[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022218020A1 - 一种报文传输方法及装置 - Google Patents

一种报文传输方法及装置 Download PDF

Info

Publication number
WO2022218020A1
WO2022218020A1 PCT/CN2022/076065 CN2022076065W WO2022218020A1 WO 2022218020 A1 WO2022218020 A1 WO 2022218020A1 CN 2022076065 W CN2022076065 W CN 2022076065W WO 2022218020 A1 WO2022218020 A1 WO 2022218020A1
Authority
WO
WIPO (PCT)
Prior art keywords
session
redundant
message
downlink
redundancy
Prior art date
Application number
PCT/CN2022/076065
Other languages
English (en)
French (fr)
Inventor
谢春生
韩文勇
丁辉
周凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022218020A1 publication Critical patent/WO2022218020A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a message transmission method and device.
  • 3GPP proposes the concept of redundant transmission; for example, the redundant transmission scheme of N3/N9 interface is defined in Section 5.33.2.2 of 23501.
  • the solution can be used in NG-RAN (NG-radio access network, NG-radio access network) and UPF (user plane function, user plane function) (including I-UPF ( Intermediate UPF) and A-UPF (Anchor UPF)) establish dual N3, N9 tunnels to improve the reliability of data transmission.
  • NG-RAN NG-radio access network, NG-radio access network
  • UPF user plane function, user plane function
  • I-UPF Intermediate UPF
  • A-UPF chor UPF
  • NG-RAN replicates the uplink message, and by extending GTP-U (GPRS tunneling protocol-user, message-based encapsulation user protocol), the same message is allocated to the uplink redundant message obtained by copying the uplink message Sequence number, the upstream redundant packets are sent to the UPF through the two N3/N9 tunnels, and then the UPF is responsible for deduplicating the upstream redundant packets before forwarding them.
  • GTP-U GPRS tunneling protocol-user, message-based encapsulation user protocol
  • UPF will copy the downlink packet, and then by extending GTP-U, assign the same packet sequence number to the downlink redundant packet obtained after the downlink packet is copied, and then pass two
  • the N3/N9 tunnel is sent to the NG-RAN, and the NG-RAN is responsible for deduplicating downlink redundant packets and forwarding them to the terminal-side equipment.
  • the transmission reliability of the N3/N9 tunnel is improved, it only solves the reliability problem of the N3/N9 interface.
  • the N9 tunnel is only a part of the corresponding packet transmission path, and the reliability of the wireless terminal device and the reliability of the air interface between the wireless terminal device and the base station are still problems to be solved.
  • the present application provides a message transmission method and device to improve the reliability of 3GPP service data transmission.
  • an embodiment of the present application provides a message transmission method, the method includes:
  • the session management network element SMF receives the UE session creation request initiated by the user equipment UE, and determines, according to the redundant transmission parameter in the subscription information of the UE, that the created UE session is subscribed to redundant transmission; wherein the UE includes the first UE and a second UE; the UE session includes a first UE session and a second UE session; the subscribed redundant transmission is used to indicate that the first UE session and the second UE session are mutually redundant transmissions;
  • the same UPF is selected for the first UE session and the second UE session according to the redundant transmission parameter, and configuration parameters are delivered to the UPF; wherein the configuration parameter is used to instruct the UPF to transmit the same UPF according to the redundant transmission parameter.
  • a response message for completing the UE session creation is sent to the terminal-side device; wherein, the response message includes the redundant transmission indication and the redundant mode.
  • the method provided by the embodiment of the present application realizes redundant transmission of data packets through dual UE and dual PDU paths, solves the problems of device single point reliability and air interface reliability, and improves the reliability of 3GPP service data transmission.
  • the redundant transmission parameters corresponding to the first UE include the redundant transmission indication, the UE identifier, the paired UE identifier, the redundancy mode, the slice identifier, and the data network name information; wherein, The UE identifier is used to indicate the unique identifier of the first UE; the paired UE identifier is used to indicate the unique identifier of the second UE; the slice identifier is used to indicate the first UE The network slice accessed when redundant transmission is performed; the data network name is used to indicate the data network accessed by the first UE when redundant transmission is performed.
  • the slice identifier and data network name included in the redundant transmission parameter corresponding to the first UE are the same as the slice identifier and data network name included in the redundant transmission parameter corresponding to the second UE .
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second manner, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message.
  • the method provided by the embodiment of the present application adds a first extension field to the SDAP protocol, so that the redundancy information of the redundant packet is carried by the first extension field, so that the device receiving the redundant packet can
  • the first extension field identifies redundant packets; further, it can support redundant transmission processing of packets of SDAP protocol type.
  • a second extension field is added to the Ethernet packet, and the redundant information of the redundant packet is carried by the second extension field, thereby supporting redundant transmission of the Ethernet packet.
  • the redundant information includes a redundant transmission indication and a redundant identifier; wherein, different messages correspond to different redundant identifiers, and the message carrying the same redundant identifier is the redundant messages.
  • the delivering configuration parameters to the UPF further includes:
  • the first redundant processing session deduplicates uplink redundant packets of the first UE session and the second UE session, and Redundant replication is performed on the downlink packets arriving at the first UE session or the second UE session, and the redundant packets obtained by redundant replication are delivered to the first UE session and the second UE session through the first UE session and the second UE session.
  • a UE and a second UE or
  • the first redundant processing session deduplicates the uplink redundant packets of the first UE session and the second UE session, and de-duplicates the downlink redundant packets reaching the first UE Redundant replication is performed on messages of the session or the second UE session, and redundant messages obtained by redundant replication are delivered to the first UE and the second UE through the first UE session and the second UE session; or
  • the first UE session and the second UE session belong to the same 5G VN Group session, it indicates that the 5G VN Group session is configured as a first redundant processing session, and the first redundant processing session has no effect on all
  • the uplink redundant messages of the first UE session and the second UE session are deduplicated, the downlink messages arriving at the first UE session or the second UE session are redundantly copied, and the redundant copies obtained by redundant replication are performed.
  • the remaining packets are delivered to the first UE and the second UE through the first UE session and the second UE session.
  • the UPF-based implementation process of this embodiment of the present application further provides another message transmission method, including:
  • the user plane network element UPF receives the configuration parameters delivered by the session management network element SMF;
  • the uplink redundant packets of the first UE session and the second UE session are deduplicated according to the redundant transmission indication and the redundancy mode in the configuration parameters; wherein the first UE session and the second UE session are mutually redundant transmission; the redundant transmission indication is used to indicate whether redundant transmission; the redundant mode is a mode of indicating that the message is a redundant message;
  • Redundant replication is performed on downlink messages arriving at the first UE session or the second UE session, and the downlink redundant messages obtained by redundant replication are delivered to the downlink through the first UE session and the second UE session.
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second manner, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message.
  • the redundant information includes a redundant transmission indication and a redundant identifier; wherein, different messages correspond to different redundant identifiers, and the message carrying the same redundant identifier is the redundant messages.
  • the deduplication of uplink redundant packets of the first UE session and the second UE session includes:
  • Redundant replication is performed on downlink messages arriving at the first UE session or the second UE session, and the downlink redundant messages obtained by redundant replication are delivered to the downlink through the first UE session and the second UE session.
  • the corresponding first UE and second UE include:
  • the redundancy information instructs the NG-RAN to encapsulate the redundancy information in the downlink GTP-U message into the downlink SDAP message, and pass the redundant information in the downlink GTP-U message to the downlink SDAP message.
  • the first UE session and the second UE session are delivered to the corresponding first UE and the second UE; the redundancy information is carried in the first extension field of the message header of the downlink SDAP message.
  • the deduplication of uplink redundant packets of the first UE session and the second UE session includes:
  • the corresponding first UE and second UE include:
  • the downlink Ethernet packet is delivered to the corresponding first UE and the second UE through the first UE session and the second UE session.
  • the implementation process based on the terminal-side device in the embodiments of the present application further provides another message transmission method, including:
  • the terminal-side device initiates a creation request for creating a UE session
  • the response message includes a redundant transmission indication and a redundant mode;
  • the redundant transmission indication is used to indicate whether redundant transmission;
  • the redundant mode is the way to indicate that the message is a redundant message;
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second manner, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message.
  • the redundant information includes a redundant transmission indication and a redundant identifier; wherein, different messages correspond to different redundant identifiers, and the message carrying the same redundant identifier is the redundant messages.
  • deduplicating the downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundancy mode includes: :
  • Receive downlink SDAP messages of the first UE session and the second UE session obtain redundancy information in the downlink SDAP messages, and deduplicate downlink SDAP messages with the same redundancy identifier;
  • Redundantly copy the uplink packets of the first UE session or the second UE session, and send the uplink redundant packets obtained by redundant replication to the network side device through the first UE session and the second UE session include:
  • the redundant information is carried in the first extension field of the message header of the uplink SDAP message, and the encapsulated uplink SDAP message is passed through The first UE session and the second UE session are sent to the network side device.
  • deduplicating the downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundancy mode includes: :
  • Receive downlink Ethernet messages of the first UE session and the second UE session obtain redundancy information from the second extension field of the downlink Ethernet message; deduplicate downlink Ethernet messages with the same redundancy identifier;
  • Redundantly copy the uplink packets of the first UE session or the second UE session, and send the uplink redundant packets obtained by redundant replication to the network side device through the first UE session and the second UE session include:
  • the encapsulated uplink Ethernet packet is sent to the network side device through the first UE session and the second UE session.
  • an embodiment of the present application provides a session management network element, including:
  • a transceiver unit configured to receive a UE session creation request initiated by the user equipment UE;
  • the processing unit is configured to determine, according to the redundant transmission parameter in the subscription information of the UE, that the created UE session subscribes to redundant transmission; wherein the UE includes a first UE and a second UE; the UE session includes the first UE A UE session and a second UE session; the subscribed redundant transmission is used to indicate that the first UE session and the second UE session are mutually redundant transmissions;
  • the processing unit is further configured to select the same UPF for the first UE session and the second UE session according to the redundant transmission parameter, and deliver configuration parameters to the UPF; wherein the configuration parameters are used to indicate UPF deduplicates uplink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and redundancy mode; deduplicates the downlink packets reaching the first UE session or the second UE session redundant copy, and deliver the redundant message obtained by the redundant copy to the first UE and the second UE through the first UE session and the second UE session; the redundant transmission indication is used to indicate whether redundant transmission; the redundant mode indicates that the message is a redundant message;
  • the transceiver unit is further configured to send a response message for completing the UE session creation to the terminal-side device; wherein, the response message includes the redundant transmission indication and the redundant manner.
  • the redundant transmission parameters corresponding to the first UE include the redundant transmission indication, the UE identifier, the paired UE identifier, the redundancy mode, the slice identifier, and the data network name information; wherein, The UE identifier is used to indicate the unique identifier of the first UE; the paired UE identifier is used to indicate the unique identifier of the second UE; the slice identifier is used to indicate the first UE The network slice accessed when redundant transmission is performed; the data network name is used to indicate the data network accessed by the first UE when redundant transmission is performed.
  • the slice identifier and data network name included in the redundant transmission parameter corresponding to the first UE are the same as the slice identifier and data network name included in the redundant transmission parameter corresponding to the second UE .
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second manner, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message.
  • the redundant information includes a redundant transmission indication and a redundant identifier; wherein, different messages correspond to different redundant identifiers, and the message carrying the same redundant identifier is the redundant messages.
  • the processing unit is further configured to indicate that the first UE session or the second UE session is configured as a first redundant processing session, and the first redundant processing session is used for the first UE session and the second UE session.
  • the uplink redundant packets of the second UE session are deduplicated, the downlink packets reaching the first UE session or the second UE session are redundantly copied, and the redundant packets obtained by redundant replication are passed through the The first UE session and the second UE session are delivered to the first UE and the second UE; or
  • the first redundant processing session deduplicates the uplink redundant packets of the first UE session and the second UE session, and de-duplicates the downlink redundant packets reaching the first UE Redundant replication is performed on messages of the session or the second UE session, and redundant messages obtained by redundant replication are delivered to the first UE and the second UE through the first UE session and the second UE session; or
  • the first UE session and the second UE session belong to the same 5G VN Group session, it indicates that the 5G VN Group session is configured as a first redundant processing session, and the first redundant processing session has no effect on all
  • the uplink redundant messages of the first UE session and the second UE session are deduplicated, the downlink messages arriving at the first UE session or the second UE session are redundantly copied, and the redundant copies obtained by redundant replication are performed.
  • the remaining packets are delivered to the first UE and the second UE through the first UE session and the second UE session.
  • an embodiment of the present application further provides a user plane network element, including:
  • transceiver unit configured to receive configuration parameters delivered by the session management network element SMF;
  • a processing unit configured to deduplicate uplink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundancy mode in the configuration parameters; wherein the first UE session and the second UE session Two UE sessions are redundant transmissions for each other; the redundant transmission indication is used to indicate whether redundant transmission is performed; the redundant mode is a mode for indicating that the message is a redundant message;
  • Redundant replication is performed on downlink messages arriving at the first UE session or the second UE session, and the downlink redundant messages obtained by redundant replication are delivered to the downlink through the first UE session and the second UE session.
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second mode, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message; the redundant information includes redundant transmission indication and redundant identification; Different packets correspond to different redundancy identifiers, and the packets carrying the same redundancy identifier are the redundant packets.
  • the processing unit when the redundancy mode is the first mode, the processing unit is specifically configured to:
  • Redundant replication is performed on downlink messages arriving at the first UE session or the second UE session, and the downlink redundant messages obtained by redundant replication are delivered to the downlink through the first UE session and the second UE session.
  • the corresponding first UE and second UE include:
  • the redundancy information instructs the NG-RAN to encapsulate the redundancy information in the downlink GTP-U message into the downlink SDAP message, and pass the redundant information in the downlink GTP-U message to the downlink SDAP message.
  • the first UE session and the second UE session are delivered to the corresponding first UE and the second UE; the redundancy information is carried in the first extension field of the message header of the downlink SDAP message.
  • the processing unit when the redundancy mode is the second mode, the processing unit is specifically configured to:
  • the corresponding first UE and second UE include:
  • the downlink Ethernet packet is delivered to the corresponding first UE and the second UE through the first UE session and the second UE session.
  • an embodiment of the present application further provides a terminal-side device, including:
  • a transceiver unit configured to initiate a creation request for creating a UE session, and receive a response message fed back by the network side device based on the creation request; wherein, the response message includes a redundant transmission indication and a redundant mode; the redundant transmission Indication is used to indicate whether redundant transmission; the redundant mode is the mode of indicating that the message is a redundant message;
  • a processing unit configured to deduplicate downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundancy mode; wherein the first UE session and the second UE session interact with each other.
  • For redundant transmission redundantly copy the uplink messages of the first UE session or the second UE session, and pass the uplink redundant messages obtained by redundant replication through the first UE session and the second UE session sent to the network side device.
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second manner, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message.
  • the redundant information includes a redundant transmission indication and a redundant identifier; wherein, different messages correspond to different redundant identifiers, and the message carrying the same redundant identifier is the redundant messages.
  • the processing unit when the redundancy mode is the first mode, the processing unit is specifically configured to:
  • De-duplicating downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundant manner includes:
  • Receive downlink SDAP messages of the first UE session and the second UE session obtain redundancy information in the downlink SDAP messages, and deduplicate downlink SDAP messages with the same redundancy identifier;
  • Redundantly copy the uplink packets of the first UE session or the second UE session, and send the uplink redundant packets obtained by redundant replication to the network side device through the first UE session and the second UE session include:
  • the redundant information is carried in the first extension field of the message header of the uplink SDAP message, and the encapsulated uplink SDAP message is passed through The first UE session and the second UE session are sent to the network side device.
  • the processing unit when the redundancy mode is the second mode, the processing unit is specifically configured to:
  • De-duplicating downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundant manner includes:
  • Receive downlink Ethernet messages of the first UE session and the second UE session obtain redundancy information from the second extension field of the downlink Ethernet message; deduplicate downlink Ethernet messages with the same redundancy identifier;
  • Redundantly copy the uplink packets of the first UE session or the second UE session, and send the uplink redundant packets obtained by redundant replication to the network side device through the first UE session and the second UE session include:
  • the encapsulated uplink Ethernet packet is sent to the network side device through the first UE session and the second UE session.
  • an embodiment of the present application provides a communication device, including: at least one processor; and a memory and a communication interface communicatively connected to the at least one processor;
  • the communication interface is used to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor to other communication devices other than the communication device
  • the memory stores instructions executable by the at least one processor, and the at least one processor causes the communication device to perform any of the above-mentioned aspects or any of the aspects by executing the instructions stored in the memory. a way.
  • an embodiment of the present application provides a communication system, where the communication system includes a terminal-side device, a session management function network element, and a user plane network element;
  • the session management function network element is configured to execute any one of the above first aspect or the first aspect method; the user plane network element is configured to execute any one of the above second aspect or the second aspect method , the terminal device is configured to execute the third aspect or any method in the third aspect.
  • the present application provides a computer-readable storage medium, where computer programs or instructions are stored in the computer-readable storage medium, and when the computer programs or instructions are run on a communication device, the communication device is made to execute each of the above any possible design method of the aspect.
  • the present application provides a computer program product, the computer program product includes a computer program or instructions, when a communication device reads and executes the computer program product, the communication device is made to perform any one of the above aspects. method in the design.
  • the present application provides a chip, the chip includes a processor, and the processor is coupled to a memory for reading and executing a software program stored in the memory, so as to implement any one of the above aspects method in a possible design.
  • Figure 1 is a schematic diagram of a 5G network architecture
  • FIG. 2 is a schematic diagram of the architecture of a communication system to which the message transmission method provided by the embodiment of the present application is applicable;
  • FIG. 3 is a schematic flowchart of a message transmission method provided by an embodiment of the present application.
  • FIG. 5 and FIG. 6 are schematic diagrams of packet processing for two different forms of redundant sessions in the method provided by the application;
  • Fig. 7 is the schematic flow chart that UPF realizes the processing of redundant message in the method provided by this application.
  • Fig. 8 is the schematic diagram of the first setting extension field in the method provided by this application.
  • FIG. 9 is a schematic diagram of a network architecture for data packet processing using the method provided by the present application.
  • FIG. 10 is a schematic diagram of the second setting extension field in the method provided by the application.
  • FIG. 11 is a schematic structural diagram of a session management network element provided by this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by the present application.
  • the word "exemplary” is used to mean serving as an example, illustration or illustration. Any embodiment or design described in this application as "exemplary” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the word example is intended to present a concept in a concrete way.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • User equipment also known as terminal-side equipment, is a device with wireless transceiver functions, which can be accessed through the access network equipment (or also called access equipment) in the radio access network (RAN). Communicate with one or more core network (CN) devices (or may also be referred to as core devices).
  • CN core network
  • User equipment may also be referred to as an access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent, user device, or the like.
  • User equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the user equipment may be a cellular phone (cellular phone), a cordless phone, a session initiation protocol (SIP) phone, a smart phone (smart phone), a mobile phone (mobile phone), a wireless local loop (WLL) station, personal digital assistant (PDA), etc.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the user equipment may also be a handheld device with a wireless communication function, a computing device or other device connected to a wireless modem, an in-vehicle device, a wearable device, a drone device, or a terminal in the Internet of Things, the Internet of Vehicles, the fifth generation Mobile communication (5th-generation, 5G) network and any form of terminal in future network, relay user equipment or terminal in future evolved PLMN, etc.
  • the relay user equipment may be, for example, a 5G home gateway (residential gateway, RG).
  • the user equipment can be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self driving, telemedicine Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home wireless terminals, etc.
  • VR virtual reality
  • AR augmented reality
  • This embodiment of the present application does not limit the type or type of the terminal device.
  • the user equipment may also include end-side equipment, such as a local switch (local switch, LSW), and/or customer premises equipment (customer premise equipment, CPE), and the like.
  • end-side equipment such as a local switch (local switch, LSW), and/or customer premises equipment (customer premise equipment, CPE), and the like.
  • a user equipment that is registered into the network may be understood as a user.
  • One of the UEs may correspond to a subscriber identity module (SIM) card, that is, when the terminal device is installed with one SIM card, the terminal device corresponds to one user UE, and when the terminal device is installed with multiple SIM cards, the terminal device corresponds to multiple user UEs.
  • SIM subscriber identity module
  • the network device may support at least one wireless communication technology, such as long term evolution (LTE), new radio (NR), wideband code division multiple access (WCDMA), and the like.
  • LTE long term evolution
  • NR new radio
  • WCDMA wideband code division multiple access
  • network equipment may include access network equipment.
  • the network equipment includes, but is not limited to: a next-generation base station or a next-generation node B (generation nodeB, gNB), an evolved node B (evolved node B, eNB), a radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB ), baseband unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, small station, micro station, etc.
  • generation nodeB, gNB next-generation node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved node B, or home node B, HNB
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario, or the network device may It is a relay station, an access point, a vehicle-mounted device, a terminal, a wearable device, and a network device in future mobile communications or a network device in a future evolved public land mobile network (PLMN).
  • CU centralized unit
  • DU distributed unit
  • CRAN cloud radio access network
  • PLMN public land mobile network
  • the network device may include a core network (CN) device, and the core network device includes, for example, an AMF and the like.
  • CN core network
  • a communication system which is used to connect the terminal equipment to the data network by using the 3rd generation partnership project (3GPP) access technology when the terminal equipment requests services, and realize the connection between the terminal equipment and the data network. Data transmission between the two to achieve the corresponding business.
  • 3GPP 3rd generation partnership project
  • the communication system is divided into an access network (AN) and a core network (core network, CN).
  • the access network is used to converge terminal equipment into the core network through 3GPP access technology.
  • the core network is used to connect terminal devices to different data networks.
  • the core network can be further divided into a control plane (signaling plane) and a user plane (data plane).
  • the communication systems to which the message transmission method provided in this application is applicable include fifth generation (5th generation, 5G) communication systems (ie, new radio (NR) communication systems), future new generation communication systems. Wait.
  • 5G fifth generation
  • NR new radio
  • the access network may also be referred to as a 5G radio access network (NG-radio access network (RAN), or NG-RAN), and the core network may also be referred to as a 5G core network (5G Core, 5GC).
  • NG-radio access network RAN
  • NG-RAN 5G radio access network
  • 5G Core 5G Core
  • access network (AN) equipment an entity on the network side for transmitting and/or receiving signals, as a device for connecting terminal equipment to a wireless network in a communication system, including wired or a device that wirelessly accesses the communication system.
  • AN access network
  • a radio access network (radio access network, RAN) device that wirelessly accesses a communication system may also be called a base station, or a RAN node, or a RAN device in the NG-RAN.
  • the RAN equipment may also coordinate attribute management of the air interface.
  • a RAN device can be a new radio controller (NR controller), a gNode B (gNB) in a 5G system, a centralized unit, a new radio base station, or a
  • the remote radio module can be a micro base station (also called a small cell), a relay, a distributed unit, a macro base station in various forms, or a transmission and reception point.
  • transmission reception point, TRP transmission reception point
  • TMF transmission measurement function
  • transmission point transmission point
  • TP transmission point
  • core network equipment a network element located in the core network, used to realize the functions of the core network, for example, responsible for connecting the terminal equipment to different data networks according to the call request or service request sent by the terminal equipment through the access network It is also responsible for services such as billing, mobility management, and session management.
  • a PDU session is a business session in which a terminal device and a DN exchange PDU data packets.
  • a PDU session is implemented by establishing a PDU connection.
  • a PDU session is also called a PDU UE session, or a UE session, or an Ethernet session.
  • the PDU session is bound to a "slice+DNN” combination, that is, the PDU session corresponds to a pair of slice+DNN information.
  • Slices can be identified by a single network slice selection auxiliary information S-NSSAI.
  • the PDU session is bound to a combination of "slice+DNN+session ID (SessionID)", that is, the PDU session corresponds to a pair of slice+DNN and SessionID information.
  • SessionID is different, and the slice + DNN can be the same or different.
  • the 5G networking architecture can refer to the networking architecture defined in the 3GPP 23.501 protocol.
  • the architecture is related to The main functions of the network element are introduced as follows:
  • Application function (AF) network element also known as application controller (application controller), which is mainly used to convey the requirements of the application side to the network side, such as quality of service (QoS) requirements, user status event subscription Wait.
  • the AF network element may be an application function entity of a third-party application, or may be an application service deployed by an operator, such as an IMS voice call service.
  • the application function entity of the third-party application can perform authorization processing through the network exposure function (NEF) network element when interacting with the core network.
  • NEF network exposure function
  • the application function entity of the third-party application directly sends a request message to the NEF network element.
  • the NEF network element verifies whether the AF network element is allowed to send the request message. If the verification passes, it forwards the request message to the corresponding policy control function (PCF) network element or unified data management function (UDM) ) network element.
  • PCF policy control function
  • UDM unified data management function
  • PCF network element It is mainly used to implement policy control functions such as charging for sessions and service flow levels, QoS bandwidth guarantee and mobility management, and user equipment policy decision-making.
  • UDM network element It is mainly used to implement data management functions such as management of subscription information and user access authorization.
  • Access and mobility management function (AMF) network element It is mainly used to implement functions such as mobility management and access authentication/authorization for terminal equipment.
  • AMF network element is also responsible for transferring user policies between the terminal device and the PCF network element.
  • Session management function (SMF) network element It is mainly used for packet data unit (PDU) session management for terminal equipment, execution of control policies issued by PCF, and user plane function (UPF). ) selection of network elements, assignment of IP addresses of terminal equipment when the PDU type is IP type, etc.
  • PDU packet data unit
  • UPF user plane function
  • UPF network element It is mainly used as the interface between terminal equipment and data network, and completes functions such as user plane data forwarding, session/flow-level accounting statistics, and bandwidth limitation.
  • Unified data repository (UDR) network element It is mainly responsible for the access function of data such as subscription information, policy data, application data, etc. Elements perform interface interconnection to realize access or invocation of corresponding network elements.
  • UDR Unified data repository
  • the core network may also include other network elements other than the network elements described in the above examples, which will not be listed one by one here.
  • this application does not limit the name of the corresponding network element that implements each function, it can also implement other functions or be integrated with other function network elements, and can also be called other names.
  • N1 interface It is the signaling plane interface between the AMF network element and the terminal device. It has nothing to do with the access network. It is used to exchange signaling messages between the core network and the terminal device. It can be used for the terminal device to register into the network and to establish a PDU session. , in the process of configuring terminal device policies on the network side.
  • N2 interface It is the interface between the AMF network element and the RAN device, and is used to transmit radio bearer control information from the core network to the RAN device.
  • N3 interface It is the interface between the (R)AN equipment and the UPF network element, used to transfer the service data of the terminal equipment between the RAN equipment and the UPF network element.
  • N4 interface It is the interface between the SMF network element and the UPF network element. It is used to transmit the information between the control plane and the user plane. It can be used for the control plane terminal equipment to complete the network access operation according to the contract information with the operator.
  • N6 interface It is the interface between the UPF network element and the DN, and is used to transfer the service data of the terminal equipment between the UPF network element and the DN.
  • N7 interface It is the interface between the PCF network element and the SMF network element, and is used to deliver information such as PDU session granularity and service data flow granularity control policy.
  • N8 interface It is the interface between the AMF network element and the UDM network element. It is used by the AMF network element to obtain the subscription information and authentication data related to access and mobility management from the UDM network element, and the AMF network element to register the terminal with the UDM network element. Information about the current mobility management of the device, etc.
  • N10 interface It is the interface between the SMF network element and the UDM network element. It is used for the SMF network element to obtain the session management related subscription information from the UDM network element, and the SMF network element to register the current session related information of the terminal device to the UDM network element.
  • N11 interface It is the interface between the SMF network element and the AMF network element, which is used to transfer the PDU session tunnel information between the RAN device and the UPF network element, the control message sent to the terminal device, and the radio resource control information sent to the RAN device. Wait.
  • the 5G network provides a data exchange service for the UE and the DN network (data network, identified by DNN), which is called a PDU connection service.
  • the UE obtains the PDU connection service by initiating a PDU session establishment request to the mobile network.
  • the network side provides the PDU connection service by maintaining the PDU session for the UE.
  • the UE sends data to the DN through the (R)AN and the UPF (that is, forming a service data exchange path between the UE and the DN network), and the service data exchange path is the data service path of the UE in the mobile network (Data plane path).
  • the UE needs to use the PDU connection service provided by the mobile network to establish a DNN-based PDU session (signaling plane flow).
  • the establishment of a PDU session includes two basic procedures: a procedure for the UE to register with the mobile network to access the network, and a procedure for the UE to request the network to establish a PDU session.
  • the general user registration and access process can be simply described as: the UE sends a registration request to the AMF through the (R)AN, and the AMF obtains the subscription information from the specific UDM according to the user ID. After a series of authentication and authorization operations, the network side finally confirms that the UE is allowed to access the network. At this time, the AMF responds to the UE registration request and delivers relevant policy information to the UE, and the UE completes the network registration and residency. The AMF on the network side maintains the registration and access information of the UE and performs mobility management on the UE.
  • the UE After the UE completes the registration and access to the network, it can initiate a PDU session establishment request to obtain the PDU connection service of the network.
  • the general PDU session establishment process can be simply described as: UE sends PDU session creation request to AMF through RAN, AMF selects SMF to provide session service for UE, saves the correspondence between SMF and PDU session, and sends session creation request to SMF, SMF Select the corresponding UPF to establish a user plane transmission path for the UE, and assign an IP address to it.
  • the SMF interacts with the UPF through the N4 interface, and controls the UPF to create, modify, and delete the corresponding UE N4 session (N4Session/PFCP Session) to control the UPF to process data packets.
  • the SMF issues various data packet processing rules to the UE N4 session in the UPF to complete the control of the UPF processing data packets.
  • the UPF matches the packet according to the matching rule (Packet Detection Rule, PDR) issued by the SMF, and forwards the packet according to the Forwarding Action Rule (FAR).
  • PDR Packet Detection Rule
  • the PDR is delivered to the UPF during the PDU session management process by the SMF, and the UPF executes the corresponding data packet matching rules according to the PDR delivered by the SMF, and thus obtains the corresponding FAR to complete packet forwarding.
  • a PDR contains a PDI parameter, and the PDI parameter contains one or several matching fields, which are used to match with the data packet received by the UPF, identify the packet, and complete the association between the data packet and the N4 session.
  • the PDI information provided by SMF to UPF is mainly as follows:
  • a series of parameters for matching ingress packets such as: tunnel endpoint (Local F-TEID), network instance (Network Instance), UE IP address, service data flow filter (SDF Filter(s)) or application ID (Application ID (Application ID) ID), etc.
  • UPF After receiving a data packet, UPF matches the fields of the data packet header with the parameters defined by the PDI in the PDR, and finds the N4 session to which the packet belongs and the PDR with the highest priority matching relationship with the data packet in the N4 session.
  • the rule completes the packet matching.
  • the PDR rule contains the corresponding FAR indication, and the UPF will complete the data packet forwarding according to the FAR indication.
  • FAR mainly instructs UPF to process data packets through the following information:
  • Apply Action Parameter which is used to indicate whether the UPF needs to forward, duplicate, or discard the message, or buffer downlink messages with or without notifying the control plane (such as SMF), or indicate whether the UPF needs to Allow UE to join IP multicast group;
  • the embodiments of the present application provide a message transmission method and device. It also defines how to instruct redundant processing and how to process redundant packets, so that terminal devices and network-side devices can deduplicate, duplicate, and forward redundant packets according to the defined methods. Based on the management, establishment, and use procedures of PDU sessions in the prior art, the method provided by the embodiment of the present application is described in further detail below with reference to specific examples:
  • the subscription information of each user can be correspondingly generated according to the needs of the user. If the user subscribes to redundant transmission, that is, the first UE and the second UE respectively created A UE session and a second UE session are mutually redundant transmissions; the subscription information corresponding to the first UE and the second UE may include redundant transmission parameters corresponding to the redundant transmissions; wherein, the redundant transmission parameters may specifically be include:
  • the UE identifier and the paired UE identifier are used to indicate the unique identifiers of two UEs that are redundant transmissions; wherein, in the redundant transmission parameters corresponding to the first UE, the UE identifier is the first UE.
  • the unique identifier of the UE; and then the corresponding paired UE identifier is the unique identifier of the UE that subscribes to the redundant transmission with the first UE, which may be the unique identifier of the second UE in this example.
  • the unique identifier used to indicate the UE may be a UE identifier such as a Subscription Permanent Identifier (SUPI) or a generic public subscription identifier (GPSI); if the first UE and the second UE subscribe to a redundant If the redundant transmission is used, the UE identifier in the redundant transmission parameter corresponding to the first UE may be UE1SUPI; the corresponding paired UE identifier may be UE2SUPI.
  • SUPI Subscription Permanent Identifier
  • GPSI generic public subscription identifier
  • A2, slice (S-NSSAI) identifier used to indicate the network slice accessed by the UE when performing redundant transmission
  • the slice identifier and the The data network names are the same; for example, if the first UE and the second UE subscribe to mutually redundant transmission, the slice identifier and data network name included in the redundant transmission parameters corresponding to the first UE are the same as the redundant transmission parameters corresponding to the second UE.
  • the slice ID included in the transmission parameters is the same as the data network name.
  • redundant transmission indication used to indicate whether redundant transmission is enabled
  • the redundant mode is a method of indicating that the message is a redundant message; in order to realize the processing of the redundant message, both the terminal-side device and the network-side device need to realize the identification of the message in a way to determine the transmitted message Whether it is a redundantly transmitted packet, so as to perform operations such as deduplication, replication or forwarding of the packet.
  • an extension field may be set in the message to carry redundant information indicating that the message is a redundant message
  • optional redundancy modes may include the first mode and the second mode; wherein, the first mode In the second mode, the redundancy information indicating that the packet is a redundant packet is set in the first extension field of the packet header of the SDAP packet; in the second mode, the redundancy information indicating that the packet is a redundant packet is set in the Ethernet packet. in the second extension field.
  • the UE identification, slice identification and data network name information are already included in the existing UE subscription information.
  • redundant transmission indication and paired UE identification can be added. As well as several attribute parameters in a redundant manner.
  • redundant transmission parameters A specific example of redundant transmission parameters is provided below. If the first UE and the second UE subscribe to redundant transmission, the corresponding examples of redundant transmission parameters of the first UE and the second UE are shown in Table 1 below:
  • the redundant transmission parameter in the subscription information of the first UE is the content included in the first list item in Table 1 above; the redundant transmission parameter corresponding to the second UE is the content corresponding to the second list item.
  • the slice identifiers corresponding to the first UE and the second UE are both 1-010101; the data network name information is both 5glan01; that is, the first UE and the second UE select the same network access.
  • a message transmission method provided by the embodiment of the present application may include the following steps:
  • the UE initiates a PDU session creation request
  • the creation request may include a session creation request initiated by two UEs subscribed to redundant transmission; for example, if the first UE and the second UE subscribe to redundant transmission, the first UE Both the UE and the second UE initiate a session creation request, respectively create a UE session, and then implement redundant packet transmission in a manner that the created two UE sessions are mutually redundant transmissions.
  • the AMF determines that the UE has subscribed for redundant transmission according to the redundant transmission parameter carried in the subscription information corresponding to the UE, and the AMF selects the same SMF for UE1/UE2.
  • the AMF interacts with the SMF to create a PDU session of the UE;
  • the SMF obtains the subscription information of the UE, and according to the redundant transmission parameter in the subscription information, determines that the created UE session is subscribed to redundant transmission; wherein the UE includes a first UE and a second UE; the UE session includes The first UE session and the second UE session; the subscribed redundant transmission is used to indicate that the first UE session and the second UE session are mutually redundant transmissions; wherein, the SMF is the first user equipment (UE1, or An N4 session is created for the first UE) and the second user equipment (UE2 or referred to as the second UE) selecting the same UPF.
  • UE1 user equipment
  • UE2 User Equipment
  • the SMF obtains the UE's subscription information
  • the SMF obtains the redundant transmission indication, redundant mode or paired UE from the UE's corresponding subscription information identifier, it can be determined that the created UE session subscribes to redundant transmission.
  • the SMF is used for the first UE session (in this embodiment, it may be the N4 session corresponding to the first UE) and the second UE session. (in this embodiment, it may be the N4 session corresponding to the second UE) select the same UPF;
  • This configuration parameter is used to instruct UPF to deduplicate uplink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and redundancy mode;
  • the messages of the UE session are redundantly copied, and the redundant messages obtained by redundant replication are delivered to the first UE and the second UE through the first UE session and the second UE session;
  • the transmission indication is used to indicate whether redundant transmission; the redundancy mode indicates that the message is the mode of the redundant message;
  • the configuration parameters for redundant transmission have not been delivered to the UPF (that is, the redundant processing has not been configured for the paired UEs UE1 and UE2 on the UPF).
  • the configuration parameters include: redundant transmission indication, UE N4 session identifier (UE1 session identifier, indicating the UE session used for redundant transmission) ), redundancy mode (such as SDAP extension), downlink rules (the downlink packets arriving at UE1 are processed by the redundancy processing function module).
  • the configuration parameters issued this time may include: redundancy transmission indication, redundancy processing ID (the ID of the functional module that implements redundancy processing; if the redundancy processing is a session, is the session ID), UE N4 session ID (UE2 session ID, indicating the UE session used for redundant transmission), downlink rules (downlink packets arriving at UE2, processed by the redundancy processing function module).
  • redundancy processing ID the ID of the functional module that implements redundancy processing; if the redundancy processing is a session, is the session ID
  • UE N4 session ID UE2 session ID, indicating the UE session used for redundant transmission
  • downlink rules downlink packets arriving at UE2, processed by the redundancy processing function module.
  • the SMF interacts with the UPF, and modifies the UE session forwarding rule
  • the packets corresponding to the two sessions need to be deduplicated. Therefore, before the packets are forwarded, they need to pass through the redundant processing function module (session or function block, etc.) created by UPF based on configuration parameters. ) to implement the deduplication operation, so the forwarding rule for the packet of the UE session subscribed for redundant transmission may be to forward the packet to the redundant processing function module for processing.
  • the redundant processing function module session or function block, etc.
  • the first UE session that is, the UE1 N4 session
  • the second UE session that is, the UE2 N4 session
  • the module that implements the redundant processing function established in the UPF is a redundant session
  • the forwarding rules of redundant packets (including uplink packets and downlink packets) in UPF can be as shown in Figure 4.
  • the data packet Redundancy processing can be:
  • the SMF configures the UE1 session and UE2 session forwarding rules, and transfers the uplink message to the redundant session.
  • the redundant session completes deduplication of uplink redundant packets, and forwards the deduplicated packets from N6/N19 according to the destination address. If the destination address does not have a corresponding forwarding rule, the packet is discarded.
  • the redundant session For the downlink packets of the UE1 session or the UE2 session (for example, the redundant session receives N6/N19 downlink packets), the redundant session duplicates the packets redundantly, and generates the same redundant identifier for the duplicated packets.
  • the data packets after adding the redundant identifier are forwarded to the UE1 session and the UE2 session respectively.
  • the UE1 session and the UE2 session then send the message from the N3/N9 port.
  • the redundant session shown in FIG. 4 is a functional module that implements the above method, that is, the specific implementation of the SMF delivering configuration parameters to the UPF to implement redundant transmission can be implemented in various forms. The following are some implementation examples. Limited to these methods:
  • Manner 1 Instruct the first UE session or the second UE session to be configured as the first redundant processing session, and the first redundant processing session removes the uplink redundant packets of the first UE session and the second UE session. Repeatedly, redundantly copy the downlink packets arriving at the first UE session or the second UE session, and deliver the redundant packets obtained by redundant replication to the first UE session and the second UE session. the first UE and the second UE;
  • the function of the redundant session can be integrated into the UE1 N4 session, and correspondingly, when the UE1 N4 session is established, the SMF can deliver the configuration parameters of the redundant session together with the same parameters of the UE1 N4 session to the UE1 N4 session.
  • UPF so that UPF can establish UE1 N4 session with redundant processing function according to the configuration parameters.
  • For redundantly transmitted uplink messages and downlink messages they are correspondingly forwarded to the UE1 N4 session for deduplication and duplication processing.
  • Manner 2 Instruct the UPF to create a first redundant processing session, and the first redundant processing session deduplicates uplink redundant packets of the first UE session and the second UE session, and deduplicates uplink redundant packets of the first UE session and the second UE session.
  • the packets of the first UE session or the second UE session are redundantly copied, and the redundant packets obtained by redundant copying are delivered to the first UE and the second UE through the first UE session and the second UE session.
  • Two UEs; the processing procedure of the redundantly transmitted uplink message and downlink message in this embodiment is the same as that of FIG. 4 , and will not be repeated here.
  • Mode 3 If the first UE session and the second UE session belong to the same 5G VN Group session, instruct the 5G VN Group session to be configured as a first redundant processing session, and the first redundant processing session The session deduplicates the uplink redundant packets of the first UE session and the second UE session, performs redundant duplication on the downlink packets reaching the first UE session or the second UE session, and duplicates the redundant packets.
  • the obtained redundant message is delivered to the first UE and the second UE through the first UE session and the second UE session.
  • the 5G LAN service is defined in 3GPP 23.501 4.4.6, and a virtual mobile private network is built for users through the 5G LAN (5G Local Area Network) service on the mobile network.
  • the UE solves the problem of data exchange between the UE and the DN network by establishing a traditional PDU connection.
  • 5GLAN adds the concept of group, that is, UEs belonging to the same 5GLAN group can not only exchange data with the DN network corresponding to the group, but also directly communicate with other UEs in the group through UPF. After completing the data exchange, the UEs between the two groups are isolated from each other. Virtual private network communication can be realized through 5GLAN.
  • the function of redundant transmission processing can be integrated into the 5G VN Group session, then the first UE session
  • the forwarding rule of redundant packets corresponding to the second UE session is forwarded to the 5G VN Group group session for processing.
  • the specific packet forwarding process is shown in Figure 6.
  • S308 Send a response message for completing the UE session creation to the terminal-side device, where the response message includes the redundant transmission indication and the redundant mode.
  • the terminal-side device is receiving the response message fed back by the creation request, and deduplicates the downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundancy mode; wherein the The first UE session and the second UE session are mutually redundant transmissions;
  • the UPF receives the configuration parameters delivered by the SMF
  • the UPF processes the redundantly transmitted message according to the redundant transmission indication and the redundant mode in the configuration parameter; the specific implementation may be:
  • first UE session and the second UE session are mutually redundant transmissions; de-duplicate the uplink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and redundancy mode in the configuration parameters ; Described redundant transmission instruction is used to indicate whether redundant transmission; Described redundant mode is the mode that indicates that message is redundant message;
  • Redundant replication is performed on downlink messages arriving at the first UE session or the second UE session, and the downlink redundant messages obtained by redundant replication are delivered to the first UE session and the second UE session.
  • the redundancy manner may include: a first manner and a second manner.
  • the redundancy information indicating that the message is a redundant message is set in the first extension field of the message header of the SDAP message; the second method, indicating that the message is the redundant message of the redundant message
  • the information is set in the second extension field of the Ethernet packet.
  • the redundancy information includes a redundancy transmission indication and a redundancy identifier; different packets correspond to different redundancy identifiers, and a packet carrying the same redundancy identifier is the redundant packet.
  • the first way is to add an extension field (ie, the first extension field) to the header of the service data adaptation protocol (service data adaptation protocol, SDAP) message to carry redundant information, so that the redundant message is received.
  • the processing module can determine that the message is a redundant message of redundant transmission according to the rules set in FIG. 3 , so as to perform corresponding processing.
  • the first extension field can be set at the front of the SDAP Header.
  • the example in the figure is just a specific example, and the first extension field can be set at the position of the message header if it is practicable.
  • the SDAP Data PDU frame format before and after the extension is shown.
  • the SDAP message after the extension is based on the original SDAP Header, and the message redundancy identification field (that is, the first extension field) is added.
  • the field contains the following attributes As shown in Table 2 (of course the attributes of this field are not limited to the following two):
  • redundant transceiver module redundant transceiver is a logical function module, which does not restrict the actual implementation, can be independent of the paired UE, or can be in other forms
  • the module can be collectively referred to as terminal-side equipment; in the following, UE1 (or referred to as the first UE) and UE2 (or referred to as the second UE) are paired for redundant transmission, and the first UE session established by UE1 and UE2 Taking the second UE session subscription redundant transmission as an example, the specific implementation is explained:
  • the device before the device (the device can be an external device of the UE) sends the uplink message, it sends the message to the redundant transceiver module, and then the redundant transceiver module replicates the uplink message and generates redundant information corresponding to the uplink message ; and send the copied uplink message and redundant information to UE1 and UE2 respectively; each UE will receive a redundant message and a redundant information;
  • the redundant identifiers corresponding to the two uplink messages formed by duplication are the same;
  • the NG-RAN after receiving the upstream SDAP message carrying redundant information, the NG-RAN encapsulates the upstream SDAP message into an upstream GTP-U message, and copies the redundant information carried in the upstream SDAP message to the GTP-
  • the header extension field of the U message (the extension field can be the extension field originally set in the message header of the GTP-U message), and then the upstream GTP-U message is sent to the UPF through the N3 port;
  • the UPF receives the uplink GTP-U message of the first UE (UE1) or the second UE (UE2) from the NG-RAN; obtains redundancy information from the first extension field of the header of the uplink GTP-U message ;
  • the uplink packets with the same redundancy identifier are deduplicated, and then the packet forwarding is completed according to the forwarding rule.
  • the UPF (UPF1 in FIG. 9 ) receives the downlink message that reaches the first UE session or the second UE session, copies the downlink message, and generates redundancy information according to the first redundancy method ;
  • the first UE session and the second UE session receive the SDAP message carrying the redundancy information, extract the SDAP message redundancy information and the PDU data message respectively, and respectively forward the redundancy information and the PDU data message to the redundant Additional transceiver modules.
  • the redundant transceiver module completes redundant packet deduplication according to the redundant information, and forwards the deduplicated data packet to the terminal device.
  • redundant information is carried in the second extension field of the Ethernet message, so that the processing module that receives the redundant message can determine that the message is a redundant message of redundant transmission according to the rules set in FIG. 3 , Accordingly, the redundant packets are processed accordingly.
  • the definition of the Ethernet frame format as an example, between the source MAC address (SMAC) field and the 802.1Q Tag field, or between the 802.1Q Tag field and the LEN/Type field In between, add 2+n bytes of redundant transmission extension field (that is, the second extension field), and the Ethernet packet structure of the second extension field between the source MAC address (SMAC) field and the 802.1Q Tag field is shown in Figure 10 shown.
  • the second extension field can contain 2 attributes (redundant transmission indication and message redundancy identification), and the specific explanation of each attribute is as shown in Table 3 below:
  • a redundant transceiver module can be set on the terminal side (redundant transceiver is a logical function module, which does not restrict the actual implementation, and can be independent of the paired UE, or in other forms) to process redundant packets.
  • the device redundant transceiver modules, and UE1 and UE2 can be collectively referred to as terminal-side equipment; hereinafter, UE1 (or referred to as the first UE) and UE2 (or referred to as the second UE) are paired for redundant transmission, and UE1 and UE2 establish The first UE session and the second UE session subscribe to redundant transmission as an example for specific implementation description:
  • the device sends an uplink packet to the redundant transceiver module.
  • the redundant transceiver module copies the uplink packet and generates redundant information corresponding to the uplink packet; wherein, the two uplink packets formed by the copy are copied.
  • the redundancy identifier (which can be the sequence number of the message) corresponding to the message is the same;
  • the redundant transceiver module can send the duplicated identical uplink Ethernet packets to UE1 and UE2 respectively, and then UE1 and UE2 respectively send the uplink Ethernet packets as PDU packets to the corresponding NG-RAN.
  • the NG-RAN receives the PDU message from the UE, and sends the message to the UPF through the N3 port.
  • the UPF receives the uplink Ethernet packet sent by the first UE or the second UE, and obtains redundancy information from the second extension field of the uplink Ethernet packet; and removes the uplink Ethernet packets with the same redundancy identifier. Heavy;
  • the UPF (UPF1 in FIG. 9 ) receives the downlink message that reaches the first UE session or the second UE session, copies the downlink message, generates redundancy information according to the second redundancy mode, and copies the downlink message according to the The downstream downlink message obtains a downlink Ethernet message; wherein, the downlink Ethernet message includes the same redundant information, and the redundant information is carried in the second extension field of the downlink Ethernet message;
  • the NG-RAN after receiving the downlink Ethernet packet, the NG-RAN sends the downlink Ethernet packet to the first UE and the second UE through the air interface.
  • the redundant transceiver module receives the downlink Ethernet packets of the first UE session and the second UE session, and obtains redundancy information from the second extension field of the downlink Ethernet packets; The message is deduplicated;
  • the redundant transceiver module also restores the deduplicated downlink Ethernet packets into ordinary Ethernet packets (that is, deletes the second extension field in the downlink Ethernet packets), and finally forwards the downlink Ethernet packets to the device.
  • the redundant transceiver module used for illustration is a functional module that implements some of the methods of the present application, and the setting methods of this functional module can include multiple types; for example, the redundant transceiver module and the two UEs are Encapsulated in a device, the communication between the redundant transceiver module and the UE can be a function call at the software level, inter-process communication, memory copy, etc. As long as UE1 and UE2 can hand over data packets and redundant information to the redundant module.
  • the redundant transceiver module and UE1 and UE2 are independent devices, that is, UE1 and UE2 need to send data packets and redundant information to the redundant transceiver module through inter-device communication, and between the UE and the redundant transceiver module.
  • Data message delivery can be through any optional transmission method between devices.
  • the method provided by the embodiment of the present application realizes redundant transmission of data packets through dual UE and dual PDU paths, solves the problems of device single point reliability and air interface reliability, and improves the reliability of 3GPP service data transmission;
  • the method provided by the embodiment of the present application adds the first extension field in the SDAP protocol, so that the redundancy information of the redundant packet is carried by the first extension field, so that the device receiving the redundant packet can
  • the first extension field identifies redundant packets; further, it can support redundant transmission processing of packets of SDAP protocol type.
  • a second extension field is added to the Ethernet packet, and the redundant information of the redundant packet is carried by the second extension field, thereby supporting redundant transmission of the Ethernet packet.
  • the terminal device and the core network element may include corresponding hardware structures and/or software modules for performing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal device and the core network device can be divided into functional units according to the foregoing method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the session management network element may include a processing unit 1101 and a transceiver unit 1102 .
  • the session management network element may be the session management network element in any of the foregoing embodiments.
  • the session management network element may further include a storage unit 1103 for storing program codes and data of the session management network element.
  • the processing unit 1101 may be a processor or a controller, such as a general-purpose central processing unit (CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuit (application specific integrated circuit) circuits, ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the storage unit 1103 may be a memory.
  • the transceiver unit 1102 is an interface circuit of the device for receiving signals from other devices.
  • the transceiver unit 1102 is an interface circuit used by the chip to send signals to other chips or devices and/or an interface circuit used by the chip to receive signals from other chips or devices.
  • each functional module of the session management network element specifically implements the solution of the present application:
  • a transceiver unit configured to receive a UE session creation request initiated by the user equipment UE;
  • the processing unit is configured to determine, according to the redundant transmission parameter in the subscription information of the UE, that the created UE session subscribes to redundant transmission; wherein the UE includes a first UE and a second UE; the UE session includes the first UE A UE session and a second UE session; the subscribed redundant transmission is used to indicate that the first UE session and the second UE session are mutually redundant transmissions;
  • the processing unit is further configured to select the same UPF for the first UE session and the second UE session according to the redundant transmission parameter, and deliver configuration parameters to the UPF; wherein the configuration parameters are used to indicate UPF deduplicates uplink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and redundancy mode; deduplicates the downlink packets reaching the first UE session or the second UE session redundant copy, and deliver the redundant message obtained by the redundant copy to the first UE and the second UE through the first UE session and the second UE session; the redundant transmission indication is used to indicate whether redundant transmission; the redundant mode indicates that the message is a redundant message;
  • the transceiver unit is further configured to send a response message for completing the UE session creation to the terminal-side device; wherein, the response message includes the redundant transmission indication and the redundant manner.
  • the redundant transmission parameters corresponding to the first UE include the redundant transmission indication, the UE identifier, the paired UE identifier, the redundancy mode, the slice identifier, and the data network name information; wherein, The UE identifier is used to indicate the unique identifier of the first UE; the paired UE identifier is used to indicate the unique identifier of the second UE; the slice identifier is used to indicate the first UE The network slice accessed when redundant transmission is performed; the data network name is used to indicate the data network accessed by the first UE when redundant transmission is performed.
  • the slice identifier and data network name included in the redundant transmission parameter corresponding to the first UE are the same as the slice identifier and data network name included in the redundant transmission parameter corresponding to the second UE .
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second manner, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message.
  • the redundant information includes a redundant transmission indication and a redundant identifier; wherein, different messages correspond to different redundant identifiers, and the message carrying the same redundant identifier is the redundant messages.
  • the processing unit is further configured to indicate that the first UE session or the second UE session is configured as a first redundant processing session, and the first redundant processing session is used for the first UE session and the second UE session.
  • the uplink redundant packets of the second UE session are deduplicated, the downlink packets reaching the first UE session or the second UE session are redundantly copied, and the redundant packets obtained by redundant replication are passed through the The first UE session and the second UE session are delivered to the first UE and the second UE; or
  • the first redundant processing session deduplicates the uplink redundant packets of the first UE session and the second UE session, and de-duplicates the downlink redundant packets reaching the first UE Redundant replication is performed on messages of the session or the second UE session, and redundant messages obtained by redundant replication are delivered to the first UE and the second UE through the first UE session and the second UE session; or
  • the first UE session and the second UE session belong to the same 5G VN Group session, it indicates that the 5G VN Group session is configured as a first redundant processing session, and the first redundant processing session has no effect on all
  • the uplink redundant messages of the first UE session and the second UE session are deduplicated, the downlink messages arriving at the first UE session or the second UE session are redundantly copied, and the redundant copies obtained by redundant replication are performed.
  • the remaining packets are delivered to the first UE and the second UE through the first UE session and the second UE session.
  • the present application further provides the fifth aspect, and the embodiment of the present application also provides a user plane network element, including:
  • transceiver unit configured to receive configuration parameters delivered by the session management network element SMF;
  • a processing unit configured to deduplicate uplink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundancy mode in the configuration parameters; wherein the first UE session and the second UE session Two UE sessions are redundant transmissions for each other; the redundant transmission indication is used to indicate whether redundant transmission is performed; the redundant mode is a mode for indicating that the message is a redundant message;
  • Redundant replication is performed on downlink messages arriving at the first UE session or the second UE session, and the downlink redundant messages obtained by redundant replication are delivered to the downlink through the first UE session and the second UE session.
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second mode, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message; the redundant information includes redundant transmission indication and redundant identification; Different packets correspond to different redundancy identifiers, and the packets carrying the same redundancy identifier are the redundant packets.
  • the processing unit when the redundancy mode is the first mode, the processing unit is specifically configured to:
  • Redundant replication is performed on downlink messages arriving at the first UE session or the second UE session, and the downlink redundant messages obtained by redundant replication are delivered to the downlink through the first UE session and the second UE session.
  • the corresponding first UE and second UE include:
  • the redundancy information instructs the NG-RAN to encapsulate the redundancy information in the downlink GTP-U message into the downlink SDAP message, and pass the redundant information in the downlink GTP-U message to the downlink SDAP message.
  • the first UE session and the second UE session are delivered to the corresponding first UE and the second UE; the redundancy information is carried in the first extension field of the message header of the downlink SDAP message.
  • the processing unit when the redundancy mode is the second mode, the processing unit is specifically configured to:
  • the corresponding first UE and second UE include:
  • the downlink Ethernet packet is delivered to the corresponding first UE and the second UE through the first UE session and the second UE session.
  • the embodiment of the present application further provides a terminal-side device, including:
  • a transceiver unit configured to initiate a creation request for creating a UE session, and receive a response message fed back by the network side device based on the creation request; wherein, the response message includes a redundant transmission indication and a redundant mode; the redundant transmission Indication is used to indicate whether redundant transmission; the redundant mode is the mode of indicating that the message is a redundant message;
  • a processing unit configured to deduplicate downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundancy mode; wherein the first UE session and the second UE session interact with each other.
  • For redundant transmission redundantly copy the uplink messages of the first UE session or the second UE session, and pass the uplink redundant messages obtained by redundant replication through the first UE session and the second UE session sent to the network side device.
  • the redundancy mode includes a first mode and a second mode; wherein, in the first mode, the redundancy information indicating that the packet is a redundant packet is set in the packet of the SDAP packet In the first extension field of the header; in the second manner, redundant information indicating that the message is a redundant message is set in the second extension field of the Ethernet message.
  • the redundant information includes a redundant transmission indication and a redundant identifier; wherein, different messages correspond to different redundant identifiers, and the message carrying the same redundant identifier is the redundant messages.
  • the processing unit when the redundancy mode is the first mode, the processing unit is specifically configured to:
  • De-duplicating downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundant manner includes:
  • Receive downlink SDAP messages of the first UE session and the second UE session obtain redundancy information in the downlink SDAP messages, and deduplicate downlink SDAP messages with the same redundancy identifier;
  • Redundantly copy the uplink packets of the first UE session or the second UE session, and send the uplink redundant packets obtained by redundant replication to the network side device through the first UE session and the second UE session include:
  • the redundant information is carried in the first extension field of the message header of the uplink SDAP message, and the encapsulated uplink SDAP message is passed through The first UE session and the second UE session are sent to the network side device.
  • the processing unit when the redundancy mode is the second mode, the processing unit is specifically configured to:
  • De-duplicating downlink redundant packets of the first UE session and the second UE session according to the redundant transmission indication and the redundant manner includes:
  • Receive downlink Ethernet messages of the first UE session and the second UE session obtain redundancy information from the second extension field of the downlink Ethernet message; deduplicate downlink Ethernet messages with the same redundancy identifier;
  • Redundantly copy the uplink packets of the first UE session or the second UE session, and send the uplink redundant packets obtained by redundant replication to the network side device through the first UE session and the second UE session include:
  • the present application also provides a communication device, as shown in FIG. 12 , the communication device may be a hardware circuit of the communication device shown in the above session management network element, user plane network element and terminal side device.
  • the communication apparatus may be adapted to perform the functions of the terminal device or the SMF or the UPF in the above method embodiments.
  • FIG. 12 only shows the main components of the communication device.
  • the communication device 1200 has at least one processor 1201 and a memory 1202 .
  • the processor 1201 is configured to execute the instructions or programs stored in the memory 1202 .
  • the processor 1201 is used to perform the operations performed by the processing unit 1101 in the above embodiments, and the communication interface 1203 is used to perform the operations performed by the transceiver unit 1102 in the above embodiments.
  • the memory 1202 is used to store program instructions and/or data.
  • Memory 1202 and processor 1201 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1201 may cooperate with the memory 1202.
  • Processor 1201 may execute program instructions stored in memory 1202 . At least one of the at least one memory may be included in the processor.
  • the communication apparatus 1200 may further include a communication interface 1203 .
  • the communication interface 1203 is used to communicate with other communication devices through a transmission medium, so that the communication device 1200 can communicate with other communication devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; the communication interface may also be a transceiver with integrated transceiver function, or an interface circuit.
  • the apparatus 1200 may further include a communication line 1204 .
  • the communication interface 1203, the processor 1201 and the memory 1202 can be connected to each other through a communication line 1204; the communication line 1204 can be a peripheral component interconnect (PCI for short) bus or an extended industry standard architecture (extended industry standard architecture). , referred to as EISA) bus and so on.
  • the communication line 1204 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor 1201 in FIG. 12 can execute the instructions by calling the computer stored in the memory 1202, so that the communication apparatus 1200 can execute the terminal device in any of the above method embodiments. Or the method performed by SMF or UPF.
  • the functions/implementation processes of the processing unit 1101 and the transceiver unit 1102 shown in FIG. 11 can be implemented by the processor 1201 in FIG. 12 calling the computer execution instructions stored in the memory 1202; or, the processing shown in FIG. 11
  • the function/implementation process of the unit 1101 can be implemented by the processor 1201 in FIG. 12 calling the computer execution instructions stored in the memory 1202, and the function/implementation process of the transceiver unit 1102 shown in FIG. 11 can be implemented through the communication interface 1203 in FIG. 12 . to fulfill.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable chips. Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • electrically programmable Erase programmable read-only memory electrically EPROM, EEPROM
  • flash memory electrically programmable Erase programmable read-only memory
  • an embodiment of the present application further provides a communication system, where the communication system may include a terminal device, an SMF, and a PCF for executing the execution of the terminal device, the SMF, and the PCF in any of the foregoing embodiments.
  • the communication system may include a terminal device, an SMF, and a PCF for executing the execution of the terminal device, the SMF, and the PCF in any of the foregoing embodiments.
  • the communication system may further include some or all of the access network equipment, AMF, AF, NEF, and UPF, for respectively executing the corresponding access network equipment in any of the foregoing embodiments. , AMF, AF, NEF, UPF.
  • the communication system may also include other network elements or devices in any or any of the multi-core networks described in the foregoing embodiments of the present application, and are used to implement corresponding functions, which will not be described in detail here.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种报文传输方法及装置,该方法包括:SMF接收UE发起的UE会话创建请求,根据所述UE的签约信息中的冗余传输参数,确定创建的UE会话签约了冗余传输;签约了冗余传输用于指示第一UE会话和第二UE会话互为冗余传输;根据冗余传输参数为第一UE会话和第二UE会话选择相同的UPF,并向UPF下发配置参数;该配置参数用于指示UPF根据冗余传输指示和冗余方式对第一UE会话和第二UE会话的报文进行去重、复制和转发;向终端侧设备发送响应消息;其中,响应消息中包括冗余传输指示和所述冗余方式。本申请提供的通信方法和装置,用以提高3GPP业务数据传输可靠性。

Description

一种报文传输方法及装置
相关申请的交叉引用
本申请要求在2021年04月13日提交中国专利局、申请号为202110393327.X、申请名称为“一种报文传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种报文传输方法及装置。
背景技术
目前3GPP中为了提高报文传输的稳定性,提出了冗余传输的概念;例如:在23501 5.33.2.2节定义了N3/N9接口冗余传输方案。该方案在N3/N9单隧道可靠性不足场景下,通过在NG-RAN(NG-radio access network,NG-无线接入网)和UPF(user plane function,用户面功能)(包括I-UPF(Intermediate UPF)和A-UPF(Anchor UPF))之间建立双N3、N9隧道以提高数据传输的可靠性。该方案中NG-RAN复制上行报文,通过扩展GTP-U(GPRS tunneling protocol-user,基于报文的封装用户协议),为复制该上行报文得到的上行冗余报文分配相同的报文序列号,通过两路N3/N9隧道将上行冗余报文发送到UPF,然后UPF负责对上行冗余报文去重,然后再转发。当然UPF在接收到下行报文后,则会对下行报文进行复制,然后通过扩展GTP-U,为下行报文复制后得到的下行冗余报文分配相同的报文序列号,再通过两路N3/N9隧道发送到NG-RAN,NG-RAN负责对下行冗余报文去重后转发到终端侧设备。
根据上述3GPP 23501定义的N3/N9接口冗余传输方案,虽然提高了N3/N9隧道的传输可靠性,但是只解决N3/N9接口可靠性问题;而在数据报文的传输路径中,N3/N9隧道只是对应报文传输路径的一部分,无线终端设备的可靠性以及无线终端设备与基站之间空口的可靠性仍是需要解决的问题。
发明内容
本申请提供了一种报文传输方法及装置,用以提高3GPP业务数据传输可靠性。
第一方面,本申请实施例提供一种报文传输方法,该方法包括:
会话管理网元SMF接收用户设备UE发起的UE会话创建请求,根据所述UE的签约信息中的冗余传输参数,确定创建的UE会话签约了冗余传输;其中,所述UE包括第一UE和第二UE;所述UE会话包括第一UE会话和第二UE会话;所述签约了冗余传输用于指示第一UE会话和第二UE会话互为冗余传输;
根据所述冗余传输参数为所述第一UE会话和所述第二UE会话选择相同的UPF,并向所述UPF下发配置参数;其中,所述配置参数用于指示UPF根据冗余传输指示和冗余方式对所述第一UE会话和第二UE会话的上行冗余报文进行去重;对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一 UE会话和第二UE会话下发到所述第一UE和第二UE;所述冗余传输指示用于指示是否冗余传输;所述冗余方式指示报文为冗余报文的方式;
向终端侧设备发送完成UE会话创建的响应消息;其中,所述响应消息中包括所述冗余传输指示和所述冗余方式。
本申请实施例所提供的方法通过双UE双PDU路径实现数据报文的冗余传输,解决设备单点可靠性、空口可靠性问题,提升了3GPP业务数据传输可靠性。
在一种可能的设计中,所述第一UE对应的冗余传输参数包括所述冗余传输指示、UE标识、结对UE标识、所述冗余方式、切片标识和数据网络名称信息;其中,所述UE标识,用于指示所述第一UE的唯一标识符;所述结对UE标识,用于指示所述第二UE的唯一标识符;所述切片标识,用于指示所述第一UE进行冗余传输时接入的网络切片;所述数据网络名称,用于指示所述第一UE进行冗余传输时接入的数据网络。
在一种可能的设计中,所述第一UE对应的冗余传输参数所包括的切片标识和数据网络名称与所述第二UE对应的冗余传输参数所包括的切片标识和数据网络名称相同。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
基于上述可能的设计本申请实施例提供的方法在SDAP协议中添加第一扩展字段,从而通过第一扩展字段携带冗余报文的冗余信息,使得接收到冗余报文的设备能够根据该第一扩展字段识别冗余报文;进而能支持SDAP协议类型的报文冗余传输处理。
在Ethernet报文中添加第二扩展字段,通过第二扩展字段携带冗余报文的冗余信息,从而支持Ethernet报文冗余传输。
在一种可能的设计中,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,所述向所述UPF下发配置参数还包括:
指示第一UE会话或第二UE会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
指示所述UPF创建第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
若所述第一UE会话和所述第二UE会话归属相同的5G VN Group组会话,指示所述5G VN Group组会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE。
第二方面,本申请实施例基于UPF的实现流程还提供另外一种报文传输方法,包括:
用户面网元UPF接收会话管理网元SMF下发的配置参数;
根据所述配置参数中的冗余传输指示和冗余方式对第一UE会话和第二UE会话的上 行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
在一种可能的设计中,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,当所述冗余方式为第一方式,所述对第一UE会话和第二UE会话的上行冗余报文进行去重包括:
从NG-RAN收到所述第一UE或第二UE的上行GTP-U报文;从所述上行GTP-U报文的报文头第一扩展字段中获取所述冗余信息;
将具有相同冗余标识的上行GTP-U报文去重;
对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,并根据所述第一冗余方式,生成冗余信息;
将复制得到的下行报文封装成下行GTP-U报文;其中,所述下行GTP-U报文的报文头第一扩展字段中包括相同的冗余信息;
将所述下行GTP-U报文发送到NG-RAN;其中,所述冗余信息指示NG-RAN将所述下行GTP-U报文中的冗余信息封装到下行SDAP报文,并通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE;所述冗余信息携带在所述下行SDAP报文的报文头第一扩展字段中。
在一种可能的设计中,当所述冗余方式为第二方式,所述对第一UE会话和第二UE会话的上行冗余报文进行去重包括:
收到所述第一UE或第二UE发送的上行Ethernet报文,从所述上行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的上行Ethernet报文进行去重;
所述对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,根据所述第二冗余方式,生成冗余信息,根据复制后的下行报文得到下行Ethernet报文;其中,所述下行Ethernet报文中包括相同的冗余信息,且所述冗余信息携带在所述下行Ethernet报文的第二扩展字段中;
通过所述第一UE会话和第二UE会话将所述下行Ethernet报文下发到对应的第一UE和第二UE。
第三方面,本申请实施例中基于终端侧设备的实现流程还提供另外一种报文传输方法, 包括:
终端侧设备发起创建UE会话的创建请求;
接收网络侧设备基于所述创建请求反馈的响应消息;其中,所述响应消息中包括冗余传输指示和冗余方式;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;
对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
在一种可能的设计中,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,当所述冗余方式为第一方式,根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重包括:
收到第一UE会话和第二UE会话的下行SDAP报文,获取所述下行SDAP报文中的冗余信息,将具有相同冗余标识的下行SDAP报文进行去重;
对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备包括:
发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识相同;
将复制形成的上行报文封装为上行SDAP报文时,将所述冗余信息携带在所述上行SDAP报文的报文头的第一扩展字段中,并将封装后的上行SDAP报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
在一种可能的设计中,当所述冗余方式为第二方式,根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重包括:
收到第一UE会话和第二UE会话的下行Ethernet报文,从所述下行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的下行Ethernet报文进行去重;
对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备包括:
发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识相同;
将复制形成的所述上行报文封装为上行Ethernet报文时,将所述冗余信息携带在所述上行Ethernet报文的第二扩展字段中;
将封装后的上行Ethernet报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
第四方面,本申请实施例提供一种会话管理网元,包括:
收发单元,用于接收用户设备UE发起的UE会话创建请求;
处理单元用于根据所述UE的签约信息中的冗余传输参数,确定创建的UE会话签约了冗余传输;其中,所述UE包括第一UE和第二UE;所述UE会话包括第一UE会话和第二UE会话;所述签约了冗余传输用于指示第一UE会话和第二UE会话互为冗余传输;
处理单元还用于根据所述冗余传输参数为所述第一UE会话和所述第二UE会话选择相同的UPF,并向所述UPF下发配置参数;其中,所述配置参数用于指示UPF根据冗余传输指示和冗余方式对所述第一UE会话和第二UE会话的上行冗余报文进行去重;对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;所述冗余传输指示用于指示是否冗余传输;所述冗余方式指示报文为冗余报文的方式;
所述收发单元还用于向终端侧设备发送完成UE会话创建的响应消息;其中,所述响应消息中包括所述冗余传输指示和所述冗余方式。
在一种可能的设计中,所述第一UE对应的冗余传输参数包括所述冗余传输指示、UE标识、结对UE标识、所述冗余方式、切片标识和数据网络名称信息;其中,所述UE标识,用于指示所述第一UE的唯一标识符;所述结对UE标识,用于指示所述第二UE的唯一标识符;所述切片标识,用于指示所述第一UE进行冗余传输时接入的网络切片;所述数据网络名称,用于指示所述第一UE进行冗余传输时接入的数据网络。
在一种可能的设计中,所述第一UE对应的冗余传输参数所包括的切片标识和数据网络名称与所述第二UE对应的冗余传输参数所包括的切片标识和数据网络名称相同。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
在一种可能的设计中,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,所述处理单元还用于指示第一UE会话或第二UE会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
指示所述UPF创建第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
若所述第一UE会话和所述第二UE会话归属相同的5G VN Group组会话,指示所述5G VN Group组会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE。
第五方面,本申请实施例还提供一种用户面网元,包括:
收发单元,用于接收会话管理网元SMF下发的配置参数;
处理单元,用于根据所述配置参数中的冗余传输指示和冗余方式对第一UE会话和第 二UE会话的上行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中;所述冗余信息包括冗余传输指示和冗余标识;不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,当所述冗余方式为第一方式,所述处理单元具体用于:
从NG-RAN收到所述第一UE或第二UE的上行GTP-U报文;从所述上行GTP-U报文的报文头第一扩展字段中获取所述冗余信息;
将具有相同冗余标识的上行GTP-U报文去重;
对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,并根据所述第一冗余方式,生成冗余信息;
将复制得到的下行报文封装成下行GTP-U报文;其中,所述下行GTP-U报文的报文头第一扩展字段中包括相同的冗余信息;
将所述下行GTP-U报文发送到NG-RAN;其中,所述冗余信息指示NG-RAN将所述下行GTP-U报文中的冗余信息封装到下行SDAP报文,并通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE;所述冗余信息携带在所述下行SDAP报文的报文头第一扩展字段中。
在一种可能的设计中,当所述冗余方式为第二方式,所述处理单元具体用于:
收到所述第一UE或第二UE发送的上行Ethernet报文,从所述上行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的上行Ethernet报文进行去重;
所述对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,根据所述第二冗余方式,生成冗余信息,根据复制后的下行报文得到下行Ethernet报文;其中,所述下行Ethernet报文中包括相同的冗余信息,且所述冗余信息携带在所述下行Ethernet报文的第二扩展字段中;
通过所述第一UE会话和第二UE会话将所述下行Ethernet报文下发到对应的第一UE和第二UE。
第六方面,本申请实施例还提供一种终端侧设备,包括:
收发单元,用于发起创建UE会话的创建请求,并接收网络侧设备基于所述创建请求反馈的响应消息;其中,所述响应消息中包括冗余传输指示和冗余方式;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
处理单元,用于根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
在一种可能的设计中,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,当所述冗余方式为第一方式,所述处理单元具体用于:
根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重包括:
收到第一UE会话和第二UE会话的下行SDAP报文,获取所述下行SDAP报文中的冗余信息,将具有相同冗余标识的下行SDAP报文进行去重;
对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备包括:
发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识相同;
将复制形成的上行报文封装为上行SDAP报文时,将所述冗余信息携带在所述上行SDAP报文的报文头的第一扩展字段中,并将封装后的上行SDAP报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
在一种可能的设计中,当所述冗余方式为第二方式,所述处理单元具体用于:
根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重包括:
收到第一UE会话和第二UE会话的下行Ethernet报文,从所述下行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的下行Ethernet报文进行去重;
对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备包括:
发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识相同;
将复制形成的所述上行报文封装为上行Ethernet报文时,将所述冗余信息携带在所述上行Ethernet报文的第二扩展字段中;
将封装后的上行Ethernet报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
第七方面,本申请实施例提供一种通信装置,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器、通信接口;
其中,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置;所述存储器存储有可被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令,使得所述通信装置执行上述任一方面或任一方面中的任一种方法。
第八方面,本申请实施例提供一种通信系统,所述通信系统包括终端侧设备、会话管理功能网元及用户面网元;
其中,所述会话管理功能网元用于执行上述第一方面或第一方面中的任一种方法;所述用户面网元用于执行上述第二方面或第二方面中的任一种方法,所述终端设备用于执行上述第三方面或第三方面中的任一种方法。
第九方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令在通信装置上运行时,使得通信装置执行上述各个方面的任一种可能的设计中的方法。
第十方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序或指令,当通信装置读取并执行所述计算机程序产品时,使得通信装置执行上述各个方面的任一种可能的设计中的方法。
第十一方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述各个方面的任一种可能的设计中的方法。
上述第四方面至第十一方面中任一方面可以达到的技术效果可以参照上述第一方面至第三方面中有益效果的描述,此处不再重复赘述。
附图说明
图1为一种5G网络架构示意图;
图2为本申请实施例提供的报文传输方法适用的一种通信系统的架构示意图;
图3为本申请实施例所提供的一种报文传输方法的流程示意图;
图4为本申请提供方法中UPF实现上下行报文处理的示意图;
图5和图6为本申请提供的方法中两个不同形式的冗余会话进行报文处理的示意图;
图7为本申请提供的方法中UPF实现冗余报文的处理的流程示意图;
图8为本申请提供的方法中第一种设置扩展字段的示意图;
图9为适用本申请提供的方法进行数据报文处理网络构架示意图;
图10为本申请提供的方法中第二种设置扩展字段的示意图;
图11为本申请提供的一种会话管理网元的结构示意图;
图12为本申请提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
首先,对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)用户设备,也称终端侧设备,是一种具有无线收发功能的设备,可以经无线接入网(radio access network,RAN)中的接入网设备(或者也可以称为接入设备)与一个或多个核心网(core network,CN)设备(或者也可以称为核心设备)进行通信。
用户设备也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。用户设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。用户设备可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、手机(mobile phone)、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)等。或者,用户设备还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、第五代移动通信(5th-generation,5G)网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的PLMN中的终端等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如用户设备可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例对终端设备的类型或种类等并不限定。
所述用户设备还可以包括端侧设备,如本地交换机(local switch,LSW),和/或客户端设备(customer premise equipment,CPE)等。
在本申请实施例中注册入网的用户设备(user equipment,UE)可以理解为用户。其中一个UE可以对应一个用户识别模块(subscriber identity module,SIM)卡,即当终端设备安装有一个SIM卡时,终端设备对应一个用户UE,当终端设备安装有多个SIM卡时,终端设备对应多个用户UE。
2)网络设备,指可以为终端提供无线接入功能的设备。其中,网络设备可以支持至少一种无线通信技术,例如长期演进(long term evolution,LTE)、新无线(new radio,NR)、宽带码分多址(wideband code division multiple access,WCDMA)等。
例如网络设备可以包括接入网设备。示例的,网络设备包括但不限于:5G网络中的下一代基站或下一代节点B(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如, home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、小站、微型站等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端、可穿戴设备以及未来移动通信中的网络设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的网络设备等。
又如,网络设备可以包括核心网(CN)设备,核心网设备例如包括AMF等。
3)、通信系统,用于在终端设备请求业务时,采用第三代合作伙伴计划(the 3rd generation partnership project,3GPP)接入技术将终端设备接入数据网络,并实现终端设备和数据网络之间数据的传输以实现相应的业务。
其中,通信系统分为接入网(access network,AN)和核心网(core network,CN)。接入网用于通过3GPP接入技术将终端设备汇接到核心网中。核心网用于将终端设备接入到不同的数据网络。另外,按照逻辑功能划分,核心网又可以分为控制面(信令面)和用户面(数据面)。
还需说明的是,本申请提供的报文传输方法适用的通信系统包括第五代(5th generation,5G)通信系统(即新空口(new radio,NR)通信系统)、未来的新一代通信系统等。
又例如,在5G通信系统中,接入网还可以称为5G无线接入网(NG-无线接入网(radio access network,RAN),即NG-RAN),核心网还可以称为5G核心网(5G Core,5GC)。
4)、接入网(access network,AN)设备:是网络侧的一种用于发射和/或接收信号的实体,作为通信系统中将终端设备接入到无线网络的设备,包括以有线方式或无线方式接入通信系统的设备。其中,以无线方式接入通信系统的无线接入网(radio access network,RAN)设备,在NG-RAN中又可以称为基站,或者RAN节点,或者RAN设备。RAN设备还可以协调对空中接口的属性管理。
例如,RAN设备可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的gNode B(gNB),可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站(也称为小站),可以是中继(relay),可以是分布式网元(distributed unit),可以是各种形式的宏基站,可以是传输接收点(transmission reception point,TRP)、传输测量功能(transmission measurement function,TMF)或传输点(transmission point,TP)或者任何其它无线接入设备,或者下一代通信中的基站,但本申请实施例不限于此。
5)、核心网设备,位于核心网中的网元,用于实现核心网的功能,例如负责根据终端设备通过接入网发送的呼叫请求或业务请求将所述终端设备接续到不同的数据网络上,以及负责计费、移动性管理、会话管理等业务。
6)PDU会话,是终端设备和DN之间交互PDU数据包的业务会话。PDU会话通过建立PDU连接实现。在本申请实施例中,PDU会话也称PDU UE会话,或者UE会话,或者以太会话。
可选的,PDU会话绑定一个“切片+DNN”组合,即PDU会话对应一对切片+DNN的信息。切片可以采用单一网络切片选择辅助信息S-NSSAI标识。或者,PDU会话绑定一个“切片+DNN+会话标识(SessionID)”组合,即PDU会话对应一对切片+DNN和SessionID 的信息。对于不同的PDU会话,SessionID不同,切片+DNN可以相同或不同。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
其次,对本申请实例所涉及的网络场景以及网络场景中有可能涉及的功能模块进行说明,如图1所示,所述5G组网架构可以参考3GPP 23.501协议中定义的组网架构,该架构相关的功能网元的主要功能介绍如下:
应用功能(application function,AF)网元:也称为应用控制器(application controller),主要用于传递应用侧对网络侧的需求,例如服务质量(quality of service,QoS)需求、用户状态事件订阅等。AF网元可以是第三方应用的应用功能实体,也可以是运营商部署的应用服务,如IMS语音呼叫业务。其中,第三方应用的应用功能实体与核心网进行交互时可经由能力开放功能(network exposure function,NEF)网元进行授权处理,例如第三方应用的应用功能实体直接向NEF网元发送请求消息,NEF网元验证AF网元是否被允许发送该请求消息,若验证通过,则转发该请求消息至对应的策略控制功能(policy control function,PCF)网元或统一数据管理功能(unified data management,UDM)网元。
PCF网元:主要用于实现针对会话、业务流级别进行计费、QoS带宽保障及移动性管理、用户设备策略决策等策略控制功能。
UDM网元:主要用于实现管理签约信息、用户接入授权等数据管理功能。
接入和移动性管理功能(access and mobility management function,AMF)网元:主要用于实现对终端设备进行移动性管理、接入鉴权/授权等功能。此外,AMF网元还负责在终端设备与PCF网元间传递用户策略。
会话管理功能(session management function,SMF)网元:主要用于对终端设备进行分组数据单元(packet data unit,PDU)会话管理、PCF下发控制策略的执行、用户面功能(user plane function,UPF)网元的选择、PDU类型为IP类型时终端设备IP地址的分配等。
UPF网元:主要用于作为终端设备和数据网络的接口,完成用户面数据转发、基于会话/流级的计费统计、带宽限制等功能。
统一数据仓库(unified data repository,UDR)网元:主要负责签约信息、策略数据、应用数据等类型的数据的存取功能,UDR网元可以与UDM网元、PCF网元、NEF网元等网元进行接口互联,以实现对应网元访问或调用。
当然,核心网中也可以包括除以上示例说明的网元之外的其它网元,这里不再一一列举。
需要说明的是,本申请对实现各功能的对应网元的名称并不限定,其还可以实现其他功能或与其他功能网元进行融合,并且还可以称为其他名称。
在图1所示的5G组网架构中,网元与网元、网元与设备间的一些相关通信接口的主要功能介绍如下:
N1接口:为AMF网元与终端设备之间的信令面接口,与接入网无关,用于核心网与 终端设备之间交换信令消息,可用于终端设备注册入网、终端设备建立PDU会话、网络侧配置终端设备策略等流程中。
N2接口:为AMF网元与RAN设备之间的接口,用于传递核心网至RAN设备的无线承载控制信息等。
N3接口:为(R)AN设备与UPF网元之间的接口,用于在RAN设备和UPF网元之间传递终端设备的业务数据。
N4接口:为SMF网元与UPF网元之间的接口,用于传递控制面与用户面之间的信息,可用于控制面终端设备根据与运营商的签约信息完成入网操作等流程中。
N6接口:为UPF网元与DN之间的接口,用于在UPF网元和DN之间传递终端设备的业务数据。
N7接口:为PCF网元与SMF网元之间的接口,用于下发PDU会话粒度以及业务数据流粒度控制策略等信息。
N8接口:为AMF网元与UDM网元之间的接口,用于AMF网元从UDM网元获取接入与移动性管理相关签约信息与鉴权数据,以及AMF网元向UDM网元注册终端设备当前移动性管理相关信息等。
N10接口:为SMF网元与UDM网元之间的接口,用于SMF网元从UDM网元获取会话管理相关签约信息,以及SMF网元向UDM网元注册终端设备当前会话相关信息等。
N11接口:为SMF网元与AMF网元之间的接口,用于传递RAN设备和UPF网元之间的PDU会话隧道信息、发送给终端设备的控制消息、发送给RAN设备的无线资源控制信息等。
为了更清楚详细的说明本申请实施例所提供的方法,以下基于上述网络构架及各功能模块的说明,进一步对本申请实施例所提供方法所适用的PDU会话建立以及数据报文转发场景进行说明:
5G网络为UE和DN网络(数据网络,以DNN为标识)提供数据交换服务,该服务称为PDU连接服务。UE通过向移动网络发起PDU会话建立请求获得PDU连接服务。网络侧通过为UE维护PDU会话以提供PDU连接服务。
如图2所示,UE通过(R)AN和UPF将数据发送到DN(即形成UE和DN网络之间的业务数据交换路径),该业务数据交换路径为UE在移动网络中的数据业务路径(数据面路径)。为实现UE与DN网络之间的数据交换,UE需要使用移动网络提供的PDU连接服务,建立基于DNN的PDU会话(信令面流程)。PDU会话的建立包括两个基本过程:UE向移动网络注册入网流程、UE向网络请求建立PDU会话流程。
通用的用户注册入网流程可简单描述为:UE通过(R)AN发送注册请求至AMF,AMF根据用户标识向特定UDM获取签约信息。网络侧经过一系列鉴权、授权操作最终确认允许UE接入网络,此时AMF响应UE注册请求,并向UE下发相关策略信息,UE完成网络注册驻留。网络侧AMF维护UE的注册入网信息,对UE进行移动性管理。
UE完成注册入网后,可发起PDU会话建立请求,获取网络的PDU连接服务。通用的PDU会话建立流程可简单描述为:UE通过RAN发送PDU会话创建请求到AMF,AMF选择SMF为UE提供会话服务,保存SMF与PDU会话的对应关系,并将会话创建请求发送至SMF,SMF为UE选择相应UPF建立用户面传输路径,并为其分配IP地址。
在对UE进行PDU会话管理过程中,SMF通过N4接口与UPF交互,控制UPF创建、 修改、删除相应的UE N4会话(N4Session/PFCP Session)实现对UPF处理数据报文的控制。SMF对UPF内的UE N4会话下发各类数据包处理规则完成对UPF处理数据包的控制。UPF收到外部数据报文后,根据SMF下发的匹配规则(Packet Detection Rule,PDR)进报文匹配,根据转发规则(Forwarding Action Rule,FAR)转发报文。
为便于理解,下面对PDR、FAR进行简要介绍:
PDR由SMF进行PDU会话管理过程中下发给UPF,UPF根据SMF下发的PDR执行对应的数据包匹配规则,并由此获得对应的FAR完成包转发。一个PDR内包含一个PDI参数,PDI参数包含一个或若干个匹配字段,用于与UPF收到的数据报文进行匹配,识别报文,完成数据报文与N4会话的关联。SMF向UPF提供的PDI信息主要如下:
数据报文入口(Source Interface)。
对入口报文进行匹配的一系列参数,如:隧道端点(Local F-TEID),网络实例(Network Instance),UE IP地址,业务数据流过滤器(SDF Filter(s))或应用ID(Application ID)等。
UPF收到一个数据报文后,将数据报文头各字段与PDR内PDI定义的参数项进行匹配,找到报文归属的N4会话以及N4会话内与数据报文具有最高优先级匹配关系的PDR规则完成报文匹配。完成PDR匹配后,PDR规则包含相应的FAR指示,UPF将根据FAR指示完成数据报文转发。其中,FAR主要通过如下信息指示UPF进行数据报文处理:
应用动作参数(Apply Action Parameter),该参数用于指示UPF是否需要对报文进行转发、复制、丢弃,或以通知或不通知控制面(如SMF)的方式缓存下行报文,或指示UPF是否允许UE加入IP组播组;
转发、缓存、复制参数,当应用动作指示UPF对数据包进行转发、缓存或复制时,UPF需要使用这些参数。
在上述PDU会话建立以及数据报文转发场景的基础上,本申请实施例提供一种报文传输方法及装置,该方法中预先在网络侧存储两个签约冗余结对传输的UE的签约信息,并定义如何指示冗余处理以及进行冗余报文处理的方式,从而终端设备以及网络侧设备可以根据定义的方式对冗余报文进行去重、复制以及转发等处理。基于现有技术中PDU会话的管理、建立以及使用流程,以下结合具体的实例对本申请实施例所提供的方法做进一步详细的说明:
首先,在本申请实施例中,可以根据用户的需求对应生成每个用户的签约信息,如果用户签约了冗余传输,即两个不同的UE(第一UE和第二UE)分别创建的第一UE会话和第二UE会话互为冗余传输;则第一UE和第二UE各自对应的签约信息中,可以包括与冗余传输对应的冗余传输参数;其中,冗余传输参数具体可以包括:
A1,UE标识和结对UE标识,用于指示互为冗余传输的两个UE的唯一标识符;其中,在第一UE对应的冗余传输参数中,则所述UE标识为所述第一UE的唯一标识符;然后对应的结对UE标识,则是与第一UE签约了冗余传输的UE的唯一标识,该实例中可以是第二UE的唯一标识符。用于指示UE的唯一标识符可以是用户永久标识(Subscription Permanent Identifier,SUPI)或一般公共订阅标识符(generic public subscription identifier,GPSI)等UE标识符;如果第一UE和第二UE签约了冗余传输,则第一UE对应的冗余传输参数中UE标识可以是UE1SUPI;对应的结对UE标识中可以是UE2SUPI。
A2,切片(S-NSSAI)标识,用于指示UE进行冗余传输时接入的网络切片;
A3,数据网络名称(data network name,DNN)信息,用于指示所述第一UE进行冗余传输时接入的数据网络;
在该实施例中,为了便于第一UE和第二UE实现互为冗余传输,如果连两个UE签约了互为冗余传输,则两个UE所对应的冗余传输参数中切片标识和数据网络名称相同;例如:第一UE和第二UE签约了互为冗余传输,则第一UE对应的冗余传输参数中所包括的切片标识和数据网络名称与第二UE对应的冗余传输参数中所包括的切片标识和数据网络名称相同。
A4,冗余传输指示,用于指示是否启用冗余传输;
A5,冗余方式,是指示报文为冗余报文的方式;为了实现冗余报文的处理,终端侧设备以及网络侧设备都需要通过一种方式实现报文的识别确定传输的报文是否为冗余传输的报文,从而进行报文的去重、复制或转发等操作。本申请实施例中可以在报文中设置扩展字段来携带指示报文为冗余报文的冗余信息,可选的冗余方式可以包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
在现有的UE签约信息中已包括UE标识、切片标识和数据网络名称信息,为了实现本申请实施例所提供的方案在原有签约信息的基础上,可以再添加冗余传输指示、结对UE标识以及冗余方式几个属性参数。
以下提供一种具体的冗余传输参数实例,若第一UE和第二UE签约了冗余传输,第一UE和第二UE各自对应的冗余传输参数示例如下表1所示:
Figure PCTCN2022076065-appb-000001
表1
其中,第一UE的签约信息中的冗余传输参数为上述表1中第一列表项中包括的内容;第二UE对应的冗余传输参数为第二列表项所对应的内容。如上表1所示,第一UE和第二UE所对应的切片标识都为1-010101;数据网络名称信息均为5glan01;即第一UE和第二UE选择同一个网络接入。
在网络侧设备设置好上述签约信息后,结合图1所提供的示例性网络架构,则本申请实施例所提供的一种报文传输方法如图3所示可以包括以下步骤:
S301,UE发起PDU会话创建请求;
如果UE为签约了冗余传输的UE,则该创建请求可以包括签约冗余传输的两个UE发起的会话创建请求;例如:第一UE和第二UE签约了冗余传输,则第一UE和第二UE都发起会话创建请求,分别创建UE会话,然后通过创建的两个UE会话互为冗余传输的方式实现冗余报文的发送。
S302,AMF根据UE对应的签约信息中携带的冗余传输参数确定UE签约了冗余传输,AMF为UE1/UE2选择相同SMF。
S303,AMF与SMF交互,创建UE的PDU会话;
S304,SMF获取UE的签约信息,根据该签约信息中的冗余传输参数,确定创建的 UE会话签约了冗余传输;其中,所述UE包括第一UE和第二UE;所述UE会话包括第一UE会话和第二UE会话;所述签约了冗余传输用于指示第一UE会话和第二UE会话互为冗余传输;其中,所述SMF为第一用户设备(UE1,或称为第一UE)和第二用户设备(UE2或称为第二UE)选择相同的UPF创建N4会话。
在该实施例中,基于上述签约信息及冗余传输参数内容所包括的内容,SMF获取到UE的签约信息后如果从UE对应的签约信息中获取到冗余传输指示、冗余方式或结对UE标识,则可以确定创建的UE会话签约了冗余传输。
S305,创建UE对应的N4会话;
S306,根据所述冗余传输参数向所述UPF下发配置参数;
其中,为了综合处理第一UE会话和第二UE会话对应的冗余报文,所以SMF在为第一UE会话(在该实施例中可以是第一UE对应的N4会话)和第二UE会话(在该实施例中可以是第二UE对应的N4会话)选择相同的UPF;
该配置参数用于指示UPF根据冗余传输指示和冗余方式对所述第一UE会话和第二UE会话的上行冗余报文进行去重;对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;所述冗余传输指示用于指示是否冗余传输;所述冗余方式指示报文为冗余报文的方式;
在该实施例中,因为是结合两个UE结对实现冗余传输的,所以会出现两个UE前后发起会话创建请求,从而先后建立两个实现冗余传输的UE会话,所以针对这种情况在下发配置参数时的具体实现方式可以是:
如果接收到第一UE的会话创建请求时,还没有给UPF下发过针对冗余传输的配置参数(即UPF上还未对UE1和UE2两个结对UE配置冗余处理),则SMF与UPF交互,创建冗余处理功能模块(可以是冗余会话、功能块等形式),该配置参数包括:冗余传输指示,UE N4会话标识(UE1会话标识,指示用于做冗余传输的UE会话),冗余方式(如SDAP扩展),下行规则(下行到达UE1的报文,由冗余处理功能模块处理)。
如果接收到第二UE的会话创建请求时,已经给UPF下发过针对冗余传输的配置参数(即UPF上已经对UE1和UE2两个结对UE配置冗余处理),则SMF与UPF交互,补充UPF冗余处理功能模块的参数,该次下发的配置参数则可以包括:冗余传输指示,冗余处理ID(实现冗余处理的功能模块的ID;若实现冗余处理的是会话,则为会话ID),UE N4会话标识(UE2会话标识,指示用于做冗余传输的UE会话),下行规则(下行到达UE2的报文,由冗余处理功能模块处理)。
S307,SMF与UPF交互,修改UE会话转发规则;
因为两个UE会话签约冗余传输之后,两个会话对应的报文需要进行去重处理,所以报文在转发之前需要通过UPF基于配置参数创建的冗余处理功能模块(会话或功能块等形式)来实现去重操作,所以针对签约了冗余传输的UE会话的报文的转发规则可以是,将报文转发到冗余处理功能模块处理。
基于上述举例,第一UE会话(即UE1 N4会话)和第二UE会话(即UE2 N4会话)签约结对冗余传输,在创建UE1 N4会话、UE2 N4会话过程中,若SMF与UPF交互在UPF中建立实现冗余处理功能的模块为冗余会话,则在UPF中冗余报文(包括上行报文和下行报文)的转发规则可以是如图4所示的方式,具体实现数据报文冗余处理过程可以是:
其中:对于上行报文,SMF配置UE1会话和UE2会话转发规则,将上行报文转到冗余会话。冗余会话完成上行冗余报文去重,并根据目的地址将去重后的报文从N6/N19转发出去,如果目的地址没有转发相应的转发规则,则丢弃报文。
对于UE1会话或UE2会话的下行报文(如冗余会话收到N6/N19下行报文),冗余会话对报文进行冗余复制,并为复制后的报文生成相同的冗余标识,将添加冗余标识后的数据报文分别转发到UE1会话和UE2会话。UE1会话和UE2会话再将报文从N3/N9口发出。
需要说明的是,图4所示冗余会话为实现上述方法的功能模块,即SMF向所述UPF下发配置参数实现冗余传输的具体实现可以有多种形式,以下为一些实现示例,不限于这几种方式:
方式一、指示第一UE会话或第二UE会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;
在该实施例中可以将冗余会话的功能融合到UE1 N4会话中,则对应的在建立UE1 N4会话时,SMF则可以将冗余会话的配置参数与UE1 N4会话的相同参数一同下发到UPF从而UPF则可以根据配置参数建立具有冗余处理功能的UE1 N4会话。如图5所示,针对冗余传输的上行报文和下行报文,则对应的转发到UE1 N4会话进行去重和复制处理。
方式二、指示所述UPF创建第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;该实施例中冗余传输的上行报文和下行报文的处理过程与图4过程相同,此处不再赘述。
方式三、若所述第一UE会话和所述第二UE会话归属相同的5G VN Group组会话,指示所述5G VN Group组会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE。
在3GPP 23.501 4.4.6定义了5G LAN服务,在移动网络通过5G LAN(5G Local Area Network)服务为用户构建一个虚拟移动专网。UE通过建立传统的PDU连接解决了UE与DN网络之间的数据交换问题。5GLAN在传统PDU连接的基础上,增加了组(group)的概念,即归属于同一个5GLAN group的UE既能与group对应的DN网络完成数据交换,又能通过UPF直接同group内的其他UE完成数据交换,两个group之间的UE相互隔离。通过5GLAN可实现虚拟专网通信。
在该实施例中,如果第一UE会话和第二UE会话归属相同的5G VN Group组会话,则可以将冗余传输处理的功能融合集成到该5G VN Group组会话中,则第一UE会话和第二UE会话所对应的冗余报文的转发规则,则是转发到5G VN Group组会话处理。具体报文转发流程如图6所示。
S308,向终端侧设备发送完成UE会话创建的响应消息;其中,所述响应消息中包括所述冗余传输指示和所述冗余方式。
终端侧设备在接收所述创建请求反馈的响应消息,并根据所述冗余传输指示和冗余方 式对第一UE会话和第二UE会话的下行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;
对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
通过上述图3所示的方式,完成了SMF与UPF冗余传输路径的建立和签约,并实现了冗余报文的处理规则设置(即向UPF下发了实现冗余报文处理的配置参数);UPF则可以根据该配置参数实现冗余报文的处理,具体实现可以是(如图7所示):
S701,UPF接收SMF下发的配置参数;
S702,UPF根据所述配置参数中的冗余传输指示和冗余方式对冗余传输的报文进行处理;具体实现可以是:
若第一UE会话和第二UE会话互为冗余传输;根据所述配置参数中的冗余传输指示和冗余方式对第一UE会话和第二UE会话的上行冗余报文进行去重;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE。
在本申请实施例中,该冗余方式可以包括:第一方式和第二方式。其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。冗余信息包括冗余传输指示和冗余标识;不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
以下结合具体的实例对本申请实施例中的两种冗余发生分别进行介绍,具体实现可以是:
第一方式,在服务数据适配协议(service data adaption protocol,SDAP)报文的报文头中增加一个扩展字段(即第一扩展字段)来携带冗余信息,使得接收到冗余报文的处理模块能够根据图3设置的规则,确定报文为冗余传输的冗余报文,从而进行对应处理。如图8所示第一扩展字段可以设置在SDAP Header的最前面,当然该图中实例只是一个具体的举例,该第一扩展字段在可实现的情况下可以设置在报文头的位置。在图8中,示出了扩展前后的SDAP Data PDU帧格式,扩展后的SDAP报文在原有SDAP Header基础上,增加报文冗余标识字段(即第一扩展字段),该字段包含属性如下表2所示(当然该字段的属性并不局限于以下两项):
Figure PCTCN2022076065-appb-000002
表2
基于上述冗余信息的设置方式,以下结合图9所示的实现场景架构,对冗余传输的上行和下行报文处理流程进行详细的说明,在图9所示的实施例中终端侧可以设置一个冗余收发模块(冗余收发为逻辑功能模块,不约束实现实际实现,可以独立于结对UE,也可 是其他形式)对冗余报文进行处理,当然在该实施例中设备、冗余收发模块、以及UE1和UE2都可以统称为终端侧设备;以下以UE1(或称为第一UE)和UE2(或称为第二UE)结对冗余传输,且UE1和UE2建立的第一UE会话和第二UE会话签约冗余传输为例进行具体实现说明:
一、上行报文的处理流程:
B1,设备(该设备可以是UE外接的设备)发送上行报文前,将报文发送到冗余收发模块,然后冗余收发模块复制该上行报文,并生成上行报文对应的冗余信息;并将复制的上行报文以及冗余信息分别发送到UE1和UE2;每个UE会接收到一份冗余报文和一份冗余信息;
其中,复制形成的两份上行报文所对应的冗余标识(该冗余标识可以是报文序列号sequence number)相同;
B2,UE1和UE2将复制形成的上行报文封装为上行SDAP报文时,将所述冗余信息携带在所述上行SDAP报文的报文头的第一扩展字段中,并将封装后的上行SDAP报文通过所述第一UE会话和第二UE会话分别发送到网络侧设备(NG-RAN);
B3,NG-RAN收到携带冗余信息的上行SDAP报文后,将该上行SDAP报文封装为上行GTP-U报文,并将该上行SDAP报文中携带的冗余信息复制到GTP-U报文的报文头扩展字段(该扩展字段可以是GTP-U报文的报文头中原始已经设置的扩展字段),然后通过N3口将上行GTP-U报文发送到UPF;
B4,UPF从NG-RAN收到第一UE(UE1)或第二UE(UE2)的上行GTP-U报文;从上行GTP-U报文的报文头第一扩展字段中获取冗余信息;
B5,将具有相同冗余标识的上行报文去重后再根据转发规则完成报文转发。
二、下行报文的处理流程:
C1,UPF(图9中UPF1)收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,并根据所述第一冗余方式,生成冗余信息;
C2,将复制得到的下行报文封装成下行GTP-U报文;其中,该复制得到的两份下行GTP-U报文的报文头第一扩展字段中包括相同的冗余信息;
C3,将两份下行GTP-U报文发送到NG-RAN;
C4,NG-RAN将下行GTP-U报文封装为下行SDAP报文时;将下行GTP-U报文中的冗余信息添加到下行SDAP报文的报文头第一扩展字段中;并通过第一UE会话和第二UE会话将下行SDAP报文发送到UE;
C5,第一UE会话和第二UE会话收到携带冗余信息的SDAP报文,分别提取SDAP报文冗余信息和PDU数据报文,并分别将冗余信息和PDU数据报文转发到冗余收发模块。冗余收发模块根据冗余信息完成报文冗余去重,将去重后的数据报文转发到终端设备。
第二方式,在Ethernet报文的第二扩展字段中携带冗余信息,使得接收到冗余报文的处理模块能够根据图3设置的规则,确定报文为冗余传输的冗余报文,从而对冗余报文进行对应处理。在该实施例中以虚拟桥接局域网的正式标准802.1Q,对Ethernet帧格式的定义为例,在源MAC地址(SMAC)字段和802.1Q Tag字段之间,或者802.1Q Tag字段与LEN/Type字段之间,加入2+n字节的冗余传输扩展字段(即第二扩展字段),第二扩展字段在源MAC地址(SMAC)字段和802.1Q Tag字段之间的Ethernet报文结构如图10所示。其中,第二扩展字段可以包含2个属性(冗余传输指示和报文冗余标识),各属性的具体 解释如下表3所示:
Figure PCTCN2022076065-appb-000003
表3
基于上述图10所示的冗余信息设置方式,以下结合图9所示的实现场景架构,对冗余传输的上行和下行报文处理流程进行详细的说明,在图9所示的实施例中终端侧可以设置一个冗余收发模块(冗余收发为逻辑功能模块,不约束实现实际实现,可以独立于结对UE,也可是其他形式)对冗余报文进行处理,当然在该实施例中设备、冗余收发模块、以及UE1和UE2都可以统称为终端侧设备;以下以UE1(或称为第一UE)和UE2(或称为第二UE)结对冗余传输,且UE1和UE2建立的第一UE会话和第二UE会话签约冗余传输为例进行具体实现说明:
一、上行报文的处理流程:
D1,设备发送上行报文到达冗余收发模块,冗余收发模块发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识(可以是报文sequence number)相同;
D2,将复制形成的所述上行报文封装为携带冗余信息的上行Ethernet报文,其中所述冗余信息携带在所述上行Ethernet报文的第二扩展字段中;
D3,将封装后的上行Ethernet报文通过所述第一UE会话和第二UE会话发送到网络侧设备;
其中,冗余收发模块可以将复制得到的两份相同的上行Ethernet报文分别发送到UE1和UE2,然后UE1和UE2分别将上行Ethernet报文作为PDU报文发送到对应的NG-RAN。
D4,NG-RAN收到UE的PDU报文,将报文通过N3口发送到UPF。
D5,UPF收到第一UE或第二UE发送的上行Ethernet报文,从所述上行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的上行Ethernet报文进行去重;
在将上行Ethernet报文去重后,还删除上行Ethernet报文中添加的第二扩展字段,报文还原成普通以太报文,再根据转发规则将该普通以太报文转发到N6/N19口发走。
二、下行报文的处理流程:
E1,UPF(图9中UPF1)收到下行到达第一UE会话或第二UE会话的下行报文,复制所述下行报文,根据所述第二冗余方式,生成冗余信息,根据复制后的下行报文得到下行Ethernet报文;其中,所述下行Ethernet报文中包括相同的冗余信息,且所述冗余信息携带在所述下行Ethernet报文的第二扩展字段中;
E2,通过所述第一UE会话和第二UE会话将所述下行Ethernet报文发送到NG-RAN;
E3,NG-RAN收到下行Ethernet报文后,将下行Ethernet报文通过空口发送到第一UE和第二UE。
E4,冗余收发模块收到第一UE会话和第二UE会话的下行Ethernet报文,从所述下行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的下行Ethernet报文进行去重;
冗余收发模块还将去重后的下行Ethernet报文还原成普通以太报文(即删除下行 Ethernet报文中的第二扩展字段),最后将下行Ethernet报文转发到设备。
上述第一方式和第二方式中,用于举例说明的冗余收发模块是实现本申请部分方法的功能模块,这个功能模块的设置方式可以包括多种;例如冗余收发模块和两个UE是封装在一个设备内,冗余收发模块与UE之间的通信,可以是软件层面的函数调用,进程间通信,内存拷贝等,只要UE1,UE2能把数据报文和冗余信息交给冗余模块即可。
或者冗余收发模块和UE1,UE2之间是各自独立的设备,即UE1、UE2需要通过设备间通信方式把数据报文和冗余信息发送给冗余收发模块,UE与冗余收发模块之间数据报文传递可以通过设备与设备之间的任意可选传输方式。
本申请实施例所提供的方法通过双UE双PDU路径实现数据报文的冗余传输,解决设备单点可靠性、空口可靠性问题,提升了3GPP业务数据传输可靠性;
通过上述实现方案,本申请实施例提供的方法在SDAP协议中添加第一扩展字段,从而通过第一扩展字段携带冗余报文的冗余信息,使得接收到冗余报文的设备能够根据该第一扩展字段识别冗余报文;进而能支持SDAP协议类型的报文冗余传输处理。
在Ethernet报文中添加第二扩展字段,通过第二扩展字段携带冗余报文的冗余信息,从而支持Ethernet报文冗余传输。
以上分别从终端设备、核心网中的SMF、UPF等网元,以及终端设备和网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,终端设备和核心网网元可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和核心网设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
基于以上实施例,本申请提供的一种会话管理网元,如图11所示,该会话管理网元可以包括处理单元1101,还可以包括收发单元1102。所述会话管理网元可以为上述任一实施例中会话管理网元。
作为一种实现方式,所述会话管理网元还可以包括存储单元1103,用于存储会话管理网元的程序代码和数据。
其中,处理单元1101可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。
存储单元1103可以是存储器。收发单元1102是一种该装置的接口电路,用于从其它 装置接收信号。例如,当该装置以芯片的方式实现时,收发单元1102是该芯片用于向其它芯片或装置发送信号的接口电路和/或该芯片用于从其它芯片或装置接收信号的接口电路。
在一种实施方式中,该会话管理网元各个功能模块具体实现本申请方案可以是:
收发单元,用于接收用户设备UE发起的UE会话创建请求;
处理单元用于根据所述UE的签约信息中的冗余传输参数,确定创建的UE会话签约了冗余传输;其中,所述UE包括第一UE和第二UE;所述UE会话包括第一UE会话和第二UE会话;所述签约了冗余传输用于指示第一UE会话和第二UE会话互为冗余传输;
处理单元还用于根据所述冗余传输参数为所述第一UE会话和所述第二UE会话选择相同的UPF,并向所述UPF下发配置参数;其中,所述配置参数用于指示UPF根据冗余传输指示和冗余方式对所述第一UE会话和第二UE会话的上行冗余报文进行去重;对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;所述冗余传输指示用于指示是否冗余传输;所述冗余方式指示报文为冗余报文的方式;
所述收发单元还用于向终端侧设备发送完成UE会话创建的响应消息;其中,所述响应消息中包括所述冗余传输指示和所述冗余方式。
在一种可能的设计中,所述第一UE对应的冗余传输参数包括所述冗余传输指示、UE标识、结对UE标识、所述冗余方式、切片标识和数据网络名称信息;其中,所述UE标识,用于指示所述第一UE的唯一标识符;所述结对UE标识,用于指示所述第二UE的唯一标识符;所述切片标识,用于指示所述第一UE进行冗余传输时接入的网络切片;所述数据网络名称,用于指示所述第一UE进行冗余传输时接入的数据网络。
在一种可能的设计中,所述第一UE对应的冗余传输参数所包括的切片标识和数据网络名称与所述第二UE对应的冗余传输参数所包括的切片标识和数据网络名称相同。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
在一种可能的设计中,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,所述处理单元还用于指示第一UE会话或第二UE会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
指示所述UPF创建第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
若所述第一UE会话和所述第二UE会话归属相同的5G VN Group组会话,指示所述5G VN Group组会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE 会话下发到所述第一UE和第二UE。
在另外一种实施例中,本申请还提供第五方面,本申请实施例还提供一种用户面网元,包括:
收发单元,用于接收会话管理网元SMF下发的配置参数;
处理单元,用于根据所述配置参数中的冗余传输指示和冗余方式对第一UE会话和第二UE会话的上行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中;所述冗余信息包括冗余传输指示和冗余标识;不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,当所述冗余方式为第一方式,所述处理单元具体用于:
从NG-RAN收到所述第一UE或第二UE的上行GTP-U报文;从所述上行GTP-U报文的报文头第一扩展字段中获取所述冗余信息;
将具有相同冗余标识的上行GTP-U报文去重;
对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,并根据所述第一冗余方式,生成冗余信息;
将复制得到的下行报文封装成下行GTP-U报文;其中,所述下行GTP-U报文的报文头第一扩展字段中包括相同的冗余信息;
将所述下行GTP-U报文发送到NG-RAN;其中,所述冗余信息指示NG-RAN将所述下行GTP-U报文中的冗余信息封装到下行SDAP报文,并通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE;所述冗余信息携带在所述下行SDAP报文的报文头第一扩展字段中。
在一种可能的设计中,当所述冗余方式为第二方式,所述处理单元具体用于:
收到所述第一UE或第二UE发送的上行Ethernet报文,从所述上行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的上行Ethernet报文进行去重;
所述对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,根据所述第二冗余方式,生成冗余信息,根据复制后的下行报文得到下行Ethernet报文;其中,所述下行Ethernet报文中包括相同的冗余信息,且所述冗余信息携带在所述下行 Ethernet报文的第二扩展字段中;
通过所述第一UE会话和第二UE会话将所述下行Ethernet报文下发到对应的第一UE和第二UE。
本申请实施例,还提供一种终端侧设备,包括:
收发单元,用于发起创建UE会话的创建请求,并接收网络侧设备基于所述创建请求反馈的响应消息;其中,所述响应消息中包括冗余传输指示和冗余方式;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
处理单元,用于根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
在一种可能的设计中,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
在一种可能的设计中,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
在一种可能的设计中,当所述冗余方式为第一方式,所述处理单元具体用于:
根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重包括:
收到第一UE会话和第二UE会话的下行SDAP报文,获取所述下行SDAP报文中的冗余信息,将具有相同冗余标识的下行SDAP报文进行去重;
对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备包括:
发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识相同;
将复制形成的上行报文封装为上行SDAP报文时,将所述冗余信息携带在所述上行SDAP报文的报文头的第一扩展字段中,并将封装后的上行SDAP报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
在一种可能的设计中,当所述冗余方式为第二方式,所述处理单元具体用于:
根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重包括:
收到第一UE会话和第二UE会话的下行Ethernet报文,从所述下行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的下行Ethernet报文进行去重;
对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备包括:
发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识相同;
将复制形成的所述上行报文封装为上行Ethernet报文时,将所述冗余信息携带在所述上行Ethernet报文的第二扩展字段中;
将封装后的上行Ethernet报文通过所述第一UE会话和第二UE会话发送到网络侧设 备。
基于以上实施例,本申请还提供一种通信装置,如图12所示,该通信装置可以为上述会话管理网元、用户面网元和终端侧设备所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于执行上述方法实施例中终端设备或SMF或UPF的功能。为了便于说明,图12仅示出了该通信装置的主要部件。
如图12所示,通信装置1200至少一个处理器1201,以及存储器1202。
所述处理器1201,用于执行所述存储器1202中存储的指令或程序。所述存储器1202中存储的指令或程序被执行时,所述处理器1201用于执行上述实施例中处理单元1101执行的操作,通信接口1203用于执行上述实施例中收发单元1102执行的操作。
所述存储器1202,用于存储程序指令和/或数据。存储器1202和处理器1201耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1201可能和存储器1202协同操作。处理器1201可能执行存储器1202中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
作为一种实现方式,所述通信装置1200还可以包括通信接口1203。
所述通信接口1203,用于通过传输介质和其它通信装置进行通信,从而使通信装置1200可以和其它通信装置进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;通信接口也可以是集成收发功能的收发器、或者是接口电路。
作为一种实现方式,所述装置1200还可以包括通信线路1204。
其中,通信接口1203、处理器1201以及存储器1202可以通过通信线路1204相互连接;通信线路1204可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1204可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
当所述通信装置采用图12所示的形式时,图12中的处理器1201可以通过调用存储器1202中存储的计算机执行指令,使得所述通信装置1200可以执行上述任一方法实施例中终端设备或SMF或UPF执行的方法。
具体的,图11所示的处理单元1101和收发单元1102的功能/实现过程均可以通过图12中的处理器1201调用存储器1202中存储的计算机执行指令来实现;或者,图11所示的处理单元1101的功能/实现过程可以通过图12中的处理器1201调用存储器1202中存储的计算机执行指令来实现,图11所示的收发单元1102的功能/实现过程可以通过图12中的通信接口1203来实现。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理电路(digital signal processor,DSP)、专用集成芯片(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
基于与方法实施例同一发明构思,本申请实施例还提供了一种通信系统,通信系统中可以包括终端设备、SMF和PCF,用于执行上述任一实施例的终端设备、SMF和PCF所执行的方法,相关特征可参见上述方法实施例,此处不再赘述。
在一种可能的设计中,所述通信系统中还可以包括接入网设备、AMF、AF、NEF、UPF中的部分或全部,用于分别执行上述任一实施例中对应的接入网设备、AMF、AF、NEF、UPF所执行的方法。
需要说明的是,通信系统中还可以包含本申请上述实施例所述的任一或任多核心网中其它网元或设备,并用于实现对应的功能,此处不再详述。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本 申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种报文传输方法,其特征在于,包括:
    会话管理网元SMF接收用户设备UE发起的UE会话创建请求,根据所述UE的签约信息中的冗余传输参数,确定创建的UE会话签约了冗余传输;其中,所述UE包括第一UE和第二UE;所述UE会话包括第一UE会话和第二UE会话;所述签约了冗余传输用于指示第一UE会话和第二UE会话互为冗余传输;
    根据所述冗余传输参数为所述第一UE会话和所述第二UE会话选择相同的UPF,并向所述UPF下发配置参数;其中,所述配置参数用于指示UPF根据冗余传输指示和冗余方式对所述第一UE会话和第二UE会话的上行冗余报文进行去重;对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;所述冗余传输指示用于指示是否冗余传输;所述冗余方式指示报文为冗余报文的方式;
    向终端侧设备发送完成UE会话创建的响应消息;其中,所述响应消息中包括所述冗余传输指示和所述冗余方式。
  2. 如权利要求1所述的方法,其特征在于,所述第一UE对应的冗余传输参数包括所述冗余传输指示、UE标识、结对UE标识、所述冗余方式、切片标识和数据网络名称信息;其中,所述UE标识,用于指示所述第一UE的唯一标识符;所述结对UE标识,用于指示所述第二UE的唯一标识符;所述切片标识,用于指示所述第一UE进行冗余传输时接入的网络切片;所述数据网络名称,用于指示所述第一UE进行冗余传输时接入的数据网络。
  3. 如权利要求2所述的方法,其特征在于,所述第一UE对应的冗余传输参数所包括的切片标识和数据网络名称与所述第二UE对应的冗余传输参数所包括的切片标识和数据网络名称相同。
  4. 如权利要求1~3任一所述的方法,其特征在于,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
  5. 如权利要求4所述的方法,其特征在于,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
  6. 如权利要求5所述的方法,其特征在于,所述向所述UPF下发配置参数还包括:
    指示第一UE会话或第二UE会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
    指示所述UPF创建第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
    若所述第一UE会话和所述第二UE会话归属相同的5G VN Group组会话,指示所述5G VN Group组会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE。
  7. 一种报文传输方法,其特征在于,包括:
    用户面网元UPF接收会话管理网元SMF下发的配置参数;
    根据所述配置参数中的冗余传输指示和冗余方式对第一UE会话和第二UE会话的上行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
    对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE。
  8. 如权利要求7所述的方法,其特征在于,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
  9. 如权利要求8所述的方法,其特征在于,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
  10. 如权利要求9所述的方法,其特征在于,当所述冗余方式为第一方式,所述对第一UE会话和第二UE会话的上行冗余报文进行去重包括:
    从NG-RAN收到所述第一UE或第二UE的上行GTP-U报文;从所述上行GTP-U报文的报文头第一扩展字段中获取所述冗余信息;
    将具有相同冗余标识的上行GTP-U报文去重;
    对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
    收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,并根据所述第一冗余方式,生成冗余信息;
    将复制得到的下行报文封装成下行GTP-U报文;其中,所述下行GTP-U报文的报文头第一扩展字段中包括相同的冗余信息;
    将所述下行GTP-U报文发送到NG-RAN;其中,所述冗余信息指示NG-RAN将所述下行GTP-U报文中的冗余信息封装到下行SDAP报文,并通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE;所述冗余信息携带在所述下行SDAP报文的报文头第一扩展字段中。
  11. 如权利要求9所述的方法,其特征在于,当所述冗余方式为第二方式,所述对第一UE会话和第二UE会话的上行冗余报文进行去重包括:
    收到所述第一UE或第二UE发送的上行Ethernet报文,从所述上行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的上行Ethernet报文进行去重;
    所述对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
    收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,根据所述第二冗余方式,生成冗余信息,根据复制后的下行报文得到下行Ethernet报文;其中,所述下行Ethernet报文中包括相同的冗余信息,且所述冗余信息携带在所述下行Ethernet报文的第二扩展字段中;
    通过所述第一UE会话和第二UE会话将所述下行Ethernet报文下发到对应的第一UE和第二UE。
  12. 一种报文传输方法,其特征在于,包括:
    终端侧设备发起创建UE会话的创建请求;
    接收网络侧设备基于所述创建请求反馈的响应消息;其中,所述响应消息中包括冗余传输指示和冗余方式;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
    根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;
    对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
  13. 如权利要求12所述的方法,其特征在于,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
  14. 如权利要求13所述的方法,其特征在于,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
  15. 如权利要求14所述的方法,其特征在于,当所述冗余方式为第一方式,根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重包括:
    收到第一UE会话和第二UE会话的下行SDAP报文,获取所述下行SDAP报文中的冗余信息,将具有相同冗余标识的下行SDAP报文进行去重;
    对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备包括:
    发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识相同;
    将复制形成的上行报文封装为上行SDAP报文时,将所述冗余信息携带在所述上行SDAP报文的报文头的第一扩展字段中,并将封装后的上行SDAP报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
  16. 如权利要求14所述的方法,其特征在于,当所述冗余方式为第二方式,根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重包括:
    收到第一UE会话和第二UE会话的下行Ethernet报文,从所述下行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的下行Ethernet报文进行去重;
    对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备包括:
    发送上行报文前,复制所述上行报文,并生成上行报文对应的冗余信息;其中,复制形成的两份上行报文所对应的冗余标识相同;
    将复制形成的所述上行报文封装为上行Ethernet报文时,将所述冗余信息携带在所述上行Ethernet报文的第二扩展字段中;
    将封装后的上行Ethernet报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
  17. 一种会话管理网元,其特征在于,包括:
    收发单元,用于接收用户设备UE发起的UE会话创建请求;
    处理单元用于根据所述UE的签约信息中的冗余传输参数,确定创建的UE会话签约了冗余传输;其中,所述UE包括第一UE和第二UE;所述UE会话包括第一UE会话和第二UE会话;所述签约了冗余传输用于指示第一UE会话和第二UE会话互为冗余传输;
    处理单元还用于根据所述冗余传输参数为所述第一UE会话和所述第二UE会话选择相同的UPF,并向所述UPF下发配置参数;其中,所述配置参数用于指示UPF根据冗余传输指示和冗余方式对所述第一UE会话和第二UE会话的上行冗余报文进行去重;对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;所述冗余传输指示用于指示是否冗余传输;所述冗余方式指示报文为冗余报文的方式;
    所述收发单元还用于向终端侧设备发送完成UE会话创建的响应消息;其中,所述响应消息中包括所述冗余传输指示和所述冗余方式。
  18. 如权利要求17所述的会话管理网元,其特征在于,所述第一UE对应的冗余传输参数包括所述冗余传输指示、UE标识、结对UE标识、所述冗余方式、切片标识和数据网络名称信息;其中,所述UE标识,用于指示所述第一UE的唯一标识符;所述结对UE标识,用于指示所述第二UE的唯一标识符;所述切片标识,用于指示所述第一UE进行冗余传输时接入的网络切片;所述数据网络名称,用于指示所述第一UE进行冗余传输时接入的数据网络。
  19. 如权利要求18所述的会话管理网元,其特征在于,所述第一UE对应的冗余传输参数所包括的切片标识和数据网络名称与所述第二UE对应的冗余传输参数所包括的切片标识和数据网络名称相同。
  20. 如权利要求17~19任一所述的会话管理网元,其特征在于,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中。
  21. 如权利要求20所述的会话管理网元,其特征在于,所述冗余信息包括冗余传输指示和冗余标识;其中,不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
  22. 如权利要求21所述的会话管理网元,其特征在于,所述处理单元还用于指示第一UE会话或第二UE会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE 会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
    指示所述UPF创建第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE;或者
    若所述第一UE会话和所述第二UE会话归属相同的5G VN Group组会话,指示所述5G VN Group组会话配置为第一冗余处理会话,所述第一冗余处理会话对所述第一UE会话和第二UE会话的上行冗余报文进行去重,对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到所述第一UE和第二UE。
  23. 一种用户面网元,其特征在于,包括:
    收发单元,用于接收会话管理网元SMF下发的配置参数;
    处理单元,用于根据所述配置参数中的冗余传输指示和冗余方式对第一UE会话和第二UE会话的上行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
    对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE。
  24. 如权利要求23所述的用户面网元,其特征在于,所述冗余方式包括第一方式和第二方式;其中,所述第一方式,指示报文为冗余报文的冗余信息设置在SDAP报文的报文头第一扩展字段中;第二方式,指示报文为冗余报文的冗余信息设置在Ethernet报文的第二扩展字段中;所述冗余信息包括冗余传输指示和冗余标识;不同的报文对应不同的冗余标识,携带相同的所述冗余标识的报文为所述冗余报文。
  25. 如权利要求24所述的用户面网元,其特征在于,当所述冗余方式为第一方式,所述处理单元具体用于
    从NG-RAN收到所述第一UE或第二UE的上行GTP-U报文;从所述上行GTP-U报文的报文头第一扩展字段中获取所述冗余信息;
    将具有相同冗余标识的上行GTP-U报文去重;
    对下行到达所述第一UE会话或第二UE会话的下行报文进行冗余复制,并将冗余复制得到的下行冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
    收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,并根据所述第一冗余方式,生成冗余信息;
    将复制得到的下行报文封装成下行GTP-U报文;其中,所述下行GTP-U报文的报文头第一扩展字段中包括相同的冗余信息;
    将所述下行GTP-U报文发送到NG-RAN;其中,所述冗余信息指示NG-RAN将所述下行GTP-U报文中的冗余信息封装到下行SDAP报文,并通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE;所述冗余信息携带在所述下行SDAP报文的报 文头第一扩展字段中。
  26. 如权利要求24所述的用户面网元,其特征在于,当所述冗余方式为第二方式,所述处理单元具体用于:
    收到所述第一UE或第二UE发送的上行Ethernet报文,从所述上行Ethernet报文的第二扩展字段中获取冗余信息;将具有相同冗余标识的上行Ethernet报文进行去重;
    所述对下行到达所述第一UE会话或第二UE会话的报文进行冗余复制,并将冗余复制得到的冗余报文通过所述第一UE会话和第二UE会话下发到对应的第一UE和第二UE包括:
    收到下行到达所述第一UE会话或第二UE会话的下行报文,复制所述下行报文,根据所述第二冗余方式,生成冗余信息,根据复制后的下行报文得到下行Ethernet报文;其中,所述下行Ethernet报文中包括相同的冗余信息,且所述冗余信息携带在所述下行Ethernet报文的第二扩展字段中;
    通过所述第一UE会话和第二UE会话将所述下行Ethernet报文下发到对应的第一UE和第二UE。
  27. 一种终端侧设备,其特征在于,包括:
    收发单元,用于发起创建UE会话的创建请求,并接收网络侧设备基于所述创建请求反馈的响应消息;其中,所述响应消息中包括冗余传输指示和冗余方式;所述冗余传输指示用于指示是否冗余传输;所述冗余方式是指示报文为冗余报文的方式;
    处理单元,用于根据所述冗余传输指示和冗余方式对第一UE会话和第二UE会话的下行冗余报文进行去重;其中,所述第一UE会话和第二UE会话互为冗余传输;对所述第一UE会话或第二UE会话的上行报文进行冗余复制,并将冗余复制得到的上行冗余报文通过所述第一UE会话和第二UE会话发送到网络侧设备。
  28. 一种通信装置,其特征在于,包括:
    至少一个处理器;以及与所述至少一个处理器通信连接的存储器、通信接口;
    其中,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置;
    所述存储器存储有可被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令,使得所述通信装置实现如权利要求1~6中任一项所述的方法,或实现如权利要求7~11中任一项所述的方法,或实现如权利要求12~16中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可读程序,当所述计算机可读程序在通信装置上运行时,使得所述通信装置执行如权利要求1~6中任一项所述的方法,或实现如权利要求7~11中任一项所述的方法,或实现如权利要求12~16中任一项所述的方法。
PCT/CN2022/076065 2021-04-13 2022-02-11 一种报文传输方法及装置 WO2022218020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110393327.X 2021-04-13
CN202110393327.XA CN115209398A (zh) 2021-04-13 2021-04-13 一种报文传输方法及装置

Publications (1)

Publication Number Publication Date
WO2022218020A1 true WO2022218020A1 (zh) 2022-10-20

Family

ID=83570619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076065 WO2022218020A1 (zh) 2021-04-13 2022-02-11 一种报文传输方法及装置

Country Status (2)

Country Link
CN (1) CN115209398A (zh)
WO (1) WO2022218020A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118509870A (zh) * 2023-02-14 2024-08-16 华为技术有限公司 一种通信方法及装置
CN118612798A (zh) * 2024-08-08 2024-09-06 天翼物联科技有限公司 5gc-tsn融合系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784432A (zh) * 2018-07-31 2020-02-11 华为技术有限公司 一种会话创建方法及装置
CN112055383A (zh) * 2020-08-26 2020-12-08 广东省新一代通信与网络创新研究院 一种采用双终端提高数据链路传输可靠性的移动通信系统
WO2020249201A1 (en) * 2019-06-12 2020-12-17 Huawei Technologies Co., Ltd. Methods and devices for establishment of redundant pdu session

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784432A (zh) * 2018-07-31 2020-02-11 华为技术有限公司 一种会话创建方法及装置
WO2020249201A1 (en) * 2019-06-12 2020-12-17 Huawei Technologies Co., Ltd. Methods and devices for establishment of redundant pdu session
CN112055383A (zh) * 2020-08-26 2020-12-08 广东省新一代通信与网络创新研究院 一种采用双终端提高数据链路传输可靠性的移动通信系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2 (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 23.501, vol. SA WG2, no. V16.0.1, 1 April 2019 (2019-04-01), pages 1 - 317, XP051723244 *
REN CHI, MA RUITAO: "Research on System Architecture and Key Technology of uRLLC in 5G Core Network", DESIGNING TECHNIQUES OF POSTS AND TELECOMMUNICATIONS, 15 September 2020 (2020-09-15), CN , pages 44 - 48, XP055977188, ISSN: 1007-3043, DOI: 10.12045/j.issn.1007-3043.2020.09.009 *

Also Published As

Publication number Publication date
CN115209398A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US11425537B2 (en) Communications system, communication method, and apparatus thereof
CN110351024B (zh) 数据传输方法和装置
JP7384979B2 (ja) パケット伝送方法、装置、およびシステム
WO2022152238A1 (zh) 一种通信方法及通信装置
WO2021204003A1 (zh) 一种临近服务的业务处理方法、设备及系统
WO2019184651A1 (zh) 一种通信方法及装置
WO2019242749A1 (zh) 一种切换方法及装置
WO2017049505A1 (zh) 数据传输方法及通信装置
WO2021031022A1 (zh) 链路切换的方法和通信设备
WO2014047939A1 (zh) 数据分流的方法和设备
CN114124618A (zh) 一种报文传输方法及电子设备
WO2022218020A1 (zh) 一种报文传输方法及装置
WO2019192445A1 (zh) 一种组播组创建、组播组加入方法及装置
WO2019019997A1 (zh) 一种组播数据传输方法、相关设备及通信系统
WO2021097858A1 (zh) 一种通信方法及装置
CN107852669A (zh) 利用nfv的mtc服务管理
WO2019076182A1 (zh) 连接处理方法和设备
EP3554023B1 (en) Data transmission method and device
CN115699816A (zh) 用于在双连接下进行侧行链路中继通信的方法
WO2020029445A1 (zh) 无线通信方法、通信设备、芯片和通信系统
CN110620999B (zh) 用户面数据处理方法及装置
KR20220128714A (ko) Pfd 관리 절차에서 양방향 필터를 프로비저닝하는 방법 및 장치
WO2022247679A1 (zh) 移动通信局域网建立方法及装置
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2023197105A1 (zh) 配置信息的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787250

Country of ref document: EP

Kind code of ref document: A1