[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022206800A1 - 四氢萘啶化合物晶型、盐型及其制备方法 - Google Patents

四氢萘啶化合物晶型、盐型及其制备方法 Download PDF

Info

Publication number
WO2022206800A1
WO2022206800A1 PCT/CN2022/083929 CN2022083929W WO2022206800A1 WO 2022206800 A1 WO2022206800 A1 WO 2022206800A1 CN 2022083929 W CN2022083929 W CN 2022083929W WO 2022206800 A1 WO2022206800 A1 WO 2022206800A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
angles
ray powder
Prior art date
Application number
PCT/CN2022/083929
Other languages
English (en)
French (fr)
Inventor
吴凌云
王才林
徐雄彬
姚婷
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2022206800A1 publication Critical patent/WO2022206800A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings

Definitions

  • the invention relates to a crystal form, a salt form of a tetrahydronaphthyridine compound and a preparation method thereof, and their application in medicines for treating related diseases.
  • PD-1 Programmed cell death 1
  • CD279 is an important immunosuppressive molecule in the CD28/CTLA-4 receptor family. It is a membrane protein containing 268 amino acid residues and is widely expressed in T.
  • PD-L1 is a protein encoded by the CD274 gene and mainly expressed on the surface of tumor cells, dendritic cells and macrophages.
  • the PD-1/PD-L1 signaling pathway is activated, which in turn inhibits the activation of T cells, causing T cell inactivation and contributing to the immune escape of tumor cells.
  • Another ligand of PD-1, PD-L2 is mainly expressed on the surface of dendritic cells, macrophages and B cells and is associated with inflammation and autoimmune diseases.
  • PD-1 negatively regulates immune responses by binding to its ligand PD-L1 and dephosphorylating multiple key molecules in the TCR signaling pathway.
  • the activation of PD-1/PD-L1 signaling pathway can avoid the surrounding tissue damage caused by excessive immune response, thereby reducing the occurrence of autoimmune diseases.
  • the expressions of PD-1 and PD-L1 are abnormally increased, and tumor cells can successfully escape the recognition and detection of the immune system by the binding of these PD-L1 molecules to PD-1 on T cells. attack.
  • PD-(L)1 mAb can block this "tumor immune escape mechanism" and restore the patient's own immune system's anti-cancer function.
  • mAbs monoclonal antibodies
  • FDA Food and Drug Administration
  • Incyte's PD-L1 small molecule inhibitor INCB86550 (WO2018119263, WO2019191707) and Gilead's PD-L1 small molecule inhibitor GS-4224 (US20180305315, WO2019160882) ) has entered the clinical phase 2, and the small molecule PD-1/PD-L1 inhibitor of BMS benzyl phenyl ether (WO2015034820, WO2015160641) is in the preclinical research stage.
  • small-molecule drugs can cross the cell membrane and act on intracellular targets, they have the advantages of convenient storage and transportation, low production cost, no immunogenicity, and usually oral administration. Therefore, research and development of small molecule blockers of PD-1/PD-L1 has broad application prospects.
  • the present invention also provides compounds of formula (II)
  • the present invention also provides Form A of the compound of formula (II), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.19 ⁇ 0.20°, 7.77 ⁇ 0.20° and 16.22 ⁇ 0.20°.
  • the above-mentioned A crystal form is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.19 ⁇ 0.20°, 7.77 ⁇ 0.20°, 8.71 ⁇ 0.20°, 9.89 ⁇ 0.20° and 16.22 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.19 ⁇ 0.20°, 7.77 ⁇ 0.20°, 8.71 ⁇ 0.20°, 9.89 ⁇ 0.20°, 16.22 ⁇ 0.20°, 17.74 ⁇ 0.20°, 22.82 ⁇ 0.20° and 25.49 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned Form A has characteristic diffraction peaks at the following 2 ⁇ angles: 4.19 ⁇ 0.20°, 7.77 ⁇ 0.20°, and/or 8.71 ⁇ 0.20°, and/or 9.89 ⁇ 0.20°, and/or 11.47° ⁇ 0.20°, and/or 14.41° ⁇ 0.20°, and/or 16.22 ⁇ 0.20°, and/or 17.74 ⁇ 0.20°, and/or 19.67° ⁇ 0.20°, and/or 20.98° ⁇ 0.20°, and/or 22.82 ⁇ 0.20°, and/or 25.49 ⁇ 0.20°, and/or 28.15° ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.19 ⁇ 0.20°, 7.77 ⁇ 0.20°, 8.71 ⁇ 0.20°, 9.89 ⁇ 0.20°, 11.47° ⁇ 0.20°, 14.41° ⁇ 0.20°, 16.22 ⁇ 0.20°, 17.74 ⁇ 0.20°, 19.67° ⁇ 0.20°, 20.98° ⁇ 0.20°, 22.82 ⁇ 0.20°, 25.49 ⁇ 0.20° and 28.15° ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.19 ⁇ 0.10°, 7.77 ⁇ 0.10°, 8.71 ⁇ 0.10°, 9.89 ⁇ 0.10°, 11.47° ⁇ 0.10°, 14.41° ⁇ 0.10°, 16.22 ⁇ 0.10°, 17.74 ⁇ 0.10°, 19.67° ⁇ 0.10°, 20.98° ⁇ 0.10°, 22.82 ⁇ 0.10°, 25.49 ⁇ 0.10° and 28.15° ⁇ 0.10°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 4.19°, 7.77°, 8.71°, 9.89°, 11.47°, 14.41°, 16.22°, 17.74° °, 19.67°, 20.98°, 22.82°, 25.49° and 28.15°.
  • the XRPD pattern of the above-mentioned crystal form A is shown in FIG. 1 .
  • the XRPD pattern of the above-mentioned crystal form A is substantially as shown in FIG. 1 .
  • the differential scanning calorimetry curve of the above-mentioned Form A has endothermic peaks onset at 31.2°C ⁇ 5°C and 148.7°C ⁇ 5°C.
  • the DSC spectrum of the above-mentioned A crystal form is shown in FIG. 2 .
  • the DSC spectrum of the above-mentioned Form A is substantially as shown in FIG. 2 .
  • thermogravimetric analysis curve of the above-mentioned crystal form A has a weight loss of 1.77% at 130°C ⁇ 3°C, and a weight loss of 3.32% at 160°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned A crystal form is shown in FIG. 3 .
  • the TGA spectrum of the above-mentioned Form A is substantially as shown in FIG. 3 .
  • the present invention also provides the B crystal form of the compound of formula (I)
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.52 ⁇ 0.20°, 9.40 ⁇ 0.20°, 14.94 ⁇ 0.20°, 16.10 ⁇ 0.20° and 22.86 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.52 ⁇ 0.20°, 9.40 ⁇ 0.20°, 12.93 ⁇ 0.20°, 14.94 ⁇ 0.20°, 16.10 ⁇ 0.20°, 19.06 ⁇ 0.20°, 19.89 ⁇ 0.20° and 22.86 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned Form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.52 ⁇ 0.20°, 9.40 ⁇ 0.20°, and/or 7.47 ⁇ 0.20°, and/or 11.29 ⁇ 0.20°, and/or 12.93 ⁇ 0.20°, and/or 13.90 ⁇ 0.20°, and/or 14.94 ⁇ 0.20°, and/or 16.10 ⁇ 0.20°, and/or 19.06 ⁇ 0.20°, and/or 19.89 ⁇ 0.20 °, and/or 21.13 ⁇ 0.20°, and/or 22.86 ⁇ 0.20°, and/or 24.55 ⁇ 0.20°, and/or 25.25 ⁇ 0.20°, and/or 25.83 ⁇ 0.20°, and/or 26.23 ⁇ 0.20°, and/or 27.45 ⁇ 0.20°, and/or 34.58 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.52 ⁇ 0.20°, 7.47 ⁇ 0.20°, 9.40 ⁇ 0.20°, 11.29 ⁇ 0.20°, 12.93 ⁇ 0.20°, 13.90 ⁇ 0.20°, 14.94 ⁇ 0.20°, 16.10 ⁇ 0.20°, 19.06 ⁇ 0.20°, 19.89 ⁇ 0.20°, 21.13 ⁇ 0.20°, 22.86 ⁇ 0.20°, 24.55 ⁇ 0.20°, 25.25 ⁇ 0.20°, 25.83 ⁇ 0.20°, 26.23 ⁇ 0.20°, 27.45 ⁇ 0.20° and 34.58 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.52 ⁇ 0.10°, 7.47 ⁇ 0.10°, 9.40 ⁇ 0.10°, 11.29 ⁇ 0.10°, 12.93 ⁇ 0.10°, 13.90 ⁇ 0.10°, 14.94 ⁇ 0.10°, 16.10 ⁇ 0.10°, 19.06 ⁇ 0.10°, 19.89 ⁇ 0.10°, 21.13 ⁇ 0.10°, 22.86 ⁇ 0.10°, 24.55 ⁇ 0.10°, 25.25 ⁇ 0.10°, 25.83 ⁇ 0.10°, 26.23 ⁇ 0.10°, 27.45 ⁇ 0.10° and 34.58 ⁇ 0.10°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.52°, 7.47°, 9.40°, 11.29°, 12.93°, 13.90°, 14.94°, 16.10° °, 19.06°, 19.89°, 21.13°, 22.86°, 24.55°, 25.25°, 25.83°, 26.23°, 27.45° and 34.58°.
  • the XRPD pattern of the above-mentioned B crystal form is shown in FIG. 4 .
  • the XRPD pattern of the above-mentioned Form B is substantially as shown in FIG. 4 .
  • the differential scanning calorimetry curve of the above-mentioned Form B has an onset of an endothermic peak at 145.2°C ⁇ 5°C.
  • the DSC spectrum of the above-mentioned B crystal form is shown in FIG. 5 .
  • the DSC spectrum of the above-mentioned Form B is substantially as shown in FIG. 5 .
  • thermogravimetric analysis curve of the above-mentioned crystal form B has a weight loss of 0.77% at 150°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned B crystal form is shown in FIG. 6 .
  • the TGA pattern of the above-mentioned Form B is substantially as shown in FIG. 6 .
  • the present invention also provides a method for preparing the crystal form of compound B of formula (I), comprising:
  • the solvent is tetrahydrofuran, ethanol, isopropanol, acetonitrile, methanol/water (1:1), ethanol/water (1:1), acetonitrile/water (1:1), isopropanol/water (1:1) :1) or water.
  • the present invention also provides the C crystal form of the compound of formula (I)
  • the above-mentioned crystal form C its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.75 ⁇ 0.20°, 15.15 ⁇ 0.20°, 17.50 ⁇ 0.20°, 22.94 ⁇ 0.20° and 25.04 ⁇ 0.20°.
  • the above crystal form C its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.75 ⁇ 0.20°, 15.15 ⁇ 0.20°, 17.50 ⁇ 0.20°, 18.77 ⁇ 0.20°, 22.94 ⁇ 0.20°, 25.04 ⁇ 0.20°, 26.20 ⁇ 0.20°, 37.65 ⁇ 0.20°.
  • the above-mentioned crystal form C its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 15.15 ⁇ 0.20°, 17.50 ⁇ 0.20°, and/or 8.39 ⁇ 0.20°, and/or 8.75 ⁇ 0.20°, and/or 11.32 ⁇ 0.20°, and/or 12.55 ⁇ 0.20°, and/or 13.74 ⁇ 0.20°, and/or 14.07 ⁇ 0.20°, and/or 17.03 ⁇ 0.20°, and/or 17.28 ⁇ 0.20°, and/or 18.07 ⁇ 0.20°, and/or 18.77 ⁇ 0.20°, and/or 19.70 ⁇ 0.20°, and/or 20.35 ⁇ 0.20°, and/or 21.56 ⁇ 0.20°, and/or 21.83 ⁇ 0.20° , and/or 22.54 ⁇ 0.20°, and/or 22.94 ⁇ 0.20°, and/or 23.33 ⁇ 0.20°, and/or 23.74 ⁇ 0.20°, and/or 24.56 ⁇
  • the above crystal form C its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.39 ⁇ 0.20°, 11.32 ⁇ 0.20°, 12.55 ⁇ 0.20°, 13.74 ⁇ 0.20°, 14.07 ⁇ 0.20°, 15.15 ⁇ 0.20°, 17.03 ⁇ 0.20°, 17.50 ⁇ 0.20°, 18.07 ⁇ 0.20°, 18.77 ⁇ 0.20°, 19.70 ⁇ 0.20°, 20.35 ⁇ 0.20°, 21.56 ⁇ 0.20°, 22.54 ⁇ 0.20°, 23.33 ⁇ 0.20°, 23.74 ⁇ 0.20°, 24.56 ⁇ 0.20°, 25.04 ⁇ 0.20°, 26.20 ⁇ 0.20°, 27.24 ⁇ 0.20°, 27.93 ⁇ 0.20°, 29.33 ⁇ 0.20°, 30.75 ⁇ 0.20°, 31.39 ⁇ 0.20°, 33.01 ⁇ 0.20°, 34.07 ⁇ 0.20°, 36.32 ⁇ 0.20°, 37.65 ⁇ 0.20°
  • the above-mentioned crystal form C its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.39 ⁇ 0.10°, 8.75 ⁇ 0.10°, 11.32 ⁇ 0.10°, 12.55 ⁇ 0.10°, 13.74 ⁇ 0.10°, 14.07 ⁇ 0.10°, 15.15 ⁇ 0.10°, 17.03 ⁇ 0.10°, 17.28 ⁇ 0.10°, 17.50 ⁇ 0.10°, 18.07 ⁇ 0.10°, 18.77 ⁇ 0.10°, 19.70 ⁇ 0.10°, 20.35 ⁇ 0.10°, 21.56 ⁇ 0.10°, 21.83 ⁇ 0.10°, 22.54 ⁇ 0.10°, 22.94 ⁇ 0.10°, 23.33 ⁇ 0.10°, 23.74 ⁇ 0.10°, 24.56 ⁇ 0.10°, 25.04 ⁇ 0.10°, 25.33 ⁇ 0.10°, 26.20 ⁇ 0.10°, 27.24 ⁇ 0.10°, 27.93 ⁇ 0.10°, 29.33 ⁇ 0.10°, 30.75
  • the above-mentioned crystal form C its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 8.39°, 8.75°, 11.32°, 12.55°, 13.74°, 14.07°, 15.15°, 17.03°, 17.28°, 17.50°, 18.07°, 18.77°, 19.70°, 20.35°, 21.56°, 21.83°, 22.54°, 22.94°, 23.33°, 23.74°, 24.56°, 25.04°, 25.33°, 26.20° , 27.24°, 27.93°, 29.33°, 30.75°, 31.39°, 32.44°, 33.01°, 34.07°, 36.32°, 37.65°, 38.01°.
  • the XRPD pattern of the above crystal form C is shown in FIG. 7 .
  • the XRPD pattern of the above-mentioned crystal form C is substantially as shown in FIG. 7 .
  • the differential scanning calorimetry curve of the above-mentioned crystal form C has an onset of an endothermic peak at 184.7°C ⁇ 5°C.
  • the DSC spectrum of the above-mentioned C crystal form is shown in FIG. 8 .
  • the DSC spectrum of the above-mentioned crystal form C is substantially as shown in FIG. 8 .
  • thermogravimetric analysis curve of the above-mentioned crystal form C has a weight loss of 0.69% at 150°C ⁇ 3°C.
  • the TGA spectrum of the above crystal form C is shown in FIG. 9 .
  • the TGA pattern of the above-mentioned crystal form C is substantially as shown in FIG. 9 .
  • the DVS isotherm pattern of the above-mentioned crystal form C is substantially as shown in FIG. 10 .
  • the present invention also provides a method for preparing the crystal form of compound C of formula (I), comprising:
  • the solvent is methanol, acetone, isopropyl acetate, acetone:isopropyl acetate (2:1) and the like.
  • the present invention also provides a method for preparing the crystal form of compound C of formula (I), comprising:
  • the solvent is acetone, isopropyl acetate and the like.
  • the present invention also provides the use of the above compound or crystal form A or crystal form B or crystal form C or the crystal form B or crystal form C prepared according to the above method in the preparation of antitumor drugs.
  • the compound of the present invention has good PK property and oral absorption rate, stable crystal form and good druggability.
  • the compound of the present invention has a good inhibitory effect on the excessive activation of the PD-1/PD-L1 signaling pathway, thereby obtaining excellent tumor growth inhibitory activity.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by their combination with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • CD3OD stands for deuterated methanol
  • CDCl3 stands for deuterated chloroform
  • Test method About 10 mg of sample is evenly spread on a single crystal silicon sample pan for XRPD detection.
  • Light tube voltage 45kV
  • light tube current 40mA
  • Test method Take a sample ( ⁇ 1mg) and place it in a DSC aluminum pot for testing. Under the condition of 10ml/min N2 , at a heating rate of 10°C/min, heat the sample from 25°C (room temperature) to 200°C (or 250°C).
  • Thermogravimetric Analysis (Thermal Gravimetric Analyzer, TGA) method of the present invention
  • Test method Take the sample (2 ⁇ 5mg) and put it in a TGA platinum pot for testing. Under the condition of 10ml/min N2 , at a heating rate of 10°C/min, heat the sample from room temperature to 350°C or lose 20% of the weight.
  • Test conditions Take a sample (10-15 mg) and place it in the DVS sample tray for testing.
  • the hygroscopicity evaluation is classified as follows:
  • Hygroscopic classification ⁇ W% deliquescence Absorbs enough water to form a liquid Very hygroscopic ⁇ W% ⁇ 15% hygroscopic 15%> ⁇ W% ⁇ 2% slightly hygroscopic 2%> ⁇ W% ⁇ 0.2% No or almost no hygroscopicity ⁇ W% ⁇ 0.2%
  • ⁇ W% represents the hygroscopic weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Fig. 1 is the XRPD spectrum of (II) compound A crystal form
  • Fig. 2 is the DSC spectrogram of (II) compound A crystal form
  • Fig. 3 is the TGA spectrum of (II) compound A crystal form
  • Fig. 4 is the XRPD spectrum of (I) compound B crystal form
  • Fig. 5 is the DSC spectrogram of (I) compound B crystal form
  • Fig. 6 is the TGA spectrum of (I) compound B crystal form
  • Fig. 7 is the XRPD spectrum of (I) compound C crystal form
  • Fig. 8 is the DSC spectrogram of (I) compound C crystal form
  • Fig. 9 is the TGA spectrogram of (I) compound C crystal form
  • Figure 10 is the DVS isotherm spectrum of (I) Compound C crystal form.
  • the present invention will be described in detail by the following examples, but it does not mean any unfavorable limitation of the present invention.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments enumerated below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made to the specific embodiments of the present invention without departing from the spirit and scope of the invention.
  • reaction solution was poured into 600 mL of water, and the pH was adjusted to 7 with sodium bicarbonate, extracted with dichloromethane (300 mL ⁇ 3), and the combined organic phases were washed with saturated brine (300 mL ⁇ 2). , and dried over anhydrous sodium sulfate.
  • reaction solution was filtered through celite, the filtrate was poured into ice (1000 mL), and after stirring for 20 minutes, saturated ammonium chloride solution (1000 mL) was added, and the mixture was stirred for 30 minutes. mL) extraction and separation, the organic phase was washed with saturated sodium sulfite (2000 mL), washed with saturated brine (2000 mL), dried over sodium sulfate, filtered and concentrated to obtain the crude product.
  • the crude product was stirred with 120 mL of methyl tert-butyl ether and 120 mL of n-heptane, filtered, and the filter cake was dried to obtain compound 5-2.
  • reaction solution was poured into glacial hydrochloric acid (1 mol/L, 800 mL) to quench, extracted and separated, the aqueous phase was extracted with methyl tert-butyl ether (400 mL ⁇ 2), the organic phases were combined and saturated brine was used. (400 mL ⁇ 2) washed, dried over sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain compound 5-3.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Xtimate C18 250 ⁇ 50 mm ⁇ 10 microns; mobile phase: mobile phase A: 0.05% ammonia solution by volume; mobile phase B: acetonitrile; B%: 15%-45%, 18 minutes) to isolate compound 5.
  • the reaction solution was slowly pumped into a reactor containing 14 liters of saturated ammonium chloride aqueous solution in batches, and the liquids were separated, and the aqueous phase and the organic phase were collected respectively, washed with 14 liters of saturated brine, and the water was collected separately. Phase and organic phase, the organic phase was dried, filtered and concentrated to give a solid crude product.
  • 4.2 liters of methanol was added to the reaction kettle, and then the solid crude product was added to continue stirring for 30 minutes. After filtration, the filter cake was washed twice with methanol, and the filter cake was vacuum-dried to constant weight to obtain compound 3.
  • the temperature of the reaction kettle was adjusted to 20-25°C, 3.25 liters of water was added to the reaction kettle, and then 577.81 g of compound 5 (1.01 equiv.) and 790.97 g of potassium carbonate (3.01 equiv.) were added to the reaction kettle. Nitrogen replacement was carried out for 5 to 10 minutes, 13.72 g of dichlorobis(triphenylphosphine) palladium (0.01 equivalent) was added to the reaction kettle, and then the temperature of the reaction kettle was adjusted to 70 to 75 ° C and stirred for 12 hours at 70 to 75 ° C. .
  • the reaction solution was cooled to room temperature, filtered, the filter cake was washed with 13 liters of ethyl acetate, 9.75 liters of water was added to the combined filtrate, and the layers were separated.
  • the organic phase The combined organic phases were washed with 13 liters of 10% citric acid aqueous solution, and the layers were separated.
  • the aqueous and organic phases were collected separately, and the aqueous phase was extracted twice with 13 liters of ethyl acetate.
  • the organic phases were combined, washed with 6.5 liters of water, separated, and the aqueous and organic phases were collected separately.
  • the crude product was dissolved in 18 liters of ethyl acetate and poured into the reaction kettle, and the palladium-removed modified silica gel was added to the reaction kettle, and stirred at 65 to 70°C for 16 hours, and then the reaction solution was filtered, The filter cake was washed with 36 liters of ethyl acetate, the washing liquid was spin-dried and combined with the filtrate, and then the palladium removal operation was repeated once, and the filtrate was concentrated to obtain the crude product of compound 6.
  • the above solid was dissolved in 14 liters of anhydrous tetrahydrofuran and 6 liters of ethyl acetate and added to the reaction kettle, then the modified silica gel except for palladium was added to the reaction kettle, and at 20 to 25 °C, stirred for 12 After 1 hour, the reaction solution was filtered, spin-dried, and the filtrate was concentrated to obtain a crude product, which was vacuum-dried to constant weight to obtain the compound of formula (I).
  • the crude compound 6 (68 mg, 85.66 ⁇ mol) was dissolved in dichloromethane (3 mL), hydrogen chloride in ethyl acetate (4 mol/L, 1.5 mL) was added, and the mixture was stirred at room temperature at 25° C. for 0.5 hour. After the reaction was completed, it was concentrated.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX C18 75 ⁇ 30 mm ⁇ 3 microns; mobile phase: mobile phase A: 0.225% formic acid aqueous solution by volume; mobile phase B: acetonitrile; B%: 10%- 40%, 7 minutes) to isolate the formate salt of the compound of formula (I).
  • Example 8 Study on the hygroscopicity of the crystal form of compound C of formula (I)
  • the hygroscopic weight gain of the crystalline form of compound C of formula (I) at 25° C. and 80% RH is 0.33%, which is slightly hygroscopic.
  • Small molecule compounds can competitively inhibit the binding of PD-1 and PD-L1 by binding to PD-L1; when the PD-1 molecule as the donor is very close to the PD-L1 molecule as the acceptor, the donor molecule will The energy is transferred to the receptor molecule, which in turn causes the receptor molecule to emit fluorescence; by detecting the intensity of fluorescence, the ability of small molecules to prevent the binding of PD-L1 to PD-1 can be tested.
  • Homogenouse Time-Resolved Fluorescence (HTRF) binding assay was used to detect the ability of the compounds of the present invention to inhibit the mutual binding of PD-1/PD-L1.
  • PD-1/PD-L1TR-FRET detection kit was purchased from BPS Biosciences. Nivo Multilabel Analyzer (PerkinElmer).
  • Dilute PD1-Eu, Dye-labeled acceptor, PD-L1-biotin and test compound with the buffer in the kit.
  • the compound to be tested was diluted 5 times to the 8th concentration with a row gun, that is, from 40 micromolar to 0.5 nanomolar, and the DMSO concentration was 4%, and a double-well experiment was set up.
  • the IC 50 value can be obtained by curve fitting with four parameters (log(inhibitor) vs.response in GraphPad Prism --Variable slope mode).
  • Table 8 provides the inhibitory activity of compounds of the present invention on PD-1/PD-L1 binding.
  • test compound IC50 (nM) Formate salts of compounds of formula (I) 4.61
  • MDA-MB-231 triple-negative breast cancer cell line
  • PD-L1 molecules on the cell surface can be degraded by lysosomal and proteasome pathways, and small molecule inhibitors are added to induce PD-L1 endocytosis.
  • flow cytometry Fluorescence-activated Cell Sorting, FACS
  • FACS Fluorescence-activated Cell Sorting
  • Phosphate buffered saline 1640 medium, penicillin-streptomycin, fetal bovine serum, non-essential amino acids, ⁇ -mercaptoethanol (2-ME), human interferon ⁇ , LIVE/DEAD staining solution, staining solution (staining buffer), fixation buffer, 0.25% trypsin, EDTA, anti-human PD-L1 (Anti-human PD-L1), isotype control anti-human PD-L1 (Anti-human PD-L1Isotype) .
  • 1640 complete medium configuration 439.5 ml of 1640 medium was added with 50 ml of fetal bovine serum, 5 ml of non-essential amino acids, 5 ml of penicillin-streptomycin and 0.5 ml of ⁇ liter mercaptoethanol, and mixed.
  • 10mM EDTA configuration add 1ml of 0.5M EDTA to 49ml of DPBS and mix.
  • MDA-MB-231 cell counting and plating remove the culture flask, remove the medium and rinse once with phosphate buffered saline (DPBS). After washing, add 3 ml of 0.25% trypsin to the culture flask and place it in a 37°C incubator for 1.5 minutes. Take out the culture flask and add 9 ml of 1640 complete medium to stop the reaction, transfer the cells to a 50 ml centrifuge tube, and centrifuge at 1000 rpm at 37°C for 5 min. Add an appropriate volume of culture medium to resuspend the cells according to the number of cells, and count with a cell counter. The cell concentration was adjusted to 5 x 10 5 cells/ml with the medium.
  • Plating A volume of 200 microliters of cell suspension was added to each well of a 96-well plate, so that the number of cells in each well was 1 ⁇ 10 5 . Incubate overnight in an incubator.
  • Staining Dilute anti-human PD-L1 (2 microliters per well) and LIVE/DEAD staining solution (1:1000) in staining solution, add 50 microliters to each well, and stain at 4°C for 30 min. Wash twice with 200 ⁇ l staining solution. Fixation: Add 100 microliters of fixative to each well, and fix at 4°C for 15 min. Wash twice with 200 ⁇ l staining solution. Resuspend cells in 150 ⁇ l. FACS detection. Table 9 shows the test results of the effect of the compounds of the present invention on the expression level of PD-L1 in MDA-MR-231 cells.
  • test compound IC50 (nM) Formate salts of compounds of formula (I) 5.85
  • the compound of formula (I) has a significant inhibitory effect on the expression level of PD-L1 in MDA-MR-231 cells.
  • the engineered T cells express PD-1 molecule and T cell receptor (TCR) on the surface, and after co-culture with engineered antigen presenting cells (APC), the NFAT signaling pathway of T cells can be activated.
  • TCR T cell receptor
  • APC engineered antigen presenting cells
  • Expression of PD-L1 molecules on APCs can effectively attenuate the NFAT signaling pathway in T cells; PD-L1 inhibitors can effectively block the PD-1/PD-L1 regulatory mechanism, thereby reversing the weakened NFAT signaling pathway.
  • the small molecule was co-cultured with T cells, and then the expression of luciferase was detected to indirectly reflect the activation of the NFAT pathway in T cells.
  • the PD-1/PD-L1NFAT detection kit was purchased from BPS Biosciences. Birght-Glo reagent was purchased from Promega. Nivo Multilabel Analyzer (PerkinElmer).
  • the TCR Activitor/PD-L1CHO cells with a growth confluence of 80% were spread into the plate at 35,000 cells per well and then placed in a 37°C cell incubator overnight; the compounds to be tested were diluted 5-fold to the 8th cell Concentrations, i.e. dilution from 20 micromolar to 0.25 nanomolar, DMSO concentration of 2%, set up double well experiments.
  • TCR Activitor/PD-L1CHO cells Discard the supernatant of TCR Activitor/PD-L1CHO cells, add 50 microliters of compound working solution to each well, and incubate at 37°C for 30 minutes; after the incubation, add 50 microliters of PD-1/NFAT to each well at a density of 4 ⁇ 10 5 /ml Reporter-Jurkat cell suspension was incubated at 37°C for 5 hours. After the incubation, 100 microliters of Bright-Glo was added to each well, and after mixing, the chemiluminescence signal was read using a Nivo multi-label analyzer.
  • the value of EC 50 can be obtained by curve fitting with four parameters (log(inhibitor) vs.response in GraphPad Prism --Variable slope mode).
  • Table 10 shows the test results of the degree of activation of the NFAT pathway in T cells by the compounds of the present invention.
  • the compound of formula (I) can inhibit the interaction of PD-1/PD-L1 at the cellular level, thereby significantly activating the NFAT signaling pathway of T cells.
  • mice Male, 8 weeks old, body weight 25g-30g
  • mice The pharmacokinetic-related parameters of the compounds of the present invention in mice are shown in Table 11 below.
  • the compound of formula (I) has good pharmacokinetic properties, including good oral bioavailability, oral exposure, half-life and clearance rate.
  • OBJECTIVE To evaluate the anti-tumor effect of the compounds on mouse colorectal cancer cells MC38-hPDL1 transplanted into humanized mice C57BL/6-hPDL1.
  • G Group; N: Number of animals; p.o.: oral administration; i.p.: intraperitoneal injection; BID: twice a day; Q3D: once every three days; QD: once a day.
  • mice mouse colon cancer cells MC38-hPDL1 were recovered, and the recovery time was Pn+6. On the day of inoculation, MC38-hPDL1 cells in logarithmic growth phase were collected, the culture medium was removed, and the cells were washed twice with PBS before inoculation (the survival rates of MC38-hPDL1 cells before and after tumor bearing were: 98.6% and 98.0%, respectively). Amount: 1 ⁇ 106/100 ⁇ L/mouse, inoculation location: right forelimb of mice.
  • mice On the 7th day after inoculation, when the average tumor volume reached 85.81 mm 3 , 48 mice were randomly divided into 6 groups of 8 mice according to the tumor volume. The day of grouping was defined as D0 day, and the administration started on D0 day.
  • tumor volume 0.5 ⁇ (longer diameter of tumor ⁇ shorter diameter of tumor2).
  • TGItv tumor volume change
  • TGITV relative tumor inhibition rate
  • TGItv(%) [1-(meanTVtn-meanTVt0)/(meanTVvn-mean TVv0)] ⁇ 100%
  • meanTVtn the mean tumor volume of a given group when measured on day n
  • meanTVt0 the mean tumor volume of a given group when measured on day 0
  • meanTVvn mean tumor volume of the solvent control group when measured on day n
  • mean TVv0 mean tumor volume of the solvent control group measured on day 0
  • the compound of the present invention has excellent tumor-inhibiting effect on the colorectal cancer MC38-hPDL1 subcutaneous transplantation model of C57BL/6-hPDL1 mice, and the animal body weight does not decrease significantly during the administration process, and the tolerance is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hydrogenated Pyridines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种四氢萘啶化合物(I)晶型、盐型及其制备方法,以及其在治疗相关疾病药物中的应用。

Description

四氢萘啶化合物晶型、盐型及其制备方法
本申请主张如下优先权:
CN202110343198.3,申请日2021年03月30日;
CN202111015174.1,申请日2021年08月31日;
CN2022102958433,申请日2022年03月23日。
技术领域
本发明涉及一种四氢萘啶化合物晶型、盐型及其制备方法,以及其在治疗相关疾病药物中的应用。
背景技术
程序性细胞死亡分子1(PD-1)又被称为CD279,是CD28/CTLA-4受体家族中重要的免疫抑制分子,是一种含有268个氨基酸残基的膜蛋白,广泛表达于T细胞、巨噬细胞、B细胞等多种免疫细胞表面,其配体是PD-L1和PD-L2。PD-L1是由CD274基因编码并主要表达于肿瘤细胞、树突状细胞和巨噬细胞表面的蛋白。PD-1和PD-L1结合后,PD-1/PD-L1信号通路被激活,进而抑制T细胞的活性化,造成T细胞失能,有助于肿瘤细胞的免疫逃逸。PD-1的另一个配体PD-L2主要表达于树突状细胞、巨噬细胞和B细胞表面,与炎症及自身免疫性疾病相关。
PD-1通过与其配体PD-L1结合,并去磷酸化TCR信号通路上的多个关键分子,从而发挥对免疫应答的负性调节作用。在健康机体中,PD-1/PD-L1这一信号通路的激活可避免因过度免疫反应造成的周围组织损伤,从而减少自身免疫性疾病的发生。但在肿瘤微环境的诱导下,PD-1、PD-L1的表达均异常升高,肿瘤细胞可以通过这些PD-L1分子与T细胞上的PD-1的结合成功逃避机体免疫系统的识别和攻击。PD-(L)1单抗可以阻断这种“肿瘤免疫逃逸机制”,恢复患者自身的免疫系统抗癌功能。
目前,靶向PD-1/PD-L1途径的市售药物都是单克隆抗体(mAb)。2014年,美国食品和药物管理局(FDA)批准了将PD-1分子靶向市场的前两种单克隆抗体(Pembrolizumab和Nivolumab)。在接下来的几年中,另外三种靶向PD-L1分子的mAb(Atezolizumab,Durvalumab和Avelumab)出现在市场上。以上这些都是生物大分子,其自身具有显著的缺陷,如易被蛋白酶分解,在体内稳定性较差,需经注射给药;产品质量不易控制,生产技术要求高;大量制备和纯化比较困难,生产成本高及易产生免疫原性等。而小分子PD-1/PD-L1抑制剂越来越受到关注,Incyte的PD-L1小分子抑制剂INCB86550(WO2018119263,WO2019191707)和Gilead的PD-L1小分子抑制剂GS-4224(US20180305315,WO2019160882)已进入临床2期,BMS苄基苯基醚类的小分子PD-1/PD-L1抑制剂(WO2015034820,WO2015160641)在临床前研究阶段。由于小分子药物能够穿过细胞膜作用于细胞内靶点,储存运输方便,生产成本较低,无免疫原性及通常可口服给药等优势。因此,研究开发PD-1/PD-L1的小分子阻断剂具有广阔的应用前景。
发明内容
本发明还提供式(II)化合物
Figure PCTCN2022083929-appb-000001
本发明还提供式(II)化合物的A晶型,其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.20°、7.77±0.20°和16.22±0.20°。
在本发明的一些方案中,上述A晶型,其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.20°、7.77±0.20°、8.71±0.20°、9.89±0.20°和16.22±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.20°、7.77±0.20°、8.71±0.20°、9.89±0.20°、16.22±0.20°、17.74±0.20°、22.82±0.20°和25.49±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.20°、7.77±0.20°、和/或8.71±0.20°、和/或9.89±0.20°、和/或11.47°±0.20°、和/或14.41°±0.20°、和/或16.22±0.20°、和/或17.74±0.20°、和/或19.67°±0.20°、和/或20.98°±0.20°、和/或22.82±0.20°、和/或25.49±0.20°、和/或28.15°±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.20°、7.77±0.20°、8.71±0.20°、9.89±0.20°、11.47°±0.20°、14.41°±0.20°、16.22±0.20°、17.74±0.20°、19.67°±0.20°、20.98°±0.20°、22.82±0.20°、25.49±0.20°和28.15°±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.10°、7.77±0.10°、8.71±0.10°、9.89±0.10°、11.47°±0.10°、14.41°±0.10°、16.22±0.10°、17.74±0.10°、19.67°±0.10°、20.98°±0.10°、22.82±0.10°、25.49±0.10°和28.15°±0.10°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19°、7.77°、8.71°、9.89°、11.47°、14.41°、16.22°、17.74°、19.67°、20.98°、22.82°、25.49°和28.15°。
在本发明的一些方案中,上述A晶型,其XRPD图谱如图1所示。
在本发明的一些方案中,上述A晶型,其XRPD图谱基本上如图1所示。
在本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1 式(II)化合物A晶型的XRPD图谱解析数据
Figure PCTCN2022083929-appb-000002
Figure PCTCN2022083929-appb-000003
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在31.2℃±5℃和148.7℃±5℃处具有吸热峰的起始点。
在本发明的一些方案中,上述A晶型的DSC图谱如图2所示。
在本发明的一些方案中,上述A晶型的DSC图谱基本上如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线在130℃±3℃时失重达1.77%,在160℃±3℃时失重达3.32%。
在本发明的一些方案中,上述A晶型的TGA图谱如图3所示。
在本发明的一些方案中,上述A晶型的TGA图谱基本上如图3所示。
本发明还提供式(I)化合物的B晶型
Figure PCTCN2022083929-appb-000004
其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.20°、9.40±0.20°和14.94±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.20°、9.40±0.20°、14.94±0.20°、16.10±0.20°和22.86±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.20°、9.40±0.20°、12.93±0.20°、14.94±0.20°、16.10±0.20°、19.06±0.20°、19.89±0.20°和22.86±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.20°、9.40±0.20°、和/或7.47±0.20°、和/或11.29±0.20°、和/或12.93±0.20°、和/或13.90±0.20°、和/或14.94±0.20°、和/或16.10±0.20°、和/或19.06±0.20°、和/或19.89±0.20°、和/或21.13±0.20°、和/或22.86±0.20°、和/或24.55±0.20°、和/或25.25±0.20°、和/或25.83±0.20°、和/或26.23±0.20°、和/或27.45±0.20°、和/或34.58±0.2°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.20°、7.47±0.20°、9.40±0.20°、11.29±0.20°、12.93±0.20°、13.90±0.20°、14.94±0.20°、16.10±0.20°、19.06±0.20°、19.89±0.20°、21.13±0.20°、22.86±0.20°、24.55±0.20°、25.25±0.20°、25.83±0.20°、26.23±0.20°、27.45±0.20°和34.58±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.10°、7.47±0.10°、9.40±0.10°、11.29±0.10°、12.93±0.10°、13.90±0.10°、14.94±0.10°、16.10±0.10°、19.06±0.10°、19.89±0.10°、21.13±0.10°、22.86±0.10°、24.55±0.10°、25.25±0.10°、25.83±0.10°、26.23±0.10°、27.45±0.10°和34.58±0.10°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52°、7.47°、9.40°、11.29°、12.93°、13.90°、14.94°、16.10°、19.06°、19.89°、21.13°、22.86°、24.55°、25.25°、25.83°、26.23°、27.45°和34.58°。
在本发明的一些方案中,上述B晶型的XRPD图谱如图4所示。
在本发明的一些方案中,上述B晶型的XRPD图谱基本上如图4所示。
在本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2 式(I)化合物B晶型的XRPD图谱解析数据
Figure PCTCN2022083929-appb-000005
在本发明的一些方案中,上述B晶型的差示扫描量热曲线在145.2℃±5℃处具有吸热峰的起始点。
在本发明的一些方案中,上述B晶型的DSC图谱如图5所示。
在本发明的一些方案中,上述B晶型的DSC图谱基本上如图5所示。
在本发明的一些方案中,上述B晶型的热重分析曲线其热重分析曲线在150℃±3℃时失重达0.77%。
在本发明的一些方案中,上述B晶型的TGA图谱如图6所示。
在本发明的一些方案中,上述B晶型的TGA图谱基本上如图6所示。
本发明还提供式(I)化合物B晶型的制备方法,包括:
(a)将式(I)化合物加入溶剂中使其成悬浊液;
(b)悬浊液35~45℃下搅拌8~16小时;
(c)过滤后干燥8~16小时;
其中,所述溶剂为四氢呋喃、乙醇、异丙醇、乙腈、甲醇/水(1:1)、乙醇/水(1:1)、乙腈/水(1:1)、异丙醇/水(1:1)或水。
本发明还提供式(I)化合物的C晶型
Figure PCTCN2022083929-appb-000006
其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:15.15±0.20°、17.50±0.20°和25.04±0.20°。
在本发明的一些方案中,上述C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.75±0.20°、15.15±0.20°、17.50±0.20°、22.94±0.20°和25.04±0.20°。
在本发明的一些方案中,上述C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.75±0.20°、15.15±0.20°、17.50±0.20°、18.77±0.20°、22.94±0.20°、25.04±0.20°、26.20±0.20°、37.65±0.20°。
在本发明的一些方案中,上述C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:15.15±0.20°、17.50±0.20°、和/或8.39±0.20°、和/或8.75±0.20°、和/或11.32±0.20°、和/或12.55±0.20°、和/或13.74±0.20°、和/或14.07±0.20°、和/或17.03±0.20°、和/或17.28±0.20°、和/或18.07±0.20°、和/或18.77±0.20°、和/或19.70±0.20°、和/或20.35±0.20°、和/或21.56±0.20°、和/或21.83±0.20°、和/或22.54±0.20°、和/或22.94±0.20°、和/或23.33±0.20°、和/或23.74±0.20°、和/或24.56±0.20°、和/或25.04±0.20°、和/或25.33±0.20°、和/或26.20±0.20°、和/或27.24±0.20°、和/或27.93±0.20°、和/或29.33±0.20°、和/或30.75±0.20°、和/或31.39±0.20°、和/或32.44±0.20°、和/或33.01±0.20°、和/或34.07±0.20°、和/或36.32±0.20°、和/或37.65±0.20°、和/或38.01±0.2°。
在本发明的一些方案中,上述C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.39±0.20°、11.32±0.20°、12.55±0.20°、13.74±0.20°、14.07±0.20°、15.15±0.20°、17.03±0.20°、17.50±0.20°、18.07±0.20°、18.77±0.20°、19.70±0.20°、20.35±0.20°、21.56±0.20°、22.54±0.20°、23.33±0.20°、23.74±0.20°、24.56±0.20°、25.04±0.20°、26.20±0.20°、27.24±0.20°、27.93±0.20°、29.33±0.20°、30.75±0.20°、31.39±0.20°、33.01±0.20°、34.07±0.20°、36.32±0.20°、37.65±0.20°、和38.01±0.20°。
在本发明的一些方案中,上述C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.39±0.10°、8.75±0.10°、11.32±0.10°、12.55±0.10°、13.74±0.10°、14.07±0.10°、15.15±0.10°、17.03±0.10°、17.28±0.10°、17.50±0.10°、18.07±0.10°、18.77±0.10°、19.70±0.10°、20.35±0.10°、21.56±0.10°、21.83±0.10°、 22.54±0.10°、22.94±0.10°、23.33±0.10°、23.74±0.10°、24.56±0.10°、25.04±0.10°、25.33±0.10°、26.20±0.10°、27.24±0.10°、27.93±0.10°、29.33±0.10°、30.75±0.10°、31.39±0.10°、33.01±0.10°、34.07±0.10°、36.32±0.10°、37.65±0.10°、和38.01±0.10°。
在本发明的一些方案中,上述C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.39°、8.75°、11.32°、12.55°、13.74°、14.07°、15.15°、17.03°、17.28°、17.50°、18.07°、18.77°、19.70°、20.35°、21.56°、21.83°、22.54°、22.94°、23.33°、23.74°、24.56°、25.04°、25.33°、26.20°、27.24°、27.93°、29.33°、30.75°、31.39°、32.44°、33.01°、34.07°、36.32°、37.65°、38.01°。
在本发明的一些方案中,上述C晶型的XRPD图谱如图7所示。
在本发明的一些方案中,上述C晶型的XRPD图谱基本上如图7所示。
本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示:
表3 式(I)化合物C晶型的XRPD图谱解析数据
Figure PCTCN2022083929-appb-000007
Figure PCTCN2022083929-appb-000008
在本发明的一些方案中,上述C晶型的差示扫描量热曲线在184.7℃±5℃处具有吸热峰的起始点。
在本发明的一些方案中,上述C晶型的DSC图谱如图8所示。
在本发明的一些方案中,上述C晶型的DSC图谱基本上如图8所示。
在本发明的一些方案中,上述C晶型的热重分析曲线其热重分析曲线在150℃±3℃时失重达0.69%。
在本发明的一些方案中,上述C晶型的TGA图谱如图9所示。
在本发明的一些方案中,上述C晶型的TGA图谱基本上如图9所示。
在本发明的一些方案中,上述C晶型的DVS等温线图谱基本上如图10所示。
本发明还提供式(I)化合物C晶型的制备方法,包括:
(a)将式(I)化合物B晶型加入溶剂中使其成悬浊液;
(b)悬浊液25~45℃下搅拌8~16小时;
(c)过滤后干燥8~16小时;
其中,所述溶剂为甲醇、丙酮、醋酸异丙酯、丙酮:醋酸异丙酯(2:1)等。
本发明还提供式(I)化合物C晶型的制备方法,包括:
(a)将式(I)化合物的B晶型加入溶剂中使其成悬浊液;
(b)悬浊液在55~60℃下搅拌8~16小时;
(c)过滤后干燥8~16小时;
其中,所述溶剂为丙酮、醋酸异丙酯等。
本发明还提供上述化合物或A晶型或B晶型或C晶型或根据上述方法制备得到的B晶型或C晶型在制备抗肿瘤药物中的应用。
技术效果
本发明化合物具有较好的PK性质及口服吸收率,其晶型稳定,具有良好的成药性。
本发明化合物对PD-1/PD-L1信号通路过度活化有良好的抑制效果,进而获得了优良的抑制肿瘤生长的活性。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名 时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:CD 3OD代表氘代甲醇;CDCl 3代表氘代氯仿。
化合物经手工或者
Figure PCTCN2022083929-appb-000009
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:帕纳科(PANalytical)X’pert 3型X-射线衍射仪
测试方法:大约10毫克样品均匀平铺在单晶硅样品盘上进行XRPD检测。
详细的XRPD参数如下:
射线源:K-Alphal
Figure PCTCN2022083929-appb-000010
K-Alphal
Figure PCTCN2022083929-appb-000011
光管电压:45kV,光管电流:40mA
测量时间:46.665s
扫描角度范围:3-40deg
步宽角度:0.0263deg
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA 2500差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在10毫升/min N 2条件下,以10℃/min的升温速率,加热样品从25℃(室温)到200℃(或250℃)。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA 5500热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在10毫升/min N 2条件下,以10℃/min的升温速率,加热样品从室温到350℃或失重20%。
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS Advantage动态蒸汽吸附仪
测试条件:取样品(10~15mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.01%/min(最短:10min,最长:180min)
干燥:0%RH下干燥120min
RH(%)测试梯级:10%
RH(%)测试梯级范围:0%-90%-0%
引湿性评价分类如下:
表4
吸湿性分类 ΔW%
潮解 吸收足量水分形成液体
极具吸湿性 ΔW%≥15%
有吸湿性 15%>ΔW%≥2%
略有吸湿性 2%>ΔW%≥0.2%
无或几乎无吸湿性 ΔW%<0.2%
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
附图说明
图1为(II)化合物A晶型的XRPD谱图;
图2为(II)化合物A晶型的DSC谱图;
图3为(II)化合物A晶型的TGA谱图;
图4为(I)化合物B晶型的XRPD谱图;
图5为(I)化合物B晶型的DSC谱图;
图6为(I)化合物B晶型的TGA谱图;
图7为(I)化合物C晶型的XRPD谱图;
图8为(I)化合物C晶型的DSC谱图;
图9为(I)化合物C晶型的TGA谱图;
图10为(I)化合物C晶型的DVS等温线谱图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:式(I)化合物及其甲酸盐的制备
合成化合物1:
Figure PCTCN2022083929-appb-000012
第一步
将化合物1-1(100克,484毫摩尔,1当量),1-2(135.3克,533毫摩尔,1.1当量)溶于二氧六 环(1000毫升),接着向反应液中添加醋酸钾(142.6克,1.45摩尔,3当量),二氯双(三苯基膦)钯(10.2克,14.53毫摩尔,0.03当量),在氮气保护下110℃下搅拌16小时。反应完毕后,过滤,滤液加入水(800毫升)中,用醋酸异丙酯(500毫升×2)萃取,有机相用饱和食盐水(800毫升×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩的残渣用醋酸异丙酯(80毫升)稀释,接着20℃下搅拌30分钟,混合物过滤,滤液减压浓缩的粗品经(正庚烷:醋酸异丙酯=30:1,320毫升)室温搅拌30分钟,过滤,滤饼烘干得到化合物1-3。
MS-ESI计算值[M+H] +254,实测值254。 1H NMR(400MHz,CD 3OD)δ=7.07-7.01(m,1H),7.00-6.76(m,2H),1.37(s,12H)。
第二步
将化合物1-3(89.3克,352.2毫摩尔,1当量),1-4(95.22克,352.2毫摩尔,1当量)溶于N,N-二甲基甲酰胺(800毫升),水(100毫升),接着向反应液中添加碳酸钾(146克,1.06摩尔,3当量),(二氯双(三苯基膦)钯(7.42克,10.57毫摩尔,0.03当量),在氮气保护下85℃下搅拌4小时。反应完毕后,过滤,滤液加入到盐酸水溶液(2摩尔/升,2400毫升)中,用甲基叔丁基醚(1000毫升×2)萃取,有机相用饱和食盐水(1000毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩的残渣用甲基叔丁基醚(100毫升)稀释,接着滴加98%的浓硫酸至搅拌中的溶液里,直至溶液的pH到1-2,接着加入(甲基叔丁基醚:异丙醇=10:1,200毫升)室温打浆30分钟20℃下搅拌60分钟,混合物过滤,滤饼烘干后加入到饱和碳酸钠水溶液(1200毫升)中,二氯甲烷萃取(600毫升×2),有机相用饱和食盐水(800毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,残渣用异丙醇(70毫升)室温搅拌60分钟,过滤滤饼烘干得到化合物1。
MS-ESI计算值[M+H] +317,实测值317。 1H NMR(400MHz,CD 3OD)δ=7.76-7.68(m,1H),7.30-7.22(m,2H),7.12(t,J=7.8Hz,1H),6.90(dd,J=1.3,8.1Hz,1H),6.54(dd,J=1.3,7.5Hz,1H)。
合成化合物2:
Figure PCTCN2022083929-appb-000013
第一步
将化合物2-1(100克,723.99毫摩尔,1当量)溶于甲苯(1000毫升),然后加入化合物2-2(168.13克,1.45摩尔,160.13毫升,2当量),20℃下搅拌15分钟,然后滴加三氯氧磷(333.03克,2.17摩尔,201.84毫升,3当量),加热到100℃搅拌2小时。反应完毕后,100℃下减压蒸馏三氯氧磷和甲苯,直到反应液变得很粘稠,加乙酸乙酯1000毫升稀释,缓慢倒入6升的水中搅拌10分钟,加碳酸钠调pH到7,然后用乙酸乙酯(1000毫升×3)萃取,合并的有机相用食盐水(1000毫升×3)洗涤,无水硫酸 钠干燥,过滤,滤液减压浓缩得到的粗品经硅胶层析色谱柱(石油醚:乙酸乙酯=20:1-2:1)纯化得化合物2-3。
MS-ESI计算值[M+H] +237,实测值237。 1H NMR(400MHz,CDCl 3)δ=9.76(s,1H),8.84(d,J=5.8Hz,1H),8.48(s,1H),8.09(d,J=5.9Hz,1H),4.61(q,J=7.2Hz,2H),1.53(t,J=7.2Hz,3H)。
第二步
将化合物2-3(40克,169.02毫摩尔,1当量)溶于甲醇(400毫升),然后缓慢滴加甲烷磺酸(97.47克,1.01摩尔,72.20毫升,6当量)。加热到85℃后搅拌3小时。反应完成后,冷却到室温,然后0℃下加入乙酸钠固体调pH到7,加2000毫升的水稀释,室温下搅拌30分钟,过滤,滤饼干燥得到化合物2-4。
MS-ESI计算值[M+H] +219,实测值219。 1H NMR(400MHz,CDCl 3)δ=9.65(s,1H),8.70(d,J=5.7Hz,1H),8.04(d,J=5.7Hz,1H),7.76(s,1H),4.19(s,3H),4.13(s,3H)。
第三步
将化合物2-4(25克,114.57毫摩尔,1当量)溶于甲醇(250毫升),然后缓慢滴加硫酸(34.40克,343.71毫摩尔,18.70毫升,98%纯度,3当量),然后氮气保护下加入湿钯碳(2.5克,11.46毫摩尔,10%纯度,0.1当量),反应液置换几次氢气后,在氢气(50psi)环境下20℃反应5小时。反应完成后,过滤,滤液减压浓缩得化合物2-5。
MS-ESI计算值[M+H] +223,实测值223。
第四步
将化合物2-5(40克,62.44毫摩尔,1当量,硫酸盐,粗品)溶于二氯甲烷(300毫升)中,缓慢滴加1.8-二氮杂二环[5.4.0]十一烷-7-烯(38.02克,249.75毫摩尔,37.65毫升,2当量),然后再加入化合物2-6(23.94克,137.36毫摩尔,26.17毫升,1.1当量),20℃下搅拌0.5小时后,加入醋酸硼氢化钠(79.40克,374.63毫摩尔,3当量),20℃下搅拌1.5小时。反应完成后,将反应液倒入600毫升水中,并用碳酸氢钠调pH到7后,用二氯甲烷(300毫升×3)萃取,合并后有机相用饱和食盐水(300毫升×2)洗涤,并用无水硫酸钠干燥。过滤减压浓缩得到的粗品经硅胶柱层析(石油醚:乙酸乙酯=10:1-2:1)和制备高效液相色谱(色谱柱:Kromasil Eternity XT 250×80毫米×10微米;流动相:流动相A:10毫摩尔碳酸氢铵水溶液;流动相B:乙腈;B%:50%-80%,20分钟)纯化分离得到化合物2。
MS-ESI计算值[M+H] +381,实测值381。 1H NMR(400MHz,CD 3OD)δ=7.48(s,1H),3.88(s,3H),3.86(s,3H),3.79(t,J=5.9Hz,2H),3.68(s,2H),2.84-2.76(m,2H),2.73-2.68(m,2H),2.66(t,J=5.9Hz,2H),0.82(s,9H),0.01(br s,6H)。
合成化合物5:
Figure PCTCN2022083929-appb-000014
第一步
将化合物5-1(200克,980.27毫摩尔)溶于乙二醇二甲醚(600毫升)和甲苯(600毫升),在搅 拌状态下加入碘化亚铜(37.34克,196.05毫摩尔),接着加入碘化钾(325.45克,1.96摩尔),氮气置换三次后设置尾气吸收装置,将反应液加热至60℃,待內温升至60℃后开始缓慢滴加亚硝酸异戊酯(660毫升,4.90摩尔),反应液在室温下反应2小时。反应完毕后,反应液垫硅藻土过滤,将滤液倒入冰(1000毫升),搅拌20分钟后加入饱和氯化铵溶液(1000毫升),搅拌30分钟,将混合液用乙酸乙酯(2000毫升)萃取分液,有机相用饱和亚硫酸钠(2000毫升)洗涤,饱和食盐水(2000毫升)洗涤,硫酸钠干燥,过滤,浓缩得到粗品。粗品经120毫升甲基叔丁基醚和120毫升正庚烷搅拌,过滤,滤饼干燥得到化合物5-2。
MS-ESI计算值[M+H] +315,实测值315。
第二步
将化合物5-2(60克,190.53毫摩尔)溶解于2-甲基四氢呋喃(800毫升),置换氮气三次,降温到-40℃,待內温升降至-40℃后开始缓慢滴加异丙基氯化镁氯化锂(1.3摩尔/升,1毫升),-40℃下搅拌0.5小时后加入滴加N,N-二甲基酰胺(73.3毫升,952.67毫摩尔),反应液在室温下反应3小时。反应完毕后,反应液倒入冰盐酸(1摩尔/升,800毫升)淬灭,萃取分液,水相用甲基叔丁基醚(400毫升×2)萃取,合并有机相并用饱和食盐水(400毫升×2)洗涤,硫酸钠干燥,过滤,滤液减压浓缩得到化合物5-3。
第三步
将化合物5-4(10.59克,85.71毫摩尔)溶解于2-甲基四氢呋喃(150毫升),加入碳酸钾(11.85克,85.71毫摩尔),接着加入化合物5-3(15.5克,71.42毫摩尔),搅拌0.5小时后分批加入醋酸硼氢化钠(22.71克,107.13毫摩尔)。反应液在20℃下反应1小时。反应液倒入冰盐酸(1摩尔/升,200毫升)淬灭,萃取分液,水相用碳酸钠固体调节pH=8,用乙酸乙酯萃取(100毫升×2),有机相用饱和食盐水(100毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经制备高效液相色谱(色谱柱:Xtimate C18 250×50毫米×10微米;流动相:流动相A:体积分数0.05%氨水溶液;流动相B:乙腈;B%:15%-45%,18分钟)分离得到化合物5。
MS-ESI计算值[M+H] +288,实测值288。 1H NMR(400MHz,CD 3OD)δ=8.23-8.19(m,1H),4.08-4.04(m,1H),4.01-3.99(m,3H),3.78(s,2H),3.73-3.69(m,H),3.26-3.24(m,3H),3.19-3.15(m,2H)。
合成式(I)化合物:
Figure PCTCN2022083929-appb-000015
第一步
在20~25℃下,将14升无水2-甲基四氢呋喃加入反应釜中,然后加入974.32克化合物2(1.05当量)和720.00克化合物1(1.00当量)。氮气置换5~10分钟,然后调整反应釜温度至0~5℃,并将6.67升的双(三甲硅基)氨基锂的四氢呋喃溶液(1摩尔/升,3当量)分批缓慢滴加入反应釜中,滴加完后在0~5℃下,搅拌1小时。在0~5℃下,将反应液分批缓慢抽入装有14升饱和氯化铵水溶液的反应釜中,分液,分别收集水相和有机相,14升饱和食盐水洗涤,分别收集水相和有机相,有机相干燥,过滤,浓缩得到固体粗品。在20~25℃下,将4.2升甲醇加入反应釜中,然后加入固体粗品继续搅拌30分钟。过滤,滤饼用甲醇洗涤2次,滤饼真空干燥至恒重,得到化合物3。
MS-ESI计算值[M+H] +666,实测值666。 1H NMR(400MHz,CDCl 3)δ=10.64-10.90(m,1H),8.63(m,1H),7.50-7.68(m,2H)7.33(t,J=7.95Hz,1H)7.12-7.20(m,2H)6.94(m,1H)3.90(s,3H)3.67-3.83(m,4H)2.61-2.85(m,6H)0.83(s,9H)0.00(s,6H)。
第二步
在20~25℃下,将13升无水二氧六环加入反应釜中,然后依次加入1306.10克化合物3(1.00当量),598.03克双联频哪醇硼酸酯(1.24当量),577.81克乙酸钾(3.10当量)和13.77克二氯双(三苯基膦)钯(0.01当量)加入反应釜中,氮气置换5~10分钟,然后调整反应釜温度至100~110℃,并在100~110℃下,搅拌12小时,得到化合物4粗品,直接用于下一步。调整反应釜温度至20~25℃,将3.25升水加入反应釜中,然后将577.81克化合物5(1.01当量)和790.97克碳酸钾(3.01当量)加入反应釜中。氮气置换5~10分钟,将13.72克二氯双(三苯基膦)钯(0.01当量)加入反应釜中,然后调整反应釜温度至70~75℃并在70~75℃下,搅拌12小时。反应液冷却至室温,过滤,滤饼用13升乙酸乙酯洗涤,合并滤液加入9.75升水,分液,分别收集有机相和水相,水相再用6.5升乙酸乙酯洗涤,分液,收集有机相。合并有机相用13升10%柠檬酸水溶液洗涤,分液,分别收集水相和有机相,水相用13升乙酸乙酯萃取两次。合并有机相,用6.5升水洗涤,分液,分别收集水相和有机相。合并水相,用4摩尔/升氢氧化钠水溶液调节pH到9,加入13升乙酸乙酯,分液,分别收集水相和有机相,水相中再加入6.5升乙酸乙酯,分液,分别收集水相和有机相,合并有机相,用13升饱和食盐水洗涤,洗涤两次,收集有 机相。有机相干燥,过滤,浓缩浓缩的到粗品。在20-25℃下,将粗品溶解于18升乙酸乙酯倒入反应釜中,将除钯改性硅胶加入反应釜中,并在65~70℃下,搅拌16小时,然后反应液过滤,滤饼用36升乙酸乙酯洗涤,旋干洗涤液与滤液合并,然后重复除钯操作一次后,浓缩滤液得到化合物6的粗品。
向反应釜中加入14.6升丙酮,倒入上述粗品至完全溶解,然后将607.95克无水草酸(1.70当量)溶于在2.92升丙酮中,用分批缓慢加入到上述溶液中,最后加入5.84升乙腈,在20-25℃下搅拌1小时,过滤,滤饼用14.6升乙腈洗涤,滤饼真空干燥至恒重,得到化合物6的草酸盐。
MS-ESI计算值[M+H] +793,实测值793。 1H NMR(400MHz,CD 3OD)δ=8.57-8.67(m,1H),8.48(s,1H),7.82(s,1H),7.72(m,1H),7.58(s,1H),7.48(br d,J=13.08Hz,2H),7.18(s,1H),4.72(s,2H),4.56-4.66(m,4H),4.39(br t,J=5.26Hz,1H),4.19-4.28(m,2H),4.05-4.14(m,8H),3.67(br t,J=6.17Hz,2H),3.43-3.50(m,2H),3.36(s,3H),3.11(s,2H),0.92(s,8H)0.13(s,6H)。
第三步
在20~25℃下,将7.5升无水四氢呋喃和22.5升水加入反应釜,然后加入3000.00克化合物6的草酸盐(1.00当量)和1349.50g无水草酸(5.00当量)并在20~25℃下,搅拌12小时。将反应液用30升甲基叔丁基醚萃取两次,分液,分别收集水相和有机相,合并有机相,用15升水洗涤,分液,分别收集水相和有机相。合并水相,用4摩尔/升氢氧化钠水溶液调节pH到9,加入45升2-甲基四氢呋喃,分液,分别收集水相和有机相,水相中再加入15升2-甲基四氢呋喃,分液,分别收集水相和有机相,合并有机相,用30升饱和食盐水洗涤两次,收集有机相。有机相干燥,过滤,浓缩的到粗品。在20-25℃下,将上述固体溶于14升无水四氢呋喃和6升乙酸乙酯加入反应釜中,然后将除钯改性硅胶加入反应釜中,并在20~25℃下,搅拌12小时,然后反应液过滤,旋干,浓缩滤液得到粗品,真空干燥至恒重,得到式(I)化合物。
MS-ESI计算值[M+H] +679,实测值679。 1H NMR(400MHz,CD 3OD)δ=8.60(m,1H),8.40(s,1H),7.64-7.76(m,2H),7.54(t,J=7.64Hz,1H),7.40-7.50(m,2H),7.15(m,1H),4.07-4.13(m,1H),4.03(d,J=12.96Hz,6H),3.89(s,2H),3.74-3.83(m,6H),3.26(s,3H),3.19-3.24(m,2H),2.86(m,4H),2.76(t,J=5.87Hz,2H)。
合成式(I)化合物的甲酸盐:
Figure PCTCN2022083929-appb-000016
将化合物6的粗品(68毫克,85.66微摩尔)溶于二氯甲烷(3毫升),加入氯化氢的乙酸乙酯溶液(4摩尔/升,1.5毫升),室温25℃搅拌0.5小时。反应完毕后,浓缩。粗品经制备高效液相色谱(色谱柱:Phenomenex Gemini-NX C18 75×30毫米×3微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:10%-40%,7分钟)分离得到式(I)化合物的甲酸盐。MS-ESI计算值[M+H] +679,实测值679。 1H NMR(400MHz,CD 3OD)δ=8.58-8.65(m,1H),8.49(s,1H)8.43(br s,1H),7.70-7.78(m,2H),7.59(t,J=7.63Hz,1H),7.45-7.53(m,2H),7.18(dd,J=7.63,1.38Hz,1H),4.52(s,2H),4.30-4.41(m,3H),4.12(s,3H),4.06(s,3H),3.94-4.01(m,4H),3.81-3.87(m,2H),3.35-3.37 (m,3H),3.02-3.07(m,2H),2.91(q,J=5.38Hz,4H)。
实施例2:式(I)化合物B晶型的制备
称取100mg式(I)化合物加入到4.0毫升玻璃小瓶中,加入适量的乙醇使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的B晶型。
称取100mg式(I)化合物加入到4.0毫升玻璃小瓶中,加入适量的异丙醇使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的B晶型。
称取100mg式(I)化合物加入到4.0毫升玻璃小瓶中,加入适量的乙腈使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的B晶型。
称取100mg式(I)化合物加入到4.0毫升玻璃小瓶中,加入适量的甲醇/水(1:1)使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的B晶型。
称取100mg式(I)化合物加入到4.0毫升玻璃小瓶中,加入适量的乙腈/水(1:1)使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的B晶型。
称取100mg式(I)化合物加入到4.0毫升玻璃小瓶中,加入适量的异丙醇/水(1:1)使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的B晶型。
向反应釜中加入9升丙酮,然后加入式(I)化合物的粗品,并在20~25℃下,搅拌24小时。过滤,滤饼用1.8升丙酮洗涤2次,滤饼真空干燥至恒重,得式(I)化合物的B晶型。
MS-ESI计算值[M+H] +679,实测值679。 1H NMR(400MHz,CD 3OD)δ=8.60(m,1H),8.40(s,1H),7.64-7.76(m,2H),7.54(t,J=7.64Hz,1H),7.40-7.50(m,2H),7.15(m,1H),4.07-4.13(m,1H),4.03(d,J=12.96Hz,6H),3.89(s,2H),3.74-3.83(m,6H),3.26(s,3H),3.19-3.24(m,2H),2.86(m,4H),2.76(t,J=5.87Hz,2H)。
实施例3:式(I)化合物的盐型研究
取约100mg的式(I)化合物,加入0.5毫升溶剂溶解,然后在搅拌下缓慢加入酸(1.05当量)。25℃下搅拌0.5小时,析出固体,过滤。残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的盐。具体化合物性状如下:
表5
Figure PCTCN2022083929-appb-000017
Figure PCTCN2022083929-appb-000018
实施例4:式(II)化合物的制备
Figure PCTCN2022083929-appb-000019
取2.01克的式(I)化合物,加入20毫升乙酸乙酯溶解,然后在搅拌下缓慢加入富马酸(675毫克,2.01当量)。25℃下搅拌16小时,析出固体,过滤,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(II)化合物。 1H NMR(400MHz,CD 3OD)δ=8.62(dd,J=1.5,8.2Hz,1H),8.50(s,1H),7.79(s,1H),7.73(dd,J=1.6,7.7Hz,1H),7.59(t,J=7.7Hz,1H),7.54-7.43(m,2H),7.18(dd,J=1.5,7.7Hz,1H),6.70(s,4H),4.67(s,2H),4.53(dd,J=6.4,11.7Hz,2H),4.44-4.34(m,1H),4.23(s,2H),4.13(s,4H),4.07(s,3H),3.91(t,J=5.4Hz,2H),3.38(s,3H),3.14(t,J=5.5Hz,2H),3.01(t,J=6.1Hz,2H)。
实施例5:式(II)化合物A晶型的制备
称取100mg式(II)化合物加入到4.0毫升玻璃小瓶中,加入适量的丙酮使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(II)化合物的A晶型。
称取100mg式(II)化合物加入到4.0毫升玻璃小瓶中,加入适量的乙醇使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(II)化合物的A晶型。
称取100mg式(II)化合物富马酸盐加入到4.0毫升玻璃小瓶中,加入适量的乙酸乙酯使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(II)化合物的A晶型。
称取100mg式(II)化合物加入到4.0毫升玻璃小瓶中,加入适量的甲基叔丁基醚使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(II)化合物的A晶型。
称取100mg式(II)化合物加入到4.0毫升玻璃小瓶中,加入适量的乙腈使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(II)化合物的A晶型。
称取100mg式(II)化合物加入到4.0毫升玻璃小瓶中,加入适量的正庚烷使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(II)化合物的A晶型。
实施例6:式(I)化合物C晶型的制备
称取100mg式(I)化合物B晶型加入到4.0毫升玻璃小瓶中,加入适量的甲醇使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的C晶型。
称取100mg式(I)化合物B晶型加入到4.0毫升玻璃小瓶中,加入适量的丙酮使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的C晶型。
称取100mg式(I)化合物B晶型加入到4.0毫升玻璃小瓶中,加入适量的醋酸异丙酯使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,得式(I)化合物的C晶型。
向反应釜中加入10升醋酸异丙酯,然后加入1.32公斤式(I)化合物B晶型,并在20~25℃下,搅拌72小时。过滤,滤饼用2升丙酮洗涤2次,滤饼真空干燥至恒重,得式(I)化合物的C晶型。
MS-ESI计算值[M+H] +679,实测值679。 1H NMR(400MHz,CD 3OD)δ=8.60(m,1H),8.40(s,1H),7.65-7.77(m,2H),7.54(t,J=7.64Hz,1H)7.38-7.50(m,2H),7.15(m,1H),4.09(t,J=5.81Hz,1H),4.04(d,J=12.72Hz,6H),3.90(s,2H),3.74-3.83(m,6H),3.26(s,3H),3.19-3.25(m,2H),2.86(m,4H),2.76(t,J=5.87Hz,2H)。
实施例7:式(I)化合物C晶型的溶剂稳定性研究
称取100mg式(I)化合物C晶型加入到4.0毫升玻璃小瓶中,加入适量的溶剂使其成悬浊液(为确保样品尽量混悬,实验过程中,会据试验现象调整化合物量和溶剂量甚至换实验所用的容器)。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(40℃)进行试验,40℃下搅拌过夜后离心,残留固体样品置于真空干燥箱中(30℃)干燥过夜,检测(XRPD)得到固体的晶型。试验结果如下:
表6
Figure PCTCN2022083929-appb-000020
结论:式(I)化合物C晶型在不同溶剂中具有良好的稳定性。
实施例8:式(I)化合物C晶型的吸湿性研究
实验材料:
SMS DVS Advantage动态蒸汽吸附仪
实验方法:
式(I)化合物C晶型10~30mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物C晶型的DVS谱图如图10所示,△W=0.33%。
实验结论:
式(I)化合物C晶型在25℃和80%RH下的吸湿增重为0.33%,略有吸湿性。
实施例9:式(I)化合物B晶型和C晶型的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察化合物Ⅲ的A晶型在高温(60℃,敞口),高湿(室温/相对湿度92.5%,敞口)及光照(总照度=1.2×10 6Lux·hr/近紫外=200w·hr/m 2,敞口)条件下的稳定性。
分别称取式(I)化合物B晶型或C晶型10mg,置于玻璃样品瓶的底部,摊成薄薄一层。高温(60℃)及高湿(相对湿度92.5%RH)条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触,放置于相应的恒温恒湿箱中;光照样品(敞口,不用铝箔纸覆盖)及光照对照品(整个样品瓶用铝箔纸覆盖)放置于光照箱中。每个时间点分别称量2份,作为正式供试样品。另外称取式(I)化合物B晶型或C晶型大约50mg,用于XRPD测试,样品瓶用铝箔纸包好并扎小孔,同样至于对应的恒温恒湿箱中。样品于第5天,10天取样检测(XRPD),检测结果与0天的初始检测结果进行比较。式(I)化合物B晶型或C晶型试验固体稳定性结果如下所示:
表7
Figure PCTCN2022083929-appb-000021
结论:式(I)化合物B晶型和C晶型在高温、高湿、强光照条件下均具有良好的稳定性。
实验例1:PD-1/PD-L1均相时间分辨荧光结合实验
实验原理:
小分子化合物可以通过和PD-L1结合,而竞争抑制PD-1与PD-L1的结合;当作为供体的PD-1分子与作为受体的PD-L1分子十分靠近时,供体分子将能量传递给受体分子,进而导致受体分子发出荧光;通过检测荧光强弱,可以测试小分子阻止PD-L1与PD-1结合的能力。采用均相时间分辨荧光(Homogenouse Time-Resolved Fluorescence,HTRF)结合试验来检测本发明的化合物抑制PD-1/PD-L1相互结合的能力。
实验材料:
PD-1/PD-L1TR-FRET检测试剂盒购自BPS Biosciences。Nivo多标记分析仪(PerkinElmer)。
实验方法:
使用试剂盒里的缓冲液稀释PD1-Eu,染料标记受体(Dye-labeled acceptor),PD-L1-生物素(PD-L1- biotin)和待测化合物。将待测化合物用排枪进行5倍稀释至第8个浓度,即从40微摩尔稀释至0.5纳摩尔,DMSO浓度为4%,设置双复孔实验。向微孔板中加入5微摩尔抑制剂各浓度梯度,其中最大(Max)信号孔和最小(Min)信号孔加入5微升含4%DMSO的缓冲液,5微升PD-L1-生物素(PD-L1-biotin)(60纳摩尔),最小(Min)信号孔只加入5微升缓冲液,25度孵育20分钟。结束孵育后每孔加入5微升稀释后PD1-Eu(10nM)和5微升稀释后的染料标记受体(Dye-labeled acceptor)。反应体系置于25度反应90分钟。反应结束后,采用多标记分析仪读取TR-FRET信号。
数据分析:
利用方程式(样品-Min)/(Max-Min)×100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。表8提供了本发明化合物对PD-1/PD-L1结合的抑制活性。
表8 本发明化合物对PD-1/PD-L1结合的IC 50值测试结果
受试化合物 IC 50(nM)
式(I)化合物的甲酸盐 4.61
实验结论:式(I)化合物的对PD-1/PD-L1结合有显著的抑制效果。
实验例2:利用MDA-MR-231细胞检测化合物对PD-L1表达水平的影响
实验原理:
使用三阴性乳腺癌细胞系(MDA-MB-231)是评估PD-L1內吞的间接方法。细胞表面的PD-L1分子可以通过溶酶体和蛋白酶体途径进行降解,加入小分子抑制剂促使诱导PD-L1内吞。将小分子与MDA-MB-231细胞共同孵育24小时以后,利用流式细胞术(Fluorescence-activated Cell Sorting,FACS)检测细胞表面PD-L1的含量可以间接反映小分子诱导PD-L1內吞的效果。采用流式细胞术(FACS)来检测本发明的化合物对MDA-MR-231细胞PD-L1的表达水平的影响。
实验材料:
磷酸盐缓冲液(DPBS)、1640培养基、青-链霉素、胎牛血清、非必需氨基酸、β-巯基乙醇(2-ME)、人源干扰素γ、LIVE/DEAD染液、染色液(staining buffer)、固定液(Fixation buffer)、0.25%胰酶、EDTA、抗人源PD-L1(Anti-human PD-L1)、同型对照抗人源PD-L1(Anti-human PD-L1Isotype)。
1640完全培养基配置:439.5毫升1640培养基中加入50毫升胎牛血清、5毫升非必需氨基酸、5毫升青-链霉素和0.5毫升β升巯基乙醇,混匀。
10mM的EDTA配置:取1毫升0.5M EDTA加入49毫升DPBS中,混匀。
实验步骤:
1)MDA-MB-231细胞计数及铺板:取出培养瓶,去除培养基并用磷酸盐缓冲液(DPBS)冲洗一次。冲洗后培养瓶中加入3毫升0.25%胰酶置于37℃培养箱中处理1.5分钟。取出培养瓶加入9毫升的1640完全培养基终止反应,将细胞转移至50毫升离心管中,37℃1000rpm离心5min。根据细胞数量加入适当体积的培养液重悬细胞,并用细胞计数仪计数。用培养基将细胞浓度调整为5×10 5个/毫升。铺板:96孔板中每孔加入200微升体积的细胞悬液,使得每孔中细胞数目为1×10 5个。放置于培养箱中培养过夜。
2)药物孵育:配置100X化合物稀释液,并按5倍梯度稀释药品。在各孔细胞中分别加入2微升各100X化合物溶液。37℃培养箱孵育24小时。3)PD-L1细胞染色及FACS检测:取出培养板,弃去上层培养液。200微升1XPBS洗一次。入100微升EDTA(终浓度为10mM)37℃处理10min。1500rpm离心5min后200微升染色液洗一次。染色:将anti-human PD-L1(2微升每孔)和LIVE/DEAD染液(1:1000)于染色液中稀释,每孔加入50微升,4℃染色30min。200微升染色液洗两次。固定:每孔加入100微升的固定液,4℃固定15min。200微升染色液洗两次。150微升重悬细胞。FACS检测。本发明化合物对MDA-MR-231细胞PD-L1表达水平的影响的测试结果见表9。
表9 本发明化合物对MDA-MR-231细胞PD-L1表达水平的影响的测试结果
受试化合物 IC 50(nM)
式(I)化合物的甲酸盐 5.85
实验结论:式(I)化合物对MDA-MR-231细胞PD-L1表达水平有显著的抑制效果。
实验例3:NFAT活性测试
实验原理:
工程化的T细胞表面表达PD-1分子以及T细胞受体(TCR),在和工程化的抗原递呈细胞(APC)共培养以后,可以激活T细胞的NFAT信号通路。在APC上表达PD-L1分子可以有效减弱T细胞内的NFAT信号通路;利用针对PD-L1的抑制剂可以有效阻断PD-1/PD-L1调节机制,从而逆转减弱的NFAT信号通路。将小分子与APC预处理以后,再和T细胞共培养,然后通过检测荧光素酶的表达量,间接反映T细胞内NFAT通路的激活程度。
实验材料:
PD-1/PD-L1NFAT检测试剂盒购自BPS Biosciences。Birght-Glo试剂购自Promega。Nivo多标记分析仪(PerkinElmer)。
实验方法:
将生长汇合度达到80%的TCR Activitor/PD-L1CHO细胞按照每孔35000个细胞铺到板子里面然后放入37℃细胞培养箱中过夜;将待测化合物用排枪进行5倍稀释至第8个浓度,即从20微摩尔稀释至0.25纳摩尔,DMSO浓度为2%,设置双复孔实验。弃TCR Activitor/PD-L1CHO细胞上清,每孔加入50微升化合物工作液,37℃孵育30分钟;结束孵育后每孔加入50微升密度为4×10 5/毫升的PD-1/NFAT Reporter-Jurkat细胞悬液,37℃孵育5小时。结束孵育后每孔加入100微升Bright-Glo,混匀后使用Nivo多标分析仪读取化学发光信号。
数据分析:
利用方程式(样品-Min)/(Max-Min)×100%将原始数据换算成抑制率,EC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。本发明化合物对T细胞内NFAT通路的激活程度的测试结果见表10。
表10 本发明化合物对T细胞内NFAT通路的激活程度的测试结果
受试化合物 EC 50(nM) 最大效应(诱导倍数)
式(I)化合物的甲酸盐 41.45 5.05
实验结论:式(I)化合物能在细胞水平抑制PD-1/PD-L1的相互作用,从而显著激活T细胞的NFAT信号通路。
实验例4:药代动力学测试
实验目的:研究化合物在在C57BL/6小鼠体内药代动力学
实验材料:C57BL/6小鼠(雄性,8周龄,体重25g-30g)
实验操作:以标准方案测试化合物静脉注射(IV)及口服(PO)给药后的啮齿类动物药代特征,实验中候选化合物配成1毫克/毫升澄清溶液,给予小鼠单次静脉注射及口服给药。静注及口服溶媒均为5%DMSO/5%15-羟基硬脂酸聚乙二醇酯(Solutol)/90%水溶液。该项目使用四只雄性C57BL/6小鼠,两只小鼠进行静脉注射给药,给药剂量为1mg/kg,收集给药后0.0833,0.25,0.5,1,2,4,6,8,24h的血浆样品,另外两只小鼠口服灌胃给药,给药剂量为10mg/kg,收集给药后0.25,0.5,1,2,4,6,8,24h的血浆样品。收集24小时内的全血样品,3000g离心15分钟,分离上清得血浆样品,加入含内标的乙腈溶液沉淀蛋白,充分混匀离心取上清液进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度(C max),清除率(CL),半衰期(T 1/2),组织分布(V dss),药时曲线下面积(AUC 0- last),生物利用度(F)等。
本发明化合物在小鼠体内的药代动力学相关参数如下表11所示。
表11 药代动力学测试结果
化合物 式(I)化合物的甲酸盐
达峰浓度C max(nM) 370
清除率CL(mL/min/kg) 18.5
组织分布V dss(L/kg) 36.8
半衰期T 1/2(IV,h) 26.3
药时曲线下面积AUC 0-last PO(nM.hr) 5753
生物利用度F(%) 80.8
实验结论:式(I)化合物具有良好的药代动力学性质,包括良好的口服生物利用度,口服暴露量,半衰期和清除率等。
实验例5:化合物在C57BL/6-hPDL1小鼠结直肠癌MC38-hPDL1皮下移植模型中的药效学评价研究
实验目的:评价化合物在小鼠结直肠癌细胞MC38-hPDL1移植人源化小鼠C57BL/6-hPDL1中的抗肿瘤作用。
实验设计:
表12
Figure PCTCN2022083929-appb-000022
Figure PCTCN2022083929-appb-000023
备注:G:Group;N:动物只数;p.o.:口服给药;i.p.:腹腔注射;BID:一天两次;Q3D:三天一次;QD:一天一次。
实验动物:
表13
种属 小鼠
品系 C57BL/6-hPDL1
级别 SPF级
周龄 4.29~5.71
性别 雌性
实验方法:
1.肿瘤细胞接种
实验细胞:小鼠结肠癌细胞MC38-hPDL1复苏,复苏代次为Pn+6代。于接种当天,收集对数生长期的MC38-hPDL1细胞,去除培养液并用PBS洗两次后接种(荷瘤前、荷瘤后MC38-hPDL1细胞存活率分别为:98.6%及98.0%),接种量:1×106/100μL/只,接种位置:小鼠右前肢。
2.分组给药
接种后第7天,平均肿瘤体积达到85.81mm 3时,48只小鼠根据肿瘤体积随机分成6组,每组8只。分组当天定义为D0天,并于D0天开始给药。
3.药物配制
给药体积:根据小鼠体重调整(小鼠给药体积=10μL/g×小鼠体重(g))
4.实验观察和数据采集
开始给药后,于D0、D3、D5、D7、D10、D12、D14、D17、D19、D21、D24天观测肿瘤大小并称量小鼠体重。瘤体积计算方式为:肿瘤体积(mm3)=0.5×(肿瘤长径×肿瘤短径2)。
5.实验终点
实验结束时,分析下列指标:1)肿瘤体积变化(TGItv);2)平均体重变化;TGITV(相对肿瘤抑制率)计算公式:
TGItv(%)=[1-(meanTVtn-meanTVt0)/(meanTVvn-mean TVv0)]×100%
meanTVtn:某给药组在第n天测量时平均瘤体积
meanTVt0:某给药组在第0天测量时平均瘤体积
meanTVvn:溶剂对照组在第n天测量时平均瘤体积
mean TVv0:溶剂对照组在第0天测量时平均瘤体积
实验结果:
本发明化合物对C57BL/6-hPDL1小鼠结直肠癌MC38-hPDL1皮下移植模型中的抑瘤药效评价(基于给药后第24天肿瘤体积计算得出)及小鼠平均体重的影响分别如表14和15所示:
表14
Figure PCTCN2022083929-appb-000024
备注:数据以mean±SEM表示。
表15
给药组 给药前(第0天)平均体重(g) 给药第24天平均体重(g)
Vehicle(空白组) 18.29±0.27 20.01±0.35
式(I)化合物的甲酸盐 18.08±0.32 18.91±0.38
式(I)化合物的甲酸盐 18.44±0.33 18.94±0.50
式(I)化合物的甲酸盐 18.64±0.28 19.41±0.43
式(I)化合物的甲酸盐 18.89±0.33 20.48±0.38
备注:数据以mean±SEM表示。
实验结论:本发明化合物对C57BL/6-hPDL1小鼠结直肠癌MC38-hPDL1皮下移植模型具有优异的抑瘤效果,给药过程中动物体重未见显著下降,耐受性较好。

Claims (28)

  1. 式(II)化合物的A晶型
    Figure PCTCN2022083929-appb-100001
    其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.20°、7.77±0.20°和16.22±0.20°。
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.20°、7.77±0.20°、8.71±0.20°、9.89±0.20°和16.22±0.20°。
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19±0.20°、7.77±0.20°、8.71±0.20°、9.89±0.20°、16.22±0.20°、17.74±0.20°、22.82±0.20°和25.49±0.20°。
  4. 根据权利要求3所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.19°、7.77°、8.71°、9.89°、11.47°、14.41°、16.22°、17.74°、19.67°、20.98°、22.82°、25.49°和28.15°。
  5. 根据权利要求4所述的A晶型,其XRPD图谱如图1所示。
  6. 根据权利要求1~5任意一项所述的A晶型,其差示扫描量热曲线在31.2℃±5℃和148.7℃±5℃处具有吸热峰的起始点。
  7. 根据权利要求6所述的A晶型,其DSC图谱如图2所示。
  8. 根据权利要求1~5任意一项所述的A晶型,其热重分析曲线在130℃±3℃时失重达1.77%,在160℃±3℃时失重达3.32%。
  9. 根据权利要求8所述的A晶型,其TGA图谱如图3所示。
  10. 式(I)化合物的B晶型
    Figure PCTCN2022083929-appb-100002
    其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.20°、9.40±0.20°和14.94±0.20°。
  11. 根据权利要求10所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.20°、9.40±0.20°、14.94±0.20°、16.10±0.20°和22.86±0.20°。
  12. 根据权利要求11所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52±0.20°、9.40±0.20°、12.93±0.20°、14.94±0.20°、16.10±0.20°、19.06±0.20°、19.89±0.20°和22.86±0.20°。
  13. 根据权利要求12所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.52°、7.47°、9.40°、11.29°、12.93°、13.90°、14.94°、16.10°、19.06°、19.89°、21.13°、22.86°、24.55°、25.25°、25.83°、26.23°、27.45°和34.58°。
  14. 根据权利要求13所述的B晶型,其XRPD图谱如图4所示。
  15. 根据权利要求10~14任意一项所述的B晶型,其差示扫描量热曲线在145.2℃±5℃处具有吸热峰的起始点。
  16. 根据权利要求15所述的B晶型,其DSC图谱如图5所示。
  17. 根据权利要求10~14任意一项所述的B晶型,其热重分析曲线其热重分析曲线在150℃±3℃时失重达0.77%。
  18. 根据权利要求17所述的B晶型,其TGA图谱如图6所示。
  19. 式(I)化合物的C晶型
    Figure PCTCN2022083929-appb-100003
    其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:15.15±0.20°、17.50±0.20°和25.04±0.20°。
  20. 根据权利要求19所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.75±0.20°、15.15±0.20°、17.50±0.20°、22.94±0.20°和25.04±0.20°。
  21. 根据权利要求20所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.75±0.20°、15.15±0.20°、17.50±0.20°、18.77±0.20°、22.94±0.20°、25.04±0.20°、26.20±0.20°、37.65±0.20°。
  22. 根据权利要求21所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.39°、8.75°、11.32°、12.55°、13.74°、14.07°、15.15°、17.03°、17.28°、17.50°、18.07°、18.77°、19.70°、20.35°、21.56°、21.83°、22.54°、22.94°、23.33°、23.74°、24.56°、25.04°、25.33°、26.20°、27.24°、27.93°、29.33°、30.75°、31.39°、32.44°、33.01°、34.07°、36.32°、37.65°、38.01°。
  23. 根据权利要求22所述的C晶型,其XRPD图谱如图7所示。
  24. 根据权利要求19~23任意一项所述的C晶型,其差示扫描量热曲线在184.5℃±5℃处具有吸热峰的起始点。
  25. 根据权利要求24所述的C晶型,其DSC图谱如图8所示。
  26. 根据权利要求19~23任意一项所述的C晶型,其热重分析曲线其热重分析曲线在150℃±3℃时失重达0.69%。
  27. 根据权利要求26所述的C晶型,其TGA图谱如图9所示。
  28. 根据权利要求1~9任意一项所述的A晶型或根据权利要求10~18任意一项所述的B晶型或根据权利要求19~27任意一项所述的C晶型在制备抗肿瘤药物中的应用。
PCT/CN2022/083929 2021-03-30 2022-03-30 四氢萘啶化合物晶型、盐型及其制备方法 WO2022206800A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110343198.3 2021-03-30
CN202110343198 2021-03-30
CN202111015174.1 2021-08-31
CN202111015174 2021-08-31
CN202210295843 2022-03-23
CN202210295843.3 2022-03-23

Publications (1)

Publication Number Publication Date
WO2022206800A1 true WO2022206800A1 (zh) 2022-10-06

Family

ID=83457967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083929 WO2022206800A1 (zh) 2021-03-30 2022-03-30 四氢萘啶化合物晶型、盐型及其制备方法

Country Status (2)

Country Link
TW (1) TW202241893A (zh)
WO (1) WO2022206800A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180179202A1 (en) * 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds as immunomodulators
CN110267953A (zh) * 2016-12-22 2019-09-20 因赛特公司 四氢咪唑并[4,5-c]吡啶衍生物作为pd-l1内在化诱导剂
CN111936475A (zh) * 2018-04-03 2020-11-13 贝达药业股份有限公司 免疫调节剂及其组合物和制备方法
CN112135824A (zh) * 2018-03-30 2020-12-25 因赛特公司 作为免疫调节剂的杂环化合物
CN112566900A (zh) * 2018-07-19 2021-03-26 贝达药业股份有限公司 免疫调节剂及其组合物和制备方法
WO2021063404A1 (zh) * 2019-09-30 2021-04-08 南京明德新药研发有限公司 作为pd-1/pd-l1小分子抑制剂的化合物及其应用
WO2021158481A1 (en) * 2020-02-03 2021-08-12 Arbutus Biopharma, Inc. Substituted 1,1'-biphenyl compounds and methods using same
CN113801111A (zh) * 2020-06-12 2021-12-17 上海翰森生物医药科技有限公司 联苯类衍生物抑制剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180179202A1 (en) * 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds as immunomodulators
CN110267953A (zh) * 2016-12-22 2019-09-20 因赛特公司 四氢咪唑并[4,5-c]吡啶衍生物作为pd-l1内在化诱导剂
CN112135824A (zh) * 2018-03-30 2020-12-25 因赛特公司 作为免疫调节剂的杂环化合物
CN111936475A (zh) * 2018-04-03 2020-11-13 贝达药业股份有限公司 免疫调节剂及其组合物和制备方法
CN112566900A (zh) * 2018-07-19 2021-03-26 贝达药业股份有限公司 免疫调节剂及其组合物和制备方法
WO2021063404A1 (zh) * 2019-09-30 2021-04-08 南京明德新药研发有限公司 作为pd-1/pd-l1小分子抑制剂的化合物及其应用
WO2021158481A1 (en) * 2020-02-03 2021-08-12 Arbutus Biopharma, Inc. Substituted 1,1'-biphenyl compounds and methods using same
CN113801111A (zh) * 2020-06-12 2021-12-17 上海翰森生物医药科技有限公司 联苯类衍生物抑制剂及其制备方法和应用

Also Published As

Publication number Publication date
TW202241893A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6665169B2 (ja) 新規化合物αvβ6インテグリンアンタゴニスト
EP3378861B1 (en) Acrylic acid derivative, preparation method and use in medicine thereof
CN105263915A (zh) 谷氨酰胺酶抑制剂及使用方法
CA3017796A1 (en) Citrate salt of the compound (s)-4-((s)-3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthydrin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(2-methoxyethoxy)phenyl) butanoic acid
WO2022171044A1 (zh) 一种氧氮杂螺环化合物、其盐型及其晶型
AU2011270890A1 (en) Polymorphs of OSI-906
CN109689641A (zh) 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法
CN115215851A (zh) 一种1,2,4-噁二唑类化合物及其制备方法和在制备pd-l1小分子抑制剂中的应用
WO2019206336A1 (zh) 一种三唑并嘧啶类化合物的晶型、盐型及其制备方法
TW201116828A (en) Fluorescent carbazole compounds for cancer diagnosis
JP7198387B2 (ja) ピラジン-2(1h)-オン系化合物のc結晶形とe結晶形及びその製造方法
NO324594B1 (no) Nye indolderivater, fremgangsmate for fremstilling derav og deres anvendelse og medikamenter inneholdende derivatene.
RU2750702C1 (ru) КРИСТАЛЛИЧЕСКАЯ ФОРМА И СОЛЕВАЯ ФОРМА ИНГИБИТОРА TGF-βRI И СПОСОБ ИХ ПОЛУЧЕНИЯ
WO2021023272A1 (zh) 一种atr抑制剂的晶型及其应用
WO2022179577A1 (zh) 一种环丙基取代的苯并呋喃类化合物的晶型及其制备方法
WO2022206800A1 (zh) 四氢萘啶化合物晶型、盐型及其制备方法
WO2019206268A1 (zh) 一种c-MET抑制剂的晶型及其盐型和制备方法
CN114292270B (zh) 一种btk抑制剂及其制备方法与应用
WO2022048545A1 (zh) 一种吡啶并嘧啶化合物的晶型
CN110156793A (zh) 瑞博西尼单琥珀酸盐新晶型及制备方法
CN113646313B (zh) 一种a2a受体拮抗剂的盐型、晶型及其制备方法
CN117355528B (zh) 吡咯并三嗪类化合物的盐型、其晶型及其制备方法
CN115650975B (zh) 一种靶向降解人表皮生长因子受体2的蛋白降解靶向嵌合体化合物及其应用
US20240246985A1 (en) Crystal form of triazolopyridine-substituted indazole compound and preparation method therefor
WO2022017208A1 (zh) 作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778982

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22778982

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/03/2034)