[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022208803A1 - 工作機械、工作機械の診断システム、及び、工作機械の診断方法 - Google Patents

工作機械、工作機械の診断システム、及び、工作機械の診断方法 Download PDF

Info

Publication number
WO2022208803A1
WO2022208803A1 PCT/JP2021/014008 JP2021014008W WO2022208803A1 WO 2022208803 A1 WO2022208803 A1 WO 2022208803A1 JP 2021014008 W JP2021014008 W JP 2021014008W WO 2022208803 A1 WO2022208803 A1 WO 2022208803A1
Authority
WO
WIPO (PCT)
Prior art keywords
description data
machine tool
state description
component
signal processing
Prior art date
Application number
PCT/JP2021/014008
Other languages
English (en)
French (fr)
Inventor
和也 堀部
督 青山
由貴彦 佐賀
博雅 山本
ヒョング パク
隼平 北山
Original Assignee
ヤマザキマザック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマザキマザック株式会社 filed Critical ヤマザキマザック株式会社
Priority to PCT/JP2021/014008 priority Critical patent/WO2022208803A1/ja
Priority to EP21934968.5A priority patent/EP4283418A4/en
Priority to CN202180093899.4A priority patent/CN116888545A/zh
Priority to JP2021554372A priority patent/JP7104858B1/ja
Publication of WO2022208803A1 publication Critical patent/WO2022208803A1/ja
Priority to US18/477,487 priority patent/US20240017367A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4145Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by using same processor to execute programmable controller and numerical controller function [CNC] and PC controlled NC [PCNC]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33299Real time, online diagnostic, integrated in normal control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34465Safety, control of correct operation, abnormal states
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34477Fault prediction, analyzing signal trends
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2223/00Indexing scheme associated with group G05B23/00
    • G05B2223/06Remote monitoring

Definitions

  • the present invention relates to a machine tool, a machine tool diagnostic system, and a machine tool diagnostic method.
  • Patent Document 1 A system that monitors machine tool abnormalities from an external remote monitoring device is becoming popular (for example, Patent Document 1).
  • a machine tool itself performs a simple failure diagnosis, and when an abnormality is found as a result of the simple diagnosis, a remote detailed diagnosis means performs a detailed diagnosis of the abnormality.
  • Patent Document 2 detects a specific frequency component value from a signal of a vibration sensor attached to a bearing of a machine tool, and determines bearing damage based on the component value.
  • abnormality diagnosis is performed by an abnormality diagnosis device separate from the machine tool.
  • the operation of the machine tool is also necessary for abnormality diagnosis, but if the input for the operation of the machine tool and the notification of the abnormality diagnosis are performed by separate devices, the operator's convenience is reduced.
  • the control device of the machine tool incorporates all the configurations of the abnormality diagnosis device.
  • abnormality diagnosis includes heavy load processing such as frequency analysis, the processing performance of the processor of the control device must be extremely high in such a system configuration.
  • the purpose of the technology disclosed in the present application is to separate a processing device that processes signals from sensors for abnormality diagnosis from a machine tool control device, thereby diagnosing a simple abnormality of a machine tool without significantly increasing the load on the control device.
  • a processing device that processes signals from sensors for abnormality diagnosis from a machine tool control device, thereby diagnosing a simple abnormality of a machine tool without significantly increasing the load on the control device.
  • An object of the present invention is to provide a machine tool, a machine tool diagnostic system, and a machine tool diagnostic method that improve the convenience of simple abnormality diagnosis and detailed abnormality diagnosis.
  • a machine tool includes a component, a sensor, a signal processing device, a control device, and an input/output device.
  • the state of the component equipment changes according to the operation of the actuator of the machine tool.
  • the sensor is configured to detect a condition of the component.
  • the signal processor is configured to process the signal of the sensor.
  • a controller is configured to control the operation of the actuator.
  • a command is input via the input/output device to cause the controller to operate the actuator.
  • the input/output device is configured to report operating conditions of the machine tool.
  • the signal processing device is configured to generate simple state description data relating to the occurrence of an abnormality in the component from the signal and transmit the generated simple state description data to the control device.
  • the signal processing device generates, from the signal, detailed state description data with a larger amount of information than the simplified state description data for identifying an abnormal location of the component, and uses the generated detailed state description data to identify the state of the component. configured for transmission to a remote monitoring device for analysis.
  • the input/output device is configured to notify an operator whether or not an abnormality has occurred in the constituent equipment based on the simplified status description data sent to the control device.
  • the control device is configured to transmit to the signal processing device a first command instructing to generate simple state description data from the signal. be.
  • the signal processing device is configured to generate simple state description data according to the first command and transmit the generated simple state description data to the control device.
  • the remote monitoring device transmits to the signal processing device a second command instructing to generate detailed state description data from the signal.
  • the signal processor is configured to generate detailed state description data in response to the second command and transmit the generated detailed state description data to the remote monitoring device.
  • the machine tool further includes a communication line connecting the control device and the signal processing device.
  • a remote monitoring device is connected to the signal processing device via a communication network.
  • a gateway is interposed between the signal processor and the remote monitor.
  • a first command and simple state description data are sent over a communication line.
  • a second command and state description detail data are sent over the communication network.
  • the communication capacity of the communication line is smaller than the communication capacity of the communication network, but the communication capacity of the communication line may be equal to or greater than the communication capacity of the communication network.
  • the first command includes a program code for generating simple state description data from a signal, and signal processing from the control device. and/or an execution command sent to the device to execute program code stored in the signal processing device.
  • the program code includes component identification information for identifying a plurality of components related to an abnormality in the component, among the signal of the sensor, and a plurality of and synthesis information that defines a synthesis method for synthesizing at least a portion of the components.
  • the signal processing device extracts a plurality of components from the signal by executing the program code, and calculates a combined value by combining at least part of the plurality of components based on the combining method.
  • the simple state description data includes a synthesized value.
  • the program code includes a threshold for determining an abnormality of the component.
  • the signal processing device determines whether there is an abnormality in the component based on the plurality of components and the threshold.
  • the simple state description data includes information indicating whether or not there is an abnormality in the component device.
  • the component includes a plurality of parts.
  • a plurality of anomalies out of a plurality of component damages and a plurality of component fit anomalies are each represented by a plurality of components.
  • the detailed state description data includes multiple components so that each of the multiple components can be identified.
  • the plurality of parts includes inner rings, outer rings, and rolling elements of bearings provided in the constituent equipment.
  • the sensor is a vibration sensor configured to detect vibrations of the bearing.
  • the plurality of components are a first frequency component of the vibration sensor signal susceptible to inner ring damage, a second frequency component of the vibration sensor signal susceptible to outer ring damage, and a rolling element damage component. and a third frequency component of the sensitive vibration sensor signal.
  • the component specifying information includes information specifying the first frequency, the second frequency and the third frequency.
  • a permission command for permitting output of the detailed state description data to the remote monitoring device is input via the input/output device.
  • the signal processing device is configured to receive a second command and transmit the detailed condition description data to the remote monitoring device while the authorization command permits the detailed condition description data to be sent to the remote monitoring device. .
  • a diagnostic system for a machine tool according to a thirteenth aspect of the present disclosure is a machine tool according to any one of the first to twelfth aspects, a remote monitoring device, a communication network connecting the remote monitoring device and the signal processing device, a gateway interposed between the remote monitoring device and the signal processing device on the communication network.
  • the diagnostic system further comprises a storage device accessible by the remote monitoring device via a communication network.
  • the controller is configured to send the state descriptive brief data to the storage device.
  • the storage device is configured to store simple state description data in a manner that can be retrieved in chronological order for each component device.
  • the remote monitoring device is configured to obtain the simple state description data from the storage device when analyzing the detailed state description data.
  • a machine tool diagnostic method drives an actuator of a machine tool so as to change the state of a component based on an input from an input/output device of the machine tool, and is detected by a sensor, a signal representing the state detected by the sensor is transmitted to the signal processing device, the signal processing device generates simple state description data regarding the occurrence of an abnormality in the component equipment from the signal, and the generated state description Simplified data is sent to the control device for controlling the operation of the actuator, and the signal processing device extracts detailed status description data, which has a larger amount of information than the simple status description data, from the signal to identify the abnormal location of the component equipment.
  • the diagnostic method further includes sending, by the control device, a first command to the signal processing device to instruct the simple state descriptive data to be generated from the signal.
  • the signal processing device generates simple state description data according to the first command, and transmits the generated simple state description data to the control device.
  • the diagnostic method comprises sending, by the remote monitoring device, a second command to the signal processing device instructing the condition description detail data to be generated from the signal. further including The signal processing device generates detailed state description data in response to the second command, and transmits the generated detailed state description data to the remote monitoring device.
  • the first command and simple state description data are transmitted via a communication line connecting the control device and the signal processing device.
  • a second command and detailed state description data are sent over a communication network connecting the remote monitoring device and the signal processing device.
  • a gateway is interposed between the signal processor and the remote monitor.
  • the communication capacity of the communication line is smaller than the communication capacity of the communication network, but the communication capacity of the communication line may be equal to or greater than the communication capacity of the communication network.
  • the first command includes a program code for generating simple state description data from a signal, and signal processing from the control device. and/or an execution command sent to the device to execute program code stored in the signal processing device.
  • the program code includes component identification information for identifying a plurality of components related to an abnormality in the component, and at least a portion of the plurality of components. and compositing information that defines a compositing method for compositing.
  • the signal processing device extracts a plurality of components from the signal by executing the program code, and calculates a combined value by combining at least part of the plurality of components based on the combining method.
  • the diagnostic method according to the 20th aspect is characterized in that the simple condition description data includes a composite value.
  • the program code includes a threshold for determining an abnormality in the component.
  • the signal processing device determines whether there is an abnormality in the component based on the plurality of components and the threshold.
  • the simple state description data includes information indicating whether or not there is an abnormality in the component device.
  • the component in the diagnostic method according to any one of the 20th to 22nd aspects, includes a plurality of parts.
  • a plurality of anomalies out of a plurality of component damages and a plurality of component fit anomalies are each represented by a plurality of components.
  • the detailed condition description data includes multiple components so that each of the multiple components can be identified.
  • the plurality of parts includes the inner ring, outer ring, and rolling elements of the bearing provided in the constituent equipment.
  • the sensor is a vibration sensor configured to detect vibrations of the bearing.
  • the plurality of components are a first frequency component of the vibration sensor signal susceptible to inner ring damage, a second frequency component of the vibration sensor signal susceptible to outer ring damage, and a rolling element damage component. and a third frequency component of the sensitive vibration sensor signal.
  • the component specifying information includes information specifying the first frequency, the second frequency and the third frequency.
  • the diagnostic method inputs, via an input/output device, a permission command for permitting output of detailed state description data to a remote monitoring device.
  • the signal processing device accepts a second command and transmits the detailed state description data to the remote monitoring device while the authorization command permits transmission of the detailed state description data to the remote monitoring device.
  • the diagnostic method comprises: storing simplified condition description data in a storage device accessible by a remote monitoring device via a communication network, by means of a control device; transmitting and storing the simplified status description data by a storage device in a chronologically retrievable manner for each component.
  • the remote monitoring device acquires the simple state description data from the storage device when analyzing the detailed state description data.
  • the diagnostic system according to the thirteenth aspect including the machine tool according to the first aspect, and the method for diagnosing the machine tool according to the fifteenth aspect
  • the signal processing for processing the signal of the sensor for abnormality diagnosis is performed. It is done in the signal processor and is separate from the machine tool controller. Therefore, both the simple abnormality diagnosis processing of the machine tool and the detailed abnormality diagnosis processing of the machine tool by the remote diagnosis device can be realized without increasing the load of the control device so much. Furthermore, since the input for the operation of the machine tool and the notification of the simple abnormality diagnosis result are unified on the machine tool side, the convenience of the simple abnormality diagnosis and the detailed abnormality diagnosis is improved.
  • the diagnostic system according to the thirteenth aspect including the machine tool according to the second aspect, and the diagnostic method for the machine tool according to the sixteenth aspect, a commercially available signal processing capable of processing a command from the outside It becomes possible to implement a simple abnormality diagnosis using the device. As a result, the manufacturing cost of the machine tool can be reduced.
  • the remote monitoring device can freely analyze the output of the sensor. can.
  • detailed abnormality diagnosis can be performed using a commercially available signal processing device capable of processing commands from the outside. As a result, the manufacturing cost of the machine tool can be reduced.
  • the diagnostic system according to the thirteenth aspect including the machine tool according to the fourth aspect, and the diagnostic method for the machine tool according to the eighteenth aspect the signal processing device performs the second command and the Since the detailed state description data can be sent, the load on the controller can be reduced.
  • the communication capacity of the communication line can be made smaller than the communication capacity of the communication network, and various lines can be used as communication lines. It becomes possible.
  • the simple state description data is transmitted from the signal from the control device to the signal processing device. It is possible to send program code for generation and execute the code from the controller. Therefore, the simple abnormality diagnosis algorithm can be flexibly changed.
  • the diagnostic system according to the thirteenth aspect including the machine tool according to the sixth aspect, and the diagnostic method for the machine tool according to the twentieth aspect are used to Since it is possible to determine the abnormality of the component, it is possible to determine the abnormality of the component with high accuracy. Furthermore, since a combined value is created by combining a plurality of components, it is possible to determine whether there is an abnormality in the component device using a simple determination method.
  • the synthesized value can be output to the input/output device.
  • the operator can be notified of the degree of abnormality.
  • the diagnostic system according to the thirteenth aspect comprising the machine tool according to the eighth aspect, and the diagnostic method for the machine tool according to the twenty-second aspect
  • the information indicating the presence or absence of an abnormality in the constituent equipment is sent to the input/output device. Since the information can be output, the operator of the machine tool can be informed of the presence or absence of an abnormality in the constituent equipment.
  • the diagnostic system according to the thirteenth aspect including the machine tool according to the ninth aspect, and the diagnostic method for the machine tool according to the twenty-third aspect, damage to a plurality of parts and an abnormality in the fit of the parts are By using a plurality of components representing a plurality of anomalies among the components, it is possible to accurately determine the anomaly of the component.
  • each of the damage of a plurality of parts and the fit of a plurality of parts Abnormalities can be determined by a remote monitoring device.
  • the diagnostic system according to the thirteenth aspect provided with the machine tool according to the eleventh aspect, and the diagnostic method for the machine tool according to the twenty-fifth aspect can be determined by the remote monitoring device.
  • the diagnostic system according to the thirteenth aspect comprising the machine tool according to the twelfth aspect, and the diagnostic method for the machine tool according to the twenty-sixth aspect, the operator of the machine tool receives a signal from the remote monitoring device. You can control access to
  • the remote monitoring device can refer to the time-series simplified condition description data when analyzing the detailed condition description data.
  • Equipment status can be analyzed.
  • the signal processing device that processes the signal of the sensor for abnormality diagnosis is separated from the control device of the machine tool. Both simple abnormality diagnosis processing and detailed abnormality diagnosis processing of the machine tool by the remote diagnosis device can be realized. Furthermore, according to the technology disclosed in the present application, the convenience of the simple abnormality diagnosis and the detailed abnormality diagnosis is improved by unifying the input for the operation of the machine tool and the notification of the result of the simple abnormality diagnosis on the machine tool side. be able to.
  • FIG. 1 is a block diagram showing the configuration of a machine tool diagnosis system according to an embodiment.
  • FIG. 2 is a flowchart of simple diagnostic processing according to the embodiment.
  • FIG. 3 is a sequence diagram of simple diagnostic processing according to the embodiment.
  • FIG. 4 shows an implementation example of a simple diagnostic script.
  • FIG. 5 is a flowchart of detailed diagnosis processing according to the embodiment.
  • FIG. 6 is a sequence diagram of detailed diagnosis processing according to the embodiment.
  • FIG. 1 is a block diagram showing the configuration of a machine tool diagnostic system 100 according to an embodiment of the present invention.
  • a diagnostic system 100 includes a machine tool 1 , a signal processing device 3 , a network 5 , a storage device 7 and a remote monitoring device 9 .
  • the machine tool 1 includes a spindle 11 , a spindle case 12 , a bearing 13 , a sensor 14 , a motor 15 , an encoder 16 , an input/output device 17 and a controller 20 .
  • the main shaft 11 is rotatably attached to a main shaft case 12 via bearings 13 .
  • the bearing 13 includes an inner ring 13A, rolling elements 13B, and an outer ring 13C.
  • the main shaft 11 connects with the inner ring 13A.
  • the inner ring 13A can rotate integrally with the main shaft 11 .
  • the rolling elements 13B are configured to rotate inside the outer ring 13C as the inner ring 13A rotates.
  • the outer ring 13C is fixed to the spindle case 12, but vibrates as the rolling elements 13B move.
  • a rotating body RB for machining can be attached to the spindle 11 .
  • the rotating body RB may be a tool or a work.
  • a sensor 14 is attached to the bearing 13 or in the vicinity of the bearing 13 , and the sensor 14 is configured to detect vibration of the bearing 13 caused by the rotation of the main shaft 11 . That is, sensor 14 is a vibration sensor configured to detect vibration of bearing 13 .
  • a sensor other than the bearing 13 may be attached in the vicinity of the object to be detected. That is, there may be a plurality of sensors.
  • the motor 15 is the actuator ACT of the machine tool 1 and rotates the spindle 11 .
  • the inner ring 13A and the rolling elements 13B of the bearing 13 are rotated, and the inner ring 13A, the rolling elements 13B and the outer ring 13C of the bearing 13 vibrate.
  • a part of the machine tool 1 whose state changes according to the operation of the actuator ACT is called a component COM in this embodiment. Therefore, the bearing 13 may be called a component COM.
  • the bearing 13 is an example of the component COM, and another part whose state is changed by another actuator ACT of the machine tool 1 may be the component COM.
  • state means the state of a physical phenomenon including vibration, sound, temperature, light, capacitance, oil film thickness, release of chemical species such as smoke, etc.
  • Sensor 14 is the It may be a sensor that detects a state.
  • the bearing 13 is the component COM
  • the component COM includes multiple parts.
  • the motor 15 is provided with an encoder 16 , and the measured rotation speed of the motor 15 is input to the control device 20 . If the rotation speed of the motor 15 can be detected by another rotation speed detector, the encoder 16 may be replaced by that rotation speed detector. Controller 20 is configured to control the operation of actuator ACT. Specifically, based on the rotation speed of the motor 15 measured by the encoder 16, the control device 20 controls the current supplied to the motor 15 so as to maintain the command rotation speed input to the control device 20.
  • the input/output device 17 has an input interface for inputting the commanded rpm and an output interface with the current rpm of the motor 15 measured by the encoder 16 . That is, the input/output device 17 is configured to input a command for causing the control device 20 to operate the actuator ACT, and to notify the operation status of the actuator ACT.
  • the input/output device 17 is a control panel normally used as an input/output device for the machine tool 1.
  • Examples of such an input/output device 17 include, for example, a touch panel integrated with an input/output interface, and an operation panel including switches, push buttons, and a monitor.
  • the input interface and the output interface of the input/output device 17 do not have to be on the same panel.
  • the input interface and the output interface may be separated.
  • the control device 20 includes a processor 21, a memory 22, and a communication interface 23.
  • Controller 20 includes at least a computerized numerical control device and a programmable logic controller.
  • the processor 21 controls various operations of the machine tool 1 by executing programs stored in the memory 22 .
  • the memory 22 has at least a non-volatile memory that stores the program and various parameters used by the program.
  • the memory 22 is configured to store a control program 24 , a simple diagnostic program 25 , component identification information 26 , synthesis information 27 , threshold information 28 and a security program 29 .
  • the control program 24 is a program that performs feedback control so as to rotate the motor 15 according to the command rotation speed input via the input/output device 17 . Specifically, the control program 24 executes processing for controlling the current supplied to the motor 15 based on the signal from the encoder 16 so that the rotation speed of the motor 15 approaches the command rotation speed.
  • the simple diagnostic program 25 is a program for receiving simple diagnostic results from the operation of the motor 15 and the signal processing device 3 in order to simply diagnose an abnormality in the bearing 13 .
  • the simple diagnostic result is generated by executing the simple diagnostic script 36 installed in the signal processing device 3 in advance.
  • the simple diagnostic script 36 is generated in advance in the control device 20 based on the component identification information 26 , the synthesis information 27 and the threshold information 28 and is transmitted to the signal processing device 3 .
  • the simple diagnostic program 25 may generate the simple diagnostic script 36 and transmit the simple diagnostic script 36 to the signal processing device 3 in order to receive the simple diagnostic result.
  • the simple diagnosis script 36 utilizes at least one of the component identification information 26, the composite information 27, and the threshold information 28 to obtain simple state description data regarding the occurrence of an abnormality in the component device COM from the signal of the sensor 14. It is the program code for generating.
  • the component identification information 26 , synthesis information 27 and threshold information 28 represent parameters used in the simple diagnostic script 36 .
  • the control device 20 generates a first command including an execution command for executing the simple diagnostic script 36 and executes a process of transmitting the generated first command to the signal processing device 3 . That is, the first command executes the program code for generating the simple state description data from the signal of the sensor 14 and the program code transmitted from the control device 30 to the signal processing device 3 and stored in the signal processing device 3.
  • the simple state description data generated in the signal processing device 3 is transmitted to the control device 20, and the simple diagnostic program 25 executes the following based on the simple state description data received by the control device 20.
  • a process is executed to inform the operator via the input/output device 17 whether or not an abnormality has occurred in the constituent equipment COM.
  • the control device 20 is configured to send a first command to the signal processing device 3 to instruct the simple state description data to be generated from the signal of the sensor 14 .
  • the input/output device 17 is configured to notify the operator whether or not an abnormality has occurred in the constituent equipment COM, based on the simple state description data transmitted to the control device 20 .
  • the security program 29 executes processing for controlling access from the remote monitoring device 9 to the signal processing device 3 . Details of the processing of the simple diagnostic program 25 and the security program 29 will be described later.
  • the signal processing device 3 is configured to process the signal of the sensor 14 . If there are a plurality of sensors 14, the signal processing device 3 may be configured to process the signals of each sensor in parallel.
  • the signal processing device 3 includes an analog-to-digital converter (A/D converter) 31 , a memory 32 , a calculator 33 and a communication interface 34 .
  • A/D converter 31 is configured to convert the analog signal from sensor 14 to a digital signal.
  • the memory 32 is configured to store digital signal data 35 of the sensor 14 converted into digital signals, the above-described simple diagnosis script 36, and the like. Further, the memory 32 is configured to store components of the digital signal extracted by the script engine 37 for executing scripts such as the simple diagnostic script 36 and the calculator 33 .
  • the communication interface 34 controls communication between the communication interface 23 of the control device 20 and the signal processing device 3 and communication between the remote monitoring device 9 and the signal processing device 3 .
  • the communication interface 34 transmits information based on the first command to the computing unit 33, and the computing unit 33 executes the script engine 37 to The processing described in the diagnostic script 36 is executed.
  • the calculator 33 generates simple state description data from the digital signal of the sensor 14 and transmits the generated simple state description data to the communication interface 34 .
  • Communication interface 34 transmits simple state description data to controller 20 as a reply to the first command.
  • the signal processing device 3 is configured to generate simple state description data regarding the occurrence of an abnormality in the constituent equipment COM from the signal of the sensor 14 and transmit the generated simple state description data to the control device 20 . Details of the first command and simple state description data will be described later.
  • the computing unit 33 may include an application specific integrated circuit (ASIC) that can perform digital signal processing such as fast Fourier transform (FFT) at high speed, or may be composed of a normal processor and a program that performs digital signal processing. good.
  • the communication interface 34 and the communication interface 23 of the control device 20 may be implemented by a communication interface such as Ethernet, serial/parallel line, and software for controlling it, or may be implemented by dedicated hardware.
  • the network 5 includes a communication line 51 and a communication network 53.
  • a communication line 51 connects the control device 20 and the signal processing device 3 . Specifically, the communication line 51 connects the communication interface 23 of the control device 20 and the communication interface 34 of the signal processing device 3 .
  • the first command and simple state description data described above are transmitted via the communication line 51 .
  • the communication line 51 is preferably Ethernet, but may be a serial line such as RS-232C or USB, or a parallel line such as SCSI. Furthermore, the communication line 51 is not limited to wired communication, and may be wireless communication.
  • the communication capacity of the communication line 51 may be smaller than the communication capacity of the communication network 53 .
  • the communication network 53 connects the signal processing device 3 and the remote monitoring device 9 .
  • Communication network 53 includes Ethernet 55 and Internet 59 .
  • the Ethernet 55 is a network within the factory where the machine tool 1 is arranged.
  • Communication line 51 may be the same Ethernet as Ethernet 55 . Note that if the communication line 51 is a different communication line from the Ethernet 55 , it is preferable that the communication interface 23 of the control device 20 is also connected to the Ethernet 55 .
  • a gateway 57 is interposed between the Ethernet 55 and the Internet 59 . That is, the gateway 57 is interposed between the signal processing device 3 and the remote monitoring device 9 .
  • the gateway 57 is configured to limit access to the Ethernet 55 to predetermined terminals, including the remote monitoring device 9, by means of an access control list (ACL) or the like.
  • ACL access control list
  • the remote monitoring device 9 is configured to analyze the state of the configuration equipment COM. To achieve this, the remote monitoring device 9 is arranged to send a second command to the signal processing device 3 instructing it to generate detailed condition description data from the signal of the sensor 14 .
  • the detailed state description data is data with a larger amount of information than the simple state description data for specifying the abnormal location of the component device COM.
  • the signal processing device 3 is configured to generate detailed state description data in response to the second command and transmit the generated detailed state description data to the remote monitoring device 9 .
  • the second command and state description detail data mentioned above are transmitted via the communication network 53 . Details of the second command and detailed state description data will be described later.
  • the storage device 7 is a storage device provided on the Internet 59 .
  • the storage device 7 is storage in a cloud system provided on the Internet 59 , and both the control device 20 and the remote monitoring device 9 can access the storage device 7 . That is, the remote monitoring device 9 can access the storage device 7 via the communication network 53 and the control device 20 can access the storage device 7 via the communication network 53 .
  • the storage device 7 may be installed in the premises of the business site where the remote monitoring device 9 is arranged, and may be accessible from the remote monitoring device 9 via Ethernet.
  • the control device 20 is configured to send the simple state description data sent from the signal processing device 3 to the storage device 7 .
  • control device 20 is configured to transmit the received simple state description data to the storage device 7 immediately after receiving the simple state description data from the signal processing device 3 .
  • the storage device 7 is configured to receive simple state description data from the control device 20 and to store the received simple state description data.
  • the storage device 7 is configured to store the simple state description data in such a manner that the simple state description data can be retrieved in chronological order for each component device COM. If there are a plurality of sensors, the simple state description data may be stored in a searchable manner for each sensor connected to the component COM rather than for each component COM.
  • the simple state description data may be stored in the storage device 7 in an order different from the time series, such as the order of numerical values contained in the data, as long as the data can be retrieved in chronological order.
  • the remote monitoring device 9 is configured to acquire the simple state description data from the storage device 7 when analyzing the detailed state description data.
  • a simple diagnostic method for the configuration equipment COM by the simple diagnostic program 25 in this embodiment will be described.
  • the simple diagnostic script 36 called from the simple diagnostic program 25 it is necessary to set the component identification information 26, the synthesis information 27, and the threshold information 28 in advance.
  • the setting method will be described.
  • the component identification information 26 is information for identifying a plurality of components of the signal from the sensor 14 that are related to an abnormality in the component device COM.
  • the frequency f C (Hz) at which vibration occurs when the race surface of 13C is damaged or peeled off is expressed by the following equations (1) to (3).
  • the component specifying information 26 includes information specifying the first frequency f A , the second frequency f C , and the third frequency f B determined as described above.
  • the plurality of components related to the abnormality of the component COM are the first frequency f A component of the signal of the vibration sensor (sensor 14), which is susceptible to damage to the inner ring 13A, and the damage to the outer ring 13C.
  • the plurality of abnormalities of the damage of the plurality of parts and the abnormal fit of the plurality of parts of the component COM are respectively represented by the above-described plurality of components.
  • the component identification information 26 may include information representing the entire frequency component as a parameter identifying the overall damage condition of the bearing 13 . More specifically, the component identification information 26 includes f A /No, f B /No, and f C /No so that it is easy to cope with changes in the rotation speed No of the motor 15 . Further, in the following description, the rotational speed of the motor 15 empirically determined for simple diagnosis is referred to as the simple diagnostic rotational speed.
  • the simple diagnostic program 25 can execute a process of calling the control program 24 and rotating the motor 15 at the simple diagnostic rotational speed.
  • the synthesizing information 27 is information defining a synthesizing method for synthesizing at least part of the plurality of components described above. Using the synthesis information 27, a synthesis value is generated by integrating the plurality of frequency component values described above, and abnormality of the component device COM is determined based on the synthesis value. Since the composite value is an integrated value in which a plurality of components related to the abnormality of the configuration device COM cannot be identified, even if the composite value is analyzed, the location of the abnormality in the configuration device COM cannot be specified. For example, the synthesis information 27 stores information defining calculation of the sum or average value of the frequency components of f A , f B , and f C .
  • the synthesis information 27 stores information defining calculation of an integral value of all frequency components or an effective value (root mean square value: RMS value) of all frequency components.
  • the simple diagnostic rotation speed, the component identification information 26 and the synthesis information 27 are stored in the memory 22 when the simple diagnostic script 36 is generated in the control device 20 .
  • values of the simple diagnostic rotation speed, the component identification information 26 , and the combined information 27 may be changed by input from the input/output device 17 .
  • the threshold information 28 includes a threshold for determining abnormality of the component COM. Specifically, the threshold information 28 indicates that the synthesized value synthesized based on the synthesized information 27 (for example, the sum of the frequency components of f A , f B , and f C or the integrated value of all frequency components) is abnormal. It is information for determining whether or not.
  • the threshold included in the threshold information 28 is not necessarily one, and includes a threshold for determining an abnormal state (hereinafter referred to as warning), and a caution state (hereinafter referred to as caution) that is not an abnormal state but has caution.
  • the threshold information 28 may include a plurality of levels of threshold values such as a threshold value representing . Threshold information 28 is stored in memory 22 when simple diagnostic script 36 is generated in controller 20 . However, the value of the threshold information 28 may be changed by input from the input/output device 17 .
  • the simple diagnostic program 25 is periodically executed. Specifically, the simple diagnostic program 25 is executed at the start of operation for one day.
  • FIG. 2 is a flow chart of simple diagnostic processing executed by the simple diagnostic program 25 .
  • FIG. 3 is a sequence diagram of the simple diagnosis process. 2 and 3, in step S11, based on the input from the input/output device 17 of the machine tool 1, the controller 20 causes the actuator ACT of the machine tool 1 to change the state of the component COM. drive. Specifically, the operator starts the simple diagnostic program via the input/output device 17 at the start of operation for the day, and the control device 20 calls the control program 24 from the simple diagnostic program 25 to rotate the motor 15 in the simple diagnostic manner. A command to rotate by the number is sent to the motor 15 (step S111 in FIG. 3).
  • the simple diagnostic program 25 is automatically started at the start of operation for one day, the input from the input/output device 17 of the machine tool 1 corresponds to the input for starting the machine tool 1 .
  • the control device 20 acquires the current rotation speed of the motor 15 from the encoder 16 by executing the control program 24 .
  • the control device 20 monitors the current rotation speed of the motor 15 until the current rotation speed of the motor 15 reaches the simple diagnostic rotation speed.
  • the control device 20 confirms that the current rotation speed of the motor 15 is the simple diagnosis rotation speed (step S112), it transmits the first command to the signal processing device 3 (step S12).
  • the first command is a command that instructs to generate simple state description data regarding the occurrence of an abnormality in the component device COM from the signal of the sensor 14 .
  • the first command includes an execution command for executing the simple diagnostic script 36 describing the processing content for generating simple state description data regarding the occurrence of an abnormality in the component device COM from the signal of the sensor 14.
  • Simple diagnostic script 36 preferably includes thresholds contained in component identification information 26 , composite information 27 , and threshold information 28 .
  • the simple diagnosis script 36 describes a method of generating simple state description data in a script language.
  • the signal of the sensor 14 is acquired for 5 seconds, A/D converted, enveloped, and subjected to FFT to extract frequency components of specific frequencies f A , f B , and f C , and (ii) The sum of the frequency components is obtained, (iii) when the sum exceeds the threshold TH1, the caution value in the simplified state description data is set to TRUE, and (iv) the sum exceeds the threshold TH2 (TH1 ⁇ TH2). 4, the warning value in the simple state description data is set to TRUE, (v) the effective values of all frequency components are obtained, and (vi) the caution value, warning value, and execution value are returned.
  • FIG. 4 is an example of a simple diagnostic script 36 using JavaScript, which is a typical script language.
  • FIG. 4 is merely an example, and other scripting languages or markup languages such as XML may be used.
  • the function RoughDiagnosis in FIG. 4 can receive an argument No (the number of revolutions of the motor 15).
  • the first two lines starting with "const var" in Figure 4 are constant declarations required by the program.
  • "th1, th2" are substituted with the above-described TH1 and TH2 values read from the threshold information 28.
  • FIG. 4 is an example of a simple diagnostic script 36 using JavaScript, which is a typical script language.
  • FIG. 4 is merely an example, and other scripting languages or markup languages such as XML may be used.
  • the function RoughDiagnosis in FIG. 4 can receive an argument No (the number of revolutions of the motor 15).
  • the first two lines starting with "const var" in Figure 4 are constant declarations required by the program
  • "fa, fb, fc" are obtained by multiplying the values of fA /No, fB /No, and fC /No read from the component identification information 26 by the argument No to obtain fA , fB , and fC .
  • Corresponding frequency values are substituted.
  • "data” is an array in which values obtained by A/D converting the output from the sensor 14 are stored. Each element of this array represents, for example, a sensor output value for each hour.
  • envelopedata is an array in which "data” is enveloped. Each element of this array represents, for example, an envelope value for each time.
  • "fftdata” is an array in which the frequency spectrum obtained by fast Fourier transforming "envelopdata" is stored.
  • Each element of this array is, for example, a component value for each frequency.
  • "sum” stores the sum of the frequency components of f A , f B , and f C .
  • rsmvalue stores the effective value of the frequency component.
  • level stores judgment values representing no problem, caution, and warning, respectively.
  • “getData” is a function that causes the signal processing device 3 to A/D convert the signal of the sensor 14 during the time described in the argument from the function call, and outputs the obtained digital value to the variable "data”. . “data” is physically stored in memory 32 . Note that “getData" is an example of one function name, and the function name may be another name, and the argument may be omitted. If the argument is omitted, the signal processor 3 acquires the signal of the sensor 14 for the time defined by default. Also, if the signal processing device 3 has a plurality of connection ports that can be connected to the sensor 14, the port number may be included as an argument of "getData".
  • “getEnvelope” is a function that envelopes the argument "data” and outputs the resulting envelope data to the variable "envelopedata”.
  • Envelope processing refers to processing for detecting an envelope by taking the absolute value of a vibration waveform.
  • "envelopedata” is physically stored in memory 32;
  • “getEnvelope” is an example of one function name, and the function name may be another name.
  • “getFFT” is a function that outputs the frequency spectrum obtained by fast Fourier transforming the argument "envelopedata” to the variable "fftdata”.
  • “fftdata” is physically stored in memory 32 .
  • “getFFT” is an example of one function name, and the function name may be another name.
  • at least one of the minimum value and maximum value of the frequency range may be specified as an argument of "getFFT”.
  • “getFrequencyData (A, B)” outputs the frequency component corresponding to the frequency value that is the argument B from the frequency spectrum that is the argument A.
  • the sum of the frequency components of f A , f B , and f C is substituted for sum by calling “getFrequencyData” for each of “fa, fb, fc” and adding the returned values.
  • “getFrequencyData” is an example of one function name, and the function name may be another name.
  • the data format of the arguments may be another format. For example, argument B may specify the number of data in the array fftdata[].
  • the frequency components corresponding to the frequency values of f A , f B , and f C can be found at any number in fftdata[] without using a function such as "getFrequencyData". , or directly from fftdata[].
  • “getRMSValue (A, B, C)” calculates the RMS value in the frequency range [B, C] defined by arguments B and C from the frequency spectrum that is argument A.
  • the effective value from the frequency 0 to the maximum frequency MAX that can be calculated by the signal processing device 3 is calculated.
  • the maximum frequency MAX may be specified as an arbitrary value that is at least twice the frequency that needs to be detected.
  • a determination value indicating caution when "sum” is equal to or greater than TH1 and less than TH2 is substituted for "level”.
  • a determination value indicating warning when "sum” is equal to or greater than TH2 is substituted for "level”.
  • "sendData" is a function that sends the character string described as an argument as simple state description data.
  • the character string for identifying the data type may be omitted, and the delimiter may be another code.
  • the synthetic information 27 may be information containing other code excluding constant declarations in the script of FIG. Then, in executing the simple diagnostic program 25, the control device 20 reads the component identification information 26, the synthesis information 27, and the threshold information 28, and stores the component identification information 26 and the threshold information 28 in the code stored as the synthesis information 27. , a constant declaration may be added based on the value stored in the threshold information 28 to generate the first command.
  • the first command may be a binary code instead of a script.
  • the control device 20 preferably generates a binary code including the processing contents of the script described above.
  • the communication interface 34 of the signal processing device 3 preferably has a parser for analyzing the binary code of the first command.
  • the first command may be replaced with a function that outputs the rated value (“getRMSValue (A, B, C)”), and a function that outputs the integrated value of all frequency components may be used.
  • the first command is an execution command for executing the simple diagnosis script 36 of RoughDiagnosis as described above.
  • the first command includes the simple diagnostic rotation speed as an argument of RoughDiagnosis.
  • the simple diagnostic rotation speed is sent to the signal processing device 3 in advance as an argument of RoughDiagnosis, the first command does not need to include the simple diagnostic rotation speed.
  • the script engine 37 executes the process described in the simple diagnosis script 36 .
  • the signal processing device 3 transmits a sensor activation command to the sensor 14 according to the command described in "getData" (step S129).
  • the sensor 14 detects the state of the configuration device COM (step S13).
  • the sensor 14 transmits a signal (sensor signal) representing the state detected by the sensor 14 to the signal processing device 3 (step S14). Note that if the sensor 14 always outputs the sensor signal to the signal processing device 3 regardless of the presence or absence of the sensor activation command, step S129 may be omitted.
  • the signal processing device 3 Upon receiving the sensor signal, the signal processing device 3 generates simple state description data regarding the occurrence of an abnormality in the component device COM from the signal (step S15). Specifically, the signal processing device 3 converts the sensor signal into a digital value (step S151).
  • the signal processing device 3 generates simple state description data from the signal (step S152). Specifically, according to commands defined by "getFFT” and “getFrequencyData” in FIG. 4, the signal processing device 3 extracts a plurality of components related to the abnormality of the component COM from the signal. That is, the signal processing device 3 is configured to extract the plurality of components from the signal.
  • the signal processing device 3 When generating simple state description data, the signal processing device 3 generates a plurality of A composite value (sum) obtained by combining at least part of the components of is calculated. That is, the signal processing device 3 is configured to calculate a synthesized value obtained by synthesizing at least part of the plurality of components. Based on the logical expression "if (sum ⁇ th1) ...
  • the signal processing device 3 determines whether or not there is an abnormality in the configuration device COM based on the above-described plurality of components and threshold values.
  • the signal processing device 3 is configured to determine whether or not there is an abnormality in the configuration device COM based on the plurality of components and the threshold values described above. Further, the signal processing device 3 generates simple state description data from the signal according to the operation described by the argument of "sendData".
  • the argument contains the "sum", ie the sum of the frequency components of fA , fB , fC .
  • the simple state description data includes a combined value that constitutes at least part of a plurality of components related to the abnormality of the component device COM.
  • the simplified status description data includes "level", that is, information indicating whether or not there is an abnormality in the component COM.
  • step S16 the signal processing device 3 transmits the generated simple state description data to the control device 20 for controlling the operation of the actuator ACT.
  • the control device 20 may store the received simple state description data in association with the reception time.
  • the control device 20 Upon receiving the simple state description data from the signal processing device 3, the control device 20 causes the input/output device 17 to display information as to whether or not an abnormality has occurred in the configuration equipment COM and the combined value in step S17.
  • the control device 20 notifies the operator via the input/output device 17 of information as to whether or not an abnormality has occurred in the configuration equipment COM based on the simple state description data sent to the control device 20 .
  • the control device 20 not only notifies the operator of the current simplified status description data, but also utilizes the past simplified status description data, to A chronological change in the composite value may be displayed on the input/output device 17 .
  • step S17 when no abnormality (warning) is notified, execution of the machining program by the control device 20 is permitted. Then, the machining process by the machine tool 1 becomes executable. Since the post processing is executed by the operator's operation of the input/output device 17, outputting the result of the simple diagnosis to the input/output device 17 is advantageous for smooth post processing.
  • step S ⁇ b>17 when an abnormality (warning) is notified, the control device 20 notifies, via the input/output device 17 , of the abnormality and future treatment methods to be taken by the operator. For example, the operator is advised to run detailed diagnostics.
  • step S ⁇ b>18 the control device 20 transmits the received simple state description data to the storage device 7 accessible by the remote monitoring device 9 via the communication network 53 .
  • step S19 the storage device 7 stores the simple state description data in a manner that can be retrieved in chronological order for each component device COM. If there is only one configuration equipment COM for the machine tool 1, the storage device 7 retrieves the simple status description data from the transmitted address of the control device 20 so that the simple status description data can be retrieved for each configuration equipment COM. Data can be managed.
  • the simple state description data may include information on the configuration equipment COM, and based on this information, the storage device 7 may manage the simple state description data for each configuration equipment COM.
  • steps S18 and S19 are optional processes, they may be omitted.
  • a detailed diagnosis method of the component COM by the remote monitoring device 9 in this embodiment will be described. Detailed diagnosis is mainly performed in the following three cases (1) to (3).
  • an accident occurs in the machine tool 1
  • (1) and (2) as a state after step S17 in FIG. Contact the person in charge of the manufacturer who operates the by telephone or the like.
  • FIG. 5 shows a flow chart of detailed diagnosis processing thereafter.
  • FIG. 6 shows a sequence diagram of the detailed diagnosis processing thereafter.
  • the same processes as those of the simple diagnostic method are assigned the same reference numerals as those of the simple diagnostic method, and detailed description thereof will be omitted.
  • a permission command is input via the input/output device 17 to permit the output of the detailed state description data to the remote monitoring device 9 .
  • the gateway 57 normally performs control to prohibit access from the remote monitoring device 9 .
  • the gateway 57 keeps the remote monitoring device 9 until one of the following events (1) to (4) occurs. Allow access from (1) An operator executing the security program 29 inputs a non-permission command through the input/output device 17 to disallow communication between the signal processing device 3 and the remote monitoring device 9, and the signal processing device 3 receives the disallow command. (2) The communication between the signal processing device 3 and the remote monitoring device 9 times out.
  • the signal processing device 3 receives a detailed diagnosis end command from the remote monitoring device 9 .
  • the signal processing device 3 transmits digital data obtained by digitizing the signal of the sensor 14 by the A/D converter 31 to the remote monitoring device 9, all the digital data have been transmitted.
  • step S20 in step S201 of FIG. 6, the operator activates the security program 29 via the input/output device 17 and inputs the output of the permission command.
  • step S ⁇ b>202 the security program 29 executes processing for transmitting the permission command to the gateway 57 . That is, the control device 20 transmits the permission command to the gateway 57 .
  • the gateway 57 permits access from the remote monitoring device 9 (step S203) until one of the events (1) to (4) occurs (step S204).
  • step S21 based on the input from the input/output device 17 of the machine tool 1, the controller 20 drives the actuator ACT of the machine tool 1 so as to change the state of the component COM. Specifically, the operator calls the control program 24 and rotates the motor 15 at the number of rotations notified by the person in charge of the manufacturer or at the number of rotations notified by the notification in step S17 of FIGS. A command is sent to the motor 15 (step S211). In the following description, this number of rotations will be referred to as the remote diagnosis number of rotations.
  • the control device 20 transmits the motor rotation speed acquired from the encoder 16 to the remote monitoring device 9 (step S212).
  • the remote monitoring device 9 refers to the motor rotation speed transmitted from the control device 20 and confirms that the motor 15 is rotating at the remote rotation speed (step S213).
  • the remote monitoring device 9 issues a second command to generate from the signal detailed state description data with a larger amount of information than the simplified state description data for identifying an abnormal location in the component device COM. It is transmitted to the signal processing device 3 (step S22).
  • the signal processing device 3 accepts the second command while the transmission of detailed state description data to the remote monitoring device 9 is permitted by the permission command described above.
  • the signal processing device 3 is configured to accept the second command while the transmission of detailed state description data to the remote monitoring device 9 is permitted by the permission command described above. Examples of the second command include the following contents (i) to (iv).
  • the second command can be implemented by a script that reads the output value of "getFFT” in FIG. 4 into the "sendData” function.
  • the second command can be implemented by a script that reads the output value of the "getRMScalue” function in FIG. 4 into the "sendData” function.
  • the second command can be implemented by a script that loads into the . Note that these scripts are examples of the second command, and the second command may be realized by another method such as binary code. Also, the second command may include commands other than the above (i) to (iv).
  • the signal processing device 3 When the signal processing device 3 receives the second command, the signal processing device 3 causes the script engine 37 to execute the processing described in the second command. Then, the signal processing device 3 transmits a sensor activation command to the sensor 14 by the same method as the simple diagnosis method (step S229). Note that if the sensor 14 constantly outputs the sensor signal to the signal processing device 3 regardless of the presence or absence of the sensor activation command, step S229 may be omitted.
  • the signal processing device 3 After the end of step S14, the signal processing device 3 generates simple state description data regarding the occurrence of an abnormality in the component device COM from the sensor signal (step S25). Specifically, the signal processing device 3 performs A/D conversion (step S151) and generates detailed state description data from the signal (step S252). Specifically, the signal processing device 3 generates, from the signal of the sensor 14, state description detailed data with a larger amount of information than the state description simple data for specifying the abnormal location of the component device COM in response to the second command. do.
  • the signal processing device 3 when the second command is a command such as (i) above, the signal processing device 3 generates digital data obtained by digitizing the signal of the sensor 14 as detailed state description data. When the second command is a command like (ii) above, the signal processing device 3 generates a frequency spectrum as state description detailed data. When the second command is a command such as (iii) above, the signal processing device 3 generates the effective value as the state description detailed data. When the second command is a command such as (iv) above, the signal processing device 3 generates a frequency component of any one of the specific frequencies f A , f B , and f C as detailed state description data.
  • the detailed status description data contains a plurality of components (for example, , specific frequencies f A , f B , and f C ) so as to be identifiable.
  • step S ⁇ b>26 the signal processing device 3 transmits the generated detailed state description data to the remote monitoring device 9 . More specifically, the signal processing device 3 transmits the generated detailed state description data to the remote monitoring device 9 while it is permitted to transmit the detailed state description data to the remote monitoring device 9 by the permission command described above. Send.
  • the signal processing device 3 is configured to transmit the generated detailed state description data to the remote monitoring device 9 while transmission of the detailed state description data to the remote monitoring device 9 is permitted by the permission command described above. be done.
  • step S27 the remote monitoring device 9 acquires the simple state description data from the storage device 7 when analyzing the detailed state description data. Specifically, in step S271, the remote monitoring device 9 transmits a request message for simple status description data.
  • This request message includes at least information (such as an ID) for identifying the component COM and information specifying the period of the simple state description data to be transmitted.
  • the storage device 7 transmits the simple state description data specified in the request message to the remote monitoring device 9 .
  • step S27 steps S271 and S272
  • step S28 the remote monitoring device 9 uses the received detailed state description data and simple state description data to analyze the state of the component device COM.
  • the machine tool 1, the diagnostic system 100, and the diagnostic method of the machine tool 1 according to the present embodiment are controlled by causing the signal processing device 3 separate from the control device 20 to perform sensor signal processing for abnormality diagnosis.
  • Both simple abnormality diagnosis processing of the machine tool 1 and detailed abnormality diagnosis processing of the machine tool by the remote diagnosis device can be realized without increasing the load of the device 20 so much. Furthermore, by unifying the input for the operation of the machine tool 1 and the notification of the simple abnormality diagnosis result on the machine tool 1 side, the convenience of the simple abnormality diagnosis can be improved.
  • the simple diagnostic rotation speed, the component identification information 26, the threshold information 28, and the simple diagnostic script 36 may be replaced with other data from the remote monitoring device 9.
  • FIG. Synthetic information 27 can also be replaced from the remote monitoring device 9 by a template of a script describing another synthetic information 27 (information including codes other than the component specifying information 26 and the threshold information 28 in the script of FIG. 4).
  • the component identification information 26, the synthesis information 27, and the threshold information 28 may be combined into one piece of information.
  • the simple diagnostic program 25 , the simple diagnostic rotation speed, the component identification information 26 , the combined information 27 and the threshold information 28 may be stored in the memory 22 as one simple diagnostic program 25 .
  • the simple diagnostic script 36 may be transmitted to the signal processing device 3 from a device other than the control device 20 and installed.
  • the component COM was the bearing 13 that supports the main shaft 11, but it may be another component. Also, the component COM may be a larger unit. For example, the component COM may be the spindle 11 .
  • the network 5 is not necessarily a wired network and may be a wireless network.
  • the communication network 53 may be replaced by a dedicated line or telephone line with the manufacturer. In the above-described embodiment, a predetermined value is used as the simple diagnostic rotation speed. good.
  • the components of the specific frequencies f A , f B , and f C in the above-described embodiment are not components that are susceptible to abnormal fitting of multiple parts, but there are also components that are susceptible to abnormal fitting of multiple parts. may contain.
  • the rolling element 13B of the bearing 13 is held by the cage and there is a defect in the cage (when the rolling element 13B is displaced from its original position and revolves around the rotation axis of the motor 15)
  • the following frequency f D components are susceptible to defects
  • a plurality of components related to anomalies in component equipment COM are susceptible to anomalies in the fit of a plurality of parts .
  • control program 24, simple diagnostic program 25, and security program 29 described above may be implemented by a dedicated processor or integrated circuit.
  • the control program 24, the simple diagnostic program 25, and the security program 29 are stored not only in the memory 22 built in the control device 20, but also in disks such as floppy disks, optical disks, CD-ROMs and magnetic disks, SD cards, USB memories, It may be recorded on a storage medium such as an external hard disk that is removable from the control device 20 and readable by the control device 20 .
  • the control device 20 is an example of a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

工作機械は、工作機械のアクチュエータの動作に従って状態が変化する構成機器と、構成機器の状態を検出するように構成されるセンサと、センサの信号を処理するように構成される信号処理装置と、アクチュエータの動作を制御するように構成される制御装置と、アクチュエータの動作を制御装置に行わせるための命令を入力し、アクチュエータの動作状況を報知するように構成される入出力デバイスと、を備える。信号処理装置は、構成機器の異常の発生に関する状態記述簡易データを制御装置へ送信するように構成される。信号処理装置は、構成機器の異常箇所を特定するための状態記述詳細データを構成機器の状態を解析するための遠隔監視装置へ送信するように構成される。入出力デバイスは、制御装置に送信された状態記述簡易データに基づいて構成機器において異常が発生しているか否かをオペレータに報知するように構成される。

Description

工作機械、工作機械の診断システム、及び、工作機械の診断方法
 本発明は、工作機械、工作機械の診断システム、及び、工作機械の診断方法に関する。
 工作機械の異常を外部の遠隔監視装置から監視するシステムが普及してきている(例えば、特許文献1)。特許文献1は、工作機械自体が故障を簡易診断して、簡易診断の結果、異常が発見されたときに、遠隔地の詳細診断手段が異常の詳細診断を行うものである。一方、工作機械に取り付けられた異常診断装置によって工作機械の異常診断を行うシステムも従来から知られている(例えば、特許文献2)。特許文献2は、工作機械のベアリングに取り付けられた振動センサの信号から特定周波数成分値を検出してその成分値に基づいてベアリングの損傷を判定する。
特開2004-265009号公報 特開2006-234784号公報
 特許文献1及び特許文献2に記載の方法では、工作機械と別の異常診断装置によって異常診断されている。異常診断の際には工作機械の動作も必要であるが、工作機械の動作のための入力と異常診断の報知が別々の装置でなされると、オペレータの利便性が低下する。これを解消するために、工作機械の制御装置が上記異常診断装置の構成を全て取り込むことも考えられる。しかし、異常診断には周波数解析など負荷が重い処理も存在するため、このようなシステム構成では制御装置のプロセッサの処理性能を非常に高くしなければならない。
 本願に開示される技術の目的は、異常診断のためにセンサの信号を処理する処理装置を工作機械の制御装置から分離することによって制御装置の負荷をそれほど高くすることなく、工作機械の簡易異常診断処理と遠隔診断装置による工作機械の詳細異常診断処理との両方を実現できるようにし、さらに、工作機械の動作のための入力と簡易異常診断結果の報知とを工作機械側で一元化することによって簡易異常診断及び詳細異常診断の利便性を向上させる工作機械、工作機械の診断システム、及び、工作機械の診断方法を提供することにある。
 本開示の第1態様に係る工作機械は、構成機器と、センサと、信号処理装置と、制御装置と、入出力デバイスと、を備える。工作機械のアクチュエータの動作に従って構成機器の状態が変化する。センサは、構成機器の状態を検出するように構成される。信号処理装置は、センサの信号を処理するように構成される。制御装置は、アクチュエータの動作を制御するように構成される。アクチュエータの動作を制御装置に行わせるための命令が入出力デバイスを介して入力される。入出力デバイスは、工作機械の動作状況を報知するように構成される。信号処理装置は、構成機器の異常の発生に関する状態記述簡易データを当該信号から生成し、生成した状態記述簡易データを制御装置へ送信するように構成される。信号処理装置は、構成機器の異常箇所を特定するための、状態記述簡易データよりも情報量の多い状態記述詳細データを当該信号から生成し、生成した状態記述詳細データを、構成機器の状態を解析するための遠隔監視装置へ送信するように構成される。入出力デバイスは、制御装置に送信された状態記述簡易データに基づいて構成機器において異常が発生しているか否かをオペレータに報知するように構成される。
 本開示の第2態様によれば、第1態様による工作機械では、制御装置は、状態記述簡易データを当該信号から生成することを指示する第1コマンドを信号処理装置へ送信するように構成される。信号処理装置は、第1コマンドに従って状態記述簡易データを生成し、生成した状態記述簡易データを制御装置へ送信するように構成される。
 本開示の第3態様によれば、第1態様または第2態様による工作機械では、遠隔監視装置は、状態記述詳細データを信号から生成することを指示する第2コマンドを信号処理装置へ送信するように構成される。信号処理装置は、第2コマンドに応じて状態記述詳細データを生成し、生成した状態記述詳細データを遠隔監視装置へ送信するように構成される。
 本開示の第4態様によれば、第3態様による工作機械は、制御装置と信号処理装置とを接続する通信回線をさらに備える。遠隔監視装置は、通信ネットワークを介して信号処理装置と接続される。信号処理装置と遠隔監視装置との間にゲートウェイが介在される。第1コマンド及び状態記述簡易データが通信回線を介して送信される。第2コマンド及び状態記述詳細データが通信ネットワークを介して送信される。好ましくは、通信回線の通信容量は、通信ネットワークの通信容量よりも小さいが、通信回線の通信容量は、通信ネットワークの通信容量以上であってもよい。
 本開示の第5態様によれば、第2態様から第4態様のいずれかによる工作機械では、第1コマンドは、状態記述簡易データを信号から生成するためのプログラムコードと、制御装置から信号処理装置に送信され、信号処理装置に保存されたプログラムコードを実行するための実行コマンドとの少なくとも一方を含む。
 本開示の第6態様によれば、第5態様による工作機械では、プログラムコードは、センサの信号のうち、構成機器の異常に関係する複数の成分を特定するための成分特定情報と、複数の成分の少なくとも一部を合成する合成方法を規定する合成情報と、を含む。信号処理装置は、プログラムコードの実行によって、信号から複数の成分を抽出し、合成方法に基づいて複数の成分の少なくとも一部を合成した合成値を算出する。
 本開示の第7態様によれば、第6態様による工作機械では、状態記述簡易データは、合成値を含む。
 本開示の第8態様によれば、第5態様第7態様のいずれかによる工作機械では、プログラムコードは、構成機器の異常を判定するための閾値を含む。信号処理装置は、プログラムコードの実行によって、複数の成分と閾値とに基づいて、構成機器の異常の有無を判定する。状態記述簡易データは、構成機器の異常の有無を表す情報を含む。
 本開示の第9態様によれば、第6態様から第8態様のいずれかによる工作機械では、構成機器は複数の部品を含む。複数の部品の損傷と複数の部品のはめあいの異常とのうちの複数の異常が、それぞれ、複数の成分によって表される。
 本開示の第10態様によれば、第9態様のいずれかによる工作機械では、状態記述詳細データは、複数の成分のそれぞれを識別可能なように複数の成分を含む。
 本開示の第11態様によれば、第9態様または第10態様による工作機械では、複数の部品は構成機器に設けられるベアリングの内輪、外輪、転動体を含む。センサは、ベアリングの振動を検出するように構成される振動センサである。複数の成分は、内輪の損傷の影響を受けやすい振動センサの信号の第1周波数の成分と、外輪の損傷の影響を受けやすい振動センサの信号の第2周波数の成分と、転動体の損傷の影響を受けやすい振動センサの信号の第3周波数の成分と、を含む。成分特定情報は、第1周波数、第2周波数、及び、第3周波数を特定する情報を含む。
 本開示の第12態様によれば、第3態様または第4態様による工作機械では、入出力デバイスを介して、状態記述詳細データの遠隔監視装置への出力を許可するための許可指令が入力される。許可指令によって遠隔監視装置に状態記述詳細データを送信することが許可されている間に、信号処理装置は、第2コマンドを受け付け、遠隔監視装置に状態記述詳細データを送信するように構成される。
 本開示の第13態様に係る工作機械の診断システムは、第1態様から第12態様のいずれかの工作機械と、遠隔監視装置と、遠隔監視装置と信号処理装置とを接続する通信ネットワークと、通信ネットワーク上で、遠隔監視装置と信号処理装置との間に介在するゲートウェイと、を備える。
 本開示の第14態様によれば、第13態様による診断システムは、遠隔監視装置が通信ネットワークを介してアクセス可能な記憶装置をさらに備える。制御装置は、状態記述簡易データを記憶装置に送信するように構成される。記憶装置は、構成機器毎に時系列順に検索可能な態様で、状態記述簡易データを記憶するように構成される。遠隔監視装置は、状態記述詳細データを解析する際に、状態記述簡易データを記憶装置から取得するように構成される。
 本開示の第15態様に係る工作機械の診断方法は、工作機械の入出力デバイスからの入力に基づいて、構成機器の状態を変化させるように工作機械のアクチュエータを駆動し、構成機器の前記状態をセンサによって検出し、センサによって検出された状態を表す信号を信号処理装置へ送信し、信号処理装置によって、構成機器の異常の発生に関する状態記述簡易データを信号から生成し、生成された状態記述簡易データをアクチュエータの動作を制御するための制御装置に送信し、信号処理装置によって、構成機器の異常箇所を特定するための、状態記述簡易データよりも情報量の多い状態記述詳細データを信号から生成し、生成された状態記述詳細データを、構成機器の状態を解析するための遠隔監視装置へ送信し、制御装置に送信された状態記述簡易データに基づいて構成機器において異常が発生しているか否かを、入出力デバイスを介してオペレータに報知する、ことを含む。
 本開示の第16態様によれば、第15態様による診断方法は、制御装置によって、状態記述簡易データを信号から生成することを指示する第1コマンドを信号処理装置へ送信することをさらに含む。信号処理装置は、第1コマンドに従って状態記述簡易データを生成し、生成した状態記述簡易データを制御装置へ送信する。
 本開示の第17態様によれば、第15態様または第16態様による診断方法は、遠隔監視装置によって、状態記述詳細データを信号から生成することを指示する第2コマンドを信号処理装置へ送信することをさらに含む。信号処理装置は、第2コマンドに応じて状態記述詳細データを生成し、生成した状態記述詳細データを遠隔監視装置へ送信する。
 本開示の第18態様によれば、第17態様による診断方法は、第1コマンド及び状態記述簡易データが制御装置と信号処理装置とを接続する通信回線を介して送信される。第2コマンド及び状態記述詳細データが遠隔監視装置と信号処理装置とを接続する通信ネットワークを介して送信される。信号処理装置と遠隔監視装置との間にゲートウェイが介在される。好ましくは、通信回線の通信容量は、通信ネットワークの通信容量よりも小さいが、通信回線の通信容量は、通信ネットワークの通信容量以上であってもよい。
 本開示の第19態様によれば、第16態様から第18態様のいずれかによる診断方法では、第1コマンドは、状態記述簡易データを信号から生成するためのプログラムコードと、制御装置から信号処理装置に送信され、信号処理装置に保存されたプログラムコードを実行するための実行コマンドとの少なくとも一方を含む。
 本開示の第20態様によれば、第19態様による診断方法では、プログラムコードは、構成機器の異常に関係する複数の成分を特定するための成分特定情報と、複数の成分の少なくとも一部を合成する合成方法を規定する合成情報と、を含む。信号処理装置は、プログラムコードの実行によって、信号から複数の成分を抽出し、合成方法に基づいて複数の成分の少なくとも一部を合成した合成値を算出する。
 本開示の第21態様によれば、第20態様による診断方法では、状態記述簡易データは、合成値を含むことを特徴とする。
 本開示の第22態様によれば、第19態様から第21態様のいずれかによる診断方法では、プログラムコードは、構成機器の異常を判定するための閾値を含む。信号処理装置は、プログラムコードの実行によって、複数の成分と閾値とに基づいて、構成機器の異常の有無を判定する。状態記述簡易データは、構成機器の異常の有無を表す情報を含む。
 本開示の第23態様によれば、第20態様から第22態様のいずれかによる診断方法では、構成機器は複数の部品を含む。複数の部品の損傷と複数の部品のはめあいの異常とのうちの複数の異常が、それぞれ、複数の成分によって表される。
 本開示の第24態様によれば、第23態様による診断方法では、状態記述詳細データは、複数の成分のそれぞれを識別可能なように複数の成分を含む。
 本開示の第25態様によれば、第23態様または第24態様による診断方法では、複数の部品は構成機器に設けられるベアリングの内輪、外輪、転動体を含む。センサは、ベアリングの振動を検出するように構成される振動センサである。複数の成分は、内輪の損傷の影響を受けやすい振動センサの信号の第1周波数の成分と、外輪の損傷の影響を受けやすい振動センサの信号の第2周波数の成分と、転動体の損傷の影響を受けやすい振動センサの信号の第3周波数の成分と、を含む。成分特定情報は、第1周波数、第2周波数、及び、第3周波数を特定する情報を含む。
 本開示の第26態様によれば、第17態様または第18態様による診断方法は、入出力デバイスを介して、状態記述詳細データの遠隔監視装置への出力を許可するための許可指令を入力することをさらに含む。許可指令によって遠隔監視装置に状態記述詳細データを送信することが許可されている間に、信号処理装置は、第2コマンドを受け付け、遠隔監視装置に状態記述詳細データを送信する。
 本開示の第27態様によれば、第15態様から第26態様までのいずれかによる診断方法は、制御装置によって、遠隔監視装置が通信ネットワークを介してアクセス可能な記憶装置に状態記述簡易データを送信し、記憶装置によって、構成機器毎に時系列順に検索可能な態様で、状態記述簡易データを記憶することをさらに含む。遠隔監視装置は、状態記述詳細データを解析する際に、状態記述簡易データを記憶装置から取得する。
 第1態様に係る工作機械、第1態様の工作機械を備える第13態様の診断システム、及び、第15態様の工作機械の診断方法では、異常診断のためにセンサの信号を処理する信号処理が信号処理装置で行われ、工作機械の制御装置から分離される。したがって、制御装置の負荷をそれほど高くすることなく、工作機械の簡易異常診断処理と遠隔診断装置による工作機械の詳細異常診断処理との両方を実現できる。さらに、工作機械の動作のための入力と簡易異常診断結果の報知とが工作機械側で一元化されるため、簡易異常診断及び詳細異常診断の利便性が向上される。
 第2態様に係る工作機械、第2態様の工作機械を備える第13態様の診断システム、及び、第16態様の工作機械の診断方法では、外部からのコマンドを処理可能な上市されている信号処理装置を利用して簡易異常診断を実施することが可能となる。その結果、工作機械の製造コストを低減することができる。
 第3態様に係る工作機械、第3態様の工作機械を備える第13態様の診断システム、及び、第17態様の工作機械の診断方法では、遠隔監視装置がセンサの出力を自由に解析することができる。また、外部からのコマンドを処理可能な上市されている信号処理装置を利用して詳細異常診断を実施することが可能となる。その結果、工作機械の製造コストを低減することができる。
 第4態様に係る工作機械、第4態様の工作機械を備える第13態様の診断システム、及び、第18態様の工作機械の診断方法では、信号処理装置が制御装置を介さずに第2コマンド及び状態記述詳細データを送信することができるので、制御装置の負荷を減少させることができる。また、状態記述簡易データの情報量が状態記述詳細データの情報量よりも少ないため、通信回線の通信容量は、通信ネットワークの通信容量よりも小さくすることができ、通信回線として多様な回線が利用可能となる。
 第5態様に係る工作機械、第5態様の工作機械を備える第13態様の診断システム、及び、第19態様の工作機械の診断方法では、制御装置から信号処理装置へ状態記述簡易データを信号から生成するためのプログラムコードを送信して、当該コードを制御装置から実行することが可能である。したがって、簡易異常診断のアルゴリズムを柔軟に変更することができる。
 第6態様に係る工作機械、第6態様の工作機械を備える第13態様の診断システム、及び、第20態様の工作機械の診断方法では、構成機器の異常に関係する複数の成分を利用して構成機器の異常を判定できるので、高精度に構成機器の異常を判定することができる。さらに、複数の成分を合成した合成値を作成するので、簡易な判定方法で構成機器の異常を判定することができる。
 第7態様に係る工作機械、第7態様の工作機械を備える第13態様の診断システム、及び、第21態様の工作機械の診断方法では、合成値を入出力デバイスに出力できるので、工作機械のオペレータに異常の度合いを報知することができる。
 第8態様に係る工作機械、第8態様の工作機械を備える第13態様の診断システム、及び、第22態様の工作機械の診断方法では、構成機器の異常の有無を表す情報を入出力デバイスに出力できるので、工作機械のオペレータに構成機器の異常の有無を報知することができる。
 第9態様に係る工作機械、第9態様の工作機械を備える第13態様の診断システム、及び、第23態様の工作機械の診断方法では、複数の部品の損傷と複数の部品のはめあいの異常とのうちの複数の異常が表される複数の成分を利用して、構成機器の異常を精度よく判定することができる。
 第10態様に係る工作機械、第10態様の工作機械を備える第13態様の診断システム、及び、第24態様の工作機械の診断方法では、複数の部品の損傷と複数の部品のはめあいの夫々の異常を遠隔監視装置が判定することができる。
 第11態様に係る工作機械、第11態様の工作機械を備える第13態様の診断システム、及び、第25態様の工作機械の診断方法では、ベアリングの内輪、外輪、転動体の夫々の異常を別々に遠隔監視装置が判定することができる。
 第12態様に係る工作機械、第12態様の工作機械を備える第13態様の診断システム、及び、第26態様の工作機械の診断方法では、工作機械のオペレータが、遠隔監視装置からの信号処理装置へのアクセスを制御することができる。
 第14態様の診断システム、及び、第27態様の工作機械の診断方法では、遠隔監視装置は、状態記述詳細データを解析する際に、時系列の状態記述簡易データを参照できるので、詳細に構成機器の状態を解析することができる。
 本願に開示される技術によれば、異常診断のためにセンサの信号を処理する信号処理装置が工作機械の制御装置から分離されることによって制御装置の負荷をそれほど高くすることなく、工作機械の簡易異常診断処理と遠隔診断装置による工作機械の詳細異常診断処理との両方を実現することができる。さらに、本願に開示される技術によれば、工作機械の動作のための入力と簡易異常診断結果の報知とを工作機械側で一元化することによって簡易異常診断及び詳細異常診断の利便性を向上させることができる。
図1は、実施形態に係る工作機械の診断システムの構成を示すブロック図である。 図2は、実施形態に係る簡易診断処理のフローチャートである。 図3は、実施形態に係る簡易診断処理のシーケンス図である。 図4は、簡易診断スクリプトの実装例を示す。 図5は、実施形態に係る詳細診断処理のフローチャートである。 図6は、実施形態に係る詳細診断処理のシーケンス図である。
 以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。なお、図中において同じ符号は、対応するまたは実質的に同一の構成を示している。
<実施形態>
<工作機械1の構成>
 図1は、本発明の実施形態に係る工作機械の診断システム100の構成を示すブロック図である。診断システム100は、工作機械1と、信号処理装置3と、ネットワーク5と、記憶装置7と、遠隔監視装置9とを備える。工作機械1は、主軸11と、主軸ケース12と、ベアリング13と、センサ14と、モータ15と、エンコーダ16と、入出力デバイス17と、制御装置20とを備える。主軸11は、ベアリング13を介して主軸ケース12に対して回転可能に取り付けられている。より詳細には、ベアリング13は、内輪13A、転動体13B、外輪13Cを含む。主軸11は、内輪13Aと接続する。内輪13Aは主軸11と一体に回動可能である。転動体13Bは、内輪13Aの回転に従って外輪13Cの内側を回転移動するように構成されている。外輪13Cは、主軸ケース12に固定されているが、転動体13Bの移動に伴い振動する。主軸11には、加工をおこなうための回転体RBが取付可能である。回転体RBは、工具であってもワークであってもよい。ベアリング13もしくはベアリング13の近傍にはセンサ14が取り付けられており、センサ14は、主軸11が回転することによって生じるベアリング13の振動を検出するように構成されている。つまり、センサ14は、ベアリング13の振動を検出するように構成される振動センサである。なお、センサ14の他に、ベアリング13以外の検出対象の近傍にもセンサが取り付けられていてもよい。すなわち、センサは複数個あってもよい。
 モータ15は、工作機械1のアクチュエータACTであり、主軸11を回転させる。このように、主軸11が回転されることで、ベアリング13の内輪13A及び転動体13Bが回転し、ベアリング13の内輪13A、転動体13B、及び、外輪13Cが振動する。このように、アクチュエータACTの動作に従って状態が変化する工作機械1のパーツを、本実施形態では構成機器(component)COMと呼ぶ。したがって、ベアリング13のことを構成機器COMと呼称してもよい。なお、ベアリング13は、構成機器COMの一例であって、工作機械1の他のアクチュエータACTによって状態が変化する他のパーツが構成機器COMであってもよい。この場合、状態とは、振動、音、温度、光、静電容量、油膜厚さ、煙などの化学成分種の放出を含む物理現象の状態を意味し、センサ14は、その構成機器COMの状態を検出するセンサであってもよい。ベアリング13が構成機器COMであるとき、構成機器COMは複数の部品を含む。
 モータ15にはエンコーダ16が設けられて、測定されたモータ15の回転数(rotation speed)が制御装置20に入力される。なお、他の回転数検出器によってモータ15の回転数を検出できるときは、エンコーダ16は、その回転数検出器によって代替されてもよい。制御装置20は、アクチュエータACTの動作を制御するように構成される。具体的には、制御装置20は、エンコーダ16によって測定されたモータ15の回転数に基づいて、制御装置20に入力された指令回転数に保つようにモータ15へ供給する電流の制御を行う。入出力デバイス17は、指令回転数を入力するための入力インタフェースと、エンコーダ16で測定されたモータ15の現在の回転数を有する出力インタフェースとを有している。つまり、入出力デバイス17は、アクチュエータACTの動作を制御装置20に行わせるための命令を入力し、アクチュエータACTの動作状況を報知するように構成される。
 入出力デバイス17は、工作機械1の入出力装置として通常用いられている操作盤(control panel)である。このような入出力デバイス17の例として、例えば、入出力インタフェースが一体となったタッチパネルや、スイッチ、押しボタン、及び、モニターを含む操作盤がある。なお、入出力デバイス17は、入力インタフェースと出力インタフェースが同一のパネルになくてもよく、1名のオペレータが出力インタフェースによってモータ15の現在の回転数を確認しながら入力インタフェースによって入力が可能である程度に入力インタフェースと出力インタフェースとが分離されてもよい。
 制御装置20は、プロセッサ21と、メモリ22と、通信インタフェース23とを備える。制御装置20は、少なくともコンピュータ数値制御装置(computerized numerical control device)とプログラマブルロジックコントローラ(programmable logic controller)を含む。プロセッサ21は、メモリ22に記憶されたプログラムを実行することによって工作機械1の各種動作を制御する。メモリ22は、当該プログラムやそのプログラムによって利用される各種パラメータを記憶する不揮発性メモリを少なくとも有している。メモリ22は、制御プログラム24と、簡易診断プログラム25と、成分特定情報26と、合成情報27と、閾値情報28と、セキュリティプログラム29とを記憶するように構成されている。制御プログラム24は、入出力デバイス17を介して入力される指令回転数に従ってモータ15を回転させるように、フィードバック制御を行うプログラムである。具体的には、制御プログラム24は、エンコーダ16の信号をもとに、モータ15の回転数が指令回転数に近づくようにモータ15へ供給する電流を制御する処理を実行する。
 簡易診断プログラム25は、ベアリング13の異常を簡易に診断するにあたり、モータ15の動作と信号処理装置3から簡易診断結果を受信するプログラムである。簡易診断結果は、あらかじめ信号処理装置3にインストールされた簡易診断スクリプト36の実行により生成される。簡易診断スクリプト36は、成分特定情報26と、合成情報27と、閾値情報28とに基づいて、あらかじめ制御装置20において生成され、信号処理装置3に送信されている。ただし、簡易診断プログラム25が、簡易診断スクリプト36を生成して、簡易診断結果を受信するために簡易診断スクリプト36を信号処理装置3に送信してもよい。簡易診断スクリプト36は、成分特定情報26と、合成情報27と、閾値情報28とのうちの少なくとも1つを利用して、構成機器COMの異常の発生に関する状態記述簡易データをセンサ14の信号から生成するためのプログラムコードである。成分特定情報26と、合成情報27と、閾値情報28とは、簡易診断スクリプト36において使用されるパラメータを表す。制御装置20は、簡易診断スクリプト36を実行するための実行コマンドを含む第1コマンドを生成し、生成した第1コマンドを信号処理装置3へ送信する処理を実行する。つまり、第1コマンドは、状態記述簡易データをセンサ14の信号から生成するためのプログラムコードと、制御装置30から信号処理装置3に送信され、信号処理装置3に保存されたプログラムコードを実行するための実行コマンドとの少なくとも一方を含む。簡易診断スクリプト36が実行された後、信号処理装置3において生成された状態記述簡易データが制御装置20に送信され、簡易診断プログラム25は、制御装置20が受信した状態記述簡易データに基づいて、入出力デバイス17を介して、構成機器COMに異常が発生しているか否かをオペレータに報知する処理を実行する。このように、制御装置20は、状態記述簡易データをセンサ14の信号から生成することを指示する第1コマンドを信号処理装置3へ送信するように構成される。また、入出力デバイス17は、制御装置20に送信された状態記述簡易データに基づいて、構成機器COMにおいて異常が発生しているか否かをオペレータに報知するように構成される。セキュリティプログラム29は、遠隔監視装置9から信号処理装置3へのアクセスを制御する処理を実行する。簡易診断プログラム25と、セキュリティプログラム29との処理の詳細については後述する。
 信号処理装置3は、センサ14の信号を処理するように構成される。センサ14が複数個の場合には、信号処理装置3は、それぞれのセンサの信号を並列処理するように構成されてもよい。信号処理装置3は、アナログデジタルコンバータ(A/Dコンバータ)31と、メモリ32と、演算器33と、通信インタフェース34とを備える。A/Dコンバータ31は、センサ14からのアナログ信号をデジタル信号に変換するように構成される。メモリ32は、デジタル信号に変換されたセンサ14のデジタル信号データ35や上述する簡易診断スクリプト36等を記憶するように構成される。さらに、メモリ32は、簡易診断スクリプト36などのスクリプトを実行するためのスクリプトエンジン37や、演算器33によって抽出されたデジタル信号の成分を記憶するように構成される。通信インタフェース34は、制御装置20の通信インタフェース23と信号処理装置3との間の通信、及び、遠隔監視装置9と信号処理装置3との間の通信を制御する。
 具体的には、上記第1コマンドを制御装置20から受信すると、通信インタフェース34は、第1コマンドに基づいた情報を演算器33に送信し、演算器33は、スクリプトエンジン37を実行して簡易診断スクリプト36に記述された処理を実行する。これによって、演算器33は、センサ14のデジタル信号から状態記述簡易データを生成し、生成した状態記述簡易データを通信インタフェース34に送信する。通信インタフェース34は、第1コマンドへの返信として状態記述簡易データを制御装置20に送信する。
 このように、信号処理装置3は、構成機器COMの異常の発生に関する状態記述簡易データをセンサ14の信号から生成し、生成した状態記述簡易データを制御装置20へ送信するように構成される。第1コマンドや状態記述簡易データの詳細は後述する。なお、演算器33は、高速フーリエ変換(FFT)などのデジタル信号処理を高速に行える特定用途向け集積回路(ASIC)を含んでもよく、通常のプロセッサとデジタル信号処理を行うプログラムによって構成されてもよい。通信インタフェース34及び制御装置20の通信インタフェース23は、イーサネット、シリアル・パラレル回線などの通信インタフェースとそれを制御するためのソフトウエアで実現されてもよく、専用ハードウェアによって実現されてもよい。
 ネットワーク5は、通信回線51と通信ネットワーク53とを含む。通信回線51は、制御装置20と信号処理装置3とを接続する。具体的には、通信回線51は、制御装置20の通信インタフェース23と信号処理装置3の通信インタフェース34とを接続する。上述する第1コマンド及び状態記述簡易データが通信回線51を介して送信される。通信回線51は、好ましくはイーサネットであるが、RS-232CやUSBなどのシリアル回線、SCSIなどもパラレル回線であってもよい。さらには、通信回線51は、有線通信に限らず、無線通信であってもよい。通信回線51の通信容量は、通信ネットワーク53の通信容量よりも小さくてもよい。
 通信ネットワーク53は、信号処理装置3と遠隔監視装置9とを接続する。通信ネットワーク53は、イーサネット55とインターネット59とを含む。イーサネット55は、工作機械1が配置される工場内のネットワークである。通信回線51は、イーサネット55と同一のイーサネットであってもよい。なお、通信回線51がイーサネット55と別の通信回線である場合、制御装置20の通信インタフェース23は、イーサネット55とも接続していることが好ましい。イーサネット55とインターネット59との間にはゲートウェイ57が介在される。つまり、信号処理装置3と遠隔監視装置9との間にゲートウェイ57が介在される。ゲートウェイ57は、アクセスコントロールリスト(ACL)などによって、イーサネット55へのアクセスを、遠隔監視装置9を含むあらかじめ定められた端末からのアクセスに限定するように構成される。
 遠隔監視装置9は、構成機器COMの状態を解析するように構成される。これを実現するために、遠隔監視装置9は、状態記述詳細データをセンサ14の信号から生成することを指示する第2コマンドを信号処理装置3へ送信するように構成される。状態記述詳細データとは、構成機器COMの異常箇所を特定するための、状態記述簡易データよりも情報量の多いデータである。信号処理装置3は、第2コマンドに応じて状態記述詳細データを生成し、生成した状態記述詳細データを遠隔監視装置9へ送信するように構成される。上述する第2コマンド及び状態記述詳細データは、通信ネットワーク53を介して送信される。第2コマンド及び状態記述詳細データの詳細については後述する。
 記憶装置7は、インターネット59上に設けられたストレージデバイスである。好ましくは、記憶装置7はインターネット59上に設けられたクラウドシステムにおけるストレージであって、制御装置20と遠隔監視装置9のいずれも記憶装置7へアクセス可能である。つまり、遠隔監視装置9が通信ネットワーク53を介して記憶装置7へアクセス可能であるとともに、制御装置20が通信ネットワーク53を介して記憶装置7へアクセス可能である。ただし、記憶装置7は、遠隔監視装置9が配置される事業場の構内に設置され、遠隔監視装置9からイーサネットでアクセス可能であってもよい。制御装置20は、信号処理装置3から送信された状態記述簡易データを記憶装置7に送信するように構成される。具体的には、制御装置20は、信号処理装置3から状態記述簡易データを受信すると、すぐに、受信した状態記述簡易データを記憶装置7に送信するように構成される。記憶装置7は、制御装置20から状態記述簡易データを受信し、受信した状態記述簡易データを記憶するように構成される。具体的には、記憶装置7は、状態記述簡易データを構成機器COM毎に時系列順に検索可能な態様で、状態記述簡易データを記憶するように構成される。センサが複数個の場合には、構成機器COM毎ではなく、構成機器COMに接続されたセンサ毎に検索可能な態様で、状態記述簡易データを記憶するように構成されてもよい。時系列順に検索可能な態様であれば、データに含まれる数値の大きさ順など時系列とは異なる順序で状態記述簡易データが記憶装置7に格納されていてもよい。遠隔監視装置9は、状態記述詳細データを解析する際に、状態記述簡易データを記憶装置7から取得するように構成される。
<簡易診断方法>
 つぎに、本実施形態における簡易診断プログラム25による構成機器COMの簡易診断方法について説明する。簡易診断プログラム25から呼び出される簡易診断スクリプト36の実行にあたり、成分特定情報26と、合成情報27と、閾値情報28とを予め設定しておく必要があるが、その設定方法について説明する。成分特定情報26とは、センサ14の信号のうち、構成機器COMの異常に関係する複数の成分を特定するための情報である。以下、構成機器COMがベアリング13であって、ベアリング13の内輪13A、転動体13B、及び、外輪13Cのそれぞれに損傷がある場合を例に挙げて説明する。このとき、内輪13A、転動体13B、及び、外輪13Cのそれぞれに対応する特定周波数に振動が生じることが知られている。(例えば、特開昭63-297813号公報参照。)
 ここで、モータ15の回転数をNo(min-1)、ベアリング13の転動体13Bの直径をd(mm)、転動体13Bのピッチサークル径をD(mm)、転動体13Bの数をZ、転動体13Bの接触角をα(radian)とする。このとき、内輪13Aのレース面に傷や剥離がある場合に振動が発生する周波数f(Hz)、転動体13Bに傷や剥離がある場合に振動が発生する周波数f(Hz)、外輪13Cのレース面に傷や剥離がある場合に振動が発生する周波数f(Hz)は以下の式(1)~(3)により表される。
=(ZNo/120)・(1+d・cosα/D)      (1)
=(NoD/120d)・{1-(d/D)・cosα}  (2)
=(ZNo/120)・(1-d・cosα/D)      (3)
 上述するパラメータのうち、転動体13Bの直径、転動体13Bのピッチサークル径、転動体13Bの数、及び、転動体13Bの接触角は、ベアリング13の仕様から定まる。また、モータ15の回転数については最適値を経験的に定めることができる。成分特定情報26は、上述のように定められた第1周波数f、第2周波数f、及び、第3周波数fを特定する情報を含む。つまり、構成機器COMの異常に関係する複数の成分は、内輪13Aの損傷の影響を受けやすい振動センサ(センサ14)の信号の第1周波数fの成分と、外輪13Cの損傷の影響を受けやすい振動センサ(センサ14)の信号の第2周波数fの成分と、転動体13Bの損傷の影響を受けやすい振動センサ(センサ14)の信号の第3周波数fの成分と、を含む。別の言い方をすれば、構成機器COMの複数の部品の損傷と複数の部品のはめあいの異常とのうちの複数の異常が、それぞれ、上述の複数の成分によって表される。さらに、成分特定情報26は、ベアリング13の全体的な損傷具合を特定するパラメータとして周波数成分全体を表す情報を含んでもよい。なお、より詳細には、モータ15の回転数Noが変更されても対応しやすいように、成分特定情報26は、f/No、f/No、f/Noを含む。また、以降の説明において、簡易診断のために経験的に定められたモータ15の回転数を簡易診断回転数と呼ぶ。簡易診断プログラム25は、制御プログラム24を呼び出してモータ15を簡易診断回転数で回転させる処理を実行することができる。
 合成情報27は、上述する複数の成分の少なくとも一部を合成する合成方法を規定する情報である。合成情報27を利用して、上述する複数の周波数成分値を統合した合成値が生成され、合成値によって構成機器COMの異常が判定される。合成値は構成機器COMの異常に関係する複数の成分が識別不可能であるように統合された値であるため、合成値を解析しても構成機器COMの異常箇所を特定することはできない。例えば、合成情報27は、f、f、fそれぞれの周波数成分の総和または平均値を算出することを定義する情報を格納する。また、合成情報27は、全周波数成分の積分値、もしくは、全周波数成分の実効値(root mean square value: RMS値)を算出することを定義する情報を格納する。簡易診断回転数、成分特定情報26、及び、合成情報27は、簡易診断スクリプト36が制御装置20において生成される際に、メモリ22に記憶される。ただし、簡易診断回転数、成分特定情報26、及び、合成情報27は、入出力デバイス17からの入力によって値が変更されてもよい。
 閾値情報28は、構成機器COMの異常を判定するための閾値を含む。具体的には、閾値情報28は、合成情報27をもとに合成された合成値(例えば、f、f、fそれぞれの周波数成分の総和や全周波数成分の積分値など)が異常であるか否かを判定するための情報である。閾値情報28に含まれる閾値は、必ずしも1つであるとは限らず、異常状態(以下、warningと呼ぶ)を判定する閾値、異常状態ではないが注意を有する注意状態(以下、cautionと呼ぶ)を表す閾値など複数段階の閾値が閾値情報28に含まれてもよい。閾値情報28は、簡易診断スクリプト36が制御装置20において生成される際に、メモリ22に記憶される。ただし、閾値情報28は、入出力デバイス17からの入力によって値が変更されてもよい。
 簡易診断プログラム25は、定期的に実行される。具体的には、簡易診断プログラム25は、1日の稼動開始時に実行される。図2は、簡易診断プログラム25により実行される簡易診断処理のフローチャートである。図3は、当該簡易診断処理のシーケンス図である。図2及び図3を参照すると、ステップS11では、工作機械1の入出力デバイス17からの入力に基づいて、制御装置20は、構成機器COMの状態を変化させるように工作機械1のアクチュエータACTを駆動する。具体的には、オペレータが1日の稼動開始時に入出力デバイス17を介して簡易診断プログラムを起動し、制御装置20は、簡易診断プログラム25から制御プログラム24を呼び出して、モータ15を簡易診断回転数で回転させる指令をモータ15に送る(図3のステップS111)。なお、簡易診断プログラム25が1日の稼動開始時に自動的に起動される場合、工作機械1の入出力デバイス17からの入力とは、工作機械1を起動するための入力に対応する。
 制御装置20は、制御プログラム24の実行によって、エンコーダ16からモータ15の現在の回転数を取得する。制御装置20は、モータ15の現在の回転数が簡易診断回転数となるまでモータ15の現在の回転数を監視する。そして、制御装置20は、モータ15の現在の回転数が簡易診断回転数となることを確認すると(ステップS112)、第1コマンドを信号処理装置3に送信する(ステップS12)。
 第1コマンドは、構成機器COMの異常の発生に関する状態記述簡易データをセンサ14の信号から生成することを指示するコマンドである。具体的には、第1コマンドは、構成機器COMの異常の発生に関する状態記述簡易データをセンサ14の信号から生成する処理内容が記述された簡易診断スクリプト36を実行するための実行コマンドを含んでいる。簡易診断スクリプト36は、好ましくは、成分特定情報26、合成情報27、及び、閾値情報28に含まれる閾値を含む。簡易診断スクリプト36は、状態記述簡易データの生成方法をスクリプト言語で記述されたものである。例えば、(i)センサ14の信号を5秒間取得してA/D変換してエンベロープ処理をしてFFTをかけて特定周波数f、f、fの周波数成分を抽出し、(ii)その周波数成分の和を求め、(iii)その和が閾値TH1を超えたとき、状態記述簡易データのうちのcaution値をTRUEとし、(iv)その和が閾値TH2(TH1<TH2)を超えたとき、状態記述簡易データのうちのwarning値をTRUEとし、(v)全周波数成分の実効値を求め、(vi)caution値、warning値、実行値を返信する処理を要求するスクリプトを図4のように記述することができる。
 図4は、代表的なスクリプト言語であるJavaScriptを利用した簡易診断スクリプト36の例である。図4はあくまでも一例であって、他のスクリプト言語やXMLなどのマークアップ言語が使用されてもよい。図4の関数RoughDiagnosisは引数No(モータ15の回転数)を受け取ることができる。図4の"const var"で始まる最初の二行は、プログラムで必要となる定数の宣言である。"th1, th2"は、閾値情報28から読み込まれた上述するTH1、TH2の値が代入される。"fa, fb, fc"は、成分特定情報26から読み込まれたf/No、f/No、f/Noの値に、引数Noを乗じて、f、f、fに対応する周波数値が代入される。"data"は、センサ14からの出力をA/D変換した値が格納される配列である。この配列の各要素は、例えば、時間毎のセンサ出力値を表す。"envelopdata"は、"data"にエンベロープ処理をした値が格納される配列である。この配列の各要素は、例えば、時間毎のエンベロープ値を表す。"fftdata"は、"envelopdata"を高速フーリエ変換することによって得られる周波数スペクトルが格納される配列である。この配列の各要素は、例えば、周波数ごとの成分値である。"sum"には、f、f、fの周波数成分の和が格納される。"rsmvalue"には、周波数成分の実効値が格納される。"level"は、それぞれ、異常なし(no problem)、caution、warningを表す判定値が格納される。
 "getData"は、関数呼出から引数に記載された時間の間、信号処理装置3にセンサ14の信号をA/D変換させて、得られたデジタル値を変数"data"に出力する関数である。"data"は物理的にはメモリ32に記憶される。なお、"getData"は1つの関数名の例であって、関数名が他の名称であってもよく、引数が省略されてもよい。引数が省略される場合、デフォルトで定められた時間の間、信号処理装置3はセンサ14の信号を取得する。また、信号処理装置3にセンサ14と接続可能な接続ポートが複数存在する場合、"getData"の引数としてポート番号が含まれてもよい。
 "getEnvelope"は、引数である"data"をエンベロープ処理して、得られるエンベロープデータを変数"envelopedata"に出力する関数である。エンベロープ処理とは、振動波形の絶対値をとって包絡線を検出する処理をいう。"envelopedata"は物理的にはメモリ32に記憶される。なお、"getEnvelope"は1つの関数名の例であって、関数名が他の名称であってもよい。"getFFT"は、引数である"envelopedata"を高速フーリエ変換することによって得られる周波数スペクトルを変数"fftdata"に出力する関数である。"fftdata"は物理的にはメモリ32に記憶される。なお、"getFFT"は1つの関数名の例であって、関数名が他の名称であってもよい。また、特定の周波数範囲に限定して周波数成分を出力する場合、"getFFT"の引数として周波数範囲の最小値及び最大値の少なくとも1つが指定されていてもよい。
 "getFrequencyData (A, B)"は、引数Aである周波数スペクトルから、引数Bである周波数値に相当する周波数成分を出力する。"fa, fb, fc"それぞれについて"getFrequencyData"を呼び出して戻り値を足し算することによってsumにf、f、fの周波数成分の和が代入される。なお、"getFrequencyData"は1つの関数名の例であって、関数名が他の名称であってもよい。また、引数の順序が逆であっても、引数のデータ形式は他の形式であってもよい。例えば、引数Bは配列fftdata[]の何番目のデータかを指定するものであってもよい。また、fftdata[]のサンプリング周波数が分かっている場合、"getFrequencyData"のような関数を使用しなくてもf、f、fの周波数値に対応する周波数成分がfftdata[]の何番目の配列の値に相当するか算出し、fftdata[]から直接算出してもよい。
 "getRMSValue (A, B, C)"は、引数Aである周波数スペクトルから引数B及びCにて規定される周波数範囲[B,C]における実効値を算出する。図4の例では、周波数0から信号処理装置3が算出しうる最大周波数MAXまでの実効値を算出するものである。なお、最大周波数MAXは、検出する必要のある周波数の2倍以上の任意の値に指定されていてもよい。"level"には、"sum"がTH1以上TH2未満であるときcautionを表す判定値が代入される。"level"には、"sum"がTH2以上であるときwarningを表す判定値が代入される。"sendData"は引数として記述された文字列を状態記述簡易データとして送信する関数である。"'"と"'"との間に記述される文字列は、制御装置20が後に続くデータの種類を識別するための文字列(例えば、'level=')とデリミタ';'とを含む。なお、データの種類を識別するための文字列は省略されてもよく、デリミタは他のコードであってもよい。
 合成情報27は、一例として、図4のスクリプトにおいて定数の宣言を除く他のコードを含む情報であってもよい。そして、制御装置20は、簡易診断プログラム25の実行において、成分特定情報26、合成情報27、及び、閾値情報28を読み込んで、合成情報27として記憶されているコードに、成分特定情報26、及び、閾値情報28に格納された値をもとに定数の宣言を加えて、第1コマンドを生成してもよい。なお、第1コマンドは、スクリプトでなく、バイナリコードであってもよい。この場合、制御装置20は、上述するスクリプトの処理内容を含むバイナリコードを生成するとよい。信号処理装置3の通信インタフェース34は、第1コマンドのバイナリコードを解析するためのパーサを有するとよい。なお、図4において、第1コマンドは、定格値を出力する関数("getRMSValue (A, B, C)")に変えて全周波数成分の積分値を出力する関数を使用してもよい。
 第1コマンドは、以上のようなRoughDiagnosisの簡易診断スクリプト36を実行するための実行コマンドである。また、第1コマンドは、RoughDiagnosisの引数として簡易診断回転数を含む。ただし、あらかじめ信号処理装置3にRoughDiagnosisの引数として簡易診断回転数が送信されている場合であれば、第1コマンドに簡易診断回転数が含まれなくてもよい。信号処理装置3は、第1コマンドを受信すると、スクリプトエンジン37によって簡易診断スクリプト36に記述された処理を実行する。そして、信号処理装置3は、"getData"に記述されたコマンドに従って、センサ14にセンサ起動コマンドを送信する(ステップS129)。センサ14は、センサ起動コマンドを受信すると、構成機器COMの状態を検出する(ステップS13)。センサ14は、センサ14によって検出された状態を表す信号(センサ信号)を信号処理装置3へ送信する(ステップS14)。なお、センサ14はセンサ起動コマンドの有無に関わらず常時センサ信号を信号処理装置3に出力している場合、ステップS129は省略されてもよい。センサ信号を受信すると、信号処理装置3は、構成機器COMの異常の発生に関する状態記述簡易データを信号から生成する(ステップS15)。具体的には、信号処理装置3はセンサ信号をデジタル値に変換する(ステップS151)。
 そして、信号処理装置3は、信号から状態記述簡易データを生成する(ステップS152)。具体的には、図4の"getFFT"と"getFrequencyData"によって定義されるコマンドに従って、信号処理装置3は、信号から構成機器COMの異常に関係する複数の成分を抽出する。つまり、信号処理装置3は、当該信号から当該複数の成分を抽出するように構成される。信号処理装置3は、状態記述簡易データを生成するときに、図4の"sum=..."で表される数式(複数の成分の少なくとも一部を合成する合成方法)に基づいて、複数の成分の少なくとも一部を合成した合成値(sum)を算出する。つまり、信号処理装置3は、複数の成分の少なくとも一部を合成した合成値を算出するように構成される。図4の"if(sum <th1) ... else if(sum <th2) ... else ..."の論理式に基づいて、信号処理装置3は、構成機器COMの異常の有無(caution, warning)を判定する。つまり、信号処理装置3は、上述する複数の成分と閾値とに基づいて、構成機器COMの異常の有無を判定する。信号処理装置3は、上述する複数の成分と閾値とに基づいて、構成機器COMの異常の有無を判定するように構成される。さらに、信号処理装置3は、"sendData"の引数によって記述された演算に従って、信号処理装置3は、信号から状態記述簡易データを生成する。当該引数は、"sum"、即ち、f、f、fの周波数成分の和を含む。すなわち、状態記述簡易データは、構成機器COMの異常に関係する複数の成分の少なくとも一部を構成した合成値を含む。状態記述簡易データは、"level"、即ち、構成機器COMの異常の有無を表す情報を含む。
 ステップS16において、信号処理装置3は、生成された状態記述簡易データをアクチュエータACTの動作を制御するための制御装置20に送信する。制御装置20は、受信した状態記述簡易データを受信時刻に関連付けて記憶してもよい。状態記述簡易データを信号処理装置3から受信すると、ステップS17において、制御装置20は、構成機器COMにおいて異常が発生しているか否かの情報、及び合成値を入出力デバイス17に表示させる。つまり、制御装置20は、制御装置20に送信された状態記述簡易データに基づいて構成機器COMの異常が発生しているか否かの情報を、入出力デバイス17を介してオペレータに報知する。この報知においては、制御装置20は、現在の状態記述簡易データのみをオペレータに報知するばかりでなく、過去の状態記述簡易データも利用して、構成機器COMの異常の度合いの時系列的変化、合成値の時系列的変化を入出力デバイス17に表示してもよい。
 ステップS17において、異常(warning)が報知されない場合、制御装置20による加工プログラムの実行が許可される。そして、工作機械1による加工処理が実行可能となる。事後の加工処理は、オペレータによる入出力デバイス17の操作によって実行されるため、簡易診断の結果を入出力デバイス17に出力するのは、事後の加工処理をスムーズに行うために有利である。ステップS17において、異常(warning)が報知される場合、制御装置20は、異常とともにオペレータがとるべき今後の処置方法を、入出力デバイス17を介して報知する。例えば、詳細診断の実行がオペレータに推奨される。なお、オプションの処理として、ステップS18において、制御装置20は、受信した状態記述簡易データを、遠隔監視装置9が通信ネットワーク53を介してアクセス可能な記憶装置7へ送信する。ステップS19において、記憶装置7は、構成機器COM毎に時系列順に検索可能な態様で、状態記述簡易データを記憶する。工作機械1に対して構成機器COMが1つしか存在しない場合、記憶装置7は、構成機器COM毎に状態記述簡易データを検索できるように、送信されてきた制御装置20のアドレスから状態記述簡易データを管理してもよい。あるいは、状態記述簡易データは構成機器COMの情報を含み、その情報をもとに、記憶装置7は、構成機器COM毎に状態記述簡易データを管理してもよい。ステップS18とS19はオプションの処理であるため、省略されてもよい。
<詳細診断方法>
 つぎに、本実施形態における遠隔監視装置9による構成機器COMの詳細診断方法について説明する。詳細診断とは以下の(1)~(3)の3つの場合において主に行われる。
(1)簡易診断において異常(warning)が報知されてオペレータの対処方法として詳細診断が推奨される場合
(2)簡易診断において注意情報(caution)が報知されてオペレータが自主的に詳細診断を希望する場合
(3)工作機械1に事故が発生した場合
 (1)(2)の場合においては、図4のステップS17の後の状態として、入出力デバイス17の前に居るオペレータが遠隔監視装置9を操作するメーカ担当者に電話等で連絡する。このため、簡易診断の結果を入出力デバイス17に出力するのは、事後の対応をスムーズに行うために有利である。(3)の場合の事故も加工作業中に発生することが予想されるため、オペレータが入出力デバイス17の前に居ることが想定される。このとき、事故に気付いたオペレータが遠隔監視装置9を操作するメーカ担当者に電話等で連絡する。以降における詳細診断処理のフローチャートを図5に示す。また、以降における詳細診断処理のシーケンス図を図6に示す。図5及び図6において、簡易診断方法と同じ処理は簡易診断方法と同じ符号が付されており、詳細な説明が省略される。
 まず、ステップS20において、入出力デバイス17を介して、状態記述詳細データの遠隔監視装置9への出力を許可するための許可指令が入力される。通常、ゲートウェイ57は、遠隔監視装置9からのアクセスを禁止する制御を行っている。しかし、セキュリティプログラム29の実行によって、制御装置20からゲートウェイ57へ許可指令が入力されると、ゲートウェイ57は、以下の(1)~(4)のいずれかのイベントが発生するまで遠隔監視装置9からのアクセスを許可する。
(1)セキュリティプログラム29の実行中のオペレータが、信号処理装置3と遠隔監視装置9との間の通信を不許可とする不許可指令を、入出力デバイス17を介して入力し、信号処理装置3が不許可指令を受信する。
(2)信号処理装置3と遠隔監視装置9との間の通信がタイムアウトとなる。
(3)信号処理装置3が遠隔監視装置9からの詳細診断の終了指令を受信する。
(4)信号処理装置3がセンサ14の信号をA/Dコンバータ31によってデジタル化のみ行ったデジタルデータを遠隔監視装置9に送信する場合、当該デジタルデータを全て送信し終わる。
 ステップS20においてより詳細には、図6のステップS201において、オペレータは、入出力デバイス17を介してセキュリティプログラム29を起動し、許可指令の出力を入力する。ステップS202において、セキュリティプログラム29は、上記許可指令をゲートウェイ57に送信する処理を実行する。つまり、制御装置20は、上記許可指令をゲートウェイ57に送信する。ゲートウェイ57は、許可指令を受信後、上記(1)~(4)のイベントのいずれかが発生する(ステップS204)までの間、遠隔監視装置9からのアクセスを許可する(ステップS203)。
 ステップS21では、工作機械1の入出力デバイス17からの入力に基づいて、制御装置20は、構成機器COMの状態を変化させるように工作機械1のアクチュエータACTを駆動する。具体的には、オペレータは、制御プログラム24を呼び出して、メーカ担当者から連絡された回転数、もしくは、図3及び図4のステップS17の報知によって通知された回転数で、モータ15を回転させる指令をモータ15に送る(ステップS211)。以降の説明において、この回転数を、遠隔診断回転数と呼ぶ。制御装置20は、そのときにエンコーダ16から取得するモータ回転数を遠隔監視装置9に送信する(ステップS212)。遠隔監視装置9は、制御装置20から送信されたモータ回転数を参照して、モータ15が遠隔回転数で回転していることを確認する(ステップS213)。
 ステップS213の後、遠隔監視装置9は、構成機器COMの異常箇所を特定するための、状態記述簡易データよりも情報量の多い状態記述詳細データを信号から生成することを指示する第2コマンドを信号処理装置3へ送信する(ステップS22)。上述する許可指令によって遠隔監視装置9に状態記述詳細データを送信することが許可されている間であれば、信号処理装置3は、第2コマンドを受け付ける。上述する許可指令によって遠隔監視装置9に状態記述詳細データを送信することが許可されている間であれば、信号処理装置3は、第2コマンドを受け付けるように構成される。第2コマンドの例として、以下の(i)~(iv)のような内容がある。
(i)センサ14の信号をデジタル化したデジタル信号データ35の送信を要求
(ii)(i)のデジタルデータをエンベロープ処理を行って、高速フーリエ変換することによって得られる周波数スペクトルの送信を要求
(iii)(ii)の周波数スペクトルから得られる全周波数成分の実効値(RMS値)の送信を要求
(iv)(ii)の周波数スペクトルから得られる特定周波数f、f、fのいずれかの周波数成分の送信を要求
 上記(i)~(iv)のコマンドは、図4を利用して述べられたスクリプトを利用することによっても実現可能である。例えば、(i)においては、図4の"getData"関数の出力値を"sendData"関数に読み込むスクリプトによって第2コマンドを実現可能である。(ii)においては、図4の"getFFT"の出力値を"sendData"関数に読み込むスクリプトによって第2コマンドを実現可能である。(iii)においては、図4の"getRMScalue"関数の出力値を"sendData"関数に読み込むスクリプトによって第2コマンドを実現可能である。(iv)においては、図4の"getFrequencyData(fft, fa)"、"getFrequencyData(fft, fb)"、及び、"getFrequencyData(fft, fc)"のいずれかの関数の出力値を"sendData"関数に読み込むスクリプトによって第2コマンドを実現可能である。なお、これらのスクリプトは第2コマンドの一例であって、バイナリコードなど別の方法によって第2コマンドが実現されてもよい。また、第2コマンドは、上記(i)~(iv)以外のコマンドを含むものであってもよい。
 信号処理装置3が第2コマンドを受信すると、信号処理装置3は、スクリプトエンジン37によって第2コマンドに記述された処理を実行する。そして、信号処理装置3は、簡易診断方法と同様の方法で、センサ14にセンサ起動コマンドを送信する(ステップS229)。なお、センサ14はセンサ起動コマンドの有無に関わらず常時センサ信号を信号処理装置3に出力している場合、ステップS229は省略されてもよい。ステップS14の終了後、信号処理装置3は、構成機器COMの異常の発生に関する状態記述簡易データをセンサ信号から生成する(ステップS25)。具体的には、信号処理装置3は、A/D変換する(ステップS151)とともに、信号から状態記述詳細データを生成する(ステップS252)。詳細には、信号処理装置3は、第2コマンドに応じて、構成機器COMの異常箇所を特定するための、状態記述簡易データよりも情報量の多い状態記述詳細データをセンサ14の信号から生成する。
 具体的には、第2コマンドが上記(i)のようなコマンドである場合、信号処理装置3は、センサ14の信号をデジタル化したデジタルデータを、状態記述詳細データとして、生成する。第2コマンドが上記(ii)のようなコマンドである場合、信号処理装置3は、周波数スペクトルを、状態記述詳細データとして、生成する。第2コマンドが上記(iii)のようなコマンドである場合、信号処理装置3は、実効値を、状態記述詳細データとして、生成する。第2コマンドが上記(iv)のようなコマンドである場合、信号処理装置3は、特定周波数f、f、fのいずれかの周波数成分を、状態記述詳細データとして生成する。なお、第2コマンドが上記(i)、(ii)、または、(iv)のいずれかのようなコマンドである場合、状態記述詳細データは、構成機器COMの異常に関係する複数の成分(例えば、特定周波数f、f、fのいずれかの周波数成分)を識別可能なように含んでいる。
 ステップS26において、信号処理装置3は、生成された状態記述詳細データを遠隔監視装置9に送信する。より詳細には、信号処理装置3は、上述する許可指令によって遠隔監視装置9に状態記述詳細データを送信することが許可されている間に、生成された状態記述詳細データを遠隔監視装置9に送信する。信号処理装置3は、上述する許可指令によって遠隔監視装置9に状態記述詳細データを送信することが許可されている間に、生成された状態記述詳細データを遠隔監視装置9に送信するように構成される。ステップS27において、遠隔監視装置9は、状態記述詳細データを解析する際に、状態記述簡易データを記憶装置7から取得する。具体的には、ステップS271において、遠隔監視装置9は、状態記述簡易データのリクエストメッセージを送信する。このリクエストメッセージは、構成機器COMを特定するための情報(IDなど)と、送信対象となる状態記述簡易データの期間を指定する情報とを少なくとも含む。ステップS272において、記憶装置7は、当該リクエストメッセージにて指定される状態記述簡易データを遠隔監視装置9に送信する。なお、ステップS27(ステップS271、S272)は省略可能である。ステップS28において、遠隔監視装置9は、受信した状態記述詳細データ、及び、状態記述簡易データを利用して、構成機器COMの状態を解析する。
<本実施形態の効果>
 本実施形態に係る工作機械1、診断システム100、工作機械1の診断方法は、異常診断のためのセンサ信号処理を制御装置20とは別の信号処理装置3に分離して行わせることによって制御装置20の負荷をそれほど高くすることなく、工作機械1の簡易異常診断処理と遠隔診断装置による工作機械の詳細異常診断処理との両方を実現できる。さらに、工作機械1の動作のための入力と簡易異常診断結果の報知とを工作機械1の側で一元化することによって簡易異常診断の利便性を向上させることができる。
<変形例>
 簡易診断回転数、成分特定情報26、閾値情報28、及び、簡易診断スクリプト36は、遠隔監視装置9から別のデータに差し替え可能であってもよい。合成情報27についても、別な合成情報27を記述するスクリプトのテンプレート(図4のスクリプトにおいて成分特定情報26及び閾値情報28を除く他のコードを含む情報)に遠隔監視装置9から差し替え可能であってもよい。成分特定情報26、合成情報27、及び、閾値情報28は1つの情報にまとめられてもよい。このような1つの情報の例として簡易診断スクリプト36そのものをメモリ22に格納することも考えられる。さらに、簡易診断プログラム25、簡易診断回転数、成分特定情報26、合成情報27、及び、閾値情報28は1つの簡易診断プログラム25としてメモリ22に記憶されていてもよい。簡易診断スクリプト36は、制御装置20以外から信号処理装置3に送信され、インストールされてもよい。
 上述の実施形態では、構成機器COMは主軸11を支持するベアリング13であったが他の部品であってもよい。また、構成機器COMはより大きな構成単位であってもよい。例えば、構成機器COMを主軸11であってもよい。ネットワーク5は必ずしも有線ネットワークでなくてもよく、無線ネットワークであってもよい。通信ネットワーク53はメーカとの専用回線や電話回線に代替されてもよい。上述の実施形態では、簡易診断回転数として予め定められた値が使用されているが、オペレータが入出力デバイス17から入力し、簡易診断プログラム25が第1コマンドを生成する処理を実行してもよい。
 上述の実施形態における特定周波数f、f、fの成分は、複数の部品のはめあいの異常の影響を受けやすい成分ではないが、複数の部品のはめあいの異常の影響を受けやすい成分も含んでもよい。例えば、ベアリング13の転動体13Bが保持器に保持されているときに保持器に欠陥がある場合(転動体13Bが本来あるべき場所からずれてモータ15の回転軸周りを公転している場合)、以下の周波数fの成分が欠陥の影響を受けやすいが、構成機器COMの異常に関係する複数の成分は、複数の部品のはめあいの異常の影響を受けやすい成分として、周波数fの成分を含んでもよい。
=(No/120)・(1-d・cosα/D)    (4)
 上述の制御プログラム24、簡易診断プログラム25、及び、セキュリティプログラム29の一部または全ての機能が専用のプロセッサや集積回路によって実現されてもよい。制御プログラム24、簡易診断プログラム25、及び、セキュリティプログラム29は、制御装置20に内蔵されたメモリ22にとどまらず、フロッピーディスク、光ディスク、CD-ROMおよび磁気ディスク等のディスク、SDカード、USBメモリ、外付けハードディスクなど制御装置20から取り外し可能で、制御装置20に読出可能な記憶媒体に記録されたものであってもよい。なお、制御装置20は、コンピュータの一例である。
 本願においては、「備える」およびその派生語は、構成要素の存在を説明する非制限用語であり、記載されていない他の構成要素の存在を排除しない。これは、「有する」、「含む」およびそれらの派生語にも適用される。
 「~部材」、「~部」、「~要素」、「~体」、および「~構造」という文言は、単一の部分や複数の部分といった複数の意味を有し得る。
 「第1」や「第2」などの序数は、単に構成を識別するための用語であって、他の意味(例えば特定の順序など)は有していない。例えば、「第1要素」があるからといって「第2要素」が存在することを暗に意味するわけではなく、また「第2要素」があるからといって「第1要素」が存在することを暗に意味するわけではない。
 程度を表す「実質的に」、「約」、および「およそ」などの文言は、実施形態に特段の説明がない限りにおいて、最終結果が大きく変わらないような合理的なずれ量を意味し得る。本願に記載される全ての数値は、「実質的に」、「約」、および「およそ」などの文言を含むように解釈され得る。
 本願において「A及びBの少なくとも一方」という文言は、Aだけ、Bだけ、及びAとBの両方を含むように解釈されるべきである。
 上記の開示内容から考えて、本発明の種々の変更や修正が可能であることは明らかである。したがって、本発明の趣旨を逸脱しない範囲で、本願の具体的な開示内容とは別の方法で本発明が実施されてもよい。

Claims (15)

  1.  工作機械のアクチュエータの動作に従って状態が変化する構成機器と、
     前記構成機器の前記状態を検出するように構成されるセンサと、
     前記センサの信号を処理するように構成される信号処理装置と、
     前記アクチュエータの動作を制御するように構成される制御装置と、
     前記アクチュエータの動作を前記制御装置に行わせるための命令を入力し、前記アクチュエータの動作状況を報知するように構成される入出力デバイスと、
    を備え、
     前記信号処理装置は、
      前記構成機器の異常の発生に関する状態記述簡易データを前記信号から生成し、生成した前記状態記述簡易データを前記制御装置へ送信するように構成され、
      前記構成機器の異常箇所を特定するための、前記状態記述簡易データよりも情報量の多い状態記述詳細データを前記信号から生成し、生成した前記状態記述詳細データを、前記構成機器の前記状態を解析するための遠隔監視装置へ送信するように構成され、
     前記入出力デバイスは、
      前記制御装置に送信された前記状態記述簡易データに基づいて前記構成機器において前記異常が発生しているか否かをオペレータに報知するように構成される、
    工作機械。
  2.  前記制御装置は、前記状態記述簡易データを前記信号から生成することを指示する第1コマンドを前記信号処理装置へ送信するように構成され、
     前記信号処理装置は、前記第1コマンドに従って前記状態記述簡易データを生成し、生成した前記状態記述簡易データを前記制御装置へ送信するように構成される、
    請求項1に記載の工作機械。
  3.  前記遠隔監視装置は、前記状態記述詳細データを前記信号から生成することを指示する第2コマンドを前記信号処理装置へ送信するように構成され、
     前記信号処理装置は、前記第2コマンドに応じて前記状態記述詳細データを生成し、生成した前記状態記述詳細データを前記遠隔監視装置へ送信するように構成される、
    請求項1または2に記載の工作機械。
  4.  前記制御装置と前記信号処理装置とを接続する通信回線をさらに備え、
     前記遠隔監視装置は、通信ネットワークを介して前記信号処理装置と接続され、
     前記信号処理装置と前記遠隔監視装置との間にゲートウェイが介在され、
     前記第1コマンド及び前記状態記述簡易データが前記通信回線を介して送信され、
     前記第2コマンド及び前記状態記述詳細データが前記通信ネットワークを介して送信され、
     前記通信回線の通信容量は、前記通信ネットワークの通信容量よりも小さい、
    請求項3に記載の工作機械。
  5.  前記第1コマンドは、前記状態記述簡易データを前記信号から生成するためのプログラムコードと、前記制御装置から前記信号処理装置に送信され、前記信号処理装置に保存された前記プログラムコードを実行するための実行コマンドとの少なくとも一方を含む、
    請求項2から4のいずれかに記載の工作機械。
  6.  前記プログラムコードは、
      前記センサの信号のうち、前記構成機器の異常に関係する複数の成分を特定するための成分特定情報と、
      前記複数の成分の少なくとも一部を合成する合成方法を規定する合成情報と、を含み、

     前記信号処理装置は、前記プログラムコードの実行によって、前記信号から前記複数の成分を抽出し、前記合成方法に基づいて前記複数の成分の少なくとも一部を合成した合成値を算出する、
    請求項5に記載の工作機械。
  7.  前記状態記述簡易データは、前記合成値を含む、
    請求項6に記載の工作機械。
  8.  前記プログラムコードは、前記構成機器の異常を判定するための閾値を含み、
     前記信号処理装置は、前記プログラムコードの実行によって、前記複数の成分と前記閾値とに基づいて、前記構成機器の異常の有無を判定し、
     前記状態記述簡易データは、前記構成機器の異常の有無を表す情報を含む、
    請求項5から7のいずれかに記載の工作機械。
  9.  前記構成機器は複数の部品を含み、
     前記複数の部品の損傷と前記複数の部品のはめあいの異常とのうちの複数の異常が、それぞれ、前記複数の成分によって表される、
    請求項6から8のいずれかに記載の工作機械。
  10.  前記状態記述詳細データは、前記複数の成分のそれぞれを識別可能なように前記複数の成分を含む、
    請求項9に記載の工作機械。
  11.  前記複数の部品は前記構成機器に設けられるベアリングの内輪、外輪、転動体を含み、
     前記センサは、前記ベアリングの振動を検出するように構成される振動センサであって、
     前記複数の成分は、
      前記内輪の損傷の影響を受けやすい前記振動センサの信号の第1周波数の成分と、
      前記外輪の損傷の影響を受けやすい前記振動センサの信号の第2周波数の成分と、
      前記転動体の損傷の影響を受けやすい前記振動センサの信号の第3周波数の成分と、
    を含み、
     前記成分特定情報は、前記第1周波数、前記第2周波数、及び、前記第3周波数を特定する情報を含む、
    請求項9または10に記載の工作機械。
  12.  前記入出力デバイスを介して、前記状態記述詳細データの前記遠隔監視装置への出力を許可するための許可指令が入力され、
     前記許可指令によって前記遠隔監視装置に前記状態記述詳細データを送信することが許可されている間に、前記信号処理装置は、前記第2コマンドを受け付け、前記遠隔監視装置に前記状態記述詳細データを送信するように構成される、
    請求項3または4に記載の工作機械。
  13.  請求項1から12までのいずれかの工作機械と、
     前記遠隔監視装置と、
     前記遠隔監視装置と前記信号処理装置とを接続する通信ネットワークと、
     前記通信ネットワーク上で、前記遠隔監視装置と前記信号処理装置との間に介在するゲートウェイと、
    を備える、
    工作機械の診断システム。
  14.  前記遠隔監視装置が前記通信ネットワークを介してアクセス可能な記憶装置をさらに備え、
     前記制御装置は、前記状態記述簡易データを前記記憶装置に送信するように構成され、
     前記記憶装置は、前記構成機器毎に時系列順に検索可能な態様で、前記状態記述簡易データを記憶するように構成され、
     前記遠隔監視装置は、前記状態記述詳細データを解析する際に、前記状態記述簡易データを前記記憶装置から取得するように構成される、
    請求項13に記載の診断システム。
  15.  工作機械の入出力デバイスからの入力に基づいて、構成機器の状態を変化させるように工作機械のアクチュエータを駆動し、
     前記構成機器の前記状態をセンサによって検出し、
     前記センサによって検出された前記状態を表す信号を信号処理装置へ送信し、
     前記信号処理装置によって、構成機器の異常の発生に関する状態記述簡易データを前記信号から生成し、生成された前記状態記述簡易データを前記アクチュエータの動作を制御するための制御装置に送信し、
     前記信号処理装置によって、前記構成機器の異常箇所を特定するための、前記状態記述簡易データよりも情報量の多い状態記述詳細データを前記信号から生成し、生成された前記状態記述詳細データを、前記構成機器の前記状態を解析するための遠隔監視装置へ送信し、
     前記制御装置に送信された前記状態記述簡易データに基づいて前記構成機器において前記異常が発生しているか否かを、前記入出力デバイスを介してオペレータに報知する、
    ことを含む、工作機械の診断方法。
PCT/JP2021/014008 2021-03-31 2021-03-31 工作機械、工作機械の診断システム、及び、工作機械の診断方法 WO2022208803A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/014008 WO2022208803A1 (ja) 2021-03-31 2021-03-31 工作機械、工作機械の診断システム、及び、工作機械の診断方法
EP21934968.5A EP4283418A4 (en) 2021-03-31 2021-03-31 MACHINE TOOL, DIAGNOSTIC SYSTEM FOR MACHINE TOOLS AND DIAGNOSTIC METHOD FOR MACHINE TOOLS
CN202180093899.4A CN116888545A (zh) 2021-03-31 2021-03-31 机床、机床的诊断系统和机床的诊断方法
JP2021554372A JP7104858B1 (ja) 2021-03-31 2021-03-31 工作機械、工作機械の診断システム、及び、工作機械の診断方法
US18/477,487 US20240017367A1 (en) 2021-03-31 2023-09-28 Machine tool, diagnosis system for machine tool, and method of diagnosing machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014008 WO2022208803A1 (ja) 2021-03-31 2021-03-31 工作機械、工作機械の診断システム、及び、工作機械の診断方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/477,487 Continuation US20240017367A1 (en) 2021-03-31 2023-09-28 Machine tool, diagnosis system for machine tool, and method of diagnosing machine tool

Publications (1)

Publication Number Publication Date
WO2022208803A1 true WO2022208803A1 (ja) 2022-10-06

Family

ID=82492226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014008 WO2022208803A1 (ja) 2021-03-31 2021-03-31 工作機械、工作機械の診断システム、及び、工作機械の診断方法

Country Status (5)

Country Link
US (1) US20240017367A1 (ja)
EP (1) EP4283418A4 (ja)
JP (1) JP7104858B1 (ja)
CN (1) CN116888545A (ja)
WO (1) WO2022208803A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297813A (ja) 1987-05-28 1988-12-05 Fuji Electric Co Ltd ころがり軸受異常診断装置
JP2004192326A (ja) * 2002-12-11 2004-07-08 Hibiya Eng Ltd リモートライフサイクルマネジメントサポートシステム
JP2004265009A (ja) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp 診断システム
JP2017032520A (ja) * 2015-08-06 2017-02-09 日本精工株式会社 状態監視装置及び状態監視方法
JP2017219469A (ja) * 2016-06-09 2017-12-14 日本精工株式会社 状態監視装置及び状態監視方法
JP2018155675A (ja) * 2017-03-21 2018-10-04 株式会社日産アーク 解析支援システム
JP2018179735A (ja) * 2017-04-12 2018-11-15 日本精工株式会社 回転部品の異常診断方法及び異常診断装置
JP2020041849A (ja) * 2018-09-07 2020-03-19 オークマ株式会社 転がり軸受の異常診断方法及び異常診断装置、異常診断プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695723A (ja) * 1991-02-19 1994-04-08 Enshu Ltd 工作機械のリモート診断方法とその処置
JPH10222220A (ja) * 1997-02-12 1998-08-21 Mitsubishi Electric Corp リモート診断システム
JP3543147B2 (ja) * 2001-07-10 2004-07-14 ヤマザキマザック株式会社 工作機械の異常管理装置
JP4337084B2 (ja) * 2003-03-28 2009-09-30 マツダ株式会社 遠隔故障診断システム
JP2016033705A (ja) * 2014-07-31 2016-03-10 ブラザー工業株式会社 数値制御装置、制御方法、記憶媒体
JP6998781B2 (ja) * 2018-02-05 2022-02-10 住友重機械工業株式会社 故障診断システム
JP6805314B1 (ja) * 2019-10-15 2020-12-23 株式会社川本製作所 軸受異常検出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297813A (ja) 1987-05-28 1988-12-05 Fuji Electric Co Ltd ころがり軸受異常診断装置
JP2004192326A (ja) * 2002-12-11 2004-07-08 Hibiya Eng Ltd リモートライフサイクルマネジメントサポートシステム
JP2004265009A (ja) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp 診断システム
JP2017032520A (ja) * 2015-08-06 2017-02-09 日本精工株式会社 状態監視装置及び状態監視方法
JP2017219469A (ja) * 2016-06-09 2017-12-14 日本精工株式会社 状態監視装置及び状態監視方法
JP2018155675A (ja) * 2017-03-21 2018-10-04 株式会社日産アーク 解析支援システム
JP2018179735A (ja) * 2017-04-12 2018-11-15 日本精工株式会社 回転部品の異常診断方法及び異常診断装置
JP2020041849A (ja) * 2018-09-07 2020-03-19 オークマ株式会社 転がり軸受の異常診断方法及び異常診断装置、異常診断プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4283418A4

Also Published As

Publication number Publication date
CN116888545A (zh) 2023-10-13
EP4283418A4 (en) 2024-03-20
EP4283418A1 (en) 2023-11-29
US20240017367A1 (en) 2024-01-18
JP7104858B1 (ja) 2022-07-21
JPWO2022208803A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
EP3462602B1 (en) Method and apparatus for online condition monitoring of variable speed motor applications
US8451134B2 (en) Wind turbine generator fault diagnostic and prognostic device and method
US20030040878A1 (en) Automatic machinery fault diagnostic method and apparatus
JP6542735B2 (ja) 管理システム、主軸故障検出方法及びコンピュータプログラム
WO2014185346A1 (ja) 監視システムおよびその診断装置・監視端末
JP6944285B2 (ja) 回転部材を有する装置の異常原因特定システム
US8930775B2 (en) Preventing disturbance induced failure in a computer system
US20130107036A1 (en) Inspection system and method for correlating data from sensors and visual displays
US10107718B2 (en) Apparatus for capturing data related to an event indicating abnormal function of a machine
JP2019095346A (ja) 送り軸の異常診断方法及び異常診断装置
WO2022208803A1 (ja) 工作機械、工作機械の診断システム、及び、工作機械の診断方法
JP2020114084A (ja) 電力変換装置、回転機システム、及び診断方法
EP3260838A1 (en) Abnormality diagnosis system
CN107725456B (zh) 离心压缩机机组的分析诊断方法和装置
KR101490471B1 (ko) 신호 계측 및 진단 시스템과 그 방법
JP3479268B2 (ja) 設備点検端末
JP2019184406A (ja) 診断支援装置、回転機システム及び診断支援方法
JP2009217822A6 (ja) 機械の動作方法、コンピュータプログラム、機械の制御装置および機械
CN115389190A (zh) 一种设备运行状态的诊断系统
WO2019230327A1 (ja) 特徴量抽出装置、故障予兆診断装置、設計支援装置、並びに故障予兆診断運用方法
CA2935531C (en) System and method for assisting with the diagnosis of the operating condition of a rotary machine
KR101752298B1 (ko) 회전익 진동 기반 건전성 감시 장치 및 이를 이용하는 감시 방법
US11835420B2 (en) Method and device for diagnosing a robot
US20220074814A1 (en) Abnormality Diagnosis System for Rotary Electric Machine
US12064882B2 (en) Method for diagnosing a robot, device and server

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021554372

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093899.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021934968

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021934968

Country of ref document: EP

Effective date: 20230825

NENP Non-entry into the national phase

Ref country code: DE