WO2022210642A1 - 積層セラミックコンデンサ - Google Patents
積層セラミックコンデンサ Download PDFInfo
- Publication number
- WO2022210642A1 WO2022210642A1 PCT/JP2022/015285 JP2022015285W WO2022210642A1 WO 2022210642 A1 WO2022210642 A1 WO 2022210642A1 JP 2022015285 W JP2022015285 W JP 2022015285W WO 2022210642 A1 WO2022210642 A1 WO 2022210642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal electrode
- layer
- electrode layer
- layers
- ceramic capacitor
- Prior art date
Links
- 239000003985 ceramic capacitor Substances 0.000 title claims abstract description 59
- 238000003475 lamination Methods 0.000 claims description 11
- 230000015556 catabolic process Effects 0.000 abstract description 28
- 239000002585 base Substances 0.000 description 46
- 238000007747 plating Methods 0.000 description 38
- 239000000843 powder Substances 0.000 description 26
- 239000000919 ceramic Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000011521 glass Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 10
- 230000005684 electric field Effects 0.000 description 8
- 229910001260 Pt alloy Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 238000000177 wavelength dispersive X-ray spectroscopy Methods 0.000 description 3
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
- H01G4/0085—Fried electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/012—Form of non-self-supporting electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
- H01G4/232—Terminals electrically connecting two or more layers of a stacked or rolled capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
- H01G4/232—Terminals electrically connecting two or more layers of a stacked or rolled capacitor
- H01G4/2325—Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
Definitions
- the present invention relates to a multilayer ceramic capacitor.
- Such a multilayer ceramic capacitor generally has an effective dielectric portion in which a plurality of dielectric ceramic layers and a plurality of internal electrodes are laminated, and provided on the upper and lower surfaces of the effective dielectric portion, the dielectric ceramic layers and a cover layer containing the same main component as the structure.
- the cover layer is mainly composed of ceramic particles, and glass particles are present in the gaps between the ceramic particles of the cover layer.
- the ratio of the area of voids in which glass particles are present to the total area of voids and voids in which no glass particles are present is 80% or more per unit area.
- Patent Document 1 can only deal with the dielectric breakdown voltage caused by the strain in the stacking direction due to the electrostrictive effect. In other words, it is not possible to suppress the decrease in dielectric breakdown voltage due to the increase in the electric field strength applied to the ceramic elements as the thickness of the ceramic elements constituting the multilayer ceramic capacitor is reduced.
- the main object of the present invention is to provide a multilayer ceramic capacitor that can further improve the dielectric breakdown voltage.
- a multilayer ceramic capacitor according to the present invention includes a plurality of laminated dielectric layers, and has first and second main surfaces facing each other in the lamination direction, and first main surfaces facing each other in a width direction orthogonal to the lamination direction. and a first end face and a second end face facing each other in a length direction orthogonal to the lamination direction and the width direction; a plurality of first internal electrode layers exposed on the end face of the dielectric layer, a plurality of second internal electrode layers exposed on the second end face and connected to the first internal electrode layer;
- a multilayer ceramic capacitor comprising a first external electrode arranged on a first end face and a second external electrode connected to a second internal electrode layer and arranged on the second end face, The one internal electrode layer and the second internal electrode layer are alternately arranged, the first internal electrode layer and the second internal electrode layer contain Ni, and the first internal electrode layer and the second internal electrode layer Pt is dissolved in Ni contained in one of the layers, and Pt is not dissolved in Ni contained in the other of the first
- the multilayer ceramic capacitor of the present invention Pt is dissolved in Ni contained in either one of the first internal electrode layer and the second internal electrode layer, and the first internal electrode layer and Any one of the first internal electrode layer and the second internal electrode layer in which Pt is not dissolved in Ni contained in the other of the second internal electrode layers and Pt is dissolved in Ni is connected to the cathode side when the multilayer ceramic capacitor is mounted, the dielectric breakdown voltage of the multilayer ceramic capacitor can be improved.
- FIG. 1 is an external perspective view showing an example of a laminated ceramic capacitor according to the present invention
- FIG. FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1 showing the multilayer ceramic capacitor according to the present invention
- FIG. 2 is a cross-sectional view taken along line III-III of FIG. 1 showing a multilayer ceramic capacitor according to the present invention
- (a) is an illustrative view of the LT section showing the presence or absence of Pt in each internal electrode layer of the laminate
- (b) is an illustrative view of the WT section.
- FIG. 4 is an illustrative view showing a region where Ni and Pt mapping analysis is performed in internal electrode layers of a multilayer ceramic capacitor in an experimental example
- FIG. 1 is an external perspective view showing an example of a laminated ceramic capacitor according to the present invention.
- 2 is a cross-sectional view taken along line II-II in FIG. 1 showing the laminated ceramic capacitor according to the present invention
- FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1 showing the laminated ceramic capacitor according to the present invention. be.
- the laminated ceramic capacitor 10 includes a rectangular parallelepiped laminated body 12 .
- the laminate 12 has a plurality of laminated dielectric layers 14 and a plurality of internal electrode layers 16 . Furthermore, the laminate 12 has a first main surface 12a and a second main surface 12b facing in the lamination direction x, and a first side surface 12c and a second side surface facing in the width direction y orthogonal to the lamination direction x. 12d, and a first end face 12e and a second end face 12f facing each other in a length direction z orthogonal to the stacking direction x and width direction y.
- the laminate 12 has rounded corners and ridges. A corner portion is a portion where three adjacent surfaces of the laminate intersect, and a ridge portion is a portion where two adjacent surfaces of the laminate intersect.
- unevenness or the like is formed on part or all of the first main surface 12a and the second main surface 12b, the first side surface 12c and the second side surface 12d, and the first end surface 12e and the second end surface 12f. may have been
- the dielectric layer 14 of the laminate 12 includes an outer layer portion 14a and an inner layer portion 14b.
- the outer layer portion 14a is located on the first main surface 12a side and the second main surface 12b side of the laminate 12, and is between the first main surface 12a and the internal electrode layer 16 closest to the first main surface 12a. and a dielectric layer 14 located between the second major surface 12b and the internal electrode layer 16 closest to the second major surface 12b.
- a region sandwiched between the two outer layer portions 14a is the inner layer portion 14b.
- the dielectric layer 14 can be made of, for example, a dielectric material.
- the powder of the dielectric material forming the dielectric layer 14 is desirably composed mainly of a perovskite-type oxide containing Ba and Ti.
- part of Ba may be replaced with Ca
- part of Ti may be replaced with Zr.
- the dielectric layer 14 may contain, for example, rare earth elements, Mn, Mg, Si, etc. as subcomponents.
- the dielectric ceramic raw material powder is produced, for example, by a solid-phase synthesis method. Specifically, first, compound powders such as oxides and carbonates containing constituent elements of the main component are mixed in a predetermined ratio and calcined. In addition to the solid-phase synthesis method, a hydrothermal method or the like may be applied.
- the dielectric ceramic according to the present invention may contain alkali metals, transition metals, Cl, S, P, Hf, and the like in amounts that do not interfere with the effects of the present invention.
- the thickness of the dielectric layer 14 after firing is preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
- the laminate 12 has, as the plurality of internal electrode layers 16, a plurality of substantially rectangular first internal electrode layers 16a and a plurality of second internal electrode layers 16b, for example.
- the plurality of first internal electrode layers 16a and the plurality of second internal electrode layers 16b are buried so as to be alternately arranged at regular intervals along the stacking direction x of the stack 12 with the dielectric layers 14 interposed therebetween. ing.
- the first internal electrode layer 16a is positioned on one end side of the first internal electrode layer 16a and the first counter electrode portion 18a facing the second internal electrode layer 16b. It has a first extraction electrode portion 20a extending to the first end surface 12e of the laminate 12 .
- the first lead-out electrode portion 20 a has its end led out to the first end face 12 e and exposed from the laminate 12 .
- the second internal electrode layer 16b is located on a second counter electrode portion 18b facing the first internal electrode layer 16a, and on one end side of the second internal electrode layer 16b. It has a second extraction electrode portion 20b extending to the second end face 12f of the laminate 12 .
- the second extraction electrode portion 20b is exposed from the laminate 12 with its end being extracted to the second end surface 12f.
- the laminate 12 is formed between one end of the first counter electrode portion 18a and the second counter electrode portion 18b in the width direction y and the first side surface 12c and between the first counter electrode portion 18a and the second counter electrode portion 18b. It includes a side portion (hereinafter referred to as “W gap”) 22a of the laminate 12 formed between the other end of 18b in the width direction y and the second side surface 12d. Furthermore, the laminate 12 has a gap between the end portion of the first internal electrode layer 16a opposite to the first lead-out electrode portion 20a and the second end face 12f and the second internal electrode layer 16b of the second internal electrode layer 16b. It includes an end portion (hereinafter referred to as “L gap”) 22b of the laminate 12 formed between the end portion opposite to the extraction electrode portion 20b and the first end face 12e.
- the first internal electrode layers 16a and the second internal electrode layers 16b contain Ni, for example.
- Pt is dissolved in Ni contained in either one of the first internal electrode layer 16a and the second internal electrode layer 16b. Further, Pt does not form a solid solution in Ni contained in the other of the first internal electrode layers 16a and the second internal electrode layers 16b.
- Pt is not dissolved in Ni contained in the first internal electrode layers 16a, and Pt is contained in the second internal electrode layers 16b.
- An example is shown in which Pt is dissolved in the Ni contained in the film.
- one of the first internal electrode layer 16a and the second internal electrode layer 16b in which Pt is dissolved is connected to the cathode side during mounting.
- the molar ratio of Pt to the total of Ni and Pt is 2.6 mol% or more. It is preferably 24.7 mol % or less.
- the solid solution of Pt in Ni contained in either one of the first internal electrode layers 16a and the second internal electrode layers 16b can be obtained by, for example, WDX (Wavelength Dispersive X-ray Spectroscopy). can be confirmed by
- the first internal electrode layer 16a and the second internal electrode layer 16b may further contain dielectric particles having the same composition as the ceramic contained in the dielectric layer 14.
- the dielectric layer 14 and the internal electrode layer 16 may have a different phase composed of Ni or an element contained in the dielectric layer 14 .
- the thickness of the internal electrode layer 16 is preferably 0.2 ⁇ m or more and 2.0 ⁇ m or less. Also, the number of internal electrode layers 16 is not particularly limited.
- External electrodes 24 are arranged on the first end surface 12 e side and the second end surface 12 f side of the laminate 12 .
- the external electrode 24 has a first external electrode 24a and a second external electrode 24b.
- the first external electrode 24a is arranged on the surface of the first end surface 12e of the laminate 12 and extends from the first end surface 12e to form the first main surface 12a, the second main surface 12b, and the first side surface. It is formed to cover a portion of each of 12c and second side 12d.
- the first external electrode 24a is electrically connected to the first extraction electrode portion 20a of the first internal electrode layer 16a.
- the second external electrode 24b is arranged on the surface of the second end surface 12f of the laminate 12, and extends from the second end surface 12f to form the first main surface 12a, the second main surface 12b, and the first side surface. It is formed to cover a portion of each of 12c and second side 12d. In this case, the second external electrode 24b is electrically connected to the second extraction electrode portion 20b of the second internal electrode layer 16b.
- the first counter electrode portion 18a of the first internal electrode layer 16a and the second counter electrode portion 18b of the second internal electrode layer 16b face each other with the dielectric layer 14 interposed therebetween.
- a capacitance is formed. Therefore, a capacitance can be obtained between the first external electrode 24a to which the first internal electrode layer 16a is connected and the second external electrode 24b to which the second internal electrode layer 16b is connected. , the characteristics of the capacitor appear.
- the first external electrode 24a includes, in order from the laminate 12 side, a first base electrode layer 26a and a first plating layer disposed on the surface of the first base electrode layer 26a. layer 28a.
- the second external electrode 24b has a second base electrode layer 26b and a second plated layer 28b arranged on the surface of the second base electrode layer 26b in order from the laminate 12 side.
- the first base electrode layer 26a is arranged on the surface of the first end surface 12e of the laminate 12 and extends from the first end surface 12e to form the first main surface 12a, the second main surface 12b, and the first main surface 12b. It is formed to cover a portion of each of the side surface 12c and the second side surface 12d. However, the first base electrode layer 26a may be arranged only on the surface of the first end surface 12e of the laminate 12. As shown in FIG. Further, the second base electrode layer 26b is arranged on the surface of the second end surface 12f of the laminate 12, and extends from the second end surface 12f to form the first principal surface 12a, the second principal surface 12b, the second principal surface 12b, and the second principal surface 12b. It is formed to cover a portion of each of the first side 12c and the second side 12d. However, the second base electrode layer 26b may be arranged only on the surface of the second end face 12f of the laminate 12. As shown in FIG.
- the first base electrode layer 26a and the second base electrode layer 26b each include at least one layer selected from a baked layer and a thin film layer.
- the formed first base electrode layer 26a and second base electrode layer 26b will be described.
- the baking layer includes glass and metal.
- the metal of the baking layer includes, for example, at least one selected from Cu, Ni, Ag, Pd, Ag—Pd alloy, Au, and the like.
- the glass of the baking layer contains at least one selected from B, Si, Ba, Mg, Al, Li and the like.
- the baking layer may be multiple layers.
- the baking layer is obtained by applying a conductive paste containing glass and metal to the laminate 12 and baking it. It may be baked after firing the layer 16 .
- the thickness of the thickest portion of the baking layer is preferably 10 ⁇ m or more and 50 ⁇ m or less.
- a resin layer containing conductive particles and a thermosetting resin may be formed on the surface of the baking layer.
- the resin layer may be directly formed on the laminate 12 without forming the baking layer.
- the resin layer may be a plurality of layers.
- the thickness of the thickest portion of the resin layer is preferably 20 ⁇ m or more and 150 ⁇ m or less.
- the thin film layer is a layer of 1 ⁇ m or less formed by a thin film forming method such as a sputtering method or a vapor deposition method and having metal particles deposited thereon.
- the first plating layer 28a is arranged to cover the first base electrode layer 26a. Specifically, the first plating layer 28a is disposed on the first end surface 12e of the surface of the first base electrode layer 26a, and the first main surface 12a and the first main surface 12a of the surface of the first base electrode layer 26a. It is preferably provided so as to reach the second main surface 12b, the first side surface 12c and the second side surface 12d.
- the first base electrode layer 26a is arranged only on the surface of the first end face 12e of the laminate 12
- the first plated layer 28a is formed only on the surface of the first base electrode layer 26a. It is sufficient if it is provided so as to cover the
- the second plating layer 28b is arranged to cover the second base electrode layer 26b.
- the second plated layer 28b is arranged on the second end surface 12f of the surface of the second base electrode layer 26b, and the first main surface 12a and the second plated layer 28b of the surface of the second base electrode layer 26b. It is preferably provided so as to reach the second main surface 12b, the first side surface 12c and the second side surface 12d.
- the second base electrode layer 26b is arranged only on the surface of the second end surface 12f of the laminate 12
- the second plating layer 28b is formed only on the surface of the second base electrode layer 26b. It is sufficient if it is provided so as to cover the
- the first plated layer 28a and the second plated layer 28b are made of at least one selected from, for example, Cu, Ni, Sn, Ag, Pd, Ag—Pd alloy, Au, and the like. A metal or an alloy containing the metal is used.
- the plating layer may be formed of multiple layers. In this case, the plating layer preferably has a two-layer structure of a Ni plating layer and a Sn plating layer.
- the Ni plating layer is provided so as to cover the surface of the base electrode layer, and is used to prevent the base electrode layer from being eroded by solder when mounting the multilayer ceramic capacitor 10 . Further, by providing the Sn plating layer on the surface of the Ni plating layer, the wettability of the solder used for mounting the multilayer ceramic capacitor can be improved and the mounting can be facilitated.
- each plating layer is preferably 1 ⁇ m or more and 15 ⁇ m or less. Also, the plated layer preferably does not contain glass. Furthermore, the plating layer preferably has a metal ratio of 99% by volume or more per unit volume.
- the first base electrode layer 26a is composed of a plated layer that is directly connected to the first internal electrode layer 16a, is arranged directly on the surface of the first end surface 12e of the laminate 12, and extends from the first end surface 12e. It is formed so as to extend and cover a portion of each of the first main surface 12a, the second main surface 12b, the first side surface 12c and the second side surface 12d.
- the second base electrode layer 26b is composed of a plated layer directly connected to the second internal electrode layer 16b, is arranged directly on the surface of the second end face 12f of the laminate 12, and is directly connected to the second end face 12f.
- first base electrode layer 26a and the second base electrode layer 26b to be composed of plated layers, a catalyst is provided on the laminate 12 as a pretreatment.
- the first base electrode layer 26a made of a plated layer is preferably covered with a first plated layer 28a.
- the second base electrode layer 26b made of a plated layer is preferably covered with a second plated layer 28b.
- the first base electrode layer 26a and the second base electrode layer 26b, and the first plated layer 28a and the second plated layer 28b are made of Cu, Ni, Sn, Pb, Au, Ag, Pd, Bi, for example. , Zn, or an alloy containing the metal.
- Ni is used for the internal electrode layers 16
- Cu which has good bonding properties with Ni
- Ni for the first base electrode layer 26a and the second base electrode layer 26b.
- Sn or Au which has good solder wettability.
- Ni which has solder barrier properties.
- the first plating layer 28a and the second plating layer 28b are formed as required, and the first external electrode 24a is composed only of the first base electrode layer 26a, and the second external electrode 24b is composed of only the first base electrode layer 26a. may be composed only of the second underlying electrode layer 26b. Also, the first plating layer 28a and the second plating layer 28b may be provided as the outermost layers of the first external electrode 24a and the second external electrode 24b, and the first plating layer 28a or the second plating layer 28a may be provided as the outermost layers. Other plating layers may be provided on layer 28b.
- each plating layer is preferably 1 ⁇ m or more and 15 ⁇ m or less. Also, the plated layer preferably does not contain glass. Furthermore, the plating layer preferably has a metal ratio of 99% by volume or more per unit volume.
- the dimension in the length direction z of the multilayer ceramic capacitor 10 including the multilayer body 12, the first external electrode 24a and the second external electrode 24b is defined as the L dimension, and the multilayer body 12, the first external electrode 24a and the second external electrode
- the dimension in the stacking direction x of the multilayer ceramic capacitor 10 including the electrode 24b is the dimension T, and the dimension in the width direction y of the multilayer ceramic capacitor 10 including the multilayer body 12, the first external electrode 24a and the second external electrode 24b is the dimension W. dimension.
- the dimensions of the multilayer ceramic capacitor 10 are not particularly limited, but the L dimension in the length direction z is 0.2 mm or more and 3.2 mm or less, the W dimension in the width direction y is 0.1 mm or more and 2.5 mm or less, and the lamination direction x is The T dimension is 0.1 mm or more and 2.5 mm or less. Note that the L dimension in the length direction z is not necessarily longer than the W dimension in the width direction y. Also, the dimensions of the laminated ceramic capacitor 10 can be measured with a microscope.
- BaTiO 3 powder which is the main component
- BaTiO 3 powder which is the main component
- predetermined amounts of BaCO 3 powder and TiO 2 powder are weighed, mixed by a ball mill for a certain period of time, and then subjected to heat treatment to obtain BaTiO 3 powder as the main component.
- the powder of the dielectric material forming the dielectric layer 14 is desirably composed mainly of perovskite-type oxides containing Ba and Ti.
- powders of Dy 2 O 3 , MgO, MnO and SiO 2 as subcomponents are prepared.
- 0.75 mol part of Dy 2 O 3 , 1 mol part of MgO, 0.2 mol part of MnO, and 1 mol part of SiO 2 are weighed with respect to 100 mol part of BaTiO 3 which is the main component.
- These powders are blended with BaTiO 3 powder as the main component, mixed for a certain period of time in a ball mill, dried and dry-pulverized to obtain raw material powders.
- an internal electrode conductive paste 1 is prepared for forming the first internal electrode layers 16a.
- Ni powder is prepared as the conductive powder, a polyvinyl butyral-based binder and an organic solvent such as ethanol are added, and the mixture is wet-mixed using a ball mill to prepare the internal electrode conductive paste 1 .
- an internal electrode conductive paste 2 for forming the second internal electrode layer 16b is prepared.
- a Ni—Pt alloy powder is prepared as the conductive powder, a polyvinyl butyral-based binder and an organic solvent such as ethanol are added, and wet-mixed by a ball mill to prepare the internal electrode conductive paste 2 .
- the prepared Ni—Pt alloy powder is adjusted such that the Pt/(Ni+Pt) ratio is, for example, 2.3 mol % or more and 25.5 mol % or less.
- the prepared internal electrode conductive paste 1 is printed on the surface of the ceramic green sheet to form a print pattern for the first internal electrode layers 16a.
- This sheet is referred to as a green sheet 1 after printing.
- the prepared internal electrode conductive paste 2 is printed on the surface of the ceramic green sheet to form a print pattern for the second internal electrode layer 16b.
- This sheet is a green sheet 2 after printing.
- the internal electrode conductive paste 1 and the internal electrode conductive paste 2 can be printed on the ceramic green sheets by a known method such as screen printing or gravure printing.
- the printed green sheet 2 is stacked on the printed green sheet 1.
- a set of the two-layered green sheets is laminated so that the sides on which the printed patterns are drawn out are alternately laminated to produce a laminate block.
- the laminate block is cut into a predetermined shape and size, and unfired laminate chips are cut out.
- the corners and ridges of the laminate may be rounded by barrel polishing or the like.
- the cut-out unfired laminate chip is heated, for example, at a temperature of 350° C. in a N 2 atmosphere, and after the binder is burned, the oxygen partial pressure is 10 ⁇ 12 MPa or more and 10 ⁇ 10 MPa or less.
- the temperature is raised at a rate of 20° C./min, and sintered at 1200° C. or higher and 1265° C. or lower for 20 minutes.
- the amount of Pt in the internal electrode layers increases, the internal electrode layers become more difficult to sinter, so it is necessary to set the firing temperature high.
- a conductive paste for external electrodes is applied to both end surfaces of the laminated body 12 after firing, and baked to form first external electrodes 24a electrically connected to the first internal electrode layers 16a.
- a second base electrode layer 26b of the second external electrode 24b electrically connected to the base electrode layer 26a and the second internal electrode layer 16b is formed.
- the conductive paste for external electrodes for example, Cu paste containing B 2 O 3 --SiO 2 --BaO glass frit is used. Also, baking is performed at 900° C. in a N 2 atmosphere.
- a first plated layer 28a is formed to cover the first base electrode layer 26a, and a second plated layer 28b is formed to cover the second base electrode layer 26b. be done.
- the first plating layer 28a and the second plating layer 28b are formed of Ni plating layers, wet electroplating is used as the forming method.
- a Sn plating layer is formed on the surface of each Ni plating layer by wet electroplating as necessary. It is formed.
- the multilayer ceramic capacitor 10 according to the present embodiment is manufactured as described above.
- a conductive paste using a powder containing a Ni—Pt alloy as a main component was used as a means for forming internal electrode layers made of an alloy of Ni and Pt, but the present invention is not limited to this.
- Ni powder or an alloy powder containing Ni as a main component and Pt metal, an alloy containing Pt, or a Pt compound mixed therein may be used.
- the printed green sheet 2 is stacked on the printed green sheet 1, and these two layers of green sheets are made into a set so that the sides from which the printed pattern is drawn out are alternately arranged.
- the printed green sheet 1 is stacked on the printed green sheet 2, and these two layers of green sheets are set as a set, and the printed pattern is printed.
- a laminate block may be produced by laminating a plurality of sheets such that the sides of the tapes with which the tape is pulled out are staggered.
- the laminated ceramic capacitor 10 of the present invention Pt is dissolved in Ni contained in either one of the first internal electrode layers 16a and the second internal electrode layers 16b.
- Ni contained in the other of the first internal electrode layer 16a and the second internal electrode layer 16b does not contain Pt in a solid solution, and the first internal electrode layer in which Pt dissolves in Ni is a solid solution. Since one of 16a and second internal electrode layer 16b is connected to the cathode side when the laminated ceramic capacitor is mounted, the dielectric breakdown voltage of the laminated ceramic capacitor can be improved.
- the mechanism that can suppress the dielectric breakdown voltage due to electric field concentration is considered as follows.
- the work function of the metal increases.
- Arranging the metal on the cathode side is thought to increase the Schottky barrier at the interface between the ceramic and the internal electrode layers at the cathode, thereby alleviating electric field concentration. As a result, it is considered that the dielectric breakdown voltage of the multilayer ceramic capacitor 10 is improved.
- the multilayer ceramic capacitor 10 when Pt dissolves in Ni contained in either one of the first internal electrode layers 16a and the second internal electrode layers 16b, Ni and Pt When the molar ratio of Pt to the total of is 2.6 mol% or more and 24.7 mol% or less, the breakdown voltage is improved by setting the molar ratio of Pt to the total of Ni and Pt in this range, and , the high temperature load life can be improved.
- the thickness of each layer was 1.5 ⁇ m, and the average thickness of the internal electrode layers was 0.9 ⁇ m.
- the total number of internal electrode layers was 150 layers.
- the main component of the dielectric layer material was BaTiO 3 .
- the structure of the external electrode was such that the base electrode layer was a baked layer of Cu paste, and the plating layer was a two-layer structure of Ni plating and Sn plating.
- the Pt/(Ni+Pt) ratio was 2.3 mol% for sample number 1, 2.6 mol% for sample number 2, and 7.8 mol% for sample number 3.
- Ni—Pt alloy powders were prepared so that No. 4 had 13.5 mol %, Sample No. 5 had 19.3 mol %, Sample No. 6 had 24.7 mol %, and Sample No. 7 had 25.5 mol %.
- Sample Nos. 8 to 14 were obtained by laminating the printed green sheet 1 on the printed green sheet 2, forming a pair of these two layers of green sheets, and alternating the sides from which the printed pattern was drawn out.
- a laminate B was obtained by laminating a plurality of sheets so as to be equal to each other. That is, Pt is dissolved in Ni contained in the first internal electrode layers, and Pt is not dissolved in Ni contained in the second internal electrode layers.
- the content of Pt dissolved in Ni contained in the first internal electrode layers was changed. Therefore, in the first internal electrode layer, the Pt/(Ni+Pt) ratio was 2.3 mol% for sample number 8, 2.6 mol% for sample number 9, and 7.8 mol% for sample number 10.
- Ni—Pt alloy powders were prepared so that No. 11 had 13.5 mol %, Sample No. 12 had 19.3 mol %, Sample No. 13 had 24.7 mol %, and Sample No. 14 had 25.5 mol %.
- a laminate C was obtained by laminating a plurality of sheets using only the green sheet 2 after printing so that the sides on which the printed pattern was drawn alternately. That is, Pt is dissolved in both Ni contained in the first internal electrode layer and the second internal electrode layer.
- the content of Pt dissolved in Ni contained in each of the first internal electrode layers and the second internal electrode layers was varied. Therefore, in the first internal electrode layer and the second internal electrode layer, the Pt/(Ni+Pt) ratio was set to 2.3 mol% for both sample number 15 and 7.8 mol% for sample number 16.
- Ni—Pt alloy powders were prepared so that sample number 17 was 13.5 mol %, sample number 18 was 19.3 mol %, and sample number 19 was 24.7 mol %.
- a laminate D was obtained by laminating a plurality of sheets using only the green sheet 1 after printing so that the sides on which the printed pattern was pulled out were staggered. That is, Pt is not dissolved in Ni contained in the first internal electrode layers and the second internal electrode layers.
- ⁇ Mapping analysis in the internal electrode layer As shown in FIG. The central portion in each width direction y was divided into three regions: an upper region, a middle region, and a lower region. Then, the vicinity of the central portion of each region was defined as a mapping region, and mapping analysis of Ni and Pt was performed in each mapping region by WDX (wavelength dispersive X-ray analysis method). As a result, it was confirmed that the Pt/(Ni+Pt) ratio was the desired content when Pt was contained in the internal electrode layers for the samples of each sample number. In addition, in sample numbers 1 to 7, the content of Pt in the first internal electrode layers was all below the lower limit of detection. Further, in sample Nos. 8 to 14, the Pt content in the second internal electrode layer was all below the lower limit of detection. Furthermore, in sample number 20, the Pt content in both the first internal electrode layers and the second internal electrode layers was below the lower limit of detection.
- WDX wavelength dispersive X-ray analysis method
- Evaluation Results Table 1 shows the evaluation results of the multilayer ceramic capacitors for each sample number. Note that the sample numbers marked with * in the table are outside the scope of the present invention. In particular, sample numbers 15 to 19 are reference examples in which Pt is dissolved in both the first internal electrode layer and the second internal electrode layer.
- sample according to sample number 20 which is outside the scope of the present invention, has a dielectric breakdown voltage of 240 V because Pt does not form a solid solution in Ni contained in the first internal electrode layer and the second internal electrode layer. It was confirmed to be less than 100% and to be unsatisfactory.
- samples according to sample numbers 2 to 6 have a further improved dielectric breakdown voltage when the Pt/(Ni+Pt) ratio is 2.6 mol % or more and 24.7 mol % or less in the second internal electrode layer. It was also confirmed that the mean time to failure (MTTF) of 31 hours or more was good.
- MTTF mean time to failure
- the mechanism that can suppress the dielectric breakdown voltage due to electric field concentration is considered as follows. That is, when part of the Ni contained in the internal electrode layer 16 is replaced with Pt, the work function of the metal (electrode) increases. Arranging the metal on the cathode side is thought to increase the Schottky barrier at the interface between the ceramic and the internal electrode layers at the cathode, thereby alleviating electric field concentration. As a result, it is considered that the dielectric breakdown voltage of the multilayer ceramic capacitor 10 is improved.
- the concentration of Pt is less than 2.6 mol %, the effect of increasing the Schottky barrier is considered to be small.
- the concentration of Pt is higher than 24.7 mol %, the firing temperature rises, and the internal electrode layer (the concentration of Pt is below the detection limit) on the counter electrode side is oversintered and sphered, thereby forming a dielectric ceramic element. It is presumed that the insulation breakdown voltage was lowered because it was compressed and thinned, and the electric field was concentrated in that portion.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
このような積層セラミックコンデンサは、一般的には、複数の誘電体セラミック層と複数の内部電極とが積層された有効誘電体部と、有効誘電体部の上下面に設けられ、誘電体セラミック層と同様の主成分を含むカバー層とを備えた構造となっている。
この発明にかかる積層セラミックコンデンサについて説明する。図1は、この発明にかかる積層セラミックコンデンサの一例を示す外観斜視図である。図2は、この発明にかかる積層セラミックコンデンサを示す図1の線II-IIにおける断面図であり、図3は、この発明にかかる積層セラミックコンデンサを示す図1の線III-IIIにおける断面図である。
第2の内部電極層16bは、第1の内部電極層16aと対向する第2の対向電極部18bと、第2の内部電極層16bの一端側に位置し、第2の対向電極部18bから積層体12の第2の端面12fまでの第2の引出電極部20bを有する。第2の引出電極部20bは、その端部が第2の端面12fに引き出され、積層体12から露出している。
第1の外部電極24aは、積層体12の第1の端面12eの表面に配置され、第1の端面12eから延伸して第1の主面12a、第2の主面12b、第1の側面12cおよび第2の側面12dのそれぞれの一部分を覆うように形成される。この場合、第1の外部電極24aは、第1の内部電極層16aの第1の引出電極部20aと電気的に接続される。
第2の外部電極24bは、積層体12の第2の端面12fの表面に配置され、第2の端面12fから延伸して第1の主面12a、第2の主面12b、第1の側面12cおよび第2の側面12dのそれぞれの一部分を覆うように形成される。この場合、第2の外部電極24bは、第2の内部電極層16bの第2の引出電極部20bと電気的に接続される。
また、第2の下地電極層26bは、積層体12の第2の端面12fの表面に配置され、第2の端面12fから延伸して第1の主面12a、第2の主面12b、第1の側面12cおよび第2の側面12dのそれぞれの一部分を覆うように形成される。もっとも、第2の下地電極層26bは、積層体12の第2の端面12fの表面上にのみ配置されていてもよい。
焼付け層は、ガラスと金属とを含む。焼付け層の金属としては、たとえば、Cu、Ni、Ag、PdまたはAg-Pd合金、Au等から選ばれる少なくとも1つを含む。また、焼付け層のガラスとしては、B、Si、Ba、Mg、AlおよびLi等から選ばれる少なくとも1つを含む。焼付け層は、複数層であってもよい。焼付け層は、ガラスおよび金属を含む導電性ペーストを積層体12に塗布して焼き付けたものであり、誘電体層14および内部電極層16と同時に焼成したものでもよく、誘電体層14および内部電極層16を焼成した後に焼き付けたものでもよい。焼付け層のうちの最も厚い部分の厚みは、10μm以上50μm以下であることが好ましい。
また、薄膜層は、スパッタ法または蒸着法等の薄膜形成法により形成され、金属粒子が堆積された1μm以下の層である。
同様に、第2のめっき層28bは、第2の下地電極層26bを覆うように配置される。具体的には、第2のめっき層28bは、第2の下地電極層26bの表面の第2の端面12fに配置され、第2の下地電極層26bの表面の第1の主面12aおよび第2の主面12bならびに第1の側面12cおよび第2の側面12dにも至るように設けられていることが好ましい。なお、第2の下地電極層26bが、積層体12の第2の端面12fの表面上にのみ配置される場合には、第2のめっき層28bは、第2の下地電極層26bの表面のみを覆うように設けられていればよい。
めっき層は、複数層によって形成されてもよい。この場合、めっき層は、Niめっき層とSnめっき層の2層構造であることが好ましい。Niめっき層が、下地電極層の表面を覆うように設けられることで、下地電極層が積層セラミックコンデンサ10を実装する際のはんだによって侵食されることを防止するために用いられる。また、Niめっき層の表面に、Snめっき層を設けることにより、積層セラミックコンデンサを実装する際に、実装に用いられるはんだの濡れ性を向上させ、容易に実装することができる。
第1の下地電極層26aは、第1の内部電極層16aと直接接続されるめっき層から構成され、積層体12の第1の端面12eの表面に直接に配置され、第1の端面12eから延伸して第1の主面12a、第2の主面12b、第1の側面12cおよび第2の側面12dのそれぞれの一部分を覆うように形成される。
また、第2の下地電極層26bは、第2の内部電極層16bと直接接続されるめっき層から構成され、積層体12の第2の端面12fの表面に直接に配置され、第2の端面12fから延伸して第1の主面12a、第2の主面12b、第1の側面12cおよび第2の側面12dのそれぞれの一部分を覆うように形成される。
ただし、第1の下地電極層26aおよび第2の下地電極層26bがめっき層から構成されるためには、前処理として積層体12上に触媒が設けられる。
たとえば、内部電極層16としてNiを用いた場合、第1の下地電極層26aおよび第2の下地電極層26bとしては、Niと接合性のよいCuを用いることが好ましい。
また、第1のめっき層28aおよび第2のめっき層28bとしては、はんだ濡れ性のよいSnやAuを用いることが好ましく、第1の下地電極層26aおよび第2の下地電極層26bとしては、はんだバリア性能を有するNiを用いることが好ましい。
積層セラミックコンデンサ10の寸法は、特に限定されないが、長さ方向zのL寸法が0.2mm以上3.2mm以下、幅方向yのW寸法が0.1mm以上2.5mm以下、積層方向xのT寸法が0.1mm以上2.5mm以下である。なお、長さ方向zのL寸法は、幅方向yのW寸法よりも必ずしも長いとは限らない。また、積層セラミックコンデンサ10の寸法は、マイクロスコープにより測定することができる。
次に、本発明にかかる積層セラミックコンデンサの製造方法について説明する。
最初に、主成分であるBaTiO3粉末が用意される。具体的には、BaCO3粉末、TiO2粉末が所定量秤量され、ボールミルにより一定時間混合された後、熱処理を行い、主成分のBaTiO3粉末が得られる。
次に、原料粉末にポリビニルブチラール系バインダおよびエタノール等の有機溶剤を加えて、ボールミルにより湿式混合し、スラリーが調整される。このセラミックスラリーが、ドクターブレード法によりシート成形され、たとえば、厚み1.9μmのセラミックグリーンシートが得られる。
第1のめっき層28aおよび第2のめっき層28bがNiめっき層で形成される場合は、その形成方法として湿式電解めっきが用いられる。
なお、第1のめっき層28aおよび第2のめっき層28bは、2層構造で形成される場合、必要に応じて、湿式電解めっきの方法で、それぞれのNiめっき層の表面にSnめっき層が形成される。
このように、電界集中による絶縁破壊電圧を抑制しうるメカニズムは、以下のように考えられる。すなわち、内部電極層16に含まれるNiの一部をPtで置換すると、金属(電極)の仕事関数が高くなる。その金属を陰極側に配置すると、陰極におけるセラミックと内部電極層の界面のショットキー障壁が高くなり、電界集中が緩和されると考えられる。その結果、積層セラミックコンデンサ10の絶縁破壊電圧が向上したものと考えられる。
次に、上述した本発明にかかる積層セラミックコンデンサ10の効果を確認するために、積層セラミックコンデンサの絶縁破壊電圧および高温負荷寿命の評価する実験を行った。
以下、上述の製造方法を使用して、以下の条件に基づいて実験例の各試料(試料番号1ないし試料番号20)の積層セラミックコンデンサが作製された。
積層セラミックコンデンサのサイズ(設計値)は、長さ×幅×高さ=1.0mm×0.5mm×0.5mmであり、複数の内部電極層の間に介在する誘電体層一層あたりの厚みは、1.5μmであり、内部電極層の平均厚みは0.9μmであった。また、内部電極層の総数は、150層とした。誘電体層の材料の主成分は、BaTiO3とした。外部電極の構造は、下地電極層をCuペーストの焼付け層とし、めっき層をNiめっきとSnめっきの2層構造とした。
試料番号1ないし試料番号7は、印刷後グリーンシート1の上に印刷後グリーンシート2を積み、この2層のグリーンシートを1組として、それを印刷パターンの引き出されている側が互い違いになるように複数枚積層し、積層体Aを得た。すなわち、第1の内部電極層のNiにPtは固溶しておらず、第2の内部電極層に含まれるNiにPtが固溶している。試料番号1ないし試料番号7では、第2の内部電極層に含まれるNiに固溶されるPtの含有量を変化させた。このため、第2の内部電極層において、Pt/(Ni+Pt)比率が、試料番号1は2.3mol%とし、試料番号2は2.6mol%とし、試料番号3は7.8mol%とし、試料番号4は13.5mol%とし、試料番号5は19.3mol%とし、試料番号6は24.7mol%とし、試料番号7は25.5mol%となるようにNi-Pt合金粉末を用意した。
なお、本実験例では、上述した方法により、Ptの固溶された内部電極層が引き出されている側を判別できるようにしたが、判別さえできれば、その手段は問わない。
(a)内部電極層中にPtが存在することの確認
上述のようにして作製した表1の各試料(積層セラミックコンデンサ)について、以下に説明する方法により、内部電極層中にPtが存在することを確認した。
各試料を垂直になるように立てて、各試料の周りを樹脂で固めた。このとき、各試料のWT面が露出するようにした。続いて、研磨機により、WT面を研磨した。積層セラミックコンデンサの長さ方向zの1/2程度の深さで研磨を終了し、WT面を露出させた。そして、研磨による内部電極層のダレをなくすために、研磨終了後、イオンミリングにより、研磨表面を加工した。
図5に示すとおり、WT面の長さ方向zの1/2程度において、試料の内部電極層が積層されている領域を積層方向xに3等分に分割し、それぞれの幅方向yにおける中央部を、上部領域、中間領域、下部領域と3つの領域に分けた。そして、それぞれの領域の中央部付近をマッピング領域とし、その各マッピング領域において、WDX(波長分散型X線分析法)によりNiおよびPtのマッピング分析を行った。その結果、各試料番号の試料について、内部電極層にPtが含有されるとき、Pt/(Ni+Pt)比率が、所望の含有量であることが確認された。
なお、試料番号1ないし試料番号7では、第1の内部電極層におけるPtの含有量は、いずれも検出下限以下であった。また、試料番号8ないし試料番号14では、第2の内部電極層におけるPtの含有量は、いずれも検出下限以下であった。さらに、試料番号20では、第1の内部電極層および第2の内部電極層におけるPtの含有量は、いずれも検出下限以下であった。
作製した試料を20個サンプリングし、LW面の上面の印を確認して、PtがNiに固溶した内部電極層が絶縁破壊電圧測定器のどちらの極に接続しているかを確認して、積層セラミックコンデンサを測定器に設置した。そして、昇圧速度を100V/秒として絶縁破壊電圧を測定し、絶縁破壊電圧の平均値として求めた。絶縁破壊電圧が240V未満の試料を不良と判定した。
また、作製した別の試料を20個サンプリングし、LW面の上面の印を確認してPtがNiに固溶した内部電極層が高温負荷試験機のどちらの極に接続しているかを確認して、積層セラミックコンデンサを試験機に設置した。そして、150℃、40Vで高温負荷試験を行い、絶縁抵抗が10kΩ以下になった時間を故障と判定した。この故障時間から平均故障時間(MTTF:Mean Time To Failure)を算出し、比較を行った。MTTFが31時間未満の試料を不良と判定した。
各試料番号に対する積層セラミックコンデンサの各評価結果を表1に示す。なお、表中の*印を付した試料番号は、本発明の範囲外である。特に、試料番号15ないし試料番号19は、第1の内部電極層および第2の内部電極層のいずれもPtが固溶されている試料を参考例として示している。
すなわち、本発明の技術的思想及び目的の範囲から逸脱することなく、以上説明した実施の形態に対し、機序、形状、材質、数量、位置又は配置等に関して、様々の変更を加えることができるものであり、それらは、本発明に含まれるものである。
12 積層体
12a 第1の主面
12b 第2の主面
12c 第1の側面
12d 第2の側面
12e 第1の端面
12f 第2の端面
14 誘電体層
14a 外層部
14b 内層部
16 内部電極層
16a 第1の内部電極層
16b 第2の内部電極層
18a 第1の対向電極部
18b 第2の対向電極部
20a 第1の引出電極部
20b 第2の引出電極部
22a 側部(Wギャップ)
22b 端部(Lギャップ)
24 外部電極
24a 第1の外部電極
24b 第2の外部電極
26a 第1の下地電極層
26b 第2の下地電極層
28a 第1のめっき層
28b 第2のめっき層
x 積層方向
y 幅方向
z 長さ方向
Claims (2)
- 積層された複数の誘電体層を含み、積層方向に相対する第1の主面および第2の主面と、積層方向に直交する幅方向に相対する第1の側面および第2の側面と、積層方向および幅方向に直交する長さ方向に相対する第1の端面および第2の端面と、を含む積層体と、
前記誘電体層上に配置され、前記第1の端面に露出する複数の第1の内部電極層と、
前記誘電体層上に配置され、前記第2の端面に露出する複数の第2の内部電極層と、
前記第1の内部電極層に接続され、前記第1の端面上に配置される第1の外部電極と、
前記第2の内部電極層に接続され、前記第2の端面上に配置される第2の外部電極と、
を備える積層セラミックコンデンサにおいて、
前記第1の内部電極層および前記第2の内部電極層は、交互に配置され、
前記第1の内部電極層および前記第2の内部電極層は、Niを含み、
前記第1の内部電極層および前記第2の内部電極層のうちのいずれか一方に含まれるNiにPtが固溶しており、
前記第1の内部電極層および前記第2の内部電極層のうちの他方に含まれるNiにPtが固溶しておらず、
NiにPtが固溶する前記第1の内部電極層および前記第2の内部電極層のうちのいずれか一方が、前記積層セラミックコンデンサの実装時に陰極側に接続される、積層セラミックコンデンサ。 - NiにPtが固溶する前記第1の内部電極層および前記第2の内部電極層のうちのいずれか一方のPt/(Ni+Pt)比率が、2.6mol%以上24.7mol%以下であることを特徴とする、請求項1に記載の積層セラミックコンデンサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023511331A JP7509314B2 (ja) | 2021-03-31 | 2022-03-29 | 積層セラミックコンデンサ |
KR1020237032577A KR20230147719A (ko) | 2021-03-31 | 2022-03-29 | 적층 세라믹 콘덴서 |
US18/369,891 US20240006124A1 (en) | 2021-03-31 | 2023-09-19 | Multilayer ceramic capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-059696 | 2021-03-31 | ||
JP2021059696 | 2021-03-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/369,891 Continuation US20240006124A1 (en) | 2021-03-31 | 2023-09-19 | Multilayer ceramic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022210642A1 true WO2022210642A1 (ja) | 2022-10-06 |
Family
ID=83459385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015285 WO2022210642A1 (ja) | 2021-03-31 | 2022-03-29 | 積層セラミックコンデンサ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240006124A1 (ja) |
JP (1) | JP7509314B2 (ja) |
KR (1) | KR20230147719A (ja) |
WO (1) | WO2022210642A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004070748A1 (ja) * | 2003-02-05 | 2004-08-19 | Tdk Corporation | 電子部品およびその製造方法 |
JP2016143709A (ja) * | 2015-01-30 | 2016-08-08 | 太陽誘電株式会社 | 積層コンデンサ |
JP2016143764A (ja) * | 2015-02-02 | 2016-08-08 | 太陽誘電株式会社 | 積層コンデンサ |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6224853U (ja) | 1985-07-30 | 1987-02-16 |
-
2022
- 2022-03-29 WO PCT/JP2022/015285 patent/WO2022210642A1/ja active Application Filing
- 2022-03-29 KR KR1020237032577A patent/KR20230147719A/ko unknown
- 2022-03-29 JP JP2023511331A patent/JP7509314B2/ja active Active
-
2023
- 2023-09-19 US US18/369,891 patent/US20240006124A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004070748A1 (ja) * | 2003-02-05 | 2004-08-19 | Tdk Corporation | 電子部品およびその製造方法 |
JP2016143709A (ja) * | 2015-01-30 | 2016-08-08 | 太陽誘電株式会社 | 積層コンデンサ |
JP2016143764A (ja) * | 2015-02-02 | 2016-08-08 | 太陽誘電株式会社 | 積層コンデンサ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022210642A1 (ja) | 2022-10-06 |
JP7509314B2 (ja) | 2024-07-02 |
KR20230147719A (ko) | 2023-10-23 |
US20240006124A1 (en) | 2024-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9099244B2 (en) | Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor | |
JP7348890B2 (ja) | セラミック電子部品およびその製造方法 | |
KR101907425B1 (ko) | 적층 세라믹 콘덴서 및 그 제조 방법 | |
JP7424740B2 (ja) | 積層セラミックコンデンサおよびその製造方法 | |
JP2018182128A (ja) | 積層セラミックコンデンサおよびその製造方法 | |
JP2018117051A (ja) | 積層セラミックコンデンサ | |
JP2017028254A (ja) | 積層セラミックコンデンサ | |
JP2021103711A (ja) | 積層セラミック電子部品 | |
CN112216510A (zh) | 陶瓷电子器件及其制造方法 | |
JP2019192862A (ja) | 積層セラミックコンデンサおよびその製造方法 | |
US10650968B2 (en) | Multilayer ceramic capacitor | |
TW202242927A (zh) | 陶瓷電子零件及其製造方法 | |
JP7460043B2 (ja) | 積層セラミック電子部品及びその製造方法 | |
JP2018198292A (ja) | 積層セラミックコンデンサ | |
JP7283440B2 (ja) | 積層型電子部品および積層型電子部品の製造方法 | |
JP7283357B2 (ja) | 積層セラミックコンデンサ | |
JPH10335168A (ja) | 積層セラミックコンデンサ | |
WO2022210642A1 (ja) | 積層セラミックコンデンサ | |
JP2022188286A (ja) | 積層セラミックコンデンサおよびその製造方法 | |
JP7493322B2 (ja) | 積層セラミックコンデンサ | |
JP2022081393A (ja) | 積層型電子部品 | |
JP2021015925A (ja) | 積層セラミックコンデンサ | |
WO2023054379A1 (ja) | 積層セラミックコンデンサ | |
US20240120153A1 (en) | Ceramic electronic device, and manufacturing method of the same | |
JP2024122854A (ja) | 積層型電子部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780853 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023511331 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20237032577 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237032577 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22780853 Country of ref document: EP Kind code of ref document: A1 |