[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022215427A1 - 延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置 - Google Patents

延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置 Download PDF

Info

Publication number
WO2022215427A1
WO2022215427A1 PCT/JP2022/010551 JP2022010551W WO2022215427A1 WO 2022215427 A1 WO2022215427 A1 WO 2022215427A1 JP 2022010551 W JP2022010551 W JP 2022010551W WO 2022215427 A1 WO2022215427 A1 WO 2022215427A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretched film
stretching
range
mass
Prior art date
Application number
PCT/JP2022/010551
Other languages
English (en)
French (fr)
Inventor
礼子 小渕
博人 伊藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020237033910A priority Critical patent/KR20230154938A/ko
Priority to JP2023512878A priority patent/JPWO2022215427A1/ja
Priority to CN202280024758.1A priority patent/CN117063101A/zh
Publication of WO2022215427A1 publication Critical patent/WO2022215427A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers

Definitions

  • the present invention relates to a stretched film, a method for producing a stretched film, a polarizing plate, and a liquid crystal display device, and more particularly to a stretched film having a low-orientation surface, moderate moisture permeability, and excellent adhesiveness.
  • cycloolefin resins are excellent in transparency, optical properties and durability, optical films whose retardation is adjusted using the cycloolefin resins can be suitably used in VA liquid crystal display devices.
  • melt-casting film-forming methods and solution-casting film-forming methods are known as methods for producing optical films using cycloolefin resins.
  • the films disclosed in Patent Documents 1 and 2 are laminated with a polarizer layer (also referred to as “polarizer film”, “polarizer film” and “polarizer film”)
  • a polarizer layer also referred to as "polarizer film”, “polarizer film” and “polarizer film”
  • the film was required to have an appropriate moisture permeability.
  • the surface preferably has low orientation, and from the viewpoint of adhesion including the drying process after lamination with the polarizer layer, it is necessary to have moderate moisture permeability. It is
  • the present invention has been made in view of the above problems and circumstances, and the problem to be solved is to provide a stretched film having a surface with low orientation, moderate moisture permeability, and excellent adhesiveness, and a method for producing the stretched film. That is.
  • Another object of the present invention is to provide a polarizing plate and a liquid crystal display using the stretched film.
  • the present inventors have discovered that the surface of a stretched film containing a cycloolefin resin having a polar group is irradiated with an X-ray at an angle of 0.1 degrees.
  • the half-value width of the diffraction peak when irradiated is irradiated to a specific range and by controlling the amount of residual solvent, it is possible to provide a stretched film with a low-orientation surface, moderate moisture permeability, and excellent adhesiveness.
  • the present inventors have found the following. That is, the above problems related to the present invention are solved by the following means.
  • a stretched film containing a cycloolefin resin having a polar group The half width of the diffraction peak when the surface of the stretched film is irradiated with X-rays at an angle of 0.1 degree is in the range of 4.6 to 5.4 degrees, and A stretched film having a residual solvent content in the range of 5 to 500 mass ppm.
  • a stretched film manufacturing method for manufacturing the stretched film according to any one of items 1 to 4 A method for producing a stretched film, wherein the stretched film is produced by a solution casting method.
  • a polarizing plate comprising the stretched film according to any one of items 1 to 4.
  • a liquid crystal display device comprising the polarizing plate according to item 8.
  • the means of the present invention it is possible to provide a stretched film having a low-orientation surface, moderate moisture permeability, and excellent adhesiveness, and a method for producing the stretched film. Also, a polarizing plate and a liquid crystal display device using the stretched film can be provided.
  • the half width of the diffraction peak when the surface of the stretched film containing the cycloolefin resin having a polar group is irradiated with X-rays at an angle of 0.1 degree is within the range of 4.6 to 5.4 degrees.
  • the resin molecular chains on the surface become less oriented, and the adhesiveness with an ultraviolet curable adhesive is excellent when the polarizing plate is produced. Further, by setting the amount of residual solvent in the stretched film within the range of 5 to 500 ppm by mass, the orientation of the resin molecular chains on the surface becomes difficult to align, resulting in low orientation, and excellent adhesiveness in this respect as well. Furthermore, by making the resin molecular chains on the surface of the stretched film less oriented as described above, it is possible to secure appropriate moisture permeability, and as a result, the adhesiveness is excellent.
  • the term "orientation" means that the molecular chains in the resin are arranged in a certain direction.
  • a state in which the molecular chains in the resin are highly aligned in the direction perpendicular to the thickness of the film is referred to as "highly oriented.” Therefore, in a resin with a small interaction between resins, a highly oriented region is formed on the surface by stretching.
  • the highly oriented region has a structure in which the main chain spacing is relatively uniform (high crystallinity). In the present invention, by making the surface low-orientation, the main chain spacing is random and the structure is less regular, thereby improving the adhesiveness.
  • a diagram schematically showing the method for producing a stretched film of the present invention Schematic diagram showing an example of the configuration of the polarizing plate of the present invention
  • the stretched film of the present invention is a stretched film containing a cycloolefin-based resin having a polar group, and the surface of the stretched film is irradiated with X-rays at an angle of 0.1 degrees, and the half width of the diffraction peak is is within the range of 4.6 to 5.4 degrees, and the residual solvent amount is within the range of 5 to 500 mass ppm.
  • This feature is a technical feature common to or corresponding to each of the following embodiments.
  • the oxygen transmission rate is in the range of 3000 to 5000 mL/(m 2 ⁇ 24 hr ⁇ atm) under the conditions of a temperature of 23 ° C. and a humidity of 0% RH. It is preferable in that it can be released moderately and a film that is less likely to deteriorate due to durable adhesion can be obtained. Further, it is preferable that the half-value width is in the range of 4.8 to 5.2 degrees, in that the surface has both low orientation and moderate moisture permeability. Furthermore, it is preferable that the stretched film of the present invention contain fine particles because the surface thereof can be inhibited from becoming highly oriented.
  • the stretched film is manufactured by a solution casting method. Accordingly, by adjusting the amount of residual solvent, it is possible to control the stretching conditions in a wide range, and in particular, it is possible to control the stretching conditions in the low temperature region (Tg+30° C. or lower).
  • the dope containing the cycloolefin resin having a polar group is cast on a support to form a web, and then the stretch ratio in the stretching step is an area ratio.
  • the stretch ratio in the stretching step is an area ratio.
  • the amount of residual solvent at the start of stretching in the stretching step is within the range of 700 to 30000 mass ppm. It is also preferable in that the half-value width can be set within the range, and the surface can be both low in orientation and moderate in moisture permeability.
  • the stretched film of the present invention is suitably used for polarizing plates.
  • the polarizing plate is suitably used for a liquid crystal display device.
  • the stretched film of the present invention is a stretched film containing a cycloolefin-based resin having a polar group, and the surface of the stretched film is irradiated with X-rays at an angle of 0.1 degrees, and the half width of the diffraction peak is is within the range of 4.6 to 5.4 degrees, and the residual solvent amount is within the range of 5 to 500 mass ppm.
  • an X-ray diffraction method is suitable for evaluating the orientation of the surface of the stretched film.
  • a method called a thin film method is preferable, in which the incident angle ⁇ of incident X-rays is made small so that the information depth of X-rays detected by diffraction is shallow.
  • the incident angle ⁇ of incident X-rays is fixed at about 0.1 degrees, and the X-ray intensity is measured while changing the angle of the detector.
  • an X-ray diffractometer RINT-TTRII manufactured by Rigaku Denki Co., Ltd. was used as the X-ray diffractometer.
  • the anticathode was Cu and operated at 50 kV-300 mA.
  • the height limiting slit was set to 10 mm, the divergence slit was set to 2/3, and the optical system was adjusted so that the peak half width of Al (200) when measuring the aluminum foil was 0.35 degrees.
  • the film was fixed, ⁇ was fixed at 0.1 degrees, 2 ⁇ was scanned from 5 to 35 degrees in steps of 0.02 degrees, and each step was integrated for 1 second to obtain a diffraction pattern. Background treatment was performed and the half width of the diffraction peak was determined.
  • the half width of the diffraction peak is in the range of 4.6 to 5.4 degrees, preferably in the range of 4.8 to 5.2 degrees.
  • the half width of the diffraction peak represents the distance between crystals, and the lower the orientation, the more random the spacing of the main chains in the resin.
  • the residual solvent amount at the start of stretching in the stretching process As a means for making the half width of such a diffraction peak within the above range, the residual solvent amount at the start of stretching in the stretching process, the stretching ratio at the time of stretching, the heating temperature at the time of stretching, and the main drying after the stretching process. Controlling the drying time, drying time, and the like can be mentioned.
  • the amount of residual solvent at the start of stretching is preferably in the range of 700 to 30000 mass ppm.
  • the draw ratio is preferably in the range of 1.2 to 3.0 times in terms of area ratio (area ratio).
  • the heating temperature during stretching is preferably in the range of 100 to 200°C.
  • the amount of residual solvent at the start of stretching can be controlled by the drying temperature and drying time during preliminary drying before the stretching step, as will be described later.
  • the amount of residual solvent in the stretched film of the present invention is in the range of 5 to 500 mass ppm, preferably in the range of 5 to 100 mass ppm.
  • the amount of residual solvent in the stretched film is defined by the following formula (Z1) as long as it falls within the above range for any period of three months from the shipment of the stretched film.
  • Formula (Z1): Residual solvent amount (ppm) (weight of stretched film before heat treatment - weight of stretched film after heat treatment) / (weight of stretched film after heat treatment) x 10 6
  • the heat treatment for measuring the amount of residual solvent means heat treatment at 115° C. for 1 hour.
  • the amount of residual solvent at the start of stretching in the stretching process includes controlling the magnification, the heating temperature during stretching, and the drying time and drying time during main drying after the stretching step.
  • the oxygen permeability of the stretched film of the present invention is preferably in the range of 3000 to 5000 mL/(m 2 ⁇ 24 hr ⁇ atm) (1 atm is 1.01325 ⁇ 10 5 Pa). More preferably, it is within the range of 5000 mL/(m 2 ⁇ 24 hr ⁇ atm).
  • the measurement of oxygen permeability is calculated as follows. Using an oxygen transmission rate measuring device (model name “Oxytran” (registered trademark) (“OXTRAN” 2/20), manufactured by MOCON, USA) at a temperature of 23 ° C. and a humidity of 0% RH, It is measured based on the B method (isobaric method) described in JIS K7126 (1987). In addition, each of the two test pieces was measured once, and the average value of the two measured values was taken as the value of the oxygen transmission rate.
  • an oxygen transmission rate measuring device model name “Oxytran” (registered trademark) (“OXTRAN” 2/20), manufactured by MOCON, USA
  • B method isobaric method
  • the oxygen permeability is controlled by the orientation state of the surface of the stretched film, and by specifying the half width of the diffraction peak and the residual solvent amount of the stretched film within the above ranges, the surface becomes less oriented and the main chain spacing adopts a random and less regular structure, resulting in a film with low oxygen permeability.
  • the stretched film of the present invention contains a cycloolefin resin having a polar group.
  • the cycloolefin resin according to the present invention is a polymer of a cycloolefin monomer or a copolymer of a cycloolefin monomer and other copolymerizable monomers. Preferably.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2) It is more preferable to have
  • R 1 to R 4 represents a polar group, and the others each independently represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • p represents an integer of 0 to 2; However, R 1 and R 2 do not represent a hydrogen atom at the same time, and R 3 and R 4 do not represent a hydrogen atom at the same time.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms. 1 to 5 hydrocarbon groups are more preferred.
  • a hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds and thioether bonds. Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl, ethyl, propyl, butyl and the like.
  • Examples of polar groups represented by R 1 to R 4 in general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group and a cyano group. is included. Among them, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferred from the viewpoint of ensuring solubility during solution film formation.
  • p is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the stretched film. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R6 represents a polar group, specifically a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom).
  • p represents an integer of 0 to 2;
  • R 5 in general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group.
  • An oxycarbonyl group is more preferred.
  • p in the general formula (A-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the stretched film. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
  • a cycloolefin monomer having a structure represented by general formula (A-2) is preferable from the viewpoint of improving the solubility in organic solvents.
  • breaking the symmetry of an organic compound lowers the crystallinity, thereby improving the solubility in an organic solvent.
  • R 5 and R 6 in general formula (A-2) are substituted only on one ring-constituting carbon atom with respect to the symmetry axis of the molecule, the symmetry of the molecule is low, that is, general formula (A- Since the cycloolefin monomer having the structure represented by 2) is highly soluble, it is suitable for producing a stretched film by a solution casting method.
  • the content of the cycloolefin monomer having the structure represented by the general formula (A-2) in the cycloolefin monomer polymer is based on the total of all cycloolefin monomers constituting the cycloolefin resin. For example, 70 mol % or more, preferably 80 mol % or more, more preferably 100 mol %.
  • the cycloolefin monomer having the structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is enhanced, so that the retardation value tends to increase.
  • cycloolefin monomer having the structure represented by the general formula (A-1) are shown below as Exemplary Compounds 2, 3, and 9 to 14, and the structure represented by the general formula (A-2)
  • Illustrative compounds 15 to 34 show specific examples of cycloolefin monomers having
  • copolymerizable monomers copolymerizable with cycloolefin monomers examples include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers, and addition copolymerization with cycloolefin monomers. possible copolymerizable monomers and the like.
  • copolymerizable monomers capable of ring-opening copolymerization include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
  • addition-copolymerizable copolymerizable monomers include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth)acrylates.
  • unsaturated double bond-containing compounds include olefinic compounds having 2 to 12 (preferably 2 to 8) carbon atoms, examples of which include ethylene, propylene and butene.
  • vinyl-based cyclic hydrocarbon monomers examples include vinylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • (meth)acrylates examples include alkyl (meth)acrylates having 1 to 20 carbon atoms such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
  • the content of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all monomers constituting the copolymer. within the range, preferably within the range of 30 to 70 mol %.
  • the cycloolefin resin is obtained by polymerizing or polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by general formula (A-1) or (A-2). Polymers obtained by copolymerization, examples of which include polymers (1) to (7) below.
  • a ring-opening polymer of a cycloolefin monomer (2) A ring-opening copolymer of a cycloolefin monomer and a copolymerizable monomer capable of ring-opening copolymerization thereof (3) Above (1) or a hydrogenated product of the ring-opening (co)polymer of (2) (4) the ring-opening (co)polymer of (1) or (2) above is cyclized by the Friedel-Crafts reaction and then hydrogen is added (Co)polymer (5) Saturated copolymer of a cycloolefin monomer and an unsaturated double bond-containing compound (6) Addition copolymerization of a cycloolefin monomer with a vinyl-based cyclic hydrocarbon monomer Coalescence and its hydrogenation product (7) Alternating copolymer of cycloolefin monomer and (meth)acrylate
  • the above polymers (1) to (7) can all be obtained by known methods, for example, the methods described in JP-A-2008-107534 and JP-A-2005-227606.
  • the catalyst and solvent used in the ring-opening copolymerization of (2) above can be those described in paragraphs 0019 to 0024 of JP-A-2008-107534.
  • the catalyst used for the hydrogenated products of (3) and (6) above for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used.
  • the acidic compound used in the Friedel-Crafts reaction of (4) above for example, those described in paragraph 0029 of JP-A-2008-107534 can be used.
  • the catalyst used in the addition polymerization of (5) to (7) above for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used.
  • the alternating copolymerization reaction (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
  • the polymers (1) to (3) and (5) above are preferred, and the polymers (3) and (5) above are more preferred.
  • the cycloolefin-based resin can increase the glass transition temperature of the obtained cycloolefin-based resin and can increase the light transmittance. It preferably contains at least one of the structural units represented by the following general formula (B-2), and contains only the structural unit represented by the general formula (B-2), or the general formula (B-1) It is more preferable to include both the structural unit represented by formula (B-2) and the structural unit represented by general formula (B-2).
  • the structural unit represented by general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by general formula (A-1) described above, and is represented by general formula (B-2). is a structural unit derived from the cycloolefin monomer represented by the general formula (A-2) described above.
  • R 1 to R 4 and p have the same definitions as R 1 to R 4 and p in general formula (A-1), respectively.
  • R 5 to R 6 and p have the same definitions as R 5 to R 6 and p in general formula (A-2), respectively.
  • the cycloolefin resin according to the present invention may be a commercially available product.
  • Examples of commercially available cycloolefin resins include JSR Corporation's Arton G (e.g. G7810), Arton F, Arton R (e.g. R4500, R4900 and R5000), and Arton RX. .
  • the intrinsic viscosity [ ⁇ ]inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 /g, more preferably in the range of 0.3 to 3 cm 3 /g when measured at 30°C. is more preferable, and more preferably within the range of 0.4 to 1.5 cm 3 /g.
  • the number average molecular weight (Mn) of the cycloolefin resin is preferably within the range of 8000 to 100000, more preferably within the range of 10000 to 80000, and even more preferably within the range of 12000 to 50000. .
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably within the range of 20000 to 300000, more preferably within the range of 30000 to 250000, and even more preferably within the range of 40000 to 200000. .
  • the number average molecular weight and weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110° C. or higher, preferably in the range of 110 to 350° C., more preferably in the range of 120 to 250° C., and 120 to It is more preferably within the range of 220°C.
  • the glass transition temperature (Tg) is 110°C or higher, it is easy to suppress deformation under high temperature conditions.
  • the glass transition temperature (Tg) is 350° C. or less, the molding process becomes easy, and deterioration of the resin due to heat during the molding process can be easily suppressed.
  • the content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more, relative to the film.
  • the stretched film of the present invention may contain the following as other additives in addition to the above cycloolefin resins.
  • the stretched film of the invention preferably contains at least one plasticizer for the purpose of imparting workability to, for example, a polarizing plate protective film.
  • the plasticizers are preferably used singly or in combination of two or more.
  • plasticizers including at least one plasticizer selected from the group consisting of sugar esters, polyesters, and styrenic compounds is effective in controlling moisture permeability and compatibility with base resins such as cellulose esters. It is preferable from the viewpoint of compatibility with high solubility.
  • the plasticizer preferably has a molecular weight of 15,000 or less, more preferably 10,000 or less, from the viewpoint of achieving both improvement in moist heat resistance and compatibility with the base resin such as cellulose ester.
  • the weight average molecular weight (Mw) is preferably 10,000 or less.
  • a preferred weight average molecular weight (Mw) range is 100 to 10,000, more preferably 400 to 8,000.
  • the compound having a molecular weight of 1500 or less is preferably contained within the range of 6 to 40 parts by mass with respect to 100 parts by mass of the base resin, and 10 to 20 parts by mass. It is more preferable to contain within the range. By containing it within the above range, it is possible to achieve both effective control of moisture permeability and compatibility with the base resin, which is preferable.
  • the stretched film of the present invention may contain a sugar ester compound for the purpose of preventing hydrolysis.
  • a sugar ester compound for the purpose of preventing hydrolysis.
  • the sugar ester compound it is possible to use a sugar ester having at least 1 to 12 pyranose structures or at least one furanose structure and esterifying all or part of the OH groups in the structure. can.
  • the stretched film of the present invention can also contain polyester.
  • the polyester is not particularly limited, but for example, a polymer (polyester polyol) having a terminal hydroxy group obtained by a condensation reaction between a dicarboxylic acid or an ester-forming derivative thereof and a glycol, or a terminal hydroxy group of the polyester polyol.
  • a polymer whose groups are blocked with monocarboxylic acid (terminal-blocked polyester) can be used.
  • esteer-forming derivative as used herein means an esterified product of dicarboxylic acid, a dicarboxylic acid chloride, and an anhydride of dicarboxylic acid.
  • a styrene-based compound may be used in addition to or instead of the above sugar ester and polyester for the purpose of improving the water resistance of the stretched film.
  • the styrene-based compound may be a homopolymer of a styrene-based monomer, or a copolymer of a styrene-based monomer and another copolymerizable monomer.
  • the content of structural units derived from styrene-based monomers in the styrene-based compound is preferably in the range of 30 to 100 mol%, more preferably 50 to 100 mol%, in order for the molecular structure to have a certain or higher bulkiness. can be in range.
  • styrenic monomers include styrene; alkyl-substituted styrenes such as ⁇ -methylstyrene, ⁇ -methylstyrene and p-methylstyrene; halogen-substituted styrenes such as 4-chlorostyrene and 4-bromostyrene; hydroxystyrenes such as styrene, ⁇ -methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, 3,4-dihydroxystyrene; vinylbenzyl alcohols; p-methoxystyrene, p-tert-butoxystyrene, m Alkoxy-substituted styrenes such as -tert-butoxystyrene; vinyl benzoic acids such as 3-vinylbenzoic acid and 4-vinylbenzoic acid; 4-vinylbenzyl acetate; 4-acetoxy
  • the stretched film of the present invention may contain other optional components such as antioxidants, colorants, ultraviolet absorbers, matting agents, acrylic particles, hydrogen-bonding solvents, and ionic surfactants.
  • matting agent fine particles
  • the stretched film of the present invention can use commonly known antioxidants.
  • lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used.
  • antioxidants and the like are added within the range of 0.05 to 20% by mass, preferably within the range of 0.1 to 1% by mass, based on the resin that is the main raw material of the stretched film.
  • a synergistic effect can be obtained by using several kinds of compounds of different types in combination rather than using only one kind of these antioxidants. For example, combined use of lactone, phosphorus, phenol and double bond compounds is preferred.
  • the stretched film of the present invention preferably contains a coloring agent for color adjustment within a range that does not impair the effects of the present invention.
  • a coloring agent means a dye or a pigment, and in the present invention, refers to a substance that has the effect of making the color tone of the liquid crystal screen bluish, adjusting the yellow index, or reducing haze.
  • dyes and pigments can be used as coloring agents, but anthraquinone dyes, azo dyes, phthalocyanine pigments, etc. are effective.
  • the stretched film of the present invention can be used on the viewing side or the backlight side of the polarizing plate, it may contain an ultraviolet absorber for the purpose of imparting an ultraviolet absorption function.
  • the ultraviolet absorber is not particularly limited, but includes, for example, benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based ultraviolet absorbers.
  • benzotriazole-based 2-hydroxybenzophenone-based
  • salicylic acid phenyl ester-based ultraviolet absorbers for example 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3,5 -triazoles such as di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone and 2,2'-dihydroxy-4-methoxybenzophenone, etc. benzophenones can be exemplified.
  • the ultraviolet absorbers may be used singly or in combination of two or more.
  • the amount of the ultraviolet absorber used varies depending on the type of ultraviolet absorber, the conditions of use, etc., but is generally in the range of 0.05 to 10% by mass, preferably 0.1%, based on the base resin. It is added within the range of ⁇ 5% by mass.
  • the stretched film according to the present invention preferably contains a matting agent in order to impart unevenness to the film surface, ensure slipperiness, and achieve a stable roll-up shape when the film is formed.
  • the matting agent can also function to prevent the produced film from being scratched or from being deteriorated in transportability when it is handled.
  • matting agents include fine particles of inorganic compounds and fine particles of resin.
  • fine particles of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, silicic acid.
  • Magnesium and calcium phosphate etc. can be mentioned. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
  • the average particle size of the primary particles of the fine particles is preferably in the range of 5 to 400 nm, more preferably in the range of 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size in the range of 0.05 to 0.3 ⁇ m. Also preferably included.
  • the content of these fine particles in the film is preferably in the range of 0.01 to 1% by mass, more preferably in the range of 0.05 to 0.5% by mass. Further, in the case of a multi-layer structure by co-casting, it is preferable to contain fine particles in this amount on the surface.
  • Fine particles of silicon dioxide are commercially available, for example, under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (manufactured by Nippon Aerosil Co., Ltd.), and can be used.
  • Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 manufactured by Nippon Aerosil Co., Ltd.
  • Zirconium oxide fine particles are commercially available, for example, under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.), and can be used.
  • fine resin particles examples include silicone resins, fluororesins, and acrylic resins. Silicone resins are preferred, and those having a three-dimensional network structure are particularly preferred. are commercially available and can be used. Among these, Aerosil 200V, Aerosil R972V, and Aerosil R812 are particularly preferably used because they are highly effective in lowering the coefficient of friction while keeping the haze of the base film low.
  • the stretched film of the present invention is produced by a solution casting method.
  • the method for producing a stretched film of the present invention includes: (1) a step of preparing a dope containing the cycloolefin resin having the polar group (dope preparation step); (3) a step of evaporating the solvent from the web on the support (solvent evaporation step); A step of peeling from the support (peeling step), (5) a step of drying the obtained film (hereinafter also referred to as "original film”) (first drying step), (6) a step of stretching the film ( stretching step), (7) further drying the stretched film (second drying step), and (8) winding up the obtained stretched film (winding step).
  • stretching is performed at a stretching ratio in the range of 1.2 to 3.0 times in terms of area ratio. It can be within the scope of the invention, and it is preferable in that the surface can achieve both low orientation and moderate moisture permeability.
  • the stretch ratio referred to in the present invention means the ratio (%) of the area of the film after stretching to the area of the original film before stretching. That is, the raw film is stretched in the range of 1.2 to 3.0 times the area ratio of the total stretch ratio of stretching in the vertical (longitudinal) direction and the horizontal (width) direction.
  • the amount of residual solvent in the original film at the start of stretching is within the range of 700 to 30000 ppm by mass, and the half width of the diffraction peak and the amount of residual solvent of the stretched film obtained are It is preferable in that it can be within the scope of the present invention.
  • FIG. 1 is a diagram schematically showing an example of the dope preparation process, the casting process, the drying process, and the winding process of the solution casting film forming method preferred for the present invention.
  • a dispersion of fine particles in which a solvent and a matting agent are dispersed by a disperser is passed from a loading pot 61 through a filter 64 and stocked in a stock pot 62 .
  • the cycloolefin resin which is the main dope
  • the filter 6 added with additives through the confluence tube 20, mixed in the mixer 21, and fed to the pressure die 22.
  • an additive for example, an ultraviolet absorber, etc.
  • a solvent passed through the filter 12 from the additive feeding pot 10 and stocked in the stock pot 13 . After that, it is mixed with the main dope by a confluence tube 20 and a mixer 21 through a filter 15 and a conduit 16 .
  • the main dope fed to the pressure die 22 is cast on a metal belt-shaped support 31 to form a web 32, which is dried and then peeled at a peeling position 33 to obtain a raw film.
  • the peeled web 32 is passed through a number of transport rollers in the first drying device 34, dried to a predetermined amount of residual solvent, and then stretched in the longitudinal direction or the width direction by the stretching device 35. It is stretched so as to have a magnification and heated so as to have a predetermined amount of residual solvent. After stretching, the film is dried while being passed through a conveying roller 37 by a second drying device 36 until a predetermined amount of residual solvent is reached, and then wound into a roll by a winding device 38 . Each step will be described below.
  • Dope preparation step To an organic solvent mainly composed of a good solvent for the cycloolefin resin, add the cycloolefin resin and, depending on the case, a retardation increasing agent, a matting agent (fine particles), or other compounds in a dissolution vessel. It is a step of preparing a dope by dissolving with stirring, or a step of mixing a retardation increasing agent, a matting agent or other compound solution into the cycloolefin resin solution to prepare a dope as a main solution.
  • the organic solvent useful for forming the dope is used without limitation as long as it dissolves the cycloolefin resin and other compounds at the same time. be able to.
  • organic solvents examples include chlorine solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, isopropanol, n-butanol, 2-butanol, and the like.
  • alcoholic solvents methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether;
  • MEK methyl ethyl ketone
  • ethyl acetate diethyl ether
  • the organic solvent used in the present invention is preferably a mixed solvent of a good solvent and a poor solvent
  • the good solvent includes, for example, dichloromethane as a chlorinated organic solvent, methyl acetate as a non-chlorinated organic solvent, ethyl acetate, amyl acetate, acetone, methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro- 1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexa fluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, m
  • the poor solvent is preferably an alcohol-based solvent
  • the alcohol-based solvent is preferably selected from methanol, ethanol and butanol from the viewpoint of improving peelability and enabling high-speed casting.
  • a high percentage of alcohol in the dope gels the web, making it easier to peel off from the metal support, and a low percentage of alcohol causes cycloolefin resins and other compounds in non-chlorine organic solvent systems. It also plays a role in promoting the dissolution of In the production of the stretched film according to the present invention, it is preferable to use a dope having an alcohol concentration in the range of 0.5 to 15.0% by mass in order to improve the flatness of the resulting stretched film. preferable.
  • a method of performing at normal pressure a method of performing at the boiling point of the main solvent or less, a method of performing pressurization at the boiling point or higher of the main solvent, JP-A-9-95544, JP-A-95544, JP-A-95544, 9-95557, or a cooling dissolution method as described in JP-A-9-95538, a high-pressure method described in JP-A-11-21379, and various other dissolution methods can be used.
  • the concentration of the cycloolefin resin in the dope is preferably in the range of 10-40 mass %.
  • the dope is filtered with a filter medium, degassed, and sent to the next step by a liquid-sending pump.
  • a filter medium having a 90% collection particle size of 10 to 100 times the average particle size of fine particles, preferably in a main filter 3 having a leaf disk filter.
  • the filter medium used for filtration has a small absolute filtration accuracy. , there is a problem of lowering productivity. Therefore, in the present invention, the filter medium used for the cycloolefin resin dope preferably has an absolute filtration accuracy of 0.008 mm or less, more preferably 0.001 to 0.008 mm, and more preferably 0.003 to 0.003 mm. Filter media in the range of 006 mm are even more preferred.
  • the material of the filter medium is not particularly limited, and a normal filter medium can be used. It is preferable because there is no
  • the flow rate of the dope during filtration is preferably 10-80 kg/(h ⁇ m 2 ), preferably 20-60 kg/(h ⁇ m 2 ).
  • the productivity becomes efficient, and the flow rate of the dope during filtration is within 80 kg/(h ⁇ m 2 ). If so, the pressure applied to the filter medium becomes appropriate and the filter medium is not damaged, which is preferable.
  • the filtration pressure is preferably 3500 kPa or less, more preferably 3000 kPa or less, and even more preferably 2500 kPa or less.
  • the filtration pressure can be controlled by appropriately selecting the filtration flow rate and filtration area.
  • the main dope may contain about 10 to 50% by mass of returned materials.
  • Returned material is, for example, finely pulverized cycloolefin resin film, which is generated when cycloolefin resin film is formed, such as cut off both sides of the film, scratches, etc., exceeding the specified value of the film.
  • a raw cycloolefin resin film is used.
  • pelletized cycloolefin resin and other compounds can be preferably used in advance.
  • the metal support in the casting process preferably has a mirror-finished surface, and as the metal support, a stainless steel belt or a casting drum with a plated surface is preferably used.
  • the width of the cast can be in the range 1-4 m, preferably in the range 1.3-3 m, more preferably in the range 1.5-2.8 m.
  • the surface temperature of the metal support in the casting step is set in the range of -50.degree.
  • a higher temperature is preferable because the drying speed of the web (a dope film formed by casting dope on a casting support is called a web) can be increased. Flatness may deteriorate.
  • a preferable support temperature is appropriately determined in the range of 0 to 100°C, more preferably in the range of 5 to 30°C. Alternatively, it is also a preferred method to gel the web by cooling and remove it from the drum in a state containing a large amount of residual solvent.
  • a method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot or cold air and a method of contacting the back side of the metal support with hot water. Heat transfer is more efficient when hot water is used, which is preferable because it takes less time for the temperature of the metal support to become constant.
  • hot air considering the temperature drop of the web due to the latent heat of evaporation of the solvent, hot air above the boiling point of the solvent may be used while preventing foaming and using air with a temperature higher than the target temperature. .
  • the die is preferably a pressurized die that can adjust the shape of the slit in the mouthpiece part of the die and makes it easy to achieve a uniform film thickness.
  • the pressure die includes a coat hanger die, a T die, and the like, both of which are preferably used.
  • the surface of the metal support is a mirror surface. In order to increase the film-forming speed, two or more pressurizing dies may be provided on the metal support, and the doping amount may be divided for lamination.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 30 to 100°C. In order to maintain the atmosphere at 30 to 100° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat it by means such as infrared rays.
  • (2-3) Peeling Step This is a step of peeling off the web from which the solvent has evaporated on the metal support at the peeling position.
  • the peeled web is sent to the next process as a raw film.
  • the temperature at the peeling position on the metal support is preferably in the range of 10-40°C, more preferably in the range of 11-30°C.
  • the solvent in the web is evaporated in the solvent evaporation step, and the amount of the solvent remaining in the web on the metal support at the time of peeling is preferably in the range of 15 to 100% by mass.
  • the amount of residual solvent is preferably controlled by the drying temperature and drying time in the solvent evaporation step. If the web is peeled with a large amount of residual solvent, the web will be too soft and the flatness of the peeled web will be easily lost, and wrinkles and vertical streaks will easily occur due to peeling tension. A solvent amount is determined.
  • the amount of residual solvent in the web or original film is defined by the following formula (Z2).
  • Formula (Z2): Residual solvent amount (%) (mass of web or raw film before heat treatment - mass of web or raw film after heat treatment) / (mass of web or raw film after heat treatment) ⁇ 100 Note that the heat treatment for measuring the amount of residual solvent means heat treatment at 115° C. for 1 hour.
  • the peel tension when peeling the web from the metal support to form the original film is usually in the range of 196 to 245 N / m, but if wrinkles are likely to occur during peeling, the tension is 190 N / m or less. It is preferable to peel with.
  • the temperature at the peeling position on the metal support is preferably in the range of -50 to 40°C, more preferably in the range of 10 to 40°C, and in the range of 15 to 30°C. is most preferred.
  • the drying process can be divided into a preliminary drying process (first drying process) and a main drying process (second drying process).
  • Pre-drying step (first drying step) The original film obtained by web-peeling from the metal support is pre-dried in the first drying device 34 . Pre-drying of the raw film may be carried out while conveying the raw film with a number of rollers arranged vertically, or may be conveyed by fixing both ends of the raw film with clips as in a tenter dryer. It may be dried while
  • the drying temperature in the pre-drying step of the web is preferably (Tg-5) ° C. or lower and (Tg + 30) ° C. or higher for 1 to 30 minutes when the glass transition temperature of the raw film is Tg. It is effective to perform heat treatment within the range. Specifically, the drying temperature is in the range of 40 to 150°C, more preferably in the range of 80 to 100°C.
  • the amount of residual solvent in the original film during stretching is preferable to adjust the amount of residual solvent in the original film during stretching, which will be described later, in this drying step, but the amount of residual solvent may be adjusted in the initial stage of the stretching step.
  • the residual solvent amount is preferably controlled by the drying temperature and drying time in the preliminary drying step.
  • the amount of residual solvent in the raw film at the start of stretching is preferably within the range of 700 to 30000 ppm by mass, and within the range of 2000 to 20000 ppm by mass. is more preferable.
  • the half width of the diffraction peak when the surface of the stretched film of the present invention after stretching is irradiated with X-rays at an angle of 0.1 degree is within the above-mentioned specific range,
  • the amount of residual solvent in the stretched film can be controlled, and a stretched film having a low-orientation surface, moderate moisture permeability, and excellent adhesiveness can be obtained.
  • the amount of residual solvent in the original film is within the above range even at least once.
  • the amount of residual solvent in the original film at the start of stretching is defined by the following formula (Z3).
  • Residual solvent amount (ppm) (mass of raw film before heat treatment - mass of raw film after heat treatment) / (mass of raw film after heat treatment) ⁇ 10 6
  • the heat treatment for measuring the amount of residual solvent means heat treatment at 115° C. for 1 hour.
  • the raw film according to the present invention is preferably stretched in the longitudinal direction (also referred to as the MD direction or casting direction) and/or the width direction (also referred to as the TD direction), and at least the width direction is stretched by a stretching device. It is preferable to stretch and manufacture.
  • the stretching operation may be performed in multiple steps. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps. In this case, stepwise, for example, it is possible to sequentially perform stretching in different stretching directions, or to divide stretching in the same direction into multiple stages and add stretching in different directions to any of the stages. is also possible.
  • ⁇ Stretching in the longitudinal direction ⁇ stretching in the width direction ⁇ stretching in the longitudinal direction ⁇ stretching in the longitudinal direction ⁇ Stretching in the width direction ⁇ stretching in the width direction ⁇ stretching in the longitudinal direction ⁇ stretching in the longitudinal direction also includes stretching in one direction and shrinking the other by relaxing the tension.
  • the glass transition temperature of the raw film is Tg, in the longitudinal direction and / or in the width direction, preferably in the width direction, so that the film thickness after stretching is in the desired range, (Tg- 30) to (Tg+50)°C.
  • Tg- 30 the half width of the diffraction peak and the residual solvent amount of the stretched film of the present invention can be controlled within the above range, and the stretched film has a low surface orientation and excellent adhesiveness. can get.
  • it is easy to adjust the retardation, and the drawing stress can be reduced, so that the haze is lowered.
  • the stretching temperature is preferably in the range of (Tg-40) to (Tg+40)°C. Drying is carried out at a stretching temperature of 100 to 200°C.
  • the glass transition temperature Tg referred to here is the midpoint glass transition temperature (Tmg) measured using a commercially available differential scanning calorimeter at a heating rate of 20°C/min and determined according to JIS K7121 (1987). is.
  • a specific method for measuring the glass transition temperature Tg of the stretched film is measured using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K7121 (1987).
  • the original film is stretched at a stretch ratio within the range of 1.2 to 3.0 times in terms of area ratio, so that the half width of the diffraction peak and the residual solvent amount of the stretched film obtained are It can be within the scope of the present invention, and it is preferable in that the surface can achieve both low orientation and moderate moisture permeability.
  • the original film may be stretched in either the widthwise direction or the lengthwise direction, and is more preferably stretched in both the widthwise direction and the lengthwise direction. Stretching should be within the range of 0 times.
  • the method of stretching in the longitudinal direction there is no particular limitation on the method of stretching in the longitudinal direction.
  • these methods may be used in combination.
  • the entire drying process or a part of the drying process as shown in Japanese Patent Application Laid-Open No. 46625/1987 is carried out by holding both widthwise ends of the web with clips or pins in the width direction.
  • a method of drying while drying (called a tenter method), among which a tenter method using clips and a pin tenter method using pins are preferably used.
  • the stretching rate is 250%/min or more, the flatness is improved and the film can be processed at high speed, which is preferable from the viewpoint of production suitability. If it is 500%/min or less, the film breaks. It is preferable because it can be processed without
  • a preferred drawing speed is in the range of 300 to 400%/min, which is effective when drawing at a low magnification.
  • the stretching speed is defined by Equation 1 below.
  • Stretching speed (% / min) [(d1 / d2) -1] ⁇ 100 (%) / t (In formula 1, d1 is the width dimension in the stretching direction of the stretched film according to the present invention after stretching, d2 is the width dimension in the stretching direction of the original film before stretching, and t is the time required for stretching. (min).)
  • the stretched film according to the present invention has a desired retardation value by stretching as described above.
  • the in-plane retardation value Ro and the thickness direction retardation value Rt were measured using an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics) under an environment of 23°C and 55% RH. It can be calculated from the refractive indices nx, ny, and nz obtained by three-dimensional refractive index measurement at a wavelength of 590 nm.
  • the retardation value Ro in the in-plane direction of the stretched film is within the range of 40 to 60 nm, represented by the following formulas (i) and (ii), and the retardation value in the film thickness direction It is preferable that Rt is in the range of 110 to 140 nm from the viewpoint of improving visibility such as viewing angle and contrast when it is provided in a VA type liquid crystal display device.
  • the stretched film can be adjusted within the range of the above-mentioned retardation value by stretching while adjusting the stretch rate at least in the width direction.
  • nx represents the refractive index in the direction x in which the refractive index is maximized in the in-plane direction of the film.
  • ny represents the refractive index in the direction y perpendicular to the direction x in the in-plane direction of the film.
  • nz represents the refractive index in the thickness direction z of the film.
  • d represents the film thickness (nm).
  • holding and relaxation are usually performed after stretching. That is, in this step, it is preferable to carry out, in this order, a stretching step of stretching the raw film, a holding step of holding the raw film in the stretched state, and a relaxing step of relaxing the raw film in the stretched direction.
  • the stretching at the stretching ratio achieved in the stretching stage is held at the stretching temperature in the stretching stage.
  • the relaxation stage the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching.
  • the relaxation stage may be performed at a temperature equal to or lower than the stretching temperature in the stretching stage.
  • the second drying device 36 heats and dries the stretched film.
  • This main drying step can also control the half-value width of the diffraction peak and the residual solvent amount of the stretched film of the present invention within the above ranges.
  • a nozzle capable of exhausting used hot air (solvent-containing air or wetting air) to prevent the used hot air from being mixed.
  • the hot air temperature is preferably in the range of (Tg-20) to (Tg+50) ° C., specifically, when the glass transition temperature of the original film is Tg, specifically in the range of 40 to 250 ° C. preferable.
  • the drying time is preferably about 5 seconds to 60 minutes, more preferably 10 seconds to 30 minutes.
  • the heating and drying means is not limited to hot air, and infrared rays, heating rollers, microwaves, flash lamp annealing, etc. can be used, for example. From the viewpoint of simplicity, it is preferable to dry the film with hot air or the like while transporting the film with transport rollers 37 arranged in a zigzag pattern.
  • the drying temperature is more preferably in the range of 40 to 350° C. in consideration of the amount of residual solvent, the expansion ratio during transportation, and the like.
  • flash lamp annealing it is preferable to irradiate within the range of 200 to 1000 V for 100 to 5000 ⁇ sec.
  • the film is preferably dried until the amount of residual solvent is 100 ppm by mass or less.
  • Winding Step (4-1) Knurling Processing After a predetermined heat treatment or cooling treatment, it is preferable to provide a slitter and cut off the ends before winding, in order to obtain a good winding shape. Furthermore, it is preferable to perform knurling processing on both widthwise end portions.
  • the knurling process can be formed by pressing a heated embossing roller against the width edge of the film.
  • the embossing roller has fine unevenness, and by pressing it against the film, unevenness is formed on the film, and the edges can be made bulky.
  • the height of the knurling at both ends of the stretched film according to the present invention is preferably 4 to 20 ⁇ m and the width is preferably 5 to 20 mm. Further, in the present invention, the knurling process is preferably provided after drying and before winding in the film forming process.
  • (4-2) Winding step This is a step of winding the stretched film after the amount of residual solvent in the stretched film reaches 500 ppm by mass or less. A good film can be obtained.
  • a commonly used winding method may be used, and there are constant torque method, constant tension method, taper tension method, program tension control method with constant internal stress, etc., and they can be used properly.
  • the stretch ratio in the stretching step is in the range of 1.2 to 3.0 times in terms of area ratio, and the amount of residual solvent at the start of stretching is 700.
  • the half width of the diffraction peak when the surface of the stretched film of the present invention is irradiated with X-rays at an angle of 0.1 degree is 4.6 to 5.4 degrees. and the amount of residual solvent in the stretched film can be controlled within the range described above. As a result, the surface of the stretched film becomes less oriented, suitable moisture permeability can be secured, and adhesiveness is excellent.
  • the moisture permeability (40° C., 95% RH) of the stretched film of the present invention is within the range of 1 to 500 g/(m 2 ⁇ 24 h) and within the range of 10 to 200 g/(m 2 ⁇ 24 h). is more preferred.
  • the moisture permeability was measured by leaving the film to be measured under conditions of 40° C. and 95% RH for 24 hours based on the calcium chloride-cup method described in JIS Z 0208.
  • the stretched film according to the present invention preferably has a long length, specifically, preferably has a length of about 100 to 10,000 m, and is wound into a roll.
  • the width of the stretched film according to the present invention is preferably 1 m or more, more preferably 1.3 m or more, and particularly preferably 1.3 to 4 m.
  • the thickness (thickness) of the film after stretching is preferably in the range of 10 to 50 ⁇ m from the viewpoint of thinning the display device and productivity. If the thickness is 10 ⁇ m or more, film strength and retardation above a certain level can be expressed. If the thickness is 50 ⁇ m or less, a desired retardation can be obtained, and the thickness can be reduced for polarizing plates and display devices. Preferably, it is in the range of 20-40 ⁇ m.
  • the stretched film of the present invention is suitably used as a protective film for polarizing plates and the like, and can be used in various optical measurement devices and display devices such as liquid crystal display devices and organic electroluminescence display devices.
  • the polarizing plate of the present invention comprises the above stretched film of the present invention.
  • the polarizing plate 200 of the present invention comprises at least a polarizing plate protective film 300, a polarizer layer 400, a stretched film 100 of the present invention and an adhesive sheet 500 laminated in this order. is a board.
  • the adhesive sheet has an adhesive layer formed from an adhesive composition.
  • the pressure-sensitive adhesive sheet for example, a double-sided pressure-sensitive adhesive sheet having only a pressure-sensitive adhesive layer, a substrate, and pressure-sensitive adhesive layers formed on both sides of the substrate, at least one pressure-sensitive adhesive layer being formed from the pressure-sensitive adhesive composition.
  • a double-sided pressure-sensitive adhesive sheet that is a pressure-sensitive adhesive layer formed on a substrate, a single-sided pressure-sensitive adhesive sheet that has the above-mentioned pressure-sensitive adhesive layer formed on one side of the substrate, and the pressure-sensitive adhesive layer of these pressure-sensitive adhesive sheets that are not in contact with the substrate A pressure-sensitive adhesive sheet having a separator attached to the surface can be used.
  • the pressure-sensitive adhesive composition preferably comprises, for example, an acrylic pressure-sensitive adhesive main agent, a cross-linking agent, an antioxidant, and the like.
  • acrylic pressure-sensitive adhesive base include 4-hydroxybutyl acrylate units (4-HBA), butyl acrylate units, and methyl acrylate units.
  • cross-linking agent include tolylene diisocyanate-based compounds and xylylene diisocyanate.
  • antioxidants examples include hindered phenolic antioxidants such as pentaerythritol-tetrakis(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate) (manufactured by BASF Japan, IRGANOX1010), Phosphorus antioxidants such as tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS168, manufactured by BASF Japan).
  • hindered phenolic antioxidants such as pentaerythritol-tetrakis(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate) (manufactured by BASF Japan, IRGANOX1010)
  • Phosphorus antioxidants such as tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS168, manufactured by BASF Japan).
  • the acrylic pressure-sensitive adhesive main agent in the pressure-sensitive adhesive composition is preferably contained in the range of 10 to 90% by mass, and the cross-linking agent is contained in the range of 0.01 to 5.00% by mass.
  • the content of the antioxidant is preferably within the range of 0.01 to 5.00% by mass.
  • the pressure-sensitive adhesive sheet preferably has a low water content in order to suppress the occurrence of high-humidity shock. . Therefore, the moisture content of the pressure-sensitive adhesive sheet is preferably in the range of 3.0 to 10.0%, particularly preferably in the range of 3.5 to 5.5%.
  • the moisture content of the adhesive sheet is determined by forming an adhesive layer on a polyester film with a thickness of 50 ⁇ m, cutting it to 60 mm ⁇ 130 mm, and then pasting the adhesive sheet on a polycarbonate having a thickness of 1 mm cut to 70 mm ⁇ 150 mm. It is obtained by standing in an environment of 40° C. and 95% RH for 48 hours and measuring the mass increase of the adhesive.
  • the content of 4-hydroxybutyl acrylate units (4-HBA) in the pressure-sensitive adhesive composition is The content may be within the range of 4.0 to 25% by mass.
  • polarizer layer refers to an element that transmits only light with a plane of polarization in a certain direction.
  • a polarizing film (also referred to as a “polarizer film” and a “polarizer film”) constituting a typical polarizer layer known at present is a polyvinyl alcohol-based polarizing film.
  • the polyvinyl alcohol-based polarizing film includes a polyvinyl alcohol-based film dyed with iodine and a polyvinyl alcohol-based film dyed with a dichroic dye.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a dichroic dye (preferably a film further subjected to durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used.
  • the absorption axis of the polarizing film (polarizer layer) is generally parallel to the maximum stretching direction.
  • JP 2003-248123, JP 2003-342322, etc. ethylene unit content 1 to 4 mol%, degree of polymerization 2000 to 4000, degree of saponification 99.0 to 99.99 mol% Ethylene modified polyvinyl alcohol is used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73° C. is preferably used.
  • the thickness of the polarizer layer is preferably in the range of 5 to 30 ⁇ m, and more preferably in the range of 5 to 20 ⁇ m for thinning the polarizing plate.
  • the angle formed by the in-plane slow axis of the stretched film of the present invention and the absorption axis of the polarizer layer is in the range of 20 to 70 degrees. It is preferably in the range of 30 to 60 degrees, more preferably in the range of 40 to 50 degrees.
  • the stretched film of the present invention is used as a retardation film for VA, the in-plane slow axis of the stretched film of the present invention and the absorption axis of the polarizer layer can be substantially orthogonal.
  • the polarizer layer and the stretched film are preferably bonded together via an adhesive or a pressure-sensitive adhesive.
  • the adhesive may be a water-based adhesive containing polyvinyl alcohol resin or urethane resin as a main component, or a photocurable adhesive containing photocurable resin such as epoxy resin as a main component.
  • the adhesive may contain acrylic polymers, silicone polymers, polyesters, polyurethanes, polyethers, etc. as base polymers. Among them, water-based adhesives are preferable because they have good affinity with the stretched film of the present invention and are less likely to be distorted due to water absorption.
  • the bonding of the polarizer layer and the stretched film of the present invention can usually be carried out by roll-to-roll.
  • a polarizing plate protective film is arranged on the surface of the polarizer layer opposite to the stretched film.
  • polarizing plate protective films include commercially available cellulose acylate films (e.g., Konica Minolta Tack KC6UA, KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 , KC8UY-HA, KC8UX-RHA, KC8UE, KC4UE, KC4UE, KC4HR-1, KC4KR-1, KC4UA, KC6UA (manufactured by Konica Minolta Opto Co., Ltd.) and the like.
  • the thickness of the polarizing plate protective film is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m, more preferably in the range of 10 to 60 ⁇ m, and preferably in the range of 20 to 60 ⁇ m. Especially preferred.
  • the liquid crystal display device of the present invention is a liquid crystal display device in which the polarizing plate is adhered to at least one surface of a liquid crystal cell, and the adhesive sheet is adjacent to the liquid crystal cell.
  • FIG. 3 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 3 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 3 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 3 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a
  • the display mode of the liquid crystal cell 30 may be any display mode such as TN (Twisted Nematic), VA (Visual Alignment), or IPS (InPlane Switching).
  • TN Transmission Nematic
  • VA Visual Alignment
  • IPS InPlane Switching
  • the IPS mode is preferable.
  • the VA mode is preferable.
  • the first polarizing plate 40 is arranged on the surface of the liquid crystal cell 30 on the viewing side, and is arranged on the first polarizer layer 41 and the surface of the first polarizer layer 41 opposite to the liquid crystal cell. and a protective film 45 (F2) disposed on the surface of the first polarizer layer 41 on the liquid crystal cell side.
  • the second polarizing plate 50 is arranged on the backlight side surface of the liquid crystal cell 30 , the second polarizer layer 51 and the protective layer 51 arranged on the liquid crystal cell side surface of the second polarizer layer 51 . It includes a film 53 (F3) and a protective film 55 (F4) disposed on the side of the second polarizer layer 51 opposite to the liquid crystal cell.
  • the absorption axis of the first polarizer layer 41 and the absorption axis of the second polarizer layer 51 are preferably orthogonal.
  • the protective film 45 (F2) can be the stretched film of the present invention.
  • the protective film 45 (F2) and the first polarizer layer 41 are directly laminated.
  • the in-plane slow axis of the protective film 45 (F2) and the absorption axis of the first polarizer layer 41 can be substantially orthogonal.
  • the protective film 45 (F2) and the liquid crystal cell 30 are adhered with an adhesive sheet 48 interposed therebetween.
  • the protective films 43 (F1), 53 (F3) and 55 (F4) can be, for example, the polarizing plate protective films described above.
  • FIG. 2 shows an example in which the protective film 45 (F2) is the stretched film of the present invention, it is not limited to this, and 53 (F3) may be the stretched film of the present invention.
  • Cycloolefin resin As the cycloolefin resin used in the examples, the following cycloolefin resin was used. Cycloolefin resin: ARTON G7810 (manufactured by JSR)
  • Finemet NF manufactured by Nippon Seisen Co., Ltd.
  • a main dope having the following composition was prepared.
  • Dichloromethane and ethanol were first added to the pressurized dissolution tank.
  • a cycloolefin resin and a fine particle addition liquid were put into a pressurized dissolution tank containing dichloromethane while stirring. This is heated and stirred to dissolve the resin, which is passed through Azumi Filter Paper No. 1 (manufactured by Azumi Filter Paper Co., Ltd.). 244 was used to prepare the main dope.
  • Cycloolefin resin (ARTON G7810 (manufactured by JSR)) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Microparticle additive liquid 3 parts by mass
  • the main dope was uniformly cast on a stainless steel belt support at a temperature of 31°C and a width of 1800 mm using an endless belt casting apparatus.
  • the temperature of the stainless steel belt was controlled at 28°C.
  • the conveying speed of the stainless steel belt was 20 m/min.
  • the solvent was evaporated on a stainless steel belt support until the amount of residual solvent in the cast film reached 30.3% by mass.
  • the optical film 101 was obtained by peeling (unstretched) from the stainless steel belt support with a peeling tension of 128 N/m.
  • the optical film 101 was dried by heating at 100° C. in a belt dryer before stretching, and after controlling the amount of residual solvent at the start of stretching to be 1000 mass ppm, it was heated at Tg+25° C. (190). , at the draw ratios listed in Table I. After stretching, the film was dried for 30 minutes at Tg-20°C (145°C) in a belt dryer. Thus, a stretched film 101 having a film thickness shown in Table I below was obtained.
  • the optical film 101 is dried by heating at 50°C in a belt dryer before stretching, and the amount of residual solvent at the start of stretching is controlled to 30000 ppm by mass. , Tg-30°C (135°C) and stretched at the draw ratio shown in Table I. After stretching, the film was dried at Tg-20°C (145°C) with a belt dryer. Thus, a stretched film 104 having a thickness shown in Table I below was obtained.
  • the optical film 101 is dried by heating at 80° C. in a belt dryer before stretching, and the amount of residual solvent at the start of stretching is controlled to 2000 mass ppm. Then, the film was heated at Tg + 50°C (215°C) and stretched at the draw ratio shown in Table I. After stretching, the film was dried at Tg-20°C (145°C) with a belt dryer. Thus, a stretched film 106 having a film thickness shown in Table I below was obtained.
  • a ZB film (a cycloolefin resin film having no polar group), which is a retardation film manufactured by Zeon Corporation, was used as the film 107 . Note that the ZB film is a stretched film that has been stretched without residual solvent.
  • composition of main dope Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose acetate propionate (acetyl group substitution degree 1.88, propionyl group substitution degree 0.58) 100 parts by mass Carboxylic acid sugar ester compound (benzyl saccharose having an average substitution degree of 6.5) 9 parts by mass The following aromatic terminal polyester compound (5) 3 parts by mass
  • the half width of the diffraction peak was measured as follows.
  • the incident angle ⁇ of the incident X-ray was fixed at 0.1 degree, and the X-ray intensity was measured while changing the angle of the detector.
  • an X-ray diffractometer RINT-TTRII manufactured by Rigaku Denki Co., Ltd.
  • the anticathode was Cu and operated at 50 kV-300 mA.
  • the height limiting slit was set to 10 mm, the divergence slit was set to 2/3, and the optical system was adjusted so that the peak half width of Al (200) when measuring the aluminum foil was 0.35 degrees.
  • the film was fixed, ⁇ was fixed at 0.1 degrees, 2 ⁇ was scanned from 5 to 35 degrees in steps of 0.02 degrees, and each step was integrated for 1 second to obtain a diffraction pattern. Background treatment was performed and the half width of the diffraction peak was determined. The results are shown in Table I below.
  • the oxygen permeability of each obtained film was measured as follows. Using an oxygen transmission rate measuring device (model name “Oxytran” (registered trademark) (“OXTRAN” 2/20), manufactured by MOCON, USA) at a temperature of 23 ° C. and a humidity of 0% RH, It was measured based on the B method (isobaric method) described in JIS K7126 (1987). In addition, each of the two test pieces was measured once, and the average value of the two measured values was taken as the value of the oxygen transmission rate, and the results are shown in Table I below.
  • Preparation of polarizing plate ⁇ Preparation of polarizer layer> A polyvinyl alcohol film with a thickness of 70 ⁇ m was swollen with water at 35°C. The resulting film was immersed in an aqueous solution of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and further immersed in an aqueous solution of 3 g of potassium iodide, 7.5 g of boric acid and 100 g of water at 45°C. . The obtained film was uniaxially stretched under conditions of a stretching temperature of 55° C. and a stretching ratio of 5 times. This uniaxially stretched film was washed with water and then dried to obtain a polarizing film (polarizer layer) having a thickness of 20 ⁇ m.
  • UV curable adhesive liquid UV glue
  • defoaming was performed to prepare an ultraviolet curable adhesive liquid.
  • the triarylsulfonium hexafluorophosphate was blended as a 50% propylene carbonate solution, and the solid content of the triarylsulfonium hexafluorophosphate is shown below.
  • 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate 45 parts by mass Epolead GT-301 (alicyclic epoxy resin manufactured by Daicel Corporation) 40 parts by mass 1,4-butanediol diglycidyl ether 15 parts by mass Triarylsulfonium hexafluorophosphate 2.3 parts by mass 9,10-dibutoxyanthracene 0.1 parts by mass 1,4-diethoxynaphthalene 2.0 parts by mass
  • the films 101 to 111 produced above were prepared, and their surfaces were subjected to corona discharge treatment.
  • the conditions for the corona discharge treatment were a corona output intensity of 2.0 kW and a line speed of 18 m/min.
  • the above ultraviolet curable adhesive was applied to the corona discharge-treated surface of the film with a bar coater so that the film thickness after curing was about 3 ⁇ m to form an adhesive layer.
  • the polyvinyl alcohol-iodine polarizer layer was attached to the obtained adhesive layer.
  • the films 101 to 111 were adhered to the other surface of the polarizer layer to prepare polarizing plates 101 to 111, respectively.
  • ultraviolet rays are applied so that the integrated light amount is 750 mJ / cm 2 .
  • the UV-curable adhesive layer was cured by irradiation.
  • ⁇ Adhesive strength after durability of polarizing plate> The polarizing plate obtained above was stored in an environment of 0° C. and 0% RH for 100 hours and subjected to a durability test, and then subjected to a 0 degree peel test (JIS Z0237 : 2009) was measured using a 90-degree peel test jig (P90-200N) manufactured by Imada Co., Ltd. The ratio of the peel strength after the durability test to the peel strength before the durability test (the peel strength at the initial adhesive strength) was calculated. In addition, evaluation was made according to the following evaluation criteria, and if it was ⁇ or above, it was judged to be good. (Evaluation criteria) ⁇ : 95% or more ⁇ : 80% or more and less than 95% ⁇ : 50% or more and less than 80% XX: less than 50%
  • the stretched film of the present invention has a lower surface orientation than the films of the comparative examples, and is superior in initial adhesive strength and adhesive strength after durability.
  • the present invention can be used for a stretched film having a low-orientation surface, moderate moisture permeability, and excellent adhesiveness, a method for producing the stretched film, a polarizing plate, and a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本発明の延伸フィルムは、極性基を有するシクロオレフィン系樹脂を含有する延伸フィルムであって、前記延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、かつ、残留溶媒量が、5~500質量ppmの範囲内である。

Description

延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置
 本発明は、延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置に関し、特に、表面が低配向で適度な透湿性を備えた接着性に優れた延伸フィルム等に関する。
 シクロオレフィン樹脂は、透明性、光学特性及び耐久性に優れていることから、当該シクロオレフィン樹脂を用いて位相差を調整した光学フィルムは、VA型液晶表示装置に好適に用いることができる。従来、シクロオレフィン樹脂を用いた光学フィルムの製造方法としては、溶融流延製膜法及び溶液流延製膜法が知られている。
 VA型液晶表示装置用途(以下、「VA用」という。)の位相差フィルムの製造は、所望の位相差を発現させるため延伸する必要があるが、公知の方法でシクロオレフィン樹脂を使用してVA用の位相差を発現させるために延伸をすると、特に最表面において樹脂分子鎖が極端に高配向化し密度が上がることにより、偏光板作製の際の紫外線硬化型接着剤(以下、UV糊ともいう。)の拡散を妨げて、接着性が劣化するという問題がある。
 昨今、VA用位相差フィルムとして薄膜のフィルムが求められているが、特に薄膜のフィルムの場合は、より高倍率の延伸によって位相差を発現させる必要があるため、UV糊を用いた際の接着性が大幅に劣化してしまうという問題があった。
 そこで、他のフィルムとの接着性に優れた位相差フィルムとして、位相差フィルムの表面のみを選択的に加熱することで、位相差フィルム表面の樹脂分子鎖の配向を低下させて接着性向上を図る技術が開示されている(例えば、特許文献1参照。)。また、位相差フィルムの表面に良溶媒を含む塗工液を塗工して、フィルム表面の樹脂分子鎖の配向を低下させる技術も開示されている(例えば、特許文献2参照。)。
 しかしながら、前記した特許文献1及び2に開示されたフィルムを偏光子層(「偏光子フィルム」、「偏光フィルム」及び「偏光子膜」ともいう。)と貼合した際に、乾燥の観点では、偏光子層の水分が抜けるために、フィルムに適度な透湿性が必要であった。
 つまり、フィルムと糊界面の接着観点では表面が低配向であることが好ましく、偏光子層との貼合した後の乾燥工程も含めた接着観点では、適度な透湿性を有することが、必要とされている。
特開2012-159665号公報 特開2019-028109号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、表面が低配向で適度な透湿性を備えた接着性に優れた延伸フィルム及び延伸フィルムの製造方法を提供することである。また、当該延伸フィルムを用いた偏光板及び液晶表示装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、極性基を有するシクロオレフィン系樹脂を含有する延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅を特定範囲とし、かつ、残留溶媒量を制御することにより、表面が低配向で適度な透湿性を備えた接着性に優れた延伸フィルムを提供することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.極性基を有するシクロオレフィン系樹脂を含有する延伸フィルムであって、
 前記延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、かつ、
 残留溶媒量が、5~500質量ppmの範囲内である延伸フィルム。
 2.酸素透過率が、温度23℃、湿度0%RHの条件下、3000~5000mL/(m・24hr・atm)の範囲内である第1項に記載の延伸フィルム。
 3.前記半値幅が、4.8~5.2度の範囲内である第1項又は第2項に記載の延伸フィルム。
 4.微粒子を含有する第1項から第3項までのいずれか一項に記載の延伸フィルム。
 5.第1項から第4項までのいずれか一項に記載の延伸フィルムを製造する延伸フィルムの製造方法であって、
 溶液流延製膜法により前記延伸フィルムを製造する延伸フィルムの製造方法。
 6.前記極性基を有するシクロオレフィン系樹脂を含有するドープを支持体上に流延してウェブを形成した後、
 延伸工程における延伸倍率が、面積倍率で1.2~3.0倍の範囲内で延伸処理を施す第5項に記載の延伸フィルムの製造方法。
 7.前記極性基を有するシクロオレフィン系樹脂を含有するドープを支持体上に流延してウェブを形成した後、
 延伸工程の延伸開始時における残留溶媒量を、700~30000質量ppmの範囲内とする第5項又は第6項に記載の延伸フィルムの製造方法。
 8.第1項から第4項までのいずれか一項に記載の延伸フィルムを具備する偏光板。
 9.第8項に記載の偏光板を具備する液晶表示装置。
 本発明の上記手段により、表面が低配向で、適度な透湿性を備えた接着性に優れた延伸フィルム及び延伸フィルムの製造方法を提供することができる。また、当該延伸フィルムを用いた偏光板及び液晶表示装置を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 極性基を有するシクロオレフィン系樹脂を含有する延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅を、4.6~5.4度の範囲内とすることにより、表面の樹脂分子鎖が低配向となり、偏光板作製の際の紫外線硬化型接着剤での接着性に優れる。
 また、延伸フィルムの残留溶媒量を、5~500質量ppmの範囲内とすることにより、表面の樹脂分子鎖の配向が揃いにくくなり、低配向となり、この点においても接着性に優れる。
 さらに、前記のように延伸フィルムの表面の樹脂分子鎖を低配向とすることにより、適度な透湿性を確保することができ、その結果、接着性に優れる。
 なお、本発明において、「配向」とは、樹脂中の分子鎖が一定方向に配列することをいう。例えばフィルムの膜厚に対して垂直な方向に、樹脂中の分子鎖が配列している度合いが高い状態を「高配向」という。
 したがって、樹脂間の相互作用の小さい樹脂では、延伸することによって表面に高配向領域ができる。高配向領域は比較的、主鎖間隔が揃った(結晶性の高い)構造を取る。本発明では、表面を低配向とすることによって、主鎖間隔がランダムで規則性の少ない構造を取ることにより、接着性を向上させたものである。
本発明の延伸フィルムの製造方法を模式的に示した図 本発明の偏光板の構成の一例を示した模式図 本発明の液晶表示装置の構成の一例を示した模式図
 本発明の延伸フィルムは、極性基を有するシクロオレフィン系樹脂を含有する延伸フィルムであって、前記延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、かつ、残留溶媒量が、5~500質量ppmの範囲内である。
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
 本発明の実施態様としては、酸素透過率が、温度23℃、湿度0%RHの条件下、3000~5000mL/(m・24hr・atm)の範囲内であることが、接着剤の水分を程よく放出することができ、耐久接着劣化しにくいフィルムとすることができる点で好ましい。
 また、前記半値幅が、4.8~5.2度の範囲内であることが、表面が低配向でかつ適度な透湿性の両立を図ることができる点で好ましい。
 さらに、本発明の延伸フィルムは、微粒子を含有することが、表面が高配向となることを阻害できる点で好ましい。
 本発明の延伸フィルムの製造方法は、溶液流延製膜法により前記延伸フィルムを製造する。これにより、残留溶媒量を調整することで、延伸条件を広範囲で制御することが可能であり、特に低温(Tg+30℃以下)領域での延伸条件を制御することができる。
 また、本発明の延伸フィルムの製造方法は、前記極性基を有するシクロオレフィン系樹脂を含有するドープを支持体上に流延してウェブを形成した後、延伸工程における延伸倍率が、面積倍率で1.2~3.0倍の範囲内で延伸処理を施すことが、前記半値幅を前記範囲内とすることができ、表面が低配向でかつ適度な透湿性の両立を図ることができる点で好ましい。
 さらに、前記極性基を有するシクロオレフィン系樹脂を含有するドープを支持体上に流延してウェブを形成した後、延伸工程の延伸開始時における残留溶媒量を、700~30000質量ppmの範囲内とすることも、前記半値幅を前記範囲内とすることができ、表面が低配向でかつ適度な透湿性の両立を図ることができる点で好ましい。
 本発明の延伸フィルムは、偏光板に好適に用いられる。また、当該偏光板は、液晶表示装置に好適に用いられる。
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
[本発明の延伸フィルムの概要]
 本発明の延伸フィルムは、極性基を有するシクロオレフィン系樹脂を含有する延伸フィルムであって、前記延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、かつ、残留溶媒量が、5~500質量ppmの範囲内である。
<X線回折ピーク>
 本発明において、延伸フィルムの表面の配向性を評価するため、X線回折法が適切である。特に、入射X線の入射角θを小さくして、回折して検出されるX線の情報深さを浅くする薄膜法と呼ばれる方法が好ましい。
 具体的には、入射X線の入射角θを0.1度程度に固定し、検出器の角度を変えつつX線の強度を測定する。
 本発明においては、X線回折装置として、X線回折装置RINT-TTRII(理学電気社製)を用いた。対陰極をCuとし、50kV-300mAで動作させた。高さ制限スリットは10mm、発散スリットは2/3とし、アルミニウムフォイルを測定した際のAl(200)のピーク半値幅が0.35度となるように光学系を調整した。フィルムを固定し、θを0.1度に固定し2θを5~35度まで0.02度ステップで走査し、各ステップで1秒積算し、回折パターンを得た。バックグラウンド処理を行い、回折ピークの半値幅を求めた。
 前記回折ピークの半値幅は、4.6~5.4度の範囲内であり、好ましくは4.8~5.2度の範囲内である。
 前記回折ピークの半値幅は、結晶間の距離を表し、低配向であるほど樹脂中の主鎖間隔がランダムとなるため、半値幅が広がることになる。
 このような回折ピークの半値幅を前記範囲内とするための手段としては、延伸工程における延伸開始時の残留溶媒量や、延伸時の延伸倍率、延伸時における加熱温度、延伸工程後の本乾燥時における乾燥時間と乾燥時間等を制御することが挙げられる。
 具体的に、前記延伸開始時の残留溶媒量は、700~30000質量ppmの範囲内とすることが好ましい。
 前記延伸倍率は、面積倍率(面積比)で1.2~3.0倍の範囲内とすることが好ましい。
 延伸時の加熱温度は、100~200℃の範囲内とすることが好ましい。
 また、前記延伸開始時の残留溶媒量は、後述するが、延伸工程前の予備乾燥時における乾燥温度と乾燥時間によって制御することができる。
<残留溶媒量>
 本発明の延伸フィルムの残留溶媒量は、5~500質量ppmの範囲内であり、好ましくは5~100質量ppmの範囲内である。
 本発明において、延伸フィルムの残留溶媒量は、延伸フィルムの出荷時から3ヶ月の間のいずれかで前記範囲内に該当していればよく、下記式(Z1)で定義される。
式(Z1):
 残留溶媒量(ppm)=(延伸フィルムの加熱処理前質量-延伸フィルムの加熱処理後質量)/(延伸フィルムの加熱処理後質量)×10
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 また、延伸フィルムの残留溶媒量を前記範囲内とするための手段としては、前記した回折ピークの半値幅の制御手段と同様に、延伸工程における延伸開始時の残留溶媒量や、延伸時の延伸倍率、延伸時における加熱温度、延伸工程後の本乾燥時における乾燥時間と乾燥時間等を制御することが挙げられる。
<酸素透過率>
 本発明の延伸フィルムの酸素透過率は、3000~5000mL/(m・24hr・atm)(1atmとは、1.01325×10Paである。)の範囲内であることが好ましく、4000~5000mL/(m・24hr・atm)の範囲内であることがより好ましい。
 本発明において、酸素透過率の測定は以下のようにして算出する。
 温度23℃、湿度0%RHの条件で、酸素透過率測定装置(機種名「オキシトラン」(登録商標)(「OXTRAN」2/20)、米国、モコン(MOCON)社製)を使用して、JIS K7126(1987年)に記載のB法(等圧法)に基づいて測定する。
 また、2枚の試験片について測定を各々1回行い、2つの測定値の平均値を酸素透過率の値とした。
 前記酸素透過率は、延伸フィルムの表面の配向状態により制御され、延伸フィルムの前記回折ピークの半値幅及び前記残留溶媒量を前記した範囲に特定することにより、表面が低配向となり、主鎖間隔がランダムで規則性の少ない構造を取り、その結果、酸素透過率の低いフィルムとなる。
[延伸フィルムの構成]
 本発明の延伸フィルムは、極性基を有するシクロオレフィン系樹脂を含有する。
(1.1)シクロオレフィン系樹脂
 本発明に係るシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。
 シクロオレフィン単量体としては、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましく、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(A-1)中、R~Rのうち少なくとも一つは、極性基を表し、その他は、各々独立して、水素原子又は炭素原子数1~30の炭化水素基を表す。pは、0~2の整数を表す。ただし、RとRが同時に水素原子を表すことはなく、RとRが同時に水素原子を表すことはないものとする。
 一般式(A-1)においてR~Rで表される炭素原子数1~30の炭化水素基としては、例えば炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。
 炭素原子数1~30の炭化水素基は、例えばハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基を更に有していても良い。
 そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。
 炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。
 一般式(A-1)においてR~Rで表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。
 中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。
 一般式(A-1)におけるpは、延伸フィルムの耐熱性を高める観点から、1又は2であることが好ましい。
 pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
Figure JPOXMLDOC01-appb-C000002
 一般式(A-2)中、Rは、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。Rは、極性基を表し、具体的には、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。
 一般式(A-2)におけるRは、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。
 一般式(A-2)におけるRは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。
 一般式(A-2)におけるpは、延伸フィルムの耐熱性を高める観点から、1又は2を表すことが好ましい。
 pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
 一般式(A-2)で表される構造を有するシクロオレフィン単量体は、有機溶媒への溶解性を向上させる点から好ましい。
 一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。
 一般式(A-2)におけるR及びRは、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(A-2)で表される構造を有するシクロオレフィン単量体は溶解性が高いため、延伸フィルムを溶液流延法によって製造する場合に適している。
 シクロオレフィン単量体の重合体における一般式(A-2)で表される構造を有するシクロオレフィン単量体の含有割合は、シクロオレフィン系樹脂を構成する全シクロオレフィン単量体の合計に対して、例えば70モル%以上、好ましくは80モル%以上、より好ましくは100モル%とし得る。
 一般式(A-2)で表される構造を有するシクロオレフィン単量体を一定以上含むと、樹脂の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。
 以下、一般式(A-1)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物2、3、9~14に示し、一般式(A-2)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物15~34に示す。
Figure JPOXMLDOC01-appb-C000003
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、及びシクロオレフィン単量体と付加共重合可能な共重合性単量体等が含まれる。
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体及び(メタ)アクリレート等が含まれる。
 不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。
 ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。
 (メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。
 シクロオレフィン単量体と共重合性単量体との共重合体におけるシクロオレフィン単量体の含有割合は、共重合体を構成する全単量体の合計に対して、例えば20~80mol%の範囲内、好ましくは30~70mol%の範囲内とし得る。
 シクロオレフィン系樹脂は、前述のとおり、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下(1)~(7)の重合体が含まれる。
 (1)シクロオレフィン単量体の開環重合体
 (2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加物
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素を添加した(共)重合体
 (5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
 (6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 (7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
 上記(1)~(7)の重合体は、いずれも公知の方法、例えば特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。
 例えば上記(2)の開環共重合に用いられる触媒や溶媒は、例えば特開2008-107534号公報の段落0019~0024に記載のものを使用できる。
 上記(3)及び(6)の水素添加物に用いられる触媒は、例えば特開2008-107534号公報の段落0025~0028に記載のものを使用できる。
 上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば特開2008-107534号公報の段落0029に記載のものを使用できる。
 上記(5)~(7)の付加重合に用いられる触媒は、例えば特開2005-227606号公報の段落0058~0063に記載のものを使用できる。
 上記(7)の交互共重合反応は、例えば特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
 中でも、上記(1)~(3)及び(5)の重合体が好ましく、上記(3)及び(5)の重合体がより好ましい。
 すなわち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(B-2)で表される構造単位のみを含むか、又は一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位の両方を含むことがより好ましい。
 一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。
Figure JPOXMLDOC01-appb-C000004
 一般式(B-1)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(A-1)のR~R及びpと同義である。
Figure JPOXMLDOC01-appb-C000005
 一般式(B-2)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(A-2)のR~R及びpと同義である。
 本発明に係るシクロオレフィン系樹脂は、市販品であっても良い。
 シクロオレフィン系樹脂の市販品の例には、JSR(株)製のアートン(Arton)G(例えばG7810等)、アートンF、アートンR(例えばR4500、R4900及びR5000等)、及びアートンRXが含まれる。
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、30℃の測定において、0.2~5cm/gの範囲内であることが好ましく、0.3~3cm/gの範囲内であることがより好ましく、0.4~1.5cm/gの範囲内であることが更に好ましい。
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000の範囲内
であることが好ましく、10000~80000の範囲内であることがより好ましく、12000~50000の範囲内であることが更に好ましい。
 シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000の範囲内であることが好ましく、30000~250000の範囲内であることがより好ましく、40000~200000の範囲内であることが更に好ましい。
 シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。
 (ゲルパーミエーションクロマトグラフィー)
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性、及びフィルムとしての成形加工性が良好となる。
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃の範囲内であることが好ましく、120~250℃の範囲内であることがより好ましく、120~220℃の範囲内であることが更に好ましい。
 ガラス転移温度(Tg)が110℃以上であると、高温条件下での変形を抑制しやすい。
 一方、ガラス転移温度(Tg)が350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。
 シクロオレフィン系樹脂の含有量は、フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 (1.2)その他の添加剤
 本発明の延伸フィルムは、その他の添加剤として上記シクロオレフィン系樹脂の他に以下のものを含有していてもよい。
 (1.2.1)可塑剤
 本発明の延伸フィルムは、例えば偏光板保護フィルム等に加工性を付与する目的で少なくとも1種の可塑剤を含むことが好ましい。
 可塑剤は単独で又は2種以上混合して用いることが好ましい。
 可塑剤の中でも、糖エステル、ポリエステル、及びスチレン系化合物からなる群から選択される少なくとも1種の可塑剤を含むことが、透湿性の効果的な制御及びセルロースエステル等の基材樹脂との相溶性を高度に両立できる観点から好ましい。
 当該可塑剤は、分子量が15000以下、さらには10000以下であることが、耐湿熱性の改善とセルロースエステル等の基材樹脂との相溶性を両立する観点から好ましい。
 当該分子量が10000以下である化合物が重合体である場合は、重量平均分子量(Mw)が10000以下であることが好ましい。
 好ましい重量平均分子量(Mw)の範囲は100~10000の範囲内であり、更に好ましくは、400~8000の範囲内である。
 特に本発明の効果を得るためには、当該分子量が1500以下の化合物を、基材樹脂100質量部に対して6~40質量部の範囲内で含有することが好ましく、10~20質量部の範囲内で含有させることがより好ましい。
 上記範囲内で含有させることにより、透湿性の効果的な制御と基材樹脂との相溶性を両立することができ、好ましい。
 〈糖エステル〉
 本発明の延伸フィルムには、加水分解防止を目的として、糖エステル化合物を含有させてもよい。
 具体的には、糖エステル化合物として、ピラノース構造又はフラノース構造の少なくとも1種を1個以上12個以下有し、その構造のOH基の全て若しくは一部をエステル化した糖エステルを使用することができる。
 〈ポリエステル〉
 本発明の延伸フィルムには、ポリエステルを含有させることもできる。
 ポリエステルは特に限定されないが、例えばジカルボン酸、又はこれらのエステル形成性誘導体とグリコールとの縮合反応により得ることができる末端がヒドロキシ基となる重合体(ポリエステルポリオール)、又は当該ポリエステルポリオールの末端のヒドロキシ基がモノカルボン酸で封止された重合体(末端封止ポリエステル)を用いることができる。
 ここでいうエステル形成性誘導体とは、ジカルボン酸のエステル化物、ジカルボン酸クロライド、ジカルボン酸の無水物のことである。
 〈スチレン系化合物〉
 本発明の延伸フィルムには、上記糖エステル、ポリエステルに加えて又はこれに代えて、延伸フィルムの耐水性改善を目的として、スチレン系化合物を用いることもできる。
 スチレン系化合物は、スチレン系モノマーの単独重合体であってもよいし、スチレン系モノマーとそれ以外の共重合モノマーとの共重合体であってもよい。
 スチレン系化合物におけるスチレン系モノマー由来の構成単位の含有割合は、分子構造が一定以上の嵩高さを有するためには、好ましくは30~100モル%の範囲内、より好ましくは50~100モル%の範囲内でありうる。
 スチレン系モノマーの例には、スチレン;α-メチルスチレン、β-メチルスチレン、p-メチルスチレン等のアルキル置換スチレン類;4-クロロスチレン、4-ブロモスチレン等のハロゲン置換スチレン類;p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン、2-メチル-4-ヒドロキシスチレン、3,4-ジヒドロキシスチレン等のヒドロキシスチレン類;ビニルベンジルアルコール類;p-メトキシスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレン等のアルコキシ置換スチレン類;3-ビニル安息香酸、4-ビニル安息香酸等のビニル安息香酸類;4-ビニルベンジルアセテート;4-アセトキシスチレン;2-ブチルアミドスチレン、4-メチルアミドスチレン、p-スルホンアミドスチレン等のアミドスチレン類;3-アミノスチレン、4-アミノスチレン、2-イソプロペニルアニリン、ビニルベンジルジメチルアミン等のアミノスチレン類;3-ニトロスチレン、4-ニトロスチレン等のニトロスチレン類;3-シアノスチレン、4-シアノスチレン等のシアノスチレン類;ビニルフェニルアセトニトリル;フェニルスチレン等のアリールスチレン類、インデン類等が含まれる。
 スチレン系モノマーは、一種類であっても、二種類以上を組み合わせてもよい。
 (1.2.2)任意成分
 本発明の延伸フィルムは、酸化防止剤、着色剤、紫外線吸収剤、マット剤、アクリル粒子、水素結合性溶媒及びイオン性界面活性剤等の他の任意成分を含みうる。特に、マット剤(微粒子)を含むことが好ましい。
 これらの成分は、基材樹脂100質量部に対して0.01~20質量部の範囲内で添加することができる。
 〈酸化防止剤〉
 本発明の延伸フィルムは、酸化防止剤としては、通常知られているものを使用することができる。
 特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系の各化合物を好ましく用いることができる。
 これらの酸化防止剤等は、延伸フィルムの主原料である樹脂に対して0.05~20質量%の範囲内、好ましくは0.1~1質量%の範囲内で添加される。
 これらの酸化防止剤等は、1種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。
 例えばラクトン系、リン系、フェノール系及び二重結合系化合物の併用は好ましい。
 〈着色剤〉
 本発明の延伸フィルムは、本発明の効果を損なわない範囲内で、色味調整のために、着色剤を含むことが好ましい。
 着色剤というのは染料や顔料を意味し、本発明では、液晶画面の色調を青色調にする効果又はイエローインデックスの調整、ヘイズの低減を有するものを指す。
 着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料等が有効である。
 〈紫外線吸収剤〉
 本発明の延伸フィルムは、偏光板の視認側やバックライト側に用いられることもできることから、紫外線吸収機能を付与することを目的として、紫外線吸収剤を含有してもよい。
 紫外線吸収剤としては、特に限定されないが、例えばベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系等の紫外線吸収剤が挙げられる。
 例えば2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン及び2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。
 上記紫外線吸収剤は、1種単独で又は2種以上組み合わせて用いることができる。
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、一般には、基材樹脂に対して、0.05~10質量%の範囲内、好ましくは0.1~5質量%の範囲内で添加される。
 〈マット剤〉
 本発明に係る延伸フィルムには、フィルムの製膜時に、フィルム表面に凹凸を付与し、すべり性を確保し、安定な巻取り形状を達成するためにマット剤を含有することが好ましい。
 また、作製されたフィルムがハンドリングされる際に、傷が付いたり、搬送性が悪化することを防止するためにも、当該マット剤は機能することができる。
 マット剤としては、無機化合物の微粒子や樹脂の微粒子が挙げられる。
 無機化合物の微粒子の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。
 微粒子の一次粒子の平均粒径は、5~400nmの範囲内が好ましく、さらに好ましいのは10~300nmの範囲内である。これらは主に粒径0.05~0.3μmの範囲内の二次凝集体として含有されていてもよく、平均粒径80~400nmの範囲内の粒子であれば凝集せずに一次粒子として含まれていることも好ましい。
 フィルム中のこれらの微粒子の含有量は、0.01~1質量%の範囲内であることが好ましく、特に0.05~0.5質量%の範囲内であることが好ましい。
 また、共流延法による多層構成の場合は、表面にこの添加量の微粒子を含有することが好ましい。
 二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。
 樹脂の微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。
 これらの中でもアエロジル200V、アエロジルR972V、アエロジルR812が、基材フィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。
[延伸フィルムの製造方法]
 本発明の延伸フィルムは、溶液流延製膜法により製造する。
 具体的に、本発明の延伸フィルムの製造方法は、(1)前記極性基を有するシクロオレフィン系樹脂を含有するドープを調製する工程(ドープ調製工程)と、(2)前記ドープを支持体上に流延してウェブ(流延膜ともいう。)を形成する工程(流延工程)と、(3)支持体上でウェブから溶媒を蒸発させる工程(溶媒蒸発工程)、(4)ウェブを支持体から剥離する工程(剥離工程)、(5)得られたフィルム(以下、「原反フィルム」ともいう。)を乾燥させる工程(第1乾燥工程)、(6)フィルムを延伸する工程(延伸工程)、(7)延伸後のフィルムをさらに乾燥させる工程(第2乾燥工程)、(8)得られた延伸フィルムを巻き取る工程(巻取り工程)によって製造されることが好ましい。
 特に、6)延伸工程では、延伸倍率を面積倍率で1.2~3.0倍の範囲内で延伸処理を施すことが、得られる延伸フィルムの前記回折ピークの半値幅及び残留溶媒量を本発明の範囲内とすることができ、表面が低配向でかつ適度な透湿性の両立を図ることができる点で好ましい。
 本発明でいう、延伸倍率とは、延伸前の原反フィルムの面積に対して、延伸後のフィルムの面積の比率(%)をいう。すなわち、原反フィルムの縦(長手)方向及び横(幅手)方向の延伸による合計延伸率が、面積倍率で1.2~3.0倍の範囲内で延伸処理を行う。
 また、6)延伸工程では、延伸開始時における原反フィルムの残留溶媒量を、700~30000質量ppmの範囲内とすることも、得られる延伸フィルムの前記回折ピークの半値幅及び残留溶媒量を本発明の範囲内とすることができる点で好ましい。
 以上の工程について、図を参照して説明する。
 図1は、本発明に好ましい溶液流延製膜法のドープ調製工程、流延工程、乾燥工程及び巻取り工程の一例を模式的に示した図である。
 分散機によって溶媒とマット剤を分散させた微粒子分散液は仕込み釜61から濾過器64を通過しストック釜62にストックされる。一方、主ドープであるシクロオレフィン系樹脂は溶媒とともに溶解釜1にて溶解され、適宜ストック釜62に保管されているマット剤が添加されて混合され主ドープを形成する。得られた主ドープは、濾過器3、ストック釜4から濾過器6によって濾過され、合流管20によって添加剤が添加されて、混合機21で混合されて加圧ダイ22に液送される。
 一方、添加剤(例えば紫外線吸収剤など)は、溶媒に溶解され、添加剤仕込み釜10から濾過器12を通過してストック釜13にストックされる。その後、濾過器15を通して導管16を経由して合流管20、混合機21によって主ドープと混合される。
 加圧ダイ22に液送された主ドープは、金属ベルト状の支持体31上に流延されてウェブ32を形成し、所定の乾燥後剥離位置33で剥離され原反フィルムを得る。剥離されたウェブ32は、第1乾燥装置34にて多数の搬送ローラーに通しながら、所定の残留溶媒量になるまで乾燥された後、延伸装置35によって、長手方向又は幅手方向に所定の延伸倍率となるように延伸するとともに所定の残留溶媒量となるように加熱される。延伸後、第2乾燥装置36によって所定の残留溶媒量になるまで、搬送ローラー37に通しながら乾燥し、巻取り装置38によって、ロール状に巻取られる。
 以下、各工程について説明する。
(1)ドープ調製工程
 前記シクロオレフィン系樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で当該シクロオレフィン系樹脂、場合によって、位相差上昇剤、マット剤(微粒子)又はその他の化合物を撹拌しながら溶解しドープを調製する工程、又は当該シクロオレフィン系樹脂溶液に、位相差上昇剤、マット剤又はその他の化合物溶液を混合して主溶解液であるドープを調製する工程である。
 本発明に係る延伸フィルムを溶液流延製膜法で製造する場合、ドープを形成するのに有用な有機溶媒は、シクロオレフィン系樹脂、及びその他の化合物を同時に溶解するものであれば制限なく用いることができる。
 用いられる有機溶媒としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、及びこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は1種のみ用いてもよいし、2種以上を併用してもよい。
 本発明に用いられる有機溶媒は、良溶媒と貧溶媒の混合溶媒であることが好ましく、当該良溶媒は、例えば、塩素系有機溶媒としては、ジクロロメタン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等が挙げられ、中でもジクロロメタンであることが好ましい。当該良溶媒は、溶媒全体量に対して55質量%以上を用いることが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上用いることである。
 貧溶媒はアルコール系溶媒であることが好ましく、当該アルコール系溶媒が、メタノール、エタノール及びブタノールから選択されることが、剥離性を改善し、高速度流延を可能にする観点から好ましい。中でもメタノール又はエタノールを用いることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ないときは非塩素系有機溶媒系でのシクロオレフィン系樹脂及びその他の化合物の溶解を促進する役割もある。本発明に係る延伸フィルムの製膜においては、得られる延伸フィルムの平面性を高める点から、アルコール濃度が0.5~15.0質量%の範囲内にあるドープを用いて製膜することが好ましい。
 シクロオレフィン系樹脂、その他の化合物の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
 ドープ中のシクロオレフィン系樹脂の濃度は、10~40質量%の範囲であることが好ましい。溶解中又は後のドープに化合物を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。
 ドープの濾過については、好ましくはリーフディスクフィルターを具備する主な濾過器3で、ドープを例えば90%捕集粒子径が微粒子の平均粒径の10~100倍の濾材で濾過することが好ましい。
 本発明において、濾過に使用する濾材は、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると、濾過材の目詰まりが発生しやすく、濾材の交換を頻繁に行わなければならず、生産性を低下させるという問題点ある。
 このため、本発明において、シクロオレフィン系樹脂ドープに使用する濾材は、絶対濾過精度0.008mm以下のものが好ましく、0.001~0.008mmの範囲が、より好ましく、0.003~0.006mmの範囲の濾材がさらに好ましい。
 濾材の材質には、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がなく好ましい。
 本発明において、濾過の際のドープの流量が、10~80kg/(h・m)、好ましくは20~60kg/(h・m)であることが好ましい。ここで、濾過の際のドープの流量が、10kg/(h・m)以上であれば、効率的な生産性となり、濾過の際のドープの流量が、80kg/(h・m)以内であれば、濾材にかかる圧力が適正となり、濾材を破損させることがなく、好ましい。
 濾圧は、3500kPa以下であることが好ましく、3000kPa以下が、より好ましく、2500kPa以下であることがさらに好ましい。なお、濾圧は、濾過流量と濾過面積を適宜選択することで、コントロールできる。
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。
 返材とは、例えばシクロオレフィン樹脂フィルムを細かく粉砕した物で、シクロオレフィン樹脂フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでフィルムの規定値を越えたシクロオレフィン樹脂フィルム原反が使用される。
 また、ドープ調製に用いられる樹脂の原料としては、あらかじめシクロオレフィン系樹脂及びその他の化合物などをペレット化したものも、好ましく用いることができる。
(2)流延工程
(2-1)ドープの流延
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ22に送液し、無限に移送する無端の金属支持体31、例えば、ステンレスベルト、又は回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.3~3mの範囲、さらに好ましくは1.5~2.8mの範囲とすることができる。
 流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下、さらに好ましくは-30~100℃の範囲に設定される。温度が高い方がウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブという。)の乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃の範囲がさらに好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
 金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 ダイは、ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層してもよい。
(2-2)溶媒蒸発工程
 ウェブを流延用支持体上で加熱し、溶媒を蒸発させる工程であり、後述する剥離時の残留溶媒量を制御する工程である。
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを30~100℃の雰囲気下、支持体上で乾燥させることが好ましい。30~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。
 面品質、透湿性、剥離性の観点から、30~180秒以内で当該ウェブを支持体から剥離することが好ましい。
(2-3)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは原反フィルムとして次工程に送られる。
 金属支持体上の剥離位置における温度は好ましくは10~40℃の範囲であり、さらに好ましくは11~30℃の範囲である。
 本発明では、前記溶媒蒸発工程でウェブ中の溶媒を蒸発するが、剥離する時点での金属支持体上でのウェブの残留溶媒量は、15~100質量%の範囲内とすることが好ましい。残留溶媒量の制御は、前記溶媒蒸発工程における乾燥温度及び乾燥時間で行うことが好ましい。
 残留溶媒量が多い状態で剥離すると、ウェブが柔らか過ぎて、剥離時平面性が損なわれやすく、剥離張力によるシワや縦スジが発生しやすいため、これらの点を考慮して、剥離時の残留溶媒量が決められる。
 ウェブ又は原反フィルムの残留溶媒量は下記式(Z2)で定義される。
式(Z2):残留溶媒量(%)=(ウェブ又は原反フィルムの加熱処理前質量-ウェブ又は原反フィルムの加熱処理後質量)/(ウェブ又は原反フィルムの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 金属支持体からウェブを剥離して原反フィルムとする際の剥離張力は、通常、196~245N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~30℃の範囲内とするのが最も好ましい。
(3)乾燥及び延伸工程
 乾燥工程は予備乾燥工程(第1乾燥工程)、本乾燥工程(第2乾燥工程)に分けて行うこともできる。
(3-1)予備乾燥工程(第1乾燥工程)
 金属支持体からウェブ剥離して得られた原反フィルムは第1乾燥装置34にて予備乾燥させる。原反フィルムの予備乾燥は、原反フィルムを、上下に配置した多数のローラーにより搬送しながら乾燥させてもよいし、テンター乾燥機のように原反フィルムの両端部をクリップで固定して搬送しながら乾燥させてもよい。
 乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。
 ウェブの予備乾燥工程における乾燥温度は好ましくは、原反フィルムのガラス転移温度をTgとしたときに、(Tg-5)℃以下であって、(Tg+30)℃以上の温度で1~30分の範囲内の熱処理を行うことが効果的である。具体的に、乾燥温度は40~150℃の範囲内、さらに好ましくは80~100℃の範囲内で乾燥が行われる。
 本発明では、この乾燥工程にて後述する原反フィルム中の延伸時の残留溶媒量を調整することが好ましいが、当該残留溶媒量は延伸工程の初期に行ってもよい。前記残留溶媒量の制御は、前記予備乾燥工程における乾燥温度及び乾燥時間で行うことが好ましい。
(3-2)延伸工程
 予備乾燥工程後の原反フィルムは、延伸装置35にて、後述する特定の残留溶媒量下で特定の延伸倍率でかつ特定の加熱温度下で延伸処理を行う。
 (残留溶媒量)
 具体的には、原反フィルムを延伸する工程において、延伸開始時の原反フィルム中の残留溶媒量は、700~30000質量ppmの範囲内であることが好ましく、2000~20000質量ppmの範囲内であることがより好ましい。このような残留溶媒量とすることで、延伸後の本発明の延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅を前記した特定範囲内とし、かつ、延伸フィルムの残留溶媒量を制御することができ、表面が低配向で適度な透湿性を備えた接着性に優れた延伸フィルムを得ることができる。
 なお、複数回、延伸する場合には、その中の少なくとも一回でも、原反フィルム中の残留溶媒量が前記範囲内に入ることが好ましい。
 ここで、延伸開始時における前記原反フィルム中の残留溶媒量は、下記式(Z3)で定義される。
式(Z3):
 残留溶媒量(ppm)=(原反フィルムの加熱処理前質量-原反フィルムの加熱処理後質量)/(原反フィルムの加熱処理後質量)×10
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 本発明に係る原反フィルムは、長手方向(MD方向、流延方向ともいう。)及び/又は幅手方向(TD方向ともいう。)に延伸することが好ましく、少なくとも延伸装置によって、幅手方向に延伸して製造することが好ましい。
 延伸操作は多段階に分割して実施してもよい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。
 すなわち、例えば、次のような延伸ステップも可能である:
・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。
 (延伸温度)
 また、延伸後の膜厚が所望の範囲になるように、長手方向及び/又は幅手方向に、好ましくは幅手方向に、原反フィルムのガラス転移温度をTgとしたときに、(Tg-30)~(Tg+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸することにより、得られる本発明の延伸フィルムの前記回折ピークの半値幅や前記残留溶媒量が前記した範囲に制御でき、表面が低配向で、接着性に優れた延伸フィルムが得られる。また、位相差の調整がしやすく、また延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れた延伸フィルムが得られる。延伸温度は、(Tg-40)~(Tg+40)℃の範囲で行うことが好ましい。延伸温度は、100~200℃の範囲内で乾燥が行われる。
 なお、ここでいうガラス転移温度Tgとは、市販の示差走査熱量測定器を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。具体的な延伸フィルムのガラス転移温度Tgの測定方法は、JIS K7121(1987)に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定する。
 (延伸倍率)
 本発明では、原反フィルムを、面積倍率で1.2~3.0倍の範囲内の延伸倍率で延伸処理を施すことが、得られる延伸フィルムの前記回折ピークの半値幅及び残留溶媒量を本発明の範囲内とすることができ、表面が低配向でかつ適度な透湿性の両立を図ることができる点で好ましい。
 具体的に、原反フィルムは、幅手方向又は長手方向のいずれかに延伸すればよく、幅手方向及び長手方向の双方向に延伸することがより好ましく、面積倍率で1.2~3.0倍の範囲内で延伸すればよい。
 長手方向に延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、又は縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。
 幅手方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全工程又は一部の工程を幅方向にクリップ又はピンでウェブの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる)、中でも、クリップを用いるテンター方式、ピンを用いるピンテンター方式が好ましく用いられる。
 幅手方向への延伸に際し、フィルム幅手方向に250~500%/minの延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。
 延伸速度は250%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、500%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。
 好ましい延伸速度は、300~400%/minの範囲内であり、低倍率の延伸時に有効である。延伸速度は下記式1によって定義されるものである。
式1 
延伸速度(%/min)=[(d1/d2)-1]×100(%)/t
(式1において、d1は延伸後の本発明に係る延伸フィルムの前記延伸方向の幅寸法であり、d2は延伸前の原反フィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。)
 本発明に係る延伸フィルムは前記したように延伸することにより所望の位相差値を有する。面内位相差値Ro、及び厚さ方向の位相差値Rtは自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出することができる。
 本発明に係る延伸フィルムは、下記式(i)及び(ii)で表される、延伸フィルムの面内方向の位相差値Roが40~60nmの範囲内であり、膜厚方向の位相差値Rtが110~140nmの範囲内であることが、VA型液晶表示装置に具備された場合に、視野角やコントラスト等の視認性を向上する観点から好ましい。延伸フィルムは、少なくとも前記幅手方向に延伸率を調整しながら延伸することで、上記位相差値の範囲内に調整することができる。
式(i):Ro=(n-n)×d(nm)
式(ii):Rt={(n+n)/2-n}×d(nm)
〔式(i)及び式(ii)において、nは、フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表す。nは、フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表す。nは、フィルムの厚さ方向zにおける屈折率を表す。dは、フィルムの厚さ(nm)を表す。〕
 延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、原反フィルムを延伸する延伸段階、原反フィルムを延伸状態で保持する保持段階及び原反フィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
(3-3)本乾燥工程
 本乾燥工程では、第2乾燥装置36によって延伸後のフィルムを加熱して乾燥させる。この本乾燥工程によっても、本発明の延伸フィルムの前記回折ピークの半値幅及び前記残留溶媒量を前記範囲に制御することができる。
 熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。
 熱風温度は、好ましくは、原反フィルムのガラス転移温度をTgとしたときに、(Tg-20)~(Tg+50)℃の範囲内が好ましく、具体的には、40~250℃の範囲内が好ましい。また、乾燥時間は5秒~60分程度が好ましく、10秒~30分がより好ましい。
 また、加熱乾燥手段は熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波、フラッシュランプアニール等を用いることができる。簡便さの観点からは、千鳥状に配置した搬送ローラー37でフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40~350℃の範囲がより好ましい。
 また、フラッシュランプアニールを用いる場合には、200~1000V、100~5000μsecの範囲内で照射することが好ましい。
 乾燥工程においては、残留溶媒量が100質量ppm以下になるまで、フィルムを乾燥することが好ましい。
(4)巻取り工程
(4-1)ナーリング加工
 所定の熱処理又は冷却処理の後、巻取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得るため好ましい。さらに、幅手両端部にはナーリング加工をすることが好ましい。
 ナーリング加工は、加熱されたエンボスローラーをフィルム幅手端部に押し当てることにより形成することができる。エンボスローラーには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることができる。
 本発明に係る延伸フィルムの幅手両端部のナーリングの高さは4~20μm、幅5~20mmが好ましい。
 また、本発明においては、上記のナーリング加工は、フィルムの製膜工程において乾燥終了後、巻取りの前に設けることが好ましい。
(4-2)巻取り工程
 延伸フィルム中の残留溶媒量が500質量ppm以下となってから延伸フィルムとして巻取る工程であり、残留溶媒量を好ましくは100質量ppm以下にすることにより寸法安定性の良好なフィルムを得ることができる。
 巻取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使い分ければよい。
 本発明の延伸フィルムの製造方法によれば、延伸工程における延伸倍率が、面積倍率で1.2~3.0倍の範囲内で延伸したり、また、延伸開始時における残留溶媒量を、700~30000質量ppmの範囲内とすることによって、本発明の延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅を、4.6~5.4度の範囲内とすることができ、また、延伸フィルムの残留溶媒量を前記した範囲内に制御することができる。その結果、延伸フィルムの表面が低配向となり、適度な透湿性を確保することができ、接着性に優れる。
[延伸フィルムの物性]
<透湿度>
 本発明の延伸フィルムの透湿度(40℃、95%RH)は、1~500g/(m・24h)の範囲内であり、10~200g/(m・24h)の範囲内であることがより好ましい。
 透湿度を前記範囲内とするためには、特に限定されるものではないが、延伸フィルムを構成する樹脂の種類と膜厚を適宜選択して用いることが好ましい。
 本発明において、透湿度は、JIS Z 0208記載の塩化カルシウム-カップ法に基づき、測定対象のフィルムを温度40℃、95%RHの条件下で24時間放置して測定を行った。
<延伸フィルム長、幅、厚さ>
 本発明に係る延伸フィルムは、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。
 また、本発明に係る延伸フィルムの幅は1m以上であることが好ましく、さらに好ましくは1.3m以上であり、特に1.3~4mであることが好ましい。
 延伸後のフィルムの厚さ(膜厚)は、表示装置の薄型化、生産性の観点から、10~50μmの範囲内であることが好ましい。厚さが10μm以上であれば、一定以上のフィルム強度や位相差を発現させることができる。厚さが50μm以下であれば、所望の位相差を具備し、かつ偏光板及び表示装置の薄型化に適用できる。好ましくは、20~40μmの範囲内である。
[延伸フィルムの用途]
 本発明の延伸フィルムは、偏光板の保護フィルム等に好適に利用され、種々の光学測定装置及び液晶表示装置や有機エレクトロルミネッセンス表示装置等の表示装置に用いることができる。
[偏光板]
 本発明の偏光板は、前記した本発明の延伸フィルムを具備する。具体的に、本発明の偏光板200は、図2に示すように、少なくとも、偏光板保護フィルム300、偏光子層400、本発明の延伸フィルム100及び粘着シート500がこの順に積層されてなる偏光板である。
<粘着シート>
 粘着シートは、粘着剤組成物より形成された粘着剤層を有する。
 粘着シートとしては、例えば、粘着剤層のみを有する両面粘着シート、基材と、基材の両面に形成された粘着剤層とを有し、少なくとも一方の粘着剤層が粘着剤組成物より形成された粘着剤層である両面粘着シート、基材と、基材の一方の面に形成された上記粘着剤層を有する片面粘着シート、及びそれら粘着シートの粘着剤層における基材と接していない面にセパレーターが貼付された粘着シートが挙げられる。
 前記粘着剤組成物としては、例えば、アクリル系粘着剤主剤と、架橋剤と、酸化防止剤等からなることが好ましい。
 前記アクリル系粘着剤主剤としては、例えば、アクリル酸4-ヒドロキシブチル単位(4-HBA)、アクリル酸ブチル単位、アクリル酸メチル単位等が挙げられる。
 前記架橋剤としては、トリレンジイソシアネート系化合物、キシリレンジイソシアネート等が挙げられる。
 前記酸化防止剤としては、ペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)(BASFジャパン社製、IRGANOX1010)等のヒンダードフェノール系酸化防止剤、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)等のリン系酸化防止剤が挙げられる。
 粘着剤組成物中の、アクリル系粘着剤主剤は、10~90質量%の範囲内で含有していることが好ましく、架橋剤は0.01~5.00質量%の範囲内で含有していることが好ましく、酸化防止剤は、0.01~5.00質量%の範囲内で含有していることが好ましい。
 (含水率)
 前記粘着シートは、高湿ショックの発生を抑制するために含水量は少ないことが好ましく、一方で、含水量が少ないと接着不良を起こすことから、少なからず粘着シートは含水していることが好ましい。そのため、粘着シートの含水率は、3.0~10.0%の範囲内であることが好ましく、3.5~5.5%の範囲内であることが特に好ましい。
 粘着シートの含水率は、厚さ50μmのポリエステルフィルム上に粘着剤層を形成し、60mm×130mmに裁断した後に、その粘着シートを70mm×150mmに裁断された厚さ1mmのポリカーボネートに貼り付け、40℃、95%RH環境下に48時間静置し、粘着剤の質量増加を測定することにより求める。
 前記粘着シートの含水率を、3.0~10.0%の範囲内とするためには、例えば、前記粘着剤組成物中のアクリル酸4-ヒドロキシブチル単位(4-HBA)の含有量を4.0~25質量%の範囲内とすることが挙げられる。
 (偏光子層)
 「偏光子層」とは、一定方向の偏波面の光だけを通す素子をいう。現在知られている代表的な偏光子層を構成する偏光フィルム(「偏光子フィルム」及び「偏光子膜」ともいう。)は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素又は二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素又は二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光フィルム(偏光子層)の吸収軸は、通常、最大延伸方向と平行である。
 例えば、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコールが用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。
 偏光子層の厚さは、5~30μmの範囲内であることが好ましく、偏光板を薄型化するため等から、5~20μmの範囲内であることがより好ましい。
 本発明の延伸フィルムがλ/4フィルムとして用いられる場合、本発明の延伸フィルムの面内遅相軸と偏光子層の吸収軸とのなす角度は、20~70度の範囲内であることが好ましく、30~60度であることがより好ましく、40~50度の範囲内であることがさらに好ましい。本発明の延伸フィルムが、VA用の位相差フィルムとして用いられる場合、本発明の延伸フィルムの面内遅相軸と偏光子層の吸収軸とは略直交し得る。
 また、偏光子層と延伸フィルムとは、接着剤又は粘着剤を介して貼り合わせることが好ましい。
 接着剤は、ポリビニルアルコール系樹脂やウレタン樹脂を主成分として含む水系接着剤や、エポキシ系樹脂等の光硬化性樹脂を主成分として含む光硬化型接着剤でありうる。粘着剤は、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン及びポリエーテル等をベースポリマーとして含むものでありうる。中でも、本発明の延伸フィルムとの親和性が良く、吸水による歪みも生じにくいことから、水系接着剤が好ましい。
 偏光子層と本発明の延伸フィルムの貼り合わせは、通常、ロールトゥロールで行うことができる。
 (偏光板保護フィルム)
 偏光子層の延伸フィルムと反対側の面には、偏光板保護フィルムが配置されている。
 偏光板保護フィルムの例には、市販のセルロースアシレートフィルム(例えば、コニカミノルタタック KC6UA、KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC8UY-HA、KC8UX-RHA、KC8UE、KC4UE、KC4HR-1、KC4KR-1、KC4UA、KC6UA以上コニカミノルタオプト(株)製)等が含まれる。
 偏光板保護フィルムの厚さは、特に限定はないが、10~100μmの範囲内であることが好ましく、10~60μmの範囲内であることがより好ましく、20~60μmの範囲内であることが特に好ましい。
[液晶表示装置]
 本発明の液晶表示装置は、液晶セルに、前記偏光板が少なくとも片側の面に貼合された液晶表示装置であって、前記粘着シートが、前記液晶セルに隣接する。
 図3は、液晶表示装置の基本的な構成の一例を示す模式図である。図3に示されるように、本発明の液晶表示装置20は、液晶セル30と、それを挟持する第1の偏光板40及び第2の偏光板50と、バックライト60とを含む。
 液晶セル30の表示モードは、例えばTN(Twisted Nematic)、VA(Vistical Alignment)、又はIPS(InPlaneSwitching)等のいずれの表示モードであってよい。モバイル機器向けの液晶セルは、例えばIPSモードが好ましい。中・大型用途の液晶セルは、例えばVAモードが好ましい。
 第1の偏光板40は、液晶セル30の視認側の面に配置されており、第1の偏光子層41と、第1の偏光子層41の液晶セルとは反対側の面に配置された保護フィルム43(F1)と、第1の偏光子層41の液晶セル側の面に配置された保護フィルム45(F2)とを含む。
 第2の偏光板50は、液晶セル30のバックライト側の面に配置されており、第2の偏光子層51と、第2の偏光子層51の液晶セル側の面に配置された保護フィルム53(F3)と、第2の偏光子層51の液晶セルとは反対側の面に配置された保護フィルム55(F4)とを含む。
 第1の偏光子層41の吸収軸と第2の偏光子層51の吸収軸とは直交していることが好ましい。
 保護フィルム45(F2)は、本発明の延伸フィルムとし得る。保護フィルム45(F2)と第1の偏光子層41とは、直接積層されている。保護フィルム45(F2)の面内遅相軸と第1の偏光子層41の吸収軸とは略直交し得る。保護フィルム45(F2)と液晶セル30とは、粘着シート48を介して接着されている。
 また、保護フィルム43(F1)、53(F3)及び55(F4)は、例えば前述した
偏光板保護フィルムとし得る。
 図2では、保護フィルム45(F2)を本発明の延伸フィルムとした例を示したが、これに限定されず、53(F3)を本発明の延伸フィルムとしてもよい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。
[延伸フィルム101の作製]
<シクロオレフィン樹脂>
 実施例に用いるシクロオレフィン樹脂として、下記シクロオレフィン樹脂を用いた。
 シクロオレフィン樹脂:ARTON G7810(JSR社製)
<微粒子添加液の調製>
 11.3質量部の微粒子(アエロジル R972V、日本アエロジル(株)製)と、84質量部のエタノールとを、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散した。
 溶解タンク中で十分撹拌されているジクロロメタン(100質量部)に、5質量部の微粒子分散液を、ゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
 <主ドープの調製>
 下記組成の主ドープを調製した。まず加圧溶解タンクにジクロロメタン及びエタノールを添加した。ジクロロメタンの入った加圧溶解タンクにシクロオレフィン樹脂、微粒子添加液を撹拌しながら投入した。これを加熱し、撹拌しながら樹脂を溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過して、主ドープを調製した。
 シクロオレフィン樹脂(ARTON G7810(JSR社製))
                           100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 微粒子添加液                      3質量部
 次いで、無端ベルト流延装置を用い、主ドープを温度31℃、1800mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。ステンレスベルトの搬送速度は20m/minとした。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が30.3質量%になるまで溶媒を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体上から剥離し(未延伸)光学フィルム101を得た。
 光学フィルム101を、延伸前にベルト乾燥機にて100℃で加熱して乾燥し、延伸開始時の残留溶媒量を1000質量ppmとなるように制御してから、Tg+25℃(190)で加熱し、表Iに記載の延伸倍率で延伸した。延伸後、ベルト乾燥機にてTg-20℃(145℃)で30分間乾燥した。このようにして、下記表Iに記載の膜厚の延伸フィルム101を得た。
[延伸フィルム102の作製]
 前記延伸フィルム101の作製において、前記光学フィルム101の延伸後に、ベルト乾燥機にてTg+25℃(190℃)で1分加熱し乾燥した以外は同様にして、下記表Iに記載の膜厚の延伸フィルム102を得た。
[延伸フィルム103の作製]
 前記延伸フィルム101の作製において、前記光学フィルム101を、延伸前に60℃で加熱して乾燥し、延伸開始時の残留溶媒量を5000質量ppmとなるように制御した以外は同様にして、下記表Iに記載の膜厚の延伸フィルム103を得た。
[延伸フィルム104の作製]
 前記延伸フィルム101の作製において、前記光学フィルム101を、延伸前にベルト乾燥機にて50℃で加熱して乾燥し、延伸開始時の残留溶媒量を30000質量ppmとなるように制御してから、Tg-30℃(135℃)で加熱し、表Iに記載の延伸倍率で延伸した。延伸後、ベルト乾燥機にてTg-20℃(145℃)で乾燥した。このようにして、下記表Iに記載の膜厚の延伸フィルム104を得た。
[延伸フィルム105の作製]
 前記延伸フィルム101の作製において、前記光学フィルム101の延伸後に、フラッシュランプアニール装置(Novacentrix製、型番Pulse Forge1300)を使用して、550B、50μsecで照射した以外は同様にして、下記表Iに記載の膜厚の延伸フィルム105を得た。
[延伸フィルム106の作製]
 前記前記延伸フィルム101の作製において、前記光学フィルム101を、延伸前にベルト乾燥機にて80℃で加熱して乾燥し、延伸開始時の残留溶媒量を2000質量ppmとなるように制御してから、Tg+50℃(215℃)で加熱し、表Iに記載の延伸倍率で延伸した。延伸後、ベルト乾燥機にてTg-20℃(145℃)で乾燥した。このようにして、下記表Iに記載の膜厚の延伸フィルム106を得た。
[フィルム107の作製]
 日本ゼオン社製の位相差フィルムでZBフィルム(極性基を有さないシクロオレフィン系樹脂フィルム)を、フィルム107として用いた。なお、ZBフィルムは、残留溶媒が無しで延伸した、延伸済みのフィルムである。
[フィルム108の作製]
 前記フィルム107を、フラッシュランプアニール装置(Novacentrix製、型番Pulse Forge1300)を使用して、550V、50μsecで照射し、下記表Iに記載の膜厚のフィルム108を得た。
[フィルム109の作製]
 前記フィルム107に対して、有機溶媒(酢酸エチルとメチルシクロヘキサンの質量比1:1混合溶液)をワイヤレスバーで塗布し、155℃で5分間ベルト乾燥機で乾燥してフィルム109を得た。
[フィルム110の作製]
 前記延伸フィルム101の作製における未延伸の光学フィルム101を、155℃で30分間ベルト乾燥機で乾燥し、フィルム110とした。
[延伸フィルム111の作製]
 特開2013-3232号公報に記載の段落0301及び0302を参考にして、下記の組成物をミキシングタンクに投入し、撹拌して各成分を溶解した後、平均孔径34μmのろ紙及び平均孔径10μmの焼結金属フィルタでろ過し、セルロースエステルドープを調製した。このドープを流延し、前記光学フィルム101と同様にして、ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が30.3質量%になるまで溶剤を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体上から剥離し光学フィルム111を得た。
 その後、光学フィルム111を、延伸前にベルト乾燥機にて50℃で加熱して乾燥し、延伸開始時の残留溶媒量を3000質量ppmとなるように制御してから、Tg+20℃(90℃)で加熱し、表Iに記載の延伸倍率で延伸した。延伸後、ベルト乾燥機にてTg-10℃(60℃)で乾燥した。このようにして、下記表Iに記載の膜厚の延伸フィルム(トリアセチルセルロールフィルム:TAC)111を得た。
 (主ドープの組成)
 メチレンクロライド              340質量部          
 エタノール                   64質量部
 セルロースアセテートプロピオネート(アセチル基置換度1.88、プロピオニル基置換度0.58)           100質量部
 カルボン酸糖エステル化合物(平均置換度6.5のベンジルサッカロース)
                         9質量部
 下記芳香族末端ポリエステル系化合物(5)    3質量部
Figure JPOXMLDOC01-appb-C000006
[フィルムの残留溶媒量]
 得られた各フィルムについて、以下のとおりに残留溶媒量を測定した。
 前記したとおりフィルムを作製した後、1時間後に、フィルムの質量を測定し、これを加熱処理前質量とした。その後、115℃で1時間の加熱処理を行い、加熱処理後のフィルムの質量を測定し、以下の式により残留溶媒量を算出した。その結果を下記表Iに示した。
 式:残留溶媒量(ppm)=(フィルムの加熱処理前質量-フィルムの加熱処理後質量)/(フィルムの加熱処理後質量)×10
[回折ピークの半値幅]
 得られた各フィルムについて、以下のとおりに回折ピークの半値幅を測定した。
 入射X線の入射角θを0.1度に固定し、検出器の角度を変えつつX線の強度を測定した。
 具体的には、X線回折装置として、X線回折装置RINT-TTRII(理学電気社製)を用いた。対陰極をCuとし、50kV-300mAで動作させた。高さ制限スリットは10mm、発散スリットは2/3とし、アルミニウムフォイルを測定した際のAl(200)のピーク半値幅が0.35度となるように光学系を調整した。フィルムを固定し、θを0.1度に固定し2θを5~35度まで0.02度ステップで走査し、各ステップで1秒積算し、回折パターンを得た。バックグラウンド処理を行い、回折ピークの半値幅を求めた。その結果を下記表Iに示した。
[酸素透過率]
 得られた各フィルムについて、以下のとおりに酸素透過率を測定した。
 温度23℃、湿度0%RHの条件で、酸素透過率測定装置(機種名「オキシトラン」(登録商標)(「OXTRAN」2/20)、米国、モコン(MOCON)社製)を使用して、JIS K7126(1987年)に記載のB法(等圧法)に基づいて測定した。
 また、2枚の試験片について測定を各々1回行い、2つの測定値の平均値を酸素透過率の値とし、その結果を下記表Iに示した。
[偏光板の作製]
<偏光子層の作製>
 厚さ70μmのポリビニルアルコールフィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5g及び水100gからなる水溶液に60秒間浸漬し、さらにヨウ化カリウム3g、ホウ酸7.5g及び水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率5倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚さ20μmの偏光フィルム(偏光子層)を得た。
<紫外線硬化型接着剤液(UV糊)の調製>
 下記の各成分を混合した後、脱泡して、紫外線硬化型接着剤液を調製した。なお、トリアリールスルホニウムヘキサフルオロホスフェートは、50%プロピレンカーボネート溶液として配合し、下記にはトリアリールスルホニウムヘキサフルオロホスフェートの固形分量を表示した。
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート
                            45質量部
 エポリードGT-301(ダイセル社製の脂環式エポキシ樹脂)
                            40質量部
 1,4-ブタンジオールジグリシジルエーテル      15質量部
 トリアリールスルホニウムヘキサフルオロホスフェート 2.3質量部
 9,10-ジブトキシアントラセン          0.1質量部
 1,4-ジエトキシナフタレン            2.0質量部
 前記作製したフィルム101~111を準備し、その表面にコロナ放電処理を施した。なお、コロナ放電処理の条件は、コロナ出力強度2.0kW、ライン速度18m/分とした。
 次いで、当該フィルムのコロナ放電処理面に、上記紫外線硬化型接着剤として、硬化後の膜厚が約3μmとなるようにバーコーターで塗工して接着剤層を形成した。得られた接着剤層に、前記ポリビニルアルコール-ヨウ素系偏光子層を貼合した。当該偏光子層のもう一方の面にも同様にして、前記フィルム101~111を貼合して、各偏光板101~111を作製した。
 次いで、貼り合わせた積層物の両面側から、ベルトコンベヤー付き紫外線照射装置(ランプは、フュージョンUVシステムズ社製のDバルブを使用)を用いて、積算光量が750mJ/cmとなるように紫外線を照射し、紫外線硬化型接着剤層を硬化させた。
[評価]
<初期接着力>
 上記で得られた偏光板を用いて、フィルムと偏光子層との界面で剥離したときの剥離強度(接着性)を、23℃・55%RHの環境下で、90度ピール試験(JIS Z0237:2009に準拠)を、株式会社イマダ製90度剥離試験治具(P90‐200N)により測定した。また、以下の評価基準により評価し、△以上であれば、良好と判断した。
 (評価基準)
 〇:剥離強度が2.0(N/25mm)以上
 △:剥離強度が1.5以上2.0(N/25mm)未満
 ×:剥離強度が1.0以上1.5(N/25mm)未満
 ××:剥離強度が1.0(N/25mm)未満
<偏光板耐久後接着力>
 上記で得られた偏光板を、0℃・0%RHの環境下で100時間保存して耐久試験を行った後、前記初期接着力の評価方法と同様にして、0度ピール試験(JIS Z0237:2009に準拠)を、株式会社イマダ製90度剥離試験治具(P90‐200N)により測定した。耐久試験前(初期接着力における剥離強度)の剥離強度に対する耐久試験後の剥離強度の割合を算出した。また、以下の評価基準により評価し、△以上であれば、良好と判断した。
 (評価基準)
 〇:95%以上
 △:80%以上95%未満
 ×:50%以上80%未満
 ××:50%未満
Figure JPOXMLDOC01-appb-T000007
 上記結果に示されるように、本発明の延伸フィルムは、比較例のフィルムに比べて、表面が低配向で、初期接着力及び耐久後接着力に優れていることが認められる。
 本発明は、表面が低配向で適度な透湿性を備えた接着性に優れた延伸フィルム及び延伸フィルムの製造方法、偏光板及び液晶表示装置に利用することができる。
 3、6、12、15、64 濾過器
 4、13 ストック釜
 2、5、11、14 送液ポンプ
 8、16 導管
 10 添加剤仕込釜
 20 合流管
 21 混合機
 22 加圧ダイ
 31 金属ベルト(金属支持体)
 32 ウェブ
 33 剥離位置
 34 第1乾燥装置
 35 延伸装置
 36 第2乾燥装置
 37 搬送ローラー
 38 巻取り装置
 61 仕込釜
 62 ストック釜
 63 ポンプ
 30 液晶セル
 40 第1の偏光板
 41 第1の偏光子層
 43 保護フィルム(F1)
 45 保護フィルム(F2)
 48 粘着シート
 50 第2の偏光板
 51 第2の偏光子層
 53 保護フィルム(F3)
 55 保護フィルム(F4)
 60 バックライト
 100 延伸フィルム
 200 偏光板
 300 偏光板保護フィルム
 400 偏光子層
 500 粘着シート

Claims (9)

  1.  極性基を有するシクロオレフィン系樹脂を含有する延伸フィルムであって、
     前記延伸フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、かつ、
     残留溶媒量が、5~500質量ppmの範囲内である延伸フィルム。
  2.  酸素透過率が、温度23℃、湿度0%RHの条件下、3000~5000mL/(m・24hr・atm)の範囲内である請求項1に記載の延伸フィルム。
  3.  前記半値幅が、4.8~5.2度の範囲内である請求項1又は請求項2に記載の延伸フィルム。
  4.  微粒子を含有する請求項1から請求項3までのいずれか一項に記載の延伸フィルム。
  5.  請求項1から請求項4までのいずれか一項に記載の延伸フィルムを製造する延伸フィルムの製造方法であって、
     溶液流延製膜法により前記延伸フィルムを製造する延伸フィルムの製造方法。
  6.  前記極性基を有するシクロオレフィン系樹脂を含有するドープを支持体上に流延してウェブを形成した後、
     延伸工程における延伸倍率が、面積倍率で1.2~3.0倍の範囲内で延伸処理を施す請求項5に記載の延伸フィルムの製造方法。
  7.  前記極性基を有するシクロオレフィン系樹脂を含有するドープを支持体上に流延してウェブを形成した後、
     延伸工程の延伸開始時における残留溶媒量を、700~30000質量ppmの範囲内とする請求項5又は請求項6に記載の延伸フィルムの製造方法。
  8.  請求項1から請求項4までのいずれか一項に記載の延伸フィルムを具備する偏光板。
  9.  請求項8に記載の偏光板を具備する液晶表示装置。
PCT/JP2022/010551 2021-04-06 2022-03-10 延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置 WO2022215427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237033910A KR20230154938A (ko) 2021-04-06 2022-03-10 연신 필름, 연신 필름의 제조 방법, 편광판 및 액정 표시 장치
JP2023512878A JPWO2022215427A1 (ja) 2021-04-06 2022-03-10
CN202280024758.1A CN117063101A (zh) 2021-04-06 2022-03-10 拉伸膜、拉伸膜的制造方法、偏振片及液晶显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-064819 2021-04-06
JP2021064819 2021-04-06
JP2021-117285 2021-07-15
JP2021117285 2021-07-15

Publications (1)

Publication Number Publication Date
WO2022215427A1 true WO2022215427A1 (ja) 2022-10-13

Family

ID=83546044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010551 WO2022215427A1 (ja) 2021-04-06 2022-03-10 延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置

Country Status (3)

Country Link
JP (1) JPWO2022215427A1 (ja)
KR (1) KR20230154938A (ja)
WO (1) WO2022215427A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069693A (ja) * 2007-09-14 2009-04-02 Fujifilm Corp フィルム、偏光板
US8801978B2 (en) * 2004-11-15 2014-08-12 Lg Chem, Ltd. Biaxial-optical polynorbornene-based film and method of manufacturing the same, integrated optical compensation polarizer having the film and method of manufacturing the polarizer, and liquid crystal display panel containing the film and/or polarizer
WO2017169257A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 転写フィルム、静電容量型入力装置の電極保護膜、積層体および静電容量型入力装置
JP2019120879A (ja) * 2018-01-10 2019-07-22 コニカミノルタ株式会社 延伸フィルムおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573707B2 (ja) 2011-01-31 2014-08-20 日本ゼオン株式会社 位相差フィルムの製造方法
JP2019028109A (ja) 2017-07-26 2019-02-21 日本ゼオン株式会社 複層フィルム及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801978B2 (en) * 2004-11-15 2014-08-12 Lg Chem, Ltd. Biaxial-optical polynorbornene-based film and method of manufacturing the same, integrated optical compensation polarizer having the film and method of manufacturing the polarizer, and liquid crystal display panel containing the film and/or polarizer
JP2009069693A (ja) * 2007-09-14 2009-04-02 Fujifilm Corp フィルム、偏光板
WO2017169257A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 転写フィルム、静電容量型入力装置の電極保護膜、積層体および静電容量型入力装置
JP2019120879A (ja) * 2018-01-10 2019-07-22 コニカミノルタ株式会社 延伸フィルムおよびその製造方法

Also Published As

Publication number Publication date
TW202304691A (zh) 2023-02-01
JPWO2022215427A1 (ja) 2022-10-13
KR20230154938A (ko) 2023-11-09

Similar Documents

Publication Publication Date Title
KR101399788B1 (ko) 위상차 필름의 제조 방법, 위상차 필름, 편광판 및 액정 표시 장치
JPWO2015076101A1 (ja) 偏光板およびこれを用いた液晶表示装置
WO2014175040A1 (ja) 偏光板、その製造方法及び液晶表示装置
JP2013152430A (ja) 光学フィルム、積層フィルム、及びそれらの製造方法
US9523794B2 (en) Optical film of cellulose ester and cellulose ether for vertical alignment liquid crystal displays
JPWO2011114884A1 (ja) ハードコートフィルム、その製造方法、偏光板、及び液晶表示装置
WO2014203637A1 (ja) 偏光板及び液晶表示装置
KR20160090335A (ko) 셀룰로오스 에스테르 필름, 그 제조 방법 및 편광판
JP5382118B2 (ja) 偏光板、及び液晶表示装置
KR101709419B1 (ko) 광학 필름 및 광학 필름의 제조 방법, 편광판 및 액정 표시 장치
JP5980465B2 (ja) 偏光板及びそれを用いた液晶表示装置
JP6081244B2 (ja) 偏光板および液晶表示装置
WO2022215427A1 (ja) 延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置
JP5463020B2 (ja) 液晶パネル及び液晶表示装置
WO2023276304A1 (ja) 偏光板及び液晶表示装置
CN112213809A (zh) 偏振片的制造方法和偏振片
WO2022215407A1 (ja) 偏光板保護フィルムの製造方法
CN117063101A (zh) 拉伸膜、拉伸膜的制造方法、偏振片及液晶显示装置
JP5821850B2 (ja) 偏光板長尺ロール及び光学表示装置の製造システム
JP2023173157A (ja) フィルムロール、その製造方法、偏光板、及び表示装置
JP2023173151A (ja) フィルムロール、その製造方法、偏光板、及び表示装置
JP2015169677A (ja) 偏光性積層フィルムの製造方法及び偏光板の製造方法
JP5263299B2 (ja) 光学フィルム、偏光板、液晶表示装置、および光学フィルムの製造方法
JP2014061643A (ja) 光学フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024758.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023512878

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237033910

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237033910

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784412

Country of ref document: EP

Kind code of ref document: A1