[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022209294A1 - 圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法 - Google Patents

圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法 Download PDF

Info

Publication number
WO2022209294A1
WO2022209294A1 PCT/JP2022/004544 JP2022004544W WO2022209294A1 WO 2022209294 A1 WO2022209294 A1 WO 2022209294A1 JP 2022004544 W JP2022004544 W JP 2022004544W WO 2022209294 A1 WO2022209294 A1 WO 2022209294A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
data
analysis
rolling
rolling mill
Prior art date
Application number
PCT/JP2022/004544
Other languages
English (en)
French (fr)
Inventor
渉 馬場
昌英 矢島
丈英 平田
由紀雄 高嶋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280022601.5A priority Critical patent/CN116997425A/zh
Priority to MX2023011107A priority patent/MX2023011107A/es
Priority to EP22779523.4A priority patent/EP4282550A4/en
Priority to KR1020237031782A priority patent/KR20230145595A/ko
Priority to JP2022523333A priority patent/JP7103550B1/ja
Priority to US18/283,994 priority patent/US20240033799A1/en
Publication of WO2022209294A1 publication Critical patent/WO2022209294A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a method for detecting vibration generated in a rolling mill that makes a steel plate a predetermined thickness, and more particularly, to a method, an abnormality detection device, a rolling method, and a method for detecting abnormal vibration of a rolling mill that causes defects on the surface of a steel plate. It relates to a method of manufacturing a band.
  • steel sheets used for automobiles, beverage cans, etc. are subjected to continuous casting, hot rolling and cold rolling, and after undergoing annealing and plating processes, are processed according to their intended use.
  • the cold rolling process is the final process for determining the thickness of the steel sheet as a product. Since the steel sheet surface before plating determines the surface of the final product after plating, a function to prevent surface defects in the cold rolling process is required.
  • Chatter marks are one of the surface defects that occur during the cold rolling process.
  • a chatter mark is a pattern in which linear marks extending in the width direction of a metal strip periodically appear in the longitudinal direction of the metal strip, and is said to be generated mainly by vibration (chattering) of the rolling mill.
  • Very light chatter marks cannot be detected by visual inspection or plate thickness measurement after rolling, and are detected only after the plating process, which greatly hinders productivity.
  • rapid fluctuations in thickness and tension due to chattering can cause phenomena such as breakage of the sheets, hindering production.
  • Patent Literature 1 discloses that a vibration detector is attached to a rolling mill, and vibration and rolling parameters obtained by the vibration detector are subjected to frequency analysis. Chattering detection that calculates the fundamental frequency that can occur for each cause of vibration at the same time, and judges chattering when the frequency that is an integral multiple of the fundamental frequency that can occur for each cause exceeds a set value among the above frequency analysis results. method is described.
  • vibration detectors are arranged not only on the main body of the rolling mill, but also on the rolls (small diameter rolls) on which the metal sheet is wound at a certain angle or more, which are arranged between the stands and on the entry/exit side of the cold rolling mill. , Frequency analysis of the obtained vibration value is performed, and a detection method for determining chattering when the threshold is exceeded at the frequency that matches the string vibration frequency of the steel plate. An anti-chattering method is described to control so that it does not match with .
  • Patent Document 1 noise generated from peripheral equipment of the rolling mill and vibration generated from the vibration source installed in the main body of the rolling mill are detected at the same time, resulting in many erroneous detections. Further, in the case of Patent Documents 2 and 3, it is possible to suppress the occurrence of vibration due to string vibration, but it is difficult to detect vibration caused by other vibration sources. Furthermore, it is difficult to specify in advance the frequency at which chattering occurs, and in many cases the frequency of chattering can be recognized only after vibration in a certain frequency band increases. Therefore, it is difficult to accurately detect chattering even if a specific frequency is focused in advance and a threshold value corresponding to the amplitude or the like corresponding to the frequency is set.
  • the conveying speed (rolling speed) of the metal strip differs from stand to stand.
  • the rotation speed of the work roll differs for each stand, and vibrations of multiple frequencies are superimposed, making it difficult to detect chattering.
  • the method of specifying the frequency of chattering in advance and detecting the vibration intensity in that frequency band has the problem that it is not always possible to prevent the occurrence of chatter marks caused by minute vibrations.
  • the present invention has been made in view of the above problems, and provides an abnormal vibration detection method for a rolling mill, an abnormality detection device, a rolling method, and a metal strip manufacturing method for accurately detecting abnormal vibration that causes chatter marks. It is intended to
  • a method for detecting abnormal vibration of a rolling mill having a pair of work rolls and a plurality of support rolls supporting the work rolls comprising: a collection step of collecting vibration data of the rolling mill; A frequency analysis step of performing frequency analysis and generating first analysis data indicating vibration intensity for each frequency, and converting the first analysis data into second analysis data indicating vibration intensity for each pitch based on the rolling speed.
  • the abnormal vibration detection method for a rolling mill comprising: a data conversion step; and a map generation step of generating a vibration map in which the plurality of second analysis data are arranged in chronological order.
  • An abnormality detection device for a rolling mill having a pair of work rolls and a plurality of support rolls supporting the work rolls comprising: a data collection unit for collecting vibration data of the rolling mill; A frequency analysis unit that performs frequency analysis and generates first analysis data representing vibration intensity for each frequency, and converts the first analysis data into second analysis data representing vibration intensity for each pitch based on the rolling speed.
  • the abnormality detection device for a rolling mill comprising: a data conversion unit; and a map generation unit that generates a vibration map in which the plurality of second analysis data are arranged in chronological order.
  • Principal component analysis is performed on the second analysis data using reference data indicating a normal state, and an outlier component for each pitch calculated as a residue of the projection of the second analysis data with respect to the reference data is calculated. It further comprises a principal component analysis unit for specifying, wherein the map generation unit further generates an outlier component map in which the outlier components for each pitch extracted by the principal component analysis unit are arranged in time series
  • a monitoring pitch corresponding to the rolling mill is set in advance and generated in the map generation step.
  • the rolling method includes a support roll replacement step of replacing the support rolls of the rolling mill when the vibration intensity at the monitoring pitch of the vibration map or the deviation component map exceeds a preset limit vibration intensity.
  • a method for producing a metal strip comprising the step of producing a metal strip using the rolling method described in [7] above.
  • a vibration map is created by arranging a plurality of second analysis data converted into vibration intensities for each pitch in chronological order.
  • FIG. 1 is a schematic diagram showing an example of a rolling facility to which an abnormality detection device for a rolling mill according to the present invention is applied; 1 is a functional block diagram showing a preferred embodiment of an abnormality detection device for a rolling mill according to the present invention;
  • FIG. 4 is a diagram showing an example of an outlier component map in Example 1.
  • FIG. 10 is a diagram showing an example of an outlier component map in Example 2;
  • FIG. 10 is a diagram showing an example of a deviation component map for a rolling speed of 800 mpm or more and 850 mpm or less in Example 2;
  • FIG. 6 is a functional block diagram showing another preferred embodiment of the abnormality detection device for a rolling mill of the present invention. It is an example of time-series vibration data collected by any one of a plurality of vibrometers in the collecting step. It is an example of vibration intensity for each frequency generated in the frequency analysis step.
  • FIG. 11 is a second example of analysis data showing vibration intensity for each pitch converted in the data conversion step; FIG. It is an example of a vibration map generated in the map generation step.
  • FIG. 11 is a diagram showing an example of a vibration map for second analysis data in Example 3; It is a figure which shows an example of the vibration map with respect to the 1st analysis data in a comparative example.
  • FIG. 1 is a schematic diagram showing an example of a rolling facility to which the abnormality detection device for a rolling mill of the present invention is applied.
  • a rolling facility 1 in FIG. 1 is a cold rolling facility that cold-rolls a steel strip that is, for example, a metal strip S, and four rolling mills 2A, 2B, 2C, and 2D (4 stands) are arranged along the rolling direction.
  • Each of the rolling mills 2A, 2B, 2C, and 2D has the same configuration, and includes a housing 3, a pair of work rolls 4 accommodated in the housing 3 for rolling the metal strip S, and a work roll 4 and a driving device 6 for rotating the work rolls 4 . Further, small-diameter rolls 7 around which the metal strip S to be rolled is stretched are installed downstream of the rolling mills 2A, 2B, 2C, and 2D in the rolling direction of the metal strip S, respectively.
  • Vibrometers 8A, 8B, 8C and 8D are attached to the housings 3 of the rolling mills 2A, 2B, 2C and 2D, respectively.
  • the vibration meters 8A, 8B, 8C, 8D measure vibrations generated in the rolling mills 2A, 2B, 2C, 2D, and are composed of acceleration sensors, for example.
  • the vibration meters 8A, 8B, 8C, and 8D are not limited to the housing 3 as long as they are installed at positions where they can detect vibrations of the rolling mills 2A, 2B, 2C, and 2D. It may be installed in the small diameter roll 7 grade
  • the vibration data acquired by the vibration meters 8A, 8B, 8C, and 8D are measured in the rolling direction of the metal strip S can be regarded as corresponding to the vibrations of the rolling mills 2A, 2B, 2C and 2D arranged upstream of the small-diameter rolls 7 on which the vibration meters 8A, 8B, 8C and 8D are installed.
  • the rolling speed in the present embodiment means the peripheral speed of the work rolls 4 in the rolling mills 2A, 2B, 2C, and 2D or the conveying speed (delivery speed) of the metal strip S on the delivery side of the rolling mills 2A, 2B, 2C, and 2D.
  • the rolling speed is determined by the rolling mills 2A, 2B, 2C, and 2D where the vibrometers 8A, 8B, 8C, and 8D are installed (in the following description, the locations where the vibrometers 8A, 8B, 8C, and 8D are installed are referred to as stands. may be specified). Further, when the vibration meters 8A, 8B, 8C, and 8D are installed on the small-diameter rolls 7, the vibration data acquired by the vibration meters 8A, 8B, 8C, and 8D are obtained from the rolling mills 2A, It is associated with rolling speeds of 2B, 2C, and 2D.
  • the standard rolling speed in this embodiment is an arbitrary rolling speed set for each of the rolling mills 2A, 2B, 2C, and 2D.
  • a rolling speed empirically recognized as the rolling speed in the rolling mills 2A, 2B, 2C, and 2D where chattering is likely to occur may be selected.
  • 900 m/min may be selected from the rolling speed range of 800 m/min or more and 1300 m/min or less where chattering is likely to occur.
  • the standard rolling speeds in the rolling mills 2A, 2B, and 2C on the upstream side of the final stand 2D are based on the standard rolling speed set for the final stand 2D, and according to the pass schedule set as standard, Each should be set.
  • FIG. 2 is a functional block diagram showing a preferred embodiment of the rolling mill abnormality detection device of the present invention.
  • the configuration of the abnormality detection device 10 for the rolling mill in FIG. 2 is constructed by hardware resources such as a computer, for example.
  • a rolling mill abnormality detection device 10 detects abnormal vibrations of the rolling mills 2A, 2B, 2C, and 2D that generate chatter marks. and a map generator 14 .
  • the abnormality detection device 10 may include a principal component analysis unit 15, which will be described later.
  • the data collection unit 11 collects vibration data detected by each of the vibrometers 8A, 8B, 8C, and 8D.
  • the vibration meters 8A, 8B, 8C, and 8D are acceleration sensors
  • the vibration acceleration data are sent to the data collection unit 11 from the vibration meters 8A, 8B, 8C, and 8D.
  • the data collection unit 11 continuously acquires acceleration data.
  • the data collecting unit 11 time-integrates the acceleration data measured within a preset data sampling time (for example, a period of 0.2 seconds), converts it into velocity data, and converts it into velocity data. Vibration data is collected at each time, that is, at each data sampling time. As a result, the vibration data are vibration velocities arranged in chronological order.
  • the data collection unit 11 performs measurement and calculation of vibration data for 0.2 seconds as a data sampling time, for example, at a preset data acquisition cycle (for example, every 1 second).
  • the data sampling time in the continuous cold rolling mill is preferably set to 0.1 seconds or more and 1 second or less, and the data acquisition period is preferably set to 1 second or more and 5 seconds or less. If the data sampling time is less than 0.1 seconds, it may not be possible to obtain enough data to identify the vibration of the rolling mill, and if it exceeds 1 second, the calculation load for frequency analysis, etc. may increase. so to avoid them. Also, if the data acquisition cycle is less than 1 second, the calculation load for frequency analysis, etc.
  • the data collection unit 11 collects vibration data from each of the vibrometers 8A, 8B, 8C, and 8D. It may be configured to collect vibration data from 8D. Chattering in the rolling mills (stands) 2A, 2B, 2C, 2D in which the vibrometers 8A, 8B, 8C, 8D are installed based on vibration data collected by any one of the vibrometers 8A, 8B, 8C, 8D can be reliably detected.
  • the vibration meters 8A, 8B, 8C, and 8D may use not only acceleration sensors but also position sensors and velocity sensors capable of measuring vibrations. This is because the data of acceleration, velocity, and displacement (displacement amount) can be mutually converted by time integration and time differentiation.
  • the frequency analysis unit 12 frequency-analyzes the vibration data collected within the data sampling time by the data collection unit 11, and generates analysis data (hereinafter sometimes referred to as first analysis data) consisting of vibration intensity for each frequency. Generated for each data acquisition cycle.
  • the frequency analysis unit 12 extracts the amplitude and phase of the vibration velocity for each frequency by Fourier transform, for example, and extracts the absolute value of the amplitude of the vibration velocity at each frequency as the vibration intensity.
  • the frequency after Fourier transform of digital data becomes a discrete value depending on the number of data to be Fourier transformed and the sampling frequency.
  • a plurality of frequencies are set for the frequency analysis unit 12 to perform frequency analysis, and these are called reference frequencies.
  • a plurality of frequencies may be arbitrarily selected from a frequency band equal to or less than half the sampling frequency of the vibration meters 8A, 8B, 8C, and 8D as the reference frequency.
  • the sampling frequency is the number of times the vibration meter measures vibration (for example, acceleration) per second, and varies depending on the specifications of the vibration meter used.
  • the lowest sampling frequency among the sampling frequencies of the plurality of vibrometers 8A, 8B, 8C, and 8D may be used as the representative value. It is preferable to select 20 or more and 1600 or less frequencies from a frequency band of 1/2 or less of the sampling frequency as the reference frequency.
  • the frequency analysis unit 12 sets the sampling frequency of the vibrometers 8A, 8B, 8C, and 8D to 5120 Hz, sets the reference frequency every 5 Hz (400 in total) in the frequency range of 5 Hz to 2000 Hz, and sets the reference frequency to Analyze vibration intensity.
  • the frequency analysis unit 12 is not limited to the Fourier transform as long as it can analyze vibration data into vibration intensity for each frequency, and can use a known frequency analysis method such as a wavelet transform or a windowed Fourier transform. In that case also, the same method as described above may be used for setting the reference frequency.
  • the data conversion unit 13 converts the analytical data of the vibration intensity for each reference frequency, that is, the first analysis data, into the vibration intensity for each pitch (second analysis data) based on the rolling speed.
  • the data conversion unit 13 converts each of the rolling mills 2A, 2B, 2C, and 2D in which the vibration meters 8A, 8B, 8C, and 8D are installed (the rolling mills 2A, 2B, 2C, 2A, 2B, 2C, 2D), the first analysis data representing the vibration intensity corresponding to the reference frequency is converted into the second analysis data representing the vibration intensity for each pitch.
  • the pitch in the present embodiment is an index corresponding to the longitudinal distance of the metal strip S or the circumferential distance of the work rolls 4 of the rolling mills 2A, 2B, 2C, and 2D, which is associated with the vibration frequency. is.
  • the pitch means an interval between adjacent vibration peaks in the longitudinal direction of the metal strip S or in the circumferential direction of the work roll 4 as a result of the data conversion in the data conversion section 13 .
  • the pitch P (mm) is related by the following formula using the rolling speed V (m/min) and the vibration frequency f (Hz).
  • a standard pitch is stored in the data conversion unit 13 as a pitch corresponding to the standard rolling speed.
  • the standard pitch refers to the pitch calculated from the above equation (1) using the reference frequency f of the frequency analysis executed by the frequency analysis unit 12 and the standard rolling speed V.
  • the standard pitch set in this way is a series of discrete numbers corresponding to the reference frequency.
  • the reason for using the standard pitch in this embodiment is as follows. That is, the rolling speed when the metal strip S is rolled by the rolling mills 2A, 2B, 2C, and 2D is not necessarily constant, and even when rolling one metal strip S, the rolling speed changes within the metal strip S. . Therefore, even vibrations occurring at the same pitch are measured as vibrations of different frequencies when the rolling speed is different.
  • a standard pitch is set in order to evaluate vibration phenomena generated from the same vibration source and observed at different frequencies depending on the rolling speed using a unified index. That is, for a vibration source that generates vibration at a constant pitch, the vibration behavior observed as vibration with different frequencies due to different rolling speeds is converted into the vibration behavior corresponding to the standard rolling speed, and this is converted to the pitch It is expressed as the vibration intensity per unit. As a result, the vibration intensity at an arbitrary rolling speed obtained during actual operation can be evaluated using a constant index of vibration intensity corresponding to the standard pitch.
  • the data conversion unit 13 performs data interpolation such as interpolation or extrapolation to convert the vibration intensity (first analysis data) for each reference frequency into the vibration intensity (second analysis data) for each standard pitch.
  • data interpolation such as interpolation or extrapolation to convert the vibration intensity (first analysis data) for each reference frequency into the vibration intensity (second analysis data) for each standard pitch.
  • linear interpolation can be used for the interpolation, and a DC component whose frequency component is "0" is interpolated as "0". All frequencies to be extrapolated are set to "0".
  • the frequency at which an abnormality occurs can be evaluated using a constant index called the standard pitch.
  • pitch is used to mean a “standard pitch” associated with a reference frequency and a standard rolling speed.
  • pitch is synonymous with “standard pitch” unless otherwise specified.
  • Vibration meters 8A, 8B, 8C, and 8D superimpose and measure the vibration caused by the rotation of the work rolls 4 and the natural period vibration of the rolling mills 2A, 2B, 2C, and 2D.
  • the vibration caused by the former changes according to the rolling speed, and the vibration caused by the latter is measured as vibration independent of the rolling speed. Therefore, when the rolling speed changes, the frequency of the vibration caused by the rotation of the work rolls 4 and the like measured by the vibrometers 8A, 8B, 8C and 8D changes.
  • the vibration intensity corresponding to the vibration of the natural period of the rolling mills 2A, 2B, 2C, and 2D although the vibration frequency does not change significantly, the magnitude (amplitude) of the vibration intensity often changes. From such characteristics of the vibration of the rolling mill, a method of detecting abnormal vibration of the rolling mill based on the vibration intensity at a specific frequency by focusing on a specific frequency is proposed. Although it is possible to detect an abnormality corresponding to the vibration of the rolling mills 2A, 2B, 2C, and 2D, it is difficult to detect an abnormality related to rotating bodies such as the work rolls 4, the support rolls 5, and their bearings. was difficult. On the other hand, in the present embodiment, even if the rolling speed is different, since the vibration intensity is converted to the vibration intensity for each standard pitch, it is possible to detect an abnormality in the vibration system caused by the rotation that occurs at a specific pitch. becomes easier.
  • the map generation unit 14 creates a vibration map (see FIG. 3 described later) in which a plurality of second analysis data converted into vibration intensities for each pitch generated by the data conversion unit 13 are arranged in chronological order.
  • a vibration map see FIG. 3 described later
  • By generating and displaying such a vibration map it is possible to detect the occurrence or sign of abnormal vibration caused by the rotating bodies of the rolling mills 2A, 2B, 2C, and 2D that cause chatter marks.
  • abnormal vibration occurs or develops, by referring to the vibration map, it is possible to visually grasp the behavior in which the vibration intensity corresponding to a specific pitch increases over time.
  • the vibration map is preferably generated by arranging the vibration intensity for each pitch generated for each data acquisition cycle in chronological order. However, it is not necessary to arrange all the vibration intensities for each data acquisition period, and the vibration intensities for each fixed period may be thinned out and displayed.
  • the reason why the vibration map is generated by the map generator 14 in this embodiment is as follows. That is, the chattering (vibration of the rolling mills 2A, 2B, 2C, 2D) that generates chatter marks occurs at a constant pitch due to the rotational motion of the equipment that constitutes the rolling mills 2A, 2B, 2C, 2D. There are many things to do. For example, when a flaw occurs in the reduction gears that drive the rolling mills 2A, 2B, 2C, and 2D, the pitch remains constant even if the rolling speed changes, although the vibration frequency changes according to the rolling speed. .
  • non-uniform shape is formed in the circumferential direction of the support rolls 5, specifically, for example, when the support rolls 5 are worn or deformed into a polygonal shape, vibration is caused in accordance with the rolling speed. changes, the pitch of the chatter marks on the surface of the support roll 5 does not change with the rolling speed. Therefore, if the pitch of the chatter marks is grasped and the vibration intensity is continuously monitored, the occurrence of abnormal vibration can be detected.
  • non-uniform shapes (such as fine marks) on the surface of the support rolls 5 are present on the surfaces of the support rolls 5 before the support rolls 5 are incorporated into the rolling mills 2A, 2B, 2C, and 2D.
  • the pitch of the chatter marks cannot be predicted in advance.
  • the pitch observed as abnormal vibration is different between when a flaw is generated on the surface of the rotating body and when the rotating body changes into a polygonal shape.
  • the pitch of chatter marks cannot be predicted in advance.
  • vibration data is frequency-analyzed and data-converted at regular time intervals (data acquisition cycle), and the map generator 14 generates a vibration map in which the relationship between the pitch and the vibration intensity is arranged in time series.
  • I decided to As a result it is possible to visually grasp from the vibration map that the vibration intensity of the pitch of the chatter marks gradually increases over time. In other words, even if the pitch of the chatter marks cannot be predicted in advance, the occurrence of abnormal vibration can be grasped and detected by visually capturing the change in vibration intensity on the vibration map.
  • Such vibration maps are generated for each of the vibrometers 8A, 8B, 8C and 8D installed in the rolling mills 2A, 2B, 2C and 2D.
  • each vibration map is displayed in three dimensions.
  • the map generator 14 may classify the value of the vibration intensity, assign a color to each class, and generate a vibration map in which the vertical axis is the pitch and the horizontal axis is the time.
  • the vibration map generated by the map generator 14 is displayed on the display device 20 in an operation room or the like for managing the operation of the rolling mill 2 . By referring to the vibration map, it is possible to determine whether or not the vibration intensity corresponding to a specific pitch is large, so that abnormal vibration can be detected early.
  • the rolling mills 2A, 2B, 2C, and 2D may have rolling speeds that are likely to cause vibration.
  • vibration caused by the rotational motion of the rotating bodies of the rolling mills 2A, 2B, 2C, and 2D and the vibration caused by the vibration of the natural period of the rolling mills 2A, 2B, 2C, and 2D.
  • the content displayed by the vibration map can be selected according to the rolling speed.
  • the map generation unit 14 performs principal component analysis on the second analysis data of the vibration intensity corresponding to the standard pitch generated by the data conversion unit 13, It may have a function of generating an outlier component map based on the analysis result.
  • the abnormality detection device 10 of the rolling mill performs principal component analysis using reference data indicating a normal state on the second analysis data of the vibration intensity for each standard pitch converted by the data conversion unit 13, and performs the second analysis.
  • a principal component analysis unit 15 may be further provided for specifying an outlier component for each pitch calculated as a residue of the projection (evaluation data) of the data with respect to the reference data.
  • Evaluation data refers to data obtained by projecting observation data (second analysis data in this embodiment) onto a space configured by principal component vectors. That is, the evaluation data is specified by a scalar quantity obtained by projecting the observation data in the direction of each of a plurality of principal component vectors, and is composed of information on the same number of scalar quantities as the number of principal component vectors.
  • Principal component vectors (reference data) applied to the principal component analysis will be described later.
  • Principal component analysis consists of an analysis that synthesizes a small number of uncorrelated variables called principal components that best represent the overall variation from a large number of correlated variables, and a preset principal component vector. There are cases where it is used in both meanings of calculating the projection of observation data into space, but the principal component analysis executed by the principal component analysis unit 15 of this embodiment is used in the latter meaning. and That is, the principal component analysis unit 15 in the present embodiment calculates the projection (evaluation data) of the second analysis data with respect to the space configured by the principal component vector (reference data) representing the preset normal state. and specifies the difference between the second analysis data and the projection (evaluation data) of the second analysis data as an outlier component.
  • the first principal component to the i-th principal component (reference data) set as principal component vectors used in the principal component analysis performed by the principal component analysis unit 15 indicate that the rolling mills 2A, 2B, 2C, and 2D are generating abnormal vibrations. It is set based on the vibration intensity (reference vibration data) for each standard pitch obtained in normal times when there is no vibration.
  • the principal component analysis performed by the principal component deriving unit 16 means an analysis of synthesizing a small number of uncorrelated principal component vectors that best represent the overall variation from a large number of correlated variables.
  • a normal state in which the rolling mills 2A, 2B, 2C, and 2D do not generate abnormal vibration means a state in which abnormal vibration does not occur in any of the rolling mills 2A, 2B, 2C, and 2D at the standard rolling speed. .
  • Abnormal vibration will be described later.
  • the reference vibration data for example, the frequency analysis described above is performed on the vibration data measured during rolling within 12 hours after the support roll 5 is replaced with a new one, and the frequency-analyzed data is divided into pitches. It is converted into vibration intensity.
  • the reference vibration data may be referred to as normal analysis data as data obtained by analyzing normal vibration behavior in which abnormal vibration does not occur.
  • the reference vibration data may be obtained by analyzing vibration data measured during rolling within 24 hours after the support rolls 5 are replaced with new ones.
  • the data sampling time for acquiring the reference vibration data should be set to be the same as the data sampling time for detecting anomalies during operation (after 24 hours have passed since the support roll 5 was replaced with a new one). preferable.
  • the data acquisition cycle may be set to a different cycle for acquiring reference vibration data and for acquiring vibration data during operation.
  • the reference vibration data is generated for each data acquisition cycle acquired during normal operation, with the vibration intensity for each standard pitch acquired within the data sampling time as one data set, and therefore includes multiple data sets.
  • the number of data sets included in the reference vibration data is preferably 30,000 or more and 200,000 or less.
  • a principal component vector is derived by principal component analysis with the standard pitch as a variable, and is referred to as reference data.
  • a principal component derivation unit 16 which will be described later, performs a principal component analysis to derive a minority principal component that best represents the overall variation from a plurality of correlated reference vibration data, and extracts the principal component of the reference vibration data.
  • the cumulative value of the contribution rate is calculated by accumulating the principal components in descending order of the contribution rate to represent the feature quantity, and the components are selected until the cumulative value of the calculated contribution rate (cumulative contribution rate) reaches a preset value.
  • the preset cumulative contribution rate is referred to as a reference contribution rate or a set contribution rate.
  • the reference contribution rate in this embodiment can be arbitrarily set from a numerical value of 1 (100%) or less.
  • the reference contribution ratio is preferably set at 0.4 (40%) or more and 0.7 (70%) or less, more preferably 0.6 (60%) or more and 0.7 (70%) or more. %) or less.
  • the reference contribution rate is an index that affects the degree (reproducibility) of reproducing the vibration behavior of the reference vibration data in the principal component space. If the reference contribution rate is too large, the vibration behavior of the reference vibration data can be reproduced with high accuracy in the principal component space, but the measurement noise included in the reference vibration data will also be reproduced in the principal component space. On the other hand, if the reference contribution rate is too small, the influence of the measurement noise contained in the reference vibration data can be eliminated, but the feature of the vibration behavior of the reference vibration data tends to be lost in the principal component space.
  • the preferred range of the reference contribution rate depends on the rolling mill used and the rolling conditions of the steel sheet, it is preferable to set the above range for the purpose of detecting abnormal vibration of the tandem rolling mill.
  • a principal component derivation unit that derives principal components using reference vibration data (normal analysis data) generated by the data conversion unit 13 of the abnormality detection device 10 for the rolling mill. 16 may be provided.
  • the principal component deriving unit 16 analyzes a plurality of correlated reference vibration data to specify a principal component vector that best expresses the overall variation with a small number of uncorrelated data.
  • the first principal component to the i-th principal component (reference data) obtained by the principal component derivation unit 16 are temporarily stored in a storage unit (not shown), and sent to the principal component analysis unit 15 during subsequent operation to
  • the analysis unit 15 may calculate a projection (evaluation data) from the first principal component of the second analysis data acquired during operation to the i-th principal component.
  • a standard pitch equivalent to that pitch is determined in advance when deriving the main component in the main component deriving unit 16.
  • a plurality of variables may be selected and the number of variables used for the principal component analysis in the principal component analysis unit 15 may be reduced.
  • the principal component analysis unit 15 uses the first principal component to the i-th principal component (reference data) derived by the principal component derivation unit 16 to perform a second analysis indicating the vibration intensity for each standard pitch acquired during operation. Principal component analysis for calculating evaluation data is performed on the data. Specifically, the principal component analysis unit 15 projects the first principal component, which is the reference data, onto the i-th principal component using the second analysis data indicating the vibration intensity for each standard pitch acquired during operation. , and a residual portion obtained by subtracting the projection onto the principal component of the reference data from the second analysis data, and the residual portion is specified as an outlier component.
  • the outlier component is sometimes referred to as an outlier degree or Q statistic. Since the outlier component calculated by the principal component analysis unit 15 serves as an index representing the deviation from the normal vibration behavior, abnormal vibration of the rolling mills 2A, 2B, 2C, and 2D can be easily detected by monitoring the outlier component. can.
  • the map generation unit 14 may have a function of generating a deviation component map based on the deviation component for each pitch calculated by the principal component analysis unit 15 . That is, the map generation unit 14 generates a vibration map in which the deviation components for each pitch calculated by the principal component analysis unit 15 are arranged in time series. In the present embodiment, the vibration map generated in this way is called a deviation component map.
  • the outlier component map is a map in which the outlier components obtained by the principal component analysis unit 15 are arranged in time series. (zero)” is preferred. This is because when the deviation component is negative, it means that the vibration during operation is smaller than that during normal operation, and does not represent abnormal vibration. The deviation component map makes it easier to visually recognize that abnormal vibration is occurring.
  • the map generator 14 divides the value of the outlier component, assigns a color to each division, and generates an outlier component map (see FIGS. 4 and 5 described later) with the pitch as the vertical axis and the time as the horizontal axis. good too.
  • the deviation component map generated by the map generator 14 is displayed on the display device 20 in an operation room or the like for managing the operation of the rolling mill 2 .
  • the map generation unit 14 may generate a three-dimensional deviation component map (see FIG. 3 described later) in which the x-axis is the time, the y-axis is the pitch, and the z-axis is the deviation component. This makes it possible to easily grasp the tendency of the abnormal vibration to gradually increase.
  • FIG. 7 is an example of time-series vibration data collected by any one of the vibrometers 8A, 8B, 8C, and 8D in the collection step. Acceleration obtained from the vibration meters 8A, 8B, 8C, and 8D during the data sampling time of 0.2 sec is converted into vibration velocity and represented.
  • frequency analysis of the vibration data is performed by the frequency analysis unit 12 to generate first analysis data indicating vibration intensity for each frequency (frequency analysis step).
  • FIG. 8 is an example of vibration intensity for each frequency generated in the frequency analysis step.
  • the data conversion unit 13 converts the first analysis data into second analysis data indicating the vibration intensity for each pitch (data conversion step).
  • FIG. 9 is an example of second analysis data representing the vibration intensity for each pitch converted in the data conversion step.
  • Data conversion from the first analysis data to the second analysis data by the data conversion step is performed for each data acquisition cycle.
  • a vibration map is generated by arranging a plurality of vibration data (second analysis data) converted into vibration intensity for each pitch in chronological order, and the vibration map is updated as needed (map generation step).
  • FIG. 10 is an example of a vibration map generated in the map generation step. This is obtained by arranging the second analysis data representing the vibration intensity for each pitch in chronological order at predetermined time intervals.
  • abnormal vibrations of the rolling mills 2A, 2B, 2C, and 2D that generate chatter marks can be accurately detected.
  • principal component analysis using reference data indicating a normal state is performed on the second analysis data of vibration intensity for each pitch generated in the data conversion step (principal component analysis step).
  • the deviation component for each pitch is calculated as a residue of projection of the second analysis data with respect to the reference data.
  • the original characteristics of the equipment for example, the vibration component naturally generated by the meshing of the gears of the rolling mills 2A, 2B, 2C, and 2D, and the vibration characteristics of the bearings of the rolling mills 2A, 2B, 2C, and 2D, are normalized.
  • the principal component vector representing the feature quantity of the reference vibration data of it is possible to perform an analysis that emphasizes only abnormal vibrations.
  • the abnormal vibrations of the rolling mills 2A, 2B, 2C, and 2D are caused by the natural vibrations of the rolling mills 2A, 2B, 2C, and 2D, defective bearings, gear meshing, defective coupling, or rattling.
  • There is a lot of vibration caused by the rotation of the For this reason, conventional detection of abnormal vibration is performed based on whether or not the amplitude of a specific frequency exceeds a certain threshold.
  • chatter marks occur, minute vibrations occur at the frequency corresponding to the pitch of the chatter marks from before the chatter marks occur. Along with this, defects on the surface of the metal band S caused by the vibration grow gradually.
  • the first analysis data indicating the vibration intensity for each frequency is converted into the second analysis data indicating the vibration intensity for each standard pitch, and based on the second analysis data, in the map generation step , to generate the vibration map or the outlier map. Therefore, it is possible to visually recognize at an early stage that the vibration corresponding to a specific pitch is gradually increasing.
  • a standard pitch to be monitored in advance (hereinafter referred to as monitoring pitch) is set for each of the rolling mills 2A, 2B, 2C, and 2D,
  • monitoring pitch is a pitch at which chatter marks are likely to occur on the surface of the metal strip S when the metal strip S is rolled, and can be obtained empirically or by experiment.
  • the pitch of the chatter mark can be specified in the inspection process of the metal band S. Therefore, the pitch of the chatter marks identified in the inspection process may be set as the monitoring pitch.
  • the monitoring pitch may be set with a specific numerical value, or may be set as a numerical range of pitches in which chatter marks occur. For example, when chatter marks are likely to occur and the pitch is 30 mm, the monitoring pitch may be set to 27 mm or more and 33 mm or less as a numerical range of ⁇ 10%.
  • the range of the pitch to be monitored may be determined in consideration of variations in the pitch of the chatter marks that are empirically grasped from the operational records of the rolling mills 2A, 2B, 2C, and 2D.
  • the above limit vibration intensity is a vibration that may cause defects on the surface of the metal strip S due to the vibration of the rolling mills 2A, 2B, 2C, and 2D to cause quality problems as a product of the metal strip S.
  • the limit vibration intensity means the upper limit of the allowable vibration intensity as the vibration generated in the rolling mills 2A, 2B, 2C, and 2D.
  • chatter marks may occur on the metal band S, and the appearance of the metal band S may become defective. Therefore, the actual data of the vibration intensity for each pitch is obtained in advance, and based on the shipping standards for the metal belt S as a product and the actual data of the vibration intensity, a quality problem occurs as the metal belt S product.
  • the upper limit value of the vibration intensity that does not cause a vibration is set as the limit vibration intensity.
  • vibrations that may cause quality problems in the metal strip S product described above that is, vibrations that exceed the limit vibration strength
  • the state in which no vibration occurs and the state in which vibration occurs but does not lead to abnormal vibration correspond to the normal state of the rolling mills 2A, 2B, 2C, and 2D in the embodiment of the present invention. ing.
  • a vibration map or a deviation component map is generated by the abnormal vibration detection method for the rolling mills 2A, 2B, 2C, and 2D.
  • vibration maps or deviation component maps when the vibration intensity of the corresponding pitch exceeds the limit vibration intensity, the operation of the rolling mills 2A, 2B, 2C, and 2D is temporarily stopped, and the rolling mill 2A where abnormal vibration occurs , 2B, 2C, and 2D that cause abnormal vibration are replaced.
  • the cause of abnormal vibration of the rolling mills is the support rolls 5 of the rolling mills 2A, 2B, 2C, and 2D. good.
  • the vibration source of the abnormal vibration that causes chatter marks is often fine marks with the same pitch as the chatter marks that occur on the surface of either the upper or lower support roll 5 .
  • the vibration caused by the fine marks on the support roll 5 and the vibrations of the rolling mills 2A, 2B, 2C, and 2D resonate at a predetermined rolling speed, the fine marks gradually become clearer. Vibration of the rolling mills 2A, 2B, 2C, and 2D increases. Therefore, in the embodiment of the present invention, frequency analysis is performed on the vibration data at regular time intervals (every data acquisition cycle), and the relationship between the frequency and the vibration intensity at the regular time intervals is calculated. Then, the frequency is converted into a standard pitch based on the rolling speed, and the relationship between the standard pitch and the vibration intensity is generated and displayed as a vibration map so that it can be monitored over time.
  • the vibration data includes many other factors, such as the meshing frequency of bearings and gears, that generate constant pitch vibration, so it is not possible to obtain a clear vibration peak with chatter marks from the beginning. . Therefore, a method of principal component analysis may be used to generate a deviation component map in which vibration peaks of chatter marks are sharply distinguished from other factors.
  • Example 1 a tandem rolling mill consisting of five rolling mills (five stands) was used, and a vibrometer consisting of a piezoelectric element was mounted on each of the operator-side and motor-side housing tops of each rolling mill. installed.
  • the test materials range from ultra-low carbon steel to high-strength steel, with a thickness of 2 mm to 5 mm on the entry side, a thickness of 0.6 mm to 2.4 mm on the delivery side, and a width of 850 mm to 1880 mm for multiple coils. board.
  • Abnormal vibrations that generate chatter marks were identified based on vibration data measured in the housing of the rolling mill of the final stand (5th stand located furthest downstream in the rolling direction of the steel plate).
  • the data sampling time was set to 0.2 sec
  • the data acquisition period was set to 1 sec
  • the vibration data was collected by the data collection unit 11 .
  • the vibration data (first analysis data) Fourier-transformed by the frequency analysis unit 12 is converted into vibration intensity (second analysis data) at the standard pitch in the data conversion unit 13 .
  • Example 1 of the two vibrometers installed on the final stand, the vibrometer installed on the upper part of the housing on the operator side was used to detect abnormalities.
  • the principal component analysis unit 15 calculates outlier components for the vibration intensity for each standard pitch generated by the data conversion unit 13, and the map generation unit 14 generates an outlier component map.
  • frequencies were selected every 5 Hz and these frequencies were used as reference frequencies.
  • the standard rolling speed was set at 600 m/min. As a result, 201 pitches were set as standard pitches.
  • FIG. 3 is a diagram showing a deviation component map generated based on the vibration data of the final stand and the rolling speed during operation as an example of the deviation component map in Example 1.
  • FIG. 3 about two weeks after the completion of the collection of the reference vibration data, that is, about 9 days in the rolling period and about 5600 km of rolling length, principal component analysis and extraction of outlier components were performed on the vibration data. data was thinned out to be every 100 sec. Since FIG. 3 also includes data when passing through the welding point where the front and rear coils are joined, it can be confirmed that large vibrations occur occasionally over the entire pitch.
  • the vibration intensity increases over time. It can be seen that the abnormal vibration grows with the passage of time. In fact, as a result of continuing rolling even after collecting this data, chatter marks were generated at the corresponding standard pitch one day later.
  • the rolling mill used in Example 2 was a tandem rolling mill consisting of four stands, and a vibrometer consisting of a piezoelectric element was attached to each of the operator-side housing upper part and the motor-side housing upper part of each stand.
  • the steel type, steel plate thickness, and plate width are the same conditions as in Example 1, and the amount of rolling is about the same as in Example 1.
  • Abnormal vibrations that cause chatter marks are identified based on data from a vibrometer installed on the upper part of the housing on the operator side of the housing of the third rolling mill (third stand) counted from the upstream side in the rolling direction of the strip. went.
  • the data sampling time, data acquisition period, and reference frequency were the same conditions as in the first embodiment. However, vibrations above the frequency considered undetectable due to the characteristics of the housing are ignored.
  • FIG. 4 is a diagram showing an example of an outlier component map in Example 2. Specifically, without limiting the rolling speed conditions during operation, it was obtained from operation data including all rolling speeds. It is an example of an outlier component map. In FIG. 4, the degree of deviation is indicated by shading. In this outlier component map, the time when chatter marks did not occur at all and the time when chatter marks occurred are shown in the drawing. In the principal component analysis, the data for one day after the replacement of the support roll was used as the reference vibration data. At that time, the normal vibration data is obtained by dividing the rolling speed by 50 mpm (m / min), converting the reference frequency into a standard pitch using each divided rolling speed, and standard pitch for each rolling speed division It was set.
  • a principal component (reference data) was derived for each rolling speed category.
  • a set contribution ratio was set to "0.5" for each rolling speed, and a plurality of principal components to be extracted as reference data were selected for each rolling speed category.
  • the principal components associated with the rolling speed categories are stored in the principal component analysis unit 15 .
  • the principal component analysis unit 15 calculated the deviation component corresponding to each standard pitch for the vibration data (second analysis data) of the rolling mill in operation.
  • the principal components corresponding to the rolling speed during operation are selected, and the selected principal components are used to calculate the data during operation for each rolling speed at any time.
  • the degree of deviation of the standard pitch may take negative values, but these are displayed as "0" in FIG.
  • FIG. 5 is a diagram showing a deviation component map generated from vibration data during operation acquired by limiting the conditions of rolling speed of 800 mpm to 850 mpm in Example 2.
  • FIG. 5 By creating and displaying a deviation component map that limits the rolling speed as shown in FIG. becomes possible.
  • FIG. 3 exemplifies a case where three-dimensional display is performed using color densities associated with outlier components, but the present invention is not limited to this.
  • a method of displaying using a color specified for each vibration intensity, or a method of performing a three-dimensional display using the color shading and a method of displaying using a color specified for each vibration intensity It is possible to display such as using. With these methods, it is possible to judge whether the mark of the support roll has progressed or the like with respect to the vibration peak that increases with the passage of several hours to several days at a pitch that is not clear as vibration at first.
  • the metal strip S is a cold-rolled steel plate, but the metal strip S may be a stainless steel material or a hot-rolled steel plate.
  • the rolling mills 2A, 2B, 2C, and 2D may not have the same configuration, and for example, a 4-high rolling mill and a 6-high rolling mill may coexist as rolling mill types.
  • Example 3 of the present invention using the tandem rolling mill used in Example 1, abnormal vibration of the rolling mill was detected under the same conditions as in Example 1. Note that, unlike the above-described Embodiments 1 and 2, the present embodiment 3 does not use the principal component analysis section 15, but based on the analysis data of the vibration intensity for each pitch generated by the data conversion section 13, the map generation section 14 is an example of generating a vibration map.
  • Example 3 as in Example 1, the data collection unit 11 acquired data from a vibrometer installed on the upper part of the housing on the operator side of the final stand.
  • the data sampling time was set to 0.2 sec, and vibration data obtained by converting the acceleration obtained from the vibration meter into vibration velocity was obtained.
  • the frequency analysis unit 12 obtains the first analysis data consisting of the vibration intensity for each frequency by performing a Fourier transform on the time-series vibration data.
  • frequencies were selected every 5 Hz in the frequency band from 0 Hz to 1000 Hz with respect to the sampling frequency of the vibrometer, which was 2000 Hz, and these frequencies were used as reference frequencies.
  • the standard rolling speed is set to 600 m / min, 201 standard pitches are set, and data (second analysis data) regarding the vibration intensity for each pitch is acquired for each data acquisition cycle.
  • a vibration map is generated for the second analysis data in which the magnitude of the vibration intensity obtained in the data conversion step is represented by grayscale shading.
  • a vibration map generated in this manner is shown in FIG. In FIG. 11, the vibration intensity for each standard pitch is arranged in chronological order, with the point of time at which the support rolls of the tandem rolling mill were replaced in advance as the origin of time indicated by the horizontal axis.
  • FIG. 12 is a diagram showing an example of a vibration map for the first analysis data created by arranging the vibration intensity for each frequency in chronological order.
  • the magnitude of vibration intensity for each frequency of vibration is displayed by color shading.
  • the frequency band corresponding to the pitch of 33 mm in which chatter marks were detected in Example 3 was approximately 50 Hz or more and 100 Hz or less although it varied depending on the rolling speed.
  • the vibration intensity tends to be high at frequencies near 50 Hz and 250 Hz in the period from the start time (0 second) to 6,000 seconds. However, after 15,000 seconds from the start time, the frequencies with high vibration intensity are in the frequency band of 100 Hz or more and 150 Hz or less. Furthermore, after 20,000 seconds from the start, the vibration intensity tends to increase in the frequency band of 50 Hz or more and 100 Hz or less corresponding to the pitch of 33 mm where chatter marks were detected in Example 3, but 150 Hz or more and 200 Hz or less. The vibration intensity in the frequency band of is also increasing. In addition, although the vibration intensity tends to be high in the frequency band of 150 Hz or more and 200 Hz or less, there is a large fluctuation in the vibration intensity over time in that frequency band. It was difficult to distinguish.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

圧延機の周辺設備から生じるノイズ等による誤検出を防ぎ、精度よく異常振動を抽出して評価する。 圧延機の異常振動検出方法は、圧延機の振動データを収集する収集ステップと、振動データの周波数解析を行い、周波数毎の振動強度を示す第1解析データを生成する周波数解析ステップと、圧延速度に基づいて、第1解析データをピッチ毎の振動強度を示す第2解析データに変換するデータ変換ステップと、複数の第2解析データを時系列に沿って並べた振動マップを生成するマップ生成ステップと、を備える。

Description

圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法
 本発明は、鋼板を所定の板厚にする圧延機に生じる振動を検出する方法に関し、特に、鋼板表面に欠陥を生じさせる圧延機の異常振動を検出する方法、異常検出装置、圧延方法および金属帯の製造方法に関するものである。
 一般的に、自動車や飲料缶等に使用される鋼板は、連続鋳造、熱間圧延及び冷間圧延を施され、焼鈍工程と鍍金工程とを経た後に、各々の用途に即して加工される。冷間圧延工程は、製品としての鋼板板厚を決定する最終工程である。鍍金前の鋼板表面が鍍金後の最終製品の表面を決定するため、冷間圧延工程で表面欠陥を防止する機能が求められる。
 冷間圧延工程で発生する表面欠陥の一つに、チャタマークが挙げられる。チャタマークは、金属帯の幅方向に延びる線状のマークが金属帯の長手方向に周期的に現れる模様であり、主に圧延機の振動(チャタリング)により発生するとされている。非常に軽度のチャタマークは、圧延後の目視検査や板厚測定等で判明せず、鍍金工程後に初めて判明するため、生産性を大きく阻害する要因となる。また、特に缶用鋼板や電磁鋼板等の薄物材料では、チャタリングによる板厚、張力の急激な変動により、板が破断するなどの現象が発生し生産を阻害することが知られている。
 従来から、生産性の阻害や表面欠陥の防止の観点から、種々のチャタリングの検出方法及びチャタリング防止法が開発されている(例えば特許文献1ないし3参照)。特許文献1には、振動検出器が圧延機に取り付けられ、振動検出器により得られた振動および圧延パラメータが周波数解析されることが開示されている。振動発生要因ごとに発生しうる基本周波数を同時に計算し、上記周波数解析結果のうち、発生原因ごとに発生しうる基本周波数の整数倍の周波数において設定値を超えた場合にチャタリングと判定するチャタリング検出方法が記載されている。
 特許文献2および3では、圧延機本体だけでなく、各スタンド間および冷間圧延機の入出側に配置され、一定角度以上金属板が巻きついているロール(小径ロール)に振動検出器を配置し、得られた振動値の周波数解析を行い、鋼板の弦振動周波数に一致した周波数において閾値を超えた場合にチャタリングと判定する検出方法、および張力を制御して弦振動周波数を圧延機の基本周波数と一致しないように制御するチャタリング防止法が記載されている。
特開平08-108205号公報 特開2016-153138号公報 特開2016-2582号公報
 しかしながら、特許文献1の場合、圧延機の周辺設備から生じるノイズ及び圧延機本体に設置された振動源から生じる振動も同時に検出してしまい、誤検出が多く発生する。また、特許文献2および3の場合、弦振動による振動の発生を抑制することができるが、それ以外を振動源とする振動を検出することが困難である。さらに、チャタリングが発生する周波数を予め特定することは困難であり、一定の周波数帯における振動が大きくなってから初めてチャタリングの周波数を認識できることが多い。そのため、予め特定の周波数に着目して、その周波数に対応する振幅等に対応した閾値を設定してもチャタリングを精度よく検出することが難しい。特に、連続式冷間圧延機(タンデム圧延機)ではスタンドごとに金属帯の搬送速度(圧延速度)が異なる。これにより、スタンドごとにワークロールの回転速度が異なり、複数の周波数の振動が重畳されることで、チャタリングの検出が困難になる。すなわち、従来技術のように、予めチャタリングの周波数を特定して、その周波数帯における振動強度を検出する方法では、微小な振動に起因するチャタマークの発生を必ずしも防止できないという問題があった。
 本発明は、上記課題に鑑みてなされたものであって、チャタマークを発生させる異常振動を精度よく検出する圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法を提供することを目的とするものである。
[1]1対のワークロールと前記ワークロールを支持する複数の支持ロールとを有する圧延機の異常振動検出方法であって、前記圧延機の振動データを収集する収集ステップと、前記振動データの周波数解析を行い、周波数毎の振動強度を示す第1解析データを生成する周波数解析ステップと、圧延速度に基づいて、前記第1解析データをピッチ毎の振動強度を示す第2解析データに変換するデータ変換ステップと、複数の前記第2解析データを時系列に沿って並べた振動マップを生成するマップ生成ステップと、を備えた圧延機の異常振動検出方法である。
[2]前記第2解析データに対して正常な状態を示す基準データを用いた主成分分析を行い、前記第2解析データの前記基準データに対する射影の残渣として算出されるピッチ毎の外れ成分を特定する主成分分析ステップをさらに備え、前記マップ生成ステップは、前記主成分分析ステップにより抽出された複数のピッチ毎の外れ成分を時系列に沿って並べた外れ成分マップを更に生成する[1]に記載の圧延機の異常振動検出方法である。
[3]前記主成分分析ステップにおいて、前記基準データとして用いる複数の主成分は、正常な前記圧延機により圧延を行った際に取得した正常解析データを主成分分析したときに、主成分の寄与率の累積値が基準寄与率以上になるように設定されている[2]に記載の圧延機の異常振動検出方法である。
[4]前記圧延機は、冷間圧延機である[1]ないし[3]のいずれか1項に記載の圧延機の異常振動検出方法である。
[5]1対のワークロールと前記ワークロールを支持する複数の支持ロールとを有する圧延機の異常検出装置であって、前記圧延機の振動データを収集するデータ収集部と、前記振動データの周波数解析を行い、周波数毎の振動強度を示す第1解析データを生成する周波数解析部と、圧延速度に基づいて、前記第1解析データをピッチ毎の振動強度を示す第2解析データに変換するデータ変換部と、複数の前記第2解析データを時系列に沿って並べた振動マップを生成するマップ生成部と、を備えた圧延機の異常検出装置である。
[6]前記第2解析データに対して正常な状態を示す基準データを用いた主成分分析を行い、前記第2解析データの前記基準データに対する射影の残渣として算出されるピッチ毎の外れ成分を特定する主成分分析部をさらに備え、前記マップ生成部は、前記主成分分析部により抽出された複数のピッチ毎の外れ成分を時系列に沿って並べた外れ成分マップを更に生成する[5]に記載の圧延機の異常検出装置である。
[7]上記の[1]ないし[4]のいずれか1項に記載の圧延機の異常振動検出方法を用いて、前記圧延機に対応する監視ピッチを予め設定し、前記マップ生成ステップで生成する振動マップまたは外れ成分マップの前記監視ピッチにおける振動強度が、予め設定された限界振動強度を超えた場合に、前記圧延機の支持ロールを交換する支持ロール交換ステップを含む、圧延方法である。
[8]上記の[7]に記載の圧延方法を用いて、金属帯を製造するステップを含む、金属帯の製造方法である。
 本発明によれば、ピッチ毎の振動強度に変換された複数の第2解析データを時系列に沿って並べた振動マップを作成する。これにより、圧延機の周辺設備から生じるノイズ等による誤検出を防ぎ、精度よく異常振動を抽出して評価することができる。その結果、異常振動を防止あるいは抑制した圧延機の操業を行うことができ、異常振動に起因して金属帯の表面に欠陥が生じることを防止もしくは抑制することができ、外観に優れた金属帯を製造することができる。
本発明の圧延機の異常検出装置が適用される圧延設備の一例を示す模式図である。 本発明の圧延機の異常検出装置の好ましい実施形態を示す機能ブロック図である。 実施例1における外れ成分マップの一例を示す図である。 実施例2における外れ成分マップの一例を示す図である。 実施例2のうち、圧延速度800mpm以上850mpm以下の外れ成分マップの一例を示す図である。 本発明の圧延機の異常検出装置の好ましい他の実施形態を示す機能ブロック図である。 収集ステップにおいて、複数の振動計のうち、いずれか一つの振動計で収集される時系列の振動データの例である。 周波数解析ステップにおいて生成される周波数毎の振動強度の例である。 データ変換ステップで変換されたピッチ毎の振動強度を示す第2解析データ例である。 マップ生成ステップで生成される振動マップの例である。 実施例3における第2解析データに対する振動マップの一例を示す図である。 比較例における第1解析データに対する振動マップの一例を示す図である。
 以下、図面を参照して本発明の実施形態に係る圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法について説明する。図1は本発明の圧延機の異常検出装置が適用される圧延設備の一例を示す模式図である。図1の圧延設備1は、例えば金属帯Sである鋼帯を冷間圧延する冷間圧延設備であり、4つの圧延機2A,2B,2C,2D(4スタンド)が圧延方向に沿って配置されている。各圧延機2A,2B,2C,2Dは、それぞれ同一の構成を有しており、ハウジング3と、ハウジング3内に収容され、金属帯Sを圧延する1対のワークロール4と、ワークロール4を支持する複数の支持ロール5と、ワークロール4を回転駆動させる駆動装置6とを備える。また、金属帯Sの圧延方向で各圧延機2A,2B,2C,2Dの下流側には、圧延される金属帯Sが掛け渡される小径ロール7がそれぞれ設置されている。
 各圧延機2A,2B,2C,2Dのハウジング3には、振動計8A,8B,8C,8Dがそれぞれ取り付けられている。振動計8A,8B,8C,8Dは、圧延機2A,2B,2C,2Dで発生する振動を計測するものであり、例えば加速度センサからなっている。なお、振動計8A,8B,8C,8Dは、圧延機2A,2B,2C,2Dの振動を検出できる位置に設置されるものであればハウジング3に限定されず、例えば各ロールチョック、もしくは、圧延される金属帯Sが掛け渡される小径ロール7等に設置されてよい。
 具体的には、小径ロール7に振動計8A,8B,8C,8Dが設置される場合には、当該振動計8A,8B,8C,8Dにより取得される振動データは、金属帯Sの圧延方向で、前記振動計8A,8B,8C,8Dが設置された小径ロール7の上流側に配置される圧延機2A,2B,2C,2Dの振動と対応するとみなすことができる。本実施形態における圧延速度とは、圧延機2A,2B,2C,2Dにおけるワークロール4の周速度または圧延機2A,2B,2C,2Dの出側における金属帯Sの搬送速度(出側速度)をいう。圧延速度は、振動計8A,8B,8C,8Dが設置される圧延機2A,2B,2C,2D(以下の説明では、振動計8A,8B,8C,8Dが設置される箇所をスタンドと称する場合がある。)ごとに特定される。また、小径ロール7に振動計8A,8B,8C,8Dが設置される場合には、振動計8A,8B,8C,8Dにより取得する振動データは、その上流側に配置される圧延機2A,2B,2C,2Dの圧延速度と対応付けられる。また、本実施形態における標準圧延速度とは、圧延機2A,2B,2C,2Dに対して、それぞれ設定される任意の圧延速度である。標準圧延速度は、チャタリングが発生しやすい圧延機2A,2B,2C,2Dにおける圧延速度として経験的に認識される圧延速度を選択してよい。例えば、最終スタンド2Dの標準圧延速度として、チャタリングが発生しやすい圧延速度800m/min以上1300m/min以下の速度域から、900m/minを選択してよい。その場合、最終スタンド2Dよりも上流側の圧延機2A,2B,2Cにおける標準圧延速度は、最終スタンド2Dに対して設定した標準圧延速度を基準に、標準的に設定されるパススケジュールにしたがって、それぞれ設定すればよい。
 図2は、本発明の圧延機の異常検出装置の好ましい実施形態を示す機能ブロック図である。なお、図2の圧延機の異常検出装置10の構成は、例えばコンピュータ等のハードウェア資源によって構築される。圧延機の異常検出装置10は、チャタマークを発生させる圧延機2A,2B,2C,2Dの異常振動を検出するものであって、データ収集部11と、周波数解析部12と、データ変換部13と、マップ生成部14とを備える。また、異常検出装置10は、後述する主成分分析部15を備えてよい。
 データ収集部11は、各振動計8A,8B,8C,8Dによって検出される振動データを収集する。振動計8A,8B,8C,8Dが加速度センサである場合、データ収集部11には、振動計8A,8B,8C,8Dから振動の加速度データが送られる。データ収集部11は、加速度データを連続的に取得する。そして、データ収集部11は取得した加速度データのうち、予め設定されたデータサンプリング時間(例えば0.2秒の期間)内に測定された加速度データを時間積分して速度データに変換し、これを各時刻つまりデータサンプリング時間毎における振動データとして収集する。その結果、振動データは時系列毎に並べられた振動速度になる。
 また、データ収集部11は、例えばデータサンプリング時間として0.2秒間の測定及び振動データの算出を予め設定されたデータ取得周期(例えば1秒毎)で行う。連続式冷間圧延機におけるデータサンプリング時間は0.1秒以上1秒以下に設定するのが好ましく、データ取得周期は、1秒以上5秒以下に設定するのが好ましい。データサンプリング時間が0.1秒未満の場合には圧延機の振動を特定できるほどのデータが得られない可能性があり、1秒を超えると周波数解析等の計算負荷が高くなる可能性があるので、これらを避けるためである。また、データ取得周期が1秒未満の場合には周波数解析等の計算負荷が高くなり、5秒を超えると異常振動の検出を早期に行うのが困難になる可能性があるので、これらを避けるためである。なお、ここに示す例では、データ収集部11は、各振動計8A,8B,8C,8Dから振動データを収集する場合について例示しているが、いずれか1つの振動計8A,8B,8C,8Dから振動データを収集できるように構成されてよい。いずれかの振動計8A,8B,8C,8Dによって収集される振動データに基づいて、その振動計8A,8B,8C,8Dが設置される圧延機(スタンド)2A,2B,2C,2Dにおけるチャタリングを確実に検出できるからである。なお、振動計8A,8B,8C,8Dには、加速度センサだけでなく、振動を測定可能な位置センサや速度センサを用いてもよい。加速度、速度、変位(変位量)のデータは、時間積分や時間微分により相互に変換できるからである。
 周波数解析部12は、データ収集部11によりデータサンプリング時間内に収集された振動データを周波数解析し、周波数毎の振動強度からなる解析データ(以下、第1解析データと記す場合がある。)をデータ取得周期毎に生成する。周波数解析部12は、例えばフーリエ変換によって周波数毎の振動速度の振幅及び位相を抽出し、各周波数における振動速度の振幅の絶対値を振動強度として抽出する。なお、デジタルデータのフーリエ変換後の周波数は、フーリエ変換するデータの数とサンプリング周波数によって離散的な値となる。
 本実施形態では、周波数解析部12が周波数解析を実行する周波数を複数設定し、これを基準周波数と呼ぶ。基準周波数は、振動計8A,8B,8C,8Dのサンプリング周波数を基準として、サンプリング周波数の1/2以下の周波数帯から、複数の周波数を任意に選択してよい。サンプリング周波数とは、振動計が1秒間に振動(例えば加速度)を計測する回数をいい、使用する振動計の仕様によって異なる。本実施形態では複数の振動計8A,8B,8C,8Dのそれぞれのサンプリング周波数の中で最も低い振動計のサンプリング周波数を代表値として使用してよい。基準周波数は、サンプリング周波数の1/2以下の周波数帯から、20個以上1600個以下の周波数を選択するのが好ましい。基準周波数が20個未満では、チャタリングの発生を検知できない可能性があり、1600個を超えると周波数解析部12による計算負荷が高くなりすぎないようにデータ取得周期を長く設定する必要が生じ、チャタリングの発生を早期に検知できない可能性があるので、これらを避けるためである。基準周波数は、サンプリング周波数の1/2以下の周波数帯から、200個以上800個以下の周波数を選択するのがより好ましい。例えば、周波数解析部12は、振動計8A,8B,8C,8Dのサンプリング周波数を5120Hzとし、周波数5Hz以上2000Hz以下の範囲で5Hz毎(計400個)に基準周波数を設定し、基準周波数ごとに振動強度を解析する。なお、周波数解析部12は、振動データを周波数毎の振動強度に解析できるものであればフーリエ変換に限定されず、ウェーブレット変換や窓フーリエ変換などの公知の周波数解析手法を用いることができる。その場合にも基準周波数の設定は上記と同じ方法を用いてよい。
 データ変換部13は、圧延速度に基づいて、基準周波数毎の振動強度の解析データつまり第1解析データをピッチ毎の振動強度(第2解析データ)に変換する。データ変換部13は、振動計8A,8B,8C,8Dが設置される圧延機2A,2B,2C,2Dごと(振動計8A,8B,8C,8Dと対応する圧延機2A,2B,2C,2Dごと)に、基準周波数に対応する振動強度を示す第1解析データを、ピッチ毎の振動強度を示す第2解析データに変換する。ここで、本実施形態におけるピッチとは、振動の周波数に対応付けられた、金属帯Sの長手方向の距離または圧延機2A,2B,2C,2Dのワークロール4の周方向距離に対応する指標である。つまり、ピッチとは、データ変換部13での上述したデータ変換の結果、金属帯Sの長手方向やワークロール4の周方向で、互いに隣接することになった振動ピークの間隔を意味する。具体的には、ピッチP(mm)は、圧延速度V(m/min)と振動の周波数f(Hz)を用いて、以下の式により関係づけられる。
   P=(1000×V)/(f×60)     ・・・(1)
  なお、上記の「圧延速度に基づいて」とは、第1解析データをピッチ毎の振動強度(第2解析データ)に変換する際に、式(1)に示すように圧延速度Vを用いて変換することを意味している。
 データ変換部13には、標準圧延速度に対応するピッチとして標準ピッチが記憶されている。標準ピッチとは、周波数解析部12が実行する周波数解析の基準周波数fと、標準圧延速度Vとを用いて、上記の(1)式から計算されるピッチをいう。このようにして設定される標準ピッチは、基準周波数に対応する複数の離散的な数値列である。本実施形態で標準ピッチを用いる理由は以下の通りである。すなわち、圧延機2A,2B,2C,2Dにより金属帯Sを圧延する場合の圧延速度は、必ずしも一定ではなく、1つの金属帯Sを圧延する際にも金属帯S内で圧延速度が変化する。そのため、同一のピッチで生じる振動であっても、圧延速度が異なると、異なる周波数の振動として計測される。この場合、複数の周波数帯の振動が重畳していると、圧延速度が変化した場合に、振動の原因が同一のものか否かが明確には把握できなくなる。そこで、同一の振動源から発生し、圧延速度に応じて異なる周波数で観測される振動現象を、統一した指標を用いて評価するために標準ピッチを設定する。すなわち、一定のピッチで振動を発生する振動源に対して、圧延速度が異なるために異なった周波数の振動として観測される振動挙動を、標準圧延速度に対応する振動挙動に換算し、これをピッチごとの振動強度として表したものである。これにより、実際に操業中に取得される任意の圧延速度における振動強度を、標準ピッチに対応する振動強度という一定の指標により評価することができる。
 そして、データ変換部13は、内挿又は外挿等のデータ補間を行うことにより、基準周波数毎の振動強度(第1解析データ)を標準ピッチ毎の振動強度(第2解析データ)に変換する。このとき、内挿は線形内挿を用いることができ、周波数成分が「0」の直流成分に関しては「0」として内挿する。また外挿となる周波数に関してはすべて「0」とおく。これにより、金属帯毎に圧延速度が異なっていても、異常が発生している周波数を標準ピッチという一定の指標で評価できる。なお、以下の説明では、特定のピッチに対応した振動の異常を判定する観点から、「ピッチ」という場合は、基準周波数と標準圧延速度により対応付けられた「標準ピッチ」の意味として用いる。すなわち、特に断らない限り、「ピッチ」は「標準ピッチ」と同義であるものとする。
 ここで、圧延機2A,2B,2C,2Dに設置した振動計8A,8B,8C,8Dにより計測される振動について説明する。振動計8A,8B,8C,8Dでは、ワークロール4などの回転に起因した振動と、圧延機2A,2B,2C,2Dの固有周期の振動とが重畳されて計測される。前者による振動は圧延速度に応じて変化し、後者による振動は圧延速度に依存しない振動として計測される。そのため、圧延速度が変化すると、ワークロール4などの回転に起因した振動については、振動計8A,8B,8C,8Dにより計測される振動の周波数が変化する。一方、圧延機2A,2B,2C,2Dの固有周期の振動に対応する振動強度については、振動の周波数には大きな変化がないものの、振動強度の大きさ(振幅)が変化する場合が多い。このような圧延機の振動の特徴から、特定の周波数に着目して、その周波数における振動強度に基づいて圧延機の異常振動を検出する方法では、圧延機2A,2B,2C,2Dの固有周期の振動に対応した異常を検出することができても、圧延機2A,2B,2C,2Dにおけるワークロール4、支持ロール5、およびそれらの軸受部などの回転体に関連する異常を検出するのが困難であった。これに対して、本実施形態は、圧延速度が異なる場合であって、標準ピッチ毎の振動強度に換算するので、特定のピッチで発生するような回転に起因した振動系の異常を検知することが容易になる。
 マップ生成部14は、データ変換部13により生成されるピッチ毎の振動強度に変換された複数の第2解析データを時系列に沿って並べた振動マップ(後述する図3参照)を作成する。このような振動マップを生成し表示することにより、チャタマークの原因となる圧延機2A,2B,2C,2Dの回転体に起因する異常振動の発生又は予兆を検出することができる。特に、異常振動が発生または進展する場合に、振動マップを参照することによって、特定のピッチに対応する振動強度が時間の経過とともに増加する挙動を視覚的に捉えることができる。そのため、振動計8A,8B,8C,8Dにより測定される現時点の振幅情報のみによる検出方法に比べて、異常振動の発生を明確に認識することができる。なお、振動マップは、データ取得周期ごとに生成されるピッチ毎の振動強度を、時系列に沿って並べて生成するのが好ましい。ただし、すべての振動強度をデータ取得周期ごとに並べる必要はなく、一定周期ごとの振動強度を間引いて表示するようにしてよい。
 本実施形態においてマップ生成部14により振動マップを生成するのは次の理由による。すなわち、チャタマークを発生させるチャタリング(圧延機2A,2B,2C,2Dの振動)には、圧延機2A,2B,2C,2Dを構成する機器の回転運動に起因して、一定のピッチで発生するものが多い。例えば、圧延機2A,2B,2C,2Dを駆動する減速機に疵が生じた場合には、圧延速度に応じて振動の周波数は変化するものの、圧延速度が変化してもピッチは一定となる。また、支持ロール5の円周方向に不均一な形状が形成された場合には、具体的には、例えば支持ロール5が多角形形状に摩耗あるいは変形した場合には、圧延速度に応じて振動の周波数は変化するものの、支持ロール5の表面のチャタマークのピッチは圧延速度によって変化しない。したがって、チャタマークのピッチを把握し振動強度を監視し続ければ異常振動の発生等を検出することができる。しかしながら、実際には、支持ロール5の表面の不均一な形状(微細マークなど)は、圧延機2A,2B,2C,2Dに支持ロール5を組み入れる前の時点では、支持ロール5の表面には見えず、あるいは、現れておらず、予めチャタマークのピッチを予測することはできない。また、回転運動に起因した異常振動といっても、回転体の表面に疵が発生した場合と、回転体が多角形形状に変化した場合とでは、異常振動として観測されるピッチが異なるため、予めチャタマークのピッチを予測することはできない。
 そこで、本願発明では、振動データを一定時間間隔(データ取得周期)で周波数解析及びデータ変換を行い、マップ生成部14において、ピッチと振動強度との関係を時系列に並べた振動マップを生成することとした。その結果、チャタマークのピッチの振動強度が時間経過とともに徐々に大きくなっていくことを振動マップから視覚的に把握することができる。つまり、予めチャタマークのピッチを予測できないとしても、振動マップ上の振動強度の変化を視覚的に捉えることによって異常振動の発生を把握し、また検出することができるようになる。このような振動マップは圧延機2A,2B,2C,2Dに設置される振動計8A,8B,8C,8Dごとに生成される。また、振動強度は波長(ピッチ)と時刻に依存するため、それぞれの振動マップは3次元での表示となる。マップ生成部14は、振動強度の値を区分すると共に、各区分に色を割り当て、ピッチを縦軸、時間を横軸とした振動マップを生成してもよい。マップ生成部14により生成された振動マップは、表示装置20により圧延機2の操業を管理する操作室などに表示される。振動マップを参照することにより、特定のピッチに対応した振動強度が大きいかどうかが判別できるため、異常振動を早期に検出できる。
 なお、圧延機2A,2B,2C,2Dには、振動が生じやすい圧延速度が存在する場合がある。例えば、圧延機2A,2B,2C,2Dの回転体の回転運動に起因する振動と、圧延機2A,2B,2C,2Dの固有周期の振動に起因する振動とで共振が生じる場合などである。このような場合には、振動マップが表示する内容は圧延速度に応じて選択できることが好ましい。これらの手法により、振動マップ上の特定のピッチにおいて、当初は振動として明瞭でない振動ピークにおいて、数時間から数日の時間経過とともに大きくなる振動ピークに関しては、支持ロール5上のマークが進展していると判断することができる。
 さらに、マップ生成部14は、上述した振動マップを生成する機能に加えて、データ変換部13が生成した標準ピッチに対応する振動強度の第2解析データに対して主成分分析を行い、主成分分析の結果に基づいて外れ成分マップを生成する機能を有しても良い。
 圧延機の異常検出装置10は、データ変換部13で変換された標準ピッチ毎の振動強度の第2解析データに対して正常な状態を示す基準データを用いた主成分分析を行い、第2解析データの基準データに対する射影(評価データ)の残渣として算出されるピッチ毎の外れ成分を特定する主成分分析部15をさらに備えてよい。評価データとは、観測データ(本実施形態では、第2解析データ)を主成分ベクトルにより構成される空間に射影することにより得られるデータをいう。すなわち、評価データは、観測データを複数の主成分ベクトルのそれぞれに方向に射影されたスカラー量により特定され、主成分ベクトルの数と同数のスカラー量の情報によって構成される。主成分分析に適用する主成分ベクトル(基準データ)については、後述する。なお、「主成分分析」は、相関のある多数の変数から相関のない少数で全体のばらつきを最もよく表す主成分と呼ばれる変数を合成する解析と、予め設定された主成分ベクトルにより構成される空間に対して、観測データの射影を算出する演算との両者の意味で使用される場合があるが、本実施形態の主成分分析部15が実行する主成分分析は後者の意味で用いられるものとする。すなわち、本実施形態における主成分分析部15は、予め設定された正常な状態を表す主成分ベクトル(基準データ)により構成される空間に対して、第2解析データの射影(評価データ)を算出する機能を備え、第2解析データと第2解析データの射影(評価データ)との差を外れ成分として特定する。
 主成分分析部15が行う主成分分析に用いる主成分ベクトルとして設定される第1主成分から第i主成分(基準データ)は、圧延機2A,2B,2C,2Dが異常振動を発生していない正常時に得られた標準ピッチ毎の振動強度(基準振動データ)に基づき設定される。その基準振動データに対して、後述する主成分導出部16で主成分分析を行って基準データを生成する。なお、主成分導出部16が行う主成分分析は、相関のある多数の変数から相関のない少数で全体のばらつきを最もよく表す主成分ベクトルを合成する解析を意味する。圧延機2A,2B,2C,2Dが異常振動を発生していない正常時とは、標準圧延速度において、圧延機2A,2B,2C,2Dのいずれにおいても異常振動が発生していない状態をいう。なお、異常振動については後述する。基準振動データは、例えば、支持ロール5が新品に交換されてから12時間以内の圧延時に測定された振動データに対して、上述した周波数解析を行い、また周波数解析を行ったデータをピッチ毎の振動強度に変換したものである。基準振動データは、異常振動が生じない正常な振動挙動を解析したデータとして、正常解析データと称される場合がある。また、基準振動データは、支持ロール5が新品に交換されてから24時間以内の圧延時に測定された振動データを解析したものであってよい。支持ロール5が多角形形状に摩耗するまでには、少なくとも2日以上を要し、異常振動は支持ロール5が新品に交換されてから2日間程度は発生しないことが経験的に分かっているからである。基準振動データを取得する際のデータサンプリング時間は、操業中(支持ロール5が新品に交換されてから24時間を経過した以降)に異常検出を行う場合のデータサンプリング時間と同一に設定するのが好ましい。データ取得周期については、基準振動データを取得する場合と、操業中の振動データを取得する場合とで、異なった周期に設定してもよい。
 基準振動データは、データサンプリング時間内で取得される標準ピッチ毎の振動強度を一つのデータセットとして、正常時に取得されるデータ取得周期ごとに生成され、したがって、複数のデータセットを含んでいる。基準振動データに含まれるデータセットの数は30,000個以上200,000個以下が好ましい。このようにして取得した基準振動データを用いて、標準ピッチを変数とする主成分分析により主成分ベクトルが導出され、これを基準データと称する。具体的には、後述する主成分導出部16が行う主成分分析により、相関のある複数の基準振動データを相関のない少数で全体のばらつきを最もよく表す主成分を導出し、基準振動データの特徴量を代表するための寄与率の高い主成分から順に累積して寄与率の累積値を算出し、算出した寄与率の累積値(累積寄与率)が予め設定した値に達するまでに選択されるi個の主成分を基準データとする。ここでは、予め設定する累積寄与率を、基準寄与率または設定寄与率と称する。本実施形態における基準寄与率は、1(100%)以下の数値から任意に設定できる。通常のタンデム圧延機では、基準寄与率は0.4(40%)以上0.7(70%)以下で設定するのが好ましく、より好ましくは0.6(60%)以上0.7(70%)以下である。ここで、基準寄与率は、基準振動データの振動挙動を主成分空間上で再現する程度(再現性)に影響を与える指標である。基準寄与率が大きすぎると、基準振動データの振動挙動を主成分空間上で精度よく再現できるものの、基準振動データに含まれる計測ノイズなども主成分空間上で再現されてしまう。一方、基準寄与率が小さすぎると、基準振動データに含まれる計測ノイズの影響を排除できるものの、基準振動データの振動挙動に関する特徴が主成分空間において失われる傾向が現れる。基準寄与率の好適な範囲は、使用する圧延機や鋼板の圧延条件に依存するものの、タンデム圧延機の異常振動を検出する目的からは上記範囲に設定するのが好ましい。
 基準データの導出にあたっては、図6に示すように、圧延機の異常検出装置10のデータ変換部13で生成される基準振動データ(正常解析データ)を用いて主成分を導出する主成分導出部16を備えるようにしてよい。主成分導出部16は、相関のある複数の基準振動データを相関のない少数で全体のばらつきを最もよく表す主成分ベクトルを特定する解析を行う。主成分導出部16で得られた第1主成分から第i主成分(基準データ)は図示しない記憶部に一時的に保存され、その後の操業時に主成分分析部15に送られて、主成分分析部15により操業中に取得される第2解析データの第1主成分から第i主成分への射影(評価データ)を算出するようにしてよい。また、予め圧延機2A,2B,2C,2Dにおいてチャタマークが発生しやすいピッチが分かっている場合には、主成分導出部16における主成分の導出にあたって、そのピッチと同程度の標準ピッチを予め複数選択し、主成分分析部15における主成分分析に用いる変数の数を減じてもよい。
 主成分分析部15は、主成分導出部16により導出された第1主成分から第i主成分(基準データ)を用いて、操業中に取得される標準ピッチ毎の振動強度を示す第2解析データに対して評価データを算出するための主成分分析を行う。具体的には、主成分分析部15は、操業中に取得される標準ピッチ毎の振動強度を示す第2解析データを用いて、基準データである第1主成分から第i主成分への射影、および当該第2解析データから基準データの主成分への射影を差し引いた残渣部分に分解し、残渣部分を外れ成分として特定する。外れ成分は外れ度やQ統計量と称される場合がある。主成分分析部15が算出する外れ成分は、正常時の振動挙動からのズレを表す指標となるため、外れ成分を監視することによって圧延機2A,2B,2C,2Dの異常振動を容易に検知できる。
 そして、マップ生成部14は、主成分分析部15が算出したピッチ毎の外れ成分に基づいて外れ成分マップを生成する機能を有してよい。すなわち、マップ生成部14は、主成分分析部15が算出したピッチ毎の外れ成分を時系列に沿って並べた振動マップを生成する。本実施形態では、このようにして生成された振動マップを外れ成分マップと呼ぶ。外れ成分マップは、主成分分析部15で得られた外れ成分を時系列に並べたマップであるが、外れ成分は負の値として算出される場合があるため、そのような外れ成分は「0(ゼロ)」として表示するのが好ましい。外れ成分が負の場合には、操業中の振動が正常時に比べて小さいことを意味しており、異常振動を表すものではないからである。外れ成分マップによって異常振動が発生していることを視覚的に認識しやすくなる。
 マップ生成部14は、外れ成分の値を区分すると共に、各区分に色を割り当て、ピッチを縦軸、時間を横軸とした外れ成分マップ(後述する図4及び図5参照)を生成してもよい。マップ生成部14により生成された外れ成分マップは、表示装置20により圧延機2の操業を管理する操作室などに表示される。外れ成分マップを参照することにより、外れ成分が大きいかどうかが判別できるため、異常振動を早期に検出できる。あるいは、マップ生成部14は、x軸を時刻とし、y軸をピッチとし、z軸を外れ成分とした3次元の外れ成分マップ(後述する図3参照)を生成してもよい。これにより、異常振動が徐々に大きくなる傾向を容易に把握することが可能となる。
 図1及び図2を参照して本発明の実施形態の作用について説明する。まず、冷間圧延時(操業時)における圧延機2A,2B,2C,2Dの振動が振動計8A,8B,8C,8Dによって計測され、データ収集部11において振動データが収集される(収集ステップ)。図7は、収集ステップにおいて、振動計8A,8B,8C,8Dのうち、いずれか一つの振動計8A,8B,8C,8Dで収集される時系列の振動データの例である。これは、データサンプリング時間0.2Secの間に、振動計8A,8B,8C,8Dから取得した加速度を振動速度に変換して表したものである。その後、周波数解析部12により振動データの周波数解析が行われ、周波数毎の振動強度を示す第1解析データが生成される(周波数解析ステップ)。図8は、周波数解析ステップにおいて生成される周波数毎の振動強度の例である。さらに、データ変換部13において、第1解析データがピッチ毎の振動強度を示す第2解析データに変換される(データ変換ステップ)。
 図9は、データ変換ステップで変換されたピッチ毎の振動強度を示す第2解析データの例である。データ変換ステップによる第1解析データから第2解析データへのデータ変換はデータ取得周期ごとに行われる。その後、ピッチ毎の振動強度に変換された複数の振動データ(第2解析データ)を時系列に沿って並べた振動マップが生成され、また、その振動マップが随時更新される(マップ生成ステップ)。図10は、マップ生成ステップで生成される振動マップの例である。これはピッチ毎の振動強度を表す第2解析データを、予め設定した時間間隔ごとに時系列に沿って並べたものである。
 上記実施の形態によれば、チャタマークを発生させる圧延機2A,2B,2C,2Dの異常振動を、精度よく検出することができる。また、データ変換ステップにおいて生成されたピッチ毎の振動強度の第2解析データに対して正常な状態を示す基準データを用いた主成分分析を行う(主成分分析ステップ)。これにより、第2解析データの基準データに対する射影の残渣としてピッチ毎の外れ成分が算出される。このように、設備本来が持つ特性、たとえば圧延機2A,2B,2C,2Dの歯車のかみ合いにより自然に発生する振動成分や、圧延機2A,2B,2C,2Dのベアリングの振動特性を正常時の基準振動データの特徴量を代表する主成分ベクトルとして特定しておくことで、異常のある振動のみを際立たせる解析が可能となる。
 具体的には、圧延機2A,2B,2C,2Dの異常振動は、圧延機2A,2B,2C,2Dの固有振動やベアリング不良、ギアのかみ合い、カップリング不良、もしくはがたつき等による機器の回転に起因する振動が多い。このため、従来の異常振動の検出は、特定周波数の振幅がある一定の閾値を超えるか否かにより行われている。一方、チャタマークが発生する場合、チャタマークが発生する前の時点からチャタマークのピッチに相当する周波数において、微小な振動が発生しており、時間が経つごとに、次第に振動が大きくなり、それに伴って振動に起因する金属帯Sの表面における欠陥が次第に大きく成長していく。すなわち、設備に起因する微小な振動が先ず発生し、その後に金属帯Sの表面にチャタマークが発生する。しかしながら、実際の操業中には、ひとつの金属帯Sの長手方向で圧延速度が変化し、異なる金属帯Sごとでも設定される圧延速度が変化するため、特定の周波数に着目していただけでは異常振動に至る前の時点での微小な振動を検知することが困難であった。これに対して、本実施形態では、周波数毎の振動強度を示す第1解析データを、標準ピッチ毎の振動強度を示す第2解析データに変換し、第2解析データに基づいてマップ生成ステップにおいて、振動マップまたは外れ成分マップを生成する。そのため、特定のピッチに対応した振動が徐々に大きくなっていく状況を早期に視覚的に認識できる。
 上記の圧延機2A,2B,2C,2Dの異常振動検出方法を用いて、圧延機2A,2B,2C,2Dごとに予め監視すべき標準ピッチ(以下、監視ピッチと記す。)を設定し、設定した監視ピッチにおける振動強度が、予め設定された限界振動強度を超えた場合に、圧延機2A,2B,2C,2Dの支持ロール5など圧延機の異常振動の原因となっている回転体を交換するようにしてよい(支持ロール交換ステップ)。監視ピッチは、金属帯Sを圧延した場合に、金属帯Sの表面にチャタマークの発生しやすいピッチであり、これは、経験上あるいは実験によって求めることができる。具体的には、チャタマークは金属帯Sの表面に生じる周期的な模様状の欠陥であるため、金属帯Sの検査工程においてチャタマークのピッチを特定することができる。したがって、検査工程において特定されたチャタマークのピッチを監視ピッチとして設定してよい。監視ピッチは、特定の数値で設定してもよく、あるいは、チャタマークが生じるピッチの数値範囲として設定してもよい。例えば、チャタマークが生じやすいがピッチ30mmである場合に、±10%の数値範囲として、27mm以上33mm以下を監視ピッチに設定してよい。監視ピッチの範囲は、圧延機2A,2B,2C,2Dの操業実績から経験により把握されるチャタマークのピッチのばらつきを考慮して決定すればよい。
 上記の限界振動強度は、圧延機2A,2B,2C,2Dの振動に起因して金属帯Sの表面に生じた欠陥が、金属帯Sの製品として品質上の問題となる可能性のある振動強度を意味している。すなわち、限界振動強度は、圧延機2A,2B,2C,2Dで生じる振動として、許容できる振動強度の上限値を意味している。具体的には、特定のピッチで過大な振動が発生すると、金属帯Sにチャタマークが発生し、金属帯Sの外観上の不良となる可能性がある。そのため、ピッチ毎の振動強度の実績データを予め取得しておき、金属帯Sの製品としての出荷基準と前記振動強度の実績データとに基づいて、金属帯Sの製品として品質上の問題が生じない振動強度の上限値を限界振動強度として設定すればよい。なお、上述した金属帯Sの製品として品質上の問題を生じる可能性のある振動つまり、限界振動強度を超える振動が、本発明の実施形態における圧延機2A,2B,2C,2Dの異常振動に相当している。また、振動が生じていない状態や、振動は生じているが異常振動には至らない状態が、本発明の実施形態における圧延機2A,2B,2C,2Dの正常時や正常な状態に相当している。
 そして、上記のように設定した監視ピッチと限界振動強度とに基づいて、上記の圧延機2A,2B,2C,2Dの異常振動検出方法により振動マップまたは外れ成分マップを生成する。それらの振動マップまたは外れ成分マップにおいて、該当するピッチの振動強度が限界振動強度を超える場合に、圧延機2A,2B,2C,2Dの操業を一旦停止して、異常振動が生じた圧延機2A,2B,2C,2Dの異常振動の原因となっている回転体を交換する。特に、圧延機の異常振動を発生させる原因は多くの場合、圧延機2A,2B,2C,2Dの支持ロール5であることが多いため、異常振動が生じたスタンドの支持ロール5を交換すればよい。これにより、複数の金属帯Sを長期間圧延する場合であっても、特定のピッチにおいて発生する異常振動を防止した圧延機2A,2B,2C,2Dの操業を実現できる。また、このような圧延により、金属帯Sの表面にチャタマークが生じない、外観に優れた金属帯Sを製造することができる。
 さらに、チャタマークが発生する原因となる異常振動の振動源は、上下どちらかの支持ロール5の表面に発生するチャタマークと同一ピッチの微細マークである場合が多い。その場合、支持ロール5上の微細マークに起因する振動と圧延機2A,2B,2C,2Dの振動とが所定の圧延速度で共振すると、前記微細マークが徐々に明瞭になっていくと同時に、圧延機2A,2B,2C,2Dの振動が大きくなっていく。そこで、本発明の実施形態では、振動データを一定時間間隔(データ取得周期ごと)で周波数解析し、その一定時間間隔における周波数と振動強度との関係を算出しておく。そして、その周波数を圧延速度に基づいて標準ピッチに換算し、標準ピッチと振動強度との関係を振動マップとして生成及び表示することで、経時的に監視できるようにした。
 また、振動データには、ベアリングやギアの噛み合い周波数等、一定のピッチの振動を発生させる多くのほかの要因の振動も加わっており、初めから明瞭なチャタマークの振動ピークを得られることはない。そこで、主成分分析の手法を用いてチャタマークの振動ピークをその他の要因から峻別した外れ成分マップを生成するようにしてもよい。
 以下に、本発明の実施例を示す。実施例1で使用したのは5台の圧延機(5スタンド)からなるタンデム圧延機であり、各圧延機のオペレータ側のハウジング上部及びモータ側のハウジング上部のそれぞれに圧電素子から成る振動計を取り付けた。供試材は極低炭素鋼から高張力鋼まで様々であり、入側厚み2mm以上5mm以下、出側厚み0.6mm以上2.4mm以下、鋼板幅は850mm以上1880mm以下のものを複数コイル用いた。また、チャタマークを発生させる異常振動の識別は最終スタンド(鋼板の圧延方向で最も下流に位置する第5スタンド)の圧延機のハウジングにおいて計測された振動データに基づいて行った。具体的には、データサンプリング時間を0.2Secに設定し、データ取得周期を1Secに設定してデータ収集部11によって振動データを収集した。そして、周波数解析部12によってフーリエ変換を行った振動データ(第1解析データ)を、データ変換部13において、標準ピッチにおける振動強度(第2解析データ)に換算した。
 なお、実施例1では、最終スタンドに設置した2台の振動計のうち、オペレータ側のハウジング上部に設置した振動計を用いて異常検出を行った。本実施例では、データ変換部13により生成した標準ピッチ毎の振動強度に対して、主成分分析部15において外れ成分を算出し、マップ生成部14において外れ成分マップを生成した。また、振動計のサンプリング周波数2000Hzに対して0Hzから1000Hzまでの周波数帯において、5Hzごとに周波数を選択し、それらの周波数を基準周波数とした。標準圧延速度は600m/minに設定した。これにより標準ピッチとして201個のピッチが設定された。そして、使用したタンデム圧延機の支持ロールを新品に交換した後の2日間で基準振動データを収集し、主成分導出部16において22個の主成分(基準データ)を導出し、主成分分析部15に記憶させた。基準振動データを収集した後は、タンデム圧延機の操業中の振動データを収集し、主成分分析部15において外れ成分を随時算出し、マップ生成部14において外れ成分マップを随時更新して、表示装置20によって外れ成分マップをタンデム圧延機の操作室内に表示した。
 図3は、実施例1における外れ成分マップの一例として最終スタンドの振動データと操業中の圧延速度に基づいて生成した外れ成分マップを示す図である。なお、図3において、基準振動データの収集を完了した後から約2週間、すなわち、圧延期間約9日間、圧延長約5600kmの振動データについて主成分分析及び外れ成分の抽出を行い、時間軸方向のデータを間引いて100Sec毎とした。図3では、前後のコイルを接合させた溶接点通過時のデータも含まれているので、時折、全ピッチに渡って大きな振動が発生していることが確認できる。また、特定のピッチ(標準ピッチ。図3に、縁が黒く、縁の内側部分が白い矢印で示すピッチ。)において、時間の経過に伴って振動強度が増大していること、つまり、時間の経過に伴って異常振動が成長していることが分かる。実際、本データ採取後も圧延を続けた結果、1日後に該当の標準ピッチでチャタマークが発生した。
 実施例2で使用した圧延機は4スタンドからなるタンデム圧延機であり、各スタンドのオペレータ側のハウジング上部とモータ側のハウジング上部とのそれぞれに圧電素子から成る振動計を取り付けた。鋼種、鋼板厚、板幅は実施例1と同一の条件として、圧延量は実施例1と同程度である。チャタマークを発生させる異常振動の識別は、鋼板の圧延方向で上流側から数えて3台目の圧延機(第3スタンド)のハウジングにおけるオペレータ側のハウジング上部に設置された振動計のデータを基づいて行った。データサンプリング時間、データ取得周期、基準周波数は実施例1と同一の条件とした。ただし、ハウジングの特性により振動を検出できないと考えられる周波数以上の振動は無視している。
 図4は、実施例2における外れ成分マップの一例を示す図であって、具体的には、操業中の圧延速度の条件を限定することなく、すべての圧延速度を含む操業データから得られた外れ成分マップの例である。図4では、外れ度の大小を濃淡によって表示している。この外れ成分マップにおいて、チャタマークが全く発生しなかった時期と、チャタマークが発生した時期とを図中に表示している。主成分分析では、供試材のうち、支持ロールを交換してから1日分のデータを基準振動データとした。その際、正常時の振動データは、圧延速度を50mpm(m/min)ごとに区分し、各区分された圧延速度を用いて基準周波数を標準ピッチに換算し、圧延速度の区分毎に標準ピッチを設定した。これにより圧延速度の区分ごとに主成分(基準データ)が導出された。このとき、圧延速度毎に設定寄与率を「0.5」に設定して基準データとして抽出すべき複数の主成分を圧延速度の区分ごとに選んだ。これにより主成分分析部15には、圧延速度の区分に対応付けられた主成分が記憶された。その後、操業中の圧延機の振動データ(第2解析データ)を対象に、主成分分析部15が各標準ピッチに対応する外れ成分を計算した。なお、主成分分析部15による外れ成分の算出は、操業中の圧延速度に対応した主成分が選択され、選択された主成分を用いて圧延速度ごとの操業時のデータについて随時算出された。ここで、標準ピッチの外れ度は負の値を取ることもあり得るが、これらは「0」として図4に表示している。
 図4において、チャタマークとして現れたピッチにおいて、チャタマークが現れる前に大きな外れ成分が出現している。それ以外の部分においても時折大きな外れ度が現れる場合があるが、時間が経っても常に現れるのはこのピッチであるため、視覚的に異常振動であることが分かる。
 図5は、実施例2のうち圧延速度800mpm以上850mpm以下の条件に限定して取得された操業時の振動データから生成された外れ成分マップを示す図である。図5のような圧延速度を限定した外れ成分マップを作成し表示することにより、チャタマークが発生する以前より該当振動が異常であることを判定することができ、チャタマーク発生前に対策を採ることが可能となる。
 本発明の実施形態は、上記実施形態に限定されず、種々の変更を加えることができる。例えば、図3において、外れ成分に対応付けた色の濃淡を用いて3次元的な表示を行う場合について例示しているが、これに限定されない。振動強度毎に指定した色を用いて表示する方法、または、前記色の濃淡を用いて3次元的な表示を行う方法と前記振動強度毎に指定した色を用いて表示する方法との両方を用いる等の表示を行うことができる。これらの手法により、当初は振動として明瞭でないピッチにおいて、数時間から数日の経過とともに大きくなる振動ピークに関して、支持ロールのマークが進展している等を判断することができる。また、本発明の実施形態では、金属帯Sは冷延鋼板である場合について例示しているが、金属帯Sはステンレス鋼材であってもよいし、熱延鋼板であってもよい。また各圧延機2A,2B,2C,2Dは、同一の構成でなくてよく、例えば圧延機の形式として4段式圧延機と6段式圧延機とが混在していてもよい。
 本発明の実施例3として、実施例1で用いたタンデム圧延機を用いて、実施例1と同様の条件で、圧延機の異常振動の検出を行った。なお、本実施例3は、上記実施例1,2とは異なり、主成分分析部15を用いることなく、データ変換部13により生成したピッチ毎の振動強度の解析データに基づいて、マップ生成部14により振動マップを生成した例である。
 本実施例3においても、実施例1と同様に、データ収集部11により最終スタンドのオペレータ側のハウジング上部に設置した振動計のデータを取得した。データ収集部11が行う収集ステップでは、データサンプリング時間を0.2secとして、振動計から取得した加速度を振動速度に変換した振動データを取得した。周波数解析部12では、時系列の振動データに対してフーリエ変換を行うことにより、周波数毎の振動強度からなる第1解析データを取得した。周波数解析部12が行う周波数解析ステップでは、振動計のサンプリング周波数2000Hzに対して0Hzから1000Hzまでの周波数帯において、5Hzごとに周波数を選択し、それらの周波数を基準周波数とした。データ変換部13が行うデータ変換ステップでは、標準圧延速度を600m/minとして、201個の標準ピッチが設定され、ピッチ毎の振動強度に関するデータ(第2解析データ)をデータ取得周期ごとに取得した。そして、マップ生成部14が行う振動マップ生成ステップでは、データ変換ステップで取得された振動強度の大きさをグレースケールにおける濃淡で表した第2解析データに対する振動マップを生成した。このようにして生成された振動マップを図11に示す。図11では、予めタンデム圧延機の支持ロールを交換した時点を横軸で示す時間の原点として、標準ピッチ毎の振動強度を時系列に並べたものである。
 図11に示す振動マップの例では、振動データの計測を開始した時点(0秒)から6,000秒にかけては、標準ピッチ33mmの付近では、比較的大きな振動が断続的に生じていることが分かるものの、顕著な振動である異常振動には至ってない。しかしながら、開始時点から10,000秒を超えると、標準ピッチ33mmに対応した振動が増大していることが分かる。さらに、開始時点から15,000秒を超えると、標準ピッチ33mm付近の振動が顕著に表れていることが確認できる。そして、その時点(15,000秒)で圧延された金属帯Sの表面の観察からは、標準ピッチ33mmに対応するピッチで金属帯Sの表面にチャタマークが生じていることが確認された。
 次いで、本実施例3による異常振動検出方法を検証するために行った比較例について説明する。比較例では、上記本実施例3で取得した振動データと同じデータを用いて、周波数解析部12による周波数毎の振動強度を取得した。図12は、周波数毎の振動強度を時系列に沿って配置して作成した第1解析データに対する振動マップの一例を示す図である。また、図12には、振動の周波数ごとの振動強度の大きさを、色の濃淡によって表示してある。図12を参照すると、実施例3においてチャタマークが検出されたピッチ33mmに対応する周波数帯は、圧延速度によって変化するものの概ね50Hz以上100Hz以下であった。また、図12のマップからは、開始時点(0秒)から6,000秒では、周波数50Hzと250Hz近傍で振動強度が高い傾向がみられる。しかしながら、開始時点から15,000秒を超えると、振動強度が高い周波数は、100Hz以上150Hz以下の周波数帯となっている。さらに、開始時点から20,000秒を超えると、実施例3においてチャタマークが検出されたピッチ33mmに対応する50Hz以上100Hz以下の周波数帯で振動強度は大きくなる傾向があるものの、150Hz以上200Hz以下の周波数帯における振動強度も増大している。また、150Hz以上200Hz以下の周波数帯で振動強度が高い傾向がみられるものの、その周波数帯では、時間の経過に伴う振動強度の変動が大きく、特定の周波数帯を予め特定して、異常振動を判別することが困難であった。
 以上の結果から、予めチャタリングの発生する周波数や周波数帯を特定し、その周波数や周波数帯における振動強度を検出する方法では、微小な振動に起因するチャタマークの発生を早期に把握するのが困難であった。これに対して、本実施例1ないし3のように、圧延速度に基づいて周波数毎の振動強度を標準ピッチ毎の振動強度に変換し、これを時系列に沿って並べた振動マップを生成すると、金属帯Sごとに圧延条件が異なっても、異常振動が徐々に明瞭になる様子を視覚的に捉えることができる。そのため、圧延機で生じる異常振動を確実に検出できることが分かった。
 1  圧延設備
 2A,2B,2C,2D  圧延機
 3  ハウジング
 4  ワークロール
 5  支持ロール
 6  駆動装置
 7  小径ロール
 8A,8B,8C,8D  振動計
 10 圧延機の異常検出装置
 11 データ収集部
 12 周波数解析部
 13 データ変換部
 14 マップ生成部
 15 主成分分析部
 16 主成分導出部
 20 表示装置
 S  金属帯
 

 

Claims (8)

  1.  1対のワークロールと前記ワークロールを支持する複数の支持ロールとを有する圧延機の異常振動検出方法であって、
     前記圧延機の振動データを収集する収集ステップと、
     前記振動データの周波数解析を行い、周波数毎の振動強度を示す第1解析データを生成する周波数解析ステップと、
     圧延速度に基づいて、前記第1解析データをピッチ毎の振動強度を示す第2解析データに変換するデータ変換ステップと、
     複数の前記第2解析データを時系列に沿って並べた振動マップを生成するマップ生成ステップと、
     を備えた圧延機の異常振動検出方法。
  2.  前記第2解析データに対して正常な状態を示す基準データを用いた主成分分析を行い、前記第2解析データの前記基準データに対する射影の残渣として算出されるピッチ毎の外れ成分を特定する主成分分析ステップをさらに備え、
     前記マップ生成ステップは、前記主成分分析ステップにより抽出された複数のピッチ毎の外れ成分を時系列に沿って並べた外れ成分マップを更に生成する
    請求項1に記載の圧延機の異常振動検出方法。
  3.  前記主成分分析ステップにおいて、前記基準データとして用いる複数の主成分は、正常な前記圧延機により圧延を行った際に取得した正常解析データを主成分分析したときに、主成分の寄与率の累積値が基準寄与率以上になるように設定されている請求項2に記載の圧延機の異常振動検出方法。
  4.  前記圧延機は、冷間圧延機である請求項1ないし3のいずれか1項に記載の圧延機の異常振動検出方法。
  5.  1対のワークロールと前記ワークロールを支持する複数の支持ロールとを有する圧延機の異常検出装置であって、
     前記圧延機の振動データを収集するデータ収集部と、
     前記振動データの周波数解析を行い、周波数毎の振動強度を示す第1解析データを生成する周波数解析部と、
     圧延速度に基づいて、前記第1解析データをピッチ毎の振動強度を示す第2解析データに変換するデータ変換部と、
     複数の前記第2解析データを時系列に沿って並べた振動マップを生成するマップ生成部と、
     を備えた圧延機の異常検出装置。
  6.  前記第2解析データに対して正常な状態を示す基準データを用いた主成分分析を行い、前記第2解析データの前記基準データに対する射影の残渣として算出されるピッチ毎の外れ成分を特定する主成分分析部をさらに備え、
     前記マップ生成部は、前記主成分分析部により抽出された複数のピッチ毎の外れ成分を時系列に沿って並べた外れ成分マップを更に生成する請求項5に記載の圧延機の異常検出装置。
  7.  請求項1ないし4のいずれか1項に記載の圧延機の異常振動検出方法を用いて、
     前記圧延機に対応する監視ピッチを予め設定し、前記マップ生成ステップで生成する振動マップまたは外れ成分マップの前記監視ピッチにおける振動強度が、予め設定された限界振動強度を超えた場合に、前記圧延機の支持ロールを交換する支持ロール交換ステップを含む、圧延方法。
  8.  請求項7に記載の圧延方法を用いて、金属帯を製造するステップを含む、金属帯の製造方法。
PCT/JP2022/004544 2021-03-31 2022-02-04 圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法 WO2022209294A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202280022601.5A CN116997425A (zh) 2021-03-31 2022-02-04 轧机的异常振动检测方法、异常检测装置、轧制方法及金属带的制造方法
MX2023011107A MX2023011107A (es) 2021-03-31 2022-02-04 Metodo para detectar vibracion anormal del tren de laminacion, aparato para detectar anormalidad del tren de laminacion, metodo de laminacion y metodo para producir una tira de metal.
EP22779523.4A EP4282550A4 (en) 2021-03-31 2022-02-04 METHOD FOR DETECTING ABNORMAL VIBRATIONS IN A ROLLING MILL, ANOMALY DETECTION DEVICE, ROLLING METHOD AND METHOD FOR PRODUCING A METAL STRIP
KR1020237031782A KR20230145595A (ko) 2021-03-31 2022-02-04 압연기의 이상 진동 검출 방법, 이상 검출 장치, 압연 방법 및 금속대의 제조 방법
JP2022523333A JP7103550B1 (ja) 2021-03-31 2022-02-04 圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法
US18/283,994 US20240033799A1 (en) 2021-03-31 2022-02-04 Method for detecting abnormal vibration of rolling mill, apparatus for detecting abnormality of rolling mill, rolling method, and method for producing metal strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060119 2021-03-31
JP2021060119 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209294A1 true WO2022209294A1 (ja) 2022-10-06

Family

ID=83458835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004544 WO2022209294A1 (ja) 2021-03-31 2022-02-04 圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法

Country Status (1)

Country Link
WO (1) WO2022209294A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117491000A (zh) * 2023-11-08 2024-02-02 联峰钢铁(张家港)有限公司 一种轧钢过程异常工况的诊断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108205A (ja) 1994-10-06 1996-04-30 Sumitomo Metal Ind Ltd 圧延機のチャタリング検出方法
KR20110070537A (ko) * 2009-12-18 2011-06-24 주식회사 포스코 냉간압연에서의 품질이상 예지 시스템과 그 방법
JP2013111614A (ja) * 2011-11-29 2013-06-10 Jfe Steel Corp 冷間圧延機のチャタリング検出方法及びチャタリング検出装置
JP2016002582A (ja) 2014-06-19 2016-01-12 Jfeスチール株式会社 鋼板のチャタマーク防止方法
JP2016153138A (ja) 2015-02-17 2016-08-25 Jfeスチール株式会社 冷間圧延または調質圧延における振動異常検出方法および装置
JP2020104133A (ja) * 2018-12-27 2020-07-09 Jfeスチール株式会社 冷間圧延機のチャタリング検出方法、冷間圧延機のチャタリング検出装置、冷間圧延方法、及び冷間圧延機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108205A (ja) 1994-10-06 1996-04-30 Sumitomo Metal Ind Ltd 圧延機のチャタリング検出方法
KR20110070537A (ko) * 2009-12-18 2011-06-24 주식회사 포스코 냉간압연에서의 품질이상 예지 시스템과 그 방법
JP2013111614A (ja) * 2011-11-29 2013-06-10 Jfe Steel Corp 冷間圧延機のチャタリング検出方法及びチャタリング検出装置
JP2016002582A (ja) 2014-06-19 2016-01-12 Jfeスチール株式会社 鋼板のチャタマーク防止方法
JP2016153138A (ja) 2015-02-17 2016-08-25 Jfeスチール株式会社 冷間圧延または調質圧延における振動異常検出方法および装置
JP2020104133A (ja) * 2018-12-27 2020-07-09 Jfeスチール株式会社 冷間圧延機のチャタリング検出方法、冷間圧延機のチャタリング検出装置、冷間圧延方法、及び冷間圧延機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117491000A (zh) * 2023-11-08 2024-02-02 联峰钢铁(张家港)有限公司 一种轧钢过程异常工况的诊断方法

Similar Documents

Publication Publication Date Title
KR102398307B1 (ko) 이상 판정 지원 장치
JP2964887B2 (ja) 圧延機のチャタリング検出方法
US6842656B1 (en) Method and device for the process-optimizing regulation of parameters in a production process
WO2022209294A1 (ja) 圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法
WO2021094272A1 (de) Verfahren und system zur ermittlung von zusammenhängen zwischen erfassten produktfehlern und erfassten zustandsvariablen einer produktionsanlage
JP7103550B1 (ja) 圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法
KR101091285B1 (ko) 연속 압연기의 압연 채터링 제어장치 및 제어방법
JP7184223B1 (ja) 圧延機の異常振動検出方法、異常検出装置、圧延方法および金属帯の製造方法
JP2007245215A (ja) 冷間連続圧延設備
EP1198701B8 (en) Method for equipment surveillance
CN116157214A (zh) 轧机的振动预测方法、轧机的异常振动判定方法、金属带的轧制方法及轧机的振动预测模型的生成方法
JP6841264B2 (ja) 冷間圧延における異常振動検出方法
JP5924490B2 (ja) 冷間圧延における異常検出方法および冷間圧延方法
JP6572981B2 (ja) チャタマーク防止方法及びチャタマーク防止装置
Usmani et al. Chatter detection using principal component analysis in cold rolling mill
JPH11129030A (ja) 金属板圧延品質監視システム
EP4406671A1 (en) Method for determining conformity of rolling mill roller, method for rolling metal strip, and method for producing cold-rolled steel sheet
WO2023079850A1 (ja) 圧延ロールの適合判定方法、金属帯の圧延方法及び冷延鋼板の製造方法
Nikula et al. The effect of steel leveler parameters on vibration features
Enguita et al. Thickness quality control
Enguita et al. Thickness quality control and diagnosis system for tinplate rolling mills
Groothuizen et al. Chatter detection in a five-stand cold mill
CN116429425A (zh) 基于异常检测和分类算法的张力辊组故障预测方法
Burrows Octave band revisited—machine condition monitoring using octave band data collectors
Shin et al. Transverse bow measurement system from Korea

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022523333

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317054134

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022779523

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779523

Country of ref document: EP

Effective date: 20230825

ENP Entry into the national phase

Ref document number: 20237031782

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031782

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280022601.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/011107

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 18283994

Country of ref document: US

Ref document number: 2301006101

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE