[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022209268A1 - Physical quantity measurement device - Google Patents

Physical quantity measurement device Download PDF

Info

Publication number
WO2022209268A1
WO2022209268A1 PCT/JP2022/004127 JP2022004127W WO2022209268A1 WO 2022209268 A1 WO2022209268 A1 WO 2022209268A1 JP 2022004127 W JP2022004127 W JP 2022004127W WO 2022209268 A1 WO2022209268 A1 WO 2022209268A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
physical quantity
measuring device
terminal
quantity measuring
Prior art date
Application number
PCT/JP2022/004127
Other languages
French (fr)
Japanese (ja)
Inventor
典男 石塚
暁 上ノ段
望 八文字
瑞紀 伊集院
孝之 余語
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202280016868.3A priority Critical patent/CN116997774A/en
Publication of WO2022209268A1 publication Critical patent/WO2022209268A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • the present invention relates to a physical quantity measuring device.
  • Physical quantities such as air flow rate, pressure, temperature or humidity are widely used as important control parameters in various devices.
  • a physical quantity measuring device that measures these physical quantities is one of the important components that affect the performance of the equipment. For example, in vehicles equipped with an internal combustion engine, there is an extremely high demand for fuel efficiency and exhaust gas purification. To meet these demands, there is a need for a physical quantity measuring device that can measure the intake air amount, which is the main control parameter of an internal combustion engine, with high accuracy.
  • Patent Document 1 A physical quantity measuring device such as the one described above is disclosed in Patent Document 1, for example.
  • the device of Patent Document 1 has a structure in which a circuit board is adhered to a housing, and a sensor for measuring the amount of intake air is mounted on the circuit board.
  • a circuit board on which electronic components such as a sensor are mounted and a connector terminal for providing an electric signal from the circuit board to an external device are sometimes connected by wire bonding.
  • a method of connecting a circuit board and a connector terminal by wire bonding is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2002-200021.
  • a connector terminal integrally formed with a housing and a circuit board accommodated in the housing are connected by wire bonding.
  • the connector terminals and wires are sometimes sealed with a resin sealing member.
  • a resin sealing member if the linear expansion coefficient of the housing is larger than that of the sealing member, a large thermal stress is generated in the housing near the interface with the sealing member.
  • the connector terminal sealed in the housing and the sealing member will separate and the wire sealed in the sealing member will break due to thermal fatigue.
  • a resin material for the housing so that the difference in coefficient of linear expansion between the housing and the sealing member is small.
  • a resin material that is selected to minimize the difference in linear expansion coefficient between the two while satisfying the performance required for a physical quantity measuring device that is used in a harsh environment is expensive, and that resin material is used for the housing. It is not easy.
  • the present invention has been made in view of the above, and provides a physical quantity measuring device capable of easily ensuring wire connection reliability by suppressing thermal stress generated near the interface between a housing and a sealing member. intended to provide
  • the physical quantity measuring apparatus of the present invention includes: a housing containing a sensor for measuring a physical quantity; terminals sealed in the housing; wires bonded to the terminals; a sealing member contacting each of the terminals and the housing, wherein the linear expansion coefficient of the housing is larger than that of the sealing member, and the terminals are bonded to the wires. and a bonding surface in contact with the sealing member; and a side surface continuous with the bonding surface and sealed in the housing, the housing comprising: a first surface in contact with the side surface of the terminal; a second surface continuous with the first surface and in contact with the sealing member, wherein an end of the second surface continuous with the first surface is formed flush with the bonding surface. It is characterized by
  • FIG. 1 is a diagram showing the configuration of an electronic fuel injection type internal combustion engine control system in which the physical quantity measuring device of the present embodiment is used;
  • FIG. 1 is a front view of a physical quantity measuring device of this embodiment;
  • FIG. 3 is a rear view of the physical quantity measuring device shown in FIG. 2;
  • FIG. 3 is a front view of the physical quantity measuring device with the cover shown in FIG. 2 removed;
  • FIG. 4 is a rear view of the physical quantity measuring device from which the sealing member shown in FIG. 3 is removed;
  • 6 is an enlarged view of the vicinity of the connector terminal shown in FIG. 5;
  • FIG. FIG. 7 is a schematic diagram of a cross section taken along the line AA shown in FIG. 6;
  • FIG. 8 is an enlarged view of a portion surrounded by a dashed line shown in FIG. 7; The figure explaining the physical-quantity measuring device of a comparative example.
  • FIG. 10 is an enlarged view of a portion surrounded by a dashed line shown in FIG. 9; The figure explaining the physical-quantity measuring device of the modification of this embodiment.
  • FIG. 12 is an enlarged view of a portion surrounded by a dashed line shown in FIG. 11;
  • FIG. 1 is a diagram showing the configuration of an electronic fuel injection type internal combustion engine control system 1 in which the physical quantity measuring device 20 of the present embodiment is used.
  • the gas to be measured 2 which is the intake air
  • the air cleaner 21 passes through the main passage 22, such as the intake body. It is led to the combustion chamber of the engine cylinder 11 via the throttle body 23 and the intake manifold 24 .
  • the physical quantity of the measured gas 2, which is the intake air introduced into the combustion chamber is measured by the physical quantity measuring device 20 of the present embodiment, fuel is supplied from the fuel injection valve 14 based on the measured physical quantity, and the measured gas 2 together with the air-fuel mixture is led to the combustion chamber.
  • the fuel injection valve 14 is provided in the intake port of the internal combustion engine, and the fuel injected into the intake port forms an air-fuel mixture together with the gas 2 to be measured. It burns and produces mechanical energy.
  • the fuel and air led to the combustion chamber are in a mixed state of fuel and air, and are explosively combusted by the spark ignition of the spark plug 13 to generate mechanical energy.
  • the gas after combustion is led to an exhaust pipe through an exhaust valve 16 and discharged out of the vehicle as exhaust gas 3 from the exhaust pipe.
  • the flow rate of the gas to be measured 2 which is the intake air introduced into the combustion chamber, is controlled by a throttle valve 25 whose opening varies according to the operation of the accelerator pedal.
  • the fuel supply amount is controlled based on the flow rate of the intake air led to the combustion chamber, and the driver controls the opening of the throttle valve 25 to control the flow rate of the intake air led to the combustion chamber.
  • the mechanical energy generated by the engine can be controlled.
  • a signal is input to the controller 4 .
  • the output of a throttle angle sensor 26 that measures the opening of the throttle valve 25 is input to the control device 4, and the positions and states of the engine piston 12, the intake valve 15 and the exhaust valve 16 of the internal combustion engine 10, and further the internal combustion engine 10
  • the output of the rotation angle sensor 17 is input to the control device 4 in order to measure the rotation speed of .
  • the output of the oxygen sensor 28 is input to the control device 4 in order to measure the state of the mixture ratio between the amount of fuel and the amount of air from the state of the exhaust gas 3 .
  • the control device 4 calculates the fuel injection amount and ignition timing based on the physical quantity of the intake air, which is the output of the physical quantity measuring device 20, and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. . Based on these calculation results, the amount of fuel supplied from the fuel injection valve 14 and the ignition timing of ignition by the spark plug 13 are controlled. The fuel supply amount and ignition timing are actually further based on the temperature measured by the physical quantity measuring device 20, the change state of the throttle angle, the change state of the engine rotation speed, and the air-fuel ratio state measured by the oxygen sensor 28. and fine-grained control. Further, the control device 4 controls the amount of air bypassing the throttle valve 25 by the idle air control valve 27 in the idling state of the internal combustion engine, thereby controlling the rotational speed of the internal combustion engine 10 in the idling state.
  • the fuel supply amount and ignition timing which are the main control variables of the internal combustion engine 10, are both calculated using the output of the physical quantity measuring device 20 as a main parameter. Therefore, improving the measurement accuracy of the physical quantity measuring device 20, suppressing changes over time, and improving reliability are important for improving vehicle control accuracy and ensuring reliability.
  • the demand for fuel efficiency of vehicles is very high, and the demand for exhaust gas purification is also very high.
  • a vehicle equipped with the physical quantity measuring device 20 is used in an environment with large changes in temperature and humidity. It is preferable that the physical quantity measuring device 20 is designed to deal with changes in temperature and humidity in the environment in which it is used, as well as with respect to dust and contaminants.
  • the physical quantity measuring device 20 is attached to an intake pipe that is affected by the heat generated by the internal combustion engine 10 . Therefore, the heat generated by the internal combustion engine is transmitted to the physical quantity measuring device 20 through the intake pipe. Since the physical quantity measuring device 20 measures the flow rate of the gas 2 to be measured by conducting heat transfer with the gas 2 to be measured, it is important to suppress the influence of heat from the outside as much as possible.
  • the physical quantity measuring device 20 mounted on the vehicle simply solves the problems described in the column of the problems to be solved by the invention, and produces the effects described in the column of the effects of the invention.
  • various problems required of the product can be solved, and various effects can be obtained.
  • Specific problems to be solved by the physical quantity measuring device 20 and specific effects achieved will be described in the following description.
  • FIG. 2 is a front view of the physical quantity measuring device 20 of this embodiment.
  • FIG. 2 shows the cover 200 attached to the housing 100 .
  • FIG. 3 is a rear view of the physical quantity measuring device 20 shown in FIG.
  • FIG. 3 shows a state in which the sealing member 250 covers the circuit board 300 .
  • FIG. 4 is a front view of the physical quantity measuring device 20 with the cover 200 shown in FIG. 2 removed.
  • FIG. 5 is a rear view of the physical quantity measuring device 20 with the sealing member 250 shown in FIG. 3 removed.
  • the gas 2 to be measured flows along the central axis 22a of the main passage 22 shown in FIG.
  • the physical quantity measuring device 20 is used while being inserted into the main passage 22 through an attachment hole provided in the passage wall of the main passage 22 and fixed to the main passage 22 .
  • the physical quantity measuring device 20 includes a housing arranged in a main passage 22 through which the gas 2 to be measured flows.
  • the housing of the physical quantity measuring device 20 includes a housing 100, a cover 200 attached to a front surface portion 121 of a measurement unit 113 described later of the housing 100, and a seal that seals a circuit board 300 exposed from a rear surface portion 122 of the measurement unit 113. and a stop member 250 .
  • the housing 100 is formed, for example, by injection molding a synthetic resin material.
  • the resin material used for molding the housing 100 may be PBT (polybutylene terephthalate) resin, which satisfies the required performance of the physical quantity measuring device 20 and is relatively inexpensive.
  • the cover 200 is made of, for example, a plate-shaped member made of metal material or synthetic resin material. In this embodiment, it is formed by injection molding an aluminum alloy or synthetic resin material.
  • the cover 200 has a size that completely covers the front portion 121 of the measuring portion 113 .
  • the sealing member 250 is formed by, for example, pouring a synthetic resin material into the exposed area of the circuit board 300 in the back surface portion 122 of the measurement unit 113 and molding.
  • the resin material used for molding the sealing member 250 may be epoxy resin or the like that satisfies the required performance of the physical quantity measuring device 20 .
  • the housing 100 includes a flange 111 for fixing the physical quantity measuring device 20 to the main passage 22, and a connector 112 protruding from the flange 111 and exposed to the outside from the main passage 22 for electrical connection with an external device. have. Furthermore, the housing 100 has a measuring portion 113 extending from the flange 111 toward the central axis 22 a of the main passage 22 to measure the physical quantity of the gas 2 to be measured flowing through the main passage 22 .
  • the measurement unit 113 is a part of the housing 100 that houses sensors for measuring physical quantities such as flow rate, temperature, humidity or pressure. Specifically, the measurement unit 113 accommodates a chip package 310 having a flow rate detection element 321 , a temperature sensor 331 , a humidity sensor 333 and a pressure sensor 335 .
  • the measurement part 113 has a thin and long shape extending straight from the flange 111 .
  • the measuring portion 113 has a wide front portion 121 and a rear portion 122 , a pair of narrow side portions 123 and 124 , and a narrow tip surface portion 125 .
  • the front part 121 and the back part 122 are rectangular surfaces having long sides and short sides corresponding to the longitudinal direction and the lateral direction of the measuring part 113, respectively. It is the surface.
  • the front portion 121 is a portion of the measurement portion 113 in which the secondary passages 134 and 135 are formed.
  • the rear portion 122 is a portion of the measurement portion 113 on the side opposite to the front portion 121 .
  • the front part 121 and the back part 122 are arranged parallel to each other along the central axis 22a of the main passage 22 when the physical quantity measuring device 20 is attached to the main passage 22 .
  • the side portion 123 is located on one side of the measuring portion 113 in the short direction, and is arranged toward the upstream side of the main passage 22 when the physical quantity measuring device 20 is attached to the main passage 22 .
  • the side portion 124 is positioned on the other side of the measuring portion 113 in the short direction, and is arranged toward the downstream side of the main passage 22 when the physical quantity measuring device 20 is attached to the main passage 22 .
  • the tip surface portion 125 is a surface that is continuous with the front surface portion 121 , the rear surface portion 122 , the side surface portion 123 and the side surface portion 124 .
  • the tip face portion 125 is located on the end face of the measuring portion 113 separated from the flange 111 and arranged in parallel along the central axis 22a of the main passage 22 when the physical quantity measuring device 20 is attached to the main passage 22 .
  • the side portions 123 and 124 facing the upstream side and the downstream side of the main passage 22 have a narrow shape, so that the fluid resistance to the gas 2 to be measured can be suppressed to a small value. can.
  • the posture of the physical quantity measuring device 20 in a state of being attached to the main passage 22 is such that the proximal end portion of the measuring portion 113 that is close to the flange 111 is arranged on the upper side, and the measuring portion 113 that is separated from the flange 111 is positioned at the upper side.
  • This is a posture in which the tip surface portion 125 is arranged on the lower side.
  • the posture of the physical quantity measuring device 20 attached to the main passage 22 is not limited to the present embodiment, and various postures can be adopted.
  • the posture of the physical quantity measuring device 20 may be a posture in which the measuring unit 113 is mounted horizontally so that the base end portion and the distal surface portion 125 of the measuring unit 113 are at the same height.
  • the measurement unit 113 has an inlet 131 of the sub-passages 134 and 135 provided on the side surface 123 , and a first outlet 132 and a second outlet 133 provided on the side surface 124 .
  • the inlet 131 , the first outlet 132 , and the second outlet 133 are provided at positions close to the tip surface portion 125 of the measuring portion 113 in the direction from the flange 111 toward the central axis 22 a of the main passage 22 .
  • the second outlet 133 is arranged toward the downstream side of the main passage 22 .
  • the second outlet 133 has an opening area slightly larger than that of the first outlet 132 , and is provided at a position closer to the base end side of the measuring section 113 than the first outlet 132 .
  • the measurement unit 113 can take into the sub-passages 134 and 135 the gas 2 to be measured that flows through the portion near the central axis 22 a away from the inner surface of the passage wall of the main passage 22 .
  • the physical quantity measuring device 20 can measure the flow rate of the gas 2 to be measured flowing in the portion near the central axis 22a, and can suppress deterioration in measurement accuracy due to the influence of heat or the like.
  • the measurement unit 113 is provided with sub-passages 134 and 135 that take in part of the gas 2 to be measured flowing through the main passage 22, and a circuit board 300 on which sensors for measuring physical quantities are mounted.
  • the sub-passages 134 and 135 are provided in a concave shape in the front part 121 of the measuring part 113 and are covered by attaching a cover 200 to the housing 100 .
  • the circuit board 300 is provided in a region of the measuring section 113 that is close to the side surface section 123 .
  • the secondary passages 134 and 135 are provided over a region of the measuring section 113 that is closer to the tip surface portion 125 than the circuit board 300 and a region that is closer to the side surface portion 124 than the circuit board 300 .
  • the sub-passages 134 , 135 have a first sub-passage 134 and a second sub-passage 135 .
  • the first sub-passage 134 extends in the lateral direction of the measuring section 113 between the entrance 131 that opens in the side section 123 of the measuring section 113 and the first outlet 132 that opens in the side section 124 of the measuring section 113. formed to extend along the The first subpassage 134 is a flow path that extends from the inlet 131 along the flow direction of the gas 2 to be measured in the main passage 22 and connects to the first outlet 132 .
  • the first auxiliary passage 134 takes in the measured gas 2 flowing through the main passage 22 from the inlet 131 and returns the taken-in measured gas 2 from the first outlet 132 to the main passage 22 .
  • the second sub-passage 135 branches off from the middle of the first sub-passage 134 and extends toward the proximal end of the measuring portion 113 (toward the flange 111 ), and the forward portion 136 is folded back at the proximal end of the measuring portion 113 . and a return path portion 137 extending toward the tip surface portion 125 of the measuring portion 113 and making a U-turn.
  • the outward path portion 136 branches in the middle of the first sub-passage 134 and extends in a direction away from the first sub-passage 134 .
  • Return path portion 137 is folded back at the end of outward path portion 136 to make a U-turn, and extends in a direction approaching first sub-passage 134 .
  • the return path portion 137 connects to a second outlet 133 that opens toward the downstream side of the main passage 22 at a position downstream of the main passage 22 relative to the inlet 131 .
  • the second sub-passage 135 allows the gas to be measured 2 branched from the first sub-passage 134 to pass therethrough and returns it to the main passage 22 from the second outlet 133 . Since the second sub-path 135 has an outward path portion 136 and a return path portion 137 extending along the longitudinal direction of the measuring portion 113, a long path length can be ensured.
  • the physical quantity measuring device 20 allows the flow rate detection element 321 arranged in the second sub passage 135 to be detected in the second sub passage 135 without being significantly affected by the pulsation. can be measured.
  • the circuit board 300 has a substantially rectangular shape in plan view.
  • the longitudinal direction of the circuit board 300 extends from the base end portion of the measuring portion 113 toward the distal end portion 125, and the lateral direction of the circuit board 300 extends from the side portion 123 to the side portion 124 of the measuring portion 113. It is arranged in the measurement unit 113 so as to extend.
  • the circuit board 300 is a circuit board on which electronic components can be mounted on both the mounting surface 300a and the mounting surface 300b.
  • a mounting surface 300 a of the circuit board 300 is arranged on the front portion 121 of the measuring portion 113 .
  • a mounting surface 300 b of the circuit board 300 is arranged on the rear surface portion 122 of the measurement unit 113 .
  • On the mounting surface 300a of the circuit board 300 electronic components such as a chip package 310 supporting the flow rate detecting element 321, a temperature sensor 331, a humidity sensor 333 and a pressure sensor 335 are mounted.
  • Electronic components such as an LSI 341 and a microcomputer 343 are mounted on the mounting surface 300 b of the circuit board 300 .
  • the chip package 310 is mounted on the central portion of the mounting surface 300 a of the circuit board 300 .
  • the chip package 310 has a fixed portion 311 fixed to the central portion of the mounting surface 300 a and a protruding portion 312 protruding from the fixed portion 311 toward the outgoing path portion 136 of the second sub-passage 135 .
  • a flow rate detection element 321 is provided on the projecting portion 312 .
  • the flow rate detection element 321 has a diaphragm-like (thin film-like) detection surface, and this detection surface is exposed to the outward path portion 136 of the second sub-path 135 .
  • the flow rate detection element 321 measures the flow rate of the gas 2 to be measured taken into the outward path portion 136 of the second sub-path 135 .
  • the temperature sensor 331 is mounted at the end of the mounting surface 300a of the circuit board 300 near the entrance 131.
  • the temperature sensor 331 is arranged in the middle of the temperature detection passage of the measuring section 113 , one end of which is open near the inlet 131 and the other end of which is open to both the front portion 121 and the rear portion 122 .
  • the temperature sensor 331 measures the temperature of the measured gas 2 introduced into the temperature detection passage.
  • the humidity sensor 333 is mounted on the mounting surface 300a of the circuit board 300 closer to the front end surface portion 125 of the measuring portion 113 than the chip package 310 is.
  • the humidity sensor 333 measures the humidity of the gas 2 to be measured taken in through the window of the measurement unit 113 opening in the back surface 122 .
  • the pressure sensor 335 is mounted on the mounting surface 300a of the circuit board 300 closer to the base end of the measuring section 113 than the chip package 310 is.
  • the pressure sensor 335 measures the pressure of the gas 2 to be measured taken in from the pressure introduction passage of the measuring section 113 that opens in the middle of the second sub passage 135 .
  • the LSI 341 and the microcomputer 343 are mounted on the mounting surface 300b of the circuit board 300.
  • the LSI 341 and the microcomputer 343 perform various signal processing and arithmetic processing on the output signals from the flow rate detection element 321, the temperature sensor 331, the humidity sensor 333, or the pressure sensor 335, and measure the electrical signals representing the measurement results of physical quantities. Output a signal.
  • This measurement signal is output to the outside of the physical quantity measuring device 20 from the connector 112 via the wiring pattern of the circuit board 300 , the electrode pads 301 , the wires 350 and the connector terminals 117 .
  • a measurement signal output to the outside of the physical quantity measuring device 20 is input to the control device 4 .
  • FIG. 6 is an enlarged view of the vicinity of the connector terminal 117 shown in FIG.
  • FIG. 7 is a schematic diagram of a cross section taken along the line AA shown in FIG.
  • FIG. 8 is an enlarged view of a portion surrounded by a dashed line shown in FIG.
  • the connector terminal 117 is a terminal that outputs a physical quantity measurement signal to the outside.
  • the connector terminal 117 is integrally formed with the housing 100 by insert molding or the like.
  • the connector terminals 117 are partially exposed from the terminal sealing portion 114 of the housing 100 and are sealed in the terminal sealing portion 114 .
  • the connector terminal 117 is made of a plate member made of a conductive material such as phosphor bronze.
  • the linear expansion coefficient of the connector terminal 117 may be 10 ppm/K or more and 30 ppm/K or less, and may be about 20 ppm/K, for example.
  • the connector terminal 117 has a bonding surface 118 and side surfaces 119, as shown in FIG.
  • the bonding surface 118 is exposed from the terminal sealing portion 114 of the housing 100 and is the surface to which the wire 350 is bonded. Bonding surface 118 contacts encapsulation member 250 .
  • the bonding surface 118 extends in the width direction and the axial direction of the connector terminal 117 .
  • the side surface 119 is a surface continuous with the bonding surface 118 and is a surface sealed with the terminal sealing portion 114 of the housing 100 .
  • the side surface 119 extends in the plate thickness direction and the axial direction of the connector terminal 117 .
  • the width direction of the connector terminal 117 is the direction orthogonal to the side surface 119 and the width direction of the measuring section 113 .
  • the width direction of the connector terminal 117 is defined as the X-axis
  • the direction from the side surface portion 123 to the side surface portion 124 in the width direction of the measuring portion 113 is defined as the +X-axis direction.
  • the plate thickness direction of the connector terminal 117 is a direction orthogonal to the bonding surface 118 and a direction orthogonal to the longitudinal direction and the lateral direction of the measuring section 113 .
  • the thickness direction of the connector terminal 117 is the Y-axis, and the direction from the front part 121 to the back part 122 of the directions perpendicular to the longitudinal direction and the lateral direction of the measurement part 113 is the +Y-axis direction.
  • the axial direction of the connector terminal 117 is a direction perpendicular to the width direction and the plate thickness direction of the connector terminal 117 , and is the longitudinal direction of the measuring section 113 .
  • the axial direction of the connector terminal 117 is defined as the Z axis, and the direction from the proximal end of the measuring part 113 toward the distal surface part 125 in the longitudinal direction of the measuring part 113 is defined as the +Z axis direction.
  • the connector terminal 117 may be composed of a plurality of connector terminals 117 arranged at intervals in the width direction of the connector terminal 117, as shown in FIGS.
  • the plurality of connector terminals 117 includes a connector terminal 117a closest to the side surface portion 123 in the width direction and a connector terminal 117b closest to the side surface portion 124 in the width direction.
  • the wire 350 is a bonding wire for connecting the circuit board 300 and the connector terminal 117 by wire bonding.
  • the wires 350 connect the electrode pads 301 on the mounting surface 300b of the circuit board 300 and the bonding surfaces 118 of the connector terminals 117, as shown in FIG.
  • Wire 350 is formed of a linear member made of a metal material such as aluminum or copper.
  • the linear expansion coefficient of the wire 350 may be 10 ppm/K or more and 30 ppm/K or less, and may be about 20 ppm/K, for example.
  • the sealing member 250 covers the mounting surface 300b of the circuit board 300 exposed from the back surface portion 122 of the measuring portion 113 of the housing 100.
  • the sealing member 250 is formed, for example, by molding a synthetic resin material such as epoxy resin.
  • the coefficient of linear expansion of the sealing member 250 may be 10 ppm/K or more and 30 ppm/K or less, for example, about 20 ppm/K at the glass transition temperature or lower.
  • Sealing member 250 seals wire 350 as shown in FIG. The sealing member 250 contacts the bonding surface 118 of the connector terminal 117 and the terminal sealing portion 114 of the housing 100 .
  • the terminal sealing portion 114 of the housing 100 is a portion that seals the connector terminal 117 positioned at the proximal end portion of the measuring portion 113 .
  • Housing 100 including terminal sealing portion 114 is formed by, for example, molding a synthetic resin material such as PBT (polybutylene terephthalate) resin.
  • the housing 100 is molded using a resin material having a coefficient of linear expansion greater than that of the sealing member 250 .
  • the coefficient of linear expansion of the housing 100 may be 60 ppm/K or more and 110 ppm/K or less, for example, about 100 ppm/K at the glass transition temperature or lower.
  • the linear expansion coefficient of the housing 100 may be 5 times or more and 6 times or less than the linear expansion coefficient of the sealing member 250 .
  • the terminal sealing portion 114 has a first surface 115 and a second surface 116, as shown in FIG.
  • the first surface 115 is the surface that contacts the side surface 119 of the connector terminal 117 .
  • the first surface 115 extends in the plate thickness direction and the axial direction of the connector terminal 117 .
  • the second surface 116 is a surface continuous with the first surface 115 and a surface that contacts the sealing member 250 .
  • the second surface 116 extends in the width direction and the axial direction of the connector terminal 117 .
  • the second surface 116 has an end portion 116 a that is an end portion of the second surface 116 in the width direction of the connector terminal 117 and that is continuous with the first surface 115 .
  • the height of the end portion 116 a of the second surface 116 (position in the plate thickness direction of the connector terminal 117 ) is the same as the height of the bonding surface 118 . That is, the end portion 116 a of the second surface 116 is formed flush with the bonding surface 118 . In other words, the end portion 116 a of the second surface 116 is shaped to be flush with the bonding surface 118 .
  • a molten resin is filled between an upper mold (movable mold) that opens and closes in the plate thickness direction of the connector terminal 117 and a lower mold (fixed mold) that does not move, and is cured. It is molded by Even if the portion corresponding to the bonding surface 118 and the end portion 116a of the molding surface of the upper mold is flattened and brought into contact with the bonding surface 118 for molding, the resin will undergo thermal shrinkage of several percent. The portion 116a is lowered within several tens of micrometers from the bonding surface 118 .
  • the end portion 116a of the second surface 116 and the bonding surface 118 are flush only when the end portion 116a of the second surface 116 and the bonding surface 118 are arranged completely on the same plane. but also includes the following cases: That is, the end portion 116a of the second surface 116 is arranged to be lowered within several tens of ⁇ m from the bonding surface 118 in the direction ( ⁇ Y-axis direction) toward the opposite side of the wire 350 in the plate thickness direction of the connector terminal 117. including cases where It should be noted that the edges of the bonding surface 118 may be sagging when the connector terminals 117 are cut by press working or the like. The end portion 116a of the second surface 116 is formed to be flush with the main portion of the bonding surface 118, which is the majority portion other than the sagging edge portion.
  • the second surface 116 has an intermediate portion 116b located between the connector terminals 117 adjacent to each other in the width direction of the connector terminals 117 .
  • the intermediate portion 116b of the second surface 116 is formed to be located at a position lower than the end portion 116a of the second surface 116 by a predetermined distance in the direction opposite to the wire 350 in the plate thickness direction of the connector terminal 117. be done.
  • This predetermined distance may be a length equal to or less than 1/2 of the plate thickness of the connector terminal 117, and may be, for example, equal to or greater than 1/3 and equal to or less than 1/2.
  • the second surface 116 has an inclined surface 116 c that is inclined with respect to the bonding surface 118 .
  • the inclined surface 116c of the second surface 116 is inclined in the direction (-Y-axis direction) toward the side opposite to the wire 350 in the plate thickness direction of the connector terminal 117 as it is separated from the end portion 116a in the width direction of the connector terminal 117. do.
  • Inclined surface 116 c of second surface 116 is formed between end portion 116 a and intermediate portion 116 b in the width direction of connector terminal 117 .
  • the inclined surface 116c of the second surface 116 is formed on the outer portion 116d of the second surface 116 extending from the connector terminal 117a toward the side surface portion 123 in the width direction of the connector terminal 117.
  • the inclined surface 116c of the second surface 116 is formed on the outer portion 116e of the second surface 116 extending from the connector terminal 117b toward the side surface portion 124 in the width direction of the connector terminal 117. As shown in FIG.
  • the second surface 116 located between the adjacent connector terminals 117 has a groove 116f having a V-shaped cross section cut by a plane including the plate thickness direction and width direction of the connector terminal 117 .
  • the depth of the V-shaped groove 116f may be 1/2 or less of the plate thickness of the connector terminal 117, for example, 1/3 or more and 1/2 or less. good.
  • FIG. 9 is a diagram illustrating a physical quantity measuring device 20 of a comparative example.
  • FIG. 9 is a diagram corresponding to FIG.
  • FIG. 10 is an enlarged view of a portion surrounded by a dashed line shown in FIG.
  • FIG. 10 is a diagram corresponding to FIG.
  • the second surface 116 has a convex surface 116g in which the heights of the end portion 116a and the intermediate portion 116b are higher than the bonding surface 118.
  • the housing 100 including the terminal sealing portion 114 has a linear expansion coefficient larger than that of the sealing member 250 . Due to the difference in coefficient of linear expansion between the housing 100 and the sealing member 250 , thermal stress is generated in the terminal sealing portion 114 near the interface with the sealing member 250 .
  • the linear expansion coefficient of the housing 100 is 5 to 6 times that of the sealing member 250.
  • the terminal sealing portion 114 of the housing 100 is changed to the sealing member 250 shown in S1 and S2 in FIG.
  • a large thermal stress is generated in the vicinity of the interface with the second surface 116 . Due to the action of this thermal stress, there is a possibility that the connector terminal 117 sealed by the terminal sealing portion 114 and the sealing member 250 are separated. If this peeling is large, the wire 350 sealed by the sealing member 250 will break due to thermal fatigue. That is, it is difficult to ensure the connection reliability of the wire 350 in the physical quantity measuring device 20 of the comparative example.
  • the height of the end portion 116 a of the second surface 116 is the same as the height of the bonding surface 118 of the connector terminal 117 . That is, the end portion 116 a of the second surface 116 is formed flush with the bonding surface 118 .
  • the physical quantity measuring device 20 of the present embodiment can reduce the volume of the terminal sealing portion 114 in the vicinity of the interface with the sealing member 250, thereby reducing the amount of thermal deformation of the terminal sealing portion 114. be able to.
  • the connector terminal 117 hardly restricts the thermal deformation of the terminal sealing portion 114 near the interface with the sealing member 250 .
  • the second surface 116 has a convex surface 116g as in the physical quantity measuring device 20 of the comparative example
  • the vicinity of the convex surface 116g of the terminal sealing portion 114 becomes the bonding surface 118 when the terminal sealing portion 114 thermally shrinks.
  • thermal contraction near the convex surface 116g is likely to be regulated by the bonding surface 118.
  • the terminal sealing portion near the interface with the sealing member 250 Thermal deformation of 114 is less likely to be restricted by connector terminal 117 .
  • the physical quantity measuring device 20 of the present embodiment does not use an expensive resin material for the housing 100 so that the difference in coefficient of linear expansion from that of the sealing member 250 is small. It is possible to suppress the thermal stress generated in the terminal sealing portion 114 in the vicinity of the interface.
  • the physical quantity measuring device 20 of the present embodiment can suppress separation between the connector terminal 117 and the sealing member 250, and can suppress breakage of the wire 350 due to thermal fatigue. Therefore, the physical quantity measuring device 20 of this embodiment can easily ensure the connection reliability of the wire 350 .
  • the second surface 116 As the second surface 116 is separated from the end portion 116a in the width direction of the connector terminal 117, the thickness of the connector terminal 117 is increased toward the opposite side of the wire 350 in the thickness direction of the connector terminal 117. incline. That is, the second surface 116 has the inclined surface 116c as described above.
  • the molding surface of the upper mold has a convex portion corresponding to this concave shape.
  • the convex portion of the upper mold tends to bite the connector terminal 117, and defective products are likely to occur.
  • Productivity tends to decrease.
  • the second surface 116 has the inclined surface 116c as described above, so the molding surface of the upper mold has an inclined surface corresponding to the inclined surface 116c. Since the molding surface of the upper mold has an inclined surface corresponding to the inclined surface 116c, the molding surface of the upper mold regulates the position of the connector terminal 117 during molding, thereby suppressing displacement. As a result, the physical quantity measuring device 20 of the present embodiment can prevent the connector terminal 117 from getting caught, and can prevent a decrease in productivity. Therefore, the physical quantity measuring device 20 of this embodiment can suppress the production cost of the housing 100 in which the connector terminals 117 are integrally formed.
  • the physical quantity measuring device 20 of the present embodiment even when the linear expansion coefficient of the housing 100 is larger than the linear expansion coefficient of the sealing member 250, the heat generated in the terminal sealing portion 114 near the interface with the sealing member 250 is reduced. Stress can be suppressed.
  • the physical quantity measuring device 20 of the present embodiment can suppress separation between the connector terminal 117 and the sealing member 250, and can suppress breakage of the wire 350 due to thermal fatigue.
  • the second surface 116 has the inclined surface 116c as described above. Thermal stress can be easily suppressed, and connection reliability of the wire 350 can be easily ensured.
  • the second surface 116 located between adjacent connector terminals 117 has a V-shaped groove 116f.
  • Analysis of the thermal stress generated near the interface between the terminal sealing portion 114 of the housing 100 and the sealing member 250 in the present embodiment having the V-shaped groove 116f and the comparative example having the convex surface 116g reveals that: The thermal stress of this embodiment was about one-third that of the comparative example. Accordingly, in the physical quantity measuring device 20 of the present embodiment, the thermal stress generated in the terminal sealing portion 114 can be greatly suppressed, and the connection reliability of the wire 350 can be sufficiently secured.
  • the depth of the V-shaped groove 116f may be 1/3 or more and 1/2 or less of the plate thickness of the connector terminal 117.
  • the depth of the V-shaped groove 116f is one-third or more of the plate thickness of the connector terminal 117, the effect of suppressing the thermal stress generated in the terminal sealing portion 114 is large.
  • the terminal sealing portion 114 can easily secure the amount of resin in the vicinity of the intermediate portion 116b. It becomes easy to secure the strength in the vicinity of the intermediate portion 116b and to fix the connector terminal 117 easily. Therefore, the physical quantity measuring device 20 of the present embodiment can effectively suppress the thermal stress generated in the terminal sealing portion 114 to ensure the connection reliability of the wire 350, and the terminal sealing of the housing 100 can The mechanical reliability of the stop portion 114 can be easily ensured.
  • the linear expansion coefficient of the housing 100 may be 5 times or more and 6 times or less than the linear expansion coefficient of the sealing member 250 . That is, the physical quantity measuring device 20 uses a resin material having a coefficient of linear expansion that is 5 to 6 times that of the sealing member 250, such as an example in which PBT resin is used for the housing 100 and epoxy resin is used for the sealing member 250. 100, the thermal stress generated in the terminal sealing portion 114 can be suppressed. As a result, the physical quantity measuring device 20 of the present embodiment can suppress the thermal stress even if a relatively inexpensive resin material is used for the housing 100, so that the connection reliability of the wire 350 can be more easily secured. can do.
  • the housing 100 has a front portion 121 in which the secondary passages 134 and 135 are formed, and a rear portion 122 opposite to the front portion 121 of the housing 100.
  • Two faces 116 are formed on the back portion 122 . That is, in the measuring portion 113 of the housing 100, the second surface 116 is formed on the rear portion 122 opposite to the front portion 121 in which the sub-passages 134 and 135 are formed.
  • the molding die for the housing 100 since the complex-shaped portion of the housing 100 is likely to cling to the die, it is often molded by the lower die, which is a fixed die. If the upper mold is opened while the housing 100 after molding is clinging to the upper mold, the mold for molding the housing 100 needs a complicated mechanism for taking out the housing 100 after molding. .
  • the front portion 121 in which the sub-passages 134 and 135 are formed corresponds to a complicated-shaped portion, so it is preferable to mold the front portion 121 using a lower mold.
  • the second surface 116 is formed on the rear surface portion 122 on the side opposite to the front surface portion 121 where the secondary passages 134 and 135 are formed.
  • the front part 121 in which the secondary passages 134 and 135 are formed is formed by the lower mold, the connector terminals 117 are arranged in the lower mold, and the second surface 116 is formed.
  • the housing 100 can be appropriately molded without complicating the mold for molding the housing 100 and the molding process. Therefore, the physical quantity measuring device 20 of the present embodiment can further reduce the production cost of the housing 100, so that the connection reliability of the wire 350 can be more easily ensured.
  • FIG. 11 is a diagram illustrating a physical quantity measuring device 20 of a modified example of this embodiment.
  • FIG. 11 is a diagram corresponding to FIG.
  • FIG. 12 is an enlarged view of a portion surrounded by a dashed line shown in FIG. 11.
  • FIG. FIG. 12 is a diagram corresponding to FIG.
  • the second surface 116 positioned between adjacent connector terminals 117 has a V-shaped groove 116f.
  • the second surface 116 positioned between the adjacent connector terminals 117 may have a flat surface 116h. That is, in the physical quantity measuring device 20 of the modified example, the second surface 116 does not have the inclined surface 116c, and not only the end portion 116a but also the intermediate portion 116b are formed flush with the bonding surface 118. may The fact that the end portion 116a and intermediate portion 116b of the second surface 116 and the bonding surface 118 are flush with each other is defined in the same manner as above.
  • thermal stress generated in the terminal sealing portion 114 near the interface with the sealing member 250 can be suppressed, and peeling between the connector terminal 117 and the sealing member 250 can be suppressed. be able to.
  • the physical quantity measuring device 20 of the modified example can suppress breakage of the wire 350 due to thermal fatigue, and can easily ensure the connection reliability of the wire 350 .
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

This invention reduces thermal stress near an interface with a housing sealing member and ensures wire connection reliability in a simple manner. A physical quantity measurement device 20 comprises a housing 100, a connector terminal 117 sealed in the housing 100, a wire 350 bonded to the connector terminal 117, and a sealing member 250 that seals the wire 350 and is in contact with the connector terminal 117 and housing 100. The linear expansion coefficient of the housing 100 is greater than that of the sealing member 250. The connector terminal 117 comprises a bonding surface 118 and a lateral surface 119 that is continuous with the bonding surface 118 and is sealed by the housing 100. The housing 100 comprises a first surface 115 that is in contact with the lateral surface 119 and a second surface 116 that is continuous with the first surface 115 and is in contact with the sealing member 250. The end part 116a of the second surface 116 that is continuous with the first surface 115 is formed into a shape that is flush with the bonding surface 118.

Description

物理量計測装置Physical quantity measuring device
 本発明は、物理量計測装置に関する。 The present invention relates to a physical quantity measuring device.
 空気流量、圧力、温度又は湿度等の物理量は、様々な機器において重要な制御パラメータとして広く使用されている。これらの物理量を計測する物理量計測装置は、機器の性能を左右する重要な構成部品のひとつである。例えば、内燃機関を搭載した車両では、省燃費及び排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには、内燃機関の主要な制御パラメータである吸入空気量を高い精度で計測する物理量計測装置が必要である。 Physical quantities such as air flow rate, pressure, temperature or humidity are widely used as important control parameters in various devices. A physical quantity measuring device that measures these physical quantities is one of the important components that affect the performance of the equipment. For example, in vehicles equipped with an internal combustion engine, there is an extremely high demand for fuel efficiency and exhaust gas purification. To meet these demands, there is a need for a physical quantity measuring device that can measure the intake air amount, which is the main control parameter of an internal combustion engine, with high accuracy.
 上記のような物理量計測装置は、例えば特許文献1に開示されている。特許文献1の装置は、ハウジングに回路基板が接着され、この回路基板上に吸入空気量を計測するセンサが実装された構造を有する。センサ等の電子部品が実装された回路基板と、回路基板からの電気信号を外部装置へ提供するコネクタ端子とは、ワイヤボンディングによって接続されることがある。回路基板とコネクタ端子とをワイヤボンディングによって接続する手法は、例えば特許文献2に開示されている。特許文献2の装置は、ハウジングと一体成形されたコネクタ端子と、ハウジングに収容された回路基板とが、ワイヤボンディングによって接続されている。 A physical quantity measuring device such as the one described above is disclosed in Patent Document 1, for example. The device of Patent Document 1 has a structure in which a circuit board is adhered to a housing, and a sensor for measuring the amount of intake air is mounted on the circuit board. A circuit board on which electronic components such as a sensor are mounted and a connector terminal for providing an electric signal from the circuit board to an external device are sometimes connected by wire bonding. A method of connecting a circuit board and a connector terminal by wire bonding is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2002-200021. In the device disclosed in Patent Literature 2, a connector terminal integrally formed with a housing and a circuit board accommodated in the housing are connected by wire bonding.
国際公開第2015/117971号WO2015/117971 特開2004-28934号公報JP 2004-28934 A
 物理量計測装置では、ハウジングと一体成形されたコネクタ端子と、ハウジングに収容された回路基板とをワイヤボンディングによって接続した後、コネクタ端子及びワイヤを樹脂製の封止部材によって封止することがある。このとき、ハウジングの線膨張係数が封止部材の線膨張係数よりも大きいと、ハウジングには、封止部材との界面付近に大きな熱応力が発生する。これにより、ハウジングに封止されたコネクタ端子と封止部材とが剥離し、封止部材に封止されたワイヤが熱疲労によって破断する可能性がある。ハウジングと封止部材との線膨張係数差が僅少となるように、ハウジングの樹脂材料を選定することも考えられる。しかし、使用環境が過酷な物理量計測装置に要求される性能を満たしつつ、両者の線膨張係数差を僅少とするものとして選定される樹脂材料は、高価であり、その樹脂材料をハウジングに採用することは容易ではない。 In the physical quantity measuring device, after the connector terminals integrally molded with the housing and the circuit board housed in the housing are connected by wire bonding, the connector terminals and wires are sometimes sealed with a resin sealing member. At this time, if the linear expansion coefficient of the housing is larger than that of the sealing member, a large thermal stress is generated in the housing near the interface with the sealing member. As a result, there is a possibility that the connector terminal sealed in the housing and the sealing member will separate and the wire sealed in the sealing member will break due to thermal fatigue. It is also conceivable to select a resin material for the housing so that the difference in coefficient of linear expansion between the housing and the sealing member is small. However, a resin material that is selected to minimize the difference in linear expansion coefficient between the two while satisfying the performance required for a physical quantity measuring device that is used in a harsh environment is expensive, and that resin material is used for the housing. It is not easy.
 本発明は、上記に鑑みてなされたものであり、ハウジングの封止部材との界面付近に発生する熱応力を抑制してワイヤの接続信頼性を容易に確保することが可能な物理量計測装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above, and provides a physical quantity measuring device capable of easily ensuring wire connection reliability by suppressing thermal stress generated near the interface between a housing and a sealing member. intended to provide
 上記課題を解決するために、本発明の物理量計測装置は、物理量を計測するセンサを収容するハウジングと、前記ハウジングに封止された端子と、前記端子にボンディングされたワイヤと、前記ワイヤを封止し、前記端子及び前記ハウジングのそれぞれに接触する封止部材と、を備え、前記ハウジングの線膨張係数は、前記封止部材の線膨張係数よりも大きく、前記端子は、前記ワイヤがボンディングされ且つ前記封止部材に接触するボンディング面と、前記ボンディング面に連続し且つ前記ハウジングに封止された側面とを有し、前記ハウジングは、前記端子の前記側面に接触する第1面と、前記第1面に連続し前記封止部材に接触する第2面と、を有し、前記第1面に連続する前記第2面の端部は、前記ボンディング面と面一の形状に形成されることを特徴とする。 In order to solve the above-described problems, the physical quantity measuring apparatus of the present invention includes: a housing containing a sensor for measuring a physical quantity; terminals sealed in the housing; wires bonded to the terminals; a sealing member contacting each of the terminals and the housing, wherein the linear expansion coefficient of the housing is larger than that of the sealing member, and the terminals are bonded to the wires. and a bonding surface in contact with the sealing member; and a side surface continuous with the bonding surface and sealed in the housing, the housing comprising: a first surface in contact with the side surface of the terminal; a second surface continuous with the first surface and in contact with the sealing member, wherein an end of the second surface continuous with the first surface is formed flush with the bonding surface. It is characterized by
 本発明によれば、ハウジングの封止部材との界面付近に発生する熱応力を抑制してワイヤの接続信頼性を容易に確保することが可能な物理量計測装置を提供することができる。 上記以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a physical quantity measuring device that can easily ensure wire connection reliability by suppressing thermal stress generated near the interface between the housing and the sealing member. Problems, configurations and effects other than the above will be clarified by the following description of the embodiment.
本実施形態の物理量計測装置が使用される電子燃料噴射方式の内燃機関制御システムの構成を示す図。1 is a diagram showing the configuration of an electronic fuel injection type internal combustion engine control system in which the physical quantity measuring device of the present embodiment is used; FIG. 本実施形態の物理量計測装置の正面図。1 is a front view of a physical quantity measuring device of this embodiment; FIG. 図2に示す物理量計測装置の背面図。FIG. 3 is a rear view of the physical quantity measuring device shown in FIG. 2; 図2に示すカバーを取り除いた物理量計測装置の正面図。FIG. 3 is a front view of the physical quantity measuring device with the cover shown in FIG. 2 removed; 図3に示す封止部材を取り除いた物理量計測装置の背面図。FIG. 4 is a rear view of the physical quantity measuring device from which the sealing member shown in FIG. 3 is removed; 図5に示すコネクタ端子付近の拡大図。6 is an enlarged view of the vicinity of the connector terminal shown in FIG. 5; FIG. 図6に示すA-A線断面の模式図。FIG. 7 is a schematic diagram of a cross section taken along the line AA shown in FIG. 6; 図7に示す一点鎖線に囲まれた部分の拡大図。FIG. 8 is an enlarged view of a portion surrounded by a dashed line shown in FIG. 7; 比較例の物理量計測装置を説明する図。The figure explaining the physical-quantity measuring device of a comparative example. 図9に示す一点鎖線に囲まれた部分の拡大図。FIG. 10 is an enlarged view of a portion surrounded by a dashed line shown in FIG. 9; 本実施形態の変形例の物理量計測装置を説明する図。The figure explaining the physical-quantity measuring device of the modification of this embodiment. 図11に示す一点鎖線に囲まれた部分の拡大図。FIG. 12 is an enlarged view of a portion surrounded by a dashed line shown in FIG. 11;
 以下、本発明の実施形態について図面を用いて説明する。なお、各実施形態において同一の符号を付された構成については、特に言及しない限り、各実施形態において同様の機能を有するため、その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that components denoted by the same reference numerals in each embodiment have the same functions in each embodiment unless otherwise specified, and thus descriptions thereof will be omitted.
 図1は、本実施形態の物理量計測装置20が使用される電子燃料噴射方式の内燃機関制御システム1の構成を示す図である。 FIG. 1 is a diagram showing the configuration of an electronic fuel injection type internal combustion engine control system 1 in which the physical quantity measuring device 20 of the present embodiment is used.
 内燃機関制御システム1では、エンジンシリンダ11とエンジンピストン12とを備える内燃機関10の動作に基づき、吸入空気である被計測気体2が、エアクリーナ21から吸入され、主通路22である例えば吸気ボディとスロットルボディ23と吸気マニホールド24とを介して、エンジンシリンダ11の燃焼室に導かれる。燃焼室に導かれる吸入空気である被計測気体2の物理量は、本実施形態の物理量計測装置20によって計測され、計測された物理量に基づいて燃料噴射弁14より燃料が供給され、被計測気体2と共に混合気の状態で燃焼室に導かれる。なお、本実施形態では、燃料噴射弁14は内燃機関の吸気ポートに設けられ、吸気ポートに噴射された燃料が被計測気体2と共に混合気を成形し、吸気弁15を介して燃焼室に導かれ、燃焼して機械エネルギを発生する。 In the internal combustion engine control system 1, based on the operation of the internal combustion engine 10 having the engine cylinder 11 and the engine piston 12, the gas to be measured 2, which is the intake air, is drawn from the air cleaner 21 and passes through the main passage 22, such as the intake body. It is led to the combustion chamber of the engine cylinder 11 via the throttle body 23 and the intake manifold 24 . The physical quantity of the measured gas 2, which is the intake air introduced into the combustion chamber, is measured by the physical quantity measuring device 20 of the present embodiment, fuel is supplied from the fuel injection valve 14 based on the measured physical quantity, and the measured gas 2 together with the air-fuel mixture is led to the combustion chamber. In this embodiment, the fuel injection valve 14 is provided in the intake port of the internal combustion engine, and the fuel injected into the intake port forms an air-fuel mixture together with the gas 2 to be measured. It burns and produces mechanical energy.
 燃焼室に導かれた燃料及び空気は、燃料と空気との混合状態を成しており、点火プラグ13の火花着火により、爆発的に燃焼し、機械エネルギを発生する。燃焼後の気体は排気弁16から排気管に導かれ、排気ガス3として排気管から車外に排出される。前記燃焼室に導かれる吸入空気である被計測気体2の流量は、アクセルペダルの操作に基づいてその開度が変化するスロットルバルブ25により制御される。前記燃焼室に導かれる吸入空気の流量に基づいて燃料供給量が制御され、運転者はスロットルバルブ25の開度を制御して前記燃焼室に導かれる吸入空気の流量を制御することにより、内燃機関が発生する機械エネルギを制御することができる。 The fuel and air led to the combustion chamber are in a mixed state of fuel and air, and are explosively combusted by the spark ignition of the spark plug 13 to generate mechanical energy. The gas after combustion is led to an exhaust pipe through an exhaust valve 16 and discharged out of the vehicle as exhaust gas 3 from the exhaust pipe. The flow rate of the gas to be measured 2, which is the intake air introduced into the combustion chamber, is controlled by a throttle valve 25 whose opening varies according to the operation of the accelerator pedal. The fuel supply amount is controlled based on the flow rate of the intake air led to the combustion chamber, and the driver controls the opening of the throttle valve 25 to control the flow rate of the intake air led to the combustion chamber. The mechanical energy generated by the engine can be controlled.
 エアクリーナ21から取り込まれ主通路22を流れる吸入空気である被計測気体2の流量、温度、湿度又は圧力等の物理量が物理量計測装置20により計測され、物理量計測装置20から吸入空気の物理量を表す電気信号が制御装置4に入力される。また、スロットルバルブ25の開度を計測するスロットル角度センサ26の出力が制御装置4に入力され、さらに内燃機関10のエンジンピストン12や吸気弁15や排気弁16の位置や状態、更に内燃機関10の回転速度を計測するために、回転角度センサ17の出力が、制御装置4に入力される。排気ガス3の状態から燃料量と空気量との混合比の状態を計測するために、酸素センサ28の出力が制御装置4に入力される。 Physical quantities such as the flow rate, temperature, humidity or pressure of the gas 2 to be measured, which is the intake air taken in from the air cleaner 21 and flowing through the main passage 22, are measured by the physical quantity measuring device 20. A signal is input to the controller 4 . In addition, the output of a throttle angle sensor 26 that measures the opening of the throttle valve 25 is input to the control device 4, and the positions and states of the engine piston 12, the intake valve 15 and the exhaust valve 16 of the internal combustion engine 10, and further the internal combustion engine 10 The output of the rotation angle sensor 17 is input to the control device 4 in order to measure the rotation speed of . The output of the oxygen sensor 28 is input to the control device 4 in order to measure the state of the mixture ratio between the amount of fuel and the amount of air from the state of the exhaust gas 3 .
 制御装置4は、物理量計測装置20の出力である吸入空気の物理量と、回転角度センサ17の出力に基づき計測された内燃機関10の回転速度とに基づいて、燃料噴射量や点火時期を演算する。これら演算結果に基づいて、燃料噴射弁14から供給される燃料量や、点火プラグ13により点火される点火時期が制御される。燃料供給量や点火時期は、実際には更に、物理量計測装置20によって計測される温度や、スロットル角度の変化状態、エンジン回転速度の変化状態、酸素センサ28によって計測された空燃比の状態に基づいて、きめ細かく制御される。制御装置4は、更に内燃機関のアイドル運転状態において、スロットルバルブ25をバイパスする空気量をアイドルエアコントロールバルブ27により制御し、アイドル運転状態での内燃機関10の回転速度を制御する。 The control device 4 calculates the fuel injection amount and ignition timing based on the physical quantity of the intake air, which is the output of the physical quantity measuring device 20, and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. . Based on these calculation results, the amount of fuel supplied from the fuel injection valve 14 and the ignition timing of ignition by the spark plug 13 are controlled. The fuel supply amount and ignition timing are actually further based on the temperature measured by the physical quantity measuring device 20, the change state of the throttle angle, the change state of the engine rotation speed, and the air-fuel ratio state measured by the oxygen sensor 28. and fine-grained control. Further, the control device 4 controls the amount of air bypassing the throttle valve 25 by the idle air control valve 27 in the idling state of the internal combustion engine, thereby controlling the rotational speed of the internal combustion engine 10 in the idling state.
 内燃機関10の主要な制御量である燃料供給量や点火時期はいずれも物理量計測装置20の出力を主パラメータとして演算される。したがって、物理量計測装置20の計測精度の向上や、経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。 The fuel supply amount and ignition timing, which are the main control variables of the internal combustion engine 10, are both calculated using the output of the physical quantity measuring device 20 as a main parameter. Therefore, improving the measurement accuracy of the physical quantity measuring device 20, suppressing changes over time, and improving reliability are important for improving vehicle control accuracy and ensuring reliability.
 特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには、物理量計測装置20によって吸入空気の物理量を高い精度で計測することが極めて重要である。また、物理量計測装置20が高い信頼性を確保していることも大切である。 Especially in recent years, the demand for fuel efficiency of vehicles is very high, and the demand for exhaust gas purification is also very high. In order to meet these demands, it is extremely important to measure the physical quantity of the intake air with high accuracy using the physical quantity measuring device 20 . It is also important that the physical quantity measuring device 20 ensures high reliability.
 物理量計測装置20が搭載される車両は、温度や湿度の変化が大きい環境で使用される。物理量計測装置20は、その使用環境における温度や湿度の変化への対応や、塵埃や汚染物質などへの対応も、考慮されていることが望ましい。 A vehicle equipped with the physical quantity measuring device 20 is used in an environment with large changes in temperature and humidity. It is preferable that the physical quantity measuring device 20 is designed to deal with changes in temperature and humidity in the environment in which it is used, as well as with respect to dust and contaminants.
 また、物理量計測装置20は、内燃機関10の発熱の影響を受ける吸気管に装着される。このため、内燃機関により発生した熱が吸気管を介して物理量計測装置20に伝わる。物理量計測装置20は、被計測気体2と熱伝達を行うことにより被計測気体2の流量を計測するので、外部からの熱の影響をできるだけ抑制することが重要である。 Also, the physical quantity measuring device 20 is attached to an intake pipe that is affected by the heat generated by the internal combustion engine 10 . Therefore, the heat generated by the internal combustion engine is transmitted to the physical quantity measuring device 20 through the intake pipe. Since the physical quantity measuring device 20 measures the flow rate of the gas 2 to be measured by conducting heat transfer with the gas 2 to be measured, it is important to suppress the influence of heat from the outside as much as possible.
 車両に搭載される物理量計測装置20は、以下の説明において述べるように、単に発明が解決しようとする課題の欄に記載された課題を解決し、発明の効果の欄に記載された効果を奏するのみでなく、上述した色々な課題を十分に考慮し、製品として求められる色々な課題を解決し、色々な効果を奏する。物理量計測装置20が解決する具体的な課題や奏する具体的な効果は、以下の説明において述べる。 As described in the following description, the physical quantity measuring device 20 mounted on the vehicle simply solves the problems described in the column of the problems to be solved by the invention, and produces the effects described in the column of the effects of the invention. In addition, by fully considering the various problems described above, various problems required of the product can be solved, and various effects can be obtained. Specific problems to be solved by the physical quantity measuring device 20 and specific effects achieved will be described in the following description.
 図2は、本実施形態の物理量計測装置20の正面図である。図2では、カバー200がハウジング100に取り付けられた状態を示す。図3は、図2に示す物理量計測装置20の背面図である。図3では、封止部材250が回路基板300を覆った状態を示す。図4は、図2に示すカバー200を取り除いた物理量計測装置20の正面図である。図5は、図3に示す封止部材250を取り除いた物理量計測装置20の背面図である。以下の説明では、被計測気体2が、図1に示す主通路22の中心軸22aに沿って流れるものとする。 FIG. 2 is a front view of the physical quantity measuring device 20 of this embodiment. FIG. 2 shows the cover 200 attached to the housing 100 . FIG. 3 is a rear view of the physical quantity measuring device 20 shown in FIG. FIG. 3 shows a state in which the sealing member 250 covers the circuit board 300 . FIG. 4 is a front view of the physical quantity measuring device 20 with the cover 200 shown in FIG. 2 removed. FIG. 5 is a rear view of the physical quantity measuring device 20 with the sealing member 250 shown in FIG. 3 removed. In the following description, it is assumed that the gas 2 to be measured flows along the central axis 22a of the main passage 22 shown in FIG.
 物理量計測装置20は、主通路22の通路壁に設けられた取り付け孔から主通路22の内部に挿入されて主通路22に固定された状態で使用される。物理量計測装置20は、被計測気体2が流れる主通路22に配置される筐体を備える。物理量計測装置20の筐体は、ハウジング100と、ハウジング100の後述する計測部113の正面部121に取り付けられるカバー200と、計測部113の背面部122から露出する回路基板300を封止する封止部材250とを有する。 The physical quantity measuring device 20 is used while being inserted into the main passage 22 through an attachment hole provided in the passage wall of the main passage 22 and fixed to the main passage 22 . The physical quantity measuring device 20 includes a housing arranged in a main passage 22 through which the gas 2 to be measured flows. The housing of the physical quantity measuring device 20 includes a housing 100, a cover 200 attached to a front surface portion 121 of a measurement unit 113 described later of the housing 100, and a seal that seals a circuit board 300 exposed from a rear surface portion 122 of the measurement unit 113. and a stop member 250 .
 ハウジング100は、例えば、合成樹脂材料を射出成形することによって形成される。ハウジング100の成形に用いられる樹脂材料は、物理量計測装置20としての要求性能を満たし比較的安価なPBT(ポリブチレンテレフタレート)樹脂等が挙げられる。カバー200は、例えば、金属材料又は合成樹脂材料から成る板状部材によって形成される。本実施形態では、アルミニウム合金又は合成樹脂材料を射出成形することによって形成される。カバー200は、計測部113の正面部121を全面的に覆う大きさを有する。封止部材250は、例えば、合成樹脂材料を、計測部113の背面部122における回路基板300の露出領域に流し込んで成形することによって形成される。封止部材250の成形に用いられる樹脂材料は、物理量計測装置20としての要求性能を満たすエポキシ樹脂等が挙げられる。 The housing 100 is formed, for example, by injection molding a synthetic resin material. The resin material used for molding the housing 100 may be PBT (polybutylene terephthalate) resin, which satisfies the required performance of the physical quantity measuring device 20 and is relatively inexpensive. The cover 200 is made of, for example, a plate-shaped member made of metal material or synthetic resin material. In this embodiment, it is formed by injection molding an aluminum alloy or synthetic resin material. The cover 200 has a size that completely covers the front portion 121 of the measuring portion 113 . The sealing member 250 is formed by, for example, pouring a synthetic resin material into the exposed area of the circuit board 300 in the back surface portion 122 of the measurement unit 113 and molding. The resin material used for molding the sealing member 250 may be epoxy resin or the like that satisfies the required performance of the physical quantity measuring device 20 .
 ハウジング100は、物理量計測装置20を主通路22に固定するためのフランジ111と、フランジ111から突出して外部装置との電気的な接続を行うために主通路22から外部に露出するコネクタ112とを有する。更に、ハウジング100は、主通路22を流れる被計測気体2の物理量を計測するためにフランジ111から主通路22の中心軸22aに向かって突出するように延びる計測部113を有する。 The housing 100 includes a flange 111 for fixing the physical quantity measuring device 20 to the main passage 22, and a connector 112 protruding from the flange 111 and exposed to the outside from the main passage 22 for electrical connection with an external device. have. Furthermore, the housing 100 has a measuring portion 113 extending from the flange 111 toward the central axis 22 a of the main passage 22 to measure the physical quantity of the gas 2 to be measured flowing through the main passage 22 .
 計測部113は、流量、温度、湿度又は圧力等の物理量を計測するセンサを収容するハウジング100の部分である。具体的に、計測部113は、流量検出素子321を有するチップパッケージ310、温度センサ331、湿度センサ333、圧力センサ335を収容する。計測部113は、フランジ111から真っ直ぐ延びる薄くて長い形状を成す。計測部113は、幅広な正面部121及び背面部122と、幅狭な一対の側面部123,124と、幅狭な先端面部125とを有する。 The measurement unit 113 is a part of the housing 100 that houses sensors for measuring physical quantities such as flow rate, temperature, humidity or pressure. Specifically, the measurement unit 113 accommodates a chip package 310 having a flow rate detection element 321 , a temperature sensor 331 , a humidity sensor 333 and a pressure sensor 335 . The measurement part 113 has a thin and long shape extending straight from the flange 111 . The measuring portion 113 has a wide front portion 121 and a rear portion 122 , a pair of narrow side portions 123 and 124 , and a narrow tip surface portion 125 .
 正面部121及び背面部122は、計測部113の長手方向及び短手方向をそれぞれ長辺及び短辺とする矩形状の面であり、計測部113を構成する各面のうちでも面積が広い主面である。正面部121は、計測部113のうち、副通路134,135が形成される部分である。背面部122は、計測部113のうち、正面部121とは反対側の部分である。正面部121及び背面部122は、物理量計測装置20が主通路22に取り付けられた状態において、主通路22の中心軸22aに沿って平行に配置される。側面部123は、計測部113の短手方向の一方側に位置し、物理量計測装置20が主通路22に取り付けられた状態において、主通路22の上流側に向けて配置される。側面部124は、計測部113の短手方向の他方側に位置し、物理量計測装置20が主通路22に取り付けられた状態において、主通路22の下流側に向けて配置される。先端面部125は、正面部121、背面部122、側面部123及び側面部124に連続する面である。先端面部125は、フランジ111から離隔した計測部113の端面に位置し、物理量計測装置20が主通路22に取り付けられた状態において、主通路22の中心軸22aに沿って平行に配置される。物理量計測装置20は、主通路22の上流側及び下流側を向く側面部123及び側面部124が幅狭な形状を成すことにより、被計測気体2に対して流体抵抗を小さい値に抑えることができる。 The front part 121 and the back part 122 are rectangular surfaces having long sides and short sides corresponding to the longitudinal direction and the lateral direction of the measuring part 113, respectively. It is the surface. The front portion 121 is a portion of the measurement portion 113 in which the secondary passages 134 and 135 are formed. The rear portion 122 is a portion of the measurement portion 113 on the side opposite to the front portion 121 . The front part 121 and the back part 122 are arranged parallel to each other along the central axis 22a of the main passage 22 when the physical quantity measuring device 20 is attached to the main passage 22 . The side portion 123 is located on one side of the measuring portion 113 in the short direction, and is arranged toward the upstream side of the main passage 22 when the physical quantity measuring device 20 is attached to the main passage 22 . The side portion 124 is positioned on the other side of the measuring portion 113 in the short direction, and is arranged toward the downstream side of the main passage 22 when the physical quantity measuring device 20 is attached to the main passage 22 . The tip surface portion 125 is a surface that is continuous with the front surface portion 121 , the rear surface portion 122 , the side surface portion 123 and the side surface portion 124 . The tip face portion 125 is located on the end face of the measuring portion 113 separated from the flange 111 and arranged in parallel along the central axis 22a of the main passage 22 when the physical quantity measuring device 20 is attached to the main passage 22 . In the physical quantity measuring device 20, the side portions 123 and 124 facing the upstream side and the downstream side of the main passage 22 have a narrow shape, so that the fluid resistance to the gas 2 to be measured can be suppressed to a small value. can.
 本実施形態では、主通路22に取り付けられた状態での物理量計測装置20の姿勢は、フランジ111と近接する計測部113の基端部が上側に配置され、フランジ111から離隔した計測部113の先端面部125が下側に配置される姿勢である。但し、主通路22に取り付けられた状態での物理量計測装置20の姿勢は、本実施形態に限定されるものではなく、種々の姿勢とすることができる。例えば、物理量計測装置20の姿勢は、計測部113の基端部と先端面部125とが同一の高さとなるように水平に取り付けられる姿勢であってよい。 In the present embodiment, the posture of the physical quantity measuring device 20 in a state of being attached to the main passage 22 is such that the proximal end portion of the measuring portion 113 that is close to the flange 111 is arranged on the upper side, and the measuring portion 113 that is separated from the flange 111 is positioned at the upper side. This is a posture in which the tip surface portion 125 is arranged on the lower side. However, the posture of the physical quantity measuring device 20 attached to the main passage 22 is not limited to the present embodiment, and various postures can be adopted. For example, the posture of the physical quantity measuring device 20 may be a posture in which the measuring unit 113 is mounted horizontally so that the base end portion and the distal surface portion 125 of the measuring unit 113 are at the same height.
 計測部113は、側面部123に副通路134,135の入口131が設けられ、側面部124に第1出口132及び第2出口133が設けられる。入口131と第1出口132及び第2出口133とは、フランジ111から主通路22の中心軸22aに向かう方向において計測部113の先端面部125に近い位置に設けられる。第2出口133は、主通路22の下流側に向けて配置される。第2出口133は、第1出口132よりも若干大きい開口面積を有しており、第1出口132よりも計測部113の基端部側に隣接した位置に設けられる。計測部113は、主通路22の通路壁の内面から離れた中心軸22aに近い部分を流れる被計測気体2を、副通路134,135に取り込むことができる。これにより、物理量計測装置20は、中心軸22aに近い部分を流れる被計測気体2の流量を計測することができ、熱等の影響による計測精度の低下を抑制できる。 The measurement unit 113 has an inlet 131 of the sub-passages 134 and 135 provided on the side surface 123 , and a first outlet 132 and a second outlet 133 provided on the side surface 124 . The inlet 131 , the first outlet 132 , and the second outlet 133 are provided at positions close to the tip surface portion 125 of the measuring portion 113 in the direction from the flange 111 toward the central axis 22 a of the main passage 22 . The second outlet 133 is arranged toward the downstream side of the main passage 22 . The second outlet 133 has an opening area slightly larger than that of the first outlet 132 , and is provided at a position closer to the base end side of the measuring section 113 than the first outlet 132 . The measurement unit 113 can take into the sub-passages 134 and 135 the gas 2 to be measured that flows through the portion near the central axis 22 a away from the inner surface of the passage wall of the main passage 22 . Thereby, the physical quantity measuring device 20 can measure the flow rate of the gas 2 to be measured flowing in the portion near the central axis 22a, and can suppress deterioration in measurement accuracy due to the influence of heat or the like.
 計測部113には、主通路22を流れる被計測気体2の一部を取り込む副通路134,135と、物理量を計測するセンサが実装された回路基板300とが設けられる。 The measurement unit 113 is provided with sub-passages 134 and 135 that take in part of the gas 2 to be measured flowing through the main passage 22, and a circuit board 300 on which sensors for measuring physical quantities are mounted.
 副通路134,135は、計測部113の正面部121に凹状に設けられており、ハウジング100にカバー200を取り付けることによって覆われる構造となっている。回路基板300は、計測部113のうち、側面部123に近い領域に設けられる。副通路134,135は、計測部113のうち、回路基板300よりも先端面部125に近い領域と、回路基板300よりも側面部124に近い領域とに亘って設けられる。副通路134,135は、第1副通路134と、第2副通路135とを有する。 The sub-passages 134 and 135 are provided in a concave shape in the front part 121 of the measuring part 113 and are covered by attaching a cover 200 to the housing 100 . The circuit board 300 is provided in a region of the measuring section 113 that is close to the side surface section 123 . The secondary passages 134 and 135 are provided over a region of the measuring section 113 that is closer to the tip surface portion 125 than the circuit board 300 and a region that is closer to the side surface portion 124 than the circuit board 300 . The sub-passages 134 , 135 have a first sub-passage 134 and a second sub-passage 135 .
 第1副通路134は、計測部113の側面部123に開口する入口131と、計測部113の側面部124に開口する第1出口132との間に亘って、計測部113の短手方向に沿って延びるように形成される。第1副通路134は、入口131から、主通路22内の被計測気体2の流れ方向に沿って延び、第1出口132まで繋がる流路である。第1副通路134は、主通路22を流れる被計測気体2を入口131から取り込み、取り込んだ被計測気体2を第1出口132から主通路22に戻す。 The first sub-passage 134 extends in the lateral direction of the measuring section 113 between the entrance 131 that opens in the side section 123 of the measuring section 113 and the first outlet 132 that opens in the side section 124 of the measuring section 113. formed to extend along the The first subpassage 134 is a flow path that extends from the inlet 131 along the flow direction of the gas 2 to be measured in the main passage 22 and connects to the first outlet 132 . The first auxiliary passage 134 takes in the measured gas 2 flowing through the main passage 22 from the inlet 131 and returns the taken-in measured gas 2 from the first outlet 132 to the main passage 22 .
 第2副通路135は、第1副通路134の途中で分岐して計測部113の基端部に向かって(フランジ111に向かって)延びる往路部136と、計測部113の基端部において折り返されてUターンし、計測部113の先端面部125に向かって延びる復路部137とを有する。往路部136は、第1副通路134の途中で分岐して第1副通路134から離れる方向に向かって延びる。復路部137は、往路部136の端部において折り返されてUターンし、第1副通路134に近接する方向に向かって延びる。復路部137は、入口131よりも主通路22の下流側の位置において、主通路22の下流側に向かって開口する第2出口133に繋がる。第2副通路135は、第1副通路134から分岐して流れ込んだ被計測気体2を通過させて第2出口133から主通路22に戻す。第2副通路135は、計測部113の長手方向に沿って延びる往路部136及び復路部137を有するので、通路長を長く確保することができる。これにより、物理量計測装置20は、主通路22内に脈動が生じた場合でも、第2副通路135に配置された流量検出素子321が、脈動の影響を余り受けずに、第2副通路135に流れる被計測気体2の流量を計測することができる。 The second sub-passage 135 branches off from the middle of the first sub-passage 134 and extends toward the proximal end of the measuring portion 113 (toward the flange 111 ), and the forward portion 136 is folded back at the proximal end of the measuring portion 113 . and a return path portion 137 extending toward the tip surface portion 125 of the measuring portion 113 and making a U-turn. The outward path portion 136 branches in the middle of the first sub-passage 134 and extends in a direction away from the first sub-passage 134 . Return path portion 137 is folded back at the end of outward path portion 136 to make a U-turn, and extends in a direction approaching first sub-passage 134 . The return path portion 137 connects to a second outlet 133 that opens toward the downstream side of the main passage 22 at a position downstream of the main passage 22 relative to the inlet 131 . The second sub-passage 135 allows the gas to be measured 2 branched from the first sub-passage 134 to pass therethrough and returns it to the main passage 22 from the second outlet 133 . Since the second sub-path 135 has an outward path portion 136 and a return path portion 137 extending along the longitudinal direction of the measuring portion 113, a long path length can be ensured. As a result, even when pulsation occurs in the main passage 22, the physical quantity measuring device 20 allows the flow rate detection element 321 arranged in the second sub passage 135 to be detected in the second sub passage 135 without being significantly affected by the pulsation. can be measured.
 回路基板300は、平面視において略長方形状を成す。回路基板300は、回路基板300の長手方向が計測部113の基端部から先端面部125に向かって延び、回路基板300の短手方向が計測部113の側面部123から側面部124に向かって延びるように、計測部113内に配置される。 The circuit board 300 has a substantially rectangular shape in plan view. In the circuit board 300, the longitudinal direction of the circuit board 300 extends from the base end portion of the measuring portion 113 toward the distal end portion 125, and the lateral direction of the circuit board 300 extends from the side portion 123 to the side portion 124 of the measuring portion 113. It is arranged in the measurement unit 113 so as to extend.
 回路基板300は、実装面300a及び実装面300bの両面に電子部品を実装可能な回路基板である。回路基板300の実装面300aは、計測部113の正面部121に配置される。回路基板300の実装面300bは、計測部113の背面部122に配置される。回路基板300の実装面300aには、流量検出素子321を支持するチップパッケージ310、温度センサ331、湿度センサ333及び圧力センサ335等の電子部品が実装される。回路基板300の実装面300bには、LSI341及びマイコン343等の電子部品が実装される。 The circuit board 300 is a circuit board on which electronic components can be mounted on both the mounting surface 300a and the mounting surface 300b. A mounting surface 300 a of the circuit board 300 is arranged on the front portion 121 of the measuring portion 113 . A mounting surface 300 b of the circuit board 300 is arranged on the rear surface portion 122 of the measurement unit 113 . On the mounting surface 300a of the circuit board 300, electronic components such as a chip package 310 supporting the flow rate detecting element 321, a temperature sensor 331, a humidity sensor 333 and a pressure sensor 335 are mounted. Electronic components such as an LSI 341 and a microcomputer 343 are mounted on the mounting surface 300 b of the circuit board 300 .
 チップパッケージ310は、回路基板300の実装面300aの中央部に実装される。チップパッケージ310は、実装面300aの中央部に固定された固定部311と、固定部311から第2副通路135の往路部136に向けて張り出した張出部312とを有する。張出部312には、流量検出素子321が設けられる。流量検出素子321は、ダイヤフラム状(薄膜状)の検出面を有しており、この検出面が、第2副通路135の往路部136に露出している。流量検出素子321は、第2副通路135の往路部136に取り込まれた被計測気体2の流量を計測する。 The chip package 310 is mounted on the central portion of the mounting surface 300 a of the circuit board 300 . The chip package 310 has a fixed portion 311 fixed to the central portion of the mounting surface 300 a and a protruding portion 312 protruding from the fixed portion 311 toward the outgoing path portion 136 of the second sub-passage 135 . A flow rate detection element 321 is provided on the projecting portion 312 . The flow rate detection element 321 has a diaphragm-like (thin film-like) detection surface, and this detection surface is exposed to the outward path portion 136 of the second sub-path 135 . The flow rate detection element 321 measures the flow rate of the gas 2 to be measured taken into the outward path portion 136 of the second sub-path 135 .
 温度センサ331は、回路基板300の実装面300aにおける入口131付近の端部に実装される。温度センサ331は、入口131近傍に一端が開口し、他端が正面部121と背面部122との両方に開口する計測部113の温度検出通路の途中に配置される。温度センサ331は、温度検出通路に取り込まれた被計測気体2の温度を計測する。 The temperature sensor 331 is mounted at the end of the mounting surface 300a of the circuit board 300 near the entrance 131. The temperature sensor 331 is arranged in the middle of the temperature detection passage of the measuring section 113 , one end of which is open near the inlet 131 and the other end of which is open to both the front portion 121 and the rear portion 122 . The temperature sensor 331 measures the temperature of the measured gas 2 introduced into the temperature detection passage.
 湿度センサ333は、回路基板300の実装面300aにおいてチップパッケージ310よりも計測部113の先端面部125側に実装される。湿度センサ333は、背面部122に開口する計測部113の窓部から取り込まれた被計測気体2の湿度を計測する。 The humidity sensor 333 is mounted on the mounting surface 300a of the circuit board 300 closer to the front end surface portion 125 of the measuring portion 113 than the chip package 310 is. The humidity sensor 333 measures the humidity of the gas 2 to be measured taken in through the window of the measurement unit 113 opening in the back surface 122 .
 圧力センサ335は、回路基板300の実装面300aにおいてチップパッケージ310よりも計測部113の基端部側に実装される。圧力センサ335は、第2副通路135の途中に開口する計測部113の圧力導入通路から取り込まれた被計測気体2の圧力を計測する。 The pressure sensor 335 is mounted on the mounting surface 300a of the circuit board 300 closer to the base end of the measuring section 113 than the chip package 310 is. The pressure sensor 335 measures the pressure of the gas 2 to be measured taken in from the pressure introduction passage of the measuring section 113 that opens in the middle of the second sub passage 135 .
 LSI341及びマイコン343は、回路基板300の実装面300bに実装される。LSI341及びマイコン343は、流量検出素子321、温度センサ331、湿度センサ333又は圧力センサ335からの出力信号に対して各種の信号処理及び演算処理を行い、物理量の計測結果を表す電気信号である計測信号を出力する。この計測信号は、回路基板300の配線パターン、電極パッド301、ワイヤ350、コネクタ端子117を介して、コネクタ112から物理量計測装置20の外部に出力される。物理量計測装置20の外部に出力された計測信号は、制御装置4に入力される。 The LSI 341 and the microcomputer 343 are mounted on the mounting surface 300b of the circuit board 300. The LSI 341 and the microcomputer 343 perform various signal processing and arithmetic processing on the output signals from the flow rate detection element 321, the temperature sensor 331, the humidity sensor 333, or the pressure sensor 335, and measure the electrical signals representing the measurement results of physical quantities. Output a signal. This measurement signal is output to the outside of the physical quantity measuring device 20 from the connector 112 via the wiring pattern of the circuit board 300 , the electrode pads 301 , the wires 350 and the connector terminals 117 . A measurement signal output to the outside of the physical quantity measuring device 20 is input to the control device 4 .
 図6は、図5に示すコネクタ端子117付近の拡大図である。図7は、図6に示すA-A線断面の模式図である。図8は、図7に示す一点鎖線に囲まれた部分の拡大図である。 FIG. 6 is an enlarged view of the vicinity of the connector terminal 117 shown in FIG. FIG. 7 is a schematic diagram of a cross section taken along the line AA shown in FIG. FIG. 8 is an enlarged view of a portion surrounded by a dashed line shown in FIG.
 コネクタ端子117は、物理量の計測信号を外部に出力する端子である。コネクタ端子117は、インサート成形等によってハウジング100と一体成形される。コネクタ端子117は、ハウジング100の端子封止部114から一部が露出した状態で端子封止部114に封止される。コネクタ端子117は、例えば、リン青銅等の導電材料から成る板状部材によって形成される。コネクタ端子117の線膨張係数は、10ppm/K以上30ppm/K以下であってもよく、例えば20ppm/K程度であってもよい。 The connector terminal 117 is a terminal that outputs a physical quantity measurement signal to the outside. The connector terminal 117 is integrally formed with the housing 100 by insert molding or the like. The connector terminals 117 are partially exposed from the terminal sealing portion 114 of the housing 100 and are sealed in the terminal sealing portion 114 . The connector terminal 117 is made of a plate member made of a conductive material such as phosphor bronze. The linear expansion coefficient of the connector terminal 117 may be 10 ppm/K or more and 30 ppm/K or less, and may be about 20 ppm/K, for example.
 コネクタ端子117は、図8に示すように、ボンディング面118と、側面119とを有する。ボンディング面118は、ハウジング100の端子封止部114から露出し、ワイヤ350がボンディングされる面である。ボンディング面118は、封止部材250に接触する。ボンディング面118は、コネクタ端子117の幅方向と軸線方向とに広がる。側面119は、ボンディング面118に連続する面であって、ハウジング100の端子封止部114に封止された面である。側面119は、コネクタ端子117の板厚方向と軸線方向とに広がる。 The connector terminal 117 has a bonding surface 118 and side surfaces 119, as shown in FIG. The bonding surface 118 is exposed from the terminal sealing portion 114 of the housing 100 and is the surface to which the wire 350 is bonded. Bonding surface 118 contacts encapsulation member 250 . The bonding surface 118 extends in the width direction and the axial direction of the connector terminal 117 . The side surface 119 is a surface continuous with the bonding surface 118 and is a surface sealed with the terminal sealing portion 114 of the housing 100 . The side surface 119 extends in the plate thickness direction and the axial direction of the connector terminal 117 .
 コネクタ端子117の幅方向は、側面119に直交する方向であり、計測部113の短手方向である。本実施形態では、コネクタ端子117の幅方向をX軸とし、計測部113の短手方向のうち側面部123から側面部124に向かう方向を+X軸方向とする。コネクタ端子117の板厚方向は、ボンディング面118に直交する方向であり、計測部113の長手方向及び短手方向に直交する方向である。本実施形態では、コネクタ端子117の板厚方向をY軸とし、計測部113の長手方向及び短手方向に直交する方向のうち正面部121から背面部122に向かう方向を+Y軸方向とする。コネクタ端子117の軸線方向は、コネクタ端子117の幅方向及び板厚方向のそれぞれに直交する方向であり、計測部113の長手方向である。本実施形態では、コネクタ端子117の軸線方向をZ軸とし、計測部113の長手方向のうち計測部113の基端部から先端面部125に向かう方向を+Z軸方向とする。 The width direction of the connector terminal 117 is the direction orthogonal to the side surface 119 and the width direction of the measuring section 113 . In this embodiment, the width direction of the connector terminal 117 is defined as the X-axis, and the direction from the side surface portion 123 to the side surface portion 124 in the width direction of the measuring portion 113 is defined as the +X-axis direction. The plate thickness direction of the connector terminal 117 is a direction orthogonal to the bonding surface 118 and a direction orthogonal to the longitudinal direction and the lateral direction of the measuring section 113 . In this embodiment, the thickness direction of the connector terminal 117 is the Y-axis, and the direction from the front part 121 to the back part 122 of the directions perpendicular to the longitudinal direction and the lateral direction of the measurement part 113 is the +Y-axis direction. The axial direction of the connector terminal 117 is a direction perpendicular to the width direction and the plate thickness direction of the connector terminal 117 , and is the longitudinal direction of the measuring section 113 . In this embodiment, the axial direction of the connector terminal 117 is defined as the Z axis, and the direction from the proximal end of the measuring part 113 toward the distal surface part 125 in the longitudinal direction of the measuring part 113 is defined as the +Z axis direction.
 コネクタ端子117は、図6及び図7に示すように、コネクタ端子117の幅方向に間隔をあけて配置される複数のコネクタ端子117によって構成されてもよい。複数のコネクタ端子117は、当該幅方向において側面部123に最も近いコネクタ端子117aと、当該幅方向において側面部124に最も近いコネクタ端子117bとを含む。 The connector terminal 117 may be composed of a plurality of connector terminals 117 arranged at intervals in the width direction of the connector terminal 117, as shown in FIGS. The plurality of connector terminals 117 includes a connector terminal 117a closest to the side surface portion 123 in the width direction and a connector terminal 117b closest to the side surface portion 124 in the width direction.
 ワイヤ350は、回路基板300とコネクタ端子117とをワイヤボンディングによって接続するためのボンディングワイヤである。ワイヤ350は、図6に示すように、回路基板300の実装面300bの電極パッド301と、コネクタ端子117のボンディング面118とを接続する。ワイヤ350は、アルミ又は銅等の金属材料から成る線状部材によって形成される。ワイヤ350の線膨張係数は、10ppm/K以上30ppm/K以下であってもよく、例えば20ppm/K程度であってもよい。 The wire 350 is a bonding wire for connecting the circuit board 300 and the connector terminal 117 by wire bonding. The wires 350 connect the electrode pads 301 on the mounting surface 300b of the circuit board 300 and the bonding surfaces 118 of the connector terminals 117, as shown in FIG. Wire 350 is formed of a linear member made of a metal material such as aluminum or copper. The linear expansion coefficient of the wire 350 may be 10 ppm/K or more and 30 ppm/K or less, and may be about 20 ppm/K, for example.
 封止部材250は、ハウジング100の計測部113の背面部122から露出する回路基板300の実装面300bを覆う。封止部材250は、例えば、エポキシ樹脂等の合成樹脂材料を成形することによって形成される。封止部材250の線膨張係数は、ガラス転移温度以下において、10ppm/K以上30ppm/K以下であってもよく、例えば20ppm/K程度であってもよい。封止部材250は、図8に示すように、ワイヤ350を封止する。封止部材250は、コネクタ端子117のボンディング面118、及び、ハウジング100の端子封止部114に接触する。 The sealing member 250 covers the mounting surface 300b of the circuit board 300 exposed from the back surface portion 122 of the measuring portion 113 of the housing 100. The sealing member 250 is formed, for example, by molding a synthetic resin material such as epoxy resin. The coefficient of linear expansion of the sealing member 250 may be 10 ppm/K or more and 30 ppm/K or less, for example, about 20 ppm/K at the glass transition temperature or lower. Sealing member 250 seals wire 350 as shown in FIG. The sealing member 250 contacts the bonding surface 118 of the connector terminal 117 and the terminal sealing portion 114 of the housing 100 .
 ハウジング100の端子封止部114は、計測部113の基端部に位置するコネクタ端子117を封止する部分である。端子封止部114を含むハウジング100は、例えば、PBT(ポリブチレンテレフタレート)樹脂等の合成樹脂材料を成形することによって形成される。ハウジング100は、封止部材250よりも大きい線膨張係数を有する樹脂材料を用いて成形される。ハウジング100の線膨張係数は、ガラス転移温度以下において、60ppm/K以上110ppm/K以下であってもよく、例えば100ppm/K程度であってもよい。ハウジング100の線膨張係数は、封止部材250の線膨張係数の5倍以上6倍以下であってもよい。 The terminal sealing portion 114 of the housing 100 is a portion that seals the connector terminal 117 positioned at the proximal end portion of the measuring portion 113 . Housing 100 including terminal sealing portion 114 is formed by, for example, molding a synthetic resin material such as PBT (polybutylene terephthalate) resin. The housing 100 is molded using a resin material having a coefficient of linear expansion greater than that of the sealing member 250 . The coefficient of linear expansion of the housing 100 may be 60 ppm/K or more and 110 ppm/K or less, for example, about 100 ppm/K at the glass transition temperature or lower. The linear expansion coefficient of the housing 100 may be 5 times or more and 6 times or less than the linear expansion coefficient of the sealing member 250 .
 端子封止部114は、図8に示すように、第1面115と、第2面116とを有する。第1面115は、コネクタ端子117の側面119に接触する面である。第1面115は、コネクタ端子117の板厚方向と軸線方向とに広がる。第2面116は、第1面115に連続する面であって、封止部材250に接触する面である。第2面116は、コネクタ端子117の幅方向と軸線方向に広がる。 The terminal sealing portion 114 has a first surface 115 and a second surface 116, as shown in FIG. The first surface 115 is the surface that contacts the side surface 119 of the connector terminal 117 . The first surface 115 extends in the plate thickness direction and the axial direction of the connector terminal 117 . The second surface 116 is a surface continuous with the first surface 115 and a surface that contacts the sealing member 250 . The second surface 116 extends in the width direction and the axial direction of the connector terminal 117 .
 第2面116は、第2面116のコネクタ端子117の幅方向における端部であって、第1面115に連続する端部116aを有する。第2面116の端部116aの高さ(コネクタ端子117の板厚方向における位置)は、ボンディング面118の高さと同一である。すなわち、第2面116の端部116aは、ボンディング面118と面一の形状に形成される。言い換えると、第2面116の端部116aは、ボンディング面118と同一平面上に配置される形状に形成される。 The second surface 116 has an end portion 116 a that is an end portion of the second surface 116 in the width direction of the connector terminal 117 and that is continuous with the first surface 115 . The height of the end portion 116 a of the second surface 116 (position in the plate thickness direction of the connector terminal 117 ) is the same as the height of the bonding surface 118 . That is, the end portion 116 a of the second surface 116 is formed flush with the bonding surface 118 . In other words, the end portion 116 a of the second surface 116 is shaped to be flush with the bonding surface 118 .
 ハウジング100の端子封止部114は、コネクタ端子117の板厚方向に開閉移動する上金型(可動型)と、移動しない下金型(固定型)との間に溶融樹脂を充填し硬化させることによって成形される。仮に、上金型の成形面のボンディング面118及び端部116aに対応する部分を平坦にしてボンディング面118に接触させて成形しても、樹脂には数%の熱収縮が発生するので、端部116aはボンディング面118から数10μm以内の範囲で低くなる。 In the terminal sealing portion 114 of the housing 100, a molten resin is filled between an upper mold (movable mold) that opens and closes in the plate thickness direction of the connector terminal 117 and a lower mold (fixed mold) that does not move, and is cured. It is molded by Even if the portion corresponding to the bonding surface 118 and the end portion 116a of the molding surface of the upper mold is flattened and brought into contact with the bonding surface 118 for molding, the resin will undergo thermal shrinkage of several percent. The portion 116a is lowered within several tens of micrometers from the bonding surface 118 .
 本実施形態において、第2面116の端部116aとボンディング面118とが面一とは、第2面116の端部116aとボンディング面118とが完全に同一の平面上に配置される場合だけでなく、次のような場合も含む。すなわち、第2面116の端部116aが、コネクタ端子117の板厚方向のワイヤ350とは反対側に向かう方向(-Y軸方向)にボンディング面118から数10μm以内の範囲で低くなって配置される場合も含む。なお、ボンディング面118の縁部には、コネクタ端子117がプレス加工等によって切断される際にダレが発生することがある。第2面116の端部116aは、ダレが発生した縁部以外の大部分であるボンディング面118の主部と面一の形状に形成される。 In the present embodiment, the end portion 116a of the second surface 116 and the bonding surface 118 are flush only when the end portion 116a of the second surface 116 and the bonding surface 118 are arranged completely on the same plane. but also includes the following cases: That is, the end portion 116a of the second surface 116 is arranged to be lowered within several tens of μm from the bonding surface 118 in the direction (−Y-axis direction) toward the opposite side of the wire 350 in the plate thickness direction of the connector terminal 117. including cases where It should be noted that the edges of the bonding surface 118 may be sagging when the connector terminals 117 are cut by press working or the like. The end portion 116a of the second surface 116 is formed to be flush with the main portion of the bonding surface 118, which is the majority portion other than the sagging edge portion.
 第2面116は、コネクタ端子117の幅方向において隣り合うコネクタ端子117同士の中間に位置する中間部116bを有する。第2面116の中間部116bは、第2面116の端部116aから、コネクタ端子117の板厚方向のワイヤ350とは反対側に向かう方向に所定距離だけ低い位置に配置されるように形成される。この所定距離は、コネクタ端子117の板厚の2分の1以下の長さであってもよく、例えば3分の1以上2分の1以下の長さであってもよい。 The second surface 116 has an intermediate portion 116b located between the connector terminals 117 adjacent to each other in the width direction of the connector terminals 117 . The intermediate portion 116b of the second surface 116 is formed to be located at a position lower than the end portion 116a of the second surface 116 by a predetermined distance in the direction opposite to the wire 350 in the plate thickness direction of the connector terminal 117. be done. This predetermined distance may be a length equal to or less than 1/2 of the plate thickness of the connector terminal 117, and may be, for example, equal to or greater than 1/3 and equal to or less than 1/2.
 第2面116は、ボンディング面118に対して傾斜する傾斜面116cを有する。第2面116の傾斜面116cは、コネクタ端子117の幅方向において端部116aから離隔するに従って、コネクタ端子117の板厚方向のワイヤ350とは反対側に向かう方向(-Y軸方向)に傾斜する。第2面116の傾斜面116cは、コネクタ端子117の幅方向において端部116aと中間部116bとの間に形成される。更に、第2面116の傾斜面116cは、コネクタ端子117の幅方向においてコネクタ端子117aから側面部123に向かって延びる第2面116の外側部分116dに形成される。同様に、第2面116の傾斜面116cは、コネクタ端子117の幅方向においてコネクタ端子117bから側面部124に向かって延びる第2面116の外側部分116eに形成される。 The second surface 116 has an inclined surface 116 c that is inclined with respect to the bonding surface 118 . The inclined surface 116c of the second surface 116 is inclined in the direction (-Y-axis direction) toward the side opposite to the wire 350 in the plate thickness direction of the connector terminal 117 as it is separated from the end portion 116a in the width direction of the connector terminal 117. do. Inclined surface 116 c of second surface 116 is formed between end portion 116 a and intermediate portion 116 b in the width direction of connector terminal 117 . Further, the inclined surface 116c of the second surface 116 is formed on the outer portion 116d of the second surface 116 extending from the connector terminal 117a toward the side surface portion 123 in the width direction of the connector terminal 117. As shown in FIG. Similarly, the inclined surface 116c of the second surface 116 is formed on the outer portion 116e of the second surface 116 extending from the connector terminal 117b toward the side surface portion 124 in the width direction of the connector terminal 117. As shown in FIG.
 すなわち、隣り合うコネクタ端子117の間に位置する第2面116は、コネクタ端子117の板厚方向及び幅方向を含む平面により切断される断面がV字状に形成される溝116fを有する。V字状の溝116fの深さは、コネクタ端子117の板厚の2分の1以下の長さであってもよく、例えば3分の1以上2分の1以下の長さであってもよい。 In other words, the second surface 116 located between the adjacent connector terminals 117 has a groove 116f having a V-shaped cross section cut by a plane including the plate thickness direction and width direction of the connector terminal 117 . The depth of the V-shaped groove 116f may be 1/2 or less of the plate thickness of the connector terminal 117, for example, 1/3 or more and 1/2 or less. good.
 図9及び図10を用いて、本実施形態の作用効果について説明する。
 図9は、比較例の物理量計測装置20を説明する図である。図9は、図7に対応する図である。図10は、図9に示す一点鎖線に囲まれた部分の拡大図である。図10は、図8に対応する図である。
The effect of this embodiment is demonstrated using FIG.9 and FIG.10.
FIG. 9 is a diagram illustrating a physical quantity measuring device 20 of a comparative example. FIG. 9 is a diagram corresponding to FIG. FIG. 10 is an enlarged view of a portion surrounded by a dashed line shown in FIG. FIG. 10 is a diagram corresponding to FIG.
 比較例の物理量計測装置20では、第2面116は、端部116a及び中間部116bの高さがボンディング面118よりも高い凸状面116gを有する。比較例の物理量計測装置20では、端子封止部114を含むハウジング100が、封止部材250よりも大きい線膨張係数を有する。ハウジング100と封止部材250との線膨張係数差によって、封止部材250との界面付近の端子封止部114には熱応力が発生する。 In the physical quantity measuring device 20 of the comparative example, the second surface 116 has a convex surface 116g in which the heights of the end portion 116a and the intermediate portion 116b are higher than the bonding surface 118. In the physical quantity measuring device 20 of the comparative example, the housing 100 including the terminal sealing portion 114 has a linear expansion coefficient larger than that of the sealing member 250 . Due to the difference in coefficient of linear expansion between the housing 100 and the sealing member 250 , thermal stress is generated in the terminal sealing portion 114 near the interface with the sealing member 250 .
 特に、ハウジング100が比較的安価なPBT樹脂、封止部材250がエポキシ樹脂を用いて成形される場合、ハウジング100の線膨張係数は、封止部材250の線膨張係数の5倍~6倍になる。この場合、比較例の物理量計測装置20に、-40℃以上130℃以下の熱負荷を与えると、ハウジング100の端子封止部114は、図10のS1及びS2に示すような封止部材250との界面付近、すなわち第2面116付近において、大きな熱応力が発生する。そして、この熱応力の作用によって、端子封止部114に封止されたコネクタ端子117と封止部材250とが剥離する可能性がある。この剥離が大きいと、封止部材250に封止されたワイヤ350が熱疲労によって破断してしまう。すなわち、比較例の物理量計測装置20では、ワイヤ350の接続信頼性を確保することが難しい。 In particular, when the housing 100 is molded using relatively inexpensive PBT resin and the sealing member 250 is molded using epoxy resin, the linear expansion coefficient of the housing 100 is 5 to 6 times that of the sealing member 250. Become. In this case, when a thermal load of −40° C. or more and 130° C. or less is applied to the physical quantity measuring device 20 of the comparative example, the terminal sealing portion 114 of the housing 100 is changed to the sealing member 250 shown in S1 and S2 in FIG. A large thermal stress is generated in the vicinity of the interface with the second surface 116 . Due to the action of this thermal stress, there is a possibility that the connector terminal 117 sealed by the terminal sealing portion 114 and the sealing member 250 are separated. If this peeling is large, the wire 350 sealed by the sealing member 250 will break due to thermal fatigue. That is, it is difficult to ensure the connection reliability of the wire 350 in the physical quantity measuring device 20 of the comparative example.
 これに対し、本実施形態の物理量計測装置20は、第2面116の端部116aの高さが、コネクタ端子117のボンディング面118の高さと同一である。すなわち、第2面116の端部116aは、ボンディング面118と面一の形状に形成される。これにより、本実施形態の物理量計測装置20は、封止部材250との界面付近の端子封止部114の体積を減少させることができるので、当該端子封止部114の熱変形量を小さくすることができる。 On the other hand, in the physical quantity measuring device 20 of this embodiment, the height of the end portion 116 a of the second surface 116 is the same as the height of the bonding surface 118 of the connector terminal 117 . That is, the end portion 116 a of the second surface 116 is formed flush with the bonding surface 118 . As a result, the physical quantity measuring device 20 of the present embodiment can reduce the volume of the terminal sealing portion 114 in the vicinity of the interface with the sealing member 250, thereby reducing the amount of thermal deformation of the terminal sealing portion 114. be able to.
 しかも、本実施形態の物理量計測装置20は、封止部材250との界面付近の端子封止部114の熱変形がコネクタ端子117によって規制され難くなる。例えば、比較例の物理量計測装置20のように第2面116が凸状面116gを有する場合、端子封止部114の熱収縮時、端子封止部114の凸状面116g付近がボンディング面118と干渉し、凸状面116g付近の熱収縮がボンディング面118によって規制され易い。これに対し、本実施形態の物理量計測装置20は、第2面116の端部116aの高さがボンディング面118の高さと同一であるので、封止部材250との界面付近の端子封止部114の熱変形がコネクタ端子117によって規制され難くなる。 Moreover, in the physical quantity measuring device 20 of the present embodiment, the connector terminal 117 hardly restricts the thermal deformation of the terminal sealing portion 114 near the interface with the sealing member 250 . For example, when the second surface 116 has a convex surface 116g as in the physical quantity measuring device 20 of the comparative example, the vicinity of the convex surface 116g of the terminal sealing portion 114 becomes the bonding surface 118 when the terminal sealing portion 114 thermally shrinks. , and thermal contraction near the convex surface 116g is likely to be regulated by the bonding surface 118. On the other hand, in the physical quantity measuring device 20 of the present embodiment, since the height of the end portion 116a of the second surface 116 is the same as the height of the bonding surface 118, the terminal sealing portion near the interface with the sealing member 250 Thermal deformation of 114 is less likely to be restricted by connector terminal 117 .
 このようなことから、本実施形態の物理量計測装置20は、封止部材250との線膨張係数差が僅少となるよう高価な樹脂材料をハウジング100に採用しなくても、封止部材250との界面付近の端子封止部114に発生する熱応力を抑制することができる。本実施形態の物理量計測装置20は、コネクタ端子117と封止部材250との剥離を抑制することができ、ワイヤ350の熱疲労による破断を抑制することができる。したがって、本実施形態の物理量計測装置20は、ワイヤ350の接続信頼性を容易に確保することができる。 For this reason, the physical quantity measuring device 20 of the present embodiment does not use an expensive resin material for the housing 100 so that the difference in coefficient of linear expansion from that of the sealing member 250 is small. It is possible to suppress the thermal stress generated in the terminal sealing portion 114 in the vicinity of the interface. The physical quantity measuring device 20 of the present embodiment can suppress separation between the connector terminal 117 and the sealing member 250, and can suppress breakage of the wire 350 due to thermal fatigue. Therefore, the physical quantity measuring device 20 of this embodiment can easily ensure the connection reliability of the wire 350 .
 更に、本実施形態の物理量計測装置20は、第2面116が、コネクタ端子117の幅方向において端部116aから離隔するに従って、コネクタ端子117の板厚方向のワイヤ350とは反対側に向かって傾斜する。すなわち、第2面116は、上記のような傾斜面116cを有する。 Further, in the physical quantity measuring device 20 of the present embodiment, as the second surface 116 is separated from the end portion 116a in the width direction of the connector terminal 117, the thickness of the connector terminal 117 is increased toward the opposite side of the wire 350 in the thickness direction of the connector terminal 117. incline. That is, the second surface 116 has the inclined surface 116c as described above.
 仮に、第2面116を、端部116aから中間部116bに向かって階段状に下がるような凹状に形成する場合、上金型の成形面は、この凹状に対応する凸状部分を有する。この場合、上金型と下金型との間に配置されたコネクタ端子117が位置ずれを起こすと、上金型の凸状部分がコネクタ端子117を噛み易くなり、不良品が発生し易く、生産性が低下し易い。 If the second surface 116 is formed in a concave shape that descends stepwise from the end portion 116a toward the intermediate portion 116b, the molding surface of the upper mold has a convex portion corresponding to this concave shape. In this case, if the connector terminal 117 arranged between the upper mold and the lower mold is misaligned, the convex portion of the upper mold tends to bite the connector terminal 117, and defective products are likely to occur. Productivity tends to decrease.
 本実施形態の物理量計測装置20は、第2面116が上記のような傾斜面116cを有するので、上金型の成形面は、傾斜面116cに対応する傾斜面を有する。上金型の成形面が傾斜面116cに対応する傾斜面を有することにより、成形時に上金型の成形面がコネクタ端子117の位置を規制して、位置ずれを抑制することができる。これにより、本実施形態の物理量計測装置20は、コネクタ端子117の噛み込みを抑制することができ、生産性の低下を抑制することができる。したがって、本実施形態の物理量計測装置20は、コネクタ端子117が一体成形されたハウジング100の生産コストを抑制することができる。 In the physical quantity measuring device 20 of the present embodiment, the second surface 116 has the inclined surface 116c as described above, so the molding surface of the upper mold has an inclined surface corresponding to the inclined surface 116c. Since the molding surface of the upper mold has an inclined surface corresponding to the inclined surface 116c, the molding surface of the upper mold regulates the position of the connector terminal 117 during molding, thereby suppressing displacement. As a result, the physical quantity measuring device 20 of the present embodiment can prevent the connector terminal 117 from getting caught, and can prevent a decrease in productivity. Therefore, the physical quantity measuring device 20 of this embodiment can suppress the production cost of the housing 100 in which the connector terminals 117 are integrally formed.
 しかも、本実施形態の物理量計測装置20は、ハウジング100の線膨張係数が封止部材250の線膨張係数より大きい場合でも、封止部材250との界面付近の端子封止部114に発生する熱応力を抑制することができる。本実施形態の物理量計測装置20は、コネクタ端子117と封止部材250との剥離を抑制することができ、ワイヤ350の熱疲労による破断を抑制することができる。 Moreover, in the physical quantity measuring device 20 of the present embodiment, even when the linear expansion coefficient of the housing 100 is larger than the linear expansion coefficient of the sealing member 250, the heat generated in the terminal sealing portion 114 near the interface with the sealing member 250 is reduced. Stress can be suppressed. The physical quantity measuring device 20 of the present embodiment can suppress separation between the connector terminal 117 and the sealing member 250, and can suppress breakage of the wire 350 due to thermal fatigue.
 このようなことから、本実施形態の物理量計測装置20は、第2面116が上記のような傾斜面116cを有することにより、封止部材250との界面付近の端子封止部114に発生する熱応力を容易に抑制することができ、ワイヤ350の接続信頼性を容易に確保することができる。 For this reason, in the physical quantity measuring device 20 of the present embodiment, the second surface 116 has the inclined surface 116c as described above. Thermal stress can be easily suppressed, and connection reliability of the wire 350 can be easily ensured.
 特に、本実施形態の物理量計測装置20は、隣り合うコネクタ端子117の間に位置する第2面116が、V字状の溝116fを有する。V字状の溝116fを有する本実施形態と、凸状面116gを有する比較例とにおいて、ハウジング100の端子封止部114と封止部材250との界面付近に発生する熱応力を解析すると、本実施形態の熱応力は、比較例の3分の1程度であった。これにより、本実施形態の物理量計測装置20では、上記の端子封止部114に発生する熱応力を大幅に抑制することができ、ワイヤ350の接続信頼性を十分に確保することができる。 In particular, in the physical quantity measuring device 20 of this embodiment, the second surface 116 located between adjacent connector terminals 117 has a V-shaped groove 116f. Analysis of the thermal stress generated near the interface between the terminal sealing portion 114 of the housing 100 and the sealing member 250 in the present embodiment having the V-shaped groove 116f and the comparative example having the convex surface 116g reveals that: The thermal stress of this embodiment was about one-third that of the comparative example. Accordingly, in the physical quantity measuring device 20 of the present embodiment, the thermal stress generated in the terminal sealing portion 114 can be greatly suppressed, and the connection reliability of the wire 350 can be sufficiently secured.
 更に、本実施形態の物理量計測装置20は、V字状の溝116fの深さが、コネクタ端子117の板厚の3分の1以上2分の1以下の長さであってもよい。V字状の溝116fの深さがコネクタ端子117の板厚の3分の1以上の長さであると、上記の端子封止部114に発生する熱応力を抑制する効果が大きい。V字状の溝116fの深さがコネクタ端子117の板厚の2分の1以下の長さであると、端子封止部114は、中間部116b付近の樹脂量を確保し易くなるので、中間部116b付近の強度を確保し易くなると共に、コネクタ端子117を固定し易くなる。したがって、本実施形態の物理量計測装置20は、上記の端子封止部114に発生する熱応力を効果的に抑制してワイヤ350の接続信頼性を確保することができると共に、ハウジング100の端子封止部114における機械的信頼性を確保し易くすることができる。 Furthermore, in the physical quantity measuring device 20 of the present embodiment, the depth of the V-shaped groove 116f may be 1/3 or more and 1/2 or less of the plate thickness of the connector terminal 117. When the depth of the V-shaped groove 116f is one-third or more of the plate thickness of the connector terminal 117, the effect of suppressing the thermal stress generated in the terminal sealing portion 114 is large. When the depth of the V-shaped groove 116f is half or less than the plate thickness of the connector terminal 117, the terminal sealing portion 114 can easily secure the amount of resin in the vicinity of the intermediate portion 116b. It becomes easy to secure the strength in the vicinity of the intermediate portion 116b and to fix the connector terminal 117 easily. Therefore, the physical quantity measuring device 20 of the present embodiment can effectively suppress the thermal stress generated in the terminal sealing portion 114 to ensure the connection reliability of the wire 350, and the terminal sealing of the housing 100 can The mechanical reliability of the stop portion 114 can be easily ensured.
 更に、本実施形態の物理量計測装置20は、ハウジング100の線膨張係数が封止部材250の線膨張係数の5倍以上6倍以下であってもよい。すなわち、物理量計測装置20は、ハウジング100にPBT樹脂、封止部材250にエポキシ樹脂を採用する例のように、封止部材250の5倍以上6倍以下の線膨張係数を有する樹脂材料をハウジング100に採用する場合でも、上記の端子封止部114に発生する熱応力を抑制することができる。これにより、本実施形態の物理量計測装置20は、ハウジング100に比較的安価な樹脂材料を採用しても、当該熱応力を抑制することができるので、ワイヤ350の接続信頼性を更に容易に確保することができる。 Furthermore, in the physical quantity measuring device 20 of the present embodiment, the linear expansion coefficient of the housing 100 may be 5 times or more and 6 times or less than the linear expansion coefficient of the sealing member 250 . That is, the physical quantity measuring device 20 uses a resin material having a coefficient of linear expansion that is 5 to 6 times that of the sealing member 250, such as an example in which PBT resin is used for the housing 100 and epoxy resin is used for the sealing member 250. 100, the thermal stress generated in the terminal sealing portion 114 can be suppressed. As a result, the physical quantity measuring device 20 of the present embodiment can suppress the thermal stress even if a relatively inexpensive resin material is used for the housing 100, so that the connection reliability of the wire 350 can be more easily secured. can do.
 更に、本実施形態の物理量計測装置20では、ハウジング100が、副通路134,135が形成される正面部121と、ハウジング100の正面部121とは反対側の背面部122とを有し、第2面116が背面部122に形成される。すなわち、ハウジング100の計測部113において、第2面116は、副通路134,135が形成される正面部121とは反対側の背面部122に形成される。 Furthermore, in the physical quantity measuring device 20 of the present embodiment, the housing 100 has a front portion 121 in which the secondary passages 134 and 135 are formed, and a rear portion 122 opposite to the front portion 121 of the housing 100. Two faces 116 are formed on the back portion 122 . That is, in the measuring portion 113 of the housing 100, the second surface 116 is formed on the rear portion 122 opposite to the front portion 121 in which the sub-passages 134 and 135 are formed.
 ハウジング100の成形金型では、ハウジング100の複雑形状部分は、金型に抱き付き易いので、固定型である下金型によって成形することが多い。仮に、成形後のハウジング100が上金型に抱き付いた状態で上金型を開放する場合、ハウジング100の成形金型には、成形後のハウジング100を取り出すための複雑な機構が必要となる。本実施形態のハウジング100では、副通路134,135が形成される正面部121が、複雑形状部分に相当するので、正面部121を下金型によって成形することが好ましい。 In the molding die for the housing 100, since the complex-shaped portion of the housing 100 is likely to cling to the die, it is often molded by the lower die, which is a fixed die. If the upper mold is opened while the housing 100 after molding is clinging to the upper mold, the mold for molding the housing 100 needs a complicated mechanism for taking out the housing 100 after molding. . In the housing 100 of this embodiment, the front portion 121 in which the sub-passages 134 and 135 are formed corresponds to a complicated-shaped portion, so it is preferable to mold the front portion 121 using a lower mold.
 本実施形態の物理量計測装置20では、第2面116は、副通路134,135が形成される正面部121とは反対側の背面部122に形成される。これにより、本実施形態の物理量計測装置20では、副通路134,135が形成される正面部121を下金型によって成形するとし、下金型にコネクタ端子117を配置して、第2面116を上金型によって成形することができる。したがって、本実施形態の物理量計測装置20では、ハウジング100の成形金型や成形工程を複雑化することなく、ハウジング100を適切に成形することができる。よって、本実施形態の物理量計測装置20は、ハウジング100の生産コストを更に抑制することができるので、ワイヤ350の接続信頼性を更に容易に確保することができる。 In the physical quantity measuring device 20 of the present embodiment, the second surface 116 is formed on the rear surface portion 122 on the side opposite to the front surface portion 121 where the secondary passages 134 and 135 are formed. As a result, in the physical quantity measuring device 20 of the present embodiment, the front part 121 in which the secondary passages 134 and 135 are formed is formed by the lower mold, the connector terminals 117 are arranged in the lower mold, and the second surface 116 is formed. can be molded by the upper mold. Therefore, in the physical quantity measuring device 20 of the present embodiment, the housing 100 can be appropriately molded without complicating the mold for molding the housing 100 and the molding process. Therefore, the physical quantity measuring device 20 of the present embodiment can further reduce the production cost of the housing 100, so that the connection reliability of the wire 350 can be more easily ensured.
 図11及び図12を用いて、本実施形態の変形例について説明する。
 図11は、本実施形態の変形例の物理量計測装置20を説明する図である。図11は、図7に対応する図である。図12は、図11に示す一点鎖線に囲まれた部分の拡大図である。図12は、図8に対応する図である。
A modification of the present embodiment will be described with reference to FIGS. 11 and 12. FIG.
FIG. 11 is a diagram illustrating a physical quantity measuring device 20 of a modified example of this embodiment. FIG. 11 is a diagram corresponding to FIG. FIG. 12 is an enlarged view of a portion surrounded by a dashed line shown in FIG. 11. FIG. FIG. 12 is a diagram corresponding to FIG.
 本実施形態の物理量計測装置20は、図7及び図8に示すように、隣り合うコネクタ端子117の間に位置する第2面116が、V字状の溝116fを有する。これに対し、変形例の物理量計測装置20は、図11及び図12に示すように、隣り合うコネクタ端子117の間に位置する第2面116が、平坦面116hを有していてもよい。すなわち、変形例の物理量計測装置20は、第2面116が傾斜面116cを有しておらず、端部116aだけでなく中間部116bにおいても、ボンディング面118と面一の形状に形成されていてもよい。第2面116の端部116a及び中間部116bとボンディング面118とが面一とは、上記と同様に定義される。 In the physical quantity measuring device 20 of this embodiment, as shown in FIGS. 7 and 8, the second surface 116 positioned between adjacent connector terminals 117 has a V-shaped groove 116f. On the other hand, as shown in FIGS. 11 and 12, in the physical quantity measuring device 20 of the modification, the second surface 116 positioned between the adjacent connector terminals 117 may have a flat surface 116h. That is, in the physical quantity measuring device 20 of the modified example, the second surface 116 does not have the inclined surface 116c, and not only the end portion 116a but also the intermediate portion 116b are formed flush with the bonding surface 118. may The fact that the end portion 116a and intermediate portion 116b of the second surface 116 and the bonding surface 118 are flush with each other is defined in the same manner as above.
 変形例の物理量計測装置20においても、封止部材250との界面付近の端子封止部114に発生する熱応力を抑制することができ、コネクタ端子117と封止部材250との剥離を抑制することができる。変形例の物理量計測装置20は、ワイヤ350の熱疲労による破断を抑制することができ、ワイヤ350の接続信頼性を容易に確保することができる。 Also in the physical quantity measuring device 20 of the modified example, thermal stress generated in the terminal sealing portion 114 near the interface with the sealing member 250 can be suppressed, and peeling between the connector terminal 117 and the sealing member 250 can be suppressed. be able to. The physical quantity measuring device 20 of the modified example can suppress breakage of the wire 350 due to thermal fatigue, and can easily ensure the connection reliability of the wire 350 .
[その他]
 なお、本発明は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[others]
In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
 2…被計測気体、20…物理量計測装置、22…主通路、100…ハウジング、115…第1面、116…第2面、116a…端部、116f…溝、117…コネクタ端子(端子)、118…ボンディング面、119…側面、121…正面部、122…背面部、134,135…副通路、250…封止部材、310…チップパッケージ(センサ)、331…温度センサ(センサ)、333…湿度センサ(センサ)、335…圧力センサ(センサ)、350…ワイヤ 2 gas to be measured, 20 physical quantity measuring device, 22 main passage, 100 housing, 115 first surface, 116 second surface, 116 a end, 116 f groove, 117 connector terminal (terminal), DESCRIPTION OF SYMBOLS 118... Bonding surface 119... Side surface 121... Front part 122... Back part 134, 135... Sub passage 250... Sealing member 310... Chip package (sensor) 331... Temperature sensor (sensor) 333... humidity sensor (sensor), 335 pressure sensor (sensor), 350 wire

Claims (6)

  1.  物理量を計測するセンサを収容するハウジングと、
     前記ハウジングに封止された端子と、
     前記端子にボンディングされたワイヤと、
     前記ワイヤを封止し、前記端子及び前記ハウジングのそれぞれに接触する封止部材と、を備え、
     前記ハウジングの線膨張係数は、前記封止部材の線膨張係数よりも大きく、
     前記端子は、前記ワイヤがボンディングされ且つ前記封止部材に接触するボンディング面と、前記ボンディング面に連続し且つ前記ハウジングに封止された側面とを有し、
     前記ハウジングは、前記端子の前記側面に接触する第1面と、前記第1面に連続し前記封止部材に接触する第2面と、を有し、
     前記第1面に連続する前記第2面の端部は、前記ボンディング面と面一の形状に形成される
     ことを特徴とする物理量計測装置。
    a housing that houses a sensor that measures a physical quantity;
    terminals sealed in the housing;
    a wire bonded to the terminal;
    a sealing member that seals the wire and contacts each of the terminal and the housing;
    a coefficient of linear expansion of the housing is greater than a coefficient of linear expansion of the sealing member;
    The terminal has a bonding surface to which the wire is bonded and contacts the sealing member, and a side surface continuous with the bonding surface and sealed with the housing,
    The housing has a first surface that contacts the side surface of the terminal and a second surface that is continuous with the first surface and contacts the sealing member,
    A physical quantity measuring device, wherein an end portion of the second surface that is continuous with the first surface is formed to be flush with the bonding surface.
  2.  前記第2面は、前記端子の幅方向において前記端部から離隔するに従って、前記端子の板厚方向の前記ワイヤとは反対側に向かって傾斜する
     ことを特徴とする請求項1に記載の物理量計測装置。
    2. The physical quantity according to claim 1, wherein the second surface is inclined toward the opposite side of the wire in the plate thickness direction of the terminal as it is separated from the end in the width direction of the terminal. measuring device.
  3.  前記端子は、前記端子の前記幅方向に間隔をあけて配置される複数の前記端子によって構成され、
     隣り合う前記端子の間に位置する前記第2面は、前記端子の前記板厚方向及び前記幅方向を含む平面により切断される断面がV字状に形成される溝を有する
     ことを特徴とする請求項2に記載の物理量計測装置。
    The terminal is configured by a plurality of the terminals arranged at intervals in the width direction of the terminal,
    The second surface located between the adjacent terminals has a groove having a V-shaped cross section cut by a plane including the plate thickness direction and the width direction of the terminal. The physical quantity measuring device according to claim 2.
  4.  前記溝の深さは、前記端子の板厚の3分の1以上2分の1以下である
     ことを特徴とする請求項3に記載の物理量計測装置。
    The physical quantity measuring device according to claim 3, wherein the depth of the groove is one-third or more and one-half or less of the plate thickness of the terminal.
  5.  前記ハウジングの前記線膨張係数は、前記封止部材の前記線膨張係数の5倍以上6倍以下である
     ことを特徴とする請求項1に記載の物理量計測装置。
    The physical quantity measuring device according to claim 1, wherein the linear expansion coefficient of the housing is 5 times or more and 6 times or less than the linear expansion coefficient of the sealing member.
  6.  主通路を流れる被計測気体の一部を取り込む副通路を有し、
     前記ハウジングは、前記副通路が形成される正面部と、前記ハウジングの前記正面部とは反対側の背面部と、を有し、
     前記第2面は、前記背面部に形成される
     ことを特徴とする請求項1に記載の物理量計測装置。
    Having a secondary passage that takes in a part of the gas to be measured flowing through the main passage,
    The housing has a front portion in which the secondary passage is formed, and a back portion of the housing opposite to the front portion,
    The physical quantity measuring device according to claim 1, wherein the second surface is formed on the back surface portion.
PCT/JP2022/004127 2021-04-02 2022-02-02 Physical quantity measurement device WO2022209268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280016868.3A CN116997774A (en) 2021-04-02 2022-02-02 Physical quantity measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063297A JP7575988B2 (en) 2021-04-02 2021-04-02 Physical Quantity Measuring Devices
JP2021-063297 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022209268A1 true WO2022209268A1 (en) 2022-10-06

Family

ID=83458722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004127 WO2022209268A1 (en) 2021-04-02 2022-02-02 Physical quantity measurement device

Country Status (3)

Country Link
JP (1) JP7575988B2 (en)
CN (1) CN116997774A (en)
WO (1) WO2022209268A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132808A (en) * 1997-10-31 1999-05-21 Denso Corp Air flowmeter
JP2003130700A (en) * 2001-10-22 2003-05-08 Mitsubishi Electric Corp Flow rate sensor
JP2004028631A (en) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp Flow sensor
JP2018096728A (en) * 2016-12-09 2018-06-21 日立オートモティブシステムズ株式会社 Sensor device
JP2020201205A (en) * 2019-06-13 2020-12-17 日立オートモティブシステムズ株式会社 Physical quantity measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132808A (en) * 1997-10-31 1999-05-21 Denso Corp Air flowmeter
JP2003130700A (en) * 2001-10-22 2003-05-08 Mitsubishi Electric Corp Flow rate sensor
JP2004028631A (en) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp Flow sensor
JP2018096728A (en) * 2016-12-09 2018-06-21 日立オートモティブシステムズ株式会社 Sensor device
JP2020201205A (en) * 2019-06-13 2020-12-17 日立オートモティブシステムズ株式会社 Physical quantity measuring device

Also Published As

Publication number Publication date
CN116997774A (en) 2023-11-03
JP2022158414A (en) 2022-10-17
JP7575988B2 (en) 2024-10-30

Similar Documents

Publication Publication Date Title
CN111033186B (en) Thermal flowmeter
JP6154966B2 (en) Physical quantity detection device
US10203257B2 (en) Physical-quantity detection device
US10876872B2 (en) Physical quantity detection device
CN106537099A (en) Physical-quantity detection device
CN109642831B (en) Physical Quantity Detection Device
WO2016121179A1 (en) Physical quantity detection device and electronic device
CN109804226B (en) Flow detection device
US10584987B2 (en) Physical quantity detection device
US10591331B2 (en) Intake temperature detection device and maximum heat generating amount components mounted on a single circuit board
WO2022209268A1 (en) Physical quantity measurement device
WO2018100854A1 (en) Air flow rate measurement device
JP2016194465A (en) Physical quantity detector
JP7399348B2 (en) flow measuring device
JP7265643B2 (en) Flow measurement device
WO2024105832A1 (en) Electrical circuit device
JP7164282B2 (en) Air flow measuring device
US20230251120A1 (en) Flow Rate Measurement Device
JP6775629B2 (en) Physical quantity detection element
CN113167620B (en) Physical quantity measuring device
WO2020202723A1 (en) Physical quantity detection device
WO2023079668A1 (en) Physical quantity detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016868.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779497

Country of ref document: EP

Kind code of ref document: A1