を有する。
 本開示の第7態様において、例えば第1から第6態様のいずれか1つに係る電池では、M1は、Yを含んでもよい。
 第7態様に係る電池は、より向上した出力特性を有する。
 本開示の第8態様において、例えば第7態様に係る電池では、前記組成式(1)において、以下の数式
 2.5≦α1≦3.5
 0.5≦β1≦1.5
 γ1=6
が充足されてもよい。
 第8態様に係る電池は、より向上した出力特性を有する。
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係る電池では、前記第1固体電解質は、Li3YBr6、Li3YBr2Cl4、およびLi3YBr2Cl22からなる群より選ばれる少なくとも一つであってもよい。
 第9態様に係る電池は、より向上した出力特性を有する。
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る電池では、X2は、Cl、BrおよびIからなる群より選ばれる少なくとも一つであってもよい。
 第10態様に係る電池は、より向上した出力特性を有する。
 本開示の第11態様において、例えば、第1から第10態様のいずれか1つに係る電池では、X2は、Clを含んでもよい。
 第11態様に係る電池は、より向上した出力特性を有する。
 本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る電池では、前記第2固体電解質は、下記の組成式(2)により表されてもよい。
 Liα2M2β2X2γ2 ・・・式(2)
 ここで、α2、β2、およびγ2は、それぞれ独立して0より大きい値である。
 第12態様に係る電池は、より向上した出力特性を有する。
 本開示の第13態様において、例えば、第1から第12態様のいずれか1つに係る電池では、M2は、Yを含んでもよい。
 第13態様に係る電池は、より向上した出力特性を有する。
 本開示の第14態様において、例えば、第13態様に係る電池では、前記組成式(2)において、以下の数式
 2.5≦α2≦3.5
 0.5≦β2≦1.5
 γ2=6
が充足されてもよい。
 第14態様に係る電池は、より向上した出力特性を有する。
 本開示の第15態様において、例えば、第1から第14態様のいずれか1つに係る電池では、M2は、Y、Ca、およびGdを含んでもよい。
 第15態様に係る電池は、より向上した出力特性を有する。
 本開示の第16態様において、例えば、第15態様に係る電池では、前記第2固体電解質は、以下の組成式(3)により表されてもよい。
 Li6-2a-3dCaa(Y1-bGdbdBr6-cClc ・・・(3)
 ここで、以下の数式
 0<a<3、
 0<b<1、
 0<c<6、および
 0<d<1.5、
が充足される。
 第16態様に係る電池は、より向上した出力特性を有する。
 本開示の第17態様において、例えば、第16態様に係る電池では、前記第2固体電解質は、Li2.8Ca0.10.6Gd0.4Br2Cl4、であってもよい。
 第17態様に係る電池は、より向上した出力特性を有する。
 本開示の第18態様において、例えば、第1から第17態様のいずれか1つに係る電池では、前記負極活物質は、リチウムチタン酸化物であってもよい。
 第18態様に係る電池は、より向上した出力特性を有する。
 本開示の第19態様において、例えば、第18態様に係る電池では、前記負極活物質は、Li4Ti512であってもよい。
 第19態様に係る電池は、より向上した出力特性を有する。
 本開示の第20態様において、例えば、第1から第19態様のいずれか1つに係る電池では、前記正極層は、ニッケルコバルトマンガン酸リチウムを含んでもよい。
 第20態様に係る電池は、充放電容量を向上させることができる。
 (本開示の実施形態)
 以下、本開示の実施形態が、図面を参照しながら説明される。本開示は、以下の実施形態に限定されない。
 図1は、本開示の実施形態による電池の断面図を示す。
 本実施形態による電池1000は、正極層101と、負極層103と、電解質層102とを備える。電解質層102は、正極層101と負極層103との間に位置する。
 負極層103は、負極活物質および第1固体電解質を含む。当該負極活物質は、Li、Ti、およびOを含む。第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつLi、M1、およびX1を含む。ここで、M1は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも一つである。
 電解質層102は、第2固体電解質を含む。第2固体電解質は、三方晶に帰属される結晶相を含有し、かつLi、M2、およびX2を含む。ここで、M2は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、X2は、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである。
 本明細書において用いられる用語「金属元素」とは、
(i)周期表1族から12族中に含まれるすべての元素(ただし、水素を除く)、および(ii)周期表13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)である。すなわち、金属元素は、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 本明細書において用いられる用語「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 本開示において用いられる用語「単斜晶」とは、ICSD(無機結晶構造データベース)No.50182に開示されるLi3ErBr6と類似の結晶構造を有し、かつこの結晶構造特有のX線回折パターンを有する結晶相を意味する。そのため、固体電解質中に含まれる単斜晶の存在は、X線回折パターンに基づいて判断される。このとき、第1固体電解質に含まれる元素の種類により、回折パターンの回折角度および/またはピーク強度比は、Li3ErBr6のものから変化しうる。なお、本開示において、「類似の結晶構造を有する」とは、同一の空間群に分類され、近しい原子配置構造を持つことを意味するのであって、格子定数を限定するものではない。
 本開示において用いられる用語「三方晶」とは、ICSD(無機結晶構造データベース)No.50151に開示されるLi3ErCl6と類似の結晶構造を有し、かつこの結晶構造特有のX線回折パターンを有する結晶相を意味する。そのため、固体電解質中に含まれる三方晶の存在は、X線回折パターンに基づいて判断される。このとき、第1固体電解質に含まれる元素の種類により、回折パターンの回折角度および/またはピーク強度比は、Li3ErCl6のものから変化しうる。
 本実施形態による電池1000においては、上記のように、負極層103および電解質層102が、共に、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つを含むハロゲン化物の固体電解質を含む。さらに、負極層103に含まれる第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつ電解質層102に含まれる第2固体電解質は三方晶に帰属される結晶相を含有する。負極層103に含まれる第1固体電解質および電解質層102に含まれる第2固体電解質がこのような構成を有することにより、電池1000の充放電レート特性を向上させることができる。これにより、電池1000の出力特性が向上する。
 第1固体電解質は、Li、M1、およびX1を含む。これらの元素で構成され、かつ単斜晶の結晶構造を有する固体電解質は、粒界抵抗が比較的低く、比較的やわらかいため充填性に優れており、かつ微粉化されてもイオン伝導度が低下しにくい。したがって、単斜晶に帰属される結晶相を含有する第1固体電解質は、負極活物質と混合されて微粉化されても、材料自体が有するイオン伝導度を維持することができる。負極層103に用いられるLi、Ti、およびOを含む負極活物質は、比較的硬い材料である。第1固体電解質は、そのような硬い負極活物質と混合されて微粉化された場合でも、材料自体が有するイオン伝導度を維持できるので劣化しにくい。したがって、負極層103は、向上した電極性能を有する。
 第2固体電解質は、Li、M2、およびX2を含む。これらの元素で構成され、かつ三方晶の結晶構造を有する固体電解質は、単斜晶の結晶構造を有する固体電解質と比較すると、粒界抵抗が高く、微粉化された場合にイオン伝導度が低下しやすい。しかし、上記の元素で構成され、かつ三方晶の結晶構造を有する固体電解質は、材料自体のイオン伝導度は高い。電解質層102を構成する固体電解質は、通常、電極活物質等の硬い他の材料と混合されて微粉化されることなく用いられる。したがって、材料自体のイオン伝導度が比較的高い三方晶に帰属される結晶相を含有する第2固体電解質は、電解質層102のイオン伝導度を向上させることができる。
 上記のように、本実施形態による電池1000においては、負極層103は、一般に材料自体のイオン伝導度はやや劣るものの、粒界抵抗が比較的低く微粉化されてもイオン伝導度が低下しにくい性質を有する第1固体電解質を含む。一方、電解質層102は、一般に微粉化されるとイオン伝導度が低下しやすいものの、材料自体のイオン伝導度は高い第2固体電解質を含む。負極層103および電解質層102の固体電解質として、このような組み合わせの固体電解質が用いられることにより、負極層103および電解質層102におけるイオン伝導度が向上する。したがって、電池1000の充放電レート特性が向上し、そして出力特性が向上する。
 本実施形態による電池1000の例は、全固体電池である。全固体電池は、一次電池でもよく、あるいは二次電池でもよい。
 以下、本実施形態の電池1000の各構成が、より詳しく説明される。
 (負極層)
 上述のとおり、負極層103は、Li、M1、およびX1を含む第1固体電解質を含む。第1固体電解質は、単斜晶に帰属する結晶相を含有する。例えば、第1固体電解質における主な結晶相が、単斜晶に帰属される結晶相であってもよい。第1固体電解質は、単斜晶の結晶構造を有していてもよい。第1固体電解質は、単斜晶に帰属しない他の結晶相を含有していてもよい。ここで、例えば第1固体電解質において、単斜晶に帰属される結晶相が主な結晶相であることは、第1固体電解質のX線回折パターンで観測されるピークによって判断することができる。
 第1固体電解質は、実質的に、Li、M1、およびX1からなっていてもよい。「第1固体電解質が、実質的に、Li、M1、およびX1からなる」とは、第1固体電解質において、固体電解質を構成する全元素の物質量の合計に対する、Li、M1、およびX1の物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該比(すなわち、モル分率)は95%以上であってもよい。第1固体電解質は、Li、M1、およびX1のみからなっていてもよい。
 イオン伝導度を高めるために、M1は、第1族元素、第2族元素、第3族元素、第4族元素、およびランタノイド元素からなる群より選択される少なくとも一種の元素を含んでもよい。また、イオン伝導度を高めるために、M1は、第5族元素、第12族元素、第13族元素、および第14族元素からなる群より選択される少なくとも一種の元素を含んでもよい。
 第1族元素の例は、Na、K、Rb、またはCsである。第2族元素の例は、Mg、Ca、Sr、またはBaである。第3族元素の例は、ScまたはYである。第4族元素の例は、Ti、Zr、またはHfである。ランタノイド元素の例は、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、またはLuである。第5族元素の例は、NbまたはTaである。第12族元素の例は、Znである。第13族元素の例は、Al、Ga、またはInである。第14族元素の例は、Snである。
 イオン伝導度をさらに高めるために、M1は、Na、K、Mg、Ca、Sr、Ba、Sc、Y、Zr、Hf、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるために、M1は、Mg、Ca、Sr、Y、Sm、Gd、Dy、およびHfからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるため、そしてより向上した出力特性を有するために、M1は、Yを含んでもよい。
 より向上した出力特性を有するために、X1は、Cl、Br、およびIからなる群より選択される少なくとも一種の元素を含んでもよい。
 より向上した出力特性を有するために、X1は、Cl、Br、およびIからなる群より選択される少なくとも二種の元素を含んでもよい。
 より向上した出力特性を有するために、X1は、Cl、Br、およびIを含んでもよい。
 上述のとおり、第1固体電解質は、単斜晶に帰属される結晶相を含有する。Li、M1、およびX1を含む固体電解質が単斜晶に帰属される結晶相を含有しやすくするために、X1は、Brを含んでいてもよい。単斜晶の結晶構造は、例えば、アニオンであるX1が比較的大きい方が形成されやすい。したがって、X1がBrを含むことにより、安定した単斜晶の結晶構造が形成されやすくなり、第1固体電解質が安定的に単斜晶に帰属される結晶相を含有することができる。その結果、より向上した出力特性が得られる。
 第1固体電解質は、下記の組成式(1)により表されてもよい。
 Liα1M1β1X1γ1 ・・・式(1)
 ここで、α1、β1、およびγ1は、それぞれ独立して0より大きい値である。
 例えばM1がYを含む場合、上記組成式(1)において、以下の数式
 2.5≦α1≦3.5
 0.5≦β1≦1.5
 γ1=6
が充足されてもよい。
 第1固体電解質は、Li3YX16であってもよい。
 第1固体電解質は、Li3YBr6またはLi3YBrxCly6-x-yであってもよい。ここで、xおよびyは、0<x<6、0<y<6、および0<x+y≦6を充足する。
 第1固体電解質は、Li3YBr6、Li3YBr2Cl4、およびLi3YBr2Cl22からなる群より選ばれる少なくとも一つであってもよい。第1固体電解質がこれらの材料である場合、単斜晶に帰属される結晶相を安定的に含有することができ、かつ微粉化されても高いイオン伝導度を維持することができる。その結果、より向上した出力特性が得られる。
 第1固体電解質の形状は、限定されない。第1固体電解質の形状は、例えば、針状、球状、楕円球状、または繊維状などであってもよい。例えば、第1固体電解質は、粒子状であってもよい。第1固体電解質は、ペレットまたは板の形状を有するように形成されてもよい。
 イオン伝導度をさらに高め、かつ負極活物質のような他の材料との良好な分散状態を形成するために、一例として、第1固体電解質が粒子状(例えば、球状)である場合、第1固体電解質は、0.1μm以上100μm以下のメジアン径を有していてもよい。メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、レーザ回折式測定装置または画像解析装置により測定され得る。
 メジアン径は0.5μm以上10μm以下であってもよい。これにより、第1固体電解質は高いイオン伝導性を有する。
 第1固体電解質は、例えば、実質的に硫黄を含有しない。第1固体電解質が実質的に硫黄を含有しないとは、第1固体電解質が、不純物として不可避に混入した硫黄を除き、構成元素として硫黄を含まないことを意味する。この場合、第1固体電解質に不純物として混入される硫黄は、例えば1モル%以下である。第1固体電解質は、硫黄を含有しなくてもよい。第1固体電解質が硫黄を含有しない場合、第1固体電解質は大気に曝露されても硫化水素が発生しないので、安全性に優れる。
 負極層103は、図1に示されるように、負極活物質粒子104および第1固体電解質粒子105を含んでもよい。
 負極活物質粒子104のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質粒子104が0.1μm以上のメジアン径を有する場合、負極層103において、負極活物質粒子104および第1固体電解質粒子105の分散状態が良好になる。これにより、電池1000の充放電特性が向上する。負極活物質粒子104が100μm以下のメジアン径を有する場合、負極活物質粒子104内のリチウム拡散速度が向上する。これにより、電池1000が高出力で動作し得る。
 負極活物質粒子104は、第1固体電解質粒子105よりも大きいメジアン径を有していてもよい。これにより、負極層103において、負極活物質粒子104および第1固体電解質粒子105の分散状態が良好になる。
 なお、本実施形態における負極層103においては、第1固体電解質粒子105および負極活物質粒子104は、図1に示されるように、互いに接触していてもよい。
 また、本実施形態における負極層103は、複数の第1固体電解質粒子105および複数の負極活物質粒子104を含んでもよい。
 また、本実施形態における負極層103において、第1固体電解質粒子105の含有量は、負極活物質粒子104の含有量と同じであってもよいし、異なっていてもよい。
 負極層103において、負極活物質粒子104および第1固体電解質粒子105の合計体積に対する負極活物質粒子の体積を表す体積比Vnは、0.3以上0.95以下であってもよい。体積比Vnが0.3以上である場合には、電池1000のエネルギー密度が向上され得る。一方、体積比Vnが0.95以下の場合には、電池1000の出力が向上し得る。
 負極層103の厚みは、10μm以上かつ500μm以下であってもよい。
 負極層103の厚みが10μm以上である場合には、電池1000が十分なエネルギー密度を確保し得る。また、負極層103の厚みが500μm以下である場合には、電池1000の出力が向上し得る。
 負極層103は、第1固体電解質とは異なる組成または異なる結晶構造を有する他の固体電解質をさらに含んでいてもよい。この場合、負極層103に含まれる固体電解質の合計質量に対する第1固体電解質の質量は、1質量%以上であってもよく、50質量%以上であってもよい。第1固体電解質とは異なる組成を有する固体電解質の例は、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質である。硫化物固体電解質、酸化物固体電解質、高分子固体電解質、および錯体水素化物固体電解質の例は、後述の正極層101に用いられ得る固体電解質の例と同じである。
 上述のとおり、負極層103に含まれる負極活物質は、Li、Ti、およびOを含む。電池1000の出力特性を向上させるために、負極活物質は、例えばリチウムチタン酸化物であってもよく、例えばLi4Ti512であってもよい。
 (電解質層)
 電解質層102は、第2固体電解質を含む。第2固体電解質は、Li、M2、およびX2を含む。第2固体電解質は、三方晶に帰属する結晶相を含有する。例えば、第2固体電解質における主な結晶相が、三方晶に帰属される結晶相であってもよい。第2固体電解質は、三方晶の結晶構造を有していてもよい。第2固体電解質は、三方晶に帰属しない他の結晶相を含有していてもよい。ここで、例えば第2固体電解質において、三方晶に帰属される結晶相が主な結晶相であることは、第2固体電解質のX線回折パターンで観測されるピークによって判断することができる。
 第2固体電解質は、実質的に、Li、M2、およびX2からなっていてもよい。「第2固体電解質が、実質的に、Li、M2、およびX2からなる」とは、第2固体電解質において、固体電解質を構成する全元素の物質量の合計に対する、Li、M2、およびX2の物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該比(すなわち、モル分率)は95%以上であってもよい。第2固体電解質は、Li、M2、およびX2のみからなっていてもよい。
 イオン伝導度を高めるために、M2は、第1族元素、第2族元素、第3族元素、第4族元素、およびランタノイド元素からなる群より選択される少なくとも一種の元素を含んでもよい。また、イオン伝導度を高めるために、M2は、第5族元素、第12族元素、第13族元素、および第14族元素からなる群より選択される少なくとも一種の元素を含んでもよい。
 第1族元素の例は、Na、K、Rb、またはCsである。第2族元素の例は、Mg、Ca、Sr、またはBaである。第3族元素の例は、ScまたはYである。第4族元素の例は、Ti、Zr、またはHfである。ランタノイド元素の例は、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、またはLuである。第5族元素の例は、NbまたはTaである。第12族元素の例は、Znである。第13族元素の例は、Al、Ga、またはInである。第14族元素の例は、Snである。
 イオン伝導度をさらに高めるために、M2は、Na、K、Mg、Ca、Sr、Ba、Sc、Y、Zr、Hf、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるために、M2は、Mg、Ca、Sr、Y、Sm、Gd、Dy、およびHfからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるため、そしてより向上した出力特性を得るために、M2は、Yを含んでもよい。
 より向上した出力特性を得るために、X2は、Br、ClおよびIからなる群より選択される少なくとも一種の元素を含んでもよい。
 より向上した出力特性を得るために、X2は、Cl、Br、およびIからなる群より選択される少なくとも二種の元素を含んでもよい。
 より向上した出力特性を得るために、X2は、Cl、Br、およびIを含んでもよい。
 上述のとおり、第2固体電解質は、三方晶に帰属される結晶相を含有する。Li、M2、およびX2を含む固体電解質が三方晶に帰属される結晶相を含有しやすくするために、X2は、Clを含んでいてもよい。三方晶の結晶構造は、例えば、アニオンであるX2が比較的小さい方が形成されやすい。したがって、X2がClを含むことにより、安定した三方晶の結晶構造が形成されやすくなり、第2固体電解質が安定的に三方晶に帰属される結晶相を含有することができる。その結果、より向上した出力特性が得られる。
 第2固体電解質は、下記の組成式(2)により表されてもよい。
 Liα2M2β2X2γ2 ・・・式(2)
 ここで、α2、β2、およびγ2は、それぞれ独立して0より大きい値である。
 例えばM2がYを含む場合、上記組成式(2)において、以下の数式
 2.5≦α2≦3.5
 0.5≦β2≦1.5
 γ2=6
が充足されてもよい。
 より向上した出力特性を得るために、M2は、Y、Ca、およびGdを含んでもよい。
 例えばM2がY、Ca、およびGdを含む場合、第2固体電解質は、以下の組成式(3)により表されてもよい。
 Li6-2a-3dCaa(Y1-bGdbdBr6-cClc ・・・(3)
 ここで、以下の数式
 0<a<3、
 0<b<1、
 0<c<6、および
 0<d<1.5、
が充足されてもよい。
 第2固体電解質は、Li2.8Ca0.10.6Gd0.4Br2Cl4、であってもよい。第2固体電解質がこの材料である場合、三方晶に帰属される結晶相を安定的に含有することができる。その結果、より向上した出力特性を得ることができる。
 第2固体電解質の形状は、限定されない。第2固電解質の形状は、例えば、針状、球状、楕円球状、または繊維状などであってもよい。例えば、第2固体電解質は、粒子状であってもよい。第2固体電解質は、ペレットまたは板の形状を有するように形成されてもよい。
 イオン伝導度をさらに高めるために、一例として、第2固体電解質が粒子状(例えば、球状)である場合、第2固体電解質は、0.1μm以上100μm以下のメジアン径を有していてもよい。メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、レーザ回折式測定装置または画像解析装置により測定され得る。
 メジアン径は0.5μm以上10μm以下であってもよい。これにより、第2固体電解質は高いイオン伝導性を有する。
 第2固体電解質は、例えば、実質的に硫黄を含有しない。第2固体電解質が実質的に硫黄を含有しないとは、第2固体電解質が、不純物として不可避に混入した硫黄を除き、構成元素として硫黄を含まないことを意味する。この場合、第2固体電解質に不純物として混入される硫黄は、例えば1モル%以下である。第2固体電解質は、硫黄を含有しなくてもよい。第2固体電解質が硫黄を含有しない場合、第2固体電解質は大気に曝露されても硫化水素が発生しないので、安全性に優れる。
 なお、電解質層102は、第2固体電解質を主成分として含んでもよい。すなわち、電解質層102は、第2固体電解質を、例えば、電解質層の全体に対する質量割合で50%以上(すなわち、50質量%以上)、含んでもよい。
 また、電解質層102は、第2固体電解質を、例えば、電解質層102の全体に対する質量割合で70%以上(すなわち、70質量%以上)、含んでもよい。
 電解質層102は、さらに、不可避的な不純物を含み得る。電解質層102は、第2固体電解質の合成のために用いられた出発原料を含み得る。電解質層102は、第2固体電解質を合成する際に生成した副生成物または分解生成物を含み得る。
 電解質層102に含まれる第2固体電解質の電解質層102に対する質量比は、実質的に1であり得る。「質量比が実質的に1である」とは、電解質層102に含まれ得る不可避不純物を考慮せずに算出された質量比が1であるという意味である。すなわち、電解質層102は、第2固体電解質のみから構成されていてもよい。
 以上のように、電解質層102は、第2固体電解質のみから構成されていてもよい。
 なお、電解質層102は、第2固体電解質として挙げられた材料のうちの2種以上を含んでもよい。
 電解質層102の厚みは1μm以上かつ300μm以下であってもよい。
 電解質層102が1μm以上の厚みを有する場合、正極層101および負極層103が短絡しにくくなる。電解質層102が300μm以下の厚みを有する場合、電池1000が高出力で動作し得る。
 (正極層)
 正極層101は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。正極層101は、正極活物質を含んでもよい。
 正極活物質の例は、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物である。リチウム含有遷移金属酸化物の例は、Li(NiCoAl)O2、Li(NiCoMn)O2、またはLiCoO2である。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、製造コストを安くでき、平均放電電圧を高めることができる。
 充放電容量を向上させるために、正極活物質は、ニッケルコバルトマンガン酸リチウムであってもよい。
 正極層101は、固体電解質を含んでもよい。以上の構成によれば、正極層101の内部のリチウムイオン伝導性を高め、高出力での動作が可能となる。
 正極層101に含まれる固体電解質の例は、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質である。
 ハロゲン化物固体電解質としては、例えば、上述の第1固体電解質および第2固体電解質として例示した材料を用いてもよい。
 硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212、などが用いられうる。また、これらに、LiX’、Li2O、M’Oq、LipM’Oqなどが、添加されてもよい。ここで、X’は、F、Cl、Br、およびIからなる群より選択される少なくとも一つである。M’は、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される少なくとも一つである。pおよびqは、自然数である。
 酸化物固体電解質の例は、
(i)LiTi2(PO43またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
(iii)Li14ZnGe416、Li4SiO4、LiGeO4、またはその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr212またはその元素置換体のようなガーネット型固体電解質、
(v)Li3PO4またはそのN置換体
(vi)Li3NまたはそのH置換体、または
(vii)LiBO2、Li3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックス
などである。
 高分子固体電解質の例は、高分子化合物およびリチウム塩の化合物である。
 高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができるため、イオン導電率をより高めることができる。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が、単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 錯体水素化物固体電解質の例は、LiBH4-LiIまたはLiBH4-P25である。
 正極活物質粒子のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質粒子が0.1μm以上のメジアン径を有する場合、正極層101において、正極活物質粒子および固体電解質粒子の分散状態が良好になる。これにより、電池1000の充放電特性が向上する。正極活物質粒子が100μm以下のメジアン径を有する場合、正極活物質粒子内のリチウム拡散速度が向上する。これにより、電池1000が高出力で動作し得る。
 正極活物質粒子のメジアン径は、固体電解質粒子のメジアン径よりも、大きくてもよい。これにより、正極活物質粒子と固体電解質粒子との良好な分散状態を形成できる。
 正極層101において、正極活物質粒子および固体電解質粒子の合計体積に対する正極活物質粒子の体積を表す体積比Vpは、0.3以上0.95以下であってもよい。体積比Vpが0.3以上である場合には、電池1000のエネルギー密度が向上され得る。一方、体積比Vpが0.95以下の場合には、電池1000の出力が向上し得る。
 正極層101の厚みは、10μm以上かつ500μm以下であってもよい。
 正極層101の厚みが10μm以上である場合には、電池1000が十分なエネルギー密度を確保し得る。また、正極層101の厚みが500μm以下である場合には、電池1000の出力が向上し得る。
 正極活物質は被覆されていてもよい。被覆材料としては、電子伝導性が低い材料が用いられうる。被覆材料として、酸化物材料、酸化物固体電解質などが用いられうる。
 酸化物材料の例は、SiO2、Al23、TiO2、B23、Nb25、WO3、またはZrO2である。
 酸化物固体電解質の例は、
(i)LiNbO3などのLi-Nb-O化合物、
(ii)LiBO2、Li3BO3などのLi-B-O化合物、
(iii)LiAlO2などのLi-Al-O化合物、
(iv)Li4SiO4などのLi-Si-O化合物、
(v)Li2SO4などのLi-S-O化合物、
(vi)Li4Ti512などのLi-Ti-O化合物、
(vii)Li2ZrO3などのLi-Zr-O化合物、
(viii)Li2MoO3などのLi-Mo-O化合物、
(ix)LiV25などのLi-V-O化合物、または
(x)Li2WO4などのLi-W-O化合物
である。
 酸化物固体電解質は、イオン導電率が高く、高電位安定性が高い。このため、酸化物固体電解質を用いることで、充放電効率をより向上することができる。
 正極層101、電解質層102、および負極層103からなる群より選択される少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために用いられる。
 結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。
 また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体が用いられうる。
 また、2種以上の結着剤が用いられ得る。
 正極層101および負極層103からなる群より選択される少なくとも1つは、電子導電性を高める目的で、導電助剤を含んでもよい。
 導電助剤の例は、
(i)天然黒鉛または人造黒鉛のようなグラファイト類、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
(iii)炭素繊維または金属繊維のような導電性繊維類、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末類、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
 本実施形態による電池の形状の例は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、または積層型である。
 次に、第1固体電解質および第2固体電解質の製造方法について説明する。
 第1固体電解質および第2固体電解質は、例えば、下記の方法により、製造される。
 目的とする組成の配合比となるような原料粉を用意する。原料粉は、例えば、ハロゲン化物であってもよい。例えば、Li3YBr2Cl4を作製する場合には、LiBr、LiCl、およびYCl3が、LiBr:LiCl:YCl3=2.0:1.0:1.0のモル比で用意される。合成過程において生じ得る組成変化を相殺するように、予め調整されたモル比で原料粉は混合されてもよい。
 原料粉の種類は上記に限るものではない。例えば、LiClとYBr3との組み合わせ、および、LiBr0.5Cl0.5のような複合アニオン化合物を用いてもよい。酸素を含有する原料粉(例えば、酸化物、水酸化物、硫酸塩、または硝酸塩)とハロゲン化物(例えば、ハロゲン化アンモニウム)との混合物を用いてもよい。
 原料粉を、乳鉢および乳棒、ボールミル、またはミキサーを用いてよく混合させ、混合粉を得る。次いで、メカノケミカルミリングの方法を用いて原料粉は粉砕される。このようにして、原料粉は反応し、第1固体電解質および第2固体電解質が得られる。もしくは、原料粉がよく混合された後、真空中または不活性雰囲気中で混合粉が焼成され、第1および第2固体電解質を得てもよい。
 焼成は、例えば、100℃以上かつ650℃以下の範囲内で、1時間以上行ってもよい。
 これにより、結晶相を含む前述の固体電解質が得られる。
 なお、固体電解質における結晶相の構成(すなわち、結晶構造)は、固体電解質を構成する元素(すなわち、M1、M2、X1、およびX2)、固体電解質の構成元素の比、原料粉どうしの反応方法、および反応条件の選択により、決定され得る。
 例えば、単斜晶の結晶構造は、アニオンであるハロゲン元素(すなわち、X1およびX2)が比較的大きい方が形成されやすい。したがって、例えばアニオンがBrを含む場合、安定した単斜晶の結晶構造が得られやすくなる。また、例えば、三方晶の結晶構造は、アニオンであるハロゲン元素(すなわち、X1およびX2)が比較的小さい方が形成されやすい。したがって、例えばアニオンがClを含む場合、安定した三方晶の結晶構造が得られやすくなる。また、M1およびM2がそれぞれ複数種の元素で構成される場合、固体電解質における結晶相の構成は、それら複数の元素の比を調整することによっても決定され得る。また、X1およびX2がそれぞれ複数種のハロゲン元素で構成される場合、固体電解質における結晶相の構成は、それら複数のハロゲン元素の比を調整することによっても決定され得る。
 以下、実施例を用いて、本開示の詳細が説明される。
 [実施例1]
 (第1固体電解質の作製)
 -40℃以下の露点を有する乾燥アルゴン雰囲気下で、原料粉LiBr、YBr3、LiCl、YCl3を、モル比でLi:Y:Br:Cl=3:1:2:4となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理した。以上により、実施例1の第1固体電解質であるLi3YBr2Cl4の粉末を得た。
 (第1固体電解質の組成の評価)
 実施例1の第1固体電解質についてICP(Inductive coupled Plasma)発光分光分析法を用いて組成の評価を行った。その結果、Li/Yが仕込み組成からのずれが3%以内であった。すなわち、実施例1において、遊星型ボールミルによる仕込み組成と、得られた第1固体電解質の組成とは、ほとんど同様であったと言える。
 (第1固体電解質の結晶構造および結晶性の評価)
 実施例1による第1固体電解質の粉末は、-40℃以下の露点を有する乾燥アルゴン雰囲気中で、X線回析測定に供され、X線回折パターンが得られた。結晶構造の解析には、X線回折装置(RIGAKU社、MiniFlex600)が用いられた。X線源として、Cu-Kα線が用いられた。X線回折法(X-ray Diffraction:XRD)を用いて評価した結果、主な結晶相として単斜晶に帰属されるX線回折パターンが観測された。
 (イオン伝導度の評価)
 図2は、固体電解質のイオン伝導度を評価するために用いられる加圧成形ダイスの模式図を示す。
 加圧成形ダイス300は、パンチ上部301、枠型302、およびパンチ下部303を具備していた。パンチ上部301およびパンチ下部303は、いずれも、電子伝導性のステンレスから形成されていた。枠型302は、絶縁性のポリカーボネートから形成されていた。
 図2に示される加圧成形ダイス300を用いて、下記の方法により、実施例1による第1固体電解質のイオン伝導度が評価された。
 -30℃以下の露点を有する乾燥アルゴン雰囲気中で、実施例1による第1固体電解質の粉末(すなわち、図2において固体電解質の粉末201)が加圧成形ダイス300の内部に充填された。加圧成形ダイス300の内部で、実施例1による第1固体電解質に、パンチ上部301およびパンチ下部303を用いて、300MPaの圧力が印加された。
 圧力が印加されたまま、パンチ上部301およびパンチ下部303が、周波数応答アナライザが搭載されたポテンショスタット(Princeton Applied Research社、VersaSTAT4)に接続された。パンチ上部301は、作用極および電位測定用端子に接続された。パンチ下部303は、対極および参照極に接続された。第1固体電解質のインピーダンスは、室温において、電気化学インピーダンス測定法により測定された。
 22℃で測定された、実施例1による第1固体電解質のイオン伝導度は、1.5×10-3S/cmであった。
 (負極材料の作製)
 -40℃以下の露点を有する乾燥アルゴン雰囲気下で、実施例1の第1固体電解質であるLi3YBr2Cl4と、負極活物質としてのLi4Ti512と、導電助剤としてのVGCF(Vapor Grown Carbon Fiber)とが、Li4Ti512:Li3YBr2Cl4:VGCF=10:85:5の質量比率で秤量された。これらをメノウ乳鉢で混合することで、実施例1の負極材料を作製した。なお、VGCFは、昭和電工株式会社の登録商標である。
 (第2固体電解質の作製)
 -40℃以下の露点を有する乾燥アルゴン雰囲気下で、原料粉としてLiCl、LiBr、YCl3、GdCl3、およびCaBr2が、1:1.8:0.6:0.4:0.1のLiCl:LiBr:YCl3:GdCl3:CaBr2モル比となるように用意された。これらの原料粉が乳鉢中で粉砕され、混合された。このようにして、混合粉が得られた。混合粉は、遊星型ボールミル(フリッチュ社製、P-7型)を用い、12時間、600rpmでミリング処理された。このようにして、実施例1による第2固体電解質の粉末が得られた。実施例1による第2固体電解質は、Li2.8Ca0.10.6Gd0.4Br2Cl4により表される組成を有していた。
 (第2固体電解質の組成の評価)
 実施例1の第2固体電解質についてICP(Inductive coupled Plasma)発光分光分析法を用いて組成の評価を行った。その結果、Li/Yが仕込み組成からのずれが3%以内であった。すなわち、実施例1において、遊星型ボールミルによる仕込み組成と、得られた第2固体電解質の組成とは、ほとんど同様であったと言える。
 (第2固体電解質の結晶構造の評価)
 実施例1による第2固体電解質の粉末は、-40℃以下の露点を有する乾燥アルゴン雰囲気中で、X線回析測定に供され、X線回折パターンが得られた。結晶構造の解析には、X線回折装置(RIGAKU社、MiniFlex600)が用いられた。X線源として、Cu-Kα線が用いられた。X線回折法(X-ray Diffraction:XRD)を用いて評価した結果、主な結晶相として三方晶に帰属されるX線回折パターンが観測された。
 (第2固体電解質のイオン伝導度の評価)
 実施例1による第2固体電解質のイオン伝導度は、第1固体電解質と同様に測定された。22℃で測定された、実施例1による第2固体電解質のイオン伝導度は、2.9×10-3S/cmであった。
 (電池の作製)
 9.5mmの内径を有する絶縁性の筒の中で、実施例1の負極材料41.7mg、実施例1の第2固体電解質160mgが、この順に積層された。得られた積層体に360MPaの圧力が印加され、実施例1による負極材料から形成された負極層、および、実施例1による第2固体電解質から形成された電解質層が作製された。次に、電解質層の負極層と接する側とは反対側に、金属In(厚さ200μm)、金属Li(厚さ300μm)、金属In(厚さ200μm)が順に積層された。得られた積層体に80MPaの圧力が印加され、正極層が形成された。
 以上により、正極層、電解質層、および負極層からなる積層体が得られた。次に、積層体の上下、すなわち正極層および負極層に、ステンレス鋼から形成された集電体が取り付けられ、当該集電体に集電リードが取り付けられた。最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、当該筒の内部が密閉された。このようにして、実施例1による電池が得られた。
 (充放電試験)
 実施例1による電池を用いて、以下のように充放電試験が行われた。なお、実施例1で作製された電池は充放電試験用のセルであり、負極のハーフセルに相当する。したがって、実施例1は、負極にLiイオンが挿入されてハーフセルの電位が下がる方向を充電といい、電位が上がる方向を放電という。すなわち、実施例1での充電とは実質的には(すなわち、フルセルの場合には)放電であり、実施例1での放電とは実質的には充電である。
 実施例1による電池は、25℃の恒温槽に配置された。
 電流値35μAで定電流充電し、Liに対する電位1.0Vで充電を終了した。
 次に、電流値35μAで定電流放電し、Liに対する電位2.5Vで放電を終了した。
 次に、電流値700μAで定電流充電し、Liに対する電位1.0Vで充電を終了した。
 次に、電流値700μAで定電流放電し、Liに対する電位2.5Vで放電を終了した。
 以上の充放電結果に基づいて、35μA充電時の充電容量に対する700μA充電時の充電容量を算出した。その結果を、表1に示す。
 [参考例1]
 (第1固体電解質の作製)
 実施例1の第2固体電解質の作製法と同様の方法で、固体電解質であるLi2.8Ca0.10.6Gd0.4Br2Cl4の粉末を得た。
 (負極材料の作製)
 実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti512と、第1固体電解質であるLi2.8Ca0.10.6Gd0.4Br2Cl4と、導電助剤としてのVGCFとを、Li4Ti512:Li2.8Ca0.10.6Gd0.4Br2Cl4:VGCF=10:85:5の質量比率で含む負極材料を作製した。
 (第2固体電解質の作製)
 実施例1の第2固体電解質の作製方法と同様の方法で、固体電解質であるLi2.8Ca0.10.6Gd0.4Br2Cl4の粉末を得た。
 (電池の作製)
 実施例1と同様の方法で、正極層、電解質層、および負極層からなる積層体からなる、参考例1による電池を作製した。
 (充放電試験)
 上述の参考例1の電池を用いて、実施例1と同様に充放電試験を行った。充放電結果に基づいて、35μA充電時の充電容量に対する700μA充電時の充電容量を算出した。その結果を、表1に示す。
 [参考例2]
 (第1固体電解質の作製)
 実施例1の第1固体電解質の作製方法と同様の方法で、固体電解質であるLi3YBr2Cl4の粉末を得た。
 (負極材料の作製)
 実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti512と、第1固体電解質のLi3YBr2Cl4と、導電助剤としてのVGCFとを、Li4Ti512:Li3YBr2Cl4:VGCF=10:85:5の質量比率で含む負極材料を作製した。
 (第2固体電解質の作製)
 実施例1の第1固体電解質の作製方法と同様の方法で、固体電解質であるLi3YBr2Cl4の粉末を得た。
 (電池の作製)
 実施例1と同様の方法で、正極層、電解質層、および負極層からなる積層体からなる、参考例2による電池を作製した。
 (充放電試験)
 上述の参考例2の電池を用いて、実施例1と同様に充放電試験を行った。充放電結果に基づいて、35μA充電時の充電容量に対する700μA充電時の充電容量を算出した。その結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 (第1固体電解質の作製)
 実施例1の第1固体電解質の作製方法と同様の方法で、固体電解質であるLi3YBr2Cl4の粉末を得た。
 (負極材料の作製)
 実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti512と、第1固体電解質であるLi3YBr2Cl4と、導電助剤としてのVGCFとを、Li4Ti512:Li3YBr2Cl4:VGCF=65:30:5の質量比率で含む負極材料を作製した。
 (第2固体電解質の作製)
 実施例1の第2固体電解質の作製方法と同様の方法で、固体電解質であるLi2.8Ca0.10.6Gd0.4Br2Cl4の粉末を得た。
 (正極材料の作製)
 -40℃以下の露点を有する乾燥アルゴン雰囲気下で、正極活物質としてのLi(NiCoMn)O2(以下、NCMと表記する)と、実施例2の第1固体電解質であるLi3YBr2Cl4と、導電助剤としてのVGCFとを、NCM:Li3YBr2Cl4:VGCF=83:16:1の質量比率で用意した。これらをメノウ乳鉢で混合することで、実施例2の正極材料を作製した。
 (電池の作製)
 9.5mmの内径を有する絶縁性の筒の中で、実施例2の負極材料15.4mg、実施例2の第2固体電解質80mg、実施例2の正極材料8.5mgが、この順に積層された。得られた積層体に360MPaの圧力が印加され、正極層、電解質層、および負極層からなる積層体が作製された。次に、積層体の上下、すなわち正極層および負極層に、ステンレス鋼から形成された集電体が取り付けられ、当該集電体に集電リードが取り付けられた。最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、当該筒の内部が密閉された。このようにして、実施例2による電池が得られた。
 (充放電試験)
 上述の実施例2の電池を用いて、以下のように充放電試験を行った。
 実施例2による電池を25℃の恒温槽に配置した。
 次に、電流値70μAで定電流充電し、Liに対する電位2.85Vで充電を終了した。
 次に、電流値70μAで定電流放電し、Liに対する電位1.0Vで充電を終了した。
 図3は、実施例2による電池の初期の充放電試験の結果を示すグラフである。
 次に、以下の参考例3から6を用いて、負極層に含まれる第1固体電解質の結晶構造と電池の出力特性との関係がさらに確認される。
 [参考例3]
 (第1固体電解質の作製)
 実施例1の第1固体電解質の作製方法と同様の方法で、固体電解質であるLi3YBr2Cl4の粉末を得た。
 (負極材料の作製)
 実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti512と、第1固体電解質であるLi3YBr2Cl4と、導電助剤としてのVGCFとを、Li4Ti512:Li3YBr2Cl4:VGCF=10:85:5の質量比率で含む負極材料を作製した。
 (電池の作製)
 9.5mmの内径を有する絶縁性の筒の中で、参考例3の負極材料20.8mg、MSE社製の固体電解質Li6PS5Cl80mgが、この順に積層された。得られた積層体に360MPaの圧力が印加され、参考例3による負極材料から形成された負極層、および、Li6PS5Clから形成された電解質層が作製された。次に、電解質層の負極層と接する側とは反対側に、金属In(厚さ200μm)、金属Li(厚さ300μm)、金属In(厚さ200μm)が順に積層された。得られた積層体に80MPaの圧力が印加され、正極層が形成された。
 以上により、正極層、電解質層、および負極層からなる積層体が得られた。次に、積層体の上下、すなわち正極層および負極層に、ステンレス鋼から形成された集電体が取り付けられ、当該集電体に集電リードが取り付けられた。最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、当該筒の内部が密閉された。このようにして、参考例3による電池が得られた。
 (充放電試験)
 参考例3による電池を用いて、以下のように充放電試験が行われた。
 参考例3による電池は、25℃の恒温槽に配置された。
 電流値17.5μAで定電流充電し、Liに対する電位1.0Vで充電を終了した。
 次に、電流値17.5μAで定電流放電し、Liに対する電位2.5Vで放電を終了した。
 次に、電流値350μAで定電流充電し、Liに対する電位1.0Vで充電を終了した。
 次に、電流値350μAで定電流放電し、Liに対する電位2.5Vで放電を終了した。
 以上の充放電結果に基づいて、17.5μA充電時の充電容量に対する350μA充電時の充電容量を算出した。その結果を、表2に示す。
 (参考例4)
 (第1固体電解質の作製)
 -40℃以下の露点を有する乾燥アルゴン雰囲気下で、原料粉LiBrとYBr3とを、モル比でLiBr:YBr3=3:1となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、参考例4の第1固体電解質であるLi3YBr6の粉末を得た。
 (第1固体電解質の結晶構造の評価)
 参考例4による第1固体電解質の粉末は、実施例1と同様の方法で、X線回析測定に供されてX線回折パターンが得られ、さらに結晶構造が解析された。X線回折法を用いて評価を行った結果、主な結晶相として単斜晶に帰属されるX線回折パターンが観測された。
 (第1固体電解質のイオン伝導度の評価)
 参考例4による第1固体電解質のイオン伝導度は、実施例1による第1固体電解質と同様に測定された。22℃における第1固体電解質のイオン伝導度は、0.6×10-3S/cmであった。
 (負極材料の作製)
 実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti512と、第1固体電解質であるLi3YBr6と、導電助剤としてのVGCFとを、Li4Ti512:Li3YBr6:VGCF=10:85:5の質量比率で含む負極材料を作製した。
 (電池の作製)
 参考例3と同様の方法で、正極層、固体電解質層、負極層からなる積層体からなる、参考例4による電池を作製した。
 (充放電試験)
 上述の参考例4の電池を用いて、参考例3と同様に充放電試験を行った。充放電結果に基づいて、17.5μA充電時の充電容量に対する350μA充電時の充電容量を算出した。その結果を、表2に示す。
 (参考例5)
 (第1固体電解質の作製)
 -40℃以下の露点を有する乾燥アルゴン雰囲気下で、原料粉LiClとYCl3とを、モル比でLiCl:YCl3=3:1となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、参考例5の第1固体電解質であるLi3YCl6の粉末を得た。
 (第1固体電解質の結晶構造の評価)
 参考例5による第1固体電解質の粉末は、実施例1と同様の方法で、X線回析測定に供されてX線回折パターンが得られ、さらに結晶構造が解析された。X線回折法を用いて評価を行った結果、主な結晶相として三方晶に帰属されるX線回折パターンが観測された。
 (第1固体電解質のイオン伝導度の評価)
 参考例5による第1固体電解質のイオン伝導度は、実施例1による第1固体電解質と同様に測定された。22℃における第1固体電解質のイオン伝導度は、0.3×10-3S/cmであった。
 (負極材料の作製)
 実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti512と、第1固体電解質であるLi3YCl6と、導電助剤としてのVGCFとを、Li4Ti512:Li3YCl6:VGCF=10:85:5の質量比率で含む負極材料を作製した。
 (電池の作製)
 参考例3と同様の方法で、正極層、固体電解質層、負極層からなる積層体からなる、参考例5による電池を作製した。
 (充放電試験)
 上述の参考例5の電池を用いて、参考例3と同様に充放電試験を行った。充放電結果に基づいて、17.5μA充電時の充電容量に対する350μA充電時の充電容量を算出した。その結果を、表2に示す。
 (参考例6)
 (第1固体電解質の作製)
 実施例1の第2固体電解質の作製方法と同様の方法で、固体電解質であるLi2.8Ca0.10.6Gd0.4Br2Cl4の粉末を得た。
 (負極材料の作製)
 実施例1の負極材料の作製方法と同様の方法で、負極活物質としてのLi4Ti512と、第1固体電解質であるLi2.8Ca0.10.6Gd0.4Br2Cl4と、導電助剤としてのVGCFとを、Li4Ti512:Li2.8Ca0.10.6Gd0.4Br2Cl4:VGCF=10:85:5の質量比率で含む負極材料を作製した。
 (電池の作製)
 参考例5と同様の方法で、正極層、固体電解質層、負極層からなる積層体からなる、参考例6による電池を作製した。
 (充放電試験)
 上述の参考例6の電池を用いて、参考例3と同様に充放電試験を行った。充放電結果に基づいて、17.5μA充電時の充電容量に対する350μA充電時の充電容量を算出した。その結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (考察)
 実施例1による電池は、負極活物質としてLi、Ti、およびOが含まれる負極層を備えている電池である。このような構成に加え、実施例1による電池では、負極層に含まれる第1固体電解質がLi、M1、およびX1を含み、かつ単斜晶に帰属される結晶相を含有し、電解質層に含まれる第2固体電解質がLi、M2、およびX2を含み、かつ三方晶に帰属される結晶相を含有する構成を有する。なお、M1、X1、M2、およびX2は上述のとおりである。一方、参考例1による電池は、第1固体電解質に三方晶に帰属される結晶相を含有する固体電解質が用いられた構成を有する点において、実施例1による電池と異なる。また、参考例2による電池は、第2固体電解質に単斜晶に帰属される結晶相を含有する固体電解質が用いられた構成を有する。実施例1による電池は、参考例1および参考例2による電池と比較すると、35μA充電時の充電容量に対する700μA充電時の充電容量が高かった。この結果から、本開示の電池の構成を満たす電池は、本開示の電池の構成を満たさない参考例1および2の電池、すなわち負極層および電解質層にそれぞれ適した固体電解質が用いられていない電池と比較すると、充放電レート特性が向上することがわかる。この結果から、本開示の電池によれば、出力特性を向上させることができることがわかる。
 表2に示された参考例3から6の結果の比較から、第1固体電解質としては、材料自体のイオン伝導度が高い固体電解質を選択するよりも、負極活物質と混合される構成と相性が良い単斜晶系の材料を用いる方が、高負荷時の充電容量が高いことがわかる。
 表1に示された実施例1および参考例1の結果の比較から、第1固体電解質としては、材料自体のイオン伝導度が高い固体電解質を選択するよりも、負極活物質と混合される構成と相性が良い単斜晶系の材料を用いる方が、高負荷時の充電容量が高いことがわかる。
 また、第2固体電解質としては、材料自体のイオン伝導度が高い固体電解質を用いる方が、高負荷時の充電容量が高いことがわかる。
 実施例2による電池では、負極層、電解質層、および正極層に含まれる固体電解質として、Li、M、およびXを含み、かつ硫黄を含まない固体電解質が用いられている。なお、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである。図3に示された結果から、このような材料のみが固体電解質として使用された電池は、安定動作が可能であることが確認されている。また、実施例2による電池には、硫黄を含む固体電解質が用いられていない。したがって、実施例2による電池は、水分と反応し、有害な硫化水素ガスを発生するというリスクがない。
 本開示の電池は、出力特性に優れており、例えば全固体リチウム二次電池などとして利用されうる。
1000 電池
101 正極層
102 電解質層
103 負極層
104 負極活物質粒子
105 固体電解質粒子
300 加圧成形ダイス
301 パンチ上部
302 枠型
303 パンチ下部

Claims (20)

  1.  正極層と、
     負極層と、
     前記正極層と前記負極層との間に位置する電解質層と、
    を備え、
     前記負極層は、負極活物質および第1固体電解質を含み、
     前記電解質層は、第2固体電解質を含み、
     前記負極活物質は、Li、Ti、およびOを含み、
     前記第1固体電解質は、単斜晶に帰属される結晶相を含有し、かつLi、M1、およびX1を含み、
     M1は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
     X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも一つであり、
     前記第2固体電解質は、三方晶に帰属される結晶相を含有し、かつLi、M2、およびX2を含み、
     M2は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一つであり、
     X2は、F、Cl、BrおよびIからなる群より選ばれる少なくとも一つである、
    電池。
  2.  前記第1固体電解質は、実質的に硫黄を含まない、
    請求項1に記載の電池。
  3.  前記第2固体電解質は、実質的に硫黄を含まない、
    請求項1または2に記載の電池。
  4.  X1は、Cl、BrおよびIからなる群より選ばれる少なくとも一つである、
    請求項1から3のいずれか一項に記載の電池。
  5.  X1は、Brを含む、
    請求項1から4のいずれか一項に記載の電池。
  6.  前記第1固体電解質は、下記の組成式(1)により表される、
    請求項1から5のいずれか一項に記載の電池。
     Liα1M1β1X1γ1 ・・・式(1)
     ここで、α1、β1、およびγ1は、それぞれ独立して0より大きい値である。
  7.  M1は、Yを含む、
    請求項1から6のいずれか一項に記載の電池。
  8.  前記組成式(1)において、
     2.5≦α1≦3.5
     0.5≦β1≦1.5
     γ1=6
    が充足される、
    請求項7に記載の電池。
  9.  前記第1固体電解質は、Li3YBr6、Li3YBr2Cl4、およびLi3YBr2Cl22からなる群より選ばれる少なくとも一つである、
     請求項1から8のいずれか一項に記載の電池。
  10.  X2は、Cl、BrおよびIからなる群より選ばれる少なくとも一つである、
    請求項1から9のいずれか一項に記載の電池。
  11.  X2は、Clを含む、
    請求項1から10のいずれか一項に記載の電池。
  12.  前記第2固体電解質は、下記の組成式(2)により表される、
    請求項1から11のいずれか一項に記載の電池。
     Liα2M2β2X2γ2 ・・・式(2)
     ここで、α2、β2、およびγ2は、それぞれ独立して0より大きい値である。
  13.  M2は、Yを含む、
    請求項1から12のいずれか一項に記載の電池。
  14.  前記組成式(2)において、以下の数式
     2.5≦α2≦3.5
     0.5≦β2≦1.5
     γ2=6
    が充足される、
    請求項13に記載の電池。
  15.  M2は、Y、Ca、およびGdを含む、
    請求項1から14のいずれか一項に記載の電池。
  16.  前記第2固体電解質は、以下の組成式(3)により表される、
    請求項15に記載の電池。
     Li6-2a-3dCaa(Y1-bGdbdBr6-cClc ・・・(3)
     ここで、以下の数式
     0<a<3、
     0<b<1、
     0<c<6、および
     0<d<1.5、
    が充足される。
  17.  前記第2固体電解質は、Li2.8Ca0.10.6Gd0.4Br2Cl4、である、
    請求項16に記載の電池。
  18.  前記負極活物質は、リチウムチタン酸化物である、
    請求項1から17のいずれか一項に記載の電池。
  19.  前記負極活物質は、Li4Ti512である、
    請求項18に記載の電池。
  20.  前記正極層は、ニッケルコバルトマンガン酸リチウムを含む、
    請求項1から19のいずれか一項に記載の電池。
PCT/JP2021/044435 2021-04-13 2021-12-03 電池 WO2022219843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180096410.9A CN117063318A (zh) 2021-04-13 2021-12-03 电池
JP2023514326A JPWO2022219843A1 (ja) 2021-04-13 2021-12-03
EP21937036.8A EP4325615A1 (en) 2021-04-13 2021-12-03 Battery
US18/466,053 US20230420736A1 (en) 2021-04-13 2023-09-13 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021068043 2021-04-13
JP2021-068043 2021-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/466,053 Continuation US20230420736A1 (en) 2021-04-13 2023-09-13 Battery

Publications (1)

Publication Number Publication Date
WO2022219843A1 true WO2022219843A1 (ja) 2022-10-20

Family

ID=83639530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044435 WO2022219843A1 (ja) 2021-04-13 2021-12-03 電池

Country Status (5)

Country Link
US (1) US20230420736A1 (ja)
EP (1) EP4325615A1 (ja)
JP (1) JPWO2022219843A1 (ja)
CN (1) CN117063318A (ja)
WO (1) WO2022219843A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065021A (ja) * 2013-09-25 2015-04-09 株式会社村田製作所 全固体電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019146295A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 負極材料およびそれを用いた電池
WO2021039834A1 (ja) * 2019-08-30 2021-03-04 昭和電工株式会社 リチウムイオン伝導性酸化物
WO2021199677A1 (ja) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 固体電解質材料、それを用いた電池、および固体電解質材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065021A (ja) * 2013-09-25 2015-04-09 株式会社村田製作所 全固体電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019146295A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 負極材料およびそれを用いた電池
WO2021039834A1 (ja) * 2019-08-30 2021-03-04 昭和電工株式会社 リチウムイオン伝導性酸化物
WO2021199677A1 (ja) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 固体電解質材料、それを用いた電池、および固体電解質材料の製造方法

Also Published As

Publication number Publication date
JPWO2022219843A1 (ja) 2022-10-20
EP4325615A1 (en) 2024-02-21
CN117063318A (zh) 2023-11-14
US20230420736A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP7182196B2 (ja) 電池
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7417924B2 (ja) 固体電解質材料、および、電池
JP7217433B2 (ja) 正極材料およびそれを用いた電池
WO2019135346A1 (ja) 正極材料、および、電池
WO2019135318A1 (ja) 固体電解質材料、および、電池
WO2019135316A1 (ja) 固体電解質材料、および、電池
WO2019146293A1 (ja) 電池
CN111201643A (zh) 电极材料和电池
JP7165898B2 (ja) 固体電解質材料、および、電池
JP7445874B2 (ja) 固体電解質材料、およびそれを用いた電池
JP2020109047A (ja) 固体電解質材料、およびそれを用いた電池
US11955599B2 (en) Negative electrode material and battery
WO2023021836A1 (ja) 電極および電池
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
WO2023032473A1 (ja) 正極材料および電池
WO2022259611A1 (ja) 電極材料および電池
WO2022219843A1 (ja) 電池
WO2022254796A1 (ja) 電極材料および電池
WO2022264555A1 (ja) 電極材料および電池
WO2022264554A1 (ja) 複合活物質、電極材料、電池、および複合活物質の製造方法
WO2022264659A1 (ja) 固体電解質材料および電池
WO2022219842A1 (ja) 負極材料およびそれを用いた電池
WO2022215337A1 (ja) 固体電解質材料およびそれを用いた電池
WO2023106212A1 (ja) 電極材料、電極、および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180096410.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021937036

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937036

Country of ref document: EP

Effective date: 20231113