[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022213812A1 - 一种资源选择方法及终端设备 - Google Patents

一种资源选择方法及终端设备 Download PDF

Info

Publication number
WO2022213812A1
WO2022213812A1 PCT/CN2022/082821 CN2022082821W WO2022213812A1 WO 2022213812 A1 WO2022213812 A1 WO 2022213812A1 CN 2022082821 W CN2022082821 W CN 2022082821W WO 2022213812 A1 WO2022213812 A1 WO 2022213812A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
sensing
period
step size
terminal device
Prior art date
Application number
PCT/CN2022/082821
Other languages
English (en)
French (fr)
Inventor
马腾
李书朋
任晓涛
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/551,611 priority Critical patent/US20240179686A1/en
Priority to EP22783879.4A priority patent/EP4322568A4/en
Publication of WO2022213812A1 publication Critical patent/WO2022213812A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a resource selection method and a terminal device.
  • V2X Vehicle to Everything
  • 3GPP Third Generation Partnership
  • RAN Radio Access Network
  • LTE Long-term Evolution
  • each terminal device transmits information based on the resources in the resource pool.
  • the terminal device can continuously monitor the channel and obtain the resource occupancy information of other terminal devices to select according to the resource occupancy information of other terminal devices.
  • unused resources to transmit packets are currently unused.
  • LTE V2X technology supports pedestrian/handheld terminal equipment (Pedestrian-User Equipmen, P-UE).
  • P-UE pedestrian/handheld terminal equipment
  • the P-UE can use partial sensing.
  • Channel monitoring that is, the P-UE can perform channel monitoring only at certain non-consecutive time domain resource positions.
  • the P-UE can determine the minimum value of the number Y of candidate resource subframes according to the network configuration, and determine the positions of the Y candidate subframes of the reserved resource set in the resource selection window by itself.
  • the P-UE performs channel monitoring at the time k ⁇ P steps (time domain resource position) before the reserved resource set, and excludes unavailable resources according to the monitored resource occupation information of other terminal devices, and finally selects the Y candidate subframes from the channel monitoring.
  • the available candidate subframes are selected from among the available candidate subframes for the P-UE to transmit its own information.
  • P step is a set fixed value.
  • the resource pool in NR V2X technology can support a wider resource transmission period, for example, can support a variety of resources less than 100ms Short-cycle sending and resource reservation.
  • P step is a set fixed value, when the P-UE uses the fixed value as a parameter for partial sensing, it may not be able to sense the resource reservation in a short period, resulting in a high probability of resource collision.
  • the embodiments of the present disclosure provide a resource selection method and a terminal device, which can improve the effect of partial perception by the terminal device and reduce the probability of resource collision.
  • an embodiment of the present disclosure provides a resource selection method, which is applied to a terminal device, and the method includes:
  • a target resource is selected from candidate resources other than the occupied and/or reserved resources.
  • the sensing step size is determined as follows:
  • the sensing parameters determined according to each resource transmission period supported by the resource pool are used as the sensing step size.
  • the sensing parameters determined according to each resource transmission period supported by the resource pool are used as the sensing step, including:
  • each resource transmission period supported by the resource pool does not satisfy a multiple relationship, determining corresponding sensing parameters according to each resource transmission period respectively, and obtaining a plurality of sensing parameters;
  • sensing step size All of the obtained sensing parameters are used as the sensing step size.
  • the sensing step size is determined as follows:
  • Each resource transmission cycle supported by the resource pool is divided into multiple cycle sets, the set sensing parameters corresponding to each cycle set are determined respectively, and the sensing step size is determined according to each obtained set sensing parameter.
  • the determining of the set sensing parameters corresponding to each period set, respectively includes:
  • the set sensing parameter corresponding to the period set is determined by any one of the following methods:
  • the set sensing parameter corresponding to the period set is determined.
  • the determining of the set sensing parameters corresponding to each period set, respectively includes:
  • the set sensing parameter corresponding to the period set is determined;
  • the set sensing parameter corresponding to the period set is determined according to the greatest common divisor of each resource transmission period in the period set.
  • the determining the sensing step size according to the obtained collective sensing parameters includes:
  • the set sensing parameter is used as the sensing step size.
  • a multiple relationship is satisfied between every two resource transmission cycles in the cycle set;
  • Each of the obtained set perceptual parameters is used as the perceptual step size.
  • the at least one sensing step size is determined by the terminal device; or,
  • the at least one sensing step size is determined by the network side device and notified to the terminal device through RRC signaling.
  • the obtaining resource occupation information of other terminal devices according to at least one sensing step includes:
  • the time domain resource location corresponding to the candidate resource selected by the terminal device and the at least one perception step size determine multiple perception time domain resource locations in the resource perception window;
  • Channel monitoring is performed at each of the sensing time domain resource positions to obtain resource occupation information of other terminal devices for the candidate resources.
  • an embodiment of the present disclosure provides a terminal device, including:
  • an information acquisition unit configured to acquire resource occupancy information of other terminal equipment according to at least one sensing step; the at least one sensing step is determined according to the resource transmission period supported by the resource pool; the resource occupancy information is used to indicate the resources already occupied and/or reserved by the other terminal equipment from the candidate resources selected by the terminal equipment from the resource pool;
  • a resource selection unit configured to select a target resource from candidate resources other than the occupied and/or reserved resources based on the resource occupation information.
  • the terminal device further includes:
  • a perceptual step size determination unit configured to determine the perceptual step size according to the least common multiple of each resource transmission period supported by the resource pool; or,
  • the sensing parameters determined according to each resource transmission period supported by the resource pool are used as the sensing step size.
  • the perceptual step size determining unit is specifically configured to:
  • each resource transmission period supported by the resource pool does not satisfy a multiple relationship, determining corresponding sensing parameters according to each resource transmission period respectively, and obtaining a plurality of sensing parameters;
  • sensing step size All of the obtained sensing parameters are used as the sensing step size.
  • the perceptual step size determining unit is configured to:
  • Each resource transmission cycle supported by the resource pool is divided into multiple cycle sets, the set sensing parameters corresponding to each cycle set are determined respectively, and the sensing step size is determined according to each obtained set sensing parameter.
  • the perceptual step size determining unit is specifically configured to:
  • the set sensing parameter corresponding to the period set is determined by any one of the following methods:
  • the set sensing parameter corresponding to the period set is determined.
  • the perceptual step size determining unit is specifically configured to:
  • the set sensing parameter corresponding to the period set is determined;
  • the set sensing parameter corresponding to the period set is determined according to the greatest common divisor of each resource transmission period in the period set.
  • the perceptual step size determining unit is specifically configured to:
  • the set sensing parameter is used as the sensing step size.
  • the sensing step size determining unit is specifically used for :
  • Each of the obtained set perceptual parameters is used as the perceptual step size.
  • the at least one sensing step size is determined by the terminal device; or,
  • the at least one sensing step size is determined by the network side device and notified to the terminal device through RRC signaling.
  • the information acquisition unit is specifically configured to:
  • the time domain resource location corresponding to the candidate resource selected by the terminal device and the at least one perception step size determine multiple perception time domain resource locations in the resource perception window;
  • Channel monitoring is performed at each of the sensing time domain resource positions to obtain resource occupation information of other terminal devices for the candidate resources.
  • an embodiment of the present disclosure provides a terminal device, including: a memory, a transceiver, and a processor;
  • the memory for storing computer instructions
  • the transceiver configured to send and receive data under the control of the processor
  • the processor is used to read the computer program in the memory and execute the following steps:
  • a target resource is selected from candidate resources other than the occupied and/or reserved resources.
  • the processor may also be used to:
  • the sensing parameters determined according to each resource transmission period supported by the resource pool are used as the sensing step size.
  • the processor is specifically used for:
  • each resource transmission period supported by the resource pool does not satisfy a multiple relationship, determining corresponding sensing parameters according to each resource transmission period respectively, and obtaining a plurality of sensing parameters;
  • sensing step size All of the obtained sensing parameters are used as the sensing step size.
  • the processor may also be used to:
  • Each resource transmission cycle supported by the resource pool is divided into multiple cycle sets, the set sensing parameters corresponding to each cycle set are determined respectively, and the sensing step size is determined according to each obtained set sensing parameter.
  • the processor is specifically used for:
  • the set sensing parameter corresponding to the period set is determined by any one of the following methods:
  • the set sensing parameter corresponding to the period set is determined.
  • the processor is specifically used for:
  • the set sensing parameter corresponding to the period set is determined;
  • the set sensing parameter corresponding to the period set is determined according to the greatest common divisor of each resource transmission period in the period set.
  • the processor is specifically used for:
  • the set sensing parameter is used as the sensing step size.
  • a multiple relationship is satisfied between every two resource transmission cycles in the cycle set; the processor is specifically configured to:
  • Each of the obtained set perceptual parameters is used as the perceptual step size.
  • the at least one sensing step size is determined by the terminal device; or,
  • the at least one sensing step size is determined by the network side device and notified to the terminal device through RRC signaling.
  • the processor is specifically used for:
  • the time domain resource location corresponding to the candidate resource selected by the terminal device and the at least one perception step size determine multiple perception time domain resource locations in the resource perception window;
  • Channel monitoring is performed at each of the sensing time domain resource positions to obtain resource occupation information of other terminal devices for the candidate resources.
  • an embodiment of the present disclosure provides a computer-readable storage medium, where the storage medium stores computer instructions, and when the computer instructions are executed by a processor, implements the resource selection method according to any one of the first aspects .
  • the resource selection method and terminal device acquire resource occupation information of other terminal devices according to at least one sensing step, and select a target resource from candidate resources based on the acquired resource occupation information.
  • At least one sensing step size is determined according to the resource transmission period supported by the resource pool, and the terminal device performs partial sensing according to the sensing step size determined according to the resource transmission period supported by the resource pool, which can reduce the number of resource reservation situations that cannot be sensed. , to improve the effect of partial perception by the terminal device, reduce the probability of resource collision, and improve the reliability of information transmission by the terminal device.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present disclosure is applicable;
  • FIG. 2 is a schematic diagram of partially perceived time-domain resource locations in the related art
  • FIG. 3 is a schematic flowchart of a resource selection method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a partially perceived time-domain resource location according to an embodiment of the present disclosure
  • FIG. 5 is a structural block diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram of another terminal device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • first and “second” in the embodiments of the present disclosure are used to distinguish similar objects, rather than being used to describe a specific order or sequence.
  • “and/or” describes the association relationship of associated objects, indicating that there may be three kinds of relationships, for example, A and/or B, which may indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or” relationship.
  • the network architecture and service scenarios described in the embodiments of the present disclosure are for the purpose of illustrating the technical solutions of the embodiments of the present disclosure more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present disclosure.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present disclosure are also applicable to similar technical problems.
  • FIG. 1 is a schematic structural diagram of a communication network to which an embodiment of the disclosure is applicable.
  • the communication network may be a V2X network, or a part of the V2X network.
  • the V2X network includes vehicle-to-vehicle (V2V), vehicle-to-Pedestrian (V2P), vehicle-to-infrastructure (V2I), and vehicle-to-network (V2N) communication methods.
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-Pedestrian
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-network
  • One end of the V2P communication may be a P-UE, and the other end may be a vehicle terminal device (Vehicle-User Equipment, V-UE), such as P-UE200 and V-UE300 shown in FIG. 1 .
  • the network-side device 100 may also be included in the communication network. Both the P-UE200 and the V-UE300 can
  • the network-side device 100 is a device that provides wireless communication functions for terminal devices, including but not limited to: 5G base stations (generation NodeB, gNB), radio network controllers (Radio Network Controller, RNC), nodes in 5G B (Node B, NB), base station controller (Base Station Controller, BSC), base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved Node B, HeNB), or home base station (Home Node B, HNB)), baseband unit (BaseBand Unit, BBU), transmission point (Transmitting and Receiving Point, TRP), transmitting point (Transmitting Point, TP), mobile switching center, etc.
  • the network-side device 100 may also be a device that provides wireless communication functions for terminal devices in other communication systems that may appear in the future.
  • P-UE can be a device with wireless communication function, which can be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality) terminal Reality, AR) terminal, wireless terminal in industrial control (industrial control), etc.
  • V-UE300 can be an in-vehicle terminal in self-driving. Both P-UE200 and V-UE300 can provide voice and/or data connectivity to the user, have wireless connectivity, can connect to wireless modems, etc.
  • the P-UE 200 and the V-UE 300 may communicate with one or more core networks via the network-side device 100 .
  • the P-UE200 and V-UE300 are capable of sidelink (SL) awareness. Since the P-UE200 does not need to receive the data sent by the V-UE300, the P-UE200 only sends the data, that is, only sends and does not receive. Under this premise, considering the power consumption problem caused by the P-UE200 continuously monitoring the channel, the P-UE200 may use a partial sensing method to perform channel monitoring. When P-UE200 performs partial sensing, it only receives the sidelink control information (Sidelink Control Information, SCI) sent by other terminal equipment (User Equipment, UE), such as V-UE300, at some discontinuous time domain resource positions. ), so as to obtain the resource occupation/reservation of other UEs without decoding any corresponding data information.
  • SCI Sidelink Control Information
  • the P-UE200 senses other UE reservation resources through partial sensing in the resource sensing window, and after excluding collided resources, the process of determining available candidate resources in the resource selection window is shown in Figure 2.
  • the P-UE200 determines the minimum number of resource candidate subframes Y according to the configuration of the high-level parameter minNumCAndidateSF-r14, and determines the positions of the Y candidate subframes of the reserved resource set in the resource selection window by itself. Monitor the resource occupancy information of other UEs on the subframe, and in Y candidate subframes Exclude unavailable resources.
  • P step is a set fixed value, such as 100ms.
  • the set of k values is configured by the high-level parameter gapCandidateSensing-r14, which is a sequence of 0s and 1s with a length of 10 bits.
  • the high-level parameter gapCandidateSensing-r14 is "1100101010”
  • k corresponds to the position where the kth bit of the high-level parameter gapCandidateSensing-r14 is 1.
  • the terminal senses at the moment of k ⁇ P step from the reserved resource set, excludes unavailable resources, and finally selects available candidate subframes from the Y candidate subframes for the terminal to transmit its own information.
  • the resource pool in NR V2X technology can support a wider resource transmission period, for example, it can support a variety of short periods of less than 100ms for transmission and resource reservation, and the supported resource transmission Periods include [1,...,99ms] and [100,200,...,1000ms].
  • P step is a set fixed value, when the P-UE uses the fixed value as a parameter for partial sensing, it may not be able to sense the resource reservation in a short period, resulting in a high probability of resource collision.
  • the P step is 100ms
  • the P-UE still performs partial sensing according to k ⁇ 100ms, and the resource reservation of other UEs will be missed.
  • the power consumption of the P-UE will be additionally increased.
  • P step is set to 1ms
  • the P-UE still performs partial perception according to k ⁇ 1ms, which will increase unnecessary power consumption. Therefore, it is necessary to provide a compromise solution that can reduce unnecessary power consumption and reduce the probability of resource collision.
  • an embodiment of the present disclosure provides a resource selection method.
  • the resource selection method is applied to terminal equipment.
  • the terminal device may be the P-UE200 shown in FIG. 1 or the V-UE300.
  • the V-UE 300 can also obtain the resource occupation information of other terminal devices by means of partial sensing.
  • the terminal device may also be other communication terminals with power saving requirements or partial sensing.
  • the resource selection method provided by the embodiment of the present disclosure acquires resource occupation information of other terminal devices according to at least one sensing step, and selects a target resource from candidate resources based on the acquired resource occupation information.
  • at least one sensing step size is determined according to the resource transmission period supported by the resource pool, and the terminal device performs partial sensing according to the sensing step size determined according to the resource transmission period supported by the resource pool, which can reduce unnecessary power consumption as much as possible. It also reduces the number of resource reservation situations that cannot be perceived, improves the effect of partial perception by the terminal device, reduces the probability of resource collision, and improves the reliability of information transmission by the terminal device.
  • FIG. 3 shows a schematic flowchart of a resource selection method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device, and the following description is given by taking the P-UE executing the resource selection method as an example.
  • the method includes the following steps:
  • Step S301 Acquire resource occupation information of other terminal devices according to at least one sensing step.
  • At least one sensing step size is determined by the P-UE according to the resource transmission period supported by the resource pool, or determined by the network side device according to the resource transmission period supported by the resource pool. If the sensing step size is determined by the network-side device, the network-side device may notify the P-UE of one or more determined sensing step sizes through Radio Resource Control (RRC) signaling, so that the P-UE Acquire resource occupation information of other terminal devices according to one or more sensing steps.
  • RRC Radio Resource Control
  • the P-UE can determine multiple sensing time domain resource positions in the resource sensing window according to the time domain resource position corresponding to the candidate resource selected by itself in the resource pool and at least one sensing step size, and perform the processing at each sensing time domain resource position.
  • Channel monitoring to obtain resource occupancy information of candidate resources selected by other terminal devices for themselves.
  • the resource occupation information of other terminal devices is used to indicate resources that other terminal devices have occupied and/or reserved in the candidate resources.
  • the embodiment of the present disclosure uses P reserve instead of P step , and the value range of P reserve also has a new definition.
  • the complete set of candidates for P reserve is all resource transmission cycles configured in the resource pool that can be supported.
  • a resource pool supports up to 16 different resource transmission periods, and these period values are selected and determined from [1,...,99ms] and [100,200,...,1000ms].
  • P reserve is determined according to all resource transfer cycles supported by the resource pool.
  • NR V2X may employ multiple values of P reserve for partial sensing.
  • the P-UE first determines the location and size of the Y candidate resource subframes, and then determines the time domain resource location that needs to be perceived in the resource perception window according to the determined value of P reserve and different k values.
  • at least two sensing steps are included, namely P reserve1 and P reserve2 , and the P-UE performs channel monitoring at the time domain resource positions of yk*P reserve1 and yk*P reserve2 respectively , where y represents Y The starting position of each candidate resource subframe, and the value of k is a positive integer, such as 1, 2, 3, . . .
  • the P-UE can learn the resources that other terminal devices have occupied and/or reserved in the candidate resources selected by the P-UE.
  • Step S302 based on the acquired resource occupation information, select a target resource from candidate resources other than the occupied and/or reserved resources.
  • the P-UE can exclude resources that have been occupied and/or reserved by other terminal devices, and select target resources from the resources that are still available, so as to transmit information based on the target resources and avoid its own The transmission resources conflict with the transmission resources of other terminal devices.
  • the value of the sensing step size can be determined with reference to the method described below.
  • the number of perceptual steps may be one, and the perceptual steps may be determined according to any one of the following methods:
  • Mode 1 Determine the perceptual step size according to the least common multiple of each resource transmission period supported by the resource pool;
  • the least common multiple of each resource transmission period supported by the resource pool may be used as the sensing step size; or, the integer multiple of the least common multiple of each resource transmission period supported by the resource pool may be used as the sensing step size.
  • the least common multiple of each resource transmission period supported by the resource pool when the least common multiple of each resource transmission period supported by the resource pool is also a resource transmission period supported by the resource pool, the least common multiple of each resource transmission period supported by the resource pool may be used as the sensing step size. Assuming that the resource pool period supports 4ms and 8ms, the least common multiple of 8 of 4 and 8 is one of the period values. In this case, the least common multiple of each resource transmission period supported by the resource pool can be used as the sensing step.
  • Method 2 Determine the sensing step size according to the greatest common divisor of each resource transmission period supported by the resource pool;
  • Mode 3 Divide each resource transmission period supported by the resource pool into multiple period sets, and determine the set sensing parameters corresponding to each period set respectively. Specifically, for a part of the period set, according to the least common multiple of each resource transmission period in the period set , determine the set sensing parameter corresponding to the period set; for another part of the period set, according to the greatest common divisor of each resource transmission period in the period set, determine the set sensing parameter corresponding to the period set, if the obtained set sensing parameters are the same, Then the set sensing parameter is taken as the sensing step size.
  • a multiple relationship is satisfied between every two resource transmission periods in the period set.
  • the N resource transmission periods may include the transmission period T1 of resources reserved by the terminal equipment itself, or may not include the transmission period T1 of resources reserved by the terminal equipment itself.
  • the number of sensing steps may be multiple, and the sensing steps may be determined according to any one of the following methods:
  • Manner 1 The sensing parameters determined according to each resource transmission period supported by the resource pool are taken as the sensing step size.
  • an integer multiple of each resource transmission period may be used as a sensing parameter determined according to the resource transmission period, and an integer multiple of each resource transmission period supported by the resource pool may be used as the sensing step;
  • Each supported resource transmission period is used as the sensing step size. That is, the perceptual step size P reserve is the complete set of N cycles supported by the resource pool, that is, P reserve includes all N cycle values.
  • the corresponding sensing parameters are determined according to the respective resource transmission periods, and multiple sensing parameters are obtained, and the obtained multiple sensing parameters are used as sensing steps.
  • the resource pool supports cycles of 3ms and 7ms
  • the least common multiple is 21, but the resource pool does not support the cycle value of 21ms. Therefore, both 3ms and 7ms can be used as the sensing step, that is, P reserve1 is 3ms, and P reserve2 is 7ms.
  • Manner 2 Divide each resource transmission period supported by the resource pool into multiple period sets, determine the set sensing parameters corresponding to each period set respectively, and determine the sensing step size according to the obtained set sensing parameters. For example, the N cycles supported by the resource pool are divided into m sub-sets, each sub-set determines its own P reserve' , and P reserve includes all P reserve' .
  • a period set may include one resource transmission period, or may include multiple resource transmission periods.
  • a cycle set including multiple resource transmission cycles a multiple relationship is satisfied between every two resource transmission cycles in the cycle set.
  • the set sensing parameter corresponding to the period set may be determined according to the least common multiple of each resource transmission period in a period set; or, according to the greatest common divisor of each resource transmission period in a period set, the set sensing parameter may be determined
  • the set-aware parameter corresponding to the period set may be determined The set-aware parameter corresponding to the period set.
  • the obtained set perceptual parameters are taken as perceptual step size.
  • the set sensing parameter corresponding to the cycle set may be determined according to the least common multiple of the resource transmission cycles in the cycle set; for another part of the cycle set, the set sensing parameter may be determined according to the The greatest common divisor of the resource transmission cycle determines the set sensing parameter corresponding to the cycle set.
  • the obtained set perceptual parameters are taken as perceptual step size.
  • the resource selection method acquires resource occupation information of other terminal devices according to one or more sensing steps, and selects a target resource from candidate resources based on the acquired resource occupation information.
  • the sensing step size is determined according to the resource transmission period supported by the resource pool, which is the greatest common divisor or the least common multiple of the resource transmission period supported by the resource pool. Partial sensing can reduce unnecessary power consumption as much as possible, reduce the number of resource reservation situations that cannot be sensed, improve the effect of partial sensing by terminal equipment, reduce the probability of resource collision, and improve the reliability of information transmission by terminal equipment.
  • each resource transmission period supported by the resource pool There is a multiple relationship between each resource transmission period supported by the resource pool. According to the least common multiple of each resource transmission period supported by the resource pool, the sensing step size is determined, and the number of the obtained sensing step size is one.
  • the current resource pool supports 4 resource transmission periods (the values of the 4 periods are selected and determined from [1,...,99ms] and [100,200,...,1000ms]), these 4 resource transmission periods are respectively 20ms, 50ms, 100ms, 200ms.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing step size of partial sensing is the least common multiple of 20ms, 50ms, 100ms, and 200ms, that is, 200ms. In another embodiment, considering the resource transmission period T1 reserved by the terminal: the sensing step size of partial sensing is the least common multiple of 20ms, 50ms, 100ms, 200ms and 400ms, that is, 400ms.
  • a V-UE in other terminal equipment uses a resource transmission period of 50ms, and the terminal equipment P-UE performs partial sensing with a sensing step size of 200ms, when the V-UE transmits information, every 4 resources
  • the transmission period will be monitored by the P-UE once, so the V-UE that is using the resource will also be sensed by the P-UE.
  • the current resource pool supports 4 resource transmission periods is only an example, in practical applications, the number of different resource transmission periods that a resource pool can support may be more than 4 or less than 4, for example, it can reach 16.
  • the sensing step size is determined according to the resource transmission periods supported by the resource pool.
  • the current resource pool supports 4 resource transmission periods (the values of the 4 periods are selected and determined from [1,...,99ms] and [100,200,...,1000ms]), these 4 resource transmission periods are respectively 3ms, 7ms, 11ms, 100ms.
  • the resource transmission period T1 reserved by the terminal may not be considered: the period values of the four resource transmission periods of 3ms, 7ms, 11ms, and 100ms are used as the sensing step size for partial sensing, and partial sensing is performed respectively.
  • the number of obtained perceptual steps is four.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing step size of the partial sensing is the least common multiple of the period values of the four resource transmission periods of 3ms, 7ms, 11ms, and 100ms (3*7* 11*100)ms. In this embodiment, the obtained number of perceptual steps is one.
  • the resource transmission period T1 reserved by the terminal respectively use the period values of five resource transmission periods of 3ms, 7ms, 11ms, 100ms and 13ms as the sensing step size of the partial sensing, and perform partial sensing respectively.
  • the number of obtained perceptual steps is five.
  • the sensing step size of the partial perception is the least common multiple of the period values of the five resource transmission periods of 3ms, 7ms, 11ms, 100ms and 13ms (3*7* 11*100*13)ms.
  • the obtained number of perceptual steps is one.
  • the current resource pool supports 4 resource transmission periods is only an example, and in practical applications, the number of different resource transmission periods that a resource pool can support can reach 16.
  • each resource transmission period supported by the resource pool There is a multiple relationship between each resource transmission period supported by the resource pool. According to the greatest common divisor of each resource transmission period supported by the resource pool, the sensing step is determined, and the number of obtained sensing steps is one.
  • the current resource pool supports 4 resource transmission periods (the values of the 4 periods are selected and determined from [1,...,99ms] and [100,200,...,1000ms]), these 4 resource transmission periods are respectively 20ms, 40ms, 80ms, 100ms.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing step size of partial sensing is the greatest common divisor of 20ms, 40ms, 80ms, and 100ms, that is, 20ms. In another embodiment, considering the resource transmission period T1 reserved by the terminal: the sensing step size of partial sensing is the greatest common divisor of 20ms, 40ms, 80ms, 100ms and 10ms, that is, 10ms.
  • the current resource pool supports 4 resource transmission periods is only an example, and in practical applications, the number of different resource transmission periods that a resource pool can support can reach 16.
  • the sensing step size is determined according to the resource transmission periods supported by the resource pool.
  • the current resource pool supports 4 resource transmission periods (the values of the 4 periods are selected and determined from [1,...,99ms] and [100,200,...,1000ms]), these 4 resource transmission periods are respectively 3ms, 7ms, 11ms, 100ms.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing step size of partial sensing is the greatest common divisor of the period values of the four resource transmission periods of 3ms, 7ms, 11ms, and 100ms, that is, 1ms. In this embodiment, the obtained number of perceptual steps is one.
  • the resource transmission period T1 reserved by the terminal may not be considered: the period values of the four resource transmission periods of 3ms, 7ms, 11ms, and 100ms are used as the sensing step size of the partial sensing, and the partial sensing is performed respectively.
  • the number of obtained perceptual steps is four.
  • the sensing step size of partial sensing is the greatest common divisor of the period values of five resource transmission periods of 3ms, 7ms, 11ms, 100ms and 13ms, ie 1ms.
  • the obtained number of perceptual steps is one.
  • the resource transmission period T1 reserved by the terminal respectively use the period values of five resource transmission periods of 3ms, 7ms, 11ms, 100ms and 13ms as the sensing step size of the partial sensing, and perform partial sensing respectively.
  • the number of obtained perceptual steps is five.
  • the current resource pool supports 4 resource transmission periods is only an example, and in practical applications, the number of different resource transmission periods that a resource pool can support can reach 16.
  • the current resource pool supports 4 resource transmission periods (the values of the 4 periods are selected and determined from [1,...,99ms] and [100,200,...,1000ms]), these 4 resource transmission periods are respectively 20ms, 50ms, 100ms, 200ms.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing step size of partial sensing is 100ms, which is the least common multiple of 20ms and 50ms, and is also the greatest common divisor of 100ms and 200ms.
  • 20ms and 50ms may be divided into the first period set, and 100ms and 200ms may be divided into the second period set; according to each resource transmission period in the first period set, the least common multiple of 20ms and 50ms , determine that the collective sensing parameter corresponding to the first period set is 100ms; according to each resource transmission period in the second period set, the greatest common divisor of 100ms and 200ms, determine that the set sensing parameter corresponding to the second period set is 100ms; The collective sensing parameter corresponding to the first period set and the collective sensing parameter corresponding to the second period set are both 100ms, therefore, 100ms is used as the sensing step size for partial sensing.
  • the sensing step size of the partial sensing is: a compromise value between the least common multiple and the greatest common divisor of each resource transmission period supported by the resource pool.
  • the compromise value M may be a certain period value in each resource transmission period supported by the resource pool; it may not be a certain period value in each resource transmission period supported by the resource pool, but at the same time, M is a period value of periods t1 and t2. Least common multiple, and M is the greatest common divisor of periods t3 and t4.
  • the sensing step size of partial sensing is 100ms, which is the least common multiple of 20ms and 50ms, and is also the greatest common divisor of 100ms, 200ms and 400ms.
  • 20ms and 50ms can be divided into the first period set, and 100ms, 200ms and 400ms can be divided into the second period set; according to each resource transmission period in the first period set, 20ms and 50ms Least common multiple, determine that the set sensing parameter corresponding to the first period set is 100ms; according to each resource transmission period in the second period set, the greatest common divisor of 100ms, 200ms and 400ms, determine the set sensing parameter corresponding to the second period set The parameter is 100ms; the set sensing parameters corresponding to the first period set and the set sensing parameters corresponding to the second period set are both 100ms, so 100ms is used as the sensing step size for partial sensing.
  • the current resource pool supports 4 resource transmission periods is only an example, and in practical applications, the number of different resource transmission periods that a resource pool can support can reach 16.
  • the sensing step is determined according to the least common multiple and the greatest common divisor of each resource transmission period supported by the resource pool.
  • the current resource pool supports 4 resource transmission periods (the values of the 4 periods are selected and determined from [1,...,99ms] and [100,200,...,1000ms]), these 4 resource transmission periods are respectively 13ms, 26ms, 100ms, 200ms.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing steps for partial sensing are 26ms and 100ms respectively, that is, the least common multiple of 13ms and 26ms is selected as one of the sensing steps, and 100ms and 200ms are selected at the same time The greatest common divisor of , as another perceptual step size. In this embodiment, the number of obtained perceptual steps is two.
  • 13ms and 26ms can be divided into the first period set, and 100ms and 200ms can be divided into the second period set; according to the respective resource transmission periods in the first period set, the least common multiple of 13ms and 26ms , determine that the set sensing parameter corresponding to the first period set is 26ms; according to the transmission period of each resource in the second period set, the greatest common divisor of 100ms and 200ms, determine that the set sensing parameter corresponding to the second period set is 100ms; The set sensing parameter 26ms corresponding to the first period set and the set sensing parameter corresponding to the second period set are both 100ms as the sensing step size of partial sensing.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing steps for partial sensing are 26ms and 200ms respectively, that is, the least common multiple of 13ms and 26ms is selected as one of the sensing steps, and 100ms and 100ms are selected at the same time. LCM of 200ms, as another perceptual step size. In this embodiment, the number of obtained perceptual steps is two.
  • 13ms and 26ms can be divided into the first period set, and 100ms and 200ms can be divided into the second period set; according to the respective resource transmission periods in the first period set, the least common multiple of 13ms and 26ms , determine that the set sensing parameter corresponding to the first period set is 26ms; according to each resource transmission period in the second period set, the least common multiple of 100ms and 200ms, determine that the set sensing parameter corresponding to the second period set is 200ms;
  • the collective sensing parameter 26ms corresponding to the first period set and the collective sensing parameter corresponding to the second period set are both 200ms as the sensing step size for partial sensing.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing steps for partial sensing are 13ms and 100ms respectively, that is, the greatest common divisor of 13ms and 26ms is selected as one of the sensing steps, and 100ms is selected at the same time and the greatest common divisor of 200ms as another perceptual step size. In this embodiment, the number of obtained perceptual steps is two.
  • 13ms and 26ms can be divided into the first period set, and 100ms and 200ms can be divided into the second period set; according to the respective resource transmission periods in the first period set, the maximum common value between 13ms and 26ms is According to the maximum common divisor of 100ms and 200ms of each resource transmission period in the second period set, the set sensing parameter corresponding to the second period set is determined to be 100ms ; The set sensing parameter 13ms corresponding to the first period set and the set sensing parameter corresponding to the second period set are both 100ms as the sensing step size of partial sensing.
  • the sensing steps of partial sensing are 26ms and 100ms respectively, that is, the least common multiple of 13ms and 26ms is selected as one of the sensing steps, and 1100ms, 200ms and 1100ms are selected at the same time.
  • 13ms and 26ms can be divided into the first cycle set, and 100ms, 200ms and 400ms can be divided into the second cycle set; according to each resource transmission cycle in the first cycle set, 13ms and 26ms Least common multiple, determine that the set sensing parameter corresponding to the first period set is 26ms; according to each resource transmission period in the second period set, the greatest common divisor of 100ms, 200ms and 400ms, determine the set sensing parameter corresponding to the second period set The parameter is 100ms; the set sensing parameter 26ms corresponding to the first period set and the set sensing parameter corresponding to the second period set are both 100ms as the sensing step size for partial sensing.
  • the sensing steps of partial sensing are 26ms and 400ms respectively, that is, the least common multiple of 13ms and 26ms is selected as one of the sensing steps, and 100ms, 200ms and 100ms are selected at the same time. Least common multiple of 400ms, as another perceptual step size. In this embodiment, the number of obtained perceptual steps is two.
  • 13ms and 26ms can be divided into the first cycle set, and 100ms, 200ms and 400ms can be divided into the second cycle set; according to each resource transmission cycle in the first cycle set, 13ms and 26ms Least common multiple, the set sensing parameter corresponding to the first period set is determined to be 26ms; according to the least common multiple of 100ms, 200ms and 400ms of each resource transmission period in the second period set, the set sensing parameter corresponding to the second period set is determined is 400ms; the set sensing parameter 26ms corresponding to the first period set and the set sensing parameter corresponding to the second period set are both 400ms as the sensing step size of partial sensing.
  • the sensing steps of partial sensing are 13ms and 100ms respectively, that is, the greatest common divisor of 13ms and 26ms is selected as one of the sensing steps, and 100ms and 200ms are selected at the same time. and the greatest common divisor of 400ms as another perceptual step size. In this embodiment, the number of obtained perceptual steps is two.
  • 13ms and 26ms can be divided into the first cycle set, and 100ms, 200ms and 400ms can be divided into the second cycle set; according to each resource transmission cycle in the first cycle set, 13ms and 26ms
  • the greatest common divisor, the set sensing parameter corresponding to the first period set is determined to be 13ms; the set corresponding to the second period set is determined according to the greatest common divisor of each resource transmission period, 100ms, 200ms and 400ms in the second period set
  • the sensing parameter is 100ms; the set sensing parameter 13ms corresponding to the first period set and the set sensing parameter 100ms corresponding to the second period set are both used as the sensing step size for partial sensing.
  • the cycles with multiple relationships can be divided into multiple cycle sets.
  • Each cycle set finds its own greatest common divisor or least common multiple, which is used as the set-aware parameter of each cycle set.
  • the current resource pool supports 4 resource transmission periods is only an example, and in practical applications, the number of different resource transmission periods that a resource pool can support can reach 16.
  • the sensing step is determined according to each resource transmission cycle supported by the resource pool.
  • the current resource pool supports 4 resource transmission periods (the values of the 4 periods are selected and determined from [1,...,99ms] and [100,200,...,1000ms]), these 4 resource transmission periods are respectively 3ms, 7ms, 50ms, 100ms.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing steps of partial sensing are 3ms, 7ms and 100ms, respectively. That is, 3ms and 7ms are selected as the perceptual step size, and the least common multiple of 50ms and 100ms is selected as another perceptual step size. In this embodiment, the number of obtained perceptual steps is three.
  • 3ms can be divided into the first period set, 7ms can be divided into the second period set, and 50ms and 100ms can be divided into the third period set; since the first period set only contains one resource The transmission period is 3ms, so the set sensing parameter corresponding to the first period set is determined to be 3ms; since the second period set contains only one resource transmission period of 7ms, the set sensing parameter corresponding to the first period set is determined to be 7ms; according to For each resource transmission period in the third period set, the least common multiple of 50ms and 100ms determines that the set sensing parameter corresponding to the third period set is 100ms; the set sensing parameter corresponding to the first period set is 3ms, the second period The set sensing parameter 7ms corresponding to the set and the set sensing parameter 100ms corresponding to the third period set are both used as the sensing step size for partial sensing.
  • the resource transmission period T1 reserved by the terminal may not be considered: the sensing steps of partial sensing are 3ms, 7ms and 50ms, respectively. That is, 3ms and 7ms are selected as the perceptual step size, and the greatest common divisor of 50ms and 100ms is selected as another perceptual step size. In this embodiment, the number of obtained perceptual steps is three.
  • 3ms can be divided into the first period set, 7ms can be divided into the second period set, and 50ms and 100ms can be divided into the third period set; since the first period set only contains one resource The transmission period is 3ms, so the set sensing parameter corresponding to the first period set is determined to be 3ms; since the second period set contains only one resource transmission period of 7ms, the set sensing parameter corresponding to the first period set is determined to be 7ms; according to For each resource transmission period in the third period set, the greatest common divisor of 50ms and 100ms determines that the set sensing parameter corresponding to the third period set is 50ms; the set sensing parameter corresponding to the first period set is 3ms and the second The collective sensing parameter 7ms corresponding to the period set and the collective sensing parameter 50ms corresponding to the third period set are both used as the sensing step size for partial sensing.
  • the sensing steps of the partial sensing are 3ms, 7ms and 200ms, respectively. That is, 3ms and 7ms are selected as the perceptual step size, and the least common multiple of 50ms, 100ms and 200ms is selected as another perceptual step size. In this embodiment, the number of obtained perceptual steps is three.
  • 3ms can be divided into the first cycle set, 7ms can be divided into the second cycle set, and 50ms, 100ms and 200ms can be divided into the third cycle set; since the first cycle set only contains A resource transmission period is 3ms, so the set sensing parameter corresponding to the first period set is determined to be 3ms; since the second period set contains only one resource transmission period of 7ms, the set sensing parameter corresponding to the first period set is determined to be 7ms ; According to each resource transmission period in the third period set, the least common multiple of 50ms, 100ms and 200ms, determine that the set sensing parameter corresponding to the third period set is 200ms; the set sensing parameters corresponding to the first period set 3ms, The collective sensing parameter 7ms corresponding to the second period set and the collective sensing parameter 200ms corresponding to the third period set are both used as the sensing step size for partial sensing.
  • the sensing steps of the partial sensing are 3ms, 7ms and 50ms, respectively. That is, 3ms and 7ms are respectively selected as the perceptual step size, and the greatest common divisor of 50ms, 100ms and 200ms is selected as another perceptual step size. In this embodiment, the number of obtained perceptual steps is three.
  • 3ms can be divided into the first cycle set, 7ms can be divided into the second cycle set, and 50ms, 100ms and 200ms can be divided into the third cycle set; since the first cycle set only contains A resource transmission period is 3ms, so the set sensing parameter corresponding to the first period set is determined to be 3ms; since the second period set contains only one resource transmission period of 7ms, the set sensing parameter corresponding to the first period set is determined to be 7ms ; According to each resource transmission period in the third period set, the greatest common divisor of 50ms, 100ms and 200ms, determine that the set sensing parameter corresponding to the third period set is 50ms; the set sensing parameter corresponding to the first period set is 3ms , The collective sensing parameter 7ms corresponding to the second period set and the collective sensing parameter 50ms corresponding to the third period set are both used as the sensing step size for partial sensing.
  • the current resource pool supports 4 resource transmission periods is only an example, and in practical applications, the number of different resource transmission periods that a resource pool can support can reach 16.
  • An embodiment of the present disclosure provides a method for determining the sensing step size P reserve , and the sensing step size can obtain the greatest common divisor and minimum value of each resource transmission period according to the specific value of each resource transmission period in the period list supported by the current resource pool. Common multiples, or find multiple values that can satisfy the multiple relationship as P reserve , and then perform partial sensing according to the determined sensing step size.
  • an embodiment of the present disclosure also provides a terminal device, which can implement the processes performed by the foregoing embodiments.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 5 , the terminal device includes: an information acquisition unit 501 and a resource selection unit 502;
  • the information acquisition unit 501 is configured to acquire resource occupation information of other terminal equipment according to at least one sensing step size; the at least one sensing step size is determined according to the resource transmission period supported by the resource pool; the resource occupation information is used to indicate resources that have been occupied and/or reserved by the other terminal equipment from the candidate resources selected by the terminal equipment from the resource pool;
  • a resource selection unit 502 configured to select a target resource from candidate resources other than the occupied and/or reserved resources based on the resource occupation information.
  • the terminal device provided by the embodiment of the present disclosure may further include a sensing step size determining unit 601;
  • a sensing step size determining unit 601, configured to determine the sensing step size according to the least common multiple of each resource transmission period supported by the resource pool; or,
  • the sensing parameters determined according to each resource transmission period supported by the resource pool are used as the sensing step size.
  • the perceptual step size determining unit 601 is specifically configured to:
  • each resource transmission period supported by the resource pool does not satisfy a multiple relationship, determining corresponding sensing parameters according to each resource transmission period respectively, and obtaining a plurality of sensing parameters;
  • sensing step size All of the obtained sensing parameters are used as the sensing step size.
  • the perceptual step size determining unit 601 may also be used to:
  • Each resource transmission cycle supported by the resource pool is divided into multiple cycle sets, the set sensing parameters corresponding to each cycle set are determined respectively, and the sensing step size is determined according to each obtained set sensing parameter.
  • the perceptual step size determining unit 601 is specifically configured to:
  • the set sensing parameter corresponding to the period set is determined by any one of the following methods:
  • the set sensing parameter corresponding to the period set is determined.
  • the perceptual step size determining unit 601 is specifically configured to:
  • the set sensing parameter corresponding to the period set is determined;
  • the set sensing parameter corresponding to the period set is determined according to the greatest common divisor of each resource transmission period in the period set.
  • the perceptual step size determining unit 601 is specifically configured to:
  • the set sensing parameter is used as the sensing step size.
  • the sensing step size determining unit 601 specifically uses At:
  • Each of the obtained set perceptual parameters is used as the perceptual step size.
  • the at least one sensing step size is determined by the terminal device; or,
  • the at least one sensing step size is determined by the network side device and notified to the terminal device through RRC signaling.
  • the information acquisition unit 501 is specifically configured to:
  • the time domain resource location corresponding to the candidate resource selected by the terminal device and the at least one perception step size determine multiple perception time domain resource locations in the resource perception window;
  • Channel monitoring is performed at each of the sensing time domain resource positions to obtain resource occupation information of other terminal devices for the candidate resources.
  • the terminal device acquires resource occupation information of other terminal devices according to at least one sensing step, and selects a target resource from candidate resources based on the acquired resource occupation information.
  • At least one sensing step size is determined according to the resource transmission period supported by the resource pool, and the terminal device performs partial sensing according to the sensing step size determined according to the resource transmission period supported by the resource pool, which can reduce the number of resource reservation situations that cannot be sensed. , to improve the effect of partial perception by the terminal device, reduce the probability of resource collision, and improve the reliability of information transmission by the terminal device.
  • an embodiment of the present disclosure also provides a terminal device.
  • the terminal device can implement the flow of the method executed in FIG. 2 in the foregoing embodiment.
  • FIG. 7 shows a schematic structural diagram of the terminal device provided by an embodiment of the present disclosure, that is, another schematic structural diagram of the terminal device.
  • the terminal device includes a processor 701, a memory 702 and a transceiver 703;
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 702 may store data used by the processor 701 in performing operations.
  • the transceiver 703 is used to receive and transmit data under the control of the processor 701 .
  • the bus architecture may include any number of interconnected buses and bridges, in particular one or more processors represented by processor 701 and various circuits of memory represented by memory 702 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 702 may store data used by the processor 701 in performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 701 or implemented by the processor 701 .
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the processor 701 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the embodiments of the present disclosure.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present disclosure may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 701 is configured to read the program in the memory 702 and execute:
  • a target resource is selected from candidate resources other than the occupied and/or reserved resources.
  • processor 701 may also be used for:
  • the sensing parameters determined according to each resource transmission period supported by the resource pool are used as the sensing step size.
  • the processor 701 is specifically configured to:
  • each resource transmission period supported by the resource pool does not satisfy a multiple relationship, determining corresponding sensing parameters according to each resource transmission period respectively, and obtaining a plurality of sensing parameters;
  • sensing step size All of the obtained sensing parameters are used as the sensing step size.
  • processor 701 may also be used for:
  • Each resource transmission cycle supported by the resource pool is divided into multiple cycle sets, the set sensing parameters corresponding to each cycle set are determined respectively, and the sensing step size is determined according to each obtained set sensing parameter.
  • the processor 701 is specifically configured to:
  • the set sensing parameter corresponding to the period set is determined by any one of the following methods:
  • the set sensing parameter corresponding to the period set is determined.
  • the processor 701 is specifically configured to:
  • the set sensing parameter corresponding to the period set is determined;
  • the set sensing parameter corresponding to the period set is determined according to the greatest common divisor of each resource transmission period in the period set.
  • the processor 701 is specifically configured to:
  • the set sensing parameter is used as the sensing step size.
  • the processor 701 is specifically configured to:
  • Each of the obtained set perceptual parameters is used as the perceptual step size.
  • the at least one sensing step size is determined by the terminal device; or,
  • the at least one sensing step size is determined by the network side device and notified to the terminal device through RRC signaling.
  • the processor 701 is specifically configured to:
  • the time domain resource location corresponding to the candidate resource selected by the terminal device and the at least one perception step size determine multiple perception time domain resource locations in the resource perception window;
  • Channel monitoring is performed at each of the sensing time domain resource positions to obtain resource occupation information of other terminal devices for the candidate resources.
  • the terminal device acquires resource occupation information of other terminal devices according to at least one sensing step, and selects a target resource from candidate resources based on the acquired resource occupation information.
  • At least one sensing step size is determined according to the resource transmission period supported by the resource pool, and the terminal device performs partial sensing according to the sensing step size determined according to the resource transmission period supported by the resource pool, which can reduce the number of resource reservation situations that cannot be sensed. , to improve the effect of partial perception by the terminal device, reduce the probability of resource collision, and improve the reliability of information transmission by the terminal device.
  • the embodiments of the present disclosure further provide a storage medium readable by a computing device for the resource selection method, that is, the content is not lost after the power is turned off.
  • Software programs are stored in the storage medium, including program codes. When the program codes are run on a computing device, the software programs can implement any of the above resource selections in the embodiments of the present disclosure when read and executed by one or more processors. method scheme.
  • Embodiments of the present disclosure are described above with reference to block diagrams and/or flowchart illustrations illustrating methods, apparatus (systems) and/or computer program products according to embodiments of the present disclosure. It will be understood that a block of the block diagrams and/or flowchart illustrations, and combinations of blocks of the block diagrams and/or flowchart illustrations, can be implemented by computer program instructions. These computer program instructions may be provided to a general purpose computer, a processor of a special purpose computer and/or other programmable data processing apparatus to produce a machine such that the instructions executed via the computer processor and/or other programmable data processing apparatus create a Methods of implementing the functions/acts specified in the block diagrams and/or flowchart blocks.
  • embodiments of the present disclosure may also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, embodiments of the present disclosure may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code embodied in the medium for execution by an instruction execution system. Used in or in conjunction with an instruction execution system.
  • a computer-usable or computer-readable medium may be any medium that may contain, store, communicate, transmit, or transmit a program for use by, or in connection with, an instruction execution system, apparatus, or device. system, device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种资源选择方法及终端设备,涉及无线通信技术领域。其中,终端设备按照至少一个感知步长,获取其他终端设备的资源占用信息,并基于获取的资源占用信息,从候选资源中选择目标资源。其中,至少一个感知步长是根据资源池支持的资源传输周期确定的,终端设备按照根据资源池支持的资源传输周期确定的感知步长进行部分感知,可以减少无法感知到的资源预约情况的数量,提高终端设备进行部分感知的效果,减少资源碰撞的概率,提高终端设备传输信息的可靠性。

Description

一种资源选择方法及终端设备
相关申请的交叉引用
本申请要求在2021年04月06日提交中国专利局、申请号为202110368223.3、申请名称为“一种资源选择方法及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,特别涉及一种资源选择方法及终端设备。
背景技术
车辆到一切的互联(Vehicle to Everything,V2X)是第三代合作伙伴计划(Third Generation Partnership,3GPP)无线接入网(Radio Access Network,RAN)#72批准设立的车联网项目,主要研究基于长期演进(Long Term Evolution,LTE)的车联网消息传输方案。在LTE V2X技术中,各个终端设备基于资源池中的资源来传输信息,为了避免资源碰撞,终端设备可以持续监听信道,获取其他终端设备的资源占用信息,以根据其他终端设备的资源占用信息选择当前未被占用的资源来传送数据包。
LTE V2X技术中支持行人/手持终端设备(Pedestrian-User Equipmen,P-UE),考虑到P-UE持续监听信道带来的功耗问题,P-UE可以采用部分感知(partial sensing)的方式进行信道监听,即P-UE可以仅在某些非连续的时域资源位置进行信道监听。
目前,P-UE可以根据网络配置确定资源候选子帧个数Y的最小值,并自行确定在资源选择窗口中预约资源集的Y个候选子帧的位置。P-UE在距预约资源集之前k×P step的时刻(时域资源位置)进行信道监听,并根据监听到的其他终端设备的资源占用信息排除不可用的资源,最终从Y个候选子帧中选 出可用的候选子帧,用于P-UE传输自己的信息。其中,P step是一个设定的固定值。
在从LTE V2X技术向新无线接入技术(New Radio Access Technology,NR)V2X技术转化的过程中,NR V2X技术中的资源池可以支持的资源传输周期更宽,例如,可以支持多种小于100ms短周期的发送和资源预约。而由于P step是一个设定的固定值,P-UE在采用该固定值作为参数进行部分感知时,可能无法感知到短周期的资源预约情况,导致资源碰撞的概率较高。
发明内容
本公开实施例提供一种资源选择方法及终端设备,可以提高终端设备进行部分感知的效果,减少资源碰撞的概率。
第一方面,本公开实施例提供一种资源选择方法,应用于终端设备,所述方法包括:
按照至少一个感知步长,获取其他终端设备的资源占用信息;所述至少一个感知步长是根据资源池支持的资源传输周期确定的;所述资源占用信息用于指示所述其他终端设备在所述终端设备从所述资源池内选定的候选资源中已占用和/或预约的资源;
基于所述资源占用信息,从除所述已占用和/或预约的资源之外的候选资源中选择目标资源。
在一种可选的实施例中,所述感知步长通过如下确定:
根据所述资源池支持的各个资源传输周期的最小公倍数,确定所述感知步长;或者,
根据所述资源池支持的各个资源传输周期的最大公约数,确定所述感知步长;或者,
将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长。
在一种可选的实施例中,所述将分别根据所述资源池支持的各个资源传 输周期确定的感知参数,均作为所述感知步长,包括:
若所述资源池支持的各个资源传输周期之间不满足倍数关系,则分别根据各个资源传输周期确定对应的感知参数,得到多个感知参数;
将得到的所述多个感知参数均作为所述感知步长。
在一种可选的实施例中,所述感知步长通过如下确定:
将所述资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定所述感知步长。
在一种可选的实施例中,所述分别确定各个周期集合对应的集合感知参数,包括:
针对各个周期集合,通过如下任意一种方式确定所述周期集合对应的集合感知参数:
根据所述周期集合中的各个资源传输周期的最小公倍数,确定所述周期集合对应的集合感知参数;或者,
根据所述周期集合中的各个资源传输周期的最大公约数,确定所述周期集合对应的集合感知参数。
在一种可选的实施例中,所述分别确定各个周期集合对应的集合感知参数,包括:
对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;
对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。
在一种可选的实施例中,所述根据得到的各个集合感知参数确定所述感知步长,包括:
若得到的各个集合感知参数相同,则将所述集合感知参数作为所述感知步长。
在一种可选的实施例中,对于包含多个资源传输周期的周期集合,所述 周期集合中每两个资源传输周期之间均满足倍数关系;所述根据得到的各个集合感知参数确定所述感知步长,包括:
将得到的各个集合感知参数,均作为所述感知步长。
在一种可选的实施例中,所述至少一个感知步长是所述终端设备确定的;或者,
所述至少一个感知步长是网络侧设备确定,并通过RRC信令通知所述终端设备的。
在一种可选的实施例中,所述按照至少一个感知步长,获取其他终端设备的资源占用信息,包括:
根据所述终端设备选定的候选资源对应的时域资源位置和所述至少一个感知步长,在资源感知窗中确定多个感知时域资源位置;
在各个所述感知时域资源位置进行信道监听,获取其他终端设备针对所述候选资源的资源占用信息。
第二方面,本公开实施例提供一种终端设备,包括:
信息获取单元,用于按照至少一个感知步长,获取其他终端设备的资源占用信息;所述至少一个感知步长是根据资源池支持的资源传输周期确定的;所述资源占用信息用于指示所述其他终端设备在所述终端设备从所述资源池内选定的候选资源中已占用和/或预约的资源;
资源选择单元,用于基于所述资源占用信息,从除所述已占用和/或预约的资源之外的候选资源中选择目标资源。
在一种可选的实施例中,所述终端设备还包括:
感知步长确定单元,用于根据所述资源池支持的各个资源传输周期的最小公倍数,确定所述感知步长;或者,
根据所述资源池支持的各个资源传输周期的最大公约数,确定所述感知步长;或者,
将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长。
在一种可选的实施例中,所述感知步长确定单元,具体用于:
若所述资源池支持的各个资源传输周期之间不满足倍数关系,则分别根据各个资源传输周期确定对应的感知参数,得到多个感知参数;
将得到的所述多个感知参数均作为所述感知步长。
在一种可选的实施例中,所述感知步长确定单元,用于:
将所述资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定所述感知步长。
在一种可选的实施例中,所述感知步长确定单元,具体用于:
针对各个周期集合,通过如下任意一种方式确定所述周期集合对应的集合感知参数:
根据所述周期集合中的各个资源传输周期的最小公倍数,确定所述周期集合对应的集合感知参数;或者,
根据所述周期集合中的各个资源传输周期的最大公约数,确定所述周期集合对应的集合感知参数。
在一种可选的实施例中,所述感知步长确定单元,具体用于:
对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;
对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。
在一种可选的实施例中,所述感知步长确定单元,具体用于:
若得到的各个集合感知参数相同,则将所述集合感知参数作为所述感知步长。
在一种可选的实施例中,对于包含多个资源传输周期的周期集合,所述周期集合中每两个资源传输周期之间均满足倍数关系;所述感知步长确定单元,具体用于:
将得到的各个集合感知参数,均作为所述感知步长。
在一种可选的实施例中,所述至少一个感知步长是所述终端设备确定的;或者,
所述至少一个感知步长是网络侧设备确定,并通过RRC信令通知所述终端设备的。
在一种可选的实施例中,所述信息获取单元,具体用于:
根据所述终端设备选定的候选资源对应的时域资源位置和所述至少一个感知步长,在资源感知窗中确定多个感知时域资源位置;
在各个所述感知时域资源位置进行信道监听,获取其他终端设备针对所述候选资源的资源占用信息。
第三方面,本公开实施例提供一种终端设备,包括:存储器、收发机以及处理器;
所述存储器,用于存储计算机指令;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
按照至少一个感知步长,获取其他终端设备的资源占用信息;所述至少一个感知步长是根据资源池支持的资源传输周期确定的;所述资源占用信息用于指示所述其他终端设备在所述终端设备从所述资源池内选定的候选资源中已占用和/或预约的资源;
基于所述资源占用信息,从除所述已占用和/或预约的资源之外的候选资源中选择目标资源。
在一种可选的实施例中,所述处理器,还可以用于:
根据所述资源池支持的各个资源传输周期的最小公倍数,确定所述感知步长;或者,
根据所述资源池支持的各个资源传输周期的最大公约数,确定所述感知步长;或者,
将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长。
在一种可选的实施例中,所述处理器,具体用于:
若所述资源池支持的各个资源传输周期之间不满足倍数关系,则分别根据各个资源传输周期确定对应的感知参数,得到多个感知参数;
将得到的所述多个感知参数均作为所述感知步长。
在一种可选的实施例中,所述处理器,还可以用于:
将所述资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定所述感知步长。
在一种可选的实施例中,所述处理器,具体用于:
针对各个周期集合,通过如下任意一种方式确定所述周期集合对应的集合感知参数:
根据所述周期集合中的各个资源传输周期的最小公倍数,确定所述周期集合对应的集合感知参数;或者,
根据所述周期集合中的各个资源传输周期的最大公约数,确定所述周期集合对应的集合感知参数。
在一种可选的实施例中,所述处理器,具体用于:
对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;
对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。
在一种可选的实施例中,所述处理器,具体用于:
若得到的各个集合感知参数相同,则将所述集合感知参数作为所述感知步长。
在一种可选的实施例中,对于包含多个资源传输周期的周期集合,所述周期集合中每两个资源传输周期之间均满足倍数关系;所述处理器,具体用于:
将得到的各个集合感知参数,均作为所述感知步长。
在一种可选的实施例中,所述至少一个感知步长是所述终端设备确定的;或者,
所述至少一个感知步长是网络侧设备确定,并通过RRC信令通知所述终端设备的。
在一种可选的实施例中,所述处理器,具体用于:
根据所述终端设备选定的候选资源对应的时域资源位置和所述至少一个感知步长,在资源感知窗中确定多个感知时域资源位置;
在各个所述感知时域资源位置进行信道监听,获取其他终端设备针对所述候选资源的资源占用信息。
第四方面,本公开实施例提供一种计算机可读存储介质,所述存储介质存储有计算机指令,所述计算机指令被处理器执行时实现如第一方面中任一项所述的资源选择方法。
本公开实施例提供的资源选择方法及终端设备,按照至少一个感知步长,获取其他终端设备的资源占用信息,并基于获取的资源占用信息,从候选资源中选择目标资源。其中,至少一个感知步长是根据资源池支持的资源传输周期确定的,终端设备按照根据资源池支持的资源传输周期确定的感知步长进行部分感知,可以减少无法感知到的资源预约情况的数量,提高终端设备进行部分感知的效果,减少资源碰撞的概率,提高终端设备传输信息的可靠性。
附图说明
图1为本公开实施例适用的通信系统的结构示意图;
图2为相关技术中部分感知的时域资源位置的示意图;
图3为本公开实施例提供的一种资源选择方法的流程示意图;
图4为本公开实施例提供的一种部分感知的时域资源位置的示意图;
图5为本公开实施例提供的一种终端设备的结构框图;
图6为本公开实施例提供的另一种终端设备的结构框图;
图7为本公开实施例提供的另一种终端设备的结构示意图。
具体实施方式
下面结合附图对本公开的具体实施方式进行详细的说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
需要说明的是,本公开实施例中的“第一”、“第二”用于区别类似的对象,而不是用于描述特定的顺序或先后次序。本公开实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例描述的网络架构以及业务场景是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1为本公开实施例适用的一种通信网络的结构示意图。该通信网络可以是V2X网络,或者说是V2X网络中的一部分。V2X网络包括车车通信(Vehicle to Vehicle,V2V)、车人通信(Vehicle to Pedestrian,V2P)、车路通信(Vehicle to Infrastructure,V2I)及车网通信(Vehicle to Network,V2N)等通信方式。其中,V2P通信的一端可以是P-UE,另一端可以是车载终端设备(Vehicle-User Equipment,V-UE),例如图1中所示的P-UE200和V-UE300。通信网络中还可以包括网络侧设备100。P-UE200和V-UE300均可通过无线网络与网络侧设备100连接。
其中,网络侧设备100,是一种为终端设备提供无线通信功能的设备,包括但不限于:5G中的5G基站(generation NodeB,gNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,家庭演进基站(Home evolved Node B,HeNB),或家庭基站(Home Node  B,HNB))、基带单元(BaseBand Unit,BBU)、传输点(Transmitting and Receiving Point,TRP)、发射点(Transmitting Point,TP)、移动交换中心等。网络侧设备100还可以是未来可能出现的其他通信系统中为终端设备提供无线通信功能的设备。
P-UE,可以是一种具有无线通信功能的设备,可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端等。V-UE300,可以是无人驾驶(self driving)中的车载终端等。P-UE200和V-UE300均可以向用户提供语音和/或数据连通,具有无线连接功能,可以连接到无线调制解调器等。P-UE200和V-UE300可以经网络侧设备100与一个或多个核心网进行通信。
P-UE200和V-UE300具备直通链路(Sidelink,SL)感知能力。由于P-UE200不需要对V-UE300发送的数据进行接收,P-UE200仅发送数据,即只发不收。在该前提下,考虑到P-UE200持续监听信道带来的功耗问题,P-UE200可以采用部分感知的方式进行信道监听。P-UE200在进行部分感知时,仅仅是在某些非连续的时域资源位置接收其他终端设备(User Equipment,UE),例如V-UE300,发送的直通链路控制信息(Sidelink Control Information,SCI),从而获取其他UE资源占用/预约的情况,而不需要解码任何对应的数据信息。
目前,P-UE200在资源感知窗内通过partial sensing感知其他UE预约资源,排除碰撞资源后,确定资源选择窗中可用的候选资源的过程如图2所示。P-UE200根据高层参数minNumCAndidateSF-r14的配置,确定资源候选子帧个数Y的最小值,并自行确定在资源选择窗口中的预约资源集的Y个候选子帧的位置,通过在
Figure PCTCN2022082821-appb-000001
子帧上监听其他UE的资源占用信息,在Y个候选子帧
Figure PCTCN2022082821-appb-000002
中排除不可用的资源。其中,P step是一个设定的固定值,例如100ms。k值的集合是通过高层参数gapCandidateSensing-r14配置,即一串由0和1组成的序列,长度为10位。例如,高层参数gapCandidateSensing-r14为“1100101010”, k对应高层参数gapCandidateSensing-r14第k个bit为1的位置。终端在距预约资源集k×P step的时刻进行感知,并排除不可用的资源,最终从Y个候选子帧中选出可用的候选子帧,用于终端传输自己的信息。
在从LTE V2X技术向NR V2X技术转化的过程中,NR V2X技术中的资源池可以支持的资源传输周期更宽,例如,可以支持多种小于100ms短周期的发送和资源预约,支持的资源传输周期包括[1,…,99ms]和[100,200,…,1000ms]。而由于P step是一个设定的固定值,P-UE在采用该固定值作为参数进行部分感知时,可能无法感知到短周期的资源预约情况,导致资源碰撞的概率较高。例如,假设P step为100ms,当资源池可以支持的资源传输周期为13ms和26ms时,P-UE仍然按照k×100ms进行部分感知,则会漏检其他UE的资源预约情况。而如果直接将设置为一个较小的值,则会额外增加P-UE的功耗。例如,如果将P step设为1ms,当资源池可以支持的资源传输周期为100ms和200ms时,P-UE仍然按照k×1ms进行部分感知,则会增加不必要的功耗。因此,需要提供一种既能减少不必要的功耗,又能降低资源碰撞的概率的折中方案。
基于此,本公开实施例提供一种资源选择方法。该资源选择方法应用于终端设备。该终端设备可以是图1中所示的P-UE200,也可以是V-UE300。例如,V-UE300在剩余电量较少时,也可以采用部分感知的方式获取其他终端设备的资源占用信息。该终端设备还可以是其他具有节电需求或进行部分感知的通信终端。
本公开实施例提供的资源选择方法,按照至少一个感知步长,获取其他终端设备的资源占用信息,并基于获取的资源占用信息,从候选资源中选择目标资源。其中,至少一个感知步长是根据资源池支持的资源传输周期确定的,终端设备按照根据资源池支持的资源传输周期确定的感知步长进行部分感知,可以在尽量减少不必要的功耗的同时,也减少无法感知到的资源预约情况的数量,提高终端设备进行部分感知的效果,减少资源碰撞的概率,提 高终端设备传输信息的可靠性。
图3示出了本公开实施例提供的一种资源选择方法的流程示意图。该方法由终端设备执行,下文中以P-UE执行该资源选择方法为例进行说明。如图3所示,该方法包括如下步骤:
步骤S301,按照至少一个感知步长,获取其他终端设备的资源占用信息。
其中,至少一个感知步长是P-UE根据资源池支持的资源传输周期确定的,或者,是网络侧设备根据资源池支持的资源传输周期确定的。如果感知步长是由网络侧设备确定的,网络侧设备可以通过无线资源控制(Radio Resource Control,RRC)信令将确定的一个或多个感知步长通知给P-UE,以使P-UE按照一个或多个感知步长,获取其他终端设备的资源占用信息。
P-UE可以根据自己在资源池中选定的候选资源对应的时域资源位置和至少一个感知步长,在资源感知窗中确定多个感知时域资源位置,在各个感知时域资源位置进行信道监听,获取其他终端设备针对自己选定的候选资源的资源占用信息。
其他终端设备的资源占用信息用于指示其他终端设备在候选资源中已占用和/或预约的资源。
具体地说,在NR V2X的部分感知过程中,本公开实施例使用P reserve代替P step,且P reserve的取值范围也有新的定义。P reserve的候选全集合为资源池中配置的可以支持的所有资源传输周期。一个资源池最多支持16种不同的资源传输周期,这些周期值从[1,…,99ms]和[100,200,…,1000ms]中选择并确定。P reserve根据资源池支持的所有资源传输周期确定。
示例性地,NR V2X可以采用多个P reserve的值进行部分感知。在资源选择窗中,P-UE首先确定Y个候选资源子帧的位置和大小,然后根据确定的P reserve的值和不同k值在资源感知窗中确定需要进行感知的时域资源位置。如图4所示,至少包括两个感知步长,分别为P reserve1和P reserve2,P-UE分别在y-k*P reserve1和y-k*P reserve2的时域资源位置进行信道监听,其中,y表示Y个候选资源子帧的起始位置,k的取值为正整数,如1、2、3……。通过信道监听,P-UE 可以获知其他终端设备在P-UE选定的候选资源中已占用和/或预约的资源。
步骤S302,基于获取的资源占用信息,从除已占用和/或预约的资源之外的候选资源中选择目标资源。
基于步骤S301中获取的资源占用信息,P-UE可以排除已经被其他终端设备占用和/或预约的资源,从仍处于可用状态的资源中选择目标资源,以基于目标资源传输信息,避免自己的发送资源与其他终端设备的发送资源冲突。
无论是终端设备确定感知步长,还是网络侧设备确定感知步长,均可以参照下文介绍的方法确定感知步长的值。
在一些实施例中,感知步长的数量可以是一个,可以根据如下方式中的任意一种确定感知步长:
方式一、根据资源池支持的各个资源传输周期的最小公倍数,确定感知步长;
示例性地,可以将资源池支持的各个资源传输周期的最小公倍数,作为感知步长;或者,将资源池支持的各个资源传输周期的最小公倍数的整数倍,作为感知步长。
例如,当资源池支持的各个资源传输周期的最小公倍数也是资源池支持的一个资源传输周期时,可以将资源池支持的各个资源传输周期的最小公倍数,作为感知步长。假设资源池周期支持4ms和8ms,正好4和8的最小公倍数8是其中一个周期值,此时,可以采用资源池支持的各个资源传输周期的最小公倍数作为感知步长。
方式二、根据资源池支持的各个资源传输周期的最大公约数,确定感知步长;
方式三、将资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,具体地,对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数,如果得到的各个集合 感知参数相同,则将该集合感知参数作为感知步长。
在一些实施例中,对于包含多个资源传输周期的周期集合,该周期集合中每两个资源传输周期之间均满足倍数关系。
假设根据资源池支持的N个资源传输周期确定感知步长,则N个资源传输周期中可以包含终端设备自身预约资源的发送周期T1,也可以不包含终端设备自身预约资源的发送周期T1。
在另一些实施例中,感知步长的数量可以是多个,可以根据如下方式中的任意一种确定感知步长:
方式一、将分别根据资源池支持的各个资源传输周期确定的感知参数,均作为感知步长。示例性地,可以将各个资源传输周期的整数倍作为根据该资源传输周期确定的感知参数,将资源池支持的各个资源传输周期的整数倍均作为感知步长;或者,也可以直接将资源池支持的各个资源传输周期,均作为感知步长。也就是说,感知步长P reserve是资源池支持的N个周期的全集,即P reserve包含所有N个周期值。
例如,如果资源池支持的各个资源传输周期之间不满足倍数关系,则分别根据各个资源传输周期确定对应的感知参数,得到多个感知参数,将得到的多个感知参数均作为感知步长。假设资源池支持周期3ms和7ms,最小公倍数是21,但资源池并不支持21ms这个周期值,因此,可以将3ms和7ms均作为感知步长,即P reserve1为3ms,P reserve2为7ms。
方式二、将资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定感知步长。例如,将资源池支持的N个周期分成m个子集合,每个子集合单独确定各自的P reserve’,P reserve包含所有的P reserve’
在一些实施例中,一个周期集合中可以包含一个资源传输周期,也可以波包含多个资源传输周期。对于包含多个资源传输周期的周期集合,该周期集合中每两个资源传输周期之间均满足倍数关系。
在一种实施例中,可以根据一个周期集合中的各个资源传输周期的最小 公倍数,确定该周期集合对应的集合感知参数;或者,根据一个周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。将得到的各个集合感知参数,均作为感知步长。
在另一种实施例中,对于一部分周期集合,可以根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;对于另一部分周期集合,可以根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。将得到的各个集合感知参数,均作为感知步长。
本公开实施例提供的资源选择方法,按照一个或多个感知步长,获取其他终端设备的资源占用信息,并基于获取的资源占用信息,从候选资源中选择目标资源。其中,感知步长是根据资源池支持的资源传输周期确定的,是资源池支持的资源传输周期的最大公约数或最小公倍数,终端设备按照根据资源池支持的资源传输周期确定的感知步长进行部分感知,可以在尽量减少不必要的功耗的同时,减少无法感知到的资源预约情况的数量,提高终端设备进行部分感知的效果,减少资源碰撞的概率,提高终端设备传输信息的可靠性。
为了更方便理解,下文通过几个具体实施例说明感知步长的具体确定方法。
实施例一
资源池支持的各个资源传输周期之间存在倍数关系,根据资源池支持的各个资源传输周期的最小公倍数,确定感知步长,得到的感知步长的数量为1个。
具体地,假设当前资源池支持4个资源传输周期(4个周期值是从[1,…,99ms]和[100,200,…,1000ms]中选择并确定的),这4个资源传输周期分别是20ms,50ms,100ms,200ms。终端自身预约的资源传输周期T1=400ms,T1=400ms也属于当前资源池支持的资源传输周期。
在一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的 感知步长是20ms,50ms,100ms,200ms的最小公倍数,即200ms。在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知步长是20ms,50ms,100ms,200ms和400ms的最小公倍数,即400ms。
例如,假设其他终端设备中的一个V-UE在使用的资源传输周期是50ms,而终端设备P-UE进行部分感知的感知步长是200ms,则在V-UE传输信息时,每4个资源传输周期就会被P-UE监听到一次,因此,该正在使用资源的V-UE也会被P-UE感知到。
上述实施例中,当前资源池支持4个资源传输周期仅是示例,实际应用中,一个资源池可以支持的不同资源传输周期的个数可以多于4个或少于4个,例如,可以达到16个。
实施例二
资源池支持的各个资源传输周期之间不存在倍数关系,根据资源池支持的各个资源传输周期,确定感知步长。
具体地,假设当前资源池支持4个资源传输周期(4个周期值是从[1,…,99ms]和[100,200,…,1000ms]中选择并确定的),这4个资源传输周期分别是3ms,7ms,11ms,100ms。终端自身预约的资源传输周期T1=13ms,T1=13ms也属于当前资源池支持的资源传输周期。
在一种实施例中,可以不考虑终端预约的资源传输周期T1:分别使用3ms,7ms,11ms,100ms这四种资源传输周期的周期值作为部分感知的感知步长,分别进行部分感知。该实施例中,得到的感知步长的数量为4个。
在另一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长是3ms,7ms,11ms,100ms这四种资源传输周期的周期值的最小公倍数(3*7*11*100)ms。该实施例中,得到的感知步长的数量为1个。
在另一种实施例中,考虑终端预约的资源传输周期T1:分别使用3ms,7ms,11ms,100ms和13ms这五种资源传输周期的周期值作为部分感知的感知步长,分别进行部分感知。该实施例中,得到的感知步长的数量为5个。
在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知 步长是3ms,7ms,11ms,100ms和13ms这五种资源传输周期的周期值的最小公倍数(3*7*11*100*13)ms。该实施例中,得到的感知步长的数量为1个。
上述实施例中,当前资源池支持4个资源传输周期仅是示例,实际应用中,一个资源池可以支持的不同资源传输周期的个数可以达到16个。
实施例三
资源池支持的各个资源传输周期之间存在倍数关系,根据资源池支持的各个资源传输周期的最大公约数,确定感知步长,得到的感知步长的数量为1个。
具体地,假设当前资源池支持4个资源传输周期(4个周期值是从[1,…,99ms]和[100,200,…,1000ms]中选择并确定的),这4个资源传输周期分别是20ms,40ms,80ms,100ms。终端自身预约的资源传输周期T1=10ms,T1=10ms也属于当前资源池支持的资源传输周期。
在一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长是20ms,40ms,80ms,100ms的最大公约数,即20ms。在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知步长是20ms,40ms,80ms,100ms和10ms的最大公约数,即10ms。
上述实施例中,当前资源池支持4个资源传输周期仅是示例,实际应用中,一个资源池可以支持的不同资源传输周期的个数可以达到16个。
实施例四
资源池支持的各个资源传输周期之间不存在倍数关系,根据资源池支持的各个资源传输周期,确定感知步长。
具体地,假设当前资源池支持4个资源传输周期(4个周期值是从[1,…,99ms]和[100,200,…,1000ms]中选择并确定的),这4个资源传输周期分别是3ms,7ms,11ms,100ms。终端自身预约的资源传输周期T1=13ms,T1=13ms也属于当前资源池支持的资源传输周期。
在一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长是3ms,7ms,11ms,100ms这四种资源传输周期的周期值的最大公约数, 即1ms。该实施例中,得到的感知步长的数量为1个。
在另一种实施例中,可以不考虑终端预约的资源传输周期T1:分别使用3ms,7ms,11ms,100ms这四种资源传输周期的周期值作为部分感知的感知步长,分别进行部分感知。该实施例中,得到的感知步长的数量为4个。
在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知步长是3ms,7ms,11ms,100ms和13ms这五种资源传输周期的周期值的最大公约数,即1ms。该实施例中,得到的感知步长的数量为1个。
在另一种实施例中,考虑终端预约的资源传输周期T1:分别使用3ms,7ms,11ms,100ms和13ms这五种资源传输周期的周期值作为部分感知的感知步长,分别进行部分感知。该实施例中,得到的感知步长的数量为5个。
上述实施例中,当前资源池支持4个资源传输周期仅是示例,实际应用中,一个资源池可以支持的不同资源传输周期的个数可以达到16个。
实施例五
资源池支持的各个资源传输周期之间存在倍数关系,或者,资源池支持的部分资源传输周期之间存在倍数关系,根据资源池支持的各个资源传输周期的最小公倍数和最大公约数的折中值,确定感知步长,得到的感知步长的数量为1个。
具体地,假设当前资源池支持4个资源传输周期(4个周期值是从[1,…,99ms]和[100,200,…,1000ms]中选择并确定的),这4个资源传输周期分别是20ms,50ms,100ms,200ms。终端自身预约的资源传输周期T1=400ms,T1=400ms也属于当前资源池支持的资源传输周期。
在一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长是100ms,即20ms和50ms的最小公倍数,同时也是100ms和200ms的最大公约数。
在该实施例中,可以将20ms和50ms划分至第一个周期集合,将100ms和200ms划分至第二个周期集合;根据第一个周期集合中的各个资源传输周期,20ms和50ms的最小公倍数,确定第一个周期集合对应的集合感知参数 为100ms;根据第二个周期集合中的各个资源传输周期,100ms和200ms的最大公约数,确定第二个周期集合对应的集合感知参数为100ms;第一个周期集合对应的集合感知参数和第二个周期集合对应的集合感知参数都是100ms,因此,将100ms作为部分感知的感知步长。
需要说明的是,部分感知的感知步长是:资源池支持的各个资源传输周期的最小公倍数和最大公约数的折中值。该折中值M可以是资源池支持的各个资源传输周期中的某一个周期值;也可以不是资源池支持的各个资源传输周期中的某一个周期值,但同时满足M是周期t1和t2的最小公倍数,且M是周期t3和t4的最大公约数。
在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知步长是100ms,即20ms和50ms的最小公倍数,同时也是100ms、200ms和400ms的最大公约数。
在该实施例中,可以将20ms和50ms划分至第一个周期集合,将100ms、200ms和400ms划分至第二个周期集合;根据第一个周期集合中的各个资源传输周期,20ms和50ms的最小公倍数,确定第一个周期集合对应的集合感知参数为100ms;根据第二个周期集合中的各个资源传输周期,100ms、200ms和400ms的最大公约数,确定第二个周期集合对应的集合感知参数为100ms;第一个周期集合对应的集合感知参数和第二个周期集合对应的集合感知参数都是100ms,因此,将100ms作为部分感知的感知步长。
上述实施例中,当前资源池支持4个资源传输周期仅是示例,实际应用中,一个资源池可以支持的不同资源传输周期的个数可以达到16个。
实施例六
资源池支持的部分资源传输周期之间存在倍数关系,根据资源池支持的各个资源传输周期的最小公倍数和最大公约数,确定感知步长。
具体地,假设当前资源池支持4个资源传输周期(4个周期值是从[1,…,99ms]和[100,200,…,1000ms]中选择并确定的),这4个资源传输周期分别是13ms,26ms,100ms,200ms。终端自身预约的资源传输周期T1=400ms, T1=400ms也属于当前资源池支持的资源传输周期。
在一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长分别是26ms和100ms,即选择13ms和26ms的最小公倍数作为其中一个感知步长,同时选择100ms和200ms的最大公约数,作为另一个感知步长。该实施例中,得到的感知步长的数量为2个。
在该实施例中,可以将13ms和26ms划分至第一个周期集合,将100ms和200ms划分至第二个周期集合;根据第一个周期集合中的各个资源传输周期,13ms和26ms的最小公倍数,确定第一个周期集合对应的集合感知参数为26ms;根据第二个周期集合中的各个资源传输周期,100ms和200ms的最大公约数,确定第二个周期集合对应的集合感知参数为100ms;将第一个周期集合对应的集合感知参数26ms和第二个周期集合对应的集合感知参数都是100ms均作为部分感知的感知步长。
在另一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长分别是26ms和200ms,即选择13ms和26ms的最小公倍数作为其中一个感知步长,同时选择100ms和200ms的最小公倍数,作为另一个感知步长。该实施例中,得到的感知步长的数量为2个。
在该实施例中,可以将13ms和26ms划分至第一个周期集合,将100ms和200ms划分至第二个周期集合;根据第一个周期集合中的各个资源传输周期,13ms和26ms的最小公倍数,确定第一个周期集合对应的集合感知参数为26ms;根据第二个周期集合中的各个资源传输周期,100ms和200ms的最小公倍数,确定第二个周期集合对应的集合感知参数为200ms;将第一个周期集合对应的集合感知参数26ms和第二个周期集合对应的集合感知参数都是200ms均作为部分感知的感知步长。
在另一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长分别是13ms和100ms,即选择13ms和26ms的最大公约数作为其中一个感知步长,同时选择100ms和200ms的最大公约数,作为另一个感知步长。该实施例中,得到的感知步长的数量为2个。
在该实施例中,可以将13ms和26ms划分至第一个周期集合,将100ms和200ms划分至第二个周期集合;根据第一个周期集合中的各个资源传输周期,13ms和26ms的最大公约数,确定第一个周期集合对应的集合感知参数为13ms;根据第二个周期集合中的各个资源传输周期,100ms和200ms的最大公约数,确定第二个周期集合对应的集合感知参数为100ms;将第一个周期集合对应的集合感知参数13ms和第二个周期集合对应的集合感知参数都是100ms均作为部分感知的感知步长。
在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知步长分别是26ms和100ms,即选择13ms和26ms的最小公倍数作为其中一个感知步长,同时选择1100ms、200ms和400ms的最大公约数,作为另一个感知步长。该实施例中,得到的感知步长的数量为2个。
在该实施例中,可以将13ms和26ms划分至第一个周期集合,将100ms、200ms和400ms划分至第二个周期集合;根据第一个周期集合中的各个资源传输周期,13ms和26ms的最小公倍数,确定第一个周期集合对应的集合感知参数为26ms;根据第二个周期集合中的各个资源传输周期,100ms、200ms和400ms的最大公约数,确定第二个周期集合对应的集合感知参数为100ms;将第一个周期集合对应的集合感知参数26ms和第二个周期集合对应的集合感知参数都是100ms均作为部分感知的感知步长。
在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知步长分别是26ms和400ms,即选择13ms和26ms的最小公倍数作为其中一个感知步长,同时选择100ms、200ms和400ms的最小公倍数,作为另一个感知步长。该实施例中,得到的感知步长的数量为2个。
在该实施例中,可以将13ms和26ms划分至第一个周期集合,将100ms、200ms和400ms划分至第二个周期集合;根据第一个周期集合中的各个资源传输周期,13ms和26ms的最小公倍数,确定第一个周期集合对应的集合感知参数为26ms;根据第二个周期集合中的各个资源传输周期,100ms、200ms和400ms的最小公倍数,确定第二个周期集合对应的集合感知参数为400ms; 将第一个周期集合对应的集合感知参数26ms和第二个周期集合对应的集合感知参数都是400ms均作为部分感知的感知步长。
在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知步长分别是13ms和100ms,即选择13ms和26ms的最大公约数作为其中一个感知步长,同时选择100ms、200ms和400ms的最大公约数,作为另一个感知步长。该实施例中,得到的感知步长的数量为2个。
在该实施例中,可以将13ms和26ms划分至第一个周期集合,将100ms、200ms和400ms划分至第二个周期集合;根据第一个周期集合中的各个资源传输周期,13ms和26ms的最大公约数,确定第一个周期集合对应的集合感知参数为13ms;根据第二个周期集合中的各个资源传输周期,100ms、200ms和400ms的最大公约数,确定第二个周期集合对应的集合感知参数为100ms;将第一个周期集合对应的集合感知参数13ms和第二个周期集合对应的集合感知参数100ms均作为部分感知的感知步长。
需要说明的是,如果资源池中支持的多个资源传输周期中,有的相互之间存在倍数关系,有的则不存在倍数关系,则可以将其中存在倍数关系的周期分成多个周期集合,每个周期集合分别找各自的最大公约数或最小公倍数,作为每个周期集合的集合感知参数。
上述实施例中,当前资源池支持4个资源传输周期仅是示例,实际应用中,一个资源池可以支持的不同资源传输周期的个数可以达到16个。
实施例七
资源池支持的一部分资源传输周期之间存在倍数关系,另一部分资源传输周期之间不存在倍数关系,根据资源池支持的各个资源传输周期,确定感知步长。
具体地,假设当前资源池支持4个资源传输周期(4个周期值是从[1,…,99ms]和[100,200,…,1000ms]中选择并确定的),这4个资源传输周期分别是3ms,7ms,50ms,100ms。终端自身预约的资源传输周期T1=200ms,T1=200ms也属于当前资源池支持的资源传输周期。
在一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长分别是3ms、7ms和100ms。即分别选择3ms和7ms作为感知步长,同时选择50ms和100ms的最小公倍数,作为另一个感知步长。该实施例中,得到的感知步长的数量为3个。
在该实施例中,可以将3ms划分至第一个周期集合,将7ms划分至第二个周期集合,将50ms和100ms划分至第三个周期集合;由于第一个周期集合中仅包含一个资源传输周期3ms,因此确定第一个周期集合对应的集合感知参数为3ms;由于第二个周期集合中仅包含一个资源传输周期7ms,因此确定第一个周期集合对应的集合感知参数为7ms;根据第三个周期集合中的各个资源传输周期,50ms和100ms的最小公倍数,确定第三个周期集合对应的集合感知参数为100ms;将第一个周期集合对应的集合感知参数3ms、第二个周期集合对应的集合感知参数7ms和第三个周期集合对应的集合感知参数100ms均作为部分感知的感知步长。
在另一种实施例中,可以不考虑终端预约的资源传输周期T1:部分感知的感知步长分别是3ms、7ms和50ms。即分别选择3ms和7ms作为感知步长,同时选择50ms和100ms的最大公约数,作为另一个感知步长。该实施例中,得到的感知步长的数量为3个。
在该实施例中,可以将3ms划分至第一个周期集合,将7ms划分至第二个周期集合,将50ms和100ms划分至第三个周期集合;由于第一个周期集合中仅包含一个资源传输周期3ms,因此确定第一个周期集合对应的集合感知参数为3ms;由于第二个周期集合中仅包含一个资源传输周期7ms,因此确定第一个周期集合对应的集合感知参数为7ms;根据第三个周期集合中的各个资源传输周期,50ms和100ms的最大公约数,确定第三个周期集合对应的集合感知参数为50ms;将第一个周期集合对应的集合感知参数3ms、第二个周期集合对应的集合感知参数7ms和第三个周期集合对应的集合感知参数50ms均作为部分感知的感知步长。
在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知 步长分别是3ms、7ms和200ms。即分别选择3ms和7ms作为感知步长,同时选择50ms、100ms和200ms的最小公倍数,作为另一个感知步长。该实施例中,得到的感知步长的数量为3个。
在该实施例中,可以将3ms划分至第一个周期集合,将7ms划分至第二个周期集合,将50ms、100ms和200ms划分至第三个周期集合;由于第一个周期集合中仅包含一个资源传输周期3ms,因此确定第一个周期集合对应的集合感知参数为3ms;由于第二个周期集合中仅包含一个资源传输周期7ms,因此确定第一个周期集合对应的集合感知参数为7ms;根据第三个周期集合中的各个资源传输周期,50ms、100ms和200ms的最小公倍数,确定第三个周期集合对应的集合感知参数为200ms;将第一个周期集合对应的集合感知参数3ms、第二个周期集合对应的集合感知参数7ms和第三个周期集合对应的集合感知参数200ms均作为部分感知的感知步长。
在另一种实施例中,考虑终端预约的资源传输周期T1:部分感知的感知步长分别是3ms、7ms和50ms。即分别选择3ms和7ms作为感知步长,同时选择50ms、100ms和200ms的最大公约数,作为另一个感知步长。该实施例中,得到的感知步长的数量为3个。
在该实施例中,可以将3ms划分至第一个周期集合,将7ms划分至第二个周期集合,将50ms、100ms和200ms划分至第三个周期集合;由于第一个周期集合中仅包含一个资源传输周期3ms,因此确定第一个周期集合对应的集合感知参数为3ms;由于第二个周期集合中仅包含一个资源传输周期7ms,因此确定第一个周期集合对应的集合感知参数为7ms;根据第三个周期集合中的各个资源传输周期,50ms、100ms和200ms的最大公约数,确定第三个周期集合对应的集合感知参数为50ms;将第一个周期集合对应的集合感知参数3ms、第二个周期集合对应的集合感知参数7ms和第三个周期集合对应的集合感知参数50ms均作为部分感知的感知步长。
上述实施例中,当前资源池支持4个资源传输周期仅是示例,实际应用中,一个资源池可以支持的不同资源传输周期的个数可以达到16个。
本公开实施例提供一种如何确定感知步长P reserve的方法,感知步长可以根据当前资源池所支持的周期列表中各个资源传输周期的具体值,得到各个资源传输周期的最大公约数、最小公倍数、或找出多个能够满足倍数关系的值作为P reserve,然后按照确定的感知步长进行部分感知。
基于相同的技术构思,本公开实施例还提供了一种终端设备,该终端设备可实现前述实施例所执行的流程。
图5为本公开实施例提供的一种终端设备的结构示意图。如图5所示,该终端设备包括:信息获取单元501和资源选择单元502;
信息获取单元501,用于按照至少一个感知步长,获取其他终端设备的资源占用信息;所述至少一个感知步长是根据资源池支持的资源传输周期确定的;所述资源占用信息用于指示所述其他终端设备在所述终端设备从所述资源池内选定的候选资源中已占用和/或预约的资源;
资源选择单元502,用于基于所述资源占用信息,从除所述已占用和/或预约的资源之外的候选资源中选择目标资源。
在一种可选的实施例中,如图6所示,本公开实施例提供的终端设备,还可以包括感知步长确定单元601;
感知步长确定单元601,用于根据所述资源池支持的各个资源传输周期的最小公倍数,确定所述感知步长;或者,
根据所述资源池支持的各个资源传输周期的最大公约数,确定所述感知步长;或者,
将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长。
在一种可选的实施例中,所述感知步长确定单元601,具体用于:
若所述资源池支持的各个资源传输周期之间不满足倍数关系,则分别根据各个资源传输周期确定对应的感知参数,得到多个感知参数;
将得到的所述多个感知参数均作为所述感知步长。
在一种可选的实施例中,所述感知步长确定单元601,还可以用于:
将所述资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定所述感知步长。
在一种可选的实施例中,所述感知步长确定单元601,具体用于:
针对各个周期集合,通过如下任意一种方式确定所述周期集合对应的集合感知参数:
根据所述周期集合中的各个资源传输周期的最小公倍数,确定所述周期集合对应的集合感知参数;或者,
根据所述周期集合中的各个资源传输周期的最大公约数,确定所述周期集合对应的集合感知参数。
在一种可选的实施例中,所述感知步长确定单元601,具体用于:
对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;
对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。
在一种可选的实施例中,所述感知步长确定单元601,具体用于:
若得到的各个集合感知参数相同,则将所述集合感知参数作为所述感知步长。
在一种可选的实施例中,对于包含多个资源传输周期的周期集合,所述周期集合中每两个资源传输周期之间均满足倍数关系;所述感知步长确定单元601,具体用于:
将得到的各个集合感知参数,均作为所述感知步长。
在一种可选的实施例中,所述至少一个感知步长是所述终端设备确定的;或者,
所述至少一个感知步长是网络侧设备确定,并通过RRC信令通知所述终端设备的。
在一种可选的实施例中,所述信息获取单元501,具体用于:
根据所述终端设备选定的候选资源对应的时域资源位置和所述至少一个感知步长,在资源感知窗中确定多个感知时域资源位置;
在各个所述感知时域资源位置进行信道监听,获取其他终端设备针对所述候选资源的资源占用信息。
本公开实施例提供的终端设备,按照至少一个感知步长,获取其他终端设备的资源占用信息,并基于获取的资源占用信息,从候选资源中选择目标资源。其中,至少一个感知步长是根据资源池支持的资源传输周期确定的,终端设备按照根据资源池支持的资源传输周期确定的感知步长进行部分感知,可以减少无法感知到的资源预约情况的数量,提高终端设备进行部分感知的效果,减少资源碰撞的概率,提高终端设备传输信息的可靠性。
基于相同的技术构思,本公开实施例还提供了一种终端设备。该终端设备可实现前述实施例中图2所执行的方法的流程。
图7示出了本公开实施例提供的该终端设备的结构示意图,即示出了终端设备的另一结构示意图。如图7所示,该终端设备包括处理器701、存储器702和收发机703;
处理器701负责管理总线架构和通常的处理,存储器702可以存储处理器701在执行操作时所使用的数据。收发机703用于在处理器701的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器702代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器701负责管理总线架构和通常的处理,存储器702可以存储处理器701在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器701中,或者由处理器701实现。在实现过程中,信号处理流程的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。处理器701可以是通用处理器、 数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器701,用于读取存储器702中的程序并执行:
按照至少一个感知步长,获取其他终端设备的资源占用信息;所述至少一个感知步长是根据资源池支持的资源传输周期确定的;所述资源占用信息用于指示所述其他终端设备在所述终端设备从所述资源池内选定的候选资源中已占用和/或预约的资源;
基于所述资源占用信息,从除所述已占用和/或预约的资源之外的候选资源中选择目标资源。
在一种可选的实施例中,所述处理器701,还可以用于:
根据所述资源池支持的各个资源传输周期的最小公倍数,确定所述感知步长;或者,
根据所述资源池支持的各个资源传输周期的最大公约数,确定所述感知步长;或者,
将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长。
在一种可选的实施例中,所述处理器701,具体用于:
若所述资源池支持的各个资源传输周期之间不满足倍数关系,则分别根据各个资源传输周期确定对应的感知参数,得到多个感知参数;
将得到的所述多个感知参数均作为所述感知步长。
在一种可选的实施例中,所述处理器701,还可以用于:
将所述资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定所述感知步长。
在一种可选的实施例中,所述处理器701,具体用于:
针对各个周期集合,通过如下任意一种方式确定所述周期集合对应的集合感知参数:
根据所述周期集合中的各个资源传输周期的最小公倍数,确定所述周期集合对应的集合感知参数;或者,
根据所述周期集合中的各个资源传输周期的最大公约数,确定所述周期集合对应的集合感知参数。
在一种可选的实施例中,所述处理器701,具体用于:
对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;
对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。
在一种可选的实施例中,所述处理器701,具体用于:
若得到的各个集合感知参数相同,则将所述集合感知参数作为所述感知步长。
在一种可选的实施例中,对于包含多个资源传输周期的周期集合,所述周期集合中每两个资源传输周期之间均满足倍数关系;所述处理器701,具体用于:
将得到的各个集合感知参数,均作为所述感知步长。
在一种可选的实施例中,所述至少一个感知步长是所述终端设备确定的;或者,
所述至少一个感知步长是网络侧设备确定,并通过RRC信令通知所述终端设备的。
在一种可选的实施例中,所述处理器701,具体用于:
根据所述终端设备选定的候选资源对应的时域资源位置和所述至少一个感知步长,在资源感知窗中确定多个感知时域资源位置;
在各个所述感知时域资源位置进行信道监听,获取其他终端设备针对所述候选资源的资源占用信息。
本公开实施例提供的及终端设备,按照至少一个感知步长,获取其他终端设备的资源占用信息,并基于获取的资源占用信息,从候选资源中选择目标资源。其中,至少一个感知步长是根据资源池支持的资源传输周期确定的,终端设备按照根据资源池支持的资源传输周期确定的感知步长进行部分感知,可以减少无法感知到的资源预约情况的数量,提高终端设备进行部分感知的效果,减少资源碰撞的概率,提高终端设备传输信息的可靠性。
本公开实施例针对资源选择方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本公开实施例上面任何一种资源选择方法的方案。
以上参照示出根据本公开实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本公开实施例。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本公开实施例。更进一步地,本公开实施例可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本公开实施例上下文中,计算机可使用或计算机可读介质可以 是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (31)

  1. 一种资源选择方法,其特征在于,应用于终端设备,所述方法包括:
    按照至少一个感知步长,获取其他终端设备的资源占用信息;所述至少一个感知步长是根据资源池支持的资源传输周期确定的;所述资源占用信息用于指示所述其他终端设备在所述终端设备从所述资源池内选定的候选资源中已占用和/或预约的资源;
    基于所述资源占用信息,从除所述已占用和/或预约的资源之外的候选资源中选择目标资源。
  2. 根据权利要求1所述的方法,其特征在于,所述感知步长通过如下确定:
    根据所述资源池支持的各个资源传输周期的最小公倍数,确定所述感知步长;或者,
    根据所述资源池支持的各个资源传输周期的最大公约数,确定所述感知步长;或者,
    将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长。
  3. 根据权利要求2所述的方法,其特征在于,所述将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长,包括:
    若所述资源池支持的各个资源传输周期之间不满足倍数关系,则分别根据各个资源传输周期确定对应的感知参数,得到多个感知参数;
    将得到的所述多个感知参数均作为所述感知步长。
  4. 根据权利要求1所述的方法,其特征在于,所述感知步长通过如下确定:
    将所述资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定所述感知步长。
  5. 根据权利要求4所述的方法,其特征在于,所述分别确定各个周期集合对应的集合感知参数,包括:
    针对各个周期集合,通过如下任意一种方式确定所述周期集合对应的集合感知参数:
    根据所述周期集合中的各个资源传输周期的最小公倍数,确定所述周期集合对应的集合感知参数;或者,
    根据所述周期集合中的各个资源传输周期的最大公约数,确定所述周期集合对应的集合感知参数。
  6. 根据权利要求4所述的方法,其特征在于,所述分别确定各个周期集合对应的集合感知参数,包括:
    对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;
    对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。
  7. 根据权利要求6所述的方法,其特征在于,所述根据得到的各个集合感知参数确定所述感知步长,包括:
    若得到的各个集合感知参数相同,则将所述集合感知参数作为所述感知步长。
  8. 根据权利要求4~6中的任一项所述的方法,其特征在于,对于包含多个资源传输周期的周期集合,所述周期集合中每两个资源传输周期之间均满足倍数关系;所述根据得到的各个集合感知参数确定所述感知步长,包括:
    将得到的各个集合感知参数,均作为所述感知步长。
  9. 根据权利要求1~7中任一项所述的方法,其特征在于,所述至少一个感知步长是所述终端设备确定的;或者,
    所述至少一个感知步长是网络侧设备确定,并通过无线资源控制RRC信令通知所述终端设备的。
  10. 根据权利要求1~7中任一项所述的方法,其特征在于,所述按照至 少一个感知步长,获取其他终端设备的资源占用信息,包括:
    根据所述终端设备选定的候选资源对应的时域资源位置和所述至少一个感知步长,在资源感知窗中确定多个感知时域资源位置;
    在各个所述感知时域资源位置进行信道监听,获取其他终端设备针对所述候选资源的资源占用信息。
  11. 一种终端设备,其特征在于,包括:
    信息获取单元,用于按照至少一个感知步长,获取其他终端设备的资源占用信息;所述至少一个感知步长是根据资源池支持的资源传输周期确定的;所述资源占用信息用于指示所述其他终端设备在所述终端设备从所述资源池内选定的候选资源中已占用和/或预约的资源;
    资源选择单元,用于基于所述资源占用信息,从除所述已占用和/或预约的资源之外的候选资源中选择目标资源。
  12. 根据权利要求11所述的终端设备,其特征在于,所述终端设备还包括感知步长确定单元;
    所述感知步长确定单元,用于根据所述资源池支持的各个资源传输周期的最小公倍数,确定所述感知步长;或者,根据所述资源池支持的各个资源传输周期的最大公约数,确定所述感知步长;或者,将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长。
  13. 根据权利要求12所述的终端设备,其特征在于,所述感知步长确定单元具体用于:
    若所述资源池支持的各个资源传输周期之间不满足倍数关系,则分别根据各个资源传输周期确定对应的感知参数,得到多个感知参数;
    将得到的所述多个感知参数均作为所述感知步长。
  14. 根据权利要求11所述的终端设备,其特征在于,所述感知步长确定单元具体用于:
    将所述资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定所 述感知步长。
  15. 根据权利要求14所述的终端设备,其特征在于,所述感知步长确定单元具体用于:
    针对各个周期集合,通过如下任意一种方式确定所述周期集合对应的集合感知参数:
    根据所述周期集合中的各个资源传输周期的最小公倍数,确定所述周期集合对应的集合感知参数;或者,
    根据所述周期集合中的各个资源传输周期的最大公约数,确定所述周期集合对应的集合感知参数。
  16. 根据权利要求14所述的终端设备,其特征在于,所述感知步长确定单元具体用于:
    对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;
    对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。
  17. 根据权利要求16所述的终端设备,其特征在于,所述感知步长确定单元具体用于:
    若得到的各个集合感知参数相同,则将所述集合感知参数作为所述感知步长。
  18. 根据权利要求14~16中的任一项所述的终端设备,其特征在于,对于包含多个资源传输周期的周期集合,所述周期集合中每两个资源传输周期之间均满足倍数关系,所述感知步长确定单元具体用于:
    将得到的各个集合感知参数,均作为所述感知步长。
  19. 根据权利要求11~17中任一项所述的终端设备,其特征在于,所述至少一个感知步长是所述终端设备确定的;或者,
    所述至少一个感知步长是网络侧设备确定,并通过无线资源控制RRC信令通知所述终端设备的。
  20. 根据权利要求11~17中任一项所述的终端设备,其特征在于,所述信息获取单元具体用于:
    根据所述终端设备选定的候选资源对应的时域资源位置和所述至少一个感知步长,在资源感知窗中确定多个感知时域资源位置;
    在各个所述感知时域资源位置进行信道监听,获取其他终端设备针对所述候选资源的资源占用信息。
  21. 一种终端设备,其特征在于,包括:存储器、收发机以及处理器;
    所述存储器,用于存储计算机指令;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中的计算机程序并执行如下步骤:
    按照至少一个感知步长,获取其他终端设备的资源占用信息;所述至少一个感知步长是根据资源池支持的资源传输周期确定的;所述资源占用信息用于指示所述其他终端设备在所述终端设备从所述资源池内选定的候选资源中已占用和/或预约的资源;
    基于所述资源占用信息,从除所述已占用和/或预约的资源之外的候选资源中选择目标资源。
  22. 根据权利要求21所述的终端设备,其特征在于,所述处理器,具体用于:
    根据所述资源池支持的各个资源传输周期的最小公倍数,确定所述感知步长;或者,
    根据所述资源池支持的各个资源传输周期的最大公约数,确定所述感知步长;或者,
    将分别根据所述资源池支持的各个资源传输周期确定的感知参数,均作为所述感知步长。
  23. 根据权利要求22所述的终端设备,其特征在于,所述处理器,具体用于:
    若所述资源池支持的各个资源传输周期之间不满足倍数关系,则分别根 据各个资源传输周期确定对应的感知参数,得到多个感知参数;
    将得到的所述多个感知参数均作为所述感知步长。
  24. 根据权利要求21所述的终端设备,其特征在于,所述处理器,具体用于:
    将所述资源池支持的各个资源传输周期划分为多个周期集合,分别确定各个周期集合对应的集合感知参数,并根据得到的各个集合感知参数确定所述感知步长。
  25. 根据权利要求24所述的终端设备,其特征在于,所述处理器,具体用于:
    针对各个周期集合,通过如下任意一种方式确定所述周期集合对应的集合感知参数:
    根据所述周期集合中的各个资源传输周期的最小公倍数,确定所述周期集合对应的集合感知参数;或者,
    根据所述周期集合中的各个资源传输周期的最大公约数,确定所述周期集合对应的集合感知参数。
  26. 根据权利要求24所述的终端设备,其特征在于,所述处理器,具体用于:
    对于一部分周期集合,根据周期集合中的各个资源传输周期的最小公倍数,确定该周期集合对应的集合感知参数;
    对于另一部分周期集合,根据周期集合中的各个资源传输周期的最大公约数,确定该周期集合对应的集合感知参数。
  27. 根据权利要求26所述的终端设备,其特征在于,所述处理器,具体用于:
    若得到的各个集合感知参数相同,则将所述集合感知参数作为所述感知步长。
  28. 根据权利要求24~26中的任一项所述的终端设备,其特征在于,对于包含多个资源传输周期的周期集合,所述周期集合中每两个资源传输周期 之间均满足倍数关系;所述根据得到的各个集合感知参数确定所述感知步长,所述处理器,具体用于:
    将得到的各个集合感知参数,均作为所述感知步长。
  29. 根据权利要求21~27中任一项所述的终端设备,其特征在于,所述至少一个感知步长是所述终端设备确定的;或者,
    所述至少一个感知步长是网络侧设备确定,并通过无线资源控制RRC信令通知所述终端设备的。
  30. 根据权利要求21~27中任一项所述的终端设备,其特征在于,所述处理器,具体用于:
    根据所述终端设备选定的候选资源对应的时域资源位置和所述至少一个感知步长,在资源感知窗中确定多个感知时域资源位置;
    在各个所述感知时域资源位置进行信道监听,获取其他终端设备针对所述候选资源的资源占用信息。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机指令,所述计算机指令被处理器执行时实现如权利要求1至10中任一项所述的方法。
PCT/CN2022/082821 2021-04-06 2022-03-24 一种资源选择方法及终端设备 WO2022213812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/551,611 US20240179686A1 (en) 2021-04-06 2022-03-24 Resource selection method and terminal device
EP22783879.4A EP4322568A4 (en) 2021-04-06 2022-03-24 RESOURCE SELECTION PROCESS AND TERMINAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110368223.3 2021-04-06
CN202110368223.3A CN115190447A (zh) 2021-04-06 2021-04-06 一种资源选择方法及终端设备

Publications (1)

Publication Number Publication Date
WO2022213812A1 true WO2022213812A1 (zh) 2022-10-13

Family

ID=83511348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082821 WO2022213812A1 (zh) 2021-04-06 2022-03-24 一种资源选择方法及终端设备

Country Status (5)

Country Link
US (1) US20240179686A1 (zh)
EP (1) EP4322568A4 (zh)
CN (1) CN115190447A (zh)
TW (1) TWI845911B (zh)
WO (1) WO2022213812A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734655A (zh) * 2016-08-11 2018-02-23 北京三星通信技术研究有限公司 一种v2x通信中数据发送的方法和设备
US20200029245A1 (en) * 2017-02-06 2020-01-23 Intel Corporation Partial sensing and congestion control for long term evolution (lte) vehicular communication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176096A1 (ko) * 2016-04-07 2017-10-12 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신이 수행되는 유한한 개수의 자원에 대한 예약을 수행하는 방법 및 상기 방법을 이용하는 단말
WO2018030825A1 (en) * 2016-08-10 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus for selecting resources in v2x communications
WO2018201390A1 (en) * 2017-05-04 2018-11-08 Panasonic Intellectual Property Corporation Of America User equipment, base station and wireless communication method
CN109219015B (zh) * 2017-07-06 2021-01-22 电信科学技术研究院 一种资源选择方法及装置
CN110139238B (zh) * 2018-02-09 2020-12-22 电信科学技术研究院有限公司 信息发送方法及终端
CN112997551B (zh) * 2019-03-28 2023-10-27 Oppo广东移动通信有限公司 传输侧行信道的方法和终端设备
CN110366256B (zh) * 2019-08-02 2022-12-06 展讯通信(上海)有限公司 无线资源占用方法、获取方法、用户设备及存储介质
CN112261613B (zh) * 2020-10-15 2022-09-06 大唐高鸿智联科技(重庆)有限公司 一种资源选择的处理方法、装置及终端
CN112512008A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 通信资源选择方法、装置、电子设备和存储介质
CN112291836B (zh) * 2020-10-22 2023-03-24 中信科智联科技有限公司 一种资源选择方法、装置及终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734655A (zh) * 2016-08-11 2018-02-23 北京三星通信技术研究有限公司 一种v2x通信中数据发送的方法和设备
US20200029245A1 (en) * 2017-02-06 2020-01-23 Intel Corporation Partial sensing and congestion control for long term evolution (lte) vehicular communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (OPPO): "FL summary for AI 8.11.1.1 – resource allocation for power saving", 3GPP DRAFT; R1-2101412, vol. RAN WG1, 5 February 2021 (2021-02-05), pages 1 - 91, XP051977622 *
See also references of EP4322568A4 *

Also Published As

Publication number Publication date
EP4322568A4 (en) 2024-10-09
TW202241163A (zh) 2022-10-16
TWI845911B (zh) 2024-06-21
CN115190447A (zh) 2022-10-14
US20240179686A1 (en) 2024-05-30
EP4322568A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
EP4017133A1 (en) Energy-saving indication method and apparatus thereof
US11147061B2 (en) Data receiving method, related device, and system
CN111771388B (zh) 直连通信中的监听方法、装置及存储介质
WO2013166715A1 (zh) 资源管理的方法和装置、小带宽用户设备以及用户设备
WO2015113220A1 (zh) 分配资源的方法和用户设备
US20210337477A1 (en) Communication method and apparatus
WO2024007786A1 (zh) 信号接收方法、装置、终端、芯片、存储介质及程序产品
US20210204312A1 (en) Downlink control information transmission method and apparatus
US20190132226A1 (en) Data transmission method, device, and network system
CN110324883B (zh) 配置物理下行控制信道的方法、用户设备和网络侧设备
WO2022027694A1 (zh) 一种资源信息指示方法及装置
CN114503467B (zh) 一种数据传输方法以及装置
EP4346303A1 (en) Resource reselection method and apparatus, device, and storage medium
CN109417768A (zh) 更新系统信息的方法、终端设备和网络侧设备
TWI778962B (zh) 設備對設備(d2d)通信的方法和d2d設備
WO2022213812A1 (zh) 一种资源选择方法及终端设备
CN112312525B (zh) 一种节电信号配置和传输方法及装置
WO2022011699A1 (zh) 一种通信方法及侧行设备
CN115915449A (zh) 信息传输方法、第一通信节点、第二通信节点及存储介质
CN110741703A (zh) 一种资源配置方法及装置、计算机存储介质
WO2016119252A1 (zh) 一种信息指示的方法、ue及基站
EP4250860A1 (en) Communication method and apparatus
US11206652B2 (en) Downlink channel transmitting method, downlink channel receiving method, devices thereof, base station and terminal
CN108882203B (zh) 一种信息处理方法及装置
EP4138475A1 (en) Method, apparatus and system for determining resource

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18551611

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022783879

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022783879

Country of ref document: EP

Effective date: 20231106