WO2022202605A1 - Method for producing seal ring, and molding die - Google Patents
Method for producing seal ring, and molding die Download PDFInfo
- Publication number
- WO2022202605A1 WO2022202605A1 PCT/JP2022/012263 JP2022012263W WO2022202605A1 WO 2022202605 A1 WO2022202605 A1 WO 2022202605A1 JP 2022012263 W JP2022012263 W JP 2022012263W WO 2022202605 A1 WO2022202605 A1 WO 2022202605A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seal ring
- core pin
- mold
- convex portion
- peripheral surface
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000000465 moulding Methods 0.000 title claims abstract description 31
- 230000002093 peripheral effect Effects 0.000 claims abstract description 51
- 229920005989 resin Polymers 0.000 claims abstract description 29
- 239000011347 resin Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 230000004323 axial length Effects 0.000 claims description 4
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 239000000057 synthetic resin Substances 0.000 claims description 3
- 238000007789 sealing Methods 0.000 abstract description 8
- 239000003921 oil Substances 0.000 description 9
- 239000010720 hydraulic oil Substances 0.000 description 7
- 239000011342 resin composition Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- -1 polybutylene terephthalate Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/44—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/40—Removing or ejecting moulded articles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/18—Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
Definitions
- the present invention relates to a method of manufacturing a seal ring that prevents leakage of hydraulic oil filled in a device that uses fluid pressure, such as an automatic transmission of an automobile, and a molding die used in the manufacturing method.
- oil seal rings are installed at key points to seal the hydraulic oil.
- it is attached to a pair of spaced-apart annular grooves provided on a rotary shaft inserted through a shaft hole of a housing, and hydraulic oil supplied from an oil passage between the two annular grooves is supplied to the side and inner peripheral surfaces of both seal rings.
- the side wall of the annular groove and the inner peripheral surface of the housing are sealed by the opposite side surface and the outer peripheral surface.
- Each seal surface of the seal ring maintains the hydraulic pressure of hydraulic oil between the two seal rings while making sliding contact with the side wall of the annular groove and the inner peripheral surface of the housing.
- This seal ring is an annular body with a substantially rectangular cross section and has a joint at one place in the circumferential direction.
- Patent Document 1 describes a seal ring in which an annular projecting portion (stepped portion) having a smaller axial width than the annular portion is formed on the inner periphery of the annular portion as a seal ring. and a molding die used for the manufacturing method are disclosed.
- This molding die has a fixed side mold plate, a movable side mold plate, and a core pin, and molds the inner peripheral surface of the stepped portion of the seal ring and the inner diameter portion on one side surface of the stepped portion on the movable side mold plate.
- a core pin is provided to be slidable in the axial direction.
- the movable side mold plate and the core pin are clamped to the fixed side mold plate, and the cavity formed between them is filled with a molten resin to mold the molded body. Then, after opening the movable side mold plate and the core pin, the core pin is slid in the axial direction to project the molded body remaining on the movable side mold plate, thereby obtaining the seal ring.
- Patent Literature 2 describes a resin seal ring that is excellent in quality and maintains stable sealing performance over a long period of time while reducing rotational sliding friction and leakage.
- the side surface of the seal ring is provided with a linear contact portion that linearly contacts the side wall of the annular groove on the non-sealed fluid side, and is continuously provided over the entire circumference from one side to the other side of the joint.
- a line contact portion provided on one side of the joint and a line contact portion provided on the other side of the joint are provided radially apart from each other. Further, in this seal ring, the corners of the outer peripheral surface and the side surface are chamfered to form inclined surfaces.
- FIG. 8 shows a process diagram of a method of manufacturing a seal ring having an inclined surface on its outer peripheral surface.
- FIG. 8(a) shows the molding process
- FIGS. 8(b) and 8(c) show the mold opening process.
- the molding die has a stationary mold plate 51, a movable mold plate 52, and core pins 53, which abut against each other to form a cavity 54.
- the cavity 54 is filled with the molten resin, and after the pressure is maintained, the molded body 55 is obtained by cooling for a certain period of time.
- An inclined surface 55a is formed from the outer peripheral surface of the molded body 55 to the side surface.
- the movable side mold plate 52 and the core pin 53 are moved in the X direction with respect to the fixed side mold plate 51 .
- the molded body 55 may stick to the stationary side template 51 (see FIG. 8B).
- the molded body 55 is released from the stationary mold plate 51, but the release is distorted (see FIG. 8(c)). Therefore, the seal ring is likely to be deformed, and for example, the flatness of the side surface is deteriorated, which may increase oil leakage.
- sticking may affect subsequent product take-out, etc., making continuous molding difficult. Such sticking occurs more frequently in a seal ring with an inclined surface than in a seal ring without an inclined surface because the contact area with the fixed side mold plate 51 increases due to the mold split. It's easy to do.
- the present invention has been made in view of such circumstances, and provides a method for manufacturing a seal ring that can prevent the occurrence of sticking when the mold is opened and deformation due to the sticking, and can maintain the sealing performance, and a molding die for the same. intended to provide
- the method for manufacturing a seal ring of the present invention is a method for manufacturing a seal ring made of synthetic resin. a molding step of filling the cavity with molten resin to mold a seal ring; a mold opening step of moving the movable side mold plate and the core pin in one direction with respect to the fixed side mold plate to open the mold; a projecting step of moving the core pin in a direction opposite to the mold opening step and projecting the inner diameter side end portion of the seal ring from a step provided on the outer peripheral surface of the core pin, wherein
- the inner periphery of the seal ring formed in correspondence with the protrusion in the mold opening step has a protrusion that protrudes radially outward on the outer peripheral surface on the tip side of the seal ring. It is characterized in that the seal ring is moved together with the core pin by being caught in the concave portion of the surface.
- the manufacturing method includes, after the projecting step, a removing step of removing the seal ring from the core pin by engaging a jig with a side surface of the seal ring held by the core pin and moving the jig. It is characterized by
- a molding die for a seal ring of the present invention is a molding die used in a method for manufacturing a seal ring of the present invention, wherein the molding die includes the stationary side template, the movable side template, and the core pin.
- the height of the protrusion of the core pin is 1% to 10% of the radial length of the seal ring.
- the axial width of the protrusion of the core pin is 2% to 60% of the axial length of the seal ring.
- the convex portion of the core pin is provided continuously along the circumferential direction, and the formation range of the convex portion in the circumferential direction is 15% or more of the inner circumference length of the seal ring.
- the method for manufacturing a seal ring of the present invention includes a molding step of filling a molten resin into a cavity formed by a fixed side mold plate, a movable side mold plate, and a core pin to mold the seal ring; a mold opening step of moving the movable side mold plate and the core pin in one direction to open the mold; , the outer peripheral surface of the seal ring on the tip side of the stepped portion has a convex portion that protrudes radially outward, and in the mold opening step, the convex portion is formed corresponding to the convex portion on the inner peripheral surface of the seal ring.
- a molding die for a seal ring of the present invention is a molding die used in the manufacturing method of the present invention, and includes the stationary side template, the movable side template, and the core pin. In the above, it is possible to prevent the seal ring from sticking to the fixed side mold plate due to being sucked, and to prevent deformation due to the sticking.
- the height of the convex portion of the core pin is 1% to 10% of the radial length of the seal ring, it is possible to remove the seal ring from the core pin while ensuring followability of the seal ring to the core pin in the mold opening process. Excellent.
- the width of the convex portion of the core pin is 2% to 60% of the axial length of the seal ring, the short circuit in the seal ring can be prevented by limiting the width of the corresponding concave portion while making it easier for the convex portion to be caught on the seal ring. You can suppress the occurrence of shots.
- the convex portion of the core pin is provided continuously along the circumferential direction, and the formation range of the convex portion in the circumferential direction is 15% or more of the inner circumference length of the seal ring. On the other hand, almost the entire core pin can be hooked.
- FIG. 2 is a plan view showing an example of a seal ring obtained by the manufacturing method of the present invention
- 2 is a cross-sectional view of the seal ring of FIG. 1
- FIG. FIG. 2 is an explanatory diagram of a molding die for manufacturing the seal ring of FIG. 1; 1. It is process drawing of the manufacturing method of the seal ring of FIG. It is process drawing which shows the manufacturing method of another seal ring. It is process drawing which shows the manufacturing method of another seal ring.
- FIG. 2 is a cross-sectional view showing a state in which the seal ring of FIG. 1 is assembled in an annular groove; It is process drawing of the manufacturing method of the conventional seal ring.
- FIG. 1 is a plan view of the seal ring
- FIG. 2 is a sectional view taken along the line AA.
- the seal ring 1 is an annular body formed by injection molding using a molding die and having a substantially rectangular cross section.
- the seal ring 1 is a cut-type ring having a joint 8 at one place in the circumferential direction, and is mounted in the annular groove after being expanded in diameter by elastic deformation.
- the joint 8 is composed of a pair of ends.
- the shape of the pair of end portions may be straight cut, angle cut, or the like, but it is preferable to adopt the composite step cut shown in FIG. 1 because of its excellent oil sealing performance.
- one joint has a butting surface on the inner diameter surface side of the seal ring, and a lip protruding from the butting surface and a recessed pocket on the outer diameter surface side of the seal ring, and the other joint has the above-mentioned butting surface. It has a surface, the lip and pocket, and a complementary mating mating surface, pocket and lip.
- the size of the seal ring (outer diameter ⁇ , inner diameter ⁇ , thickness T (radial length), width W (axial length), etc.) is appropriately set depending on the application.
- the inner diameter ⁇ of the seal ring is 9 mm to 75 mm
- the outer diameter ⁇ is 13 mm to 80 mm.
- the side surface 4 or 4' serves as a sliding surface with the side wall surface of the annular groove.
- the corners of the inner peripheral surface 2 and the side surfaces 4, 4' are provided with stepped portions 5, 5' that will protrude from the mold during injection molding.
- the stepped portions 5 and 5' are radially recessed portions provided at the inner diameter side end portions on both sides in the axial direction.
- inclined surfaces 6 and 6' are provided at both corners of the outer peripheral surface 3 and the side surfaces 4 and 4'.
- the inclined surfaces 6, 6' are provided over the entire circumference of the seal ring and serve as non-contact portions with the side wall surfaces of the annular groove.
- a plurality of lubricating grooves which are concave portions, may be formed in the side surfaces 4, 4' so as to be spaced apart in the circumferential direction.
- the inclination angle ⁇ of the inclined surfaces 6, 6' with respect to the outer peripheral surface 3 is, for example, 20 degrees to 60 degrees.
- the inclination angle ⁇ is preferably 30 degrees to 50 degrees, more preferably 30 degrees to 45 degrees, and even more preferably 40 degrees to 45 degrees. If the inclination angle ⁇ is less than 20 degrees, when the seal ring has a large eccentricity (protrusion from the annular groove) during assembly to the housing, it is likely to come into contact with the end face of the housing, and galling may occur. Moreover, if the inclination angle ⁇ exceeds 60 degrees, the seal ring may not be guided smoothly when it hits the end face of the housing.
- the seal ring 1 has a radially recessed recess 7 on the inner peripheral surface 2 between the pair of stepped portions 5, 5'.
- the concave portion 7 is formed corresponding to a convex portion provided on the outer peripheral surface of the core pin, as shown in FIG. 3 which will be described later.
- This concave portion 7 is an undercut portion in the mold opening process.
- the undercut portion is a portion that engages with the convex portion of the core pin, that is, the portion that is caught on the core pin.
- the recess 7 is an arcuate groove having an arcuate cross-section formed continuously along the circumferential direction. This circular arc groove is not open to the stepped portions 5, 5' on both sides, but forms a recessed groove that is closed within the inner peripheral surface.
- the width of the inner peripheral surface 2 in the axial direction of the seal ring 1 is wa .
- FIG. 3 shows a schematic cross-sectional view of a molding die for manufacturing a seal ring.
- the molding die 9 has a stationary mold plate 10 , a movable mold plate 11 and core pins 12 .
- FIG. 3 shows them abutted to form a cavity 15.
- FIG. A seal ring is molded by filling the cavity 15 with a molten resin composition. Note that dimensions T, W, and wa shown in FIG. 3 correspond to the thickness, width, and inner peripheral surface width of the seal ring, respectively.
- the movable side mold plate 11 forms the outer peripheral surface of the seal ring and the inclined surface and side surface on one axial side of the seal ring
- the core pin 12 forms the inner peripheral surface of the seal ring and the seal
- a stepped portion is formed on one axial side of the ring.
- the fixed-side mold plate 10 forms an inclined surface, a side surface, and a stepped portion on the other side in the axial direction of the seal ring.
- the core pin 12 is a cylindrical member that can slide in the axial direction, and has a large-diameter portion 12a and a small-diameter portion 12b located on the distal end side of the large-diameter portion 12a.
- the part 12b is connected.
- the stepped portion 13 is formed perpendicular to the axial direction of the core pin 12 and the seal ring, and the stepped portion 13 forms one stepped portion of the seal ring. As will be described later, in the projecting step, the core pin 12 is moved to one side in the axial direction so that the stepped portion 13 projects the stepped portion of the seal ring.
- the inner peripheral surface of the seal ring is formed by the small diameter portion 12b of the core pin 12.
- a convex portion 14 projecting radially outward is formed on the outer peripheral surface of the small diameter portion 12b, and a concave portion 7 (see FIG. 2) is formed on the inner peripheral surface of the seal ring corresponding to the convex portion 14.
- the convex portion 14 is a convex portion having an arcuate cross-section formed continuously along the circumferential direction of the core pin.
- the shape of the protrusion is not particularly limited, and may be, for example, a protrusion with a rectangular cross section or a protrusion with a triangular cross section.
- the shape of the concave portion of the seal ring also changes according to the shape of the convex portion, and for example, a square groove with a rectangular cross section or a triangular groove with a triangular cross section is formed.
- a square groove with a rectangular cross section or a triangular groove with a triangular cross section is formed.
- the dimensions of the projections and the like will be described below.
- the height ta of the projection 14 of the core pin 12 is preferably 1% to 10% of the thickness T of the seal ring.
- the thickness T is the maximum radial thickness of the seal ring, and is the length between the inner peripheral surface 2 and the outer peripheral surface 3 in FIG. 2, for example.
- the height t a of the convex portion 14 is the length of a perpendicular drawn from the most protruding point of the convex portion to the virtual plane F of the outer peripheral surface of the small-diameter portion 12b when it is assumed that no convex portion is formed. . If the height ta is less than 1%, the mold may not be easily caught when the mold is opened, and sticking may occur. Also, if the height ta exceeds 10%, the core pin 12 is strongly caught, and it may become difficult to remove from the core pin 12 .
- the height ta is preferably 3% to 5% of the thickness T of the sealing ring.
- the height t a of the projection 14 is preferably smaller than the height (radial length) of the stepped portion 13 of the core pin 12 .
- a specific numerical value of the height ta of the projection 14 is about 0.05 mm to 0.2 mm.
- the stepped portion 13 of the core pin 12 is a portion from which the seal ring is projected in the step of pushing out. is provided.
- the axial width wb of the protrusion 14 of the core pin 12 is not particularly limited. However, if the width wb is small, the catching is weak when the mold is opened, and sticking may occur. If the width wb is large, short shots may occur in the seal ring, for example, when a material with high melt viscosity is used. Therefore, the width wb of the projection 14 is preferably 2% to 60% of the width W, more preferably 5% to 40%.
- the width W refers to the maximum axial width of the seal ring, for example in FIG. 2 it is the length between one side 4 and the other side 4'. From another point of view, the width w b of the projection 14 is preferably 10% to 50%, more preferably 15% to 25%, of the inner peripheral surface width w a .
- the product of the ratio (%) of the height ta to the thickness T and the ratio (%) of the width wb to the width W of the convex portion 14 is in the range of 10 or more and 500 or less. If it is less than 10, it is difficult to obtain an anchoring effect when the mold is opened, and sticking may occur.
- the formation range of the protrusions 14 in the circumferential direction is preferably 15% or more, more preferably 50% or more, of the inner circumference length of the seal ring. By setting the formation range of the projections 14 to 15% or more, the anchor effect can be easily obtained.
- the convex portion 14 of the core pin 12 is formed so as not to form a concave portion within a range of ⁇ 10° in the circumferential direction of the seal ring centered on the joint 8. is preferably formed.
- the upper limit of the formation range of the protrusions 14 in the circumferential direction is, for example, 90% of the inner circumference length of the seal ring, preferably 80%.
- the convex portion formed continuously along the circumferential direction is shown as the convex portion, but the convex portion is composed of a plurality of (for example, two) convex portions divided in the circumferential direction. good too.
- the formation range of the plurality of protrusions in the ring circumferential direction is preferably 15% or more, more preferably 50% or more, of the inner peripheral length of the seal ring.
- the upper limit is, for example, 90%, preferably 80%.
- the convex portion 14 of the core pin 12 is not limited to a convex portion continuously formed along the circumferential direction, and may be composed of a plurality of independent projections.
- a plurality of protrusions can be arranged in a circumferential direction with a space therebetween.
- the numerical ranges described above can be adopted for the height of the projection, the width in the axial direction, and the formation range in the circumferential direction (in the case of a plurality of projections, the total thereof).
- the above seal ring is an injection molded body of a resin composition.
- any injection-moldable synthetic resin can be used.
- thermoplastic polyimide resin polyether ketone (PEK) resin, polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin, polyamideimide (PAI) resin, polyamide (PA) resin, polybutylene terephthalate (PBT) ) resin, polyethylene terephthalate (PET) resin, polyethylene (PE) resin, polyacetal (POM) resin, phenol (PF) resin, and the like.
- PES polyphenylene sulfide
- PAI polyamideimide
- PA polyamide
- PBT polybutylene terephthalate
- PET polyethylene terephthalate
- PET polyethylene
- PE polyacetal
- PF phenol
- PEK resin PEEK resin, PPS resin, or PAI resin
- PEK resin PEEK resin
- PPS resin PAI resin
- PAI resin PAI resin
- these resins have a high modulus of elasticity, are resistant to cracking even when the diameter is expanded when incorporated into the annular groove, can be used even when the temperature of the hydraulic oil to be sealed is high, and is free from solvent cracks.
- the base resin may be added with fibrous reinforcing materials such as carbon fiber, glass fiber and aramid fiber, spherical fillers such as spherical silica and spherical carbon, scaly reinforcing materials such as mica and talc, and potassium titanate whiskers.
- fibrous reinforcing materials such as carbon fiber, glass fiber and aramid fiber, spherical fillers such as spherical silica and spherical carbon, scaly reinforcing materials such as mica and talc, and potassium titanate whiskers.
- Microfiber reinforcing materials such as can be blended.
- Solid lubricants such as polytetrafluoroethylene (PTFE) resin, graphite and molybdenum disulfide, sliding reinforcing materials such as calcium phosphate and calcium sulfate, and pigments such as carbon black can also be blended. These may be blended singly or in combination.
- the above raw materials are melted and kneaded to form pellets for molding, which are then molded into a predetermined shape by injection molding.
- the method of manufacturing a seal ring of the present invention comprises at least a molding step of filling a cavity with molten resin to mold a seal ring, and moving a movable side mold plate and a core pin in one direction with respect to a fixed side mold plate. It comprises a mold opening step of opening the mold, and an ejecting step of moving the core pin in a direction opposite to the mold opening step to eject the seal ring. Moreover, it is preferable that this manufacturing method further includes a removing step of removing the seal ring on the core pin from the core pin using a jig after the ejecting step.
- FIGS. 4(a)-(d) respectively show the four steps.
- ⁇ Molding process> As shown in FIG. 4(a), the movable side mold plate 11 and the core pin 12 are clamped to the fixed side mold plate 10 to form a cavity 15 therewith. Cavity 15 is filled with a molten resin composition, and after pressure retention, it is cooled for a certain period of time to obtain molded body (seal ring) 16 .
- a concave portion 16 a is formed on the inner peripheral surface of the compact 16 corresponding to the convex portion 14 formed on the outer peripheral surface of the small diameter portion 12 b of the core pin 12 .
- the stepped portion 13 of the core pin 12 forms a stepped portion on one side in the axial direction of the compact 16 .
- the abutting surfaces of the fixed side template 10 and the movable side template 11 are arranged on the boundary line between the outer peripheral surface of the compact 16 and the inclined surface on the other side in the axial direction.
- the abutment surface between 10 and core pin 12 is arranged on the extension line of the step portion on the other side in the axial direction of molded body 16 .
- the joints of the molded body obtained by the above series of steps are in a state where the pair of ends are separated from each other, but are closed by heat fixation or the like, and the seal ring 1 shown in FIG. 1 is obtained.
- a wide convex portion 14 may be provided on the outer peripheral surface of the small diameter portion 12b of the core pin 12'. Also in this case, as shown in FIG. 5(b), it is possible to prevent sticking to the fixed side mold plate 10 in the mold opening process. Moreover, the height ta of the projection 14 preferably satisfies 1% to 10% of the ring thickness T. As shown in FIG. As a result, it is possible to easily take out from the mold while maintaining the same level of sealing performance and recession of the ring as those of the conventional seal ring. If the height of the protrusion is increased, for example, as shown in FIG. 6A, the core pin 12 is more likely to be caught, and a load is applied to the periphery of the recess during the extraction process, making it easier for the seal ring to deform. .
- the formation position of the concave portion that will be the undercut portion can be the side surface or the outer peripheral surface. (See FIG. 6(b)).
- the molded body is restrained by the mold when ejected, so that the molded body cannot be ejected and continuous molding is difficult. Therefore, by forming a concave portion on the inner peripheral surface, that is, by forming a convex portion on the outer peripheral surface of the core pin, as shown in FIG. .
- FIGS. 1 to 5 show a seal ring having an inclined surface on the outer peripheral surface
- the manufacturing method of the present invention is not limited to such a method of manufacturing a seal ring. That is, it can also be applied to a method of manufacturing a seal ring in which the corners of the outer peripheral surface are not chamfered.
- the seal ring 1 is mounted in an annular groove 21 a provided in a rotating shaft 21 inserted through a shaft hole 22 a of a housing 22 .
- the arrow in the drawing indicates the direction in which the pressure from the hydraulic oil is applied, and the right side in the drawing is the unsealed fluid side.
- the side surface 4 of the seal ring 1 is in slidable contact with the side wall surface 21b of the annular groove 21a on the non-sealed fluid side.
- the outer peripheral surface 3 is in contact with the inner peripheral surface of the shaft hole 22a. This seal structure seals the annular gap between the rotary shaft 21 and the shaft hole 22a.
- the type of hydraulic oil is appropriately used according to the application.
- the oil temperature is about ⁇ 30 to 150° C.
- the oil pressure is about 0 to 3.0 MPa
- the rotational speed of the rotating shaft is about 0 to 7000 rpm.
- recessed portions serving as undercut portions are not formed on the outer peripheral surface 3 or the side surface 4 related to oil leakage.
- a low oil leak property can be maintained.
- the recess 7 suppresses sticking to the fixed side mold plate when the mold is opened, it is possible to suppress deformation due to sticking, such as deterioration of the flatness of the side surface 4, and as a result, it leads to maintenance of sealing performance.
- the method for manufacturing a seal ring of the present invention the occurrence of sticking when the mold is opened can be suppressed, and the seal performance of the seal ring can be maintained. It can be used as a method for manufacturing rings. In particular, it can be suitably used in a method of manufacturing a seal ring for improving fuel efficiency in hydraulic equipment such as AT and CVT in automobiles and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Sealing Devices (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Provided are: a method for producing a seal ring that is capable of preventing the occurrence of sticking during mold opening, as well as deformation caused by such sticking, and that is capable of maintaining sealing performance; and a molding die for said method. This method for producing a seal ring has: a molding step for filling the inside of a cavity 15 formed by a fixed-side template 10, a movable-side template 11, and a core pin 12 with a molten resin to mold a seal ring; a mold-opening step for moving the movable-side template 11 and the core pin 12 in one direction with respect to the fixed-side template 10 to open the mold; and a protrusion step for moving the core pin 12 in the opposite direction from that in the mold-opening step to cause the inner-diameter-side end part of the seal ring to protrude using a step portion 13 provided on the outer peripheral surface of the core pin 12. The core pin 12 has a convex portion 14 protruding radially outward on the outer peripheral surface further toward the distal-end side than the step portion 13. In the mold-opening step, the convex portion 14 hooks into a recess on the inner peripheral surface of the seal ring, the recess being formed corresponding to the convex portion, so that the seal ring moves together with the core pin 12.
Description
本発明は、自動車の自動変速機などの流体圧を利用した機器内に充填された作動油の漏洩を防止するシールリングの製造方法、および該製造方法に用いる成形金型に関する。
The present invention relates to a method of manufacturing a seal ring that prevents leakage of hydraulic oil filled in a device that uses fluid pressure, such as an automatic transmission of an automobile, and a molding die used in the manufacturing method.
自動変速機などの機器では、作動油を密封するためのオイルシールリングが要所に取り付けられている。例えば、ハウジングの軸孔に挿通される回転軸に設けられた対の離間した環状溝に取り付けられ、両環状溝間にある油路から供給される作動油を両シールリングの側面と内周面で受け、反対側の側面と外周面とで環状溝の側壁とハウジング内周面とをシールする。シールリングにおける各シール面は、環状溝の側壁、ハウジング内周面とそれぞれ摺動接触しつつ、両シールリング間の作動油の油圧を保持している。このシールリングは略矩形断面の環状体であり、周方向の一箇所に合い口を有する。
In devices such as automatic transmissions, oil seal rings are installed at key points to seal the hydraulic oil. For example, it is attached to a pair of spaced-apart annular grooves provided on a rotary shaft inserted through a shaft hole of a housing, and hydraulic oil supplied from an oil passage between the two annular grooves is supplied to the side and inner peripheral surfaces of both seal rings. The side wall of the annular groove and the inner peripheral surface of the housing are sealed by the opposite side surface and the outer peripheral surface. Each seal surface of the seal ring maintains the hydraulic pressure of hydraulic oil between the two seal rings while making sliding contact with the side wall of the annular groove and the inner peripheral surface of the housing. This seal ring is an annular body with a substantially rectangular cross section and has a joint at one place in the circumferential direction.
例えば、特許文献1には、シールリングとして、環状部の内周にその環状部よりも軸方向幅の小さい環状突出部(段部)が形成されたシールリングが記載されており、そのシールリングの製造方法、およびその製造方法に用いる成形金型が開示されている。この成形金型は、固定側型板と、可動側型板と、コアピンとを有し、可動側型板にシールリングの段部の内周面およびその段部の一側面における内径部を成形するコアピンが軸方向にスライド自在に設けられている。この製造方法では、まず、固定側型板に対して可動側型板およびコアピンを型締めし、これらの間に形成されたキャビティ内に溶融樹脂を充填して、成形体を成形する。そして、可動側型板およびコアピンを型開きした後、コアピンを軸方向にスライドさせて可動側型板に残った成形体を突き出すことで、シールリングが得られる。
For example, Patent Document 1 describes a seal ring in which an annular projecting portion (stepped portion) having a smaller axial width than the annular portion is formed on the inner periphery of the annular portion as a seal ring. and a molding die used for the manufacturing method are disclosed. This molding die has a fixed side mold plate, a movable side mold plate, and a core pin, and molds the inner peripheral surface of the stepped portion of the seal ring and the inner diameter portion on one side surface of the stepped portion on the movable side mold plate. A core pin is provided to be slidable in the axial direction. In this manufacturing method, first, the movable side mold plate and the core pin are clamped to the fixed side mold plate, and the cavity formed between them is filled with a molten resin to mold the molded body. Then, after opening the movable side mold plate and the core pin, the core pin is slid in the axial direction to project the molded body remaining on the movable side mold plate, thereby obtaining the seal ring.
近年、環境問題などを背景として、自動車業界は低燃費車の開発を加速させている。その一環で信号待ち時のアイドリングストップ機能の需要増加に伴って低オイルリークのニーズが高まっている。例えば、特許文献2には、回転摺動フリクションの低減を図りつつ、リーク量の低減を図り、長期にわたって安定したシール性能を維持する品質性に優れる樹脂製のシールリングが記載されている。具体的な構成としては、シールリングの側面に、環状溝の非密封流体側の側壁に線状に当接する線接触部が、合い口の一方側から他方側まで全周にわたって連続的に設けられ、合い口の一方側に設けられた線接触部と、該合い口の他方側に設けられた線接触部とが、径方向に離れて設けられている。また、このシールリングでは、外周面と側面との角部が面取りされて傾斜面が形成されている。
In recent years, the automotive industry has accelerated the development of fuel-efficient vehicles against the backdrop of environmental issues. As part of this, the need for low oil leakage is increasing along with the increasing demand for the idling stop function when waiting for traffic lights. For example, Patent Literature 2 describes a resin seal ring that is excellent in quality and maintains stable sealing performance over a long period of time while reducing rotational sliding friction and leakage. As a specific configuration, the side surface of the seal ring is provided with a linear contact portion that linearly contacts the side wall of the annular groove on the non-sealed fluid side, and is continuously provided over the entire circumference from one side to the other side of the joint. A line contact portion provided on one side of the joint and a line contact portion provided on the other side of the joint are provided radially apart from each other. Further, in this seal ring, the corners of the outer peripheral surface and the side surface are chamfered to form inclined surfaces.
上記のような樹脂製のシールリングは、例えば樹脂組成物の射出成形によって得られる。ここで、一例として、外周面に傾斜面を備えるシールリングの製造方法の工程図を図8に示す。図8(a)は成形工程を示し、図8(b)、(c)は型開き工程を示している。図8(a)に示すように、成形金型は、固定側型板51と、可動側型板52と、コアピン53とを有し、これらが衝合されてキャビティ54が形成される。溶融樹脂がキャビティ54に充填され、保圧を経た後、一定時間冷却して成形体55が得られる。成形体55の外周面から側面にわたって傾斜面55aが形成されている。
The resin seal ring as described above is obtained, for example, by injection molding of a resin composition. Here, as an example, FIG. 8 shows a process diagram of a method of manufacturing a seal ring having an inclined surface on its outer peripheral surface. FIG. 8(a) shows the molding process, and FIGS. 8(b) and 8(c) show the mold opening process. As shown in FIG. 8(a), the molding die has a stationary mold plate 51, a movable mold plate 52, and core pins 53, which abut against each other to form a cavity 54. As shown in FIG. The cavity 54 is filled with the molten resin, and after the pressure is maintained, the molded body 55 is obtained by cooling for a certain period of time. An inclined surface 55a is formed from the outer peripheral surface of the molded body 55 to the side surface.
続いて、型開き工程では、固定側型板51に対して、可動側型板52およびコアピン53をX方向に可動させる。この際、本来であれば、コアピン53らの動きに合わせて成形体55もX方向に動くところ、成形体55が固定側型板51に吸着されて張り付く場合がある(図8(b)参照)。部分的な張り付きが生じると、成形体55は固定側型板51から離型するものの、いびつな離型になる(図8(c)参照)。そのため、シールリングが変形しやすくなり、例えば、側面の平面度が悪化し、オイルリークが多くなるおそれがある。また、張り付きが生じることで、後続の製品の取り出しなどにも影響し、連続成形が困難になるおそれがある。このような張り付きは、金型の型割上、固定側型板51との接触面積が増加することから、傾斜面を有しないシールリングに比べて、傾斜面を有するシールリングの方がより発生しやすい。
Subsequently, in the mold opening process, the movable side mold plate 52 and the core pin 53 are moved in the X direction with respect to the fixed side mold plate 51 . At this time, although the molded body 55 would normally move in the X direction along with the movement of the core pins 53, the molded body 55 may stick to the stationary side template 51 (see FIG. 8B). ). When partial sticking occurs, the molded body 55 is released from the stationary mold plate 51, but the release is distorted (see FIG. 8(c)). Therefore, the seal ring is likely to be deformed, and for example, the flatness of the side surface is deteriorated, which may increase oil leakage. In addition, sticking may affect subsequent product take-out, etc., making continuous molding difficult. Such sticking occurs more frequently in a seal ring with an inclined surface than in a seal ring without an inclined surface because the contact area with the fixed side mold plate 51 increases due to the mold split. It's easy to do.
本発明は、このような事情に鑑みてなされたものであり、型開き時の張り付きの発生およびその張り付きによる変形を防止でき、シール性を維持できるシールリングの製造方法、およびその成形金型を提供することを目的とする。
The present invention has been made in view of such circumstances, and provides a method for manufacturing a seal ring that can prevent the occurrence of sticking when the mold is opened and deformation due to the sticking, and can maintain the sealing performance, and a molding die for the same. intended to provide
本発明のシールリングの製造方法は、合成樹脂製のシールリングの製造方法であって、上記製造方法は、固定側型板に対して可動側型板およびコアピンを型締めし、これらで形成されたキャビティ内に溶融樹脂を充填してシールリングを成形する成形工程と、上記固定側型板に対して上記可動側型板および上記コアピンを一方向に移動させて型開きする型開き工程と、上記コアピンを上記型開き工程とは反対方向に移動させて、上記コアピンの外周面に設けられた段部で上記シールリングの内径側端部を突き出す突き出し工程とを備え、上記コアピンは、上記段部よりも先端側の外周面に径方向外側に突出した凸部を有しており、上記型開き工程において、上記凸部が、該凸部に対応して形成される上記シールリングの内周面の凹部に引っ掛かることで、上記シールリングが上記コアピンとともに移動することを特徴とする。
The method for manufacturing a seal ring of the present invention is a method for manufacturing a seal ring made of synthetic resin. a molding step of filling the cavity with molten resin to mold a seal ring; a mold opening step of moving the movable side mold plate and the core pin in one direction with respect to the fixed side mold plate to open the mold; a projecting step of moving the core pin in a direction opposite to the mold opening step and projecting the inner diameter side end portion of the seal ring from a step provided on the outer peripheral surface of the core pin, wherein The inner periphery of the seal ring formed in correspondence with the protrusion in the mold opening step has a protrusion that protrudes radially outward on the outer peripheral surface on the tip side of the seal ring. It is characterized in that the seal ring is moved together with the core pin by being caught in the concave portion of the surface.
上記製造方法は、上記突き出し工程の後、上記コアピンに保持された上記シールリングの側面に治具を係合させ該治具を移動させることで、上記シールリングを上記コアピンから取り出す取り出し工程を備えることを特徴とする。
The manufacturing method includes, after the projecting step, a removing step of removing the seal ring from the core pin by engaging a jig with a side surface of the seal ring held by the core pin and moving the jig. It is characterized by
本発明のシールリングの成形金型は、本発明のシールリングの製造方法に用いる成形金型であって、上記成形金型は、上記固定側型板と、上記可動側型板と、上記コアピンとを備えることを特徴とする。
A molding die for a seal ring of the present invention is a molding die used in a method for manufacturing a seal ring of the present invention, wherein the molding die includes the stationary side template, the movable side template, and the core pin. and
上記コアピンの上記凸部の高さが、上記シールリングの径方向長さの1%~10%であることを特徴とする。
The height of the protrusion of the core pin is 1% to 10% of the radial length of the seal ring.
上記コアピンの上記凸部の軸方向の幅が、上記シールリングの軸方向長さの2%~60%であることを特徴とする。
The axial width of the protrusion of the core pin is 2% to 60% of the axial length of the seal ring.
上記コアピンの上記凸部は、周方向に沿って連続して設けられており、該凸部の周方向における形成範囲は、上記シールリングの内周長さに対して15%以上であることを特徴とする。
The convex portion of the core pin is provided continuously along the circumferential direction, and the formation range of the convex portion in the circumferential direction is 15% or more of the inner circumference length of the seal ring. Characterized by
本発明のシールリングの製造方法は、固定側型板、可動側型板、およびコアピンで形成されたキャビティ内に溶融樹脂を充填してシールリングを成形する成形工程と、固定側型板に対して可動側型板およびコアピンを一方向に移動させて型開きする型開き工程と、コアピンの外周面に設けられた段部でシールリングの内径側端部を突き出す突き出し工程とを備え、コアピンは、段部よりも先端側の外周面に径方向外側に突出した凸部を有しており、型開き工程において、凸部が、該凸部に対応して形成されるシールリングの内周面の凹部に引っ掛かることで、シールリングがコアピンとともに移動するので、型開き工程で、固定側型板にシールリングが吸着されて張り付くことを防止でき、また、張り付きによる変形を防止できる。その結果、シール性が維持されたシールリングを得ることができる。
The method for manufacturing a seal ring of the present invention includes a molding step of filling a molten resin into a cavity formed by a fixed side mold plate, a movable side mold plate, and a core pin to mold the seal ring; a mold opening step of moving the movable side mold plate and the core pin in one direction to open the mold; , the outer peripheral surface of the seal ring on the tip side of the stepped portion has a convex portion that protrudes radially outward, and in the mold opening step, the convex portion is formed corresponding to the convex portion on the inner peripheral surface of the seal ring. Since the seal ring moves together with the core pin by being caught in the concave portion of the mold, it is possible to prevent the seal ring from sticking to the fixed side mold plate in the mold opening process, and also to prevent deformation due to sticking. As a result, it is possible to obtain a seal ring that maintains sealing properties.
本発明のシールリングの成形金型は、本発明の製造方法に用いられる成形金型であって、上記固定側型板と、上記可動側型板と、上記コアピンとを備えるので、型開き工程において、固定側型板にシールリングが吸着されて張り付くことを防止でき、また、張り付きによる変形を防止できる。
A molding die for a seal ring of the present invention is a molding die used in the manufacturing method of the present invention, and includes the stationary side template, the movable side template, and the core pin. In the above, it is possible to prevent the seal ring from sticking to the fixed side mold plate due to being sucked, and to prevent deformation due to the sticking.
コアピンの凸部の高さが、シールリングの径方向長さの1%~10%であるので、型開き工程において、シールリングのコアピンへの追従性を確保しつつ、コアピンからの取り出しにも優れる。
Since the height of the convex portion of the core pin is 1% to 10% of the radial length of the seal ring, it is possible to remove the seal ring from the core pin while ensuring followability of the seal ring to the core pin in the mold opening process. Excellent.
コアピンの凸部の幅が、シールリングの軸方向長さの2%~60%であるので、凸部をシールリングに引っ掛かりやすくしつつ、対応する凹部の幅を制限することでシールリングにおけるショートショットの発生を抑制できる。
Since the width of the convex portion of the core pin is 2% to 60% of the axial length of the seal ring, the short circuit in the seal ring can be prevented by limiting the width of the corresponding concave portion while making it easier for the convex portion to be caught on the seal ring. You can suppress the occurrence of shots.
コアピンの凸部は、周方向に沿って連続して設けられており、該凸部の周方向における形成範囲は、シールリングの内周長さに対して15%以上であるので、シールリングに対してコアピンの略全体で引っ掛かることができる。
The convex portion of the core pin is provided continuously along the circumferential direction, and the formation range of the convex portion in the circumferential direction is 15% or more of the inner circumference length of the seal ring. On the other hand, almost the entire core pin can be hooked.
本発明の製造方法で得られるシールリングの一例を図1~図2に基づいて説明する。図1はシールリングの平面図であり、図2はA-A線断面図である。図1に示すように、シールリング1は、成形金型を用いた射出成形によって形成され、断面が略矩形の環状体である。シールリング1は、周方向の一箇所に合い口8を有するカットタイプのリングであり、弾性変形により拡径して環状溝に装着される。
An example of the seal ring obtained by the manufacturing method of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a plan view of the seal ring, and FIG. 2 is a sectional view taken along the line AA. As shown in FIG. 1, the seal ring 1 is an annular body formed by injection molding using a molding die and having a substantially rectangular cross section. The seal ring 1 is a cut-type ring having a joint 8 at one place in the circumferential direction, and is mounted in the annular groove after being expanded in diameter by elastic deformation.
合い口8は一対の端部から構成される。一対の端部の形状については、ストレートカット、アングルカットなどにすることも可能であるが、オイルシール性に優れることから、図1に示す複合ステップカットを採用することが好ましい。複合ステップカットにおいて、一方の合い口は、シールリングの内径面側に突き合わせ面と、外径面側に突き合わせ面から突出したリップおよび後退したポケットとを有し、他方の合い口は、上記突き合わせ面、上記リップおよびポケットと、相補的に嵌合するように形成された突き合わせ面、ポケットおよびリップとを有している。
The joint 8 is composed of a pair of ends. The shape of the pair of end portions may be straight cut, angle cut, or the like, but it is preferable to adopt the composite step cut shown in FIG. 1 because of its excellent oil sealing performance. In the compound step cut, one joint has a butting surface on the inner diameter surface side of the seal ring, and a lip protruding from the butting surface and a recessed pocket on the outer diameter surface side of the seal ring, and the other joint has the above-mentioned butting surface. It has a surface, the lip and pocket, and a complementary mating mating surface, pocket and lip.
シールリングの大きさ(外径φ、内径φ、厚みT(径方向長さ)、幅W(軸方向長さ)など)は、用途などによって適宜設定される。例えば、シールリングの内径φは9mm~75mmであり、外径φは13mm~80mmである。
The size of the seal ring (outer diameter φ, inner diameter φ, thickness T (radial length), width W (axial length), etc.) is appropriately set depending on the application. For example, the inner diameter φ of the seal ring is 9 mm to 75 mm, and the outer diameter φ is 13 mm to 80 mm.
シールリング1において、側面4または4’が環状溝の側壁面との摺動面となる。図2に示すように、内周面2と側面4、4’との角部には、射出成形時において金型からの突出し部分となる段部5、5’が設けられている。図2では、段部5、5’は軸方向の両側の内径側端部に設けられ、径方向に凹んだ部分である。また、外周面3と側面4、4’との両側の角部には、傾斜面6、6’が設けられている。傾斜面6、6’は、シールリングの全周にわたって設けられ、環状溝の側壁面との非接触部となる。なお、側面4、4’には、凹部からなる複数の潤滑溝が周方向に離間して形成されていてもよい。
In the seal ring 1, the side surface 4 or 4' serves as a sliding surface with the side wall surface of the annular groove. As shown in FIG. 2, the corners of the inner peripheral surface 2 and the side surfaces 4, 4' are provided with stepped portions 5, 5' that will protrude from the mold during injection molding. In FIG. 2, the stepped portions 5 and 5' are radially recessed portions provided at the inner diameter side end portions on both sides in the axial direction. In addition, inclined surfaces 6 and 6' are provided at both corners of the outer peripheral surface 3 and the side surfaces 4 and 4'. The inclined surfaces 6, 6' are provided over the entire circumference of the seal ring and serve as non-contact portions with the side wall surfaces of the annular groove. Incidentally, a plurality of lubricating grooves, which are concave portions, may be formed in the side surfaces 4, 4' so as to be spaced apart in the circumferential direction.
傾斜面6、6’の摺動面(側面4または4’)からの深さは、径方向の外側に向けて深くなる。シールリング1の軸方向断面において、外周面3に対する傾斜面6、6’の傾斜角αは、例えば20度~60度である。傾斜角αは、好ましくは30度~50度であり、より好ましくは30度~45度であり、さらに好ましくは40度~45度である。傾斜角αが20度未満であると、ハウジングへの組み付け時において、シールリングの偏芯(環状溝からの飛び出し)が大きい場合にハウジングの端面に当たりやすくなり、かじりが発生するおそれがある。また、傾斜角αが60度を超えると、ハウジングの端面に当たった際にシールリングがスムーズに誘導されないおそれがある。
The depth of the inclined surfaces 6, 6' from the sliding surface (side surface 4 or 4') increases radially outward. In the axial cross section of the seal ring 1, the inclination angle α of the inclined surfaces 6, 6' with respect to the outer peripheral surface 3 is, for example, 20 degrees to 60 degrees. The inclination angle α is preferably 30 degrees to 50 degrees, more preferably 30 degrees to 45 degrees, and even more preferably 40 degrees to 45 degrees. If the inclination angle α is less than 20 degrees, when the seal ring has a large eccentricity (protrusion from the annular groove) during assembly to the housing, it is likely to come into contact with the end face of the housing, and galling may occur. Moreover, if the inclination angle α exceeds 60 degrees, the seal ring may not be guided smoothly when it hits the end face of the housing.
図2に示すように、シールリング1は、一対の段部5、5’の間の内周面2に径方向に凹んだ凹部7を有している。凹部7は、後述の図3で示すように、コアピンの外周面に設けられる凸部に対応して形成される。この凹部7は、型開き工程におけるアンダーカット部である。アンダーカット部は、コアピンの凸部との係り代、つまりコアピンに引っ掛かる部分である。図2において、凹部7は、周方向に沿って連続して形成された断面円弧状の円弧溝である。この円弧溝は、両側の段部5、5’には開口しておらず、内周面内で閉じた凹溝となっている。なお、図2において、シールリング1の軸方向における内周面2の幅をwaとする。
As shown in FIG. 2, the seal ring 1 has a radially recessed recess 7 on the inner peripheral surface 2 between the pair of stepped portions 5, 5'. The concave portion 7 is formed corresponding to a convex portion provided on the outer peripheral surface of the core pin, as shown in FIG. 3 which will be described later. This concave portion 7 is an undercut portion in the mold opening process. The undercut portion is a portion that engages with the convex portion of the core pin, that is, the portion that is caught on the core pin. In FIG. 2, the recess 7 is an arcuate groove having an arcuate cross-section formed continuously along the circumferential direction. This circular arc groove is not open to the stepped portions 5, 5' on both sides, but forms a recessed groove that is closed within the inner peripheral surface. In FIG. 2, the width of the inner peripheral surface 2 in the axial direction of the seal ring 1 is wa .
図3には、シールリングを製造する成形金型の概略断面図を示す。図3に示すように、成形金型9は、固定側型板10と、可動側型板11と、コアピン12とを有する。図3は、これらが衝合されてキャビティ15が形成された状態を示している。キャビティ15に溶融状態の樹脂組成物が充填されることでシールリングが成形される。なお、図3に示す寸法T、W、waは、それぞれシールリングの厚み、幅、内周面幅に相当する。
FIG. 3 shows a schematic cross-sectional view of a molding die for manufacturing a seal ring. As shown in FIG. 3 , the molding die 9 has a stationary mold plate 10 , a movable mold plate 11 and core pins 12 . FIG. 3 shows them abutted to form a cavity 15. FIG. A seal ring is molded by filling the cavity 15 with a molten resin composition. Note that dimensions T, W, and wa shown in FIG. 3 correspond to the thickness, width, and inner peripheral surface width of the seal ring, respectively.
図3に示すように、可動側型板11によって、シールリングの外周面と、シールリングの軸方向一方側の傾斜面および側面が形成され、コアピン12によって、シールリングの内周面と、シールリングの軸方向一方側の段部が形成される。また、固定側型板10によって、シールリングの軸方向他方側の傾斜面、側面および段部が形成される。
As shown in FIG. 3, the movable side mold plate 11 forms the outer peripheral surface of the seal ring and the inclined surface and side surface on one axial side of the seal ring, and the core pin 12 forms the inner peripheral surface of the seal ring and the seal A stepped portion is formed on one axial side of the ring. In addition, the fixed-side mold plate 10 forms an inclined surface, a side surface, and a stepped portion on the other side in the axial direction of the seal ring.
コアピン12は、軸方向にスライド可能な円柱状部材であり、大径部12aと、大径部12aよりも先端側に位置する小径部12bを有し、段部13によって大径部12aと小径部12bが繋がれている。段部13は、コアピン12およびシールリングの軸方向に対して直交するように形成され、この段部13によって、シールリングの一方の段部が形成される。後述するように、突き出し工程ではコアピン12を軸方向の一方側に移動させることで、段部13がシールリングの段部を突き出す。
The core pin 12 is a cylindrical member that can slide in the axial direction, and has a large-diameter portion 12a and a small-diameter portion 12b located on the distal end side of the large-diameter portion 12a. The part 12b is connected. The stepped portion 13 is formed perpendicular to the axial direction of the core pin 12 and the seal ring, and the stepped portion 13 forms one stepped portion of the seal ring. As will be described later, in the projecting step, the core pin 12 is moved to one side in the axial direction so that the stepped portion 13 projects the stepped portion of the seal ring.
図3に示すように、シールリングの内周面はコアピン12の小径部12bによって形成される。小径部12bの外周面には径方向外側に突出した凸部14が形成されており、この凸部14に対応して、シールリングの内周面に凹部7(図2参照)が形成される。図3において、凸部14は、コアピンの周方向に沿って連続して形成された断面円弧状の凸部である。該凸部の形状は特に限定されず、例えば、断面矩形の凸部や断面三角形の凸部などにしてもよい。この場合、凸部の形状に合わせてシールリングの凹部の形状も変わり、例えば断面矩形の角溝や断面三角形の三角溝などが形成される。以下には、凸部の寸法などについて説明する。
As shown in FIG. 3, the inner peripheral surface of the seal ring is formed by the small diameter portion 12b of the core pin 12. A convex portion 14 projecting radially outward is formed on the outer peripheral surface of the small diameter portion 12b, and a concave portion 7 (see FIG. 2) is formed on the inner peripheral surface of the seal ring corresponding to the convex portion 14. . In FIG. 3, the convex portion 14 is a convex portion having an arcuate cross-section formed continuously along the circumferential direction of the core pin. The shape of the protrusion is not particularly limited, and may be, for example, a protrusion with a rectangular cross section or a protrusion with a triangular cross section. In this case, the shape of the concave portion of the seal ring also changes according to the shape of the convex portion, and for example, a square groove with a rectangular cross section or a triangular groove with a triangular cross section is formed. The dimensions of the projections and the like will be described below.
コアピン12の凸部14の高さtaは、シールリングの厚みTの1%~10%であることが好ましい。厚みTは、シールリングにおいて径方向の最大厚みをいい、例えば図2では、内周面2と外周面3との間の長さである。凸部14の高さtaは、凸部の最も突出した地点から、凸部が形成されていないと仮定した場合の小径部12bの外周面の仮想面Fに降ろした垂線の長さをいう。高さtaが1%未満の場合、型開き時に引っ掛かりが弱くなり、張り付きが発生するおそれがある。また、高さtaが10%を超えると、コアピン12との引っ掛かりが強くなり、コアピン12からの取り出しが困難になるおそれがある。高さtaは、好ましくはシールリングの厚みTの3%~5%である。
The height ta of the projection 14 of the core pin 12 is preferably 1% to 10% of the thickness T of the seal ring. The thickness T is the maximum radial thickness of the seal ring, and is the length between the inner peripheral surface 2 and the outer peripheral surface 3 in FIG. 2, for example. The height t a of the convex portion 14 is the length of a perpendicular drawn from the most protruding point of the convex portion to the virtual plane F of the outer peripheral surface of the small-diameter portion 12b when it is assumed that no convex portion is formed. . If the height ta is less than 1%, the mold may not be easily caught when the mold is opened, and sticking may occur. Also, if the height ta exceeds 10%, the core pin 12 is strongly caught, and it may become difficult to remove from the core pin 12 . The height ta is preferably 3% to 5% of the thickness T of the sealing ring.
また、別の観点では、凸部14の高さtaは、コアピン12の段部13の高さ(径方向長さ)よりも小さいことが好ましい。また、凸部14の高さtaの具体的な数値は0.05mm~0.2mm程度である。なお、コアピン12の段部13は、突き出し工程においてシールリングを突き出す部分であり、その際のシールリングの変形防止のため、段部13の高さはシールリングの厚みTの10%を超えて設けられている。
From another point of view, the height t a of the projection 14 is preferably smaller than the height (radial length) of the stepped portion 13 of the core pin 12 . A specific numerical value of the height ta of the projection 14 is about 0.05 mm to 0.2 mm. The stepped portion 13 of the core pin 12 is a portion from which the seal ring is projected in the step of pushing out. is provided.
コアピン12の凸部14の軸方向幅wbは、特に限定されない。ただし、幅wbが小さいと、型開き時に引っ掛かりが弱くなり、張り付きが発生するおそれがある。幅wbが大きいと、例えば溶融粘度が高い材料を用いた場合にシールリングにおいてショートショットが発生する場合がある。そのため、凸部14の幅wbは、幅Wの2%~60%であることが好ましく、5%~40%であることがより好ましい。幅Wは、シールリングにおいて軸方向の最大幅をいい、例えば図2では、一方の側面4と他方の側面4’との間の長さである。また、別の観点では、凸部14の幅wbは、内周面幅waの10%~50%であることが好ましく、15%~25%であることがより好ましい。
The axial width wb of the protrusion 14 of the core pin 12 is not particularly limited. However, if the width wb is small, the catching is weak when the mold is opened, and sticking may occur. If the width wb is large, short shots may occur in the seal ring, for example, when a material with high melt viscosity is used. Therefore, the width wb of the projection 14 is preferably 2% to 60% of the width W, more preferably 5% to 40%. The width W refers to the maximum axial width of the seal ring, for example in FIG. 2 it is the length between one side 4 and the other side 4'. From another point of view, the width w b of the projection 14 is preferably 10% to 50%, more preferably 15% to 25%, of the inner peripheral surface width w a .
また、凸部14は、高さtaの厚みTに対する割合(%)と、幅wbの幅Wに対する割合(%)との積が10以上、500以下の範囲となることが望ましい。10未満であれば型開き時にアンカー効果が得られにくく張り付きが発生するおそれがあり、500を超えると溶融粘度が高い材料を用いた場合にシールリングにおいてショートショットが発生する場合がある。
Further, it is desirable that the product of the ratio (%) of the height ta to the thickness T and the ratio (%) of the width wb to the width W of the convex portion 14 is in the range of 10 or more and 500 or less. If it is less than 10, it is difficult to obtain an anchoring effect when the mold is opened, and sticking may occur.
凸部14の周方向における形成範囲は、シールリングの内周長さに対して15%以上であることが好ましく、50%以上がより好ましい。凸部14の形成範囲を15%以上とすることでアンカー効果が得られやすい。一方、合い口8(図1参照)の周辺、例えば合い口8を中心にしたシールリングの周方向±10°の範囲の部分には凹部が形成されないようにするため、コアピン12の凸部14を形成することが好ましい。凸部14の周方向における形成範囲の上限は、例えばシールリングの内周長さに対して90%であり、80%が好ましい。
The formation range of the protrusions 14 in the circumferential direction is preferably 15% or more, more preferably 50% or more, of the inner circumference length of the seal ring. By setting the formation range of the projections 14 to 15% or more, the anchor effect can be easily obtained. On the other hand, around the joint 8 (see FIG. 1), for example, around the joint 8, the convex portion 14 of the core pin 12 is formed so as not to form a concave portion within a range of ±10° in the circumferential direction of the seal ring centered on the joint 8. is preferably formed. The upper limit of the formation range of the protrusions 14 in the circumferential direction is, for example, 90% of the inner circumference length of the seal ring, preferably 80%.
図3では、凸部として、周方向に沿って連続して形成された凸部を示したが、該凸部が周方向で分割された複数(例えば2本)の凸部で構成されていてもよい。この場合、複数の凸部のリング周方向における形成範囲(各凸部の合計)は、シールリングの内周長さに対して15%以上であることが好ましく、50%以上がより好ましい。その上限は、例えば90%であり、80%が好ましい。
In FIG. 3, the convex portion formed continuously along the circumferential direction is shown as the convex portion, but the convex portion is composed of a plurality of (for example, two) convex portions divided in the circumferential direction. good too. In this case, the formation range of the plurality of protrusions in the ring circumferential direction (total of the protrusions) is preferably 15% or more, more preferably 50% or more, of the inner peripheral length of the seal ring. The upper limit is, for example, 90%, preferably 80%.
また、コアピン12の凸部14は、周方向に沿って連続して形成された凸部に限らず、独立した複数の突起で構成されていてもよい。この場合、例えば、複数の突起が周方向に互いに離間して配列された形状にすることができる。突起の高さ、軸方向における幅、周方向における形成範囲(複数の突起の場合はその合計)については、上述の各数値範囲を採用できる。
Further, the convex portion 14 of the core pin 12 is not limited to a convex portion continuously formed along the circumferential direction, and may be composed of a plurality of independent projections. In this case, for example, a plurality of protrusions can be arranged in a circumferential direction with a space therebetween. For the height of the projection, the width in the axial direction, and the formation range in the circumferential direction (in the case of a plurality of projections, the total thereof), the numerical ranges described above can be adopted.
上記シールリングは、樹脂組成物の射出成形体である。樹脂組成物のベース樹脂としては、射出成形可能な合成樹脂であれば任意のものを使用できる。例えば、熱可塑性ポリイミド樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ホリフェニレンサルファイド(PPS)樹脂、ポリアミドイミド(PAI)樹脂、ポリアミド(PA)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリエチレン(PE)樹脂、ポリアセタール(POM)樹脂、フェノール(PF)樹脂などが挙げられる。なお、これらの樹脂は単独で使用しても、2種類以上混合したポリマーアロイとしてもよい。これらの樹脂の中でも特に、摩擦摩耗特性、曲げ弾性率、耐熱性、摺動性などに優れることから、PEK樹脂、PEEK樹脂、PPS樹脂、またはPAI樹脂をベース樹脂として用いることが好ましい。これらの樹脂は高い弾性率を有し、環状溝に組み込む際に拡径しても割れ難く、シールする作動油の油温が高くなる場合でも使用でき、また、ソルベントクラックの心配もない。
The above seal ring is an injection molded body of a resin composition. As the base resin of the resin composition, any injection-moldable synthetic resin can be used. For example, thermoplastic polyimide resin, polyether ketone (PEK) resin, polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin, polyamideimide (PAI) resin, polyamide (PA) resin, polybutylene terephthalate (PBT) ) resin, polyethylene terephthalate (PET) resin, polyethylene (PE) resin, polyacetal (POM) resin, phenol (PF) resin, and the like. These resins may be used alone, or may be used as a polymer alloy in which two or more kinds are mixed. Among these resins, it is preferable to use PEK resin, PEEK resin, PPS resin, or PAI resin as the base resin because it is particularly excellent in friction and wear properties, flexural modulus, heat resistance, and slidability. These resins have a high modulus of elasticity, are resistant to cracking even when the diameter is expanded when incorporated into the annular groove, can be used even when the temperature of the hydraulic oil to be sealed is high, and is free from solvent cracks.
また、必要に応じて上記ベース樹脂に、炭素繊維、ガラス繊維、アラミド繊維などの繊維状補強材、球状シリカや球状炭素などの球状充填材、マイカやタルクなどの鱗状補強材、チタン酸カリウムウィスカなどの微小繊維補強材を配合できる。また、ポリテトラフルオロエチレン(PTFE)樹脂、グラファイト、二硫化モリブデンなどの固体潤滑剤、リン酸カルシウム、硫酸カルシウムなどの摺動補強材、カーボンブラックなどの顔料も配合できる。これらは単独で配合することも、組み合せて配合することもできる。
In addition, if necessary, the base resin may be added with fibrous reinforcing materials such as carbon fiber, glass fiber and aramid fiber, spherical fillers such as spherical silica and spherical carbon, scaly reinforcing materials such as mica and talc, and potassium titanate whiskers. Microfiber reinforcing materials such as can be blended. Solid lubricants such as polytetrafluoroethylene (PTFE) resin, graphite and molybdenum disulfide, sliding reinforcing materials such as calcium phosphate and calcium sulfate, and pigments such as carbon black can also be blended. These may be blended singly or in combination.
以上の諸原材料を溶融混練して成形用ペレットとし、これを用いて射出成形法により所定形状に成形する。
The above raw materials are melted and kneaded to form pellets for molding, which are then molded into a predetermined shape by injection molding.
本発明のシールリングの製造方法は、少なくとも、キャビティ内に溶融樹脂を充填してシールリングを成形する成形工程と、固定側型板に対して可動側型板およびコアピンを一方向に移動させて型開きする型開き工程と、コアピンを型開き工程とは反対方向に移動させてシールリングを突き出す突き出し工程とを備える。また、この製造方法は、突き出し工程の後、治具を用いてコアピン上のシールリングをコアピンから取り出す取り出し工程をさらに備えることが好ましい。
The method of manufacturing a seal ring of the present invention comprises at least a molding step of filling a cavity with molten resin to mold a seal ring, and moving a movable side mold plate and a core pin in one direction with respect to a fixed side mold plate. It comprises a mold opening step of opening the mold, and an ejecting step of moving the core pin in a direction opposite to the mold opening step to eject the seal ring. Moreover, it is preferable that this manufacturing method further includes a removing step of removing the seal ring on the core pin from the core pin using a jig after the ejecting step.
以下に、各工程について図4を用いて説明する。図4(a)~(d)がそれぞれ4つの各工程を示している。
Each step will be described below with reference to FIG. FIGS. 4(a)-(d) respectively show the four steps.
<成形工程>
図4(a)に示すように、固定側型板10に対して、可動側型板11およびコアピン12を型締めし、これらでキャビティ15が形成される。溶融状態の樹脂組成物がキャビティ15に充填され、保圧を経た後、一定時間冷却して成形体(シールリング)16が得られる。コアピン12の小径部12bの外周面に形成された凸部14に対応して成形体16の内周面に凹部16aが形成される。また、コアピン12の段部13によって、成形体16の軸方向一方側の段部が形成される。図4(a)において、固定側型板10と可動側型板11との衝合面は成形体16の外周面と軸方向他方側の傾斜面との境界線上に配置され、固定側型板10とコアピン12との衝合面は成形体16の軸方向他方側の段部の延長線上に配置される。 <Molding process>
As shown in FIG. 4(a), the movable side mold plate 11 and thecore pin 12 are clamped to the fixed side mold plate 10 to form a cavity 15 therewith. Cavity 15 is filled with a molten resin composition, and after pressure retention, it is cooled for a certain period of time to obtain molded body (seal ring) 16 . A concave portion 16 a is formed on the inner peripheral surface of the compact 16 corresponding to the convex portion 14 formed on the outer peripheral surface of the small diameter portion 12 b of the core pin 12 . In addition, the stepped portion 13 of the core pin 12 forms a stepped portion on one side in the axial direction of the compact 16 . In FIG. 4(a), the abutting surfaces of the fixed side template 10 and the movable side template 11 are arranged on the boundary line between the outer peripheral surface of the compact 16 and the inclined surface on the other side in the axial direction. The abutment surface between 10 and core pin 12 is arranged on the extension line of the step portion on the other side in the axial direction of molded body 16 .
図4(a)に示すように、固定側型板10に対して、可動側型板11およびコアピン12を型締めし、これらでキャビティ15が形成される。溶融状態の樹脂組成物がキャビティ15に充填され、保圧を経た後、一定時間冷却して成形体(シールリング)16が得られる。コアピン12の小径部12bの外周面に形成された凸部14に対応して成形体16の内周面に凹部16aが形成される。また、コアピン12の段部13によって、成形体16の軸方向一方側の段部が形成される。図4(a)において、固定側型板10と可動側型板11との衝合面は成形体16の外周面と軸方向他方側の傾斜面との境界線上に配置され、固定側型板10とコアピン12との衝合面は成形体16の軸方向他方側の段部の延長線上に配置される。 <Molding process>
As shown in FIG. 4(a), the movable side mold plate 11 and the
<型開き工程>
図4(b)に示すように、固定側型板10に対して、可動側型板11およびコアピン12をX方向に移動させて型開きする。この際、凹部16aがコアピン12の凸部14に引っ掛かるため、コアピン12の動きに追従して成形体16もX方向に動く。このように、凹部16aがアンダーカット部となり、成形体16が物理的に固定されるため、固定側型板10への張り付きが抑制される。 <Mold opening process>
As shown in FIG. 4B, the movable side template 11 and thecore pin 12 are moved in the X direction with respect to the fixed side template 10 to open the mold. At this time, since the concave portion 16 a is caught by the convex portion 14 of the core pin 12 , the compact 16 also moves in the X direction following the movement of the core pin 12 . In this manner, the recessed portion 16a serves as an undercut portion, and the molded body 16 is physically fixed, so sticking to the fixed side template 10 is suppressed.
図4(b)に示すように、固定側型板10に対して、可動側型板11およびコアピン12をX方向に移動させて型開きする。この際、凹部16aがコアピン12の凸部14に引っ掛かるため、コアピン12の動きに追従して成形体16もX方向に動く。このように、凹部16aがアンダーカット部となり、成形体16が物理的に固定されるため、固定側型板10への張り付きが抑制される。 <Mold opening process>
As shown in FIG. 4B, the movable side template 11 and the
<突き出し工程>
図4(c)に示すように、コアピン12を型開き工程とは反対方向に、つまり固定側型板10に向けてY方向に移動させることで、コアピン12の段部13によって成形体16の段部を押圧して成形体16を突き出す。これにより、成形体16が可動側型板11から離型する。 <Ejection process>
As shown in FIG. 4(c), by moving the core pins 12 in the direction opposite to the mold opening process, that is, in the Y direction toward thestationary mold plate 10, the steps 13 of the core pins 12 form the compact 16. The molded body 16 is protruded by pressing the stepped portion. As a result, the molded body 16 is released from the movable side mold plate 11 .
図4(c)に示すように、コアピン12を型開き工程とは反対方向に、つまり固定側型板10に向けてY方向に移動させることで、コアピン12の段部13によって成形体16の段部を押圧して成形体16を突き出す。これにより、成形体16が可動側型板11から離型する。 <Ejection process>
As shown in FIG. 4(c), by moving the core pins 12 in the direction opposite to the mold opening process, that is, in the Y direction toward the
<取り出し工程>
そして、取り出し工程においてコアピン12に保持された成形体16を取り出す。図4(d)に示すように、取り出しハンド17の係合部17aを成形体16の側面16bの一部に係合させて、Z方向に移動させることで、成形体16がコアピン12から取り出される。 <Extraction process>
Then, the compact 16 held by thecore pin 12 is taken out in the take-out step. As shown in FIG. 4D, the molded body 16 is removed from the core pin 12 by engaging the engaging portion 17a of the take-out hand 17 with a part of the side surface 16b of the molded body 16 and moving it in the Z direction. be
そして、取り出し工程においてコアピン12に保持された成形体16を取り出す。図4(d)に示すように、取り出しハンド17の係合部17aを成形体16の側面16bの一部に係合させて、Z方向に移動させることで、成形体16がコアピン12から取り出される。 <Extraction process>
Then, the compact 16 held by the
上記一連の工程によって得られた成形体の合い口は、一対の端部が相互に離れた状態となっているが、熱固定などによって閉じられ、図1に示すシールリング1が得られる。
The joints of the molded body obtained by the above series of steps are in a state where the pair of ends are separated from each other, but are closed by heat fixation or the like, and the seal ring 1 shown in FIG. 1 is obtained.
本発明の製造方法は、図4に示す方法に限らない。例えば、図5に示すように、コアピン12’の小径部12bの外周面に幅広の凸部14を設けてもよい。この場合も、図5(b)に示すように、型開き工程において固定側型板10への張り付きを防止できる。また、凸部14の高さtaは、リング厚みTの1%~10%を満たすことが好ましい。これにより、シール性やリングの落ち込みは従来のシールリングと同等を確保しつつ、金型からの取り出しを容易にできる。なお、凸部の高さが高くなると、例えば、図6(a)に示すように、コアピン12への引っ掛かりが強くなり、取り出し工程で凹部周辺に負荷がかかり、シールリングに変形が生じやすくなる。
The manufacturing method of the present invention is not limited to the method shown in FIG. For example, as shown in FIG. 5, a wide convex portion 14 may be provided on the outer peripheral surface of the small diameter portion 12b of the core pin 12'. Also in this case, as shown in FIG. 5(b), it is possible to prevent sticking to the fixed side mold plate 10 in the mold opening process. Moreover, the height ta of the projection 14 preferably satisfies 1% to 10% of the ring thickness T. As shown in FIG. As a result, it is possible to easily take out from the mold while maintaining the same level of sealing performance and recession of the ring as those of the conventional seal ring. If the height of the protrusion is increased, for example, as shown in FIG. 6A, the core pin 12 is more likely to be caught, and a load is applied to the periphery of the recess during the extraction process, making it easier for the seal ring to deform. .
また、アンダーカット部となる凹部の形成位置は、シールリングの内周面以外にも、側面や外周面が考えられるが、側面の場合は、突き出し時でもアンカー効果が強く、取り出しが困難になる(図6(b)参照)。また、外周面の場合は、突き出し時に成形体が金型に拘束された状態となるため、成形体を突き出せず連続成形が困難である。そのため、凹部を内周面に形成する、つまりコアピンの外周面に凸部を形成することで、図4で示したように、取り出し時に成形体が拘束されず、取り出しを容易に行うことができる。
In addition to the inner peripheral surface of the seal ring, the formation position of the concave portion that will be the undercut portion can be the side surface or the outer peripheral surface. (See FIG. 6(b)). In addition, in the case of the outer peripheral surface, the molded body is restrained by the mold when ejected, so that the molded body cannot be ejected and continuous molding is difficult. Therefore, by forming a concave portion on the inner peripheral surface, that is, by forming a convex portion on the outer peripheral surface of the core pin, as shown in FIG. .
上記図1~図5では、外周面に傾斜面を有するシールリングを示したが、本発明の製造方法は、このようなシールリングの製造方法に限定されず、傾斜面を有しないシールリング、つまり外周面の角部が面取りされていないシールリングの製造方法にも適用できる。
Although FIGS. 1 to 5 show a seal ring having an inclined surface on the outer peripheral surface, the manufacturing method of the present invention is not limited to such a method of manufacturing a seal ring. That is, it can also be applied to a method of manufacturing a seal ring in which the corners of the outer peripheral surface are not chamfered.
続いて、シールリングの使用形態の概略を図7に基づいて説明する。シールリング1は、ハウジング22の軸孔22aに挿通される回転軸21に設けられた環状溝21aに装着される。図中の矢印が作動油からの圧力が加わる方向であり、図中右側が非密封流体側である。シールリング1は、その側面4で、環状溝21aの非密封流体側の側壁面21bに摺動自在に接触している。また、その外周面3で軸孔22aの内周面に接触している。このシール構造により、回転軸21と軸孔22aとの間の環状隙間を封止している。また、作動油は用途に応じた種類が適宜用いられる。例えば、油温として-30~150℃程度、油圧として0~3.0MPa程度、回転軸の回転数として0~7000rpm程度の条件で使用される。
Next, the outline of the usage pattern of the seal ring will be described with reference to FIG. The seal ring 1 is mounted in an annular groove 21 a provided in a rotating shaft 21 inserted through a shaft hole 22 a of a housing 22 . The arrow in the drawing indicates the direction in which the pressure from the hydraulic oil is applied, and the right side in the drawing is the unsealed fluid side. The side surface 4 of the seal ring 1 is in slidable contact with the side wall surface 21b of the annular groove 21a on the non-sealed fluid side. Further, the outer peripheral surface 3 is in contact with the inner peripheral surface of the shaft hole 22a. This seal structure seals the annular gap between the rotary shaft 21 and the shaft hole 22a. Moreover, the type of hydraulic oil is appropriately used according to the application. For example, the oil temperature is about −30 to 150° C., the oil pressure is about 0 to 3.0 MPa, and the rotational speed of the rotating shaft is about 0 to 7000 rpm.
図7に示すように、シールリング1において、オイルリークに関わる外周面3や側面4にはアンダーカット部となる凹部が形成されておらず、内周面2に凹部7を形成することで、低オイルリーク性を維持することができる。さらに、凹部7によって、型開き時に固定側型板への張り付きが抑制されるので、張り付きに伴う変形、例えば側面4の平面度の悪化などを抑制でき、その結果、シール性の維持に繋がる。
As shown in FIG. 7 , in the seal ring 1 , recessed portions serving as undercut portions are not formed on the outer peripheral surface 3 or the side surface 4 related to oil leakage. A low oil leak property can be maintained. Furthermore, since the recess 7 suppresses sticking to the fixed side mold plate when the mold is opened, it is possible to suppress deformation due to sticking, such as deterioration of the flatness of the side surface 4, and as a result, it leads to maintenance of sealing performance.
本発明のシールリングの製造方法によれば、型開き時の張り付きの発生を抑制でき、シールリングのシール性を維持できるので、回転軸とハウジングとの間で低オイルリーク性が要求されるシールリングの製造方法として使用できる。特に、自動車等におけるATやCVTなどの油圧機器に燃費向上のためのシールリングの製造方法に好適に使用できる。
According to the method for manufacturing a seal ring of the present invention, the occurrence of sticking when the mold is opened can be suppressed, and the seal performance of the seal ring can be maintained. It can be used as a method for manufacturing rings. In particular, it can be suitably used in a method of manufacturing a seal ring for improving fuel efficiency in hydraulic equipment such as AT and CVT in automobiles and the like.
1 シールリング
2 内周面
3 外周面
4、4’ 側面
5、5’ 段部
6、6’ 傾斜面
7 凹部
8 合い口
9 成形金型
10 固定側型板
11 可動側型板
12、12’ コアピン
13 段部
14 凸部
15 キャビティ
16 成形体
17 取り出しハンド(治具)
21 回転軸
22 ハウジング REFERENCE SIGNSLIST 1 seal ring 2 inner peripheral surface 3 outer peripheral surface 4, 4' side surface 5, 5' step portion 6, 6' inclined surface 7 concave portion 8 joint 9 molding die 10 fixed side template 11 movable side template 12, 12' Core pin 13 Stepped portion 14 Protruding portion 15 Cavity 16 Molded body 17 Extraction hand (jig)
21 rotatingshaft 22 housing
2 内周面
3 外周面
4、4’ 側面
5、5’ 段部
6、6’ 傾斜面
7 凹部
8 合い口
9 成形金型
10 固定側型板
11 可動側型板
12、12’ コアピン
13 段部
14 凸部
15 キャビティ
16 成形体
17 取り出しハンド(治具)
21 回転軸
22 ハウジング REFERENCE SIGNS
21 rotating
Claims (6)
- 合成樹脂製のシールリングの製造方法であって、
前記製造方法は、固定側型板に対して可動側型板およびコアピンを型締めし、これらで形成されたキャビティ内に溶融樹脂を充填してシールリングを成形する成形工程と、前記固定側型板に対して前記可動側型板および前記コアピンを一方向に移動させて型開きする型開き工程と、前記コアピンを前記型開き工程とは反対方向に移動させて、前記コアピンの外周面に設けられた段部で前記シールリングの内径側端部を突き出す突き出し工程とを備え、
前記コアピンは、前記段部よりも先端側の外周面に径方向外側に突出した凸部を有しており、
前記型開き工程において、前記凸部が、該凸部に対応して形成される前記シールリングの内周面の凹部に引っ掛かることで、前記シールリングが前記コアピンとともに移動することを特徴とするシールリングの製造方法。 A method for manufacturing a seal ring made of synthetic resin,
The manufacturing method includes a molding step of clamping the movable side mold plate and the core pin to the fixed side mold plate and filling a molten resin into a cavity formed by them to mold the seal ring; a mold opening step of moving the movable side mold plate and the core pin in one direction with respect to the plate to open the mold; a projecting step of projecting the inner diameter side end of the seal ring at the stepped portion,
The core pin has a convex portion projecting radially outward from the outer peripheral surface on the tip side of the stepped portion,
A seal characterized in that, in the mold opening step, the convex portion is caught by a concave portion formed on the inner peripheral surface of the seal ring corresponding to the convex portion, so that the seal ring moves together with the core pin. How the ring is made. - 前記製造方法は、前記突き出し工程の後、前記コアピンに保持された前記シールリングの側面に治具を係合させ該治具を移動させることで、前記シールリングを前記コアピンから取り出す取り出し工程を備えることを特徴とする請求項1記載のシールリングの製造方法。 The manufacturing method includes, after the ejecting step, a removing step of removing the seal ring from the core pin by engaging a jig with a side surface of the seal ring held by the core pin and moving the jig. The method of manufacturing a seal ring according to claim 1, characterized in that:
- 請求項1記載のシールリングの製造方法に用いる成形金型であって、前記成形金型は、前記固定側型板と、前記可動側型板と、前記コアピンとを備えることを特徴とするシールリングの成形金型。 2. A seal used in the method of manufacturing a seal ring according to claim 1, wherein said molding die comprises said stationary side template, said movable side template, and said core pin. Ring mold.
- 前記コアピンの前記凸部の高さが、前記シールリングの径方向長さの1%~10%であることを特徴とする請求項3記載のシールリングの成形金型。 The mold for molding a seal ring according to claim 3, wherein the height of the protrusion of the core pin is 1% to 10% of the radial length of the seal ring.
- 前記コアピンの前記凸部の軸方向の幅が、前記シールリングの軸方向長さの2%~60%であることを特徴とする請求項3記載のシールリングの成形金型。 The mold for molding a seal ring according to claim 3, wherein the axial width of the projection of the core pin is 2% to 60% of the axial length of the seal ring.
- 前記コアピンの前記凸部は、周方向に沿って連続して設けられており、該凸部の周方向における形成範囲は、前記シールリングの内周長さに対して15%以上であることを特徴とする請求項3記載のシールリングの成形金型。 The convex portion of the core pin is provided continuously along the circumferential direction, and the formation range of the convex portion in the circumferential direction is 15% or more of the inner circumference length of the seal ring. A molding die for a seal ring according to claim 3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021046891A JP7551546B2 (en) | 2021-03-22 | 2021-03-22 | Seal ring manufacturing method and molding die |
JP2021-046891 | 2021-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022202605A1 true WO2022202605A1 (en) | 2022-09-29 |
Family
ID=83395775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/012263 WO2022202605A1 (en) | 2021-03-22 | 2022-03-17 | Method for producing seal ring, and molding die |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7551546B2 (en) |
WO (1) | WO2022202605A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7291843B1 (en) * | 2022-12-26 | 2023-06-15 | Nok株式会社 | Method for manufacturing resin molded product, injection mold and resin molded product |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07178779A (en) * | 1993-12-24 | 1995-07-18 | Ntn Corp | Cylindrical resin molded object, injection mold and injection molding method |
JP2004009306A (en) * | 2002-06-03 | 2004-01-15 | Ntn Corp | Molding method and molding mold of oil seal ring |
JP2006240279A (en) * | 2004-08-20 | 2006-09-14 | Ntn Corp | Seal ring, method for molding it, and mold for molding |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7178779B2 (en) | 2017-12-20 | 2022-11-28 | 株式会社クボタ | Positioning jig and positioning method |
-
2021
- 2021-03-22 JP JP2021046891A patent/JP7551546B2/en active Active
-
2022
- 2022-03-17 WO PCT/JP2022/012263 patent/WO2022202605A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07178779A (en) * | 1993-12-24 | 1995-07-18 | Ntn Corp | Cylindrical resin molded object, injection mold and injection molding method |
JP2004009306A (en) * | 2002-06-03 | 2004-01-15 | Ntn Corp | Molding method and molding mold of oil seal ring |
JP2006240279A (en) * | 2004-08-20 | 2006-09-14 | Ntn Corp | Seal ring, method for molding it, and mold for molding |
Also Published As
Publication number | Publication date |
---|---|
JP2022146093A (en) | 2022-10-05 |
JP7551546B2 (en) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102283650B1 (en) | Seal ring | |
KR101063111B1 (en) | Sealing device and manufacturing method of the sealing device | |
US20090243224A1 (en) | Resin seal ring and manufacturing method | |
KR102468516B1 (en) | Sealing ring | |
JP7178178B2 (en) | Seal ring | |
WO2022202605A1 (en) | Method for producing seal ring, and molding die | |
US20190210257A1 (en) | Method for manufacturing sealing device, and sealing device | |
JP4215785B2 (en) | Manufacturing method of composite step cut type seal ring made of synthetic resin | |
US5628519A (en) | Oil seal ring of synthetic resin having angularly displaced injection point | |
JPH0875007A (en) | Seal ring of synthetic resin | |
JP7118875B2 (en) | Seal ring manufacturing method | |
JPH09100919A (en) | Seal ring | |
JP7153161B2 (en) | Seal rings and hydraulics | |
WO2021117600A1 (en) | Seal ring | |
JP2024136315A (en) | Seal ring | |
JP2022013442A (en) | Seal ring | |
JP7551543B2 (en) | Seal ring | |
JP7365881B2 (en) | Seal ring | |
JP2004353760A (en) | Sealing ring made of resin | |
JP4251860B2 (en) | Seal ring | |
JP2008111477A (en) | Seal ring | |
JP3894752B2 (en) | Synthetic resin seal ring | |
JP2020051555A (en) | Seal ring | |
JPH11294595A (en) | Resin seal ring | |
JP2011149557A (en) | Seal ring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22775393 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22775393 Country of ref document: EP Kind code of ref document: A1 |