[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022210962A1 - 無方向性電磁鋼板、及び、その製造方法 - Google Patents

無方向性電磁鋼板、及び、その製造方法 Download PDF

Info

Publication number
WO2022210962A1
WO2022210962A1 PCT/JP2022/016264 JP2022016264W WO2022210962A1 WO 2022210962 A1 WO2022210962 A1 WO 2022210962A1 JP 2022016264 W JP2022016264 W JP 2022016264W WO 2022210962 A1 WO2022210962 A1 WO 2022210962A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating coating
mass
steel sheet
oriented electrical
content
Prior art date
Application number
PCT/JP2022/016264
Other languages
English (en)
French (fr)
Inventor
和年 竹田
美菜子 福地
真介 高谷
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202280015314.1A priority Critical patent/CN116888301A/zh
Priority to US18/277,548 priority patent/US12084750B2/en
Priority to BR112023016300A priority patent/BR112023016300A2/pt
Priority to JP2022548591A priority patent/JP7226663B1/ja
Priority to EP22781172.6A priority patent/EP4317486A1/en
Priority to KR1020237027216A priority patent/KR102650460B1/ko
Publication of WO2022210962A1 publication Critical patent/WO2022210962A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the non-oriented electrical steel sheet.
  • Non-oriented electrical steel sheets are used in drive motors for small household appliances such as audio equipment, and iron cores (motor cores (rotor cores, stator cores)) for drive motors in hybrid and electric vehicles.
  • iron cores motor cores (rotor cores, stator cores)
  • An insulating coating is formed on the surface of the non-oriented electrical steel sheet.
  • the insulating coating ensures insulation between electromagnetic steel sheets laminated as a stator core. That is, the insulating coating is required to have excellent insulating properties.
  • the insulating coating is further required to have adhesion to the steel plate.
  • the non-oriented electrical steel sheets are temporarily stored until they are processed into motor cores. When the storage period is long, the chances of dew condensation on the non-oriented electrical steel sheet increase. Therefore, the insulating coating is required to have not only insulating properties and adhesion properties but also corrosion resistance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-252191
  • Patent Document 2 Japanese Patent No. 6816849
  • the electromagnetic steel sheet disclosed in Patent Document 1 contains 100 parts by mass of a metal phosphate as a main component, an acrylic resin, an epoxy resin, a polyester resin and a A binder composed of 1 to 50 parts by mass of a mixture or copolymer of one or more urethane resins, and a fatty acid or fatty acid metal salt having 8 to 20 carbon atoms in a solid content of 100 parts by mass of the binder. 0.3 to 5.0 parts by mass are mixed and dispersed with respect to the insulating coating. Patent Literature 1 describes that this insulating coating is excellent in insulating properties, adhesion, and corrosion resistance.
  • the non-oriented electrical steel sheet disclosed in Patent Document 2 includes a base steel sheet and a composite coating of a Zn-containing phosphate and an organic resin formed on the surface of the base steel sheet.
  • the molar ratio of Zn to all metal components in the composite coating is 10 mol % or more.
  • the Zn elution amount in distilled water after boiling the non-oriented electrical steel sheet in distilled water for 20 minutes is 1.0 mg/m 2 or more.
  • Patent Document 2 describes that this composite film has excellent corrosion resistance even if it does not contain expensive organic compounds such as chromate compounds and phosphonic acids.
  • the method of manufacturing a stator core using non-oriented electrical steel sheets is as follows.
  • a non-oriented electrical steel sheet is punched into a predetermined shape.
  • a stator core is manufactured by laminating and fixing steel plates (core blanks) after punching. Place the coils in the slots of the stator core.
  • a varnish impregnation treatment is performed on the stator core on which the coils are arranged.
  • the slots of the motor core are filled with varnish, which is a liquid water-soluble thermosetting resin. Then, the motor core is heated to harden the varnish and fix the coil to the motor core.
  • varnish impregnation process if the space between the slot surface of the stator core and the coil is not sufficiently filled with varnish, the coil may not adhere sufficiently to the stator core. Therefore, it is required that the varnish is sufficiently filled between the slots of the stator core and the coils during the varnish impregnation treatment. In order to fill the varnish sufficiently, it is required that the varnish easily adheres to the insulating coating of the non-oriented electrical steel sheet.
  • varnish wettability the ease with which the varnish adheres to the insulating coating is referred to as "varnish wettability".
  • the insulation coating of non-oriented electrical steel sheets is required to have excellent corrosion resistance. Therefore, the insulating coating of the non-oriented electrical steel sheet is required to have both excellent corrosion resistance and excellent varnish wettability.
  • An object of the present invention is to provide a non-oriented electrical steel sheet provided with an insulation coating with excellent corrosion resistance and excellent varnish wettability, and a method for producing the same.
  • the non-oriented electrical steel sheet of the present invention is a base material steel plate; and an insulating coating formed on the surface of the base steel plate,
  • the insulating coating is a metal phosphate; containing an organic resin,
  • the water content of the insulating coating is 0.003 to 0.03 wt%,
  • the contact angle of water on the insulating coating is 55 to 85°.
  • the method for producing a non-oriented electrical steel sheet of the present invention comprises: an application step of applying a surface treatment agent to the surface of the base steel plate; a baking step of heating the base steel plate coated with the surface treatment agent to form the insulating coating;
  • the surface treatment agent is the metal phosphate; and 10.0 to 30.0 parts by mass of the organic resin when the content of the metal phosphate is 100.0 parts by mass; 0 to 30.0 parts by mass of a curing agent when the content of the metal phosphate is 100.0 parts by mass,
  • the formula (1) is satisfied
  • the baking step When the amount of the surface treatment agent applied to the surface of the base steel sheet is less than 0.3 g/m 2 , the baking temperature is 200° C.
  • the baking temperature is 260° C. or more and less than 340° C. and the heat treatment time is 20 to 40 seconds
  • the baking temperature is set at 340° C. or higher and lower than 380° C.
  • the heat treatment time is set at 25 to 50 seconds.
  • the non-oriented electrical steel sheet according to the above aspect of the present invention has excellent corrosion resistance and an insulating coating with excellent varnish wettability.
  • the method for manufacturing a non-oriented electrical steel sheet according to the above aspect of the present invention can manufacture a non-oriented electrical steel sheet having the above configuration.
  • FIG. 1 is a cross-sectional view in the plate thickness direction of a non-oriented electrical steel sheet according to this embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the insulating coating 20 in FIG.
  • the present inventors investigated and investigated the corrosion resistance and varnish wettability of the insulation coating of non-oriented electrical steel sheets. Corrosion resistance can be improved by including a metal phosphate and an organic resin in the insulating coating.
  • the inventors have investigated means for further enhancing the corrosion resistance of the insulating coating.
  • the non-oriented electrical steel sheets are temporarily stored until they are processed into core blanks. Dew condensation may occur on the non-oriented electrical steel sheet during this storage period. Even if the insulating film itself has high corrosion resistance, if dew condensation is likely to occur, the corrosion resistance is likely to deteriorate. If the occurrence of dew condensation on the insulating coating can be suppressed, the corrosion resistance of the insulating coating of the non-oriented electrical steel sheet is considered to be further improved. If the contact angle of water on the insulating coating is small, moisture in the air tends to condense on the insulating coating. Therefore, from the viewpoint of suppressing dew condensation, it is desirable to increase the contact angle of water on the insulating coating.
  • the insulating coating is required to have excellent varnish wettability during the varnish impregnation treatment.
  • the contact angle is too small, condensation will occur on the surface of the insulating coating, and water will adhere to the surface. In this case, water inhibits adhesion of the varnish. Therefore, the varnish wettability becomes rather low.
  • the moisture content of the insulating coating is too low, the wettability of the varnish, especially the wettability of the water-based varnish, is significantly degraded.
  • the present inventors studied the contact angle and moisture content of an insulating coating that can achieve both corrosion resistance and varnish wettability.
  • the insulating coating contained a metal phosphate and an organic resin, and the contact angle of water measured by the sessile drop method in accordance with JIS R3257:1999 was 55 to 85°. It has been found that if the amount is 0.003 to 0.03 wt %, the occurrence of dew condensation can be suppressed and the corrosion resistance can be improved, and at the same time, the varnish wettability can also be improved.
  • the non-oriented electrical steel sheet of this embodiment has been completed based on the above-described technical concept, and the gist thereof is as follows.
  • a base material steel plate and an insulating coating formed on the surface of the base steel plate,
  • the insulating coating is a metal phosphate; containing an organic resin,
  • the water content of the insulating coating is 0.003 to 0.03 wt%,
  • the contact angle of water on the insulating coating is 55 to 85°, Non-oriented electrical steel sheet.
  • the contact angle of water on the insulating coating is measured by the sessile drop method in accordance with JIS R3257:1999.
  • the non-oriented electrical steel sheet according to [1] The metal phosphate is containing one or more selected from the group consisting of Al phosphate and Zn phosphate;
  • the organic resin is The main component is epoxy resin, Non-oriented electrical steel sheet.
  • “contains an epoxy resin as a main component” means that the content of the epoxy resin in the organic resin is 50% or more by mass.
  • the non-oriented electrical steel sheet according to [1] or [2], The base material steel plate is mass %, Si: 2.5 to 4.5%, Al: 0.1 to 1.5%, Mn: containing 0.2 to 4.0%, Non-oriented electrical steel sheet.
  • the surface treatment agent is the metal phosphate; and 10.0 to 30.0 parts by mass of the organic resin when the content of the metal phosphate is 100.0 parts by mass; 0 to 30.0 parts by mass of a curing agent when the content of the metal phosphate is 100.0 parts by mass, When the content of the organic resin is Y parts by mass and the content of the curing agent is Z parts by mass, the formula (1) is satisfied,
  • the baking step When the coating amount of the surface treatment agent on the surface of the base steel sheet is less than 0.3 g/m 2 , the baking temperature is set to 200° C.
  • the baking temperature is 260° C. or more and less than 340° C.
  • the heat treatment time is 20 to 40 seconds
  • the coating amount of the surface treatment agent is more than 1.2 g/m 2
  • the baking temperature is 340° C. or more and less than 380° C.
  • the heat treatment time is 25 to 50 seconds.
  • the non-oriented electrical steel sheet of this embodiment will be described in detail below.
  • FIG. 1 is a cross-sectional view in the plate thickness direction of a non-oriented electrical steel sheet according to this embodiment.
  • non-oriented electrical steel sheet 1 includes base material steel sheet 10 and insulating coating 20 .
  • Insulating coating 20 is formed on the surface of base steel plate 10 .
  • the insulating coating 20 is formed on the upper and lower surfaces of the base steel plate 10, respectively.
  • insulating coating 20 may be formed only on one surface of base steel plate 10 .
  • the base material steel plate 10 and the insulating coating 20 will be described below.
  • the base material steel sheet 10 can be appropriately selected from known steel sheets used as the non-oriented electrical steel sheet 1 .
  • the base material steel sheet 10 is not particularly limited as long as it is a known steel sheet for use as a non-oriented electrical steel sheet 1 .
  • the chemical composition of the base material steel plate 10 contains basic elements, optionally contains optional elements, and the balance consists of Fe and impurities.
  • the chemical composition of the base steel plate 10 contains, for example, the following elements.
  • % means % by mass.
  • the chemical composition of the base material steel plate 10 contains Si, Al and Mn as basic elements. These elements are described below.
  • Si 2.5-4.5%
  • Si increases the electrical resistance of steel and reduces eddy current losses. As a result, the iron loss of the steel sheet is reduced. Si also increases the strength of steel. If the Si content is less than 2.5%, the above effect cannot be sufficiently obtained. On the other hand, if the Si content exceeds 4.5%, the workability of steel deteriorates. Therefore, the Si content is 2.5-4.5%.
  • a preferred lower limit for the Si content is 2.6%, more preferably 2.7%.
  • a preferable upper limit of the Si content is 4.3%, more preferably 4.2%.
  • Al 0.1-1.5%
  • Aluminum (Al) increases the electrical resistance of steel and reduces eddy current losses. As a result, the iron loss of the steel sheet is reduced. If the Al content is less than 0.1%, the above effect cannot be sufficiently obtained. On the other hand, if the Al content exceeds 1.5%, the saturation magnetic flux density will decrease. Therefore, the Al content is 0.1-1.5%.
  • a preferable lower limit of the Al content is 0.15%, more preferably 0.2%.
  • a preferable upper limit of the Al content is 1.4%, more preferably 1.3%.
  • Mn 0.2-4.0%
  • Manganese (Mn) increases the electrical resistance of steel and reduces eddy current losses. As a result, the iron loss of the steel sheet is reduced. Mn also suppresses the formation of ⁇ 111 ⁇ 112> texture, which is undesirable for magnetic properties. If the Mn content is less than 0.2%, the above effect cannot be sufficiently obtained. On the other hand, if the Mn content exceeds 4.0%, the texture changes and the hysteresis loss deteriorates. Therefore, the Mn content is 0.2-4.0%.
  • a preferred lower limit for the Mn content is 0.3%, more preferably 0.4%.
  • a preferable upper limit of the Mn content is 3.8%, more preferably 3.6%.
  • the remainder of the chemical composition of the base steel plate 10 consists of Fe and impurities.
  • impurity means an element that is mixed from ore or scrap as a raw material or from the manufacturing environment or the like when the base material steel plate 10 is industrially produced. Impurities are elements such as C, P, S and N, for example.
  • the chemical composition of the base steel plate 10 can be measured by a well-known chemical analysis method.
  • the chemical composition of the base steel plate 10 may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • the insulating coating 20 is formed on the surface of the base steel plate 10 as described above.
  • the non-oriented electrical steel sheets 1 are processed into core blanks and then laminated to form a motor core.
  • the insulating coating 20 reduces eddy currents between steel plates (between core blanks) after lamination. As a result, eddy current loss in the motor core can be reduced.
  • FIG. 2 is an enlarged cross-sectional view of the insulating coating 20 in FIG.
  • insulating coating 20 contains metal phosphate 201 and organic resin 202 .
  • Insulating coating 20 does not contain chromium oxide.
  • the metal phosphate 201 and the organic resin 202 are described below.
  • the metal phosphate 201 functions as a binder for the insulating coating 20 .
  • the metal phosphate 201 is a solid content obtained by drying an aqueous solution containing phosphoric acid and metal ions (metal phosphate solution).
  • the type of phosphoric acid is not particularly limited, and any known phosphoric acid can be used.
  • Preferred phosphoric acid is one or more selected from the group consisting of orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, and the like.
  • the metal ions act on the corrosion resistance and adhesion of the insulating coating 20 .
  • the type of metal ion is not particularly limited. Metal ions are, for example, one or more selected from the group consisting of Li, Al, Zn, Mg, Ca, Sr, Ti, Co, Mn and Ni.
  • the metal phosphate contains one or more selected from the group consisting of Al phosphate and Zn phosphate. More preferably, the metal phosphate contains Al phosphate and Zn phosphate.
  • Al phosphate effectively enhances the adhesion of the insulating coating 20 to the base steel plate 10 and further enhances the heat resistance of the insulating coating 20 .
  • Zn phosphate effectively enhances the corrosion resistance of the insulating coating 20 .
  • the metal phosphate may further contain, in addition to Al and Zn, the above-described metal elements other than Al and Zn.
  • Organic resin 202 Referring to FIG. 2, organic resin 202 is dispersed and contained in metal phosphate 201 that functions as a binder. The organic resin 202 suppresses coarse growth of the metal phosphate 201 and promotes polycrystallization of the metal phosphate 201 . A dense insulating film 20 is formed by the organic resin 202 .
  • the organic resin 202 is not particularly limited, and known organic resins can be used.
  • Preferred organic resins 202 are selected from the group consisting of acrylic resins, polystyrene resins, vinyl acetate resins, epoxy resins, polyester resins, polyurethane resins, polyamide resins, phenolic resins, melamine resins, silicone resins, polypropylene resins, and polyethylene resins. consists of one or more
  • the organic resin 202 is an epoxy resin.
  • Epoxy resin is excellent in insulation and corrosion resistance.
  • the type of epoxy resin is not particularly limited. Epoxy resins include, for example, bisphenol A, F, B type, alicyclic type, glycidyl ether type, glycidyl ester type, biphenyl type, naphthalene type, phenol novolak type, orthocresol novolac type, tetraphenylolethane type, trishydroxyphenyl It is one or more selected from the group consisting of methane type.
  • epoxy resins include, for example, bisphenol A-diglycidyl ether, caprolactone ring-opening adducts of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether, bisphenol S-diglycidyl ether, novolac glycidyl ether, dimer It is one or more selected from the group consisting of acid glycidyl ethers, glycidyl ether derivatives, hexahydrophthalic acid polyglycidyl esters, dimer acid glycidyl esters, and glycidyl ester derivatives.
  • the contact angle may increase and exceed 85°.
  • the fluororesin forms a film on the surface, and depending on the baking conditions, the water content may exceed 0.03 wt %. Therefore, the content of the fluororesin in the insulating coating 20 is preferably limited to 0.5 parts by mass or less with respect to 100.0 parts by mass of the metal phosphate. Since the fluororesin may not be contained, the content of the fluororesin may be 0 parts by mass.
  • the metal phosphate 201 and the organic resin 202 in the insulating coating 20 can be measured by the following method.
  • the gas generation behavior when the non-oriented electrical steel sheet 1 on which the insulating coating 20 is formed is heated is measured by a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method (hereinafter referred to as The presence or absence of the organic resin 202 and the type of the organic resin 202 are specified by analyzing using a GC/MS method).
  • the GC/MS method described above may be used in conjunction with Fourier transform infrared spectroscopy (FT-IR) to identify organic resins.
  • FT-IR Fourier transform infrared spectroscopy
  • the contact angle of water on the insulating coating 20 is 55 to 85°.
  • the contact angle of water on the insulating coating 20 is measured by the static drop method based on JIS R3257:1999.
  • the contact angle is less than 55°, dew condensation is likely to occur. Therefore, the corrosion resistance of the non-oriented electrical steel sheet 1 is lowered, and the varnish wettability is also lowered. On the other hand, if the contact angle exceeds 85°, dew condensation is suppressed and the corrosion resistance of the non-oriented electrical steel sheet 1 is improved, but the varnish wettability is reduced.
  • the contact angle of water on the insulating coating 20 is 55 to 85°, it is possible to suppress the occurrence of dew condensation and enhance the corrosion resistance, while also enhancing the varnish wettability.
  • a preferred lower limit of the contact angle of water on the insulating coating 20 is 58°, more preferably 60°, still more preferably 62°, still more preferably 65°.
  • a preferable upper limit of the contact angle of water on the insulating coating 20 is 82°, more preferably 80°, still more preferably 78°, still more preferably 75°.
  • the moisture content of the insulating coating 20 is 0.003 wt % to 0.03 wt %.
  • the moisture content in the insulating coating 20 can be measured by a thermobalance method. Specifically, it is possible to scrape off only the insulating coating with a cutter knife or the like, measure the weight loss up to 100° C. using a commercially available thermal analyzer, and calculate the moisture content of the insulating coating.
  • the water content of the insulating coating 20 is 0.003 wt % to 0.03 wt %, both corrosion resistance and varnish wettability can be achieved. If the water content is less than 0.003 wt%, the varnish wettability of the non-oriented electrical steel sheet 1 deteriorates. This is because the presence of air in the fine irregularities present on the surface of the insulating coating 20 significantly deteriorates the wettability of the varnish, particularly the wettability of water-based varnish. On the other hand, if the moisture content of the insulating coating 20 exceeds 0.03 wt %, the corrosion resistance of the non-oriented electrical steel sheet 1 deteriorates. This is because the corrosion of the base steel plate 10 progresses due to moisture in the insulating coating 20 .
  • the film thickness of the insulating coating 20 is not particularly limited.
  • a preferable thickness of the insulating coating 20 is 0.05 to 1.60 ⁇ m. If the film thickness is 0.05 to 1.60 ⁇ m, the insulating coating 20 exhibits even better insulating properties. However, even if the thickness of the insulating coating 20 is other than 0.05 to 1.60 ⁇ m, it is possible to achieve both excellent corrosion resistance and excellent varnish wettability.
  • the non-oriented electrical steel sheet 1 of this embodiment includes the base material steel sheet 10 and the insulating coating 20 .
  • the insulating coating 20 contains a metal phosphate 201 and an organic resin 202.
  • the contact angle of water on the insulating coating 20 is 55-85°, and the water content of the insulating coating 20 is 0.003 wt%-0. .03 wt%. Therefore, both excellent corrosion resistance and excellent varnish wettability can be achieved.
  • An example of the method for manufacturing the non-oriented electrical steel sheet 1 of the present embodiment is a step of preparing a surface treatment agent, which is a coating liquid for forming the insulating coating 20, and coating it on the surface of the base steel plate 10 (coating step). and a step of heating the base material steel plate 10 coated with the surface treatment agent to form the insulating coating 20 (baking step).
  • a surface treatment agent which is a coating liquid for forming the insulating coating 20
  • baking step a step of heating the base material steel plate 10 coated with the surface treatment agent to form the insulating coating 20
  • the surface of the base steel plate 10 is coated with a surface treatment agent.
  • the coating method is not particularly limited. A known coating method can be applied.
  • the coating method is, for example, a roll coater method, a spray method, a dip method, or the like.
  • the surface treatment agent contains a metal phosphate and an organic resin.
  • the metal phosphate and organic resin in the surface treatment agent the metal phosphate and organic resin described above are used.
  • the content of the fluororesin in the surface treatment agent is preferably limited to 0.5 parts by mass or less with respect to 100.0 parts by mass of the metal phosphate. Since the fluororesin may not be contained, the content of the fluororesin may be 0 parts by mass.
  • the solvent for the surface treatment agent is preferably water.
  • the solid content concentration in the surface treatment agent is 5% by mass to 40% by mass.
  • the solid content is 5 mass % to 40 mass %, and by satisfying the heating conditions described later, the water content of the insulating coating is 0.003 to 0.03 wt % and the contact angle is in the range of 55 to 85 °. can be done.
  • a more preferable solid content concentration is 8% by mass to 30% by mass.
  • a more preferable solid content concentration is 10% by mass to 25% by mass.
  • the surface treatment agent may further contain a curing agent. If the surface treatment agent contains the metal phosphate and the organic resin, the hardening reaction proceeds by the baking treatment described below. Therefore, a curing agent is not essential. However, in order to further accelerate the curing reaction, the surface treatment agent may contain a curing agent.
  • the content of the organic resin in the surface treatment agent is 10.0 to 30.0 parts by mass with respect to 100.0 parts by mass of the metal phosphate. If the content of the organic resin is less than 10.0 parts by mass, coarsening of the metal phosphate cannot be sufficiently suppressed. In this case, the adhesion of insulating coating 20 to base steel plate 10 is reduced. On the other hand, when the content of the organic resin exceeds 30.0 parts by mass, the insulating coating contains an excessive amount of the organic resin. In this case, the adhesion of insulating coating 20 to base steel plate 10 is reduced. Furthermore, varnish wettability is reduced. Therefore, the content of the organic resin in the surface treatment agent should be 10.0 to 30.0 parts by mass with respect to 100 parts by mass of the metal phosphate.
  • a preferable lower limit of the content of the organic resin is preferably 12.0 parts by mass, more preferably 13.0 parts by mass with respect to 100.0 parts by mass of the metal phosphate.
  • a preferable upper limit of the content of the organic resin is 28.0 parts by mass, more preferably 26.0 parts by mass, and still more preferably 25.0 parts by mass with respect to 100.0 parts by mass of the metal phosphate. and more preferably 24.0 parts by mass.
  • a curing agent accelerates the curing of the organic resin.
  • the curing agent for example, one or more selected from the group consisting of polyamine-based curing agents, acid anhydride-based curing agents, and methylol group-containing precondensates can be used.
  • the polyamine curing agent is, for example, one or more selected from the group consisting of aliphatic polyamines, alicyclic polyamines, aromatic polyamines, polyamide polyamines, and modified polyamines.
  • Acid anhydride-based curing agents include, for example, monofunctional acid anhydrides (phthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, chlorendic anhydride, etc.) , bifunctional acid anhydrides (pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethylene glycol bis(anhydrotrimate), methylcyclohexenetetracarboxylic anhydride, etc.), and free acid anhydrides (trianhydride mellitic acid, polyazelaic anhydride, etc.).
  • monofunctional acid anhydrides phthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, chlorendic anhydride, etc.
  • the methylol group-containing initial condensate is, for example, one or more selected from the group consisting of novolak-type or resol-type phenol resins, urea resins, and melamine resins.
  • the content of the curing agent in the surface treatment agent is 0 to 30.0 parts by mass with respect to 100.0 parts by mass of the metal phosphate.
  • the curing agent accelerates curing of the organic resin.
  • the content of the curing agent exceeds 30.0 parts by mass, the adhesion of insulating coating 20 to base steel plate 10 is reduced.
  • the contact angle exceeds 85° and the varnish wettability is reduced. Therefore, the content of the curing agent in the surface treatment agent should be 0.5 to 30.0 parts by mass with respect to 100.0 parts by mass of the metal phosphate.
  • a preferable lower limit of the content of the curing agent is 0.5 parts by mass, more preferably 1.0 parts by mass, and still more preferably 2.0 parts by mass with respect to 100.0 parts by mass of the metal phosphate. be.
  • the upper limit of the content of the curing agent is 28.0 parts by mass, more preferably 26.0 parts by mass, and still more preferably 24.0 parts by mass with respect to 100.0 parts by mass of the metal phosphate. .
  • the surface treatment agent further includes Y (parts by mass) as the content of the organic resin when the content of the metal phosphate is 100 parts by mass, and a curing agent when the content of the metal phosphate is 100 parts by mass.
  • Y parts by mass
  • Z parts by mass
  • the following formula (1) is satisfied. 0.8 ⁇ (Y+Z) ⁇ 0.3 ⁇ X ⁇ 2.5 ⁇ (Y+Z) (1)
  • 100.0 which is the mass part of the metal phosphate, is substituted for X.
  • F0 0.8 x (Y + Z)
  • F1 0.3 x X
  • F2 2.5 x (Y + Z).
  • Both the organic resin and the curing agent have the effect of increasing the contact angle of the insulating coating 20 .
  • the metal phosphate has the effect of lowering the contact angle of the insulating coating 20 . If F0 ⁇ F1, there is too little metal phosphate relative to the organic resin and hardener. In this case, the contact angle of the formed insulating coating becomes too high, exceeding 85°. On the other hand, when F1 ⁇ F2, the metal phosphate is too much relative to the organic resin and curing agent. In this case, the contact angle of the formed insulating coating becomes too low, less than 55°.
  • the ratio of the metal phosphate to the organic resin and curing agent is appropriate. Therefore, in this case, on the premise that the manufacturing conditions described later are satisfied, the water content of the insulating coating is 0.003 to 0.03 wt % and the contact angle is in the range of 55 to 85°.
  • the baking temperature is adjusted as follows according to the amount of the surface treatment agent to be applied. (1) When the coating amount of the surface treatment agent is less than 0.3 g/m 2 , the baking temperature is set to 200°C or more and less than 260°C. (2) When the coating amount of the surface treatment agent is 0.3 g/m 2 or more and 1.2 g/m 2 or less, the baking temperature is set to 260°C or more and less than 340°C. (3) When the coating amount of the surface treatment agent exceeds 1.2 g/m 2 , the baking temperature is set at 340°C or higher and lower than 380°C.
  • the baking temperature is set to 200° C. or more and less than 260° C., and the heat treatment time is set to 15 to 30 seconds.
  • the baking temperature is 260° C. or more and less than 340° C., and the heat treatment time is 20 to 40 seconds.
  • the baking temperature is set at 340° C. or higher and lower than 380° C., and the heat treatment time is set at 25 to 50 seconds.
  • the non-oriented electrical steel sheet 1 having a water content of 0.003 to 0.03 wt% in the insulating coating 20 and a water contact angle of 55 to 85° is manufactured.
  • non-oriented electrical steel sheet of the present embodiment will be explained more specifically by way of examples.
  • the conditions in the following examples are examples of conditions adopted for confirming the feasibility and effect of the non-oriented electrical steel sheet of this embodiment. Therefore, the non-oriented electrical steel sheet of this embodiment is not limited to this one conditional example.
  • a base steel plate having a thickness of 0.25 mm (non-oriented electromagnetic steel plate) was prepared.
  • a coating step was performed on the prepared base material steel plate. Specifically, a surface treatment agent having the composition shown in Table 1 was applied to the surface of the base steel plate using a rubber roll type applicator. The solid content concentration in the surface treatment agent was 5% by mass to 40% by mass, and water was used as the solvent.
  • the metal phosphate consists of Al phosphate.
  • the metal phosphate contained Al phosphate and Mg phosphate at a mass ratio of 5:5.
  • the metal phosphate contained Al phosphate and Cu phosphate at a mass ratio of 8:2.
  • a to E of "type" in the "organic resin” column in Table 1 are as follows.
  • C Acrylic modification obtained by reacting a bisphenol A type epoxy resin having an epoxy equivalent of 5000 with methacrylic acid and ethyl acrylate.
  • the "mixing amount Z (parts by mass)" in the "curing agent” column indicates the content (parts by mass) of the curing agent when the content of the metal phosphate is 100.0 parts by mass.
  • Test No. 14 shows the content (parts by mass) of the curing agent when the content of the organic resin is 100.0 parts by mass.
  • Table 1 also shows the F0 value, F1 value and F2 value.
  • "YES” in the "F0 ⁇ F1" and “F1 ⁇ F2" columns in Table 1 means that the inequality in the corresponding column holds, and "NO” means that the inequality in the corresponding column holds. means not
  • the amount of surface treatment agent applied for each test number was as shown in Table 2.
  • Baking treatment was performed on the base steel plate to which the surface treatment agent was applied.
  • the baking temperature for each test number was as shown in Table 2. Incidentally, the baking time was 60 seconds in each case.
  • Adhesion evaluation test Adhesion was evaluated by the following method for the non-oriented electrical steel sheets of each test number.
  • a steel plate sample having a width of 30 mm and a length of 300 mm was taken from each test number of the non-oriented electrical steel plate.
  • a steel plate sample was subjected to strain relief annealing. In the strain relief annealing, the annealing temperature was set to 800° C. and the annealing time was set to 2 hours in a nitrogen stream.
  • An adhesive tape was attached on the insulating coating of the steel plate sample after strain relief annealing.
  • a steel plate sample with an adhesive tape was wrapped around a metal rod with a diameter of 10 mm. After that, the steel plate sample was separated from the metal bar.
  • the steel plate sample was bent with a diameter of 10 mm. After that, the adhesive tape was peeled off from the steel plate sample, and the ratio (area ratio) of the insulating coating remaining without being peeled off from the base steel plate was measured. Adhesion was evaluated as follows based on the obtained area ratio.
  • Corrosion resistance evaluation test The corrosion resistance of the non-oriented electrical steel sheets of each test number was evaluated by the following method. A steel plate sample having a width of 30 mm and a length of 300 mm was taken from each test number of the non-oriented electrical steel plate. In accordance with the salt spray test described in JIS Z2371:2015, a 5% NaCl aqueous solution was naturally dropped onto the steel plate sample in an atmosphere of 35°C for 7 hours. After that, the area ratio of the rusted region (hereinafter referred to as the rusted area ratio) on the surface of the steel plate sample was determined. Corrosion resistance was evaluated by the following 10-point evaluation according to the obtained rusted area ratio.
  • Rusted area rate is 0% 9: Rusted area ratio of 0.10% or less 8: Rusted area ratio of more than 0.10% to 0.25% or less 7: Rusted area ratio of more than 0.25% to 0.50% or less 6: Rusted Area ratio is more than 0.50% and 1.00% or less 5: Rusted area ratio is more than 1.00% and 2.50% or less 4: Rusted area ratio is more than 2.50% and 5.00% or less 3: Rust Rusted area ratio of more than 5.00% and 10.00% or less 2: Rusted area ratio of more than 10.00% and 25.00% or less 1: Rusted area ratio of more than 25.00% and 50.00% or less obtained
  • the corrosion resistance obtained is shown in the "corrosion resistance" column of Table 2. A score of 5 or more was regarded as a pass (excellent in corrosion resistance).
  • the amount of phosphoric acid eluted was determined from the dilution ratio. The results are shown in the "Elution resistance" column of Table 2. If the eluted amount of phosphoric acid was less than 140 mg/m 2 , it was judged as acceptable (excellent elution resistance).
  • shear adhesive strength (MPa) of the laminated steel plate sample is measured according to JIS K6850:1999. Evaluation was made according to the obtained shear adhesive strength (MPa) as follows. 4 ( ⁇ ): Shear adhesive strength is greater than 8 MPa 3 ( ⁇ ): Shear adhesive strength is greater than 2 to 8 MPa 2 ( ⁇ ): Shear adhesive strength is greater than 1 to 2 MPa 1 ( ⁇ ): Shear adhesive The strength is less than 1 MPa. Evaluation 4 and evaluation 3 were regarded as passing.
  • Table 2 shows the evaluation results.
  • the insulating coating of the non-oriented electrical steel sheets of test numbers 1 to 8 and 23 contained metal phosphate and organic resin. Furthermore, the surface treatment agent satisfied F0 ⁇ F1 ⁇ F2. Therefore, the contact angle of water on the insulating coating was 55 to 85°. As a result, it was possible to achieve excellent insulation and adhesion, as well as excellent corrosion resistance and excellent varnish wettability.
  • the insulating coating did not contain any of the organic resins A to C. Therefore, although the insulating property was excellent, the adhesiveness was low. Furthermore, F1 was F2 or more, and the contact angle was less than 55°. Therefore, the corrosion resistance was low and the varnish wettability was also low.
  • test number 10 F1 was F2 or higher. Therefore, although the insulating property was excellent, the adhesiveness was low. Furthermore, since F1 was F2 or more, the contact angle was less than 55°. Therefore, the corrosion resistance was low and the varnish wettability was also low.
  • test number 11 F1 was F2 or more, so the contact angle was less than 55°. Therefore, the corrosion resistance was low and the varnish wettability was also low.
  • test number 13 F0 became F1 or higher. Therefore, although the insulating property was excellent, the adhesiveness was low. Furthermore, since F0 was F1 or more, the contact angle exceeded 85°. Therefore, varnish wettability was low.
  • the insulation film contained no metal phosphate and was composed only of organic resin. Therefore, although the insulating property was excellent, the adhesiveness was low. Furthermore, since F0 was F1 or more, the contact angle exceeded 85°. Therefore, varnish wettability was also low.
  • the amount of surface treatment agent adhered was 0.2 g/m 2 , and the baking temperature did not satisfy the condition (1) of the baking process, and was 260° C. or higher. Therefore, excessive oxidative decomposition of the organic resin occurred. As a result, the insulating property was low, and the adhesion and corrosion resistance were also low. Furthermore, the contact angle exceeded 85°. Therefore, varnish wettability was low.
  • the amount of surface treatment agent adhered was 0.6 g/m 2 and the baking temperature was below the lower limit (260°C) of condition (2) of the baking process.
  • the insulating coating became sticky and the contact angle was less than 55°. Therefore, although the insulating properties and adhesion are excellent, the corrosion resistance, elution resistance, and varnish wettability are low.
  • the amount of surface treatment agent attached was 1.6 g/m 2 and the baking temperature was below the lower limit (340° C.) of condition (3) of the baking process.
  • the insulating coating became sticky and the contact angle was less than 55°. Therefore, although it has excellent insulating properties and adhesion, it has low corrosion resistance, elution resistance and varnish wettability.
  • the amount of surface treatment agent adhered was 1.6 g/m 2 , and the baking temperature exceeded the upper limit (380° C.) of condition (3) of the baking process. Therefore, the oxidative decomposition of the organic resin proceeded excessively. As a result, the adhesiveness was low although the insulating properties and corrosion resistance were excellent due to the large amount of adhesion. Furthermore, the contact angle exceeded 85°. Therefore, varnish wettability was low.
  • the amount of surface treatment agent adhered was 0.2 g/m 2 and the baking temperature was lower than the lower limit (200° C.) of condition (1) of the baking process.
  • the insulating coating became sticky and the contact angle was less than 55°. Therefore, the insulating properties were low, and the corrosion resistance and varnish wettability were low.
  • the amount of surface treatment agent adhered was 1.1 g/m 2 and the heat treatment time was over 40 seconds. As a result, the water content of the insulating coating exceeded 0.03 wt%. Therefore, insulation and adhesion were low.
  • the amount of surface treatment agent adhered was 0.4 g/m 2 and the heat treatment time was less than 20 seconds.
  • the moisture content of the insulating coating was less than 0.003 wt%. Therefore, the insulation, adhesion and varnish wettability were low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

この無方向性電磁鋼板は、母材鋼板と、前記母材鋼板の表面に形成されている絶縁被膜とを備え、前記絶縁被膜は、リン酸金属塩と、有機樹脂とを含有し、前記絶縁被膜の水分量が0.003~0.03wt%であり、前記絶縁被膜での水の接触角が55~85°である。

Description

無方向性電磁鋼板、及び、その製造方法
 本発明は、無方向性電磁鋼板、及び、その無方向性電磁鋼板の製造方法に関する。本願は、2021年3月31日に、日本に出願された特願2021-060409号に基づき優先権を主張し、その内容をここに援用する。
 無方向性電磁鋼板は、オーディオ機器等の小型家電の駆動用モータや、ハイブリッドカー及び電気自動車の駆動用モータ用の鉄芯(モータコア(ロータコア、ステータコア))に利用されている。
 無方向性電磁鋼板の表面には絶縁被膜が形成されている。絶縁被膜はたとえば、ステータコアとして積層された電磁鋼板同士の絶縁性を担保する。つまり、絶縁被膜には、優れた絶縁性が求められる。絶縁被膜にはさらに、鋼板に対する密着性が求められる。さらに、無方向性電磁鋼板は、モータコアに加工されるまでの間、一時的に保管される。保管期間が長くなる場合、無方向性電磁鋼板が結露する機会が増える。そのため、絶縁被膜には、絶縁性、密着性とともに、耐蝕性も求められる。
 無方向性電磁鋼板の絶縁被膜はたとえば、日本国特開2011-252191号公報(特許文献1)、日本国特許第6816849号(特許文献2)に提案されている。
 特許文献1に開示された電磁鋼板は、電磁鋼板の表面に、主成分としてリン酸金属塩100質量部と、平均粒径が0.05~0.50μmのアクリル樹脂、エポキシ樹脂、ポリエステル樹脂及びウレタン樹脂の1種又は2種以上の混合物もしくは共重合物1~50質量部とから構成されるバインダーに対し、炭素数が8~20の脂肪酸又は脂肪酸金属塩を前記バインダーの固形分100質量部に対して0.3~5.0質量部混合し、分散させた絶縁被膜を有する。この絶縁被膜は、絶縁性、密着性、及び耐蝕性に優れる、と特許文献1には記載されている。
 特許文献2に開示された無方向性電磁鋼板は、母材鋼板と、母材鋼板の表面に形成された、Zn含有リン酸塩と有機樹脂との複合皮膜とを備える。複合皮膜中の全ての金属成分に占めるZnのモル比率が10モル%以上である。さらに、無方向性電磁鋼板を沸騰させた蒸留水中で20分間煮沸した後の蒸留水中のZn溶出量が1.0mg/m以上である。この複合皮膜は、クロム酸塩系化合物やホスホン酸類に代表される高価な有機化合物を複合皮膜に含有しなくても耐蝕性に優れる、と特許文献2には記載されている。
日本国特開2011-252191号公報 日本国特許第6816849号
 ところで、無方向性電磁鋼板を用いたステータコアの製造方法は次のとおりである。無方向性電磁鋼板を所定形状に打抜き加工する。打抜き加工後の鋼板(コアブランク)を積層して固着し、ステータコアを製造する。ステータコアのスロットにコイルを配置する。コイルを配置したステータコアに対して、ワニス含浸処理を実施する。ワニス含浸処理では、液状の水溶性熱硬化性樹脂であるワニスをモータコアのスロット内に充填させる。そして、モータコアを加熱してワニスを硬化させ、コイルをモータコアに固定させている。
 ワニス含浸処理時において、ステータコアのスロット表面とコイルとの間にワニスが十分に充填されなければ、コイルがステータコアに十分に固着しない場合がある。したがって、ワニス含浸処理時において、ワニスがステータコアのスロットとコイルとの間に十分に充填されることが求められる。ワニスが十分に充填されるためには、無方向性電磁鋼板の絶縁被膜に対してワニスが付着しやすいことが求められる。以下、絶縁被膜に対するワニスの付着しやすさを「ワニス濡れ性」という。
 さらに、上述のとおり、無方向性電磁鋼板の絶縁被膜には、優れた耐蝕性が求められる。したがって、無方向性電磁鋼板の絶縁被膜には、優れた耐蝕性と優れたワニス濡れ性との両立が求められる。
 本発明の目的は、耐蝕性に優れ、かつ、ワニス濡れ性に優れる絶縁被膜を備えた無方向性電磁鋼板及びその製造方法を提供することである。
 本発明の無方向性電磁鋼板は、
 母材鋼板と、
 前記母材鋼板の表面に形成されている絶縁被膜とを備え、
 前記絶縁被膜は、
 リン酸金属塩と、
 有機樹脂とを含有し、
 前記絶縁被膜の水分量が0.003~0.03wt%であり、
 前記絶縁被膜での水の接触角が55~85°である。
 本発明の無方向性電磁鋼板の製造方法は、
 表面処理剤を前記母材鋼板の表面に塗布する塗布工程と、
 前記表面処理剤が塗布された前記母材鋼板を加熱して、前記絶縁被膜を形成する焼付工程とを備え、
 前記表面処理剤は、
 前記リン酸金属塩と、
 前記リン酸金属塩の含有量を100.0質量部とした場合に10.0~30.0質量部の前記有機樹脂と、
 前記リン酸金属塩の含有量を100.0質量部とした場合に0~30.0質量部の硬化剤とを含有し、
 前記有機樹脂の含有量をY質量部とし、前記硬化剤の含有量をZ質量部としたときに、式(1)を満たし、
 前記焼付工程では、
 前記母材鋼板の表面での前記表面処理剤の塗布量が0.3g/m未満の場合、焼付温度を200℃以上260℃未満で加熱処理時間を15~30秒とし、
 前記表面処理剤の塗布量が0.3g/m以上1.2g/m以下の場合、焼付温度を260℃以上340℃未満で加熱処理時間を20~40秒とし、
 前記表面処理剤の塗布量が1.2g/m超の場合、焼付温度を340℃以上380℃未満とし、加熱処理時間を25~50秒とする。
 0.8×(Y+Z)<0.3×X<2.5×(Y+Z) (1)
 ここで、Xには、前記リン酸金属塩の質量部である100.0が代入される。
 本発明の上記態様による無方向性電磁鋼板は、耐蝕性に優れ、ワニス濡れ性に優れる絶縁被膜を備える。本発明の上記態様による無方向性電磁鋼板の製造方法は、上述の構成を有する無方向性電磁鋼板を製造できる。
図1は、本実施形態の無方向性電磁鋼板の板厚方向の断面図である。 図2は、図1中の絶縁被膜20の拡大した断面図である。
 本発明者らは、無方向性電磁鋼板の絶縁被膜における、耐蝕性とワニス濡れ性とについて調査及び検討を行った。絶縁被膜がリン酸金属塩及び有機樹脂を含有することにより、耐蝕性を高めることができる。
 本発明者らは、絶縁被膜の耐蝕性をさらに高める手段を検討した。上述のとおり、無方向性電磁鋼板がコアブランクに加工されるまでの間、無方向性電磁鋼板は一時的に保管される。この保管期間において無方向性電磁鋼板に結露が発生する場合がある。絶縁被膜自体の耐蝕性が高くても、結露が発生しやすければ、耐蝕性が劣化する可能性が高くなる。絶縁被膜での結露の発生を抑制できれば、無方向性電磁鋼板の絶縁被膜の耐蝕性はさらに高まると考えられる。絶縁被膜の水の接触角が小さければ、空気中の水分が絶縁被膜に結露しやすくなる。したがって、結露の抑制という観点からは、絶縁被膜の水の接触角を大きくするのが望ましい。
 一方で、上述のとおり、絶縁被膜には、ワニス含浸処理時において、優れたワニス濡れ性が求められる。絶縁被膜での水の接触角が小さい方が、ワニスが絶縁被膜の表面になじみやすく、広がりやすい。しかしながら、接触角が小さすぎれば、絶縁被膜の表面が結露して、表面に水が付着してしまう。この場合、ワニスの付着を水が阻害する。そのため、ワニス濡れ性がかえって低くなる。
 また、絶縁被膜の水分量が低すぎる場合、ワニスの濡れ性、特に水性のワニスの場合の濡れ性が顕著に劣化する。
 一方、絶縁被膜の水分量が多すぎる場合、無方向性電磁鋼板の耐蝕性が劣化する。
 以上の検討結果に基づいて、本発明者らは、耐蝕性とワニス濡れ性とを両立可能な絶縁被膜での接触角および絶縁被膜の水分量について検討を行った。その結果、絶縁被膜がリン酸金属塩と有機樹脂とを含有し、さらに、JIS R3257:1999に準拠した静滴法により測定された水の接触角が55~85°であり、絶縁被膜の水分量が0.003~0.03wt%であれば、結露の発生を抑制して耐蝕性を高めつつ、ワニス濡れ性も高めることができることを見出した。
 本実施形態の無方向性電磁鋼板は上述の技術思想に基づいて完成したものであり、その要旨は次のとおりである。
 [1]
 母材鋼板と、
 前記母材鋼板の表面に形成されている絶縁被膜とを備え、
 前記絶縁被膜は、
 リン酸金属塩と、
 有機樹脂とを含有し、
 前記絶縁被膜の水分量が0.003~0.03wt%であり、
前記絶縁被膜での水の接触角が55~85°である、
 無方向性電磁鋼板。
 ここで、絶縁被膜での水の接触角は、JIS R3257:1999に準拠した静滴法により測定される。
 [2]
 [1]に記載の無方向性電磁鋼板であって、
 前記リン酸金属塩は、
 リン酸Al、及び、リン酸Znからなる群から選択される1種以上を含有し、
 前記有機樹脂は、
 エポキシ樹脂を主成分とする、
 無方向性電磁鋼板。
 ここで、「エポキシ樹脂を主成分とする」とは、有機樹脂におけるエポキシ樹脂の含有量が質量%で50%以上であることを意味する。
 [3]
 [1]又は[2]に記載の無方向性電磁鋼板であって、
 前記母材鋼板は、質量%で、
 Si:2.5~4.5%、
 Al:0.1~1.5%、
 Mn:0.2~4.0%を含有する、
 無方向性電磁鋼板。
 [4]
 [1]~[3]のいずれか1項に記載の無方向性電磁鋼板の製造方法であって、
 表面処理剤を前記母材鋼板の表面に塗布する塗布工程と、
 前記表面処理剤が塗布された前記母材鋼板を加熱して、前記絶縁被膜を形成する焼付工程とを備え、
 前記表面処理剤は、
 前記リン酸金属塩と、
 前記リン酸金属塩の含有量を100.0質量部とした場合に10.0~30.0質量部の前記有機樹脂と、
 前記リン酸金属塩の含有量を100.0質量部とした場合に0~30.0質量部の硬化剤とを含有し、
 前記有機樹脂の含有量をY質量部とし、前記硬化剤の含有量をZ質量部としたときに、式(1)を満たし、
 前記焼付工程では、
 前記母材鋼板の表面での前記表面処理剤の塗布量が0.3g/m未満の場合、焼付温度を200℃以上260℃未満加熱処理時間を15~30秒とし、
 前記表面処理剤の塗布量が0.3g/m以上1.2g/m以下の場合、焼付温度を260℃以上340℃未満加熱処理時間を20~40秒とし、
 前記表面処理剤の塗布量が1.2g/m超の場合、焼付温度を340℃以上380℃未満とし、加熱処理時間を25~50秒とする、
 無方向性電磁鋼板の製造方法。
 0.8×(Y+Z)<0.3×X<2.5×(Y+Z) (1)
 ここで、Xには、前記リン酸金属塩の質量部である100.0が代入される。
 以下、本実施形態の無方向性電磁鋼板について、詳細に説明する。
 [無方向性電磁鋼板の構成]
 図1は、本実施形態の無方向性電磁鋼板の板厚方向の断面図である。図1を参照して、無方向性電磁鋼板1は、母材鋼板10と、絶縁被膜20とを備える。絶縁被膜20は、母材鋼板10の表面に形成されている。図1では、絶縁被膜20は、母材鋼板10の上表面及び下表面にそれぞれ形成されている。しかしながら、絶縁被膜20は、母材鋼板10のいずれか一方の表面のみに形成されていてもよい。以下、母材鋼板10及び絶縁被膜20について説明する。
 [母材鋼板10]
 母材鋼板10は、無方向性電磁鋼板1として用いられる公知の鋼板から適宜選択することができる。つまり、母材鋼板10は、無方向性電磁鋼板1用途の公知の鋼板であれば、特に限定されない。
 母材鋼板10の化学組成は、基本元素を含有し、必要に応じて任意元素を含有し、残部がFe及び不純物からなる。母材鋼板10の化学組成は例えば、次の元素を含有する。以下、特に断りがない限り、「%」は質量%を意味する。
 [基本元素]
 母材鋼板10の化学組成は、基本元素として、Si、Al及びMnを含有する。以下、これらの元素について説明する。
 Si:2.5~4.5%
 珪素(Si)は、鋼の電気抵抗を高め、渦電流損を低減する。その結果、鋼板の鉄損が低下する。Siはさらに、鋼の強度を高める。Si含有量が2.5%未満であれば、上記効果が十分に得られない。一方、Si含有量が4.5%を超えれば、鋼の加工性が低下する。したがって、Si含有量は2.5~4.5%である。Si含有量の好ましい下限は2.6%であり、さらに好ましくは2.7%である。Si含有量の好ましい上限は4.3%であり、さらに好ましくは4.2%である。
 Al:0.1~1.5%
 アルミニウム(Al)は、鋼の電気抵抗を高め、渦電流損を低減する。その結果、鋼板の鉄損が低下する。Al含有量が0.1%未満であれば、上記効果が十分に得られない。一方、Al含有量が1.5%を超えれば、飽和磁束密度が低下する。したがって、Al含有量は0.1~1.5%である。Al含有量の好ましい下限は0.15%であり、さらに好ましくは0.2%である。Al含有量の好ましい上限は1.4%であり、さらに好ましくは1.3%である。
 Mn:0.2~4.0%
 マンガン(Mn)は、鋼の電気抵抗を高め、渦電流損を低減する。その結果、鋼板の鉄損が低下する。Mnはさらに、磁気特性に対して好ましくない{111}<112>集合組織の生成を抑制する。Mn含有量が0.2%未満であれば、上記効果が十分に得られない。一方、Mn含有量が4.0%を超えれば、集合組織が変化して、ヒステリシス損が劣化する。したがって、Mn含有量は0.2~4.0%である。Mn含有量の好ましい下限は0.3%であり、さらに好ましくは、0.4%である。Mn含有量の好ましい上限は3.8%であり、さらに好ましくは3.6%である。
 本実施形態では、母材鋼板10の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、母材鋼板10を工業的に生産するときに、原料として鉱石やスクラップから、又は、製造環境等から混入する元素を意味する。不純物はたとえば、C、P、S、N等の元素である。
 母材鋼板10の化学組成は、周知の化学分析法により測定できる。たとえば、母材鋼板10の化学組成は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。
 [絶縁被膜20]
 絶縁被膜20は、上述のとおり、母材鋼板10の表面に形成されている。無方向性電磁鋼板1は、コアブランクに加工された後、積層されてモータコアを形成する。絶縁被膜20は、積層後の鋼板間(コアブランク間)の渦電流を低減する。その結果、モータコアの渦電流損を低減できる。
 図2は、図1中の絶縁被膜20の拡大した断面図である。図2を参照して、絶縁被膜20は、リン酸金属塩201と有機樹脂202とを含有する。なお、絶縁被膜20はクロム酸化物を含有しない。以下、リン酸金属塩201及び有機樹脂202について説明する。
 [リン酸金属塩201]
 リン酸金属塩201は、絶縁被膜20のバインダーとして機能する。リン酸金属塩201は、リン酸及び金属イオンを含有する水溶液(リン酸金属塩溶液)を乾燥させて得られる固形分である。リン酸の種類は特に限定されず、公知のリン酸を使用できる。好ましいリン酸はオルトリン酸、メタリン酸、及び、ポリリン酸等からなる群から選択される1種以上である。
 金属イオンは、絶縁被膜20の耐蝕性及び密着性に作用する。金属イオンの種類は特に限定されない。金属イオンはたとえば、Li、Al、Zn、Mg、Ca、Sr、Ti、Co、Mn及びNiからなる群から選択される1種以上である。
 好ましくは、リン酸金属塩は、リン酸Al、及び、リン酸Znからなる群から選択される1種以上を含有する。より好ましくは、リン酸金属塩は、リン酸Alと、リン酸Znとを含有する。リン酸Alは母材鋼板10に対する絶縁被膜20の密着性を有効に高め、さらに、絶縁被膜20の耐熱性を高める。リン酸Znは絶縁被膜20の耐蝕性を有効に高める。リン酸金属塩はさらに、Al及びZnに加えて、Al及びZn以外の上述の他の金属元素をさらに含有してもよい。
 [有機樹脂202]
 図2を参照して、有機樹脂202は、バインダーとして機能するリン酸金属塩201中に分散して含有される。有機樹脂202は、リン酸金属塩201が粗大に成長するのを抑制し、リン酸金属塩201の多結晶化を促進する。有機樹脂202により、緻密な絶縁被膜20が形成される。
 有機樹脂202は、特に限定されず、公知の有機樹脂を用いることができる。好ましい有機樹脂202は、アクリル樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、ポリプロピレン樹脂、及び、ポリエチレン樹脂からなる群から選択される1種以上からなる。
 好ましくは、有機樹脂202は、エポキシ樹脂である。エポキシ樹脂は、絶縁性及び耐蝕性に優れる。エポキシ樹脂の種類は特に限定されない。エポキシ樹脂はたとえば、ビスフェノールA、F、B型、脂環型、グリシジルエーテル型、グリシジルエステル型、ビフェニル型、ナフタレン型、フェノールノボラック型、オルソクレゾールノボラック型、テトラフェニロールエタン型、トリスヒドロキシンフェニルメタン型からなる群から選択される1種以上である。
 より具体的には、エポキシ樹脂はたとえば、ビスフェノールA-ジグリシジルエーテル、ビスフェノールA-ジグリシジルエーテルのカプロラクトン開環付加物、ビスフェノールF-ジグリシジルエーテル、ビスフェノールS-ジグリシジルエーテル、ノボラックグリシジルエーテル、ダイマー酸グリシジルエーテル、グリシジルエーテルの誘導体、ヘキサヒドロフタル酸ポリグリシジルエステル、ダイマー酸グリジスルエステル、グルシジルエステルの誘導体、からなる群から選択される1種以上である。
 有機樹脂202がフッ素樹脂を含有すると、接触角が上昇し85°超となる場合がある。また、表面処理剤にフッ素樹脂を含有した場合、表面にフッ素樹脂が被膜を作り、焼付条件によっては、水分量が0.03wt%超となる場合がある。そのため、絶縁被膜20中のフッ素樹脂の含有量は、リン酸金属塩100.0質量部とした場合に、0.5質量部以下に制限することが好ましい。フッ素樹脂は含有しなくてもよいのでフッ素樹脂の含有量は0質量部であってもよい。
 [絶縁被膜20中のリン酸金属塩201及び有機樹脂202の測定方法]
 絶縁被膜20中のリン酸金属塩201及び有機樹脂202は次の方法で測定できる。絶縁被膜20が形成された無方向性電磁鋼板1を加熱したときのガス発生挙動を、熱分解-ガスクロマトグラフ/質量分析(Pyrolysis-Gas Chromatograph/Mass Spectrometry、Py-GC/MS)法(以下、GC/MS法という)を用いて分析することにより、有機樹脂202の有無、及び、有機樹脂202の種類を特定する。上述のGC/MS法とフーリエ変換赤外分光法(FT―IR)を併用して、有機樹脂を特定してもよい。
 さらに、絶縁被膜20に対してエネルギー分散型X線分光分析(EDS)又はICP-AESによる化学分析を実施し、P、及び、金属元素(Zn、Al等)が検出されれば、絶縁被膜20中にリン酸金属塩が含まれると判断する。
 [絶縁被膜20での水の接触角について]
 本実施形態の無方向性電磁鋼板1ではさらに、絶縁被膜20での水の接触角が55~85°である。ここで、絶縁被膜20での水の接触角は、JIS R3257:1999に準拠した静滴法により測定する。
 接触角が55°未満である場合、結露しやすくなる。そのため、無方向性電磁鋼板1の耐蝕性が低下し、さらに、ワニス濡れ性も低下する。一方、接触角が85°を超えれば、結露が抑制されて無方向性電磁鋼板1の耐蝕性が向上するものの、ワニス濡れ性が低下する。
 絶縁被膜20での水の接触角が55~85°であれば、結露の発生を抑制して耐蝕性を高めつつ、ワニス濡れ性も高めることができる。絶縁被膜20での水の接触角の好ましい下限は58°であり、さらに好ましくは60°であり、さらに好ましくは62°であり、さらに好ましくは65°である。絶縁被膜20での水の接触角の好ましい上限は82°であり、さらに好ましくは80°であり、さらに好ましくは78°であり、さらに好ましくは75°である。
 [絶縁被膜20の水分量について]
 本実施形態の無方向性電磁鋼板1では、絶縁被膜20の水分量が0.003wt%~0.03wt%である。絶縁被膜20中の水分量測定については、熱天秤法で測定することかが可能である。具体的には、絶縁被膜のみをカッターナイフなどで削ぎ落とし、市販の熱分析計を用いて100℃までの重量減少代を計測し、絶縁被膜の水分量として算出することが可能である。
 絶縁被膜20の水分量が0.003wt%~0.03wt%であれば、耐蝕性とワニス濡れ性の両立が可能である。水分量が0.003wt%未満の場合、無方向性電磁鋼板1のワニス濡れ性が劣化する。これは絶縁被膜20の表面に存在する微細な凹凸に空気が存在することでワニスの濡れ性、特に水性のワニスの場合の濡れ性が顕著に劣化するためである。一方、絶縁被膜20の水分量が0.03wt%超になると、無方向性電磁鋼板1の耐蝕性が劣化する。これは、絶縁被膜20中の水分によって、母材鋼板10の腐蝕が進行するためである。
 [絶縁被膜20の好ましい膜厚]
 絶縁被膜20の膜厚は特に限定されない。絶縁被膜20の好ましい膜厚は、0.05~1.60μmである。膜厚が0.05~1.60μmであれば、絶縁被膜20はさらに優れた絶縁性を示す。しかしながら、絶縁被膜20の膜厚は0.05~1.60μm以外であっても、優れた耐蝕性と優れたワニス濡れ性との両立は可能である。
 以上のとおり、本実施形態の無方向性電磁鋼板1は、母材鋼板10と、絶縁被膜20を備える。絶縁被膜20は、リン酸金属塩201と、有機樹脂202とを含有し、絶縁被膜20での水の接触角が55~85°であり、絶縁被膜20の水分量が0.003wt%~0.03wt%である。そのため、優れた耐蝕性と優れたワニス濡れ性とを両立することができる。
 [製造方法]
 本実施形態の無方向性電磁鋼板1の製造方法の一例を説明する。以降に説明する製造方法は、無方向性電磁鋼板1を製造するための一例である。したがって、無方向性電磁鋼板1は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、無方向性電磁鋼板1の製造方法の好適な一例である。
 本実施形態の無方向性電磁鋼板1の製造方法の一例は、絶縁被膜20を形成するための塗布液である表面処理剤を準備し、母材鋼板10の表面に塗布する工程(塗布工程)と、表面処理剤が塗布された母材鋼板10を加熱して、絶縁被膜20を形成する工程(焼付工程)とを含む。以下、各工程について説明する。
 [塗布工程]
 塗布工程では、母材鋼板10の表面に表面処理剤を塗布する。塗布方法は特に限定されない。公知の塗布方法を適用できる。塗布方法はたとえば、ロールコータ方式、スプレー方式、ディップ方式等である。
 [表面処理剤について]
 表面処理剤は、リン酸金属塩と、有機樹脂とを含有する。表面処理剤におけるリン酸金属塩及び有機樹脂は、上述したリン酸金属塩及び有機樹脂を用いる。なお、表面処理剤中にフッ素樹脂を含有する場合、後述する焼付条件を満足しても、水分量を満足しない場合がある。そのため、表面処理剤中のフッ素樹脂の含有量は、リン酸金属塩100.0質量部とした場合に、0.5質量部以下に制限することが好ましい。フッ素樹脂は含有しなくてもよいのでフッ素樹脂の含有量は0質量部であってもよい。
 リン酸金属塩溶液を調製する際には、オルトリン酸等の各種のリン酸に対し、金属イオンの酸化物、炭酸塩、及び、水酸化物の少なくとも何れかを混合することが好ましい。表面処理剤の溶媒は、水であることが好ましい。
 表面処理剤中の固形分濃度は、5質量%~40質量%である。固形分が5質量%~40質量%であり、後述の加熱条件を満足することで、絶縁被膜の水分量が0.003~0.03wt%で接触角が55~85°の範囲とすることができる。より好ましい固形分濃度は、8質量%~30質量%である。さらに好ましい固形分濃度は、10質量%~25質量%である。
 表面処理剤はさらに、硬化剤を含有してもよい。表面処理剤がリン酸金属塩及び有機樹脂を含有すれば、後述の焼付処理により硬化反応が進む。したがって、硬化剤は必須ではない。しかしながら、硬化反応をさらに促進するために、表面処理剤に硬化剤を含有してもよい。
 [表面処理剤中の有機樹脂の含有量について]
 表面処理剤中の有機樹脂の含有量は、リン酸金属塩100.0質量部に対して、10.0~30.0質量部とする。有機樹脂の含有量が10.0質量部未満である場合、リン酸金属塩の粗大化を十分に抑制できない。この場合、絶縁被膜20の母材鋼板10に対する密着性が低下する。一方、有機樹脂の含有量が30.0質量部を超える場合、絶縁被膜中の有機樹脂が過剰に含有される。この場合、絶縁被膜20の母材鋼板10に対する密着性が低下する。さらに、ワニス濡れ性が低下する。したがって、表面処理剤中の有機樹脂の含有量は、リン酸金属塩100質量部に対して、10.0~30.0質量部とする。
 有機樹脂の含有量の好ましい下限は、リン酸金属塩100.0質量部に対して、好ましくは12.0質量部であり、さらに好ましくは13.0質量部である。有機樹脂の含有量の好ましい上限は、リン酸金属塩100.0質量部に対して、28.0質量部であり、さらに好ましくは26.0質量部であり、さらに好ましくは25.0質量部であり、さらに好ましくは24.0質量部である。
 [硬化剤について]
 硬化剤は、有機樹脂の硬化を促進する。硬化剤は例えば、ポリアミン系硬化剤、酸無水物系硬化剤、メチロール基含有初期縮合物、からなる群から選択される1種以上を使用できる。
 ポリアミン系硬化剤は例えば、脂肪族ポリアミン、脂環族ポリアミン、芳香族ポリアミン、ポリアミドポリアミン、及び、変性ポリアミンからなる群から選択される1種以上である。
 酸無水物系硬化剤は例えば、1官能性酸無水物(無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸、無水クロレンディック酸等)、2官能性酸無水物(無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメート)、メチルシクロヘキセンテトラカルボン酸無水物等)、及び、遊離酸酸無水物(無水トリメリット酸、ポリアゼライン酸無水物等)からなる群から選択される1種以上である。
 メチロール基含有初期縮合物は例えば、ノボラック型又はレゾール型フェノール樹脂、ユリア樹脂、及び、メラミン樹脂からなる群から選択される1種以上である。
 表面処理剤中の硬化剤の含有量は、リン酸金属塩100.0質量部に対して、0~30.0質量部である。硬化剤を表面処理剤に含有する場合、硬化剤は有機樹脂の硬化を促進する。しかしながら、硬化剤の含有量が30.0質量部を超える場合、絶縁被膜20の母材鋼板10に対する密着性が低下する。さらに、接触角が85°を超え、ワニス濡れ性が低下する。したがって、表面処理剤中の硬化剤の含有量は、リン酸金属塩100.0質量部に対して、0.5~30.0質量部とする。
 硬化剤の含有量の好ましい下限は、リン酸金属塩100.0質量部に対して0.5質量部であり、さらに好ましくは1.0質量部であり、さらに好ましくは2.0質量部である。硬化剤の含有量の上限は、リン酸金属塩100.0質量部に対して28.0質量部であり、さらに好ましくは26.0質量部であり、さらに好ましくは24.0質量部である。
 [表面処理剤中のリン酸金属塩、有機樹脂、硬化剤の配合割合について]
 表面処理剤はさらに、リン酸金属塩の含有量を100質量部とした場合の有機樹脂の含有量をY(質量部)、リン酸金属塩の含有量を100質量部とした場合の硬化剤の含有量をZ(質量部)と定義したとき、次の式(1)を満たす。
 0.8×(Y+Z)<0.3×X<2.5×(Y+Z) (1)
 ここで、Xには、リン酸金属塩の質量部である100.0が代入される。
 F0=0.8×(Y+Z)、F1=0.3×X、F2=2.5×(Y+Z)と定義する。有機樹脂及び硬化剤はともに、絶縁被膜20の接触角を高くする作用を有する。一方、リン酸金属塩は、絶縁被膜20の接触角を低くする作用を有する。F0≧F1である場合、有機樹脂及び硬化剤に対して、リン酸金属塩が少なすぎる。この場合、形成される絶縁被膜の接触角が高くなりすぎ、85°を超える。一方、F1≧F2である場合、有機樹脂及び硬化剤に対して、リン酸金属塩が多すぎる。この場合、形成される絶縁被膜の接触角が低くなりすぎ、55°未満になる。
 F0<F1<F2であれば、有機樹脂及び硬化剤に対するリン酸金属塩の割合が適切である。したがってこの場合、後述の製造条件を満たすことを前提として、絶縁被膜の水分量が0.003~0.03wt%で接触角が55~85°の範囲となる。
 [焼付工程]
 焼付工程では、表面処理剤が塗布された母材鋼板10を加熱して、絶縁被膜20を形成する。焼付工程では、表面処理剤の塗布量に応じて、焼付温度を次のとおり調整する。
 (1)表面処理剤の塗布量が0.3g/m未満の場合、焼付温度を200℃以上260℃未満とする。
 (2)表面処理剤の塗布量が0.3g/m以上1.2g/m以下の場合、焼付温度を260℃以上340℃未満とする。
 (3)表面処理剤の塗布量が1.2g/m超の場合、焼付温度を340℃以上380℃未満とする。
 各条件(1)~(3)において、焼付温度未満で加熱した場合、絶縁被膜20にべたつきが生じる。この場合、絶縁被膜20の耐蝕性が低下する。さらに、絶縁被膜の接触角が55°未満となる。そのため、ワニス濡れ性が低下する。
 一方、各条件(1)~(3)において、焼付温度を超えて加熱した場合、絶縁被膜20中の有機樹脂の酸化分解が進行し、有機樹脂本来の特性が失われる。この場合、絶縁被膜の母材鋼板に対する密着性が低下する。さらに、絶縁被膜20の接触角が85°を超える。そのため、ワニス濡れ性が低下する。
 なお、焼付温度での加熱時間は、塗布量が0.3g/m未満の場合、焼付温度を200℃以上260℃未満とし、加熱処理時間を15~30秒とする。前記表面処理剤の塗布量が0.3g/m以上1.2g/m以下の場合、焼付温度を260℃以上340℃未満とし、加熱処理時間を20~40秒とする。前記表面処理剤の塗布量が1.2g/m超の場合、焼付温度を340℃以上380℃未満とし、加熱処理時間を25~50秒とする。
 以上の製造工程により、絶縁被膜20での水分量が0.003~0.03wt%で水の接触角が55~85°の無方向性電磁鋼板1が製造される。
 実施例により本実施形態の無方向性電磁鋼板の効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の無方向性電磁鋼板の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の無方向性電磁鋼板はこの一条件例に限定されない。
 質量%で、Si:3.4%、Al:0.6%、Mn:0.2%を含有し、残部がFe及び不純物であり、板厚が0.25mmの母材鋼板(無方向性電磁鋼板)を準備した。準備した母材鋼板に対して、塗布工程を実施した。具体的には、母材鋼板の表面に、表1に示す組成の表面処理剤をゴムロール方式の塗布装置で塗布した。なお、表面処理剤中の固形分濃度は、5質量%~40質量%とし、溶媒は水を用いた。
Figure JPOXMLDOC01-appb-T000001
 表1中の「リン酸金属塩(配合量X=100.0質量部)」欄には、表面処理剤に含有されるリン酸金属塩の種類、及び、リン酸金属塩中の質量比を示す。例えば、試験番号1では、リン酸金属塩はリン酸Alからなる。試験番号3では、リン酸金属塩はリン酸Alとリン酸Mgとが質量比で5:5の割合で含有されている。試験番号4では、リン酸金属塩はリン酸Alとリン酸Cuとが質量比で8:2の割合で含有されている。
 表1中の「有機樹脂」欄の「種類」のA~Eは次のとおりである。
 A:エポキシ当量が980のビスフェノールA型エポキシ樹脂をブチルセロソルブに溶解し、90℃でN-メチルエタノールアミンと反応させて形成された、エポキシ樹脂アミン付加物
 B:エポキシ当量が200のビスフェノールA型エポキシ樹脂をポリオキシエチレンベンジル化フェニルエーテルを用いて変性してエマルジョン化した、エポキシ樹脂エマルジョン
 C:エポキシ当量5000のビスフェノールA型エポキシ樹脂にメタクリル酸、アクリル酸エチルを反応させて形成された、アクリル変性エポキシ樹脂エマルジョン
 D:ポリテトラフルオロエチレン
 E:クロロトリフルオロエチレン・ヒドロキシドデシルビニルエーテル共重合体
 表1中の「有機樹脂」欄の「配合量Y(質量部)」には、リン酸金属塩の含有量を100.0質量部とした場合の有機樹脂の含有量(質量部)を示す。なお、試験番号14では、リン酸金属塩を含有しなかったため、有機樹脂の含有量を100.0質量部とした。
 表1中の「硬化剤」欄の「種類」a~cは次のとおりである。
 a:水中に溶解し分散したポリアミド樹脂
 b:ジオキサンとメチルエチルケトンオキシムと2,4-トリレンジイソシアネートとを反応させて一部をブロック化したジイソシアネートとした反応混合物を、エポキシ樹脂アミン付加物に60℃で付加して形成した、エポキシ樹脂―アミン付加硬化剤
 c:トリメチロールベンゾグアナミン
 表1中の「硬化剤」欄の「配合量Z(質量部)」には、リン酸金属塩の含有量を100.0質量部とした場合の硬化剤の含有量(質量部)を示す。なお、試験番号14では、有機樹脂の含有量を100.0質量部とした場合の硬化剤の含有量(質量部)を示す。
 なお、表1中にはF0値、F1値及びF2値も示す。表1中の「F0<F1」、及び、「F1<F2」欄の「YES」は、対応する欄の不等式が成立していることを意味し、「NO」は対応する欄の不等式が成立していないことを意味する。
 各試験番号の表面処理剤の塗布量は表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000002
 表面処理剤が塗布された母材鋼板に対して、焼付処理を実施した。各試験番号の焼付温度は表2に示すとおりであった。なお、焼付時間はいずれも60秒であった。以上の工程により、母材鋼板の表面に絶縁被膜が形成された無方向性電磁鋼板を製造した。
 [評価試験]
 製造された無方向性電磁鋼板に対して、水分量測定試験、接触角測定試験、絶縁性評価試験、密着性評価試験、耐蝕性評価試験、耐溶出性評価試験、及び、ワニス濡れ性評価試験を実施した。
 [水分量測定試験]
 各試験番号の無方向性電磁鋼板の絶縁被膜をカッターナイフで10mg削り取り、ブルカ・エイエックスエス社製TG/DTA2000SAを用い、昇温速度10℃/分、加熱雰囲気:Air 300ml/分で実施し、室温(25℃)から100℃の重量減少代を測定して、被膜塗布量で除して水分量とした。得られた水分量を表2に示す。
 [接触角測定試験]
 JIS R3257:1999に準拠して、静滴法により、各試験番号の無方向性電磁鋼板の絶縁被膜の接触角(°)を測定した。得られた接触角(°)を表2に示す。
 [絶縁性評価試験]
 各試験番号の無方向性電磁鋼板に対して、次の方法により、絶縁性を評価した。JIS C2550-4:2019に準拠して、各試験番号の無方向性電磁鋼板の層間抵抗を測定した。得られた層間抵抗値に基づいて、絶縁性を次のとおりに評価した。
 4(◎):層間抵抗が30Ω・cm/枚以上
 3(○):層間抵抗が10Ω・cm/枚以上30Ω・cm/枚未満
 2(△):層間抵抗が3Ω・cm/枚以上10Ω・cm/枚未満
 1(×):層間抵抗が3Ω・cm/枚未満
 得られた絶縁性評価を表2の「絶縁性」欄に示す。評価4及び評価3を合格(絶縁性に優れる)とした。
 [密着性評価試験]
 各試験番号の無方向性電磁鋼板に対して、次の方法により、密着性を評価した。各試験番号の無方向性電磁鋼板から、幅30mm、長さ300mmの鋼板サンプルを採取した。鋼板サンプルに対して歪取り焼鈍を実施した。歪取り焼鈍では、窒素気流中で、焼鈍温度を800℃とし、焼鈍時間を2時間とした。歪取り焼鈍後の鋼板サンプルの絶縁被膜上に粘着テープを貼付した。粘着テープを貼付した鋼板サンプルを、直径10mmの金属棒に巻き付けた。その後、金属棒から鋼板サンプルを離した。つまり、鋼板サンプルに直径10mmの曲げを付与した。その後、鋼板サンプルから粘着テープを引き剥がし、母材鋼板から剥がれずに残存した絶縁被膜の割合(面積率)を測定した。得られた面積率に基づいて、密着性を次のとおり評価した。
 4(◎):残存した絶縁被膜の面積率が100%であった。つまり、絶縁被膜が剥がれなかった
 3(○):残存した絶縁被膜の面積率が90%以上100%未満であった
 2(△):残存した絶縁被膜の面積率が70%以上90%未満であった
 1(×):残存した絶縁被膜の面積率が70%未満であった
 得られた密着性評価を表2の「密着性」欄に示す。評価4及び評価3を合格(密着性に優れる)とした。
 [耐蝕性評価試験]
 各試験番号の無方向性電磁鋼板に対して、次の方法により、耐蝕性を評価した。各試験番号の無方向性電磁鋼板から、幅30mm、長さ300mmの鋼板サンプルを採取した。JIS Z2371:2015に記載の塩水噴霧試験に準拠して、35℃の雰囲気中で5%NaCl水溶液を7時間、鋼板サンプルに自然降下させた。その後、鋼板サンプルの表面のうち、錆が発生した領域の面積率(以下、発錆面積率という)を求めた。求めた発錆面積率に応じて、次の10点評価により、耐蝕性を評価した。
 10:発錆面積率が0%
  9:発錆面積率が0.10%以下
  8:発錆面積率が0.10%超0.25%以下
  7:発錆面積率が0.25%超0.50%以下
  6:発錆面積率が0.50%超1.00%以下
  5:発錆面積率が1.00%超2.50%以下
  4:発錆面積率が2.50%超5.00%以下
  3:発錆面積率が5.00%超10.00%以下
  2:発錆面積率が10.00%超25.00%以下
  1:発錆面積率が25.00%超50.00%以下
 得られた耐蝕性を表2の「耐蝕性」欄に示す。評点が5点以上を合格(耐蝕性に優れる)とした。
 [耐溶出性評価試験]
 各試験番号の無方向性電磁鋼板に対して、次の方法により、耐溶出性を評価した。各試験番号の無方向性電磁鋼板から、幅30mm、長さ300mmの鋼板サンプルを採取した。採取した鋼板サンプルを5分割し、沸騰させた純水中で鋼板サンプルを10分間煮沸した。煮沸後の水溶液中に溶出したリン酸の量を測定した。具体的には、煮沸後の水溶液を冷却した後、水溶液を純水で希釈して、ICP-AESにより、水溶液中のリン酸濃度を測定した。希釈率から、リン酸の溶出量(mg/m)を求めた。結果を表2の「耐溶出性」欄に示す。リン酸の溶出量が140mg/m未満であれば、合格(耐溶出性に優れる)とした。
 [ワニス濡れ性評価試験]
 各試験番号の無方向性電磁鋼板に対して、次の方法により、ワニス濡れ性を評価した。各試験番号の無方向性電磁鋼板から、幅25.6mm、長さ100mmの鋼板サンプルを2枚採取した。一方の鋼板サンプルの長手方向中央部に、幅25.6mm、長さ20mmの範囲(以下、ラップ領域という)で、不飽和ポリエステル系電線用ワニスを0.4ml滴下する。滴下後、他方の鋼板サンプルをラップ領域に重ね合わせる。重ね合わせた鋼板サンプルを10MPaの加圧力で加圧しながら、150℃で加熱して1時間保持する。保持後、重ね合わせた鋼板サンプルの剪断接着強度(MPa)を、JIS K6850:1999に準拠して測定する。得られた剪断接着強度(MPa)に応じて、次のとおり評価した。
 4(◎):剪断接着強度が8MPa超である
 3(○):剪断接着強度が2超~8MPaである
 2(△):剪断接着強度が1超~2MPである
 1(×):剪断接着強度が1MPa未満である
 得られたワニス濡れ評価を表2の「ワニス濡れ性」欄に示す。評価4及び評価3を合格とした。
 [評価結果]
 評価結果を表2に示す。表2を参照して、試験番号1~8、23の無方向性電磁鋼板の絶縁被膜はリン酸金属塩及び有機樹脂を含んでいた。さらに、表面処理剤は、F0<F1<F2を満たした。そのため、絶縁被膜での水の接触角が55~85°であった。その結果、絶縁性、密着性に優れ、さらに、優れた耐蝕性と優れたワニス濡れ性とを両立可能であった。
 一方、試験番号9では、絶縁被膜がA~Cのいずれの有機樹脂を含有しなかった。そのため、絶縁性に優れるものの、密着性が低かった。さらに、F1がF2以上となり、接触角が55°未満であった。そのため、耐蝕性が低く、ワニス濡れ性も低かった。
 試験番号10では、F1がF2以上であった。そのため、絶縁性に優れるものの、密着性が低かった。さらに、F1がF2以上であるため、接触角が55°未満であった。そのため、耐蝕性が低く、ワニス濡れ性も低かった。
 試験番号11では、F1がF2以上であるため、接触角が55°未満であった。そのため、耐蝕性が低く、ワニス濡れ性も低かった。
 試験番号12では表面処理剤中のリン酸金属塩に対する硬化剤含有量が多すぎた。そのため、絶縁性に優れるものの、密着性が低かった。さらに、接触角が85°を超えた。そのため、ワニス濡れ性が低かった。
 試験番号13ではF0がF1以上となった。そのため、絶縁性に優れるものの、密着性が低かった。さらに、F0がF1以上であったため、接触角が85°を超えた。そのため、ワニス濡れ性が低かった。
 試験番号14では絶縁被膜がリン酸金属塩を含有せず、有機樹脂のみで構成された。そのため、絶縁性に優れるものの、密着性が低かった。さらに、F0がF1以上であったため、接触角が85°を超えた。そのため、ワニス濡れ性も低かった。
 試験番号15では、表面処理剤の付着量が0.2g/mであり、焼付温度が焼付工程の条件(1)を満たさず、260℃以上であった。そのため、有機樹脂の酸化分解が過剰に発生した。その結果、絶縁性が低く、密着性及び耐蝕性も低かった。さらに、接触角が85°を超えた。そのため、ワニス濡れ性が低かった。
 試験番号16では、表面処理剤の付着量が0.6g/mであり、焼付温度が焼付工程の条件(2)の下限(260℃)未満であった。そのため、絶縁被膜にべたつきが生じ、接触角が55°未満になった。そのため、絶縁性及び密着性に優れるものの、耐蝕性、耐溶出性、及びワニス濡れ性が低かった。
 試験番号17では、表面処理剤の付着量が1.1g/mであり、焼付温度が焼付工程の条件(2)の上限(340℃)を超えた。そのため、有機樹脂の酸化分解が過剰に進行した。その結果、付着量が多かったために絶縁性及び耐蝕性に優れたものの、密着性が低かった。さらに、接触角が85°を超えた。そのため、ワニス濡れ性が低かった。
 試験番号18では、表面処理剤の付着量が1.6g/mであり、焼付温度が焼付工程の条件(3)の下限(340℃)未満であった。そのため、絶縁被膜にべたつきが生じ、接触角が55°未満になった。そのため、絶縁性、密着性に優れるものの、耐蝕性、耐溶出性及びワニス濡れ性が低かった。
 試験番号19では、表面処理剤の付着量が1.6g/mであり、焼付温度が焼付工程の条件(3)の上限(380℃)を超えた。そのため、有機樹脂の酸化分解が過剰に進行した。その結果、付着量が多かったために絶縁性及び耐蝕性に優れたものの、密着性が低かった。さらに、接触角が85°を超えた。そのため、ワニス濡れ性が低かった。
 試験番号20では、表面処理剤の付着量が0.2g/mであり、焼付温度が焼付工程の条件(1)の下限(200℃)未満であった。そのため、絶縁被膜にべたつきが生じ、接触角が55°未満になった。そのため、絶縁性が低く、耐蝕性、及び、ワニス濡れ性が低かった。
 試験番号21では、フッ素樹脂を5質量部添加し、表面処理剤の付着量が1.3g/mであり、焼付温度が焼付工程の条件(3)の下限(340℃)未満であった。そのため、接触角が85°超になった。そのため、ワニス濡れ性が低かった。
 試験番号22では、フッ素樹脂を2質量部添加していたため、絶縁被膜の水分量が0.03wt%超になった。そのため、絶縁性、密着性、ワニス濡れ性が低かった。
 試験番号24では、表面処理剤の付着量が1.1g/mであり、加熱処理時間が40秒超であった。そのため、絶縁被膜の水分量が0.03wt%超になった。そのため、絶縁性および密着性が低かった。
 試験番号25では、表面処理剤の付着量が0.4g/mであり、加熱処理時間が20秒未満であった。そのため、絶縁被膜の水分量が0.003wt%未満になった。そのため、絶縁性、密着性およびワニス濡れ性が低かった。
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 1   無方向性電磁鋼板
 10  母材鋼板
 20  絶縁被膜
 201 リン酸金属塩
 202 有機樹脂

Claims (4)

  1.  母材鋼板と、
     前記母材鋼板の表面に形成されている絶縁被膜とを備え、
     前記絶縁被膜は、
     リン酸金属塩と、
     有機樹脂とを含有し、
     前記絶縁被膜の水分量が0.003~0.03wt%であり、
    前記絶縁被膜での水の接触角が55~85°である、
     無方向性電磁鋼板。
  2.  請求項1に記載の無方向性電磁鋼板であって、
     前記リン酸金属塩は、
     リン酸Al、及び、リン酸Znからなる群から選択される1種以上を含有し、
     前記有機樹脂は、
     エポキシ樹脂を主成分とする、
     無方向性電磁鋼板。
  3.  請求項1又は請求項2に記載の無方向性電磁鋼板であって、
     前記母材鋼板は、質量%で、
     Si:2.5~4.5%、
     Al:0.1~1.5%、
     Mn:0.2~4.0%を含有する、
     無方向性電磁鋼板。
  4.  請求項1~請求項3のいずれか1項に記載の無方向性電磁鋼板の製造方法であって、
     表面処理剤を前記母材鋼板の表面に塗布する塗布工程と、
     前記表面処理剤が塗布された前記母材鋼板を加熱して、前記絶縁被膜を形成する焼付工程とを備え、
     前記表面処理剤は、
     前記リン酸金属塩と、
     前記リン酸金属塩の含有量を100.0質量部とした場合に10.0~30.0質量部の前記有機樹脂と、
     前記リン酸金属塩の含有量を100.0質量部とした場合に0~30.0質量部の硬化剤とを含有し、
     前記有機樹脂の含有量をY質量部とし、前記硬化剤の含有量をZ質量部としたときに、式(1)を満たし、
     前記焼付工程では、
     前記母材鋼板の表面での前記表面処理剤の塗布量が0.3g/m未満の場合、焼付温度を200℃以上260℃未満で加熱処理時間を15~30秒とし、
     前記表面処理剤の塗布量が0.3g/m以上1.2g/m以下の場合、焼付温度を260℃以上340℃未満で加熱処理時間を20~40秒とし、
     前記表面処理剤の塗布量が1.2g/m超の場合、焼付温度を340℃以上380℃未満とし、加熱処理時間を25~50秒とする、
     無方向性電磁鋼板の製造方法。
     0.8×(Y+Z)<0.3×X<2.5×(Y+Z) (1)
     ここで、Xには、前記リン酸金属塩の質量部である100が代入される。
PCT/JP2022/016264 2021-03-31 2022-03-30 無方向性電磁鋼板、及び、その製造方法 WO2022210962A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202280015314.1A CN116888301A (zh) 2021-03-31 2022-03-30 无取向性电磁钢板及其制造方法
US18/277,548 US12084750B2 (en) 2021-03-31 2022-03-30 Non-oriented electrical steel sheet and method for manufacturing same
BR112023016300A BR112023016300A2 (pt) 2021-03-31 2022-03-30 Chapa de aço elétrico não orientada, e, método para fabricar a chapa de aço elétrico não orientada
JP2022548591A JP7226663B1 (ja) 2021-03-31 2022-03-30 無方向性電磁鋼板、及び、その製造方法
EP22781172.6A EP4317486A1 (en) 2021-03-31 2022-03-30 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR1020237027216A KR102650460B1 (ko) 2021-03-31 2022-03-30 무방향성 전자 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060409 2021-03-31
JP2021-060409 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210962A1 true WO2022210962A1 (ja) 2022-10-06

Family

ID=83459602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016264 WO2022210962A1 (ja) 2021-03-31 2022-03-30 無方向性電磁鋼板、及び、その製造方法

Country Status (8)

Country Link
US (1) US12084750B2 (ja)
EP (1) EP4317486A1 (ja)
JP (1) JP7226663B1 (ja)
KR (1) KR102650460B1 (ja)
CN (1) CN116888301A (ja)
BR (1) BR112023016300A2 (ja)
TW (1) TWI830188B (ja)
WO (1) WO2022210962A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238581A (ja) * 1988-07-28 1990-02-07 Kobe Steel Ltd 塗装性に優れた絶縁皮膜付電磁鋼板の製法
JPH0516849B2 (ja) 1989-01-25 1993-03-05 Takara Belmont
JP2002249881A (ja) * 2001-02-23 2002-09-06 Sumitomo Metal Ind Ltd 絶縁皮膜付き電磁鋼板およびその製造方法。
JP2008303411A (ja) * 2007-06-05 2008-12-18 Sumitomo Metal Ind Ltd 電磁鋼板の絶縁皮膜形成用処理液
JP2009155707A (ja) * 2007-12-27 2009-07-16 Sumitomo Metal Ind Ltd 電磁鋼板の絶縁皮膜形成用処理液
JP2011252191A (ja) 2010-06-01 2011-12-15 Nippon Steel Corp 電磁鋼板およびその製造方法
WO2012057168A1 (ja) * 2010-10-29 2012-05-03 新日本製鐵株式会社 電磁鋼板及びその製造方法
WO2021054450A1 (ja) * 2019-09-20 2021-03-25 日本製鉄株式会社 無方向性電磁鋼板および無方向性電磁鋼板用表面処理剤
JP2021060409A (ja) 2020-12-14 2021-04-15 アマノ株式会社 ゲート装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081230B2 (ja) * 2000-11-22 2008-04-23 新日本製鐵株式会社 モールドコアに適し磁気特性に優れた電磁鋼板
JP4460312B2 (ja) * 2003-04-10 2010-05-12 新日本製鐵株式会社 被膜性能の優れる無方向性電磁鋼板と絶縁被膜処理剤および絶縁被膜処理方法
EP3263741A4 (en) * 2015-02-26 2018-10-31 Nippon Steel & Sumitomo Metal Corporation Electromagnetic steel sheet and method for producing electromagnetic steel sheet
BR112021016527A2 (pt) 2020-04-17 2021-11-16 Nippon Steel Corp Chapa de aço elétrica não orientada, e, método para fabricar uma chapa de aço elétrica não orientada

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238581A (ja) * 1988-07-28 1990-02-07 Kobe Steel Ltd 塗装性に優れた絶縁皮膜付電磁鋼板の製法
JPH0516849B2 (ja) 1989-01-25 1993-03-05 Takara Belmont
JP2002249881A (ja) * 2001-02-23 2002-09-06 Sumitomo Metal Ind Ltd 絶縁皮膜付き電磁鋼板およびその製造方法。
JP2008303411A (ja) * 2007-06-05 2008-12-18 Sumitomo Metal Ind Ltd 電磁鋼板の絶縁皮膜形成用処理液
JP2009155707A (ja) * 2007-12-27 2009-07-16 Sumitomo Metal Ind Ltd 電磁鋼板の絶縁皮膜形成用処理液
JP2011252191A (ja) 2010-06-01 2011-12-15 Nippon Steel Corp 電磁鋼板およびその製造方法
WO2012057168A1 (ja) * 2010-10-29 2012-05-03 新日本製鐵株式会社 電磁鋼板及びその製造方法
WO2021054450A1 (ja) * 2019-09-20 2021-03-25 日本製鉄株式会社 無方向性電磁鋼板および無方向性電磁鋼板用表面処理剤
JP2021060409A (ja) 2020-12-14 2021-04-15 アマノ株式会社 ゲート装置

Also Published As

Publication number Publication date
US12084750B2 (en) 2024-09-10
JPWO2022210962A1 (ja) 2022-10-06
BR112023016300A2 (pt) 2023-10-10
US20240035129A1 (en) 2024-02-01
TW202244321A (zh) 2022-11-16
KR20230122183A (ko) 2023-08-22
TWI830188B (zh) 2024-01-21
EP4317486A1 (en) 2024-02-07
CN116888301A (zh) 2023-10-13
JP7226663B1 (ja) 2023-02-21
KR102650460B1 (ko) 2024-03-25

Similar Documents

Publication Publication Date Title
US11742129B2 (en) Adhesively-laminated core, manufacturing method thereof, and electric motor
EP2597177B1 (en) Electromagnetic steel sheet and process for production thereof
EP3836169B1 (en) Electrical steel sheet and method for manufacturing the same
JP7226663B1 (ja) 無方向性電磁鋼板、及び、その製造方法
US12037511B2 (en) Coating composition for electrical steel sheet, surface-coated electrical steel sheet for adhesion and laminated core
JP7215644B1 (ja) 無方向性電磁鋼板及びその製造方法
WO2023033136A1 (ja) 無方向性電磁鋼板およびその製造方法
US20240379265A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
EP4456093A2 (en) Electromagnetic steel sheet, lamianted core, and rotating electric machine
JP7415198B2 (ja) 電磁鋼板用コーティング組成物、接着用表面被覆電磁鋼板及び積層鉄心
TWI841211B (zh) 無方向性電磁鋼板
JPH0257684B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022548591

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317053108

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237027216

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027216

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280015314.1

Country of ref document: CN

Ref document number: 18277548

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023016300

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023016300

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230814

WWE Wipo information: entry into national phase

Ref document number: 2022781172

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022781172

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE