[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022209110A1 - 端末、基地局、および通信方法 - Google Patents

端末、基地局、および通信方法 Download PDF

Info

Publication number
WO2022209110A1
WO2022209110A1 PCT/JP2022/000199 JP2022000199W WO2022209110A1 WO 2022209110 A1 WO2022209110 A1 WO 2022209110A1 JP 2022000199 W JP2022000199 W JP 2022000199W WO 2022209110 A1 WO2022209110 A1 WO 2022209110A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
synchronization signal
index
terminal
transmission position
Prior art date
Application number
PCT/JP2022/000199
Other languages
English (en)
French (fr)
Inventor
寿之 牧野
敬 岩井
昭彦 西尾
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to US18/552,866 priority Critical patent/US20240188010A1/en
Priority to JP2023510273A priority patent/JPWO2022209110A1/ja
Publication of WO2022209110A1 publication Critical patent/WO2022209110A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present disclosure relates to terminals, base stations, and communication methods.
  • 3GPP (Third Generation Partnership Project) supports the use of unlicensed bands to expand the frequency band.
  • 3GPP is studying SSB operation of unlicensed bands in the 52.6 GHz-71 GHz band.
  • SSB is an abbreviation for SS/PBCH Block.
  • SS stands for Synchronization Signal.
  • PBCH stands for Physical Broadcast CHannel.
  • a base station performs an LBT (Listen Before Talk) procedure before transmitting a signal.
  • LBT Listen Before Talk
  • the base station checks whether the signal transmission band is being used by another radio station and transmits the signal.
  • the terminal may not be able to receive the SSB index due to LBT failure.
  • a non-limiting embodiment of the present disclosure contributes to providing a terminal, a base station, and a communication method that can receive a synchronization signal block index even if an LBT failure occurs.
  • a terminal includes a receiving circuit that receives a synchronization signal, a control circuit that determines a correspondence relationship between a transmission position of a synchronization signal block and an index of the synchronization signal block, and The control circuit changes the correspondence between the first reception timing and the second reception timing of the synchronization signal block.
  • the terminal can receive the index of the synchronization signal block.
  • NR New Radio
  • LTE Long Term Evolution
  • PSS/SSS is a synchronization signal, and the terminal synchronizes with the carrier frequency using PSS/SSS.
  • the PCID (Physical Cell ID) of the cell is decoded from the PSS/SSS.
  • PBCH and PBCH-DMRS are assigned to symbols before and after PSS/SSS.
  • the PBCH contains part of the broadcast information, and the terminal determines the SFN (System Frame Number) indicating the number of the 10 ms long time frame in which the SSB is transmitted, the first half or the second half of the 5 ms time frame.
  • Half frame bits, downlink control signals for initial connection, and allocated resources for downlink data signals can be obtained.
  • FIG. 1 is a diagram showing an example of an SSB transmission interval and transmission cycle.
  • SSBs are transmitted singly or as multiple sets within a transmission interval called SS burst set.
  • the SS burst set is transmitted with a period of ⁇ 5/10/20/40/80/160 ⁇ ms.
  • the SS burst set is set as a transmission period within 5ms from the beginning of a 10ms-long time frame or the beginning of a time frame + half frame (5ms).
  • Each SSB in the SS burst set is transmitted as a signal with a different SSB index.
  • the SSB index indicates the SSB transmission position within the SS burst set, and the terminal identifies the starting point of the time frame by decoding the SSB index.
  • the maximum number of SSB indices in the SS burst set is determined for each band. In Release 17 NR, as in Release 16, it was agreed that the maximum number of SSB indices in bands above 6 GHz is 64.
  • the SSB index is uniquely associated with the PBCH and PBCH-DMRS sequence and reported to the terminal.
  • a beam management function using SSB has been introduced. By transmitting different SSB indices in the SS burst set with different downlink transmission beams, beam-sweeping, in which beam directions are sequentially switched and transmitted, can be realized. Note that the beam may be an analog beam.
  • the terminal measures the downlink reception quality at each SSB in the SS burst set and determines the optimum downlink transmission beam.
  • a base station applies downlink transmission beamforming to an SSB
  • the base station side applies an equivalent uplink reception beam in order to receive random access from terminals that have received that SSB. Therefore, the terminal transmits PRACH (Physical Random Access Channel) on RO (Rach Occasion), which is a resource linked to the detected SSB.
  • PRACH Physical Random Access Channel
  • RO Route Occasion
  • NR-U which is the NR operation of unlicensed bands specified in Release 16, DBTW (Discovery Burst Transmission Window) has been introduced as a transmission method for SS burst sets.
  • DBTW Discovery Burst Transmission Window
  • LBT Listen Before Talk
  • LBT LBT procedure
  • a signal is transmitted after confirming whether the signal transmission band is being used by another radio station (channel busy). Since signal transmission cannot be performed when an LBT failure occurs, the transmission start timing of the SS burst set in NR-U is not necessarily from the beginning of the time frame, or the beginning of the time frame + half frame (5ms). Therefore, there is a possibility that SSB cannot be transmitted at the first SSB transmission position in the SS burst set. Therefore, in DBTW, cyclic transmission of the SSB index is possible at different SSB transmission positions within the transmission interval. Note that LBT failure may also be referred to as channel busy or LBT busy.
  • FIG. 2 is a diagram showing an example of SSB index cycle transmission. It is the SSB transmission position that is notified to the terminal.
  • the terminal calculates the SSB index using a predetermined formula from the decoded SSB transmission position. Since the SSB index is associated with the downlink transmission beam, the terminal can measure the downlink reception quality assuming that the propagation characteristics are the same even at different SSB transmission positions. Therefore, even when LBT fails, the base station can avoid being unable to transmit a specific SSB by DBTW.
  • Non-Patent Document 1 In the 52.6 GHz-71 GHz band, operation in the unlicensed band is also assumed, and the introduction of DBTW is being considered (for example, see Non-Patent Document 1).
  • FR1 is an abbreviation for Frequency Range 1.
  • the maximum number of SSB indexes and the number of SSB transmission positions that can be notified to terminals are based on sub-carrier space (SCS).
  • SCS sub-carrier space
  • the SCS when the SCS is 15 kHz, the maximum number of SSB indexes is 4, and the number of SSB transmission positions that can be notified to the terminal is 10. Also, when the SCS is 30 kHz, the maximum number of SSB indexes is 8, and the number of SSB transmission positions that can be notified to the terminal is 20. Therefore, when an LBT failure occurs within the DBTW, the possible number of cycle transmissions at different SSB transmission positions is 2 or more for any SSB index.
  • the maximum number of SSB indices will be 64 in order to obtain greater beamforming gain. Also, assuming that the number of SSB transmission positions that can be notified is 64 as specified in FR2 (6 GHz-52.6 GHz band) of Release 15, DBTW makes it impossible to transmit SSB indexes cyclically at different SSB transmission positions.
  • FIG. 3 is a diagram showing an example of a case where the SSB index cannot be cycle-transmitted.
  • the SSB index associated with the SSB transmission position at the beginning of the DBTW cannot be transmitted, and the performance of the terminal whose transmission beam corresponding to that SSB index is optimal deteriorates. do.
  • Fig. 3 shows an example when it is assumed that the SCS is 120 kHz, the number of SSB transmission positions is 64, and the number of SSB transmission positions per slot is 2. The interval including all SSB transmission positions is shorter than the 5ms DBTW.
  • Non-Patent Document 2 In order to address such issues, countermeasures have been proposed to reduce the number of SSB indexes to be transmitted and achieve cycle transmission (for example, Non-Patent Document 2).
  • FIG. 4 is a diagram showing an example of cycle transmission when the number of SSB indexes to be transmitted is reduced.
  • Non-Patent Document 2 for example, SSB index ⁇ 0,...,47 ⁇ is transmitted at SSB transmission positions ⁇ 0,...,47 ⁇ , and SSB index ⁇ 0,...,15 ⁇ is transmitted at SSB transmission positions ⁇ 48,..., 63 ⁇ is assumed to be transmitted in cycles. However, even in that case, if LBT failure occurs up to SSB transmission position ⁇ 0,...,19 ⁇ , SSB index ⁇ 16,...,19 ⁇ cannot be sent.
  • the SSB index that makes transmission impossible due to LBT failure tends to be biased toward the SSB index linked to the beginning or first half of the SSB transmission position. Therefore, performance degradation due to LBT failure is biased to specific terminals for which the transmission beam corresponding to a specific SSB index is optimal. As a result, the performance of a specific terminal is greatly degraded.
  • the relationship between the SSB transmission position and the SSB index is changed, and the influence of performance degradation due to LBT failure is suppressed to a specific terminal.
  • FIG. 5 is a diagram showing an example in which the relationship between the SSB transmission position and the SSB index according to the first embodiment is changed between SS burst sets. As shown in FIG. 5, if the relationship between the SSB transmission position and the SSB index changes between the SS burst sets, the bias of the SSB index that the base station cannot transmit due to the LBT failure can be prevented.
  • the SSB index ⁇ #0,...,#19 ⁇ linked to the SSB transmission position ⁇ #0,...,#19 ⁇ cannot be sent due to LBT failure.
  • LBT failure occurs at SSB transmission positions ⁇ #0,...,#19 ⁇ , SSB index ⁇ #0,...,#19 ⁇ can be sent.
  • the correspondence between the SSB transmission position and the SSB index must be recognized by the base station and the terminal. If the correspondence relationships do not match, it is not possible to form an optimal downlink transmission/reception beam between the base station and the terminal.
  • FIG. 6 is a block diagram showing a configuration example of the base station 10. As shown in FIG. The control unit 11 sets the period of the SS burst set, updates the SFN, and the like. The control unit 11 also schedules control signals and data signals for initial connection.
  • the control unit 11 outputs the SSB transmission position within the SS burst set to the SSB generation unit 13 and the SSB index determination unit 12 in accordance with the SSB transmission timing.
  • Control section 11 outputs information for determining the relationship between the SSB transmission position and the SSB index to SSB index determination section 12 .
  • Information for determining the relationship between the SSB transmission position and the SSB index includes, for example, SFN, half frame bit, and PCID.
  • Information for determining the relationship between the SSB transmission position and the SSB index is hereinafter referred to as relationship information between the SSB transmission position and the SSB index.
  • the SSB index determination unit 12 determines the SSB index based on the SSB transmission position and the relationship information between the transmission position and the SSB index, and outputs the determined SSB index to the transmission beam control unit 15. Details of the method of changing the SSB index determination unit 12 will be described later.
  • the SSB generation unit 13 generates signal sequences for each of the PSS/SSS, PBCH, and PBCH-DMRS based on the input SSB transmission position and outputs them to the transmission processing unit 14 .
  • PSS/SSS is generated from a correlation sequence based on the PCID of base station 10 .
  • PBCH-DMRS is generated from a DMRS sequence based on SSB transmission positions.
  • PBCH is generated by encoding and modulating PBCH information including SSB transmission positions.
  • the PBCH information includes information such as SSB transmission positions, SFN, half frame bits, control signals for initial connection, and data signal allocation resources. Note that, in the present disclosure, allocation resources for control signals and data signals for initial connection may be determined based on either the SSB transmission position or the SSB index.
  • the transmission processing unit 14 maps the SSB signal sequence input from the SSB generation unit 13 to each resource, performs processing such as OFDM modulation, and generates a transmission signal. Further, the transmission processing unit 14 confirms the usage status of the transmission signal band from the LBT determination unit 18, and outputs the transmission signal to the transmission RF unit 16 when the LBT is completed.
  • the transmission beam control unit 15 outputs the downlink transmission beam direction corresponding to the SSB index input from the SSB index determination unit 12 to the transmission RF unit 16 .
  • the transmission RF unit 16 generates a radio signal by processing the transmission signal input from the transmission processing unit 14 such as D/A conversion, up-conversion, and amplification, and outputs the radio signal to the antenna 17 . Also, the RF transmission unit 16 adjusts the phase and amplitude of the antenna elements of the antenna 17 so that the signal is directed in the direction of the beam output from the transmission beam control unit 15 .
  • the antenna 17 forms a transmission beam controlled by the RF transmission section 16 and radiates the radio signal input from the RF transmission section 16 to the terminal. Further, the antenna 17 forms a reception beam at a timing controlled by the reception RF section 20 and receives a radio signal from a terminal or another radio station. Antenna 17 outputs the received radio signal to reception RF section 20 .
  • the LBT decision unit 18 implements LBT by monitoring the wireless usage status of the used frequency band from the received waves input by the reception RF unit 20 .
  • the LBT determination unit 18 outputs the LBT result to the transmission processing unit 14 when signal transmission is started in the base station 10 .
  • the reception beam control unit 19 outputs the upstream reception beam direction in the RO corresponding to the SSB transmission position to the reception RF unit 20 .
  • the RF reception section 20 performs reception processing such as A/D conversion, down-conversion, and amplification on the radio signal input from the antenna 17 and outputs the result to the reception processing section 21 .
  • reception processing such as A/D conversion, down-conversion, and amplification
  • the phase and amplitude of the antenna elements of the antenna 17 are adjusted so that the beam is directed in the direction of the beam output by the reception beam control unit 19 .
  • the reception processing unit 21 decodes the PRACH from the received signal input from the RF reception unit 20 and identifies the RO selected by the terminal.
  • FIG. 7 is a block diagram showing another configuration example of the base station 10. As shown in FIG. In FIG. 7, the same components as in FIG. 6 are given the same reference numerals. In FIG. 7 , the SSB transmission position of the controller 11 is output to the receive beam controller 19 .
  • ROs are associated with SSB transmission positions.
  • RO is associated with SSB index.
  • FIG. 6 when the reception beam of the base station 10 for RO is associated with the SSB transmission position, the timing of the beam direction is fixed and the reception beam control becomes simple.
  • FIG. 7 when the reception beam of the base station 10 for RO is associated with the SSB index, the timing of the beam direction is randomized, and periodic interference from other radio stations can be avoided.
  • the periods of RO and SS burst set do not necessarily have to match. Therefore, the SSB transmission position or SSB index referenced by the RO may refer to the relationship in a predetermined (for example, immediately preceding) SS burst set. Alternatively, the SSB transmission position or SSB index referenced by the RO may be calculated separately by the RO.
  • FIG. 8 is a block diagram showing a configuration example of the terminal 50.
  • the RF unit 51 performs reception processing such as down-conversion and A/D conversion on a radio signal received from the base station 10 or another radio station via an antenna, and converts the received signal to a reception processing unit 52 and an LBT determination unit. 57. Also, the RF unit 51 performs transmission processing such as D/A conversion, up-conversion, and amplification on the transmission signal input from the transmission processing unit 58, and transmits the obtained radio signal from the antenna to the base station 10. .
  • the reception processing unit 52 detects PSS/SSS from the received signal input from the RF unit 51 by correlation processing or the like, identifies the SSB resource, and outputs it to the SSB decoding unit 53 .
  • the SSB decoding unit 53 detects the PCID from the PSS/SSS.
  • the SSB decoding unit 53 detects sequence numbers from PBCH-DMRS.
  • the SSB decoding unit 53 demodulates and decodes PBCH information from the PBCH.
  • SSB decoding section 53 identifies the SSB transmission position from the PBCH-DMRS sequence number and the PBCH information.
  • the SSB decoding unit 53 acquires relationship information between the SSB transmission position and the SSB index from the PBCH information.
  • the SSB decoding unit 53 outputs the SSB transmission position and the relationship information between the SSB transmission position and the SSB index to the SSB index determination unit 54 .
  • the SSB decoding unit 53 measures the received signal quality of SSB and outputs it to the SSB selection unit 55 .
  • the SSB index determination unit 54 determines the SSB index based on the SSB transmission position input from the SSB decoding unit 53 and the relationship information between the SSB transmission position and the SSB index, and outputs it to the SSB selection unit 55. Although the details of how to change the SSB index will be described later, the same operation as that of the SSB index determination unit 12 provided in the base station 10 is performed.
  • the SSB selection unit 55 associates the received signal quality measured from the SSB with the SSB index, and determines the SSB index with the best received quality within the SS burst set. SSB selection section 55 outputs the determined SSB index to preamble resource determination section 56 .
  • the preamble resource determination unit 56 selects an RO associated with the input SSB index and outputs it to the transmission processing unit 58.
  • the base station 10 and the terminal 50 agree on the recognition of the transmission/reception timing of the RO. Therefore, whether the RO is associated with the reception timing of the SSB transmission position or the reception timing of the SSB index may be notified to the terminal 50 from the broadcast information. Alternatively, whether the RO is associated with the reception timing of the SSB transmission position or the reception timing of the SSB index may be known by the base station 10 and the terminal 50 from common information described in the specifications.
  • the LBT determination unit 57 implements LBT by monitoring the wireless usage status of the used frequency band based on the received waves input by the RF unit 51 .
  • the LBT determination unit 57 outputs the LBT result to the transmission processing unit 58 when signal transmission from the terminal 50 is started.
  • the transmission processing unit 58 uses the RO input from the preamble resource determination unit 56 to generate a PRACH transmission signal.
  • the generated PRACH transmission signal is output to RF section 51 . Further, the transmission processing unit 58 confirms the usage status of the transmission signal band from the LBT determination unit 57, and outputs the transmission signal to the RF unit 51 when the LBT is completed.
  • FIG. 9 is a diagram showing an operation example from a cell search between a base station and a terminal to a random access procedure.
  • the base station determines broadcast information based on the SSB transmission position (S1).
  • the base station calculates the SSB index at the SSB transmission position (S2).
  • the base station implements LBT (S3).
  • the base station emits a beam associated with the SSB index at each SSB transmission position (S4).
  • the base station transmits a synchronization signal and annunciation signal to the terminal (S5).
  • the terminal detects the SSB transmission position from the broadcast information transmitted in S5 (S6).
  • the terminal calculates an SSB index from the broadcast information and the SSB transmission position (S7).
  • the terminal is the SSB transmission position or the SSB From the index, allocation resources for control signals and data signals are calculated (S8).
  • the terminal refers to the allocated resources calculated in S8 and receives control signals and data signals (SIB1: System Information Block Type 1) from the base station (S9).
  • SIB1 System Information Block Type 1
  • the terminal determines resources (for example, RO) to be used in the random access procedure from the SSB measurement result (SSB transmission position or SSB index) (S10).
  • the terminal starts a random access procedure using the resource determined in S10 (S11).
  • the terminal identifies the PBCH-DMRS and PBCH in the given resource by synchronizing with the PSS/SSS.
  • the terminal can specify the start point of the time frame.
  • the terminal After detecting SSB, the terminal detects the data signal broadcasted by SIB1 and the control signal notifying the resource of the data signal.
  • SIB1 contains broadcast information used for the random access procedure.
  • the data signal and control signal for SIB1 are signals common to the cells.
  • the common signal allocation resource for SIB1 is calculated as an offset value from the SSB resource.
  • the MIB (Master Information Block) of broadcast information of SSB describes a parameter for calculating the allocation resource for SIB1.
  • the SSB transmission position is input to the formula for calculating the allocation resource for SIB1.
  • the base station and the terminal can calculate the SSB index at the time of processing S2 and S7. Therefore, the terminal can use both the SSB transmission position and the SSB index at the time of detecting the allocation resource of the common signal for SIB1 (for example, at the time of processing of S10). Therefore, either the SSB transmission position or the SSB index may be used as the input value of the calculation formula for the allocation resource of the common signal for SIB1 in the terminal. If the SSB transmission position is used as an input value as in the past, there will be fewer changes to the specifications. If the SSB index is an input value, the timing of the direction of the transmission beam from the base station is randomized in SIB1 transmission as well as the reception beam of the RO, and the terminal receives periodic interference from other wireless stations. can be avoided.
  • calculation processes 1 and 2 Details of calculation processes 1 and 2 are shown below.
  • the calculation formula used in the calculation processing here is the system common information defined in the specifications.
  • the base station suppresses the bias of the SSB index that the base station cannot transmit due to LBT failure.
  • the terminal can calculate the SSB index from the SSB transmission position without additional signaling from the base station side.
  • the base station changes the relationship between the SSB transmission position and the SSB index based on periodically changing signals (information) such as the SFN and half frame bit included in the PBCH to be notified to the terminal.
  • the terminal calculates the SSB index from the SSB transmission position based on the periodically changed signal such as the SFN and half frame bit included in the PBCH notified from the base station.
  • the SFN is divided into information contained in the PBCH additional bit, which has a short change cycle, and information notified from the MIB, which has a long change cycle, but it is not necessary to refer to all SFNs.
  • the first embodiment can be applied even to a method of using SSB that does not include MIB.
  • the base station shifts the SSB index relative to the SSB transmission position by a fixed amount based on periodically changing signals (information) such as the SFN and half frame bits included in the PBCH to be notified to the terminal.
  • the terminal shifts the SSB transmission position and the SSB index by a fixed amount by shifting the SSB index from the SSB transmission position based on the periodically changed signal such as the SFN and half frame bits included in the PBCH notified from the base station. identify (determine) the relationship with
  • the transmission beam direction set by the transmission beam control unit of the base station only needs to add a fixed time offset to the relationship between the SSB transmission position and the SSB index. Therefore, the transmission beam control unit does not need to have a plurality of transmission beam control patterns corresponding to the relationship between the SSB transmission position and the SSB index, and can be easily implemented.
  • the SSB index is calculated using, for example, the following formula (1).
  • SSB pos is the SSB transmission position.
  • L is the maximum SSB index number to be transmitted.
  • N is the fixed shift amount. Note that N may be a different value between a plurality of different Ls or a plurality of different SCSs.
  • the base station shifts the SSB index for the SSB transmission position by a predetermined variable amount based on the periodically changing signal (information) such as the SFN and half frame bit included in the PBCH to be notified to the terminal.
  • the terminal shifts the SSB index from the SSB transmission position by a predetermined variable amount based on the SFN and half frame bits included in the PBCH notified from the base station, and shifts the SSB index by a predetermined variable amount to determine the SSB transmission position. and the SSB index.
  • the variable amount may be a periodically varying amount.
  • the SSB index is calculated using, for example, the following formula (2).
  • SSB pos is the SSB transmission position.
  • L is the maximum SSB index number to be transmitted.
  • M is the shift related quantity. If M is coprime to the “periodic frame of the SS burst set” (i.e. ⁇ 0.5, 1, 2, 4, 8, 16 ⁇ ) (i.e. ⁇ 3, 5, 7 ⁇ ), then there are M times “SS burst set”, the relationship between the original SSB transmission position and the SSB index.
  • M is a relatively prime value, even if the “periodic frames of the SS burst set” are different (for example, ⁇ 1, 2 ⁇ periodic frames), different SSB transmissions between each “SS burst set” The SSB index is shifted in position. Note that M may be a different value between multiple Ls and multiple SCSs.
  • the SSB index may be calculated using SFN instead of using half frame bits.
  • the base station reverses the order of the SSB index with respect to the SSB transmission position based on the periodically changing signal (information) such as the SFN and half frame bit included in the PBCH notified to the terminal.
  • the terminal determines whether the SSB transmission position and the SSB index are in forward or reverse order based on periodically changed signals such as the SFN and half frame bit included in the PBCH notified from the base station. .
  • the base station determines the SSB transmission position based on the periodically changing signal (information) such as the SFN and half frame bit included in the PBCH notified to the terminal, and the pseudo-random formula or table described in the specifications, etc. Change the relation of SSB index.
  • the terminal determines the SSB transmission position based on the periodically changed signals such as SFN and half frame bit included in the PBCH notified from the base station, and the pseudo-random formula or table described in the specifications, etc. Identify the relationship with the SSB index. By basing the relationship between the SSB transmission order and the SSB index on a pseudo-random formula or table described in advance in the specifications, etc., it is possible to further randomize the SSB index between "SS burst sets.”
  • the SSB index at the SSB transmission position based on calculation example 1-4 is shown below.
  • Table 4 according to the SFN and SSB transmission positions, a pseudo-random formula or a table that changes the relationship between the SSB transmission position and the SSB index is described in the specifications, and the base station and terminal: Change the relationship between the SSB transmission position and the SSB index according to the SFN. At this time, the SSB index does not have to be ordered.
  • the relationship between the SSB transmission position and the SSB index may be changed as shown in relation example 1-5 below.
  • the base station changes the relationship between the SSB transmission position and the SSB index based on periodically changing signals (information) such as the SFN and half frame bit included in the PBCH notified to the terminal, and the PCID of the base station itself. do.
  • the terminal determines the relationship between the SSB transmission position and the SSB index based on periodically changed signals such as the SFN and half frame bit included in the PBCH notified from the base station, and broadcast information such as PCID. Assume it has changed.
  • the combination of interfering beams between cells is temporally changed, so the interference between cells is randomized.
  • the base station sets the SSB index for the SSB transmission position by a predetermined fixed amount based on the periodically changing signal (information) such as the SFN and half frame bit included in the PBCH to be notified to the terminal and the PCID of the base station itself. shift.
  • the terminal shifts the SSB index by a fixed amount from the SSB transmission position based on periodically changed signals such as SFN and half frame bits included in the PBCH notified from the base station, and broadcast information such as PCID. specifies (determines) the relationship between the SSB transmission position and the SSB index.
  • the SSB index is calculated using, for example, the following formula (3).
  • N is the fixed shift amount.
  • K PCID is a fixed coefficient based on PCID. Note that N may be a different value between a plurality of different Ls or a plurality of different SCSs.
  • the base station determines a method for changing the SSB index for the SSB transmission position (SSB transmission method to change the relationship between position and SSB index).
  • the terminal changes the relationship between the SSB transmission position and the SSB index based on periodically changed signals such as the SFN and half frame bits included in the PBCH notified from the base station, and broadcast information such as PCID. to change
  • the base station determines the correspondence relationship between the SSB transmission position and the SSB index based on the broadcast signal to be transmitted.
  • the base station changes the correspondence between the first SS burst set and the second SS burst set of the broadcast signal.
  • the terminal determines the correspondence relationship between the SSB transmission position and the SSB index based on the received broadcast signal.
  • the terminal changes the correspondence between the first SS burst set and the second SS burst set of the broadcast signal.
  • the base station and the terminal change the correspondence relationship between the SSB transmission position and the SSB index based on the broadcast signal. matches. Also, the base station and the terminal, for example, even if LBT failure occurs in the first SS burst set and the second SS burst set, in the first SS burst set and the second SS burst set, SSB Since the correspondence relationship between the transmission position and the SSB index is changed, different SSB indexes can be received in the first SS burst set and the second SS burst set. This allows the terminal to receive all SSB indexes even if LBT failure occurs.
  • FIG. 10 is a block diagram showing a configuration example of the base station 10 according to the second embodiment.
  • the same components as in FIG. 6 are given the same reference numerals.
  • the control unit 11 outputs relationship information between the SSB transmission position and the SSB index to the SSB index determination unit 12 and the common signal generation unit 22 . Further, the control unit 11 changes the relationship information between the SSB transmission position and the SSB index according to the control of the upper network. When the relationship between the SSB transmission position and the SSB index is changed, update information is output to the common signal generator 22 . Other operations are the same as in the first embodiment.
  • the common signal generation unit 22 generates a data signal for notifying SIB1 for initial connection and a control signal for notifying the allocation resource of the data signal, and outputs them to the transmission processing unit 14 .
  • the signaling information included in SIB1 includes relationship information between the SSB transmission position input from the control unit 11 and the SSB index. When the relationship information between the SSB transmission position and the SSB index is changed, it is notified from the base station to the terminal by SIB1.
  • the SSB transmission position is input to the receive beam controller 19 in the same manner as in FIG. 6, and RO is associated with the SSB transmission position. 19, the SSB index is input, and the RO may be associated with the SSB index.
  • FIG. 11 is a block diagram showing a configuration example of the terminal 50 according to the second embodiment.
  • the same components as in FIG. 8 are given the same reference numerals.
  • the reception processing unit 52 identifies SSB resources and outputs them to the SSB decoding unit 53 in the same manner as in FIG. Then, the reception processing unit 52 acquires the SSB transmission position from the SSB decoding unit 53 . The reception processing unit 52 identifies the allocation resource of the control signal of the common signal from the SSB transmission position. The reception processing unit 52 acquires the data series of the common signal and outputs it to the common signal decoding unit 59 .
  • the common signal decoding unit 59 decodes the control signal that notifies the allocation resource of the data signal for initial connection, and decodes SIB1 from the data signal. Relation information between the SSB transmission position and the SSB index is acquired from the signaling information included in SIB1, and output to the SSB index determination unit .
  • the SSB index determination unit 54 determines the SSB index from the SSB transmission position based on the relationship information between the SSB transmission position and the SSB index input from the SSB decoding unit 53 and the common signal decoding unit 59, and the SSB selection unit output to
  • FIG. 12 is a diagram showing an operation example from a cell search between a base station and a terminal to a random access procedure according to the second embodiment.
  • the same reference numerals are assigned to the same processes as in FIG. In the following, processing parts different from those in FIG. 9 will be described.
  • the terminal After detecting the SSB transmission position in S6, the terminal calculates allocation resources for control signals and data signals from the SSB transmission position (S21).
  • the terminal refers to the allocated resource calculated in S21 and receives the control signal and data signal (SIB1) from the base station (S9).
  • SIB1 includes information for changing the relationship between the SSB transmission position and the SSB index (for example, information for changing the shift amount).
  • the terminal calculates the SSB index based on the broadcast information, the SSB transmission position detected in S6, and the information included in SIB1 (S22).
  • the terminal determines a resource (for example, RO) to be used in the random access procedure from the SSB measurement result (SSB transmission position or SSB index) (S23).
  • a resource for example, RO
  • the processing in FIG. 12 differs from the processing in FIG. 8 in that the terminal cannot calculate the SSB index until SIB1 is decoded. Therefore, the terminal calculates the allocation resource of the common signal for SIB1 from the SSB transmission position (S21).
  • the terminal has identified both the SSB transmission position and the SSB index. Therefore, the base station and terminal may be associated with either the SSB transmission position or the SSB index with respect to RO. Also, the base station may switch which of the SSB transmission position and SSB index the RO is associated with and notify the terminal using SIB1.
  • calculation process 3 Details of calculation process 3 are shown below.
  • the calculation formula used for the calculation process here may be system common information defined in the specification, or may be signaling information provided by the base station.
  • the base station determines the relationship between the SSB transmission position and the SSB index based on the periodically changing signal (information) such as the SFN and half frame bit included in the PBCH notified to the terminal and the signaling information given to SIB1. change.
  • the terminal obtains the SSB index from the SSB transmission position based on the periodically changed signals such as the SFN and half frame bits included in the PBCH notified from the base station, and the signaling information notified by SIB1 from the base station. calculate.
  • the base station can perform adaptive control, such as switching the change method according to the interference situation of its own cell. becomes.
  • the base station shifts the SSB index for the SSB transmission position by a predetermined amount based on the periodically changing signal (information) such as the SFN and half frame bit included in the PBCH to be notified to the terminal and the signaling information of SIB1.
  • the terminal shifts the SSB index by a predetermined amount from the SSB transmission position based on the periodically changed signals such as the SFN and half frame bits included in the PBCH notified from the base station, and the SIB1 signaling information. , specify the relationship between the SSB transmission position and the SSB index.
  • the SSB index is calculated using, for example, the following formula (4).
  • N sig is the amount of shift for each cell notified by SIB1. Note that N sig may have different values for a plurality of different Ls or a plurality of different SCSs.
  • the shift amount is adjusted for each cell, and inter-cell interference randomization is more flexible than calculation example 1-1, calculation example 1-2, or calculation example 2-1. can be realized.
  • the base station switches the method of changing the SSB index for the SSB transmission position based on the SIB1 signaling information.
  • the base station changes the SSB index for the SSB transmission position based on periodically changing signals (information) such as the SFN and half frame bits included in the PBCH to be notified to the terminal, and broadcast information such as the PCID.
  • the terminal changes the method of changing the SSB index for the SSB transmission position based on the SIB1 signaling information.
  • the terminal identifies the SSB index from the SSB transmission position based on periodically changed signals such as the SFN and half frame bit included in the PBCH reported from the base station, and broadcast information such as the PCID.
  • any of the calculation examples 1-1 to 1-5 can be used as the change method at this time.
  • any of the calculation examples 2-5 to 2-3 can be used as the change method.
  • the interference randomization can be adaptively controlled.
  • the base station controls whether or not to adapt the method of changing the SSB index to the SSB transmission position.
  • the base station switches the method of changing the SSB index for the SSB transmission position based on periodically changing signals (information) such as the SFN and half frame bit included in the PBCH to be notified to the terminal, and broadcast information such as PCID.
  • the terminal determines whether or not the change in the SSB index change method for the SSB transmission position has been applied.
  • the terminal performs SSB transmission based on periodically changed signals such as the SFN and half frame bit included in the PBCH notified from the base station, and broadcast information such as PCID. Identify the SSB index from the position.
  • calculation example 1-1 to calculation example 1-5 or calculation example 2-1 to calculation example 2-3 may be used.
  • the change method is changed according to the SFN and half frame bit included in PBCH, and PCID, etc., and in SIB1 signaling information, by switching with the on/off flag, SIB1
  • the amount of information to be included in signaling information can be 1 bit, and the amount of information to be added can be minimized.
  • the terminal and the base station change the shift amount of the correspondence between the SSB transmission position and the SSB index based on the information included in SIB1. Also, the terminal and the base station switch the method of changing the correspondence relationship between the SSB transmission position and the SSB index based on the information included in SIB1. This also allows the terminal to receive the SSB index even if LBT failure occurs.
  • the base station and terminal calculate the relationship between the SSB transmission position and the SSB index based on the signal that the base station aperiodically transmits.
  • FIG. 13 is a diagram showing an operation example up to measurement of signal quality and reporting of measurement information by SSB between a base station and a terminal according to the third embodiment.
  • the base station transmits control signals or data signals (S31). Control or data signals are transmitted aperiodically (arbitrarily).
  • the control signal may be a PDCCH (Physical Downlink Control CHannel).
  • the data signal may be a PDSCH (Physical Downlink Shared CHannel).
  • the terminal recognizes (determines) the relationship between the SSB transmission position and the SSB index based on the control signal or data signal received in S31 (S32).
  • the base station determines broadcast information based on the SSB transmission position (S33).
  • the base station calculates the SSB index at the SSB transmission position (S34).
  • the base station implements LBT (S35). If the base station is not LBT busy, it radiates a beam associated with the SSB index at each SSB transmission position (S36), and transmits a synchronization signal and annunciation signal (S37).
  • the terminal detects the SSB transmission position from the notification information of the notification signal received in S37 (S38).
  • the terminal uses the SSB transmission position detected in S38 to refer to the relationship between the SSB transmission position determined in S32 and the SSB index, and calculates the SSB index (S39).
  • the terminal measures the signal quality of the beam signal at the SSB index calculated in S39, and transmits the measured information to the base station (S40).
  • the terminal since the relational information between the SSB transmission position and the SSB index is changed based on the aperiodically transmitted signal, the terminal can transfer the time frame and resources for the initial connection from the SSB without the relational information. can't get Therefore, the relational information between the SSB transmission position and the SSB index is notified from the base station to the terminal in advance. That is, in the third embodiment, it is assumed that SSB is operated in a non-initial connection state.
  • the processing according to the third embodiment may be restricted so that it is applied to the SSB for measurement and not applied to the SSB for initial connection.
  • the base station and terminal recognize the relationship between the SSB transmission position and the SSB index before transmitting the SS burst set. Therefore, the base station and the terminal can calculate the SSB index at the time of processing S32, S34, or S39, for example.
  • the base station changes the relationship between the SSB transmission position and the SSB index based on the signaling information included in the data signal notified to the terminal.
  • the terminal calculates the SSB index from the SSB transmission position based on the signaling information included in the data signal notified from the base station.
  • the base station Since the relationship between the SSB transmission position and the SSB index can be changed by signaling information from the base station, the base station can switch the change method according to the interference situation of its own cell, for example, as in calculation process 3. and so on, adaptive control becomes possible.
  • the base station changes the relationship between the SSB transmission position and the SSB index, for example, based on DCI (Downlink Control Information) included in the control signal to be notified to the terminal.
  • DCI Downlink Control Information
  • the terminal calculates the SSB index from the SSB transmission position based on the DCI included in the control signal notified from the base station.
  • the base station can, for example, switch the change method according to the interference situation of its own cell. Adaptive control becomes possible. In addition, dynamic switching is possible because the relationship information can be changed with DCI.
  • the base station and the terminal determine the relationship between the SSB transmission position and the SSB index based on the signal aperiodically transmitted by the base station. This also allows the terminal to receive the SSB index even if LBT failure occurs.
  • the present disclosure is not limited to this, and may be used in a band lower than 52.6 GHz and a band higher than 71 GHz. good.
  • the present disclosure provides similar effects even when the number of SSBs to be transmitted is large, or when there is a limit to the number of SSBs that can be notified or the transmission interval of DBTWs.
  • Each of the above embodiments may be restricted to apply when the total number of SSB indexes is X or more.
  • X 32 may be used. That is, it may be applied when the number of SSB indexes exceeds half of the number of SSB transmission positions and there are SSBs that cannot be cycle-transmitted.
  • application may be switched based on terminal capability information. For example, when it is known that the base station is operated in an optional band based on terminal capability information, each of the above embodiments may be applied.
  • SSB transmission position in this disclosure may be read as “candidate SS/PBCH block index” or "SSB candidate position”.
  • SSB index may be read as “SS/PBCH block index” or "SSB candidate index”.
  • the terminal may be referred to as user equipment (UE) or mobile station, for example.
  • UE user equipment
  • a base station may be referred to as a gNB, for example.
  • the capability information may include an information element (IE) individually indicating whether or not the terminal supports at least one of the functions, operations, or processes shown in each of the above-described embodiments.
  • the capability information may include an information element indicating whether or not the terminal supports a combination of two or more of the functions, operations, or processes shown in each embodiment described above.
  • the base station may determine (or determine or assume) the functions, operations, or processes supported (or not supported) by the terminal that transmitted the capability information.
  • the base station may perform operation, processing or control according to the determination result based on the capability information.
  • the base station assigns at least one of downlink resources such as PDCCH or PDSCH and uplink resources such as PUCCH or PUSCH (in other words, scheduling). You can control it.
  • the terminal does not support part of the functions, operations or processes shown in each of the above-described embodiments can be interpreted as limiting such functions, operations or processes in the terminal. good too. For example, information or requests regarding such restrictions may be communicated to the base station.
  • Information about terminal capabilities or limitations may be defined, for example, in a standard, or implicitly notified to the base station in association with known information in the base station or information transmitted to the base station. good too.
  • a downlink control signal (or downlink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted in the Physical Downlink Control Channel (PDCCH) of the physical layer, It may be a signal (or information) transmitted in a medium access control element (MAC CE) or radio resource control (RRC) of a higher layer. Also, the signal (or information) is not limited to being notified by a downlink control signal, and may be defined in advance in specifications (or standards), or may be set in advance in base stations and terminals.
  • PDCCH Physical Downlink Control Channel
  • MAC CE medium access control element
  • RRC radio resource control
  • the uplink control signal (or uplink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted in PUCCH of the physical layer, MAC CE or It may be a signal (or information) transmitted in RRC. Also, the signal (or information) is not limited to being notified by an uplink control signal, and may be defined in advance in specifications (or standards), or may be set in advance in base stations and terminals. Also, the uplink control signal may be replaced with, for example, uplink control information (UCI), 1st stage sidelink control information (SCI), or 2nd stage SCI.
  • UCI uplink control information
  • SCI 1st stage sidelink control information
  • 2nd stage SCI 2nd stage SCI.
  • a base station includes a Transmission Reception Point (TRP), a cluster head, an access point, a Remote Radio Head (RRH), an eNodeB (eNB), a gNodeB (gNB), a Base Station (BS), a Base Transceiver Station (BTS), base unit, gateway, etc.
  • TRP Transmission Reception Point
  • RRH Remote Radio Head
  • eNB eNodeB
  • gNB gNodeB
  • BS Base Station
  • BTS Base Transceiver Station
  • base unit gateway, etc.
  • a terminal may play the role of a base station.
  • a relay device that relays communication between the upper node and the terminal may be used. It may also be a roadside device.
  • An embodiment of the present disclosure may be applied to any of uplink, downlink, and sidelink, for example.
  • an embodiment of the present disclosure can be used for uplink Physical Uplink Shared Channel (PUSCH), Physical Uplink Control Channel (PUCCH), Physical Random Access Channel (PRACH), downlink Physical Downlink Shared Channel (PDSCH), PDCCH, Physical It may be applied to the Broadcast Channel (PBCH), or the sidelink Physical Sidelink Shared Channel (PSSCH), Physical Sidelink Control Channel (PSCCH), and Physical Sidelink Broadcast Channel (PSBCH).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical It may be applied to the Broadcast Channel (PBCH), or the sidelink Physical Sidelink Shared Channel (PSSCH), Physical Sidelink Control Channel (PSCCH), and Physical Sidelink Broadcast Channel (PSBCH).
  • PBCH Broadcast Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink
  • PDCCH, PDSCH, PUSCH, and PUCCH are examples of a downlink control channel, downlink data channel, uplink data channel, and uplink control channel, respectively.
  • PSCCH and PSSCH are examples of sidelink control channels and sidelink data channels.
  • PBCH and PSBCH are broadcast channels, and PRACH is an example of a random access channel.
  • An embodiment of the present disclosure may be applied to either data channels or control channels, for example.
  • the channels in one embodiment of the present disclosure may be replaced with any of the data channels PDSCH, PUSCH, and PSSCH, or the control channels PDCCH, PUCCH, PBCH, PSCCH, and PSBCH.
  • the reference signal is, for example, a signal known to both the base station and the mobile station, and is sometimes called Reference Signal (RS) or pilot signal.
  • Reference signals are Demodulation Reference Signal (DMRS), Channel State Information - Reference Signal (CSI-RS), Tracking Reference Signal (TRS), Phase Tracking Reference Signal (PTRS), Cell-specific Reference Signal (CRS), or Sounding Reference Signal (SRS) may be used.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information - Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CRS Cell-specific Reference Signal
  • SRS Sounding Reference Signal
  • the unit of time resources is not limited to one or a combination of slots and symbols, such as frames, superframes, subframes, slots, time slot subslots, minislots or symbols, Orthogonal Time resource units such as frequency division multiplexing (OFDM) symbols and single carrier-frequency division multiplexing (SC-FDMA) symbols may be used, or other time resource units may be used.
  • Orthogonal Time resource units such as frequency division multiplexing (OFDM) symbols and single carrier-frequency division multiplexing (SC-FDMA) symbols may be used, or other time resource units may be used.
  • the number of symbols included in one slot is not limited to the number of symbols exemplified in the above embodiment, and may be another number of symbols.
  • An embodiment of the present disclosure may be applied to both licensed bands and unlicensed bands.
  • An embodiment of the present disclosure is applied to any of communication between base stations and terminals (Uu link communication), communication between terminals (Sidelink communication), and vehicle to everything (V2X) communication. good too.
  • the channel in one embodiment of the present disclosure may be replaced with any of PSCCH, PSSCH, Physical Sidelink Feedback Channel (PSFCH), PSBCH, PDCCH, PUCCH, PDSCH, PUSCH, or PBCH.
  • an embodiment of the present disclosure may be applied to any of a terrestrial network, a non-terrestrial network (NTN: Non-Terrestrial Network) using satellites or high altitude pseudo satellites (HAPS: High Altitude Pseudo Satellite) .
  • NTN Non-Terrestrial Network
  • HAPS High Altitude pseudo satellites
  • an embodiment of the present disclosure may be applied to a terrestrial network such as a network with a large cell size, an ultra-wideband transmission network, or the like, in which the transmission delay is large compared to the symbol length or slot length.
  • an antenna port refers to a logical antenna (antenna group) composed of one or more physical antennas.
  • an antenna port does not always refer to one physical antenna, but may refer to an array antenna or the like composed of a plurality of antennas.
  • the number of physical antennas that constitute an antenna port is not defined, but may be defined as the minimum unit in which a terminal station can transmit a reference signal.
  • an antenna port may be defined as the minimum unit for multiplying weights of precoding vectors.
  • 5G fifth generation cellular technology
  • NR new radio access technologies
  • the system architecture as a whole is assumed to be NG-RAN (Next Generation-Radio Access Network) with gNB.
  • the gNB provides UE-side termination of NG radio access user plane (SDAP/PDCP/RLC/MAC/PHY) and control plane (RRC) protocols.
  • SDAP/PDCP/RLC/MAC/PHY NG radio access user plane
  • RRC control plane
  • the gNB also connects to the Next Generation Core (NGC) via the Next Generation (NG) interface, and more specifically, the Access and Mobility Management Function (AMF) via the NG-C interface (e.g., a specific core entity that performs AMF) , and is also connected to a UPF (User Plane Function) (eg, a specific core entity that performs UPF) by an NG-U interface.
  • NNC Next Generation Core
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the NG-RAN architecture is shown in Figure 14 (see, eg, 3GPP TS 38.300 v15.6.0, section 4).
  • the NR user plane protocol stack (see e.g. 3GPP TS 38.300, section 4.4.1) consists of a network-side terminated PDCP (Packet Data Convergence Protocol (see TS 38.300 section 6.4)) sublayer at the gNB, It includes the RLC (Radio Link Control (see TS 38.300 clause 6.3)) sublayer and the MAC (Medium Access Control (see TS 38.300 clause 6.2)) sublayer. Also, a new Access Stratum (AS) sublayer (Service Data Adaptation Protocol (SDAP)) has been introduced on top of PDCP (see, for example, 3GPP TS 38.300, Section 6.5).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • SDAP Service Data Adaptation Protocol
  • a control plane protocol stack is defined for NR (see, eg, TS 38.300, section 4.4.2).
  • An overview of layer 2 functions is given in clause 6 of TS 38.300.
  • the functions of the PDCP sublayer, RLC sublayer and MAC sublayer are listed in TS 38.300 clauses 6.4, 6.3 and 6.2 respectively.
  • the functions of the RRC layer are listed in clause 7 of TS 38.300.
  • the Medium-Access-Control layer handles logical channel multiplexing and scheduling and scheduling-related functions, including handling various neurology.
  • the physical layer is responsible for encoding, PHY HARQ processing, modulation, multi-antenna processing, and mapping of signals to appropriate physical time-frequency resources.
  • the physical layer also handles the mapping of transport channels to physical channels.
  • the physical layer provides services to the MAC layer in the form of transport channels.
  • a physical channel corresponds to a set of time-frequency resources used for transmission of a particular transport channel, and each transport channel is mapped to a corresponding physical channel.
  • physical channels include PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel) as uplink physical channels, and PDSCH (Physical Downlink Shared Channel) as downlink physical channels.
  • PDCCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • NR use cases/deployment scenarios include enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), massive machine type communications (mMTC) with diverse requirements in terms of data rate, latency and coverage can be included.
  • eMBB is expected to support peak data rates (20 Gbps in the downlink and 10 Gbps in the uplink) and user-experienced data rates on the order of three times the data rates provided by IMT-Advanced.
  • URLLC more stringent requirements are imposed for ultra-low latency (0.5 ms each for UL and DL for user plane latency) and high reliability (1-10-5 within 1 ms).
  • mMTC preferably has high connection density (1,000,000 devices/km2 in urban environments), wide coverage in hostile environments, and extremely long battery life (15 years) for low cost devices. can be sought.
  • the OFDM numerology (e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval) suitable for one use case may be used for other use cases. May not be valid.
  • low-latency services preferably require shorter symbol lengths (and thus larger subcarrier spacings) and/or fewer symbols per scheduling interval (also called TTI) than mMTC services.
  • TTI time-to-live
  • Subcarrier spacing may optionally be optimized to maintain similar CP overhead.
  • the value of subcarrier spacing supported by NR may be one or more.
  • resource element may be used to mean the smallest resource unit consisting of one subcarrier for the length of one OFDM/SC-FDMA symbol.
  • resource grids of subcarriers and OFDM symbols are defined for uplink and downlink, respectively.
  • Each element of the resource grid is called a resource element and is identified based on a frequency index in the frequency domain and a symbol position in the time domain (see 3GPP TS 38.211 v15.6.0).
  • FIG. 15 shows functional separation between NG-RAN and 5GC.
  • Logical nodes in NG-RAN are gNBs or ng-eNBs.
  • 5GC has logical nodes AMF, UPF and SMF.
  • gNBs and ng-eNBs host the following main functions: - Radio Bearer Control, Radio Admission Control, Connection Mobility Control, dynamic allocation of resources to UEs in both uplink and downlink (scheduling), etc. Functions of Radio Resource Management; - IP header compression, encryption and integrity protection of data; - AMF selection on UE attach when routing to an AMF cannot be determined from information provided by the UE; - routing of user plane data towards UPF; - routing of control plane information towards AMF; - setting up and tearing down connections; - scheduling and sending paging messages; - scheduling and transmission of system broadcast information (originating from AMF or Operation, Admission, Maintenance (OAM)); - configuration of measurements and measurement reports for mobility and scheduling; - transport level packet marking in the uplink; - session management; - support for network slicing; - QoS flow management and mapping to data radio bearers; - Support for UEs in RRC_INACTIVE state; - the ability to deliver NAS messages; - sharing
  • the Access and Mobility Management Function hosts the following main functions: - Ability to terminate Non-Access Stratum (NAS) signaling; - security of NAS signaling; - Access Stratum (AS) security controls; - Core Network (CN) inter-node signaling for mobility across 3GPP access networks; - Reachability to UEs in idle mode (including control and execution of paging retransmissions); - management of the registration area; - support for intra-system and inter-system mobility; - access authentication; - access authorization, including checking roaming rights; - mobility management control (subscription and policy); - support for network slicing; - Selection of the Session Management Function (SMF).
  • NAS Non-Access Stratum
  • AS Access Stratum
  • CN Core Network
  • the User Plane Function hosts the following main functions: - Anchor points for intra-RAT mobility/inter-RAT mobility (if applicable); - External PDU (Protocol Data Unit) session points for interconnection with data networks; - packet routing and forwarding; – Policy rule enforcement for packet inspection and user plane parts; - reporting of traffic usage; - an uplink classifier to support routing of traffic flows to the data network; - Branching Points to support multi-homed PDU sessions; - QoS processing for the user plane (e.g. packet filtering, gating, UL/DL rate enforcement; - verification of uplink traffic (mapping of SDF to QoS flows); - Downlink packet buffering and downlink data notification trigger function.
  • Anchor points for intra-RAT mobility/inter-RAT mobility if applicable
  • External PDU Protocol Data Unit
  • – Policy rule enforcement for packet inspection and user plane parts for interconnection with data networks
  • - reporting of traffic usage - an uplink classifier to support routing of traffic flows to the data network
  • Session Management Function hosts the following main functions: - session management; - allocation and management of IP addresses for UEs; - UPF selection and control; - the ability to configure traffic steering in the User Plane Function (UPF) to route traffic to the proper destination; - policy enforcement and QoS in the control part; - Notification of downlink data.
  • UPF User Plane Function
  • Figure 16 shows some interactions between UE, gNB and AMF (5GC entity) when UE transitions from RRC_IDLE to RRC_CONNECTED for NAS part (see TS 38.300 v15.6.0).
  • RRC is a higher layer signaling (protocol) used for UE and gNB configuration.
  • the AMF prepares the UE context data (which includes, for example, the PDU session context, security keys, UE Radio Capabilities, UE Security Capabilities, etc.) and the initial context Send to gNB with INITIAL CONTEXT SETUP REQUEST.
  • the gNB then activates AS security together with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding to the gNB with a SecurityModeComplete message.
  • the gNB sends an RRCReconfiguration message to the UE, and the gNB receives the RRCReconfigurationComplete from the UE to reconfigure for setting up Signaling Radio Bearer 2 (SRB2) and Data Radio Bearer (DRB) .
  • SRB2 Signaling Radio Bearer 2
  • DRB Data Radio Bearer
  • the step for RRCReconfiguration is omitted as SRB2 and DRB are not set up.
  • the gNB notifies the AMF that the setup procedure is complete with an INITIAL CONTEXT SETUP RESPONSE.
  • the present disclosure provides control circuitry for operationally establishing a Next Generation (NG) connection with a gNodeB and an operationally NG connection so that signaling radio bearers between the gNodeB and User Equipment (UE) are set up.
  • a 5th Generation Core (5GC) entity eg, AMF, SMF, etc.
  • AMF Next Generation
  • SMF User Equipment
  • the gNodeB sends Radio Resource Control (RRC) signaling including a Resource Allocation Configuration Information Element (IE) to the UE via the signaling radio bearer.
  • RRC Radio Resource Control
  • IE Resource Allocation Configuration Information Element
  • the UE then performs uplink transmission or downlink reception based on the resource allocation configuration.
  • Figure 17 shows some of the use cases for 5G NR.
  • the 3rd generation partnership project new radio (3GPP NR) considers three use cases envisioned by IMT-2020 to support a wide variety of services and applications.
  • the first stage of specifications for high-capacity, high-speed communications (eMBB: enhanced mobile-broadband) has been completed.
  • Current and future work includes expanding eMBB support, as well as ultra-reliable and low-latency communications (URLLC) and Massively Connected Machine Type Communications (mMTC). Standardization for massive machine-type communications is included
  • Figure 17 shows some examples of envisioned usage scenarios for IMT beyond 2020 (see eg ITU-RM.2083 Figure 2).
  • URLLC use cases have strict performance requirements such as throughput, latency (delay), and availability.
  • URLLLC use cases are envisioned as one of the elemental technologies to realize these future applications such as wireless control of industrial production processes or manufacturing processes, telemedicine surgery, automation of power transmission and distribution in smart grids, and traffic safety. ing.
  • URLLLC ultra-reliability is supported by identifying technologies that meet the requirements set by TR 38.913.
  • an important requirement includes a target user plane latency of 0.5 ms for UL (uplink) and 0.5 ms for DL (downlink).
  • the general URLLC requirement for one-time packet transmission is a block error rate (BLER) of 1E-5 for a packet size of 32 bytes with a user plane latency of 1 ms.
  • BLER block error rate
  • NRURLC the technical enhancements targeted by NRURLC aim to improve latency and improve reliability.
  • Technical enhancements for latency improvement include configurable numerology, non-slot-based scheduling with flexible mapping, grant-free (configured grant) uplink, slot-level repetition in data channels, and downlink pre-emption.
  • Preemption means that a transmission with already allocated resources is stopped and the already allocated resources are used for other transmissions with lower latency/higher priority requirements requested later. Transmissions that have already been authorized are therefore superseded by later transmissions. Preemption is applicable regardless of the concrete service type. For example, a transmission of service type A (URLLC) may be replaced by a transmission of service type B (eg eMBB).
  • Technology enhancements for increased reliability include a dedicated CQI/MCS table for a target BLER of 1E-5.
  • mMTC massive machine type communication
  • NR URLLC NR URLLC
  • the stringent requirements are: high reliability (reliability up to 10-6 level), high availability, packet size up to 256 bytes, time synchronization up to several microseconds (depending on the use case, the value 1 ⁇ s or a few ⁇ s depending on the frequency range and latency as low as 0.5 ms to 1 ms (eg, 0.5 ms latency in the targeted user plane).
  • NRURLC NR Ultra User Downlink Control Channel
  • enhancements for compact DCI PDCCH repetition, and increased PDCCH monitoring.
  • enhancement of UCI Uplink Control Information
  • enhancement of enhanced HARQ Hybrid Automatic Repeat Request
  • minislot refers to a Transmission Time Interval (TTI) containing fewer symbols than a slot (a slot comprises 14 symbols).
  • TTI Transmission Time Interval
  • the 5G QoS (Quality of Service) model is based on QoS flows, and includes QoS flows that require a guaranteed flow bit rate (GBR: Guaranteed Bit Rate QoS flows), and guaranteed flow bit rates. support any QoS flows that do not exist (non-GBR QoS flows). Therefore, at the NAS level, a QoS flow is the finest granularity of QoS partitioning in a PDU session.
  • a QoS flow is identified within a PDU session by a QoS Flow ID (QFI) carried in an encapsulation header over the NG-U interface.
  • QFI QoS Flow ID
  • 5GC For each UE, 5GC establishes one or more PDU sessions. For each UE, in line with the PDU session, NG-RAN establishes at least one Data Radio Bearers (DRB), eg as shown above with reference to FIG. Also, additional DRBs for QoS flows for that PDU session can be configured later (up to NG-RAN when to configure). NG-RAN maps packets belonging to different PDU sessions to different DRBs. NAS level packet filters in UE and 5GC associate UL and DL packets with QoS flows, while AS level mapping rules in UE and NG-RAN associate UL and DL QoS flows with DRB.
  • DRB Data Radio Bearers
  • FIG. 18 shows the non-roaming reference architecture of 5G NR (see TS 23.501 v16.1.0, section 4.23).
  • An Application Function eg, an external application server hosting 5G services, illustrated in FIG. 17
  • AF Application Function
  • NEF Network Exposure Function
  • PCF Policy Control Function
  • Application Functions that are not authorized by the operator to directly access the Network Function communicate with the associated Network Function using the open framework to the outside world via the NEF.
  • Figure 18 shows further functional units of the 5G architecture: Network Slice Selection Function (NSSF), Network Repository Function (NRF), Unified Data Management (UDM), Authentication Server Function (AUSF), Access and Mobility Management Function (AMF) , Session Management Function (SMF), and Data Network (DN, eg, service by operator, Internet access, or service by third party). All or part of the core network functions and application services may be deployed and operated in a cloud computing environment.
  • NSF Network Slice Selection Function
  • NRF Network Repository Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • AMF Access and Mobility Management Function
  • SMSF Session Management Function
  • DN Data Network
  • QoS requirements for at least one of URLLC, eMMB and mMTC services are set during operation to establish a PDU session including radio bearers between a gNodeB and a UE according to the QoS requirements.
  • the functions of the 5GC e.g., NEF, AMF, SMF, PCF, UPF, etc.
  • a control circuit that, in operation, serves using the established PDU session;
  • An application server eg AF of 5G architecture
  • Each functional block used in the description of the above embodiments is partially or wholly realized as an LSI, which is an integrated circuit, and each process described in the above embodiments is partially or wholly implemented as It may be controlled by one LSI or a combination of LSIs.
  • An LSI may be composed of individual chips, or may be composed of one chip so as to include some or all of the functional blocks.
  • the LSI may have data inputs and outputs.
  • LSIs are also called ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized with a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital or analog processing.
  • a communication device may include a radio transceiver and processing/control circuitry.
  • a wireless transceiver may include a receiver section and a transmitter section, or functions thereof.
  • a wireless transceiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • RF modules may include amplifiers, RF modulators/demodulators, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smart phones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still/video cameras, etc.).
  • digital players digital audio/video players, etc.
  • wearable devices wearable cameras, smartwatches, tracking devices, etc.
  • game consoles digital book readers
  • telehealth and telemedicine (remote health care/medicine prescription) devices vehicles or mobile vehicles with communication capabilities (automobiles, planes, ships, etc.), and combinations of the various devices described above.
  • Communication equipment is not limited to portable or movable equipment, but any type of equipment, device or system that is non-portable or fixed, e.g. smart home devices (household appliances, lighting equipment, smart meters or measuring instruments, control panels, etc.), vending machines, and any other "Things" that can exist on the IoT (Internet of Things) network.
  • smart home devices household appliances, lighting equipment, smart meters or measuring instruments, control panels, etc.
  • vending machines and any other "Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication by cellular system, wireless LAN system, communication satellite system, etc., as well as data communication by a combination of these.
  • Communication apparatus also includes devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. Examples include controllers and sensors that generate control and data signals used by communication devices to perform the communication functions of the communication device.
  • Communication equipment also includes infrastructure equipment, such as base stations, access points, and any other equipment, device, or system that communicates with or controls the various equipment, not limited to those listed above. .
  • a terminal includes a receiving circuit that receives a synchronization signal, a control circuit that determines a correspondence relationship between a transmission position of a synchronization signal block and an index of the synchronization signal block, and The control circuit changes the correspondence between the first reception timing and the second reception timing of the synchronization signal block.
  • control circuit shifts the index of the synchronization signal block with respect to the transmission position of the synchronization signal block by a fixed amount to change the correspondence.
  • control circuit shifts the index of the synchronization signal block with respect to the transmission position of the synchronization signal block according to the system frame number to change the correspondence.
  • control circuit reverses the correspondence relationship of the index of the synchronization signal block to the transmission position of the synchronization signal block at the first reception timing and the second reception timing.
  • control circuit inputs a system frame number into a pseudorandom formula to change the correspondence.
  • control circuit uses the system frame number to refer to a table showing the correspondence for each system frame number, and changes the correspondence.
  • control circuit uses cell identifiers to change the correspondence.
  • control circuit uses information included in a cell identifier or System Information Block (SIB) to switch the method of changing the correspondence.
  • SIB System Information Block
  • control circuit changes the shift amount of the fixed amount shift based on information contained in the SIB.
  • control circuit changes the shift amount of the shift based on information included in the SIB.
  • control circuit further changes the correspondence based on a physical downlink control channel (PDCCH) or a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a base station includes a transmission circuit that transmits a synchronization signal, a control circuit that determines a correspondence relationship between a transmission position of a synchronization signal block and an index of the synchronization signal block, The control circuit changes the correspondence between the first transmission timing and the second transmission timing of the synchronization signal block.
  • a terminal receives a synchronization signal, determines a correspondence relationship between a transmission position of a synchronization signal block and an index of the synchronization signal block, and the second reception timing.
  • a base station transmits a synchronization signal, determines a correspondence relationship between a transmission position of a synchronization signal block and an index of the synchronization signal block, The correspondence relationship is changed between the first transmission timing and the second transmission timing.
  • One aspect of the present disclosure is useful for wireless communication systems.
  • reception processing unit 10 base station 11 control unit 12 SSB index determination unit 13 SSB generation unit 14 transmission processing unit 15 transmission beam control unit 16 transmission RF unit 17 antenna 18 LBT determination unit 19 reception beam control unit 20 reception RF unit 21 reception processing unit 22 common signal Generation unit 50 Terminal 51 RF unit 52 Reception processing unit 53 SSB decoding unit 54 SSB index determination unit 55 SSB selection unit 56 Preamble resource determination unit 57 LBT determination unit 58 Transmission processing unit 59 Common signal decoding unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、同期信号を受信する受信回路と、同期信号ブロックの送信位置と、同期信号ブロックのインデックスとの対応関係を決定する制御回路と、を有し、制御回路は、同期信号ブロックの第1の受信タイミングと、第2の受信タイミングとにおいて、同期信号ブロックの送信位置と、同期信号ブロックのインデックスとの対応関係を変更する。

Description

端末、基地局、および通信方法
 本開示は、端末、基地局、および通信方法に関する。
 3GPP(Third Generation Partnership Project)では、周波数帯域を拡張するため、アンライセンスバンド(unlicensed band)の利用がサポートされる。また、3GPPでは、52.6GHz-71GHz帯におけるアンライセンスバンドのSSB動作について検討されている。なお、SSBは、SS/PBCH Blockの略である。SSは、Synchronization Signalの略である。PBCHは、Physical Broadcast CHannelの略である。
R1-2102238, 3GPP TSG-RAN WG1 Meeting#104e R1-2007926, 3GPP TSG-RAN WG1 Meeting#103e 3GPP TS 38.213 V16.3.0 (2020-09)
 アンライセンスバンドでは、例えば、基地局が信号を送信する前にLBT(Listen Before Talk)手順を実施する。基地局は、LBT手順において、信号送信帯域が他の無線局によって使用されていないかを確認し、信号を送信する。
 しかしながら、現在の検討内容では、LBT失敗(LBT failure)により、端末がSSB indexを受信できない場合がある。
 本開示の非限定的な実施例では、LBT失敗が発生しても、同期信号ブロックのインデックスを受信できる端末、基地局、および通信方法の提供に資する。
 本開示の一実施例に係る端末は、同期信号を受信する受信回路と、同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定する制御回路と、を有し、前記制御回路は、前記同期信号ブロックの第1の受信タイミングと、第2の受信タイミングとにおいて、前記対応関係を変更する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータープログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータープログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、LBT失敗が発生しても、端末は同期信号ブロックのインデックを受信できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
SSBの送信区間および送信周期の一例を示す図 SSB indexのサイクル送信の一例を示す図 SSB indexをサイクル送信できない場合の一例を示す図 送信するSSB index数を減らした場合のサイクル送信の一例を示す図 第1の実施の形態に係るSSB送信位置とSSB indexとの間の関係がSS burst set間で変更される一例を示した図 基地局の構成例を示すブロック図 基地局の別の構成例を示すブロック図 端末の構成例を示すブロック図 基地局および端末間のセルサーチからランダムアクセス手順までの動作例を示す図 第2の実施の形態に係る基地局の構成例を示すブロック図 第2の実施の形態に係る端末の構成例を示すブロック図 基地局および端末間のセルサーチからランダムアクセス手順までの動作例を示す図 第3の実施の形態に係る基地局および端末間のSSBによる信号品質測定および測定情報の報告までの動作例を示す図 3GPP NRシステムの例示的なアーキテクチャの図 NG-RANと5GCとの間の機能分離を示す概略図 RRC接続のセットアップ/再設定の手順のシーケンス図 大容量・高速通信(eMBB:enhanced Mobile BroadBand)、多数同時接続マシンタイプ通信(mMTC:massive Machine Type Communications)、および高信頼・超低遅延通信(URLLC:Ultra Reliable and Low Latency Communications)の利用シナリオを示す概略図 非ローミングシナリオのための例示的な5Gシステムアーキテクチャを示すブロック図
 以下、図面を適宜参照して、本開示の実施の形態について、詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
 (第1の実施の形態)
 5Gの標準化において、LTE/LTE-Advancedとは必ずしも後方互換性を持たない新しい無線アクセス技術(NR:New Radio)が3GPPで議論されている。NRのRelease 17では、新たな周波数帯域として52.6GHz-71GHz帯での運用が検討されている。52.6GHz-71GHz帯では、NR単独での運用が可能なNR Stand-aloneでの初期接続および品質測定を実現するために、基地局によるSSB送信方法が検討されている。なお、LTEは、Long Term Evolutionの略である。
 SSBは、PSS(Primary Synchronization Signal)、SSS(Secondary Synchronization Signal)、PBCH、およびPBCH-DMRS(De-Modulate Reference Signal)から構成される。PSS/SSSは、同期信号であり、端末は、PSS/SSSを用いてキャリア周波数と同期する。
 PSS/SSSから、セルのPCID(Physical Cell ID)が復号される。PSS/SSSの前後のシンボルには、PBCHおよびPBCH-DMRSが割当てられる。PBCHには、報知情報の一部が含まれており、端末は、SSBが送信された10ms長の時間フレームの番号を示すSFN(System Frame Number)、時間フレームの5msの前半または後半を判定するhalf frame bit、初期接続のための下り制御信号、および下りデータ信号の割当リソースなどを取得できる。
 図1は、SSBの送信区間および送信周期の一例を示す図である。Release 16のNRでは、例えば、図1に示すように、SSBは、SS burst setと呼ばれる送信区間内で単独、または複数の集合として送信される。SS burst setは、{5/10/20/40/80/160}msの周期で送信される。SS burst setは、10ms長の時間フレームの先頭、または、時間フレーム+half frame(5ms)の先頭から、5ms以内の送信区間として設定される。
 SS burst set内の各SSBは、異なるSSB indexを持つ信号として送信される。SSB indexは、SS burst set内のSSB送信位置を示し、端末は、SSB indexを復号することで時間フレームの開始地点を特定する。
 SS burst set内のSSB indexの最大数は、帯域ごとに決まる。Release 17のNRでは、Release 16と同様に、6GHzより上の帯域におけるSSB indexの最大数は、64であることが合意された。SSB indexは、PBCHおよびPBCH-DMRS系列と一意に対応付けて端末に通知される。
 高周波数帯では、基地局と端末との通信可能距離およびエリアを確保するために、基地局側で送信ビームフォーミングを適用することが考えられる。そこでNRでは、SSBを用いたビームマネジメント機能が導入されている。SS burst set内の異なるSSB indexが、異なる下り送信ビームで送信されることで、順次ビーム方向を切り替えて送信するbeam-sweepingが実現できる。なお、ビームは、アナログビームであってもよい。
 端末は、SS burst set内の各SSBにおいて下り受信品質を測定し、最適な下り送信ビームを判定する。基地局がSSBに下り送信ビームフォーミングを適用する場合、そのSSBを受信した端末からのランダムアクセスを受信するために、同等の上り受信ビームを基地局側で適用する。そこで、端末は検出したSSBに紐づけられているリソースであるRO(Rach Occasion)でPRACH(Physical Random Access Channel)を送信する。端末は、SSB indexと対応付けられたROでランダムアクセスを実施することで、基地局と端末間で最適な下り送受信ビームを形成できる。
 Release 16で規定されたアンライセンス帯域のNR運用であるNR-Uでは、SS burst setの送信方法としてDBTW(Discovery Burst Transmission Window)が導入されている。アンライセンス帯域では、送信前にLBT(Listen Before Talk)手順を実施する。
 LBT手順では、信号送信帯域がほかの無線局によって使用(チャネルビジー)されていないかを確認してから信号が送信される。LBT失敗が発生すると信号送信が出来ないため、NR-UにおけるSS burst setの送信開始タイミングは必ずしも時間フレームの先頭、または、時間フレームの先頭+half frame(5ms)の先頭からではない。よって、SS burst set内の先頭のSSB送信位置では、SSBを送信できない可能性がある。そこでDBTWでは、送信区間内の異なるSSB送信位置で、SSB indexのサイクル送信が可能である。なお、LBT失敗は、チャネルビジーまたはLBTビジーと称されてもよい。
 図2は、SSB indexのサイクル送信の一例を示す図である。端末に通知されるのはSSB送信位置である。端末は、復号したSSB送信位置から所定の式を用いてSSB indexを算出する。SSB indexには、下り送信ビームが対応付けられているため、端末は、異なるSSB送信位置でも伝搬特性が同一であるとして下り受信品質を測定できる。よって、基地局は、LBT失敗発生時でも、DBTWにより特定のSSBの送信不可を回避することができる。
 52.6GHz-71GHz帯では、アンライセンス帯域での運用も想定しており、DBTWの導入が検討されている(例えば、非特許文献1を参照)。
 52.6GHz-71GHz帯では、アンライセンス帯域でサポートする最大SSB index数が、従来(FR1帯で)サポートする最大SSB index数より大きくなるので、アンライセンス帯域でDBTWを運用する場合、送信するSSB indexの数と、通知可能なSSB送信位置の数とが、同程度になる。その場合、LBT失敗により送信できないSSB indexが存在し、特定の端末の性能が劣化するという課題が生じる。なお、FR1は、Frequency Range 1の略である。
 Release 16で規定されたNR-Uでは、SSB indexの最大数および端末へ通知可能なSSB送信位置の数は、サブキャリア間隔(SCS:Sub-Carrier Space)に基づく。
 例えば、SCSが15kHzのとき、SSB indexの最大数は4であり、端末へ通知可能なSSB送信位置の数は10である。また、SCSが30kHzのとき、SSB indexの最大数は8であり、端末へ通知可能なSSB送信位置の数は20である。そのため、DBTW内でLBT失敗が発生したとき異なるSSB送信位置でのサイクル送信可能回数は、どのSSB indexでも2以上である。
 一方、52.6GHz-71GHz帯では、より大きいビームフォーミングゲインを得るためSSB indexの最大数は64となることが合意されている。また、通知可能なSSB送信位置の数を、Release15のFR2(6GHz-52.6GHz帯域)で規定された64と仮定すると、DBTWにより異なるSSB送信位置でのSSB indexのサイクル送信は不可能となる。
 図3は、SSB indexをサイクル送信できない場合の一例を示す図である。図3に示すように、LBT失敗が発生すると、DBTWの先頭のSSB送信位置に紐づけられたSSB indexは、送信不可となり、そのSSB indexに対応した送信ビームが最適である端末の性能は劣化する。
 なお、図3では、SCS 120kHz、SSB送信位置が64、1slot当たりのSSB送信位置数が2、を想定した場合の例を示す。すべてのSSB送信位置を含めた区間は、5msのDBTWよりも短い区間となっている。
 このような課題に対応するために、送信するSSB index数を減らし、サイクル送信を実現する対策が提案されている(例えば非特許文献2)。
 図4は、送信するSSB index数を減らした場合のサイクル送信の一例を示す図である。非特許文献2では、例えば、SSB index{0,…,47}をSSB送信位置{0,…,47}で送信し、SSB index{0,…,15}をSSB送信位置{48,…,63}でサイクル送信することが想定されている。しかし、その場合でも、LBT失敗がSSB送信位置{0,…,19}まで発生すると、SSB index{16,…,19}は送信不可となる。
 以上で述べた通り、LBT失敗により送信不可となるSSB indexは、SSB送信位置の先頭または前半に紐づけられたSSB indexに偏りやすい。そのため、LBT失敗により性能劣化の影響を受けるのは特定のSSB indexに対応した送信ビームが最適である特定の端末に偏る。よって、特定の端末の性能が大きく劣化してしまう。
 そこで、第1の実施の形態では、基地局と端末との間で、SSB送信位置とSSB indexとの間の関係を変え、LBT失敗による性能劣化の影響が特定の端末に偏ることを抑制する。
 図5は、第1の実施の形態に係るSSB送信位置とSSB indexとの間の関係がSS burst set間で変更される一例を示した図である。図5に示すように、SS burst set間でSSB送信位置とSSB indexとの間の関係が変わると、LBT失敗により基地局が送信できないSSB indexの偏りを防げる。
 例えば、図5の例では、あるSS burst setにおいて、LBT失敗によりSSB送信位置{#0,…,#19}に紐づけられたSSB index{#0,…,#19}は送信不可になる。しかし、異なるSS burst setにおいて、後半のSSB送信位置{#32,…,#51}にSSB index{#0,…,#19}を紐づけることで、LBT失敗が同じ区間のSSB送信位置{#0,…,#19}で発生したとしても、SSB index{#0, …,#19}は送信可能になる。
 ただし、SSB送信位置とSSB indexとの間の対応関係は、基地局と端末との間で認識が一致しなければならない。対応関係の認識が一致しない場合、基地局と端末との間で最適な下り送受信ビームの形成が出来ない。
 以下では、基地局と端末との間でSSB送信位置とSSB indexとの間の関係を変え、端末のSSBを用いた初期接続や品質測定の動作を説明する。また、基地局が周期的に送信する信号に基づいて、基地局および端末がSSB送信位置とSSB index間の関係を決定する方法について説明する。なお、決定は、算出と言い換えられてもよい。
 図6は、基地局10の構成例を示すブロック図である。制御部11は、SS burst setの周期設定およびSFNの更新などを行う。また、制御部11は、初期接続用の制御信号およびデータ信号のスケジューリングなどを行う。
 制御部11は、SSB送信タイミングに合わせて、SS burst set内のSSB送信位置をSSB生成部13およびSSBインデックス決定部12に出力する。制御部11は、SSBインデックス決定部12にSSB送信位置とSSB indexとの関係を決定するための情報を出力する。
 SSB送信位置とSSB indexとの関係を決定するための情報には、例えば、SFN、half frame bit、およびPCIDなどが含まれる。以下では、SSB送信位置とSSB indexとの関係を決定するための情報を、SSB送信位置とSSB indexとの間の関係情報と呼ぶ。
 SSBインデックス決定部12は、SSB送信位置、および、送信位置とSSB indexとの間の関係情報を基にSSB indexを決定し、決定したSSB indexを送信ビーム制御部15へ出力する。なお、SSBインデックス決定部12の変更方法の詳細は後述する。
 SSB生成部13は、入力されたSSB送信位置に基づいて、PSS/SSS、PBCH、およびPBCH-DMRSそれぞれの信号系列を生成して送信処理部14に出力する。PSS/SSSは、基地局10のPCIDに基づいた相関系列により生成される。PBCH-DMRSは、SSB送信位置に基づいたDMRS系列により生成される。PBCHは、SSB送信位置を含めたPBCH情報の符号化および変調により生成される。PBCH情報には、SSB送信位置、SFN、half frame bit、初期接続用の制御信号、およびデータ信号の割当リソースといった情報が含まれる。なお、本開示では、初期接続用の制御信号およびデータ信号の割当リソースは、SSB送信位置およびSSB indexのいずれかに基づいて決定されてもよい。
 送信処理部14は、SSB生成部13から入力されたSSBの信号系列をそれぞれのリソースにマッピングし、OFDM変調などの処理を施し、送信信号を生成する。また、送信処理部14は、LBT判定部18から送信信号帯域の使用状況を確認し、LBT完了時に送信信号を送信RF部16へ出力する。
 送信ビーム制御部15は、SSBインデックス決定部12から入力されたSSB indexと対応する下り送信ビーム方向を送信RF部16に出力する。
 送信RF部16は、送信処理部14から入力された送信信号をD/A変換、アップコンバート、増幅等の処理により無線信号を生成し、アンテナ17へ出力する。また、送信RF部16は、信号が送信ビーム制御部15から出力されたビーム方向に向けられるように、アンテナ17のアンテナ素子の位相および振幅調整を行う。
 アンテナ17は、送信RF部16より入力された無線信号を、送信RF部16にて制御される送信ビームを形成して端末へ放射する。また、アンテナ17は、端末または他の無線局からの無線信号を、受信RF部20より制御されたタイミングで受信ビームを形成して受信する。アンテナ17は、受信した無線信号を受信RF部20に出力する。
 LBT判定部18は、受信RF部20が入力した受信波から、利用周波数帯域の無線利用状況を監視することでLBTを実施する。LBT判定部18は、基地局10において信号送信が開始されるとき、LBT結果を送信処理部14に出力する。
 受信ビーム制御部19は、SSB送信位置に対応したROにおける上り受信ビーム方向を受信RF部20に出力する。
 受信RF部20は、アンテナ17から入力された無線信号をA/D変換、ダウンコンバート、増幅等の受信処理を施し、受信処理部21へ出力する。このとき、受信ビーム制御部19で出力されたビーム方向に向けられるように、アンテナ17のアンテナ素子の位相および振幅調整を行う。
 受信処理部21は、受信RF部20から入力された受信信号からPRACHを復号し、端末が選択したROを特定する。
 図7は、基地局10の別の構成例を示すブロック図である。図7において、図6と同じ構成要素には同じ符号が付してある。図7では、制御部11のSSB送信位置が、受信ビーム制御部19に出力される。
 図6の基地局10では、ROは、SSB送信位置に対応付けられる。図7に示す基地局10では、ROは、SSB indexに対応付けられる。図6のように、ROのための基地局10の受信ビームを、SSB送信位置と対応付けると、ビーム方向のタイミングは固定化され、受信ビーム制御は簡易となる。図7のように、ROのための基地局10の受信ビームを、SSB indexに対応付けると、ビームの方向のタイミングはランダム化され、他の無線局の周期的な干渉などを回避できる。
 なお、ROとSS burst setとの周期は、必ずしも一致しなくてもよい。よって、ROが参照するSSB送信位置またはSSB indexは、所定(例えば、直前)のSS burst setでの関係が参照されてもよい。または、ROが参照するSSB送信位置またはSSB indexは、ROが別途算出するとしてもよい。
 図8は、端末50の構成例を示すブロック図である。RF部51は、アンテナを介して基地局10または他の無線局から受信した無線信号に対してダウンコンバートおよびA/D変換等の受信処理を施し、受信信号を受信処理部52およびLBT判定部57に出力する。また、RF部51は、送信処理部58から入力された送信信号を、D/A変換、アップコンバート、および増幅等の送信処理を施し、得られた無線信号をアンテナから基地局10へ送信する。
 受信処理部52は、RF部51から入力された受信信号に対して相関処理等によりPSS/SSSを検出して、SSBのリソースを特定し、SSB復号部53へ出力する。
 SSB復号部53は、PSS/SSSからPCIDを検出する。SSB復号部53は、PBCH-DMRSから系列番号を検出する。SSB復号部53は、PBCHからPBCH情報を復調および復号する。SSB復号部53は、PBCH-DMRSの系列番号とPBCH情報とから、SSB送信位置を特定する。また、SSB復号部53は、PBCH情報からSSB送信位置とSSB indexとの間の関係情報を取得する。SSB復号部53は、SSB送信位置と、SSB送信位置とSSB indexと間の関係情報と、をSSBインデックス決定部54に出力する。SSB復号部53は、SSBの受信信号品質を測定し、SSB選択部55に出力する。
 SSBインデックス決定部54は、SSB復号部53から入力されたSSB送信位置と、SSB送信位置とSSB indexとの間の関係情報とを基にSSB indexを決定し、SSB選択部55に出力する。なお、SSB indexの変更方法の詳細は後述するが、基地局10が具備するSSBインデックス決定部12と同様の動作を行う。
 SSB選択部55は、SSBから測定した受信信号品質と、SSB indexとを対応付けて、SS burst set内で最も受信品質の良いSSB indexを判定する。SSB選択部55は、判定したSSB indexをPreambleリソース決定部56に出力する。
 Preambleリソース決定部56は、入力されたSSB indexに対応付けられたROを選択して、送信処理部58に出力する。
 なお、基地局10と端末50との間で、ROの送受信タイミングの認識を一致させる。よって、ROがSSB送信位置の受信タイミングと紐づくか、または、SSB indexの受信タイミングと紐づくかは、報知情報から端末50へ通知されてもよい。または、ROがSSB送信位置の受信タイミングと紐づくか、または、SSB indexの受信タイミングと紐づくかは、スペックに記載の共通情報から、基地局10および端末50において既知であってもよい。
 LBT判定部57は、RF部51が入力した受信波に基づいて、利用周波数帯域の無線利用状況を監視することでLBTを実施する。LBT判定部57は、端末50から信号送信が開始されるとき、LBT結果を送信処理部58に出力する。
 送信処理部58は、Preambleリソース決定部56から入力されたROを用いてPRACH送信信号を生成する。生成されたPRACH送信信号は、RF部51へ出力される。また、送信処理部58は、LBT判定部57より送信信号帯域の使用状況を確認し、LBT完了時に送信信号をRF部51へ出力する。
<SSB送信位置とSSB indexとが異なる場合の基地局および端末の初期接続動作>
 SSB送信位置とSSB indexとが異なる場合の基地局および端末の初期接続動作を説明する。初期接続においては、端末は、SSB送信位置とSSB indexとの間の関係情報が無い場合においても、初期接続用の時間フレームやリソースを取得する。
 図9は、基地局および端末間のセルサーチからランダムアクセス手順までの動作例を示す図である。基地局は、SSB送信位置を基に、報知情報を決定する(S1)。基地局は、SSB送信位置におけるSSB indexを算出する(S2)。基地局は、LBTを実施する(S3)。基地局は、各SSB送信位置におけるSSB indexに紐づくビームを放射する(S4)。基地局は、同期信号および報知信号を端末に送信する(S5)。
 端末は、S5にて送信された報知情報から、SSB送信位置を検出する(S6)。端末は、報知情報とSSB送信位置とからSSB indexを算出する(S7)。端末は、SSB送信位置またはSSB
 indexから制御信号およびデータ信号の割当リソースを算出する(S8)。
 端末は、S8にて算出した割り当てリソースを参照し、基地局から制御信号およびデータ信号(SIB1:System Information Block Type1)を受信する(S9)。端末は、SSB測定結果(SSB送信位置またはSSB index)からランダムアクセス手順で用いるリソース(例えば、RO)を決定する(S10)。端末は、S10にて決定したリソースを用いて、ランダムアクセス手順を開始する(S11)。
 初期接続において、端末は、PSS/SSSと同期することで、所定のリソースにあるPBCH-DMRSおよびPBCHを特定する。このとき端末は、SSBの報知情報からSSB送信位置が取得できるため、時間フレームの開始地点を特定できる。
 端末は、SSB検出後、SIB1が報知されるデータ信号、および、データ信号のリソースを通知する制御信号を検出する。SIB1には、ランダムアクセス手順に用いられる報知情報が含まれる。また、SIB1用のデータ信号および制御信号は、セルで共通の信号である。SIB1用の共通信号の割当リソースは、SSBのリソースからのオフセット値として算出される。また、通知すべき情報量を削減するために、SSBの報知情報のMIB(Master Information Block)には、SIB1用割当リソースの算出用パラメータが記載される。従来では、SIB1用割当リソースの算出式には、SSB送信位置が入力される。
 図9においては、基地局および端末は、S2,S7の処理の時点でSSB indexを算出することができる。よって、端末は、SIB1用の共通信号の割当リソースを検出する時点で(例えば、S10の処理時点で)、SSB送信位置およびSSB indexのどちらも利用できる。そのため、端末におけるSIB1用の共通信号の割当リソースの算出式の入力値は、SSB送信位置またはSSB indexのどちらとしてもよい。従来と同様にSSB送信位置を入力値とすれば、仕様の変更は少なくなる。SSB indexを入力値とすれば、ROの受信ビームと同様に、SIB1送信においても、基地局からの送信ビームの方向のタイミングはランダム化され、端末は、他の無線局の周期的な干渉などを回避できる。
<SSB送信位置からSSB indexを算出する動作>
 次に、基地局および端末のSSBインデックス決定部において実施する、SSB送信位置からSSB indexを算出する処理の詳細を説明する。なお、以下の説明では、端末側の動作を説明する。基地局は、端末と同様の動作にて算出する。
 以下、算出処理1、2の詳細を示す。ここで算出処理に用いられる算出式は、スペックに規定されたシステム共通情報である。基地局がSSB送信位置とSSB indexとの間の関係を変更することで、LBT失敗により基地局が送信できないSSB indexの偏りを抑制する。また、算出処理1、2の変更方法(決定方法)をスペックに規定することで、端末は、基地局側から追加のシグナリング無しに、SSB送信位置からSSB indexを算出できる。
・算出処理1
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど、周期的に変更する信号(情報)に基づいて、SSB送信位置とSSB indexとの間の関係を変更する。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号に基づいて、SSB送信位置からSSB indexを算出する。
 なお、SFNは、PBCH情報の中で、変更周期の短いPBCH additional bitに含まれる情報と、変更周期の長いMIBから通知される情報とに分かれるが、すべてのSFNを参照しなくてもよい。PBCH additional bitに含まれる情報を参照するようにすれば、MIBを含めないSSBの利用方法でも、第1の実施の形態を適用できる。
-算出例1-1
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)に基づいて、SSB送信位置に対するSSB indexを固定量シフトする。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号に基づいて、SSB送信位置からSSB indexを固定量シフトすることで、SSB送信位置とSSB indexとの関係を特定(決定)する。
 固定量シフトとすることで、基地局の送信ビーム制御部が設定する送信ビーム方向は、SSB送信位置とSSB indexとの関係に固定の時間オフセットを付加するだけでよい。よって送信ビーム制御部は、SSB送信位置とSSB indexとの関係に応じた複数の送信ビーム制御のパターンを持たなくてもよく、容易な実装で実現できる。
 SSB indexは、例えば、次の式(1)を用いて算出される。
Figure JPOXMLDOC01-appb-M000001
 ここで、SSBposは、SSB送信位置である。Lは、送信される最大のSSB index数である。Nは、固定シフト量である。なお、Nは、複数の異なるLや複数の異なるSCS間で異なる値としてもよい。
-関係例1-1
 算出例1-1に基づくSSB送信位置におけるSSB indexを以下に示す。表1は、L=64、N=11、SS burst setの周期が10ms(1無線フレーム)、half frame bit = 0のときのSSB送信位置とSSB indexとの関係例を示す。
Figure JPOXMLDOC01-appb-T000002
-算出例1-2
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)に基づいて、SSB送信位置に対するSSB indexを所定の可変量でシフトする。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号に基づいて、SSB送信位置からSSB indexを所定の可変量だけシフトすることで、SSB送信位置とSSB indexとの関係を特定する。前記の可変量は、周期的に変わる量でもよい。
 SSB indexは、例えば、次の式(2)を用いて算出される。
Figure JPOXMLDOC01-appb-M000003
 ここで、SSBposは、SSB送信位置である。Lは、送信される最大のSSB index数である。Mは、シフト関連量である。Mが“SS burst setの周期フレーム”(すなわち{0.5, 1, 2, 4, 8, 16})と互いに素の値(例えば{3, 5, 7})にあれば、M回の“SS burst set”で元のSSB送信位置とSSB indexとの関係となる。
 また、Mが互いに素の値であれば、“SS burst setの周期フレーム”が異なる場合(例えば、{1, 2}どちらの周期フレーム)でも、それぞれの“SS burst set”間で異なるSSB送信位置にSSB indexはシフトされる。なお、Mは、複数のLや複数のSCS間で異なる値としてもよい。
 可変量のシフトとすることでも、算出例1-1と同様の効果を得ることができる。さらに、式(2)を用いることで、SSB indexの数、および“SS burst setの周期フレーム”によらず、SS burst set間で異なるSSB送信位置とSSB indexとの関係を得ることができる。
 例えば、算出例1-1では、L=64、N=16とすると、“SS burst setの周期フレーム”によっては(例えば、周期フレームが2の場合)、SSB送信位置とSSB indexとの関係は変更されない。一方で、算出例1-2では、“SS burst setの周期フレーム”に対してMは素の数のため、SSB送信位置とSSB indexとの関係は常に変更される。
 なお、SSB indexは、half frame bitを用いず、SFNを用いて算出されてもよい。
-関係例1-2
 算出例1-2に基づくSSB送信位置におけるSSB indexを以下に示す。表2は、L=64、M=3、SS burst setの周期が10ms(1無線フレーム)、half frame bit = 0のときのSSB送信位置とSSB indexとの関係例を示す。SFN = 3となったとき、SFN = 0と同じSSB送信位置とSSB indexとの関係となる。
Figure JPOXMLDOC01-appb-T000004
-算出例1-3
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)に基づいて、SSB送信位置に対するSSB indexの順番を逆転させる。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号に基づいて、端末はSSB送信位置とSSB indexとが順順および逆順になるかを判定する。
 このように順番を逆転させて切り替えることで、LBT失敗により送信不可となりやすい先頭のSSB indexは、切り替え時に後半に入れ替えられる。よって、各SSB indexが送信不可となる確率を平準化できる。
-関係例1-3
 算出例1-3に基づくSSB送信位置におけるSSB indexを以下に示す。
Figure JPOXMLDOC01-appb-T000005
-算出例1-4
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)と、スペック等に記載された疑似乱数式、または、テーブルとに基づいて、SSB送信位置に対するSSB indexの関係を変更させる。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号と、スペック等に記載された疑似乱数式、または、テーブルとに基づいて、SSB送信位置とSSB indexとの関係を特定する。SSB送信順番とSSB indexの関係をスペック等に事前に記載された疑似乱数式やテーブルに基づかせることで、”SS burst set”間で、SSB indexをよりランダマイズ化することができる。
-関係例1-4
 算出例1-4に基づくSSB送信位置におけるSSB indexを以下に示す。表4のようにSFNおよびSSB送信位置に応じて、SSB送信位置とSSB indexとの関係が変更されるような疑似乱数式、または、テーブルがスペックに記載されており、基地局および端末は、SFNに応じてSSB送信位置とSSB indexとの関係を変更する。このとき、SSB indexは、順序づけられていなくてもよい。
Figure JPOXMLDOC01-appb-T000006
-算出例1-5
 上記に挙げた算出例を組み合わせてもよい。組み合わせることで、それぞれの算出例の効果を得ることができる。
 例えば、算出例1-2と算出例1-3とを組み合わせることで、下記の関係例1-5のように、SSB送信位置とSSB indexとの関係を変更してもよい。算出例1-3では、“SS burst setの周期フレーム”によっては、SS burst set間でSSB送信位置とSSB indexとの間の関係が変わらない可能性がある(例えば、SFN=0とSFN=2のとき)。一方で、下記の設定例1-5のように組み合わせることで、SS burst set間でSSB送信位置とSSB indexとの間の関係を変えることができる。
-関係例1-5
Figure JPOXMLDOC01-appb-T000007
・算出処理2
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)および、自基地局のPCIDに基づいて、SSB送信位置とSSB indexとの間の関係を変更する。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号、および、PCIDなどの報知情報に基づいて、SSB送信位置とSSB indexとの間の関係が変更されていると想定する。
 以下の算出例に示すように、PCIDを考慮して、関係情報を変更することにより、セル間での干渉ビームの組み合わせが時間的に変更されるため、セル間の干渉がランダマイズ化される。
-算出例2-1
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)と、自基地局のPCIDとに基づいて、SSB送信位置に対するSSB indexを所定の固定量でシフトする。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号、および、PCIDなどの報知情報に基づいて、SSB送信位置からSSB indexを固定量シフトすることで、SSB送信位置とSSB indexとの関係を特定(決定)する。
 SSB indexは、例えば、次の式(3)を用いて算出される。
Figure JPOXMLDOC01-appb-M000008
 ここで、SSBposは、SSB送信位置である。Lは、送信される最大のSSB index数である。Nは、固定シフト量である。KPCIDは、PCIDに基づく固定の係数である。なお、Nは、複数の異なるLや複数の異なるSCS間で異なる値としてもよい。
 上記の説明では、算出例1-1の固定シフト量Nを、PCIDに応じて変更しているが、算出例1-2に記載のMを、PCIDに応じて変更させてもよい。このようにすることで、算出例1-1または算出例1-2の効果を得つつ、セル間干渉のランダマイズ化を実現できる。
-関係例2-1
 算出例2-1に基づくSSB送信位置におけるSSB indexを以下に示す。表6は、L=64、N=11、SS burst setの周期が10ms(1無線フレーム)、half frame bit = 0のときのSSB送信位置とSSB indexとの関係例を示す。また、表6は、PCIDに応じて、KPCID=1(if PCID mod 2==0)、および、KPCID=2(if PCID mod 2==1)とした場合の、SSB送信位置とSSB indexとの関係例を示す。算出例2-1では、PCIDごとにSSB送信位置とSSB indexとの関係を変更できる。
Figure JPOXMLDOC01-appb-T000009
-算出例2-2
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)と、自基地局のPCIDとに基づいて、SSB送信位置に対するSSB indexの変更方法(SSB送信位置とSSB indexとの間の関係を変更する方法)を切り替える。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号、および、PCIDなどの報知情報に基づいて、SSB送信位置とSSB indexとの関係の変更方法を変更する。
 このように変更方法をPCIDに応じて変更することで、算出例1-1~算出例1-5の効果を得つつ、セル間干渉のランダマイズ化が実現できる。
-関係例2-2
 表7は、PCIDに応じて変更方法を切り替える例を示す。表7の例では、(PCID mod 2==0)であれば、算出例1-2を適用し、(PCID mod 2==1)であれば、算出例1-3を適用している。
Figure JPOXMLDOC01-appb-T000010
 以上説明したように、基地局は、送信する報知信号に基づいて、SSB送信位置と、SSB indexとの対応関係を決定する。基地局は、報知信号の第1のSS burst setと、第2のSS burst setとにおいて、前記対応関係を変更する。また、端末は、受信した報知信号に基づいて、SSB送信位置とSSB indexとの対応関係を決定する。端末は、報知信号の第1のSS burst setと、第2のSS burst setとにおいて、前記対応関係を変更する。
 このように、基地局と端末とは、報知信号に基づいて、SSB送信位置と、SSB indexとの対応関係を変更するため、基地局と端末とにおけるSSB送信位置と、SSB indexとの対応関係が一致する。また、基地局と端末とは、例えば、第1のSS burst setおよび第2のSS burst setにおいてLBT失敗が発生しても、第1のSS burst setと第2のSS burst setとにおいて、SSB送信位置とSSB indexとの対応関係を変更しているため、第1のSS burst setと第2のSS burst setとにおいて異なるSSB indexを受信できる。これにより、端末は、LBT失敗が発生しても、全てのSSB indexを受信できる。
 (第2の実施の形態)
 第2の実施の形態では、基地局が周期的に送信する信号、および、SSB送信位置とSSB indexとの間の関係情報が付加されたSIB1のシグナリング情報に基づいて、基地局および端末が、SSB送信位置とSSB indexとの間の関係を算出する。
 図10は、第2の実施の形態に係る基地局10の構成例を示すブロック図である。図10において、図6と同じ構成要素には同じ符号が付してある。
 制御部11は、SSB送信位置とSSB indexとの間の関係情報をSSBインデックス決定部12および共通信号生成部22に出力する。また、制御部11は、上位ネットワークの制御に応じて、SSB送信位置とSSB indexとの間の関係情報を変更する。SSB送信位置とSSB indexとの間の関係が変更された場合、更新情報は、共通信号生成部22に出力される。それ以外の動作は、第1の実施の形態と同様である。
 共通信号生成部22は、初期接続用のSIB1を報知するデータ信号、および、データ信号の割当リソースを通知する制御信号を生成し、送信処理部14へ出力する。SIB1に含まれるシグナリング情報には、制御部11から入力されたSSB送信位置とSSB indexとの間の関係情報が含まれる。SSB送信位置とSSB indexとの間の関係情報が変更された場合、SIB1により基地局から端末に通知される。
 なお、図10では、受信ビーム制御部19には、図6と同様にSSB送信位置が入力され、ROは、SSB送信位置に対応付けられているが、図7と同様に、受信ビーム制御部19には、SSB indexが入力され、ROはSSB indexに対応付けられても良い。
 図11は、第2の実施の形態に係る端末50の構成例を示すブロック図である。図11において、図8と同じ構成要素には同じ符号が付してある。
 受信処理部52は、図8と同様にSSBのリソースを特定し、SSB復号部53へ出力する。そして、受信処理部52は、SSB復号部53からSSB送信位置を取得する。受信処理部52は、SSB送信位置から共通信号の制御信号の割当リソースを特定する。受信処理部52は、共通信号のデータ系列を取得し、共通信号復号部59に出力する。
 共通信号復号部59は、初期接続用のデータ信号の割当リソースを通知する制御信号を復号し、データ信号からSIB1を復号する。SIB1に含まれるシグナリング情報からSSB送信位置とSSB indexとの間の関係情報を取得し、SSBインデックス決定部54に出力する。
 SSBインデックス決定部54は、SSB復号部53および共通信号復号部59から入力されたSSB送信位置とSSB indexとの間の関係情報を基に、SSB送信位置からSSB indexを決定し、SSB選択部に出力する。
<SSB送信位置とSSB indexとが異なる場合の基地局および端末の初期接続動作>
 図12は、第2の実施の形態に係る基地局および端末間のセルサーチからランダムアクセス手順までの動作例を示す図である。図12において、図9と同じ処理には、同じ符号が付してある。以下では、図9と異なる処理部分について説明する。
 図12の動作では、端末は、S6にてSSB送信位置を検出した後、SSB送信位置から制御信号およびデータ信号の割当リソースを算出する(S21)。端末は、S21にて算出した割り当てリソースを参照し、基地局から制御信号およびデータ信号(SIB1)を受信する(S9)。SIB1には、SSB送信位置とSSB indexとの間の関係を変更するための情報(例えば、シフト量を変更するための情報)が含まれる。
 端末は、報知情報と、S6にて検出したSSB送信位置と、SIB1に含まれる情報とに基づいて、SSB indexを算出する(S22)。端末は、SSB測定結果(SSB送信位置またはSSB index)からランダムアクセス手順で用いるリソース(例えば、RO)を決定する(S23)。
 図12の処理が、図8の処理と異なる点は、端末は、SIB1を復号するまでは、SSB indexを算出できない点である。よって、端末は、SIB1用の共通信号の割当リソースを、SSB送信位置から算出する(S21)。
 なお、ランダムアクセス手順の時点においては、端末は、SSB送信位置およびSSB indexのどちらも特定している。よって基地局および端末は、ROに関してはSSB送信位置およびSSB indexのどちらに対応付けられてもよい。また、基地局は、ROがSSB送信位置およびSSB indexのどちらに対応付けられているかを切り替えて、SIB1によって端末に通知してもよい。
<SSB送信位置からSSB indexを算出する動作>
 次に、基地局および端末のSSBインデックス決定部において実施する、SSB送信位置からSSB indexを算出する処理の詳細を説明する。なお、以下の説明では、端末側の動作を説明する。基地局は、端末と同様の動作にて算出する。
 以下、算出処理3の詳細を示す。ここで算出処理に用いられる算出式は、スペックに規定されたシステム共通情報であってもよいし、基地局から付与されるシグナリング情報でも良い。
・算出処理3
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)およびSIB1に付与されるシグナリング情報に基づいて、SSB送信位置とSSB indexとの間の関係を変更する。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号、および、基地局からSIB1で通知されるシグナリング情報に基づいて、SSB送信位置からSSB indexを算出する。
 SSB送信位置とSSB indexとの間の関係を基地局からのSIB1シグナリング情報によって変更できるため、基地局は、例えば、自セルの干渉状況に応じて変更方法を切り替えるなど、適応的な制御が可能となる。
-算出例3-1
 基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)と、SIB1のシグナリング情報とに基づいて、SSB送信位置に対するSSB indexを所定量シフトする。
 端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号、および、SIB1シグナリング情報とに基づいて、SSB送信位置からSSB indexを所定量シフトすることで、SSB送信位置とSSB indexとの関係を特定する。
 SSB indexは、例えば、次の式(4)を用いて算出される。
Figure JPOXMLDOC01-appb-M000011
 ここで、SSBposは、SSB送信位置である。Lは、送信される最大のSSB index数である。Nsigは、SIB1で通知されるセル毎のシフト量である。なお、Nsigは、複数の異なるLや複数の異なるSCS間で異なる値としてもよい。
 上記の説明では、算出例1-1の固定シフト量Nを、Nsigとして変更させているが、算出例1-2に記載のMを、Msigとして変更させてもよい。
 SIB1シグナリング情報に基づいてシフト量を変更することで、セル毎にシフト量を調整し、算出例1-1、算出例1-2、または算出例2-1よりも柔軟なセル間干渉のランダマイズ化を実現できる。
-算出例3-2
 基地局は、SIB1シグナリング情報に基づいて、SSB送信位置に対するSSB indexの変更方法を切り替える。基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)、および、PCIDなどの報知情報に基づいて、SSB送信位置に対するSSB indexを変更する。
 端末は、SIB1シグナリング情報に基づいて、SSB送信位置に対するSSB indexの変更方法を変更する。端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号、および、PCIDなどの報知情報に基づいて、SSB送信位置からSSB indexを特定する。
 なお、このときの変更方法は、算出例1-1~算出例1-5のいずれの方法でもよい。また、PCIDを含めることで、変更方法は、算出例2-5~算出例2-3のいずれの方法としてもよい。
 このように、変更方法をSIB1シグナリング情報に基づいて切り替えることで、算出例1-1~算出例1-5、または、算出例2-1~算出例2-3の効果を得つつ、セル間干渉のランダマイズ化を適応的に制御できる。
-算出例3-3
 基地局は、SIB1シグナリング情報に含めるon/offフラグに基づいて、SSB送信位置に対するSSB indexの変更方法の変更を適応するか否かを制御する。基地局は、端末へ通知するPBCHに含めるSFNおよびhalf frame bitなど周期的に変更する信号(情報)、および、PCIDなどの報知情報に基づいて、SSB送信位置に対するSSB indexの変更方法を切り替える。
 端末は、SIB1シグナリング情報に含めるon/offフラグに基づいて、SSB送信位置に対するSSB indexの変更方法の変更が適応されているか否かを判定する。変更方法の変更が適応される場合、端末は、基地局から通知されたPBCHに含まれるSFNおよびhalf frame bitなど周期的に変更される信号、および、PCIDなどの報知情報に基づいて、SSB送信位置からSSB indexを特定する。
 なお、このときの変更方法は、算出例1-1~算出例1-5、または、算出例2-1~算出例2-3のどの方法でもよい。
 変更方法を算出処理1、2と同様に、PBCHに含まれるSFNおよびhalf frame bit、および、PCIDなどに応じて変更し、SIB1シグナリング情報では、on/offフラグで切り替えるようにすることで、SIB1シグナリング情報に含める情報量は1bitでよく、付加すべき情報量を最小にすることができる。
 以上説明したように、端末および基地局は、SIB1に含まれる情報に基づいて、SSB送信位置とSSB indexとの対応関係のシフト量を変更する。また、端末および基地局は、SIB1に含まれる情報に基づいて、SSB送信位置とSSB indexとの対応関係の変更方法を切り替える。これによっても、端末は、LBT失敗が発生しても、SSB indexを受信できる。
 (第3の実施の形態)
 第3の実施の形態では、基地局が非周期的に送信する信号に基づいて、基地局および端末が、SSB送信位置とSSB indexとの間の関係を算出する。
<SSB送信位置とSSB indexとが異なる場合の基地局および端末のSSB測定動作>
 図13は、第3の実施の形態に係る基地局および端末間のSSBによる信号品質測定および測定情報の報告までの動作例を示す図である。基地局は、制御信号またはデータ信号を送信する(S31)。制御信号またはデータ信号は、非周期的(任意)に送信される。なお、制御信号は、PDCCH(Physical Downlink Control CHannel)であってもよい。データ信号は、PDSCH(Physical Downlink Shared CHannel)であってもよい。
 端末は、S31にて受信した制御信号またはデータ信号に基づいて、SSB送信位置とSSB indexとの間の関係を認識(決定)する(S32)。
 基地局は、SSB送信位置を基に、報知情報を決定する(S33)。基地局は、SSB送信位置におけるSSB indexを算出する(S34)。基地局は、LBTを実施する(S35)。基地局は、LBTビジーでなければ、各SSB送信位置におけるSSB indexに紐づくビームを放射し(S36)、同期信号および報知信号を送信する(S37)。
 端末は、S37にて受信した報知信号の報知情報から、SSB送信位置を検出する(S38)。端末は、S38にて検出したSSB送信位置を用いて、S32にて決定したSSB送信位置とSSB indexとの間の関係を参照し、SSB indexを算出する(S39)。端末は、S39にて算出したSSB indexにおけるビーム信号の信号品質を測定し、測定した情報を基地局に送信する(S40)。
 図13では、SSB送信位置とSSB indexとの間の関係情報は、非周期的に送信する信号に基づいて変更されるため、端末は、関係情報無しにSSBから初期接続用の時間フレームやリソースを取得できない。よって、SSB送信位置とSSB indexとの間の関係情報は、基地局から端末に事前に通知される。すなわち、第3の実施の形態では、非初期接続状態におけるSSBの運用を想定している。
 例えば、セカンダリセルにおいて、初期接続の同期用SSBとは異なるリソースや周波数帯域で、チャネル品質測定用SSBが送信される運用などである。よって、第3の実施の形態に係る処理は、測定用SSBに適用し、初期接続用のSSBには適用しないと制限してもよい。
 図13では、基地局および端末は、SSB送信位置とSSB indexとの間の関係を、SS burst setを送信する前に認識している。よって、基地局および端末は、例えば、S32、S34、またはS39の処理時点でSSB indexを算出できる。
・算出処理4
 基地局は、端末へ通知するデータ信号に含まれるシグナリング情報に基づいて、SSB送信位置とSSB indexとの間の関係を変更する。
 端末は、基地局から通知されたデータ信号に含まれるシグナリング情報に基づいて、SSB送信位置からSSB indexを算出する。
 SSB送信位置とSSB indexとの間の関係を、基地局からのシグナリング情報によって変更できるため、算出処理3と同様に、基地局は、例えば、自セルの干渉状況に応じて変更方法を切り替えられるなど、適応的な制御が可能となる。
・算出処理5
 基地局は、例えば、端末へ通知する制御信号に含めるDCI(Downlink Control Information)に基づいて、SSB送信位置とSSB index間の関係を変更する。
 端末は、基地局から通知された制御信号に含まれるDCIに基づいて、SSB送信位置からSSB indexを算出する。
 SSB送信位置とSSB indexとの間の関係を、基地局からのDCIによって変更できるため、算出処理3と同様に、基地局は、例えば、自セルの干渉状況に応じて変更方法を切り替えなど、適応的な制御が可能となる。また、DCIで関係情報の変更が可能なため、動的な切替えが可能である。
 以上説明したように、基地局が非周期的に送信する信号に基づいて、基地局および端末が、SSB送信位置とSSB indexとの間の関係を決定する。これによっても、端末は、LBT失敗が発生しても、SSB indexを受信できる。
 本開示の各実施の形態について説明した。
 上記各実施の形態は、52.6GHz-71GHz帯域での適用を例に挙げて説明したが、本開示は、これに限らず、52.6GHzより低い帯域、および、71GHzより高い帯域に使用してもよい。本開示は、送信するSSBの数が多くなる、または、通知できるSSB数やDBTWの送信区間に制限がある場合にも、同様の効果が得られる。
 上記各実施の形態は、アンライセンス帯域での適用を例に挙げて説明したが、本開示は、これに限らず、ライセンス帯域に使用してもよい。ランセンス帯域に適用すると、基地局の送信ビーム方向のランダム化によるセル間干渉のランダム化や、ライセンス帯域とアンライセンス帯域との運用方法の共通化による無線装置の低コスト化の効果が得られる。
 上記各実施の形態は、SSB indexの合計数がX以上の場合に適用すると制限してもよい。例えば、通知できるSSB送信位置数が64のとき、X=32としてもよい。すなわち、SSB index数がSSB送信位置数の半数を超えてしまい、サイクル送信ができないSSBが存在する場合に適用するとしてもよい。
 上記各実施の形態は、端末の能力(capability)情報に基づいて適用を切り替えてもよい。たとえば、基地局が、端末の能力情報に基づいたoptionalな帯域で運用されることがわかっている場合、上記各実施の形態を適用してもよい。
 スペック上(例えば、非特許文献3を参照)においては、本開示における“SSB送信位置”は、“candidate SS/PBCH block index”または“SSB candidate position”と読みかえられてもよい。“SSB index”は、“SS/PBCH block index”または“SSB candidate index”と読みかえられてもよい。
 上記各実施の形態では、SSB送信位置とSSB indexとの関係を変更する例を説明したが、同様にROリソース番号とSSB indexとの対応関係を変更してもよい。これにより、ランダムアクセスに関して実施の形態に示す効果と同様の効果が得られる。例えば、表8に示す通り、ROリソース番号と対応するSSB indexは、SFNに応じて変更される。このようにすることで、端末からのランダムアクセスに関する上り干渉をランダマイズ化ができる。
Figure JPOXMLDOC01-appb-T000012
 上記において、端末は、例えば、user equipment(UE)または移動局と称されてもよい。基地局は、例えば、gNBと称されてもよい。
 上述した各実施の形態における「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
 (補足)
 上述した各実施の形態に示した機能、動作又は処理を端末がサポートするか否かを示す情報が、例えば、端末の能力情報あるいは能力パラメータとして、端末から基地局へ送信(あるいは通知)されてもよい。
 能力情報は、上述した各実施の形態に示した機能、動作又は処理の少なくとも1つを端末がサポートするか否かを個別に示す情報要素(IE)を含んでもよい。あるいは、能力情報は、上述した各実施の形態に示した機能、動作又は処理の何れか2以上の組み合わせを端末がサポートするか否かを示す情報要素を含んでもよい。
 基地局は、例えば、端末から受信した能力情報に基づいて、能力情報の送信元端末がサポートする(あるいはサポートしない)機能、動作又は処理を判断(あるいは決定または想定)してよい。基地局は、能力情報に基づく判断結果に応じた動作、処理又は制御を実施してよい。例えば、基地局は、端末から受信した能力情報に基づいて、PDCCHあるいはPDSCHのような下りリンクリソース、および、PUCCHあるいはPUSCHのような上りリンクリソースの少なくとも1つの割り当て(別言すると、スケジューリング)を制御してよい。
 なお、上述した各実施の形態に示した機能、動作又は処理の一部を端末がサポートしないことは、端末において、そのような一部の機能、動作又は処理が制限されることに読み替えられてもよい。例えば、そのような制限に関する情報あるいは要求が、基地局に通知されてもよい。
 端末の能力あるいは制限に関する情報は、例えば、規格において定義されてもよいし、基地局において既知の情報あるいは基地局へ送信される情報に関連付けられて暗黙的(implicit)に基地局に通知されてもよい。
 (制御信号)
 本開示において、本開示の一実施例に関連する下り制御信号(又は、下り制御情報)は、例えば、物理層のPhysical Downlink Control Channel(PDCCH)において送信される信号(又は、情報)でもよく、上位レイヤのMedium Access Control Control Element(MAC CE)又はRadio Resource Control(RRC)において送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、下り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。
 本開示において、本開示の一実施例に関連する上り制御信号(又は、上り制御情報)は、例えば、物理層のPUCCHにおいて送信される信号(又は、情報)でもよく、上位レイヤのMAC CE又はRRCにおいて送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、上り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。また、上り制御信号は、例えば、uplink control information(UCI)、1st stage sidelink control information(SCI)、又は、2nd stage SCIに置き換えてもよい。
 (基地局)
 本開示の一実施例において、基地局は、Transmission Reception Point(TRP)、クラスタヘッド、アクセスポイント、Remote Radio Head(RRH)、eNodeB (eNB)、gNodeB(gNB)、Base Station(BS)、Base Transceiver Station(BTS)、親機、ゲートウェイなどでもよい。また、サイドリンク通信では、基地局の役割を端末が担ってもよい。また、基地局の代わりに、上位ノードと端末の通信を中継する中継装置であってもよい。また、路側器であってもよい。
 (上りリンク/下りリンク/サイドリンク)
 本開示の一実施例は、例えば、上りリンク、下りリンク、及び、サイドリンクの何れに適用してもよい。例えば、本開示の一実施例を上りリンクのPhysical Uplink Shared Channel(PUSCH)、Physical Uplink Control Channel(PUCCH)、Physical Random Access Channel(PRACH)、下りリンクのPhysical Downlink Shared Channel(PDSCH)、PDCCH、Physical Broadcast Channel(PBCH)、又は、サイドリンクのPhysical Sidelink Shared Channel(PSSCH)、Physical Sidelink Control Channel(PSCCH)、Physical Sidelink Broadcast Channel(PSBCH)に適用してもよい。
 なお、PDCCH、PDSCH、PUSCH、及び、PUCCHそれぞれは、下りリンク制御チャネル、下りリンクデータチャネル、上りリンクデータチャネル、及び、上りリンク制御チャネルの一例である。また、PSCCH、及び、PSSCHは、サイドリンク制御チャネル、及び、サイドリンクデータチャネルの一例である。また、PBCH及びPSBCHは報知(ブロードキャスト)チャネル、PRACHはランダムアクセスチャネルの一例である。
 (データチャネル/制御チャネル)
 本開示の一実施例は、例えば、データチャネル及び制御チャネルの何れに適用してもよい。例えば、本開示の一実施例におけるチャネルをデータチャネルのPDSCH、PUSCH、PSSCH、又は、制御チャネルのPDCCH、PUCCH、PBCH、PSCCH、PSBCHの何れかに置き換えてもよい。
 (参照信号)
 本開示の一実施例において、参照信号は、例えば、基地局及び移動局の双方で既知の信号であり、Reference Signal(RS)又はパイロット信号と呼ばれることもある。参照信号は、Demodulation Reference Signal(DMRS)、Channel State Information - Reference
 Signal(CSI-RS)、Tracking Reference Signal(TRS)、Phase Tracking Reference Signal(PTRS)、Cell-specific Reference Signal(CRS)、又は、Sounding Reference Signal(SRS)の何れでもよい。
 (時間間隔)
 本開示の一実施例において、時間リソースの単位は、スロット及びシンボルの1つ又は組み合わせに限らず、例えば、フレーム、スーパーフレーム、サブフレーム、スロット、タイムスロットサブスロット、ミニスロット又は、シンボル、Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier - Frequency Division Multiplexing(SC-FDMA)シンボルといった時間リソース単位でもよく、他の時間リソース単位でもよい。また、1スロットに含まれるシンボル数は、上述した実施の形態において例示したシンボル数に限定されず、他のシンボル数でもよい。
 (周波数帯域)
 本開示の一実施例は、ライセンスバンド、アンライセンスバンドのいずれに適用してもよい。
 (通信)
 本開示の一実施例は、基地局と端末との間の通信(Uuリンク通信)、端末と端末との間の通信(Sidelink通信)、Vehicle to Everything(V2X)の通信のいずれに適用してもよい。例えば、本開示の一実施例におけるチャネルをPSCCH、PSSCH、Physical Sidelink Feedback Channel(PSFCH)、PSBCH、PDCCH、PUCCH、PDSCH、PUSCH、又は、PBCHの何れかに置き換えてもよい。
 また、本開示の一実施例は、地上のネットワーク、衛星又は高度疑似衛星(HAPS:High Altitude Pseudo Satellite)を用いた地上以外のネットワーク(NTN:Non-Terrestrial Network)のいずれに適用してもよい。また、本開示の一実施例は、セルサイズの大きなネットワーク、超広帯域伝送ネットワークなどシンボル長やスロット長に比べて伝送遅延が大きい地上ネットワークに適用してもよい。
 (アンテナポート)
 本開示の一実施例において、アンテナポートは、1本又は複数の物理アンテナから構成される論理的なアンテナ(アンテナグループ)を指す。例えば、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えば、アンテナポートが何本の物理アンテナから構成されるかは規定されず、端末局が基準信号(Reference signal)を送信できる最小単位として規定されてよい。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 <5G NRのシステムアーキテクチャおよびプロトコルスタック>
 3GPPは、100GHzまでの周波数範囲で動作する新無線アクセス技術(NR)の開発を含む第5世代携帯電話技術(単に「5G」ともいう)の次のリリースに向けて作業を続けている。5G規格の初版は2017年の終わりに完成しており、これにより、5G NRの規格に準拠した端末(例えば、スマートフォン)の試作および商用展開に移ることが可能である。
 例えば、システムアーキテクチャは、全体としては、gNBを備えるNG-RAN(Next Generation - Radio Access Network)を想定する。gNBは、NG無線アクセスのユーザプレーン(SDAP/PDCP/RLC/MAC/PHY)および制御プレーン(RRC)のプロトコルのUE側の終端を提供する。gNBは、Xnインタフェースによって互いに接続されている。また、gNBは、Next Generation(NG)インタフェースによってNGC(Next Generation Core)に、より具体的には、NG-CインタフェースによってAMF(Access and Mobility Management Function)(例えば、AMFを行う特定のコアエンティティ)に、また、NG-UインタフェースによってUPF(User Plane Function)(例えば、UPFを行う特定のコアエンティティ)に接続されている。NG-RANアーキテクチャを図14に示す(例えば、3GPP TS 38.300 v15.6.0, section 4参照)。
 NRのユーザプレーンのプロトコルスタック(例えば、3GPP TS 38.300, section 4.4.1参照)は、gNBにおいてネットワーク側で終端されるPDCP(Packet Data Convergence Protocol(TS 38.300の第6.4節参照))サブレイヤ、RLC(Radio Link Control(TS 38.300の第6.3節参照))サブレイヤ、およびMAC(Medium Access Control(TS 38.300の第6.2節参照))サブレイヤを含む。また、新たなアクセス層(AS:Access Stratum)のサブレイヤ(SDAP:Service Data Adaptation Protocol)がPDCPの上に導入されている(例えば、3GPP TS 38.300の第6.5節参照)。また、制御プレーンのプロトコルスタックがNRのために定義されている(例えば、TS 38.300, section 4.4.2参照)。レイヤ2の機能の概要がTS 38.300の第6節に記載されている。PDCPサブレイヤ、RLCサブレイヤ、およびMACサブレイヤの機能は、それぞれ、TS 38.300の第6.4節、第6.3節、および第6.2節に列挙されている。RRCレイヤの機能は、TS 38.300の第7節に列挙されている。
 例えば、Medium-Access-Controlレイヤは、論理チャネル(logical channel)の多重化と、様々なニューメロロジーを扱うことを含むスケジューリングおよびスケジューリング関連の諸機能と、を扱う。
 例えば、物理レイヤ(PHY)は、符号化、PHY HARQ処理、変調、マルチアンテナ処理、および適切な物理的時間-周波数リソースへの信号のマッピングの役割を担う。また、物理レイヤは、物理チャネルへのトランスポートチャネルのマッピングを扱う。物理レイヤは、MACレイヤにトランスポートチャネルの形でサービスを提供する。物理チャネルは、特定のトランスポートチャネルの送信に使用される時間周波数リソースのセットに対応し、各トランスポートチャネルは、対応する物理チャネルにマッピングされる。例えば、物理チャネルには、上り物理チャネルとして、PRACH(Physical Random Access Channel)、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)があり、下り物理チャネルとして、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)、PBCH(Physical Broadcast Channel) がある。
 NRのユースケース/展開シナリオには、データレート、レイテンシ、およびカバレッジの点で多様な要件を有するenhanced mobile broadband(eMBB)、ultra-reliable low-latency communications(URLLC)、massive machine type communication(mMTC)が含まれ得る。例えば、eMBBは、IMT-Advancedが提供するデータレートの3倍程度のピークデータレート(下りリンクにおいて20Gbpsおよび上りリンクにおいて10Gbps)および実効(user-experienced)データレートをサポートすることが期待されている。一方、URLLCの場合、より厳しい要件が超低レイテンシ(ユーザプレーンのレイテンシについてULおよびDLのそれぞれで0.5ms)および高信頼性(1ms内において1-10-5)について課されている。最後に、mMTCでは、好ましくは高い接続密度(都市環境において装置1,000,000台/km2)、悪環境における広いカバレッジ、および低価格の装置のための極めて寿命の長い電池(15年)が求められうる。
 そのため、1つのユースケースに適したOFDMのニューメロロジー(例えば、サブキャリア間隔、OFDMシンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長、スケジューリング区間毎のシンボル数)が他のユースケースには有効でない場合がある。例えば、低レイテンシのサービスでは、好ましくは、mMTCのサービスよりもシンボル長が短いこと(したがって、サブキャリア間隔が大きいこと)および/またはスケジューリング区間(TTIともいう)毎のシンボル数が少ないことが求められうる。さらに、チャネルの遅延スプレッドが大きい展開シナリオでは、好ましくは、遅延スプレッドが短いシナリオよりもCP長が長いことが求められうる。サブキャリア間隔は、同様のCPオーバーヘッドが維持されるように状況に応じて最適化されてもよい。NRがサポートするサブキャリア間隔の値は、1つ以上であってよい。これに対応して、現在、15kHz、30kHz、60kHz…のサブキャリア間隔が考えられている。シンボル長Tuおよびサブキャリア間隔Δfは、式Δf=1/Tuによって直接関係づけられている。LTEシステムと同様に、用語「リソースエレメント」を、1つのOFDM/SC-FDMAシンボルの長さに対する1つのサブキャリアから構成される最小のリソース単位を意味するように使用することができる。
 新無線システム5G-NRでは、各ニューメロロジーおよび各キャリアについて、サブキャリアおよびOFDMシンボルのリソースグリッドが上りリンクおよび下りリンクのそれぞれに定義される。リソースグリッドの各エレメントは、リソースエレメントと呼ばれ、周波数領域の周波数インデックスおよび時間領域のシンボル位置に基づいて特定される(3GPP TS 38.211 v15.6.0参照)。
 <5G NRにおけるNG-RANと5GCとの間の機能分離>
 図15は、NG-RANと5GCとの間の機能分離を示す。NG-RANの論理ノードは、gNBまたはng-eNBである。5GCは、論理ノードAMF、UPF、およびSMFを有する。
 例えば、gNBおよびng-eNBは、以下の主な機能をホストする:
 - 無線ベアラ制御(Radio Bearer Control)、無線アドミッション制御(Radio Admission Control)、接続モビリティ制御(Connection Mobility Control)、上りリンクおよび下りリンクの両方におけるリソースのUEへの動的割当(スケジューリング)等の無線リソース管理(Radio Resource Management)の機能;
 - データのIPヘッダ圧縮、暗号化、および完全性保護;
 - UEが提供する情報からAMFへのルーティングを決定することができない場合のUEのアタッチ時のAMFの選択;
 - UPFに向けたユーザプレーンデータのルーティング;
 - AMFに向けた制御プレーン情報のルーティング;
 - 接続のセットアップおよび解除;
 - ページングメッセージのスケジューリングおよび送信;
 - システム報知情報(AMFまたは運用管理保守機能(OAM:Operation, Admission, Maintenance)が発信源)のスケジューリングおよび送信;
 - モビリティおよびスケジューリングのための測定および測定報告の設定;
 - 上りリンクにおけるトランスポートレベルのパケットマーキング;
 - セッション管理;
 - ネットワークスライシングのサポート;
 - QoSフローの管理およびデータ無線ベアラに対するマッピング;
 - RRC_INACTIVE状態のUEのサポート;
 - NASメッセージの配信機能;
 - 無線アクセスネットワークの共有;
 - デュアルコネクティビティ;
 - NRとE-UTRAとの緊密な連携。
 Access and Mobility Management Function(AMF)は、以下の主な機能をホストする:
 - Non-Access Stratum(NAS)シグナリングを終端させる機能;
 - NASシグナリングのセキュリティ;
 - Access Stratum(AS)のセキュリティ制御;
 - 3GPPのアクセスネットワーク間でのモビリティのためのコアネットワーク(CN:Core Network)ノード間シグナリング;
 - アイドルモードのUEへの到達可能性(ページングの再送信の制御および実行を含む);
 - 登録エリアの管理;
 - システム内モビリティおよびシステム間モビリティのサポート;
 - アクセス認証;
 - ローミング権限のチェックを含むアクセス承認;
 - モビリティ管理制御(加入およびポリシー);
 - ネットワークスライシングのサポート;
 - Session Management Function(SMF)の選択。
 さらに、User Plane Function(UPF)は、以下の主な機能をホストする:
 - intra-RATモビリティ/inter-RATモビリティ(適用可能な場合)のためのアンカーポイント;
 - データネットワークとの相互接続のための外部PDU(Protocol Data Unit)セッションポイント;
 - パケットのルーティングおよび転送;
 - パケット検査およびユーザプレーン部分のポリシールールの強制(Policy rule enforcement);
 - トラフィック使用量の報告;
 - データネットワークへのトラフィックフローのルーティングをサポートするための上りリンククラス分類(uplink classifier);
 - マルチホームPDUセッション(multi-homed PDU session)をサポートするための分岐点(Branching Point);
 - ユーザプレーンに対するQoS処理(例えば、パケットフィルタリング、ゲーティング(gating)、UL/DLレート制御(UL/DL rate enforcement);
 - 上りリンクトラフィックの検証(SDFのQoSフローに対するマッピング);
 - 下りリンクパケットのバッファリングおよび下りリンクデータ通知のトリガ機能。
 最後に、Session Management Function(SMF)は、以下の主な機能をホストする:
 - セッション管理;
 - UEに対するIPアドレスの割当および管理;
 - UPFの選択および制御;
 - 適切な宛先にトラフィックをルーティングするためのUser Plane Function(UPF)におけるトラフィックステアリング(traffic steering)の設定機能;
 - 制御部分のポリシーの強制およびQoS;
 - 下りリンクデータの通知。
 <RRC接続のセットアップおよび再設定の手順>
 図16は、NAS部分の、UEがRRC_IDLEからRRC_CONNECTEDに移行する際のUE、gNB、およびAMF(5GCエンティティ)の間のやり取りのいくつかを示す(TS 38.300 v15.6.0参照)。
 RRCは、UEおよびgNBの設定に使用される上位レイヤのシグナリング(プロトコル)である。この移行により、AMFは、UEコンテキストデータ(これは、例えば、PDUセッションコンテキスト、セキュリティキー、UE無線性能(UE Radio Capability)、UEセキュリティ性能(UE Security Capabilities)等を含む)を用意し、初期コンテキストセットアップ要求(INITIAL CONTEXT SETUP REQUEST)とともにgNBに送る。そして、gNBは、UEと一緒に、ASセキュリティをアクティブにする。これは、gNBがUEにSecurityModeCommandメッセージを送信し、UEがSecurityModeCompleteメッセージでgNBに応答することによって行われる。その後、gNBは、UEにRRCReconfigurationメッセージを送信し、これに対するUEからのRRCReconfigurationCompleteをgNBが受信することによって、Signaling Radio Bearer 2(SRB2)およびData Radio Bearer(DRB)をセットアップするための再設定を行う。シグナリングのみの接続については、SRB2およびDRBがセットアップされないため、RRCReconfigurationに関するステップは省かれる。最後に、gNBは、初期コンテキストセットアップ応答(INITIAL CONTEXT SETUP RESPONSE)でセットアップ手順が完了したことをAMFに通知する。
 したがって、本開示では、gNodeBとのNext Generation(NG)接続を動作時に確立する制御回路と、gNodeBとユーザ機器(UE:User Equipment)との間のシグナリング無線ベアラがセットアップされるように動作時にNG接続を介してgNodeBに初期コンテキストセットアップメッセージを送信する送信部と、を備える、5th Generation Core(5GC)のエンティティ(例えば、AMF、SMF等)が提供される。具体的には、gNodeBは、リソース割当設定情報要素(IE: Information Element)を含むRadio Resource Control(RRC)シグナリングを、シグナリング無線ベアラを介してUEに送信する。そして、UEは、リソース割当設定に基づき上りリンクにおける送信または下りリンクにおける受信を行う。
 <2020年以降のIMTの利用シナリオ>
 図17は、5G NRのためのユースケースのいくつかを示す。3rd generation partnership project new radio(3GPP NR)では、多種多様なサービスおよびアプリケーションをサポートすることがIMT-2020によって構想されていた3つのユースケースが検討されている。大容量・高速通信(eMBB:enhanced mobile-broadband)のための第一段階の仕様の策定が終了している。現在および将来の作業には、eMBBのサポートを拡充していくことに加えて、高信頼・超低遅延通信(URLLC:ultra-reliable and low-latency communications)および多数同時接続マシンタイプ通信(mMTC:massive machine-type communicationsのための標準化が含まれる。図17は、2020年以降のIMTの構想上の利用シナリオのいくつかの例を示す(例えばITU-R M.2083 図2参照)。
 URLLCのユースケースには、スループット、レイテンシ(遅延)、および可用性のような性能についての厳格な要件がある。URLLCのユースケースは、工業生産プロセスまたは製造プロセスのワイヤレス制御、遠隔医療手術、スマートグリッドにおける送配電の自動化、交通安全等の今後のこれらのアプリケーションを実現するための要素技術の1つとして構想されている。URLLCの超高信頼性は、TR 38.913によって設定された要件を満たす技術を特定することによってサポートされる。リリース15におけるNR URLLCでは、重要な要件として、目標とするユーザプレーンのレイテンシがUL(上りリンク)で0.5ms、DL(下りリンク)で0.5msであることが含まれている。一度のパケット送信に対する全般的なURLLCの要件は、ユーザプレーンのレイテンシが1msの場合、32バイトのパケットサイズに対してブロック誤り率(BLER:block error rate)が1E-5であることである。
 物理レイヤの観点では、信頼性は、多くの採り得る方法で向上可能である。現在の信頼性向上の余地としては、URLLC用の別個のCQI表、よりコンパクトなDCIフォーマット、PDCCHの繰り返し等を定義することが含まれる。しかしながら、この余地は、NRが(NR URLLCの重要要件に関し)より安定しかつより開発されるにつれて、超高信頼性の実現のために広がりうる。リリース15におけるNR URLLCの具体的なユースケースには、拡張現実/仮想現実(AR/VR)、e-ヘルス、e-セイフティ、およびミッションクリティカルなアプリケーションが含まれる。
 また、NR URLLCが目標とする技術強化は、レイテンシの改善および信頼性の向上を目指している。レイテンシの改善のための技術強化には、設定可能なニューメロロジー、フレキシブルなマッピングによる非スロットベースのスケジューリング、グラントフリーの(設定されたグラントの)上りリンク、データチャネルにおけるスロットレベルでの繰り返し、および下りリンクでのプリエンプション(Pre-emption)が含まれる。プリエンプションとは、リソースが既に割り当てられた送信が停止され、当該既に割り当てられたリソースが、後から要求されたより低いレイテンシ/より高い優先度の要件の他の送信に使用されることを意味する。したがって、既に許可されていた送信は、後の送信によって差し替えられる。プリエンプションは、具体的なサービスタイプと無関係に適用可能である。例えば、サービスタイプA(URLLC)の送信が、サービスタイプB(eMBB等)の送信によって差し替えられてもよい。信頼性向上についての技術強化には、1E-5の目標BLERのための専用のCQI/MCS表が含まれる。
 mMTC(massive machine type communication)のユースケースの特徴は、典型的には遅延の影響を受けにくい比較的少量のデータを送信する接続装置の数が極めて多いことである。装置には、低価格であること、および電池寿命が非常に長いことが要求される。NRの観点からは、非常に狭い帯域幅部分を利用することが、UEから見て電力が節約されかつ電池の長寿命化を可能にする1つの解決法である。
 上述のように、NRにおける信頼性向上のスコープはより広くなることが予測される。あらゆるケースにとっての重要要件の1つであって、例えばURLLCおよびmMTCについての重要要件が高信頼性または超高信頼性である。いくつかのメカニズムが信頼性を無線の観点およびネットワークの観点から向上させることができる。概して、信頼性の向上に役立つ可能性がある2つ~3つの重要な領域が存在する。これらの領域には、コンパクトな制御チャネル情報、データチャネル/制御チャネルの繰り返し、および周波数領域、時間領域、および/または空間領域に関するダイバーシティがある。これらの領域は、特定の通信シナリオにかかわらず一般に信頼性向上に適用可能である。
 NR URLLCに関し、ファクトリーオートメーション、運送業、および電力の分配のような、要件がより厳しいさらなるユースケースが想定されている。厳しい要件とは、高い信頼性(10-6レベルまでの信頼性)、高い可用性、256バイトまでのパケットサイズ、数μs程度までの時刻同期(time synchronization)(ユースケースに応じて、値を、周波数範囲および0.5ms~1ms程度の短いレイテンシ(例えば、目標とするユーザプレーンでの0.5msのレイテンシ)に応じて1μsまたは数μsとすることができる)である。
 さらに、NR URLLCについては、物理レイヤの観点からいくつかの技術強化が有り得る。これらの技術強化には、コンパクトなDCIに関するPDCCH(Physical Downlink Control Channel)の強化、PDCCHの繰り返し、PDCCHのモニタリングの増加がある。また、UCI(Uplink Control Information)の強化は、enhanced HARQ(Hybrid Automatic Repeat Request)およびCSIフィードバックの強化に関係する。また、ミニスロットレベルのホッピングに関係するPUSCHの強化、および再送信/繰り返しの強化が有り得る。用語「ミニスロット」は、スロットより少数のシンボルを含むTransmission Time Interval(TTI)を指す(スロットは、14個のシンボルを備える)。
 <QoS制御>
 5GのQoS(Quality of Service)モデルは、QoSフローに基づいており、保証されたフロービットレートが求められるQoSフロー(GBR:Guaranteed Bit Rate QoSフロー)、および、保証されたフロービットレートが求められないQoSフロー(非GBR QoSフロー)をいずれもサポートする。したがって、NASレベルでは、QoSフローは、PDUセッションにおける最も微細な粒度のQoSの区分である。QoSフローは、NG-Uインタフェースを介してカプセル化ヘッダ(encapsulation header)において搬送されるQoSフローID(QFI:QoS Flow ID)によってPDUセッション内で特定される。
 各UEについて、5GCは、1つ以上のPDUセッションを確立する。各UEについて、PDUセッションに合わせて、NG-RANは、例えば図16を参照して上に示したように少なくとも1つのData Radio Bearers(DRB)を確立する。また、そのPDUセッションのQoSフローに対する追加のDRBが後から設定可能である(いつ設定するかはNG-RAN次第である)。NG-RANは、様々なPDUセッションに属するパケットを様々なDRBにマッピングする。UEおよび5GCにおけるNASレベルパケットフィルタが、ULパケットおよびDLパケットとQoSフローとを関連付けるのに対し、UEおよびNG-RANにおけるASレベルマッピングルールは、UL QoSフローおよびDL QoSフローとDRBとを関連付ける。
 図18は、5G NRの非ローミング参照アーキテクチャ(non-roaming reference architecture)を示す(TS 23.501 v16.1.0, section 4.23参照)。Application Function(AF)(例えば、図17に例示した、5Gのサービスをホストする外部アプリケーションサーバ)は、サービスを提供するために3GPPコアネットワークとやり取りを行う。例えば、トラフィックのルーティングに影響を与えるアプリケーションをサポートするために、Network Exposure Function(NEF)にアクセスすること、またはポリシー制御(例えば、QoS制御)のためにポリシーフレームワークとやり取りすること(Policy Control Function(PCF)参照)である。オペレーターによる配備に基づいて、オペレーターによって信頼されていると考えられるApplication Functionは、関連するNetwork Functionと直接やり取りすることができる。Network Functionに直接アクセスすることがオペレーターから許可されていないApplication Functionは、NEFを介することにより外部に対する解放フレームワークを使用して関連するNetwork Functionとやり取りする。
 図18は、5Gアーキテクチャのさらなる機能単位、すなわち、Network Slice Selection Function(NSSF)、Network Repository Function(NRF)、Unified Data Management(UDM)、Authentication Server Function(AUSF)、Access and Mobility Management Function(AMF)、Session Management Function(SMF)、およびData Network(DN、例えば、オペレーターによるサービス、インターネットアクセス、またはサードパーティーによるサービス)をさらに示す。コアネットワークの機能およびアプリケーションサービスの全部または一部がクラウドコンピューティング環境において展開されかつ動作してもよい。
 したがって、本開示では、QoS要件に応じたgNodeBとUEとの間の無線ベアラを含むPDUセッションを確立するために、動作時に、URLLCサービス、eMMBサービス、およびmMTCサービスの少なくとも1つに対するQoS要件を含む要求を5GCの機能(例えば、NEF、AMF、SMF、PCF、UPF等)の少なくとも1つに送信する送信部と、動作時に、確立されたPDUセッションを使用してサービスを行う制御回路と、を備える、アプリケーションサーバ(例えば、5GアーキテクチャのAF)が提供される。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る端末は、同期信号を受信する受信回路と、同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定する制御回路と、を有し、前記制御回路は、前記同期信号ブロックの第1の受信タイミングと、第2の受信タイミングとにおいて、前記対応関係を変更する。
 本開示の一実施例において、前記制御回路は、前記同期信号ブロックの送信位置に対する前記同期信号ブロックのインデックスを固定量シフトし、前記対応関係を変更する。
 本開示の一実施例において、前記制御回路は、システムフレームナンバに応じて、前記同期信号ブロックの送信位置に対する前記同期信号ブロックのインデックスをシフトし、前記対応関係を変更する。
 本開示の一実施例において、前記制御回路は、前記第1の受信タイミングと前記第2の受信タイミングとにおいて、前記同期信号ブロックの送信位置に対する前記同期信号ブロックのインデックスの対応関係を逆にする。
 本開示の一実施例において、前記制御回路は、システムフレームナンバを疑似乱数式に入力して、前記対応関係を変更する。
 本開示の一実施例において、前記制御回路は、システムフレームナンバを用いて、システムフレームナンバごとにおける前記対応関係を示したテーブルを参照し、前記対応関係を変更する。
 本開示の一実施例において、前記制御回路は、セル識別子を用いて、前記対応関係を変更する。
 本開示の一実施例において、前記制御回路は、セル識別子またはSystem Information Block(SIB)に含まれる情報を用いて、前記対応関係の変更方法を切り替える。
 本開示の一実施例において、前記制御回路は、SIBに含まれる情報に基づいて、前記固定量シフトのシフト量を変更する。
 本開示の一実施例において、前記制御回路は、SIBに含まれる情報に基づいて、前記シフトのシフト量を変更する。
 本開示の一実施例において、前記制御回路は、さらにphysical downlink control channel(PDCCH)またはphysical downlink shared channel(PDSCH)に基づいて、前記対応関係を変更する。
 本開示の一実施例に係る基地局は、同期信号を送信する送信回路と、同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定する制御回路と、を有し、前記制御回路は、前記同期信号ブロックの第1の送信タイミングと、第2の送信タイミングとにおいて、前記対応関係を変更する。
 本開示の一実施例に係る通信方法は、端末が、同期信号を受信し、同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定し、前記同期信号ブロックの第1の受信タイミングと、第2の受信タイミングとにおいて、前記対応関係を変更する。
 本開示の一実施例に係る通信方法は、基地局が、同期信号を送信し、同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定し、前記同期信号ブロックの第1の送信タイミングと、第2の送信タイミングとにおいて、前記対応関係を変更する。
 2021年3月29日出願の特願2021-056210の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一態様は、無線通信システムに有用である。
 10 基地局
 11 制御部
 12 SSBインデックス決定部
 13 SSB生成部
 14 送信処理部
 15 送信ビーム制御部
 16 送信RF部
 17 アンテナ
 18 LBT判定部
 19 受信ビーム制御部
 20 受信RF部
 21 受信処理部
 22 共通信号生成部
 50 端末
 51 RF部
 52 受信処理部
 53 SSB復号部
 54 SSBインデックス決定部
 55 SSB選択部
 56 Preambleリソース決定部
 57 LBT判定部
 58 送信処理部
 59 共通信号復号部

Claims (14)

  1.  同期信号を受信する受信回路と、
     同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定する制御回路と、
     を有し、
     前記制御回路は、前記同期信号ブロックの第1の受信タイミングと、第2の受信タイミングとにおいて、前記対応関係を変更する、
     端末。
  2.  前記制御回路は、前記同期信号ブロックの送信位置に対する前記同期信号ブロックのインデックスを固定量シフトし、前記対応関係を変更する、
     請求項1に記載の端末。
  3.  前記制御回路は、システムフレームナンバに応じて、前記同期信号ブロックの送信位置に対する前記同期信号ブロックのインデックスをシフトし、前記対応関係を変更する、
     請求項1に記載の端末。
  4.  前記制御回路は、前記第1の受信タイミングと前記第2の受信タイミングとにおいて、前記同期信号ブロックの送信位置に対する前記同期信号ブロックのインデックスの対応関係を逆にする、
     請求項1に記載の端末。
  5.  前記制御回路は、システムフレームナンバを疑似乱数式に入力して、前記対応関係を変更する、
     請求項1に記載の端末。
  6.  前記制御回路は、システムフレームナンバを用いて、システムフレームナンバごとにおける前記対応関係を示したテーブルを参照し、前記対応関係を変更する、
     請求項1に記載の端末。
  7.  前記制御回路は、セル識別子を用いて、前記対応関係を変更する、
     請求項1に記載の端末。
  8.  前記制御回路は、セル識別子またはSystem Information Block(SIB)に含まれる情報を用いて、前記対応関係の変更方法を切り替える、
     請求項1に記載の端末。
  9.  前記制御回路は、SIBに含まれる情報に基づいて、前記固定量シフトのシフト量を変更する、
     請求項2に記載の端末。
  10.  前記制御回路は、SIBに含まれる情報に基づいて、前記シフトのシフト量を変更する、
     請求項3に記載の端末。
  11.  前記制御回路は、さらにphysical downlink control channel(PDCCH)またはphysical downlink shared channel(PDSCH)に基づいて、前記対応関係を変更する、
     請求項1に記載の端末。
  12.  同期信号を送信する送信回路と、
     同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定する制御回路と、
     を有し、
     前記制御回路は、前記同期信号ブロックの第1の送信タイミングと、第2の送信タイミングとにおいて、前記対応関係を変更する、
     基地局。
  13.  端末は、
     同期信号を受信し、
     同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定し、
     前記同期信号ブロックの第1の受信タイミングと、第2の受信タイミングとにおいて、前記対応関係を変更する、
     通信方法。
  14.  基地局は、
     同期信号を送信し、
     同期信号ブロックの送信位置と、前記同期信号ブロックのインデックスとの対応関係を決定し、
     前記同期信号ブロックの第1の送信タイミングと、第2の送信タイミングとにおいて、前記対応関係を変更する、
     通信方法。
PCT/JP2022/000199 2021-03-29 2022-01-06 端末、基地局、および通信方法 WO2022209110A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/552,866 US20240188010A1 (en) 2021-03-29 2022-01-06 Terminal, base station, and communication method
JP2023510273A JPWO2022209110A1 (ja) 2021-03-29 2022-01-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021056210 2021-03-29
JP2021-056210 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209110A1 true WO2022209110A1 (ja) 2022-10-06

Family

ID=83455987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000199 WO2022209110A1 (ja) 2021-03-29 2022-01-06 端末、基地局、および通信方法

Country Status (3)

Country Link
US (1) US20240188010A1 (ja)
JP (1) JPWO2022209110A1 (ja)
WO (1) WO2022209110A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032781A1 (ko) * 2018-08-10 2020-02-13 주식회사 윌러스표준기술연구소 무선 통신 시스템의 물리 채널 및 신호 송수신 방법 및 이를 이용하는 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032781A1 (ko) * 2018-08-10 2020-02-13 주식회사 윌러스표준기술연구소 무선 통신 시스템의 물리 채널 및 신호 송수신 방법 및 이를 이용하는 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Initial access aspects for up to 71GHz operation", 3GPP DRAFT; R1-2100370, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970973 *
MODERATOR (INTEL CORPORATION): "Summary #4 of email discussion on initial access aspect of NR extension up to 71 GHz", 3GPP DRAFT; R1-2101971, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200125 - 20200205, 8 February 2021 (2021-02-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051977641 *

Also Published As

Publication number Publication date
JPWO2022209110A1 (ja) 2022-10-06
US20240188010A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
US20220407546A1 (en) Terminal and communication method
US12074707B2 (en) Mobile station, base station, reception method, and transmission method
WO2022030075A1 (ja) 端末、基地局、及び、通信方法
US20230261830A1 (en) Terminal, base station, and communication method
US20240195570A1 (en) Communication device and communication method
WO2022014279A1 (ja) 端末、基地局及び通信方法
US20230291520A1 (en) Terminal, base station, and communication method
US20230412238A1 (en) Enhancing uplink transmission with multiple beams
US20230300859A1 (en) Terminal and sidelink communication control method
WO2022209110A1 (ja) 端末、基地局、および通信方法
WO2023100470A1 (ja) 基地局、端末及び通信方法
WO2023013204A1 (ja) 端末、基地局、及び、通信方法
WO2024029157A1 (ja) 端末、基地局、及び、通信方法
US20230412340A1 (en) Terminal, base station, and communication method
WO2023053562A1 (ja) 端末、基地局及び通信方法
WO2023053564A1 (ja) 端末、基地局、及び、通信方法
WO2023119756A1 (ja) 通信装置及び通信方法
US20240178979A1 (en) Base station, terminal, and communication method
WO2024100924A1 (ja) 端末、基地局、及び、通信方法
WO2024219190A1 (ja) 端末、基地局、及び、通信方法
WO2022024427A1 (ja) 端末及び通信方法
US20240348383A1 (en) User equipment and base station involved in resource indication for control channel carrier switching
WO2024171521A1 (ja) 基地局、端末及び通信方法
WO2023203938A1 (ja) 端末、基地局、通信方法及び集積回路
WO2022239289A1 (ja) 通信装置、及び、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510273

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18552866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779343

Country of ref document: EP

Kind code of ref document: A1