[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022202307A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022202307A1
WO2022202307A1 PCT/JP2022/010179 JP2022010179W WO2022202307A1 WO 2022202307 A1 WO2022202307 A1 WO 2022202307A1 JP 2022010179 W JP2022010179 W JP 2022010179W WO 2022202307 A1 WO2022202307 A1 WO 2022202307A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
evaporator
section
compressor
Prior art date
Application number
PCT/JP2022/010179
Other languages
French (fr)
Japanese (ja)
Inventor
騎士 武藤
吉毅 加藤
幸久 伊集院
康弘 横尾
好則 一志
紘明 河野
芳生 林
順基 平山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022202307A1 publication Critical patent/WO2022202307A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present disclosure relates to a refrigeration cycle device that cools air and objects to be cooled.
  • Patent Document 1 describes a refrigeration cycle device having an indoor evaporator and a chiller.
  • the indoor evaporator is a heat exchanger that uses a low-pressure refrigerant to absorb heat from the air blown into the passenger compartment to cool the air.
  • a chiller is a heat exchanger that cools a battery cooling heat medium by absorbing heat with a low-pressure refrigerant.
  • an object of the present disclosure is to provide a refrigeration cycle apparatus capable of achieving both energy saving and securing of cooling capacity.
  • a refrigeration cycle apparatus includes a compressor, a heat radiating section, first and second pressure reducing sections, a first evaporating section, a second evaporating section, and a control section.
  • the compressor sucks in the refrigerant, compresses it, and discharges it.
  • the heat radiating section radiates heat from the refrigerant discharged from the compressor.
  • the first pressure reducing section and the second pressure reducing section reduce the pressure of the refrigerant radiated by the heat radiating section.
  • the first evaporator causes the refrigerant decompressed by the first decompressor to absorb heat from the air blown into the air-conditioned space, thereby evaporating the refrigerant.
  • the second evaporator evaporates the refrigerant by allowing the refrigerant decompressed by the second decompressor to absorb heat from the object to be cooled.
  • the control unit is executed in an energy-saving mode for controlling the compressor so that the temperature of the first evaporator approaches the energy-saving target temperature, and when the target temperature of the object to be cooled in the energy-saving mode is below the energy-saving reference temperature. Switches to the standard mode in which the compressor is controlled so that the temperature of the evaporator approaches the standard target temperature, which is lower than the energy-saving target temperature.
  • the energy saving mode can save energy, and the standard mode can secure the cooling capacity.
  • a refrigeration cycle device includes a compressor, a heat radiating section, a first pressure reducing section and a second pressure reducing section, a first evaporating section, a pressure adjusting section, a second evaporating section, a control and a part.
  • the compressor sucks in the refrigerant, compresses it, and discharges it.
  • the heat radiating section radiates heat from the refrigerant discharged from the compressor.
  • the first pressure reducing section and the second pressure reducing section reduce the pressure of the refrigerant radiated by the heat radiating section.
  • the first evaporator causes the refrigerant decompressed by the first decompressor to absorb heat from the air blown into the air-conditioned space, thereby evaporating the refrigerant.
  • the pressure adjusting section maintains the pressure of the refrigerant flowing out of the first evaporating section at or above a predetermined pressure.
  • the second evaporator evaporates the refrigerant by allowing the refrigerant decompressed by the second decompressor to absorb heat from the object to be cooled.
  • the control unit is executed in a standard mode for controlling the compressor so that the temperature of the first evaporator approaches the standard target temperature, and when the target temperature of the object to be cooled is lower than the high cooling reference temperature in the standard mode. 2 Switches to a high cooling mode in which the compressor is controlled so that the temperature of the evaporator approaches a high cooling target temperature that is lower than the standard target temperature.
  • the standard mode saves energy, and the high cooling mode ensures cooling capacity.
  • a refrigeration cycle device includes a compressor, a heat radiating section, a first pressure reducing section and a second pressure reducing section, a first evaporating section, a second evaporating section, a cutoff section, and a control section.
  • the compressor sucks in the refrigerant, compresses it, and discharges it.
  • the heat radiating section radiates heat from the refrigerant discharged from the compressor.
  • the first pressure reducing section and the second pressure reducing section reduce the pressure of the refrigerant radiated by the heat radiating section.
  • the first evaporator causes the refrigerant decompressed by the first decompressor to absorb heat from the air blown into the air-conditioned space, thereby evaporating the refrigerant.
  • the second evaporator evaporates the refrigerant by allowing the refrigerant decompressed by the second decompressor to absorb heat from the object to be cooled.
  • the blocking section blocks the flow of the refrigerant to the first evaporating section.
  • the control unit is executed in a standard mode for controlling the compressor so that the temperature of the first evaporator approaches the standard target temperature, and when the cutoff unit cuts off the flow of refrigerant to the first evaporator in the standard mode. , and a single mode in which the compressor is controlled so that the temperature of the second evaporator approaches a single target temperature lower than the temperature of the first evaporator.
  • a refrigeration cycle device 10 shown in FIG. 1 is applied to a vehicle air conditioner 1 mounted on an electric vehicle or a hybrid vehicle.
  • An electric vehicle is a vehicle that obtains driving force for running from an electric motor.
  • a hybrid vehicle is a vehicle that obtains driving force for driving the vehicle from an engine (in other words, an internal combustion engine) and an electric motor for driving.
  • the vehicle air conditioner 1 is an air conditioner with a battery temperature adjustment function.
  • the vehicle air conditioner 1 air-conditions the interior of the vehicle, which is a space to be air-conditioned, and adjusts the temperature of the battery 33 .
  • the battery 33 is a secondary battery that stores power to be supplied to in-vehicle equipment such as an electric motor.
  • the battery 33 of this embodiment is a lithium ion battery.
  • the battery 33 is a so-called assembled battery formed by stacking a plurality of battery cells (not shown) and electrically connecting the battery cells in series or in parallel.
  • the output of this type of battery tends to decrease at low temperatures, and deterioration tends to progress at high temperatures. Therefore, the temperature of the battery must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment) that allows the battery to fully utilize its charge/discharge capacity. .
  • the cold heat generated by the refrigeration cycle device 10 can cool the battery 33 .
  • Objects to be cooled in the refrigeration cycle apparatus 10 of this embodiment are the air and the battery 33 .
  • the refrigeration cycle device 10 is a vapor compression refrigeration system comprising a compressor 11, a condenser 12, a first expansion valve 13, a first evaporator 14, a constant pressure valve 15, a second expansion valve 16, a second evaporator 17 and a receiver 18. machine.
  • a freon-based refrigerant is used as a refrigerant
  • a subcritical refrigerating cycle is constructed in which the pressure of the refrigerant on the high-pressure side does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil specifically, PAG oil
  • Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
  • the compressor 11 is an electric compressor driven by electric power supplied from the battery 33, and sucks, compresses, and discharges the refrigerant of the refrigeration cycle device 10.
  • Compressor 11 may be a variable displacement compressor driven by a belt.
  • the condenser 12 is a high pressure side refrigerant heat medium heat exchanger that condenses the high pressure side refrigerant by exchanging heat between the high pressure side refrigerant discharged from the compressor 11 and the cooling water of the high temperature cooling water circuit 20 .
  • the cooling water of the high temperature cooling water circuit 20 is a fluid as a heat medium.
  • the cooling water in the high temperature cooling water circuit 20 is a high temperature heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used as the cooling water for the high-temperature cooling water circuit 20.
  • the high-temperature cooling water circuit 20 is a high-temperature heat medium circuit in which a high-temperature heat medium circulates.
  • the receiver 18 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant that has flowed out of the condenser 12 and causes the liquid-phase refrigerant to flow out downstream, and stores surplus refrigerant in the cycle.
  • the flow of the liquid-phase refrigerant that has flowed out of the receiver 18 is branched at the branching portion 10a.
  • the first expansion valve 13 is a first decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the receiver 18 .
  • the first expansion valve 13 is an electric variable throttle mechanism, and has a valve body and an electric actuator.
  • the valve body is configured to be able to change the degree of opening of the flow path of the refrigerant (in other words, the degree of throttle opening).
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the first expansion valve 13 is composed of a variable throttle mechanism with a fully closing function that fully closes the flow path of the refrigerant.
  • the first expansion valve 13 has a blocking portion 13a that blocks the flow of the refrigerant by fully closing the flow path of the refrigerant.
  • the operation of the first expansion valve 13 is controlled by control signals output from the control device 60 shown in FIG.
  • the first evaporator 14 exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the air blown into the vehicle interior, thereby evaporating the refrigerant and cooling the air blown into the vehicle interior. It is a vessel.
  • the first evaporator 14 is an air evaporator that cools air by evaporating a refrigerant.
  • the first evaporator 14 is the first evaporator.
  • the constant pressure valve 15 is a pressure regulating section (in other words, pressure regulating decompression section) that maintains the pressure of the refrigerant on the outlet side of the first evaporator 14 within a predetermined range.
  • the constant pressure valve 15 suppresses frost formation on the first evaporator 14 by maintaining the pressure of the refrigerant (in other words, the temperature of the refrigerant) in the first evaporator 14 at a predetermined value or higher.
  • the constant pressure valve 15 is composed of a mechanical variable throttle mechanism. Specifically, when the pressure of the refrigerant on the outlet side of the first evaporator 14 falls below a predetermined value, the constant pressure valve 15 reduces the flow path area of the refrigerant (that is, the opening degree of the throttle). When the pressure of the refrigerant on the outlet side exceeds a predetermined value, the area of the refrigerant flow path (that is, the throttle opening) is increased.
  • a fixed throttle made up of an orifice, capillary tube, or the like may be employed.
  • the second expansion valve 16 and the second evaporator 17 are arranged in parallel with the first expansion valve 13, the first evaporator 14 and the constant pressure valve 15 in the refrigerant flow.
  • the second expansion valve 16 is a second decompression section that decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 12 .
  • the second expansion valve 16 is an electric variable throttle mechanism, and has a valve body and an electric actuator.
  • the valve body is configured to be able to change the degree of opening of the flow path of the refrigerant (in other words, the degree of throttle opening).
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the second expansion valve 16 is composed of a variable throttle mechanism with a fully closing function that fully closes the refrigerant passage. That is, the second expansion valve 16 can block the flow of the refrigerant by fully closing the flow path of the refrigerant.
  • the operation of the second expansion valve 16 is controlled by control signals output from the controller 60 .
  • the second evaporator 17 performs heat exchange between the low-pressure refrigerant flowing out of the second expansion valve 16 and the cooling water in the low-temperature cooling water circuit 30 to evaporate the refrigerant and cool the cooling water. It is a vessel.
  • the second evaporator 17 is a cooling evaporator that evaporates refrigerant to cool cooling water.
  • the second evaporator 17 is a second evaporator.
  • the vapor-phase refrigerant evaporated in the second evaporator 17 joins the refrigerant flowing out of the constant pressure valve 15 at the confluence portion 10b, and then is sucked into the compressor 11 and compressed.
  • the cooling water of the low-temperature cooling water circuit 30 is a fluid as a heat medium.
  • the cooling water in the low-temperature cooling water circuit 30 is a low-temperature heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used as the cooling water for the low-temperature cooling water circuit 30, a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used.
  • the low-temperature cooling water circuit 30 is a low-temperature heat medium circuit in which a low-temperature heat medium circulates.
  • a condenser 12 a high temperature side pump 21, a heater core 22, a high temperature side radiator 23, an on-off valve 24 and an electric heater 25 are arranged in the high temperature cooling water circuit 20.
  • the high temperature side pump 21 is a heat medium pump that sucks and discharges cooling water.
  • the high temperature side pump 21 is an electric pump.
  • the high-temperature side pump 21 is a high-temperature side flow rate adjusting section that adjusts the flow rate of cooling water circulating in the high-temperature cooling water circuit 20 .
  • the heater core 22 is an air heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the cooling water of the high-temperature cooling water circuit 20 and the air blown into the vehicle interior. In the heater core 22, the cooling water radiates heat to the air blown into the vehicle interior.
  • the condenser 12, the high-temperature cooling water circuit 20, and the heater core 22 are heat radiating units that exchange heat between the refrigerant discharged from the compressor 11 and the air blown into the vehicle interior, and radiate heat to the air.
  • the high-temperature side radiator 23 is a high-temperature heat medium outside air heat exchanger that exchanges heat between the cooling water of the high-temperature cooling water circuit 20 and outside air.
  • the high temperature side radiator 23 and the on-off valve 24 are arranged in parallel with the heater core 22 in the flow of the high temperature side cooling water.
  • the on-off valve 24 is an electromagnetic valve that opens and closes the coolant flow path on the high temperature side radiator 23 side. The operation of the on-off valve 24 is controlled by the controller 60 .
  • the on-off valve 24 is a high-temperature switching unit that switches the flow of cooling water in the high-temperature cooling water circuit 20 .
  • the on-off valve 24 may be a thermostat.
  • a thermostat is a cooling water temperature responsive valve having a mechanical mechanism that opens and closes a cooling water flow path by displacing a valve body with thermowax whose volume changes with temperature.
  • the electric heater 25 is an auxiliary heating unit that auxiliary heats the cooling water of the high-temperature cooling water circuit 20 .
  • the electric heater 25 is an auxiliary heat source for heating the air with the heater core 22 .
  • a PTC heater or the like that generates heat when supplied with electric power can be used.
  • the electric heater 25 is a Joule heat generator that generates Joule heat. The amount of heat generated by the electric heater 25 is controlled by a control voltage output from the controller 60 .
  • a second evaporator 17, a low temperature side pump 31, a low temperature side radiator 32, a battery 33 and a three-way valve 38 are arranged in the low temperature cooling water circuit 30.
  • the low temperature side pump 31 is a heat medium pump that sucks and discharges cooling water.
  • the low temperature side pump 31 is an electric pump.
  • the low-temperature side pump 31 is a low-temperature side flow rate adjusting section that adjusts the flow rate of cooling water circulating in the low-temperature cooling water circuit 30 .
  • the low-temperature side radiator 32 is a low-temperature heat medium outside air heat exchanger that exchanges heat between the cooling water of the low-temperature cooling water circuit 30 and the outside air.
  • the battery 33 is an in-vehicle device mounted in a vehicle, and is a heat-generating device that generates heat as it operates.
  • the battery 33 radiates waste heat generated during operation to the cooling water of the low-temperature cooling water circuit 30 .
  • the battery 33 supplies heat to the cooling water of the low temperature cooling water circuit 30 .
  • the low temperature side radiator 32 and the battery 33 are arranged in parallel with each other in the flow of the low temperature side cooling water.
  • the three-way valve 38 switches the flow of the low temperature side cooling water to the low temperature side radiator 32 and the battery 33 . Actuation of the three-way valve 38 is controlled by a controller 60 .
  • the first evaporator 14 and the heater core 22 are housed in a casing 51 (hereinafter referred to as an air conditioning casing) of the indoor air conditioning unit 50.
  • the indoor air conditioning unit 50 is arranged inside a not-shown instrument panel in the front part of the passenger compartment.
  • the air conditioning casing 51 is an air passage forming member that forms an air passage.
  • the heater core 22 is arranged downstream of the first evaporator 14 in the air passage in the air conditioning casing 51 .
  • An inside/outside air switching box 52 and an indoor fan 53 are arranged in the air conditioning casing 51 .
  • the inside/outside air switching box 52 has an inside/outside air switching door 52a.
  • the inside/outside air switching door 52 a is an inside/outside air switching portion that switches between introducing inside air and outside air into the air passage in the air conditioning casing 51 .
  • the inside/outside air switching door 52 a is an inside/outside air adjustment unit that adjusts the ratio between the inside air and the outside air introduced into the air passage in the air conditioning casing 51 .
  • the indoor air blower 53 draws in the inside air and the outside air introduced into the air passage in the air conditioning casing 51 through the inside/outside air switching box 52 and blows the air.
  • the inside/outside air switching door 52 a and the indoor blower 53 are controlled by the control device 60 .
  • An air mix door 54 is arranged between the first evaporator 14 and the heater core 22 in the air passage in the air conditioning casing 51 .
  • the air mix door 54 adjusts the air volume ratio between the cold air flowing into the heater core 22 and the cold air flowing through the cold air bypass passage 55 among the cold air that has passed through the first evaporator 14 .
  • the cold air bypass passage 55 is an air passage through which the cold air that has passed through the first evaporator 14 bypasses the heater core 22 .
  • the air mix door 54 is a rotary door having a rotating shaft rotatably supported with respect to the air conditioning casing 51 and a door base plate portion coupled to the rotating shaft. By adjusting the opening position of the air mix door 54, the temperature of the air-conditioned air blown out from the air-conditioning casing 51 into the passenger compartment can be adjusted to a desired temperature.
  • the rotating shaft of the air mix door 54 is driven by a servomotor.
  • the operation of the servo motors is controlled by controller 60 .
  • the air mix door 54 may be a sliding door that slides in a direction substantially perpendicular to the air flow.
  • the sliding door may be a plate-shaped door made of a rigid body.
  • a film door formed of a flexible film material may be used.
  • the air-conditioned air whose temperature has been adjusted by the air mix door 54 is blown into the vehicle interior through the outlet 56 formed in the air-conditioning casing 51 .
  • the control device 60 shown in FIG. 2 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits.
  • the control device 60 performs various calculations and processes based on control programs stored in the ROM.
  • Various devices to be controlled are connected to the output side of the control device 60 .
  • the control device 60 is a control unit that controls the operation of various controlled devices.
  • Equipment to be controlled by the control device 60 includes the compressor 11, the first expansion valve 13, the second expansion valve 16, the high temperature side pump 21, the on-off valve 24, the electric heater 25, the low temperature side pump 31, the three-way valve 38, They are the inside/outside air switching door 52a, the indoor blower 53, and the like.
  • the software and hardware for controlling the electric motor of the compressor 11 in the control device 60 is a refrigerant discharge capacity control section.
  • Software and hardware for controlling the first expansion valve 13 in the control device 60 are a first throttle control section.
  • the software and hardware for controlling the second expansion valve 16 in the control device 60 is a second throttle control section.
  • the software and hardware for controlling the high temperature side pump 21 in the control device 60 is a high temperature heat medium flow control unit.
  • Software and hardware for controlling the on-off valve 24 in the control device 60 is an on-off valve control unit.
  • the software and hardware for controlling the electric heater 25 in the control device 60 is an auxiliary heating control section.
  • the software and hardware for controlling the low-temperature side pump 31 in the control device 60 is a low-temperature heat medium flow rate controller.
  • Software and hardware for controlling the three-way valve 38 in the control device 60 is a three-way valve control section.
  • the input side of the control device 60 includes an inside air temperature sensor 61, an outside air temperature sensor 62, a solar radiation sensor 63, a first evaporator temperature sensor 64, a second evaporator temperature sensor 65, a heater core temperature sensor 66, and a high pressure refrigerant pressure sensor 67. , high-temperature cooling water temperature sensor 68, first low-pressure refrigerant pressure sensor 69, first low-pressure refrigerant temperature sensor 70, second low-pressure refrigerant pressure sensor 71, second low-pressure refrigerant temperature sensor 72, battery temperature sensor 73, etc. A group of sensors is connected.
  • the inside air temperature sensor 61 detects the vehicle interior temperature Tr.
  • An outside air temperature sensor 62 detects outside air temperature Tam.
  • the solar radiation sensor 63 detects the solar radiation As in the passenger compartment.
  • the first evaporator temperature sensor 64 is a temperature detection unit that detects the temperature TE1 of the first evaporator 14 (hereinafter referred to as the first evaporator temperature).
  • the first evaporator temperature sensor 64 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the first evaporator 14, a refrigerant temperature sensor that detects the temperature of refrigerant flowing through the first evaporator 14, or the like.
  • the second evaporator temperature sensor 65 is a temperature detection unit that detects the temperature TE2 of the second evaporator 17 (hereinafter referred to as the second evaporator temperature).
  • the second evaporator temperature sensor 65 is, for example, a refrigerant temperature sensor or the like that detects the temperature of refrigerant flowing through the second evaporator 17 .
  • the heater core temperature sensor 66 is a temperature detection unit that detects the temperature TH of the heater core 22 (hereinafter referred to as heater core temperature).
  • the heater core temperature sensor 66 includes, for example, a fin thermistor that detects the temperature of the heat exchange fins of the heater core 22, a coolant temperature sensor that detects the temperature of cooling water flowing through the heater core 22, and an air temperature sensor that detects the temperature of air flowing out of the heater core 22.
  • a temperature sensor or the like is a temperature detection unit that detects the temperature TH of the heater core 22 (hereinafter referred to as heater core temperature).
  • the heater core temperature sensor 66 includes, for example, a fin thermistor that detects the temperature of the heat exchange fins of the heater core 22, a coolant temperature sensor that detects the temperature of cooling water flowing through the heater core 22, and an air temperature sensor that detects the temperature of air flowing out of the heater core 22.
  • a temperature sensor or the like is a temperature detection unit that detects the temperature TH of the heater core
  • the high-pressure refrigerant pressure sensor 67 is a high-pressure refrigerant pressure detection section that detects the pressure of the high-pressure refrigerant on the outlet side of the receiver 18 .
  • the high-temperature cooling water temperature sensor 68 is a temperature detection unit that detects the temperature TW of the cooling water in the high-temperature cooling water circuit 20 .
  • hot coolant temperature sensor 68 detects the temperature of the coolant in condenser 12 .
  • the first low-pressure refrigerant pressure sensor 69 is a first low-pressure refrigerant pressure detection section that detects the pressure of the low-pressure refrigerant on the outlet side of the first evaporator 14 .
  • the first low-pressure refrigerant temperature sensor 70 is a first low-pressure refrigerant pressure detection section that detects the temperature of the low-pressure refrigerant on the outlet side of the first evaporator 14 .
  • the second low-pressure refrigerant pressure sensor 71 is a second low-pressure refrigerant pressure detection section that detects the pressure of the low-pressure refrigerant on the outlet side of the second evaporator 17 .
  • the second low-pressure refrigerant temperature sensor 72 is a second low-pressure refrigerant pressure detection section that detects the temperature of the low-pressure refrigerant on the outlet side of the second evaporator 17 .
  • the battery temperature sensor 73 is a battery temperature detection unit that detects the temperature TB of the battery 33.
  • the battery temperature sensor 73 is desirably composed of a plurality of temperature sensors that detect temperatures at a plurality of locations on the battery 33 .
  • Various operation switches provided on the operation panel 75 are connected to the input side of the control device 60 .
  • Various operation switches are operated by the passenger.
  • the operation panel 75 is arranged near the instrument panel in the front part of the passenger compartment. Operation signals from various operation switches are input to the control device 60 .
  • the air conditioner switch is a switch for setting whether or not the indoor air conditioning unit 50 cools the air.
  • the temperature setting switch is a switch for setting the preset temperature in the vehicle compartment.
  • the control device 60 switches the operation mode of the air conditioning between the air conditioning mode, the standard mode, the high cooling mode, the energy saving mode, and the independent mode based on the target outlet temperature TAO and the like.
  • the air-conditioning mode is an operation mode (in other words, air-conditioning only mode) that is switched when air-conditioning the vehicle interior without cooling the battery 33 .
  • the standard mode is an operation mode (in other words, standard air conditioning battery mode) that is switched when air-conditioning the vehicle interior and cooling the battery.
  • the high cooling mode is an operation mode (in other words, high cooling air conditioning battery mode) that can be switched when air-conditioning the vehicle interior and cooling the battery with a higher capacity than in the standard mode.
  • the energy-saving mode is an operation mode (in other words, an energy-saving air-conditioning battery mode) that can be switched when air-conditioning the vehicle interior and cooling the battery with lower capacity than the standard mode.
  • the stand-alone mode is an operation mode (in other words, stand-alone battery mode) that is switched when cooling the battery 33 without air-conditioning the interior of the vehicle.
  • control device 60 operates the compressor 11, the high temperature side pump 21, and the indoor fan 53 to throttle the first expansion valve 13 and fully close the second expansion valve 16.
  • the control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target blowout temperature TAO, detection signals from the sensor group, and the like.
  • the target blowout temperature TAO is the target temperature of the blown air blown into the vehicle compartment.
  • the target blowout temperature TAO is an index indicating the air conditioning load (in other words, air conditioning heat load) required of the vehicle air conditioner 1 .
  • the control device 60 calculates the target outlet temperature TAO based on the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As+C (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch on the operation panel 75
  • Tr is the inside temperature detected by the inside temperature sensor 61
  • Tam is the outside temperature detected by the outside temperature sensor 62
  • Kset, Kr, Kam, and Ks are control gains
  • C is a correction constant.
  • the second 1 The temperature TE1 of the evaporator 14 is determined so as to approach the standard target temperature TEOs.
  • the standard target temperature TEOs is determined by referring to the control map stored in the control device 60 based on the target outlet temperature TAO. In the control map of this embodiment, the standard target temperature TEOs is determined to rise as the target outlet temperature TAO rises.
  • the degree of superheat of the refrigerant at the outlet of the first evaporator 14 is the coefficient of performance (so-called COP) of the cycle. is determined to approach a first target degree of superheat that is predetermined to approach a maximum value.
  • the degree of superheat of the outlet refrigerant of the first evaporator 14 is the pressure of the low-pressure refrigerant on the outlet side of the first evaporator 14 detected by the first low-pressure refrigerant pressure sensor 69 and the first low-pressure refrigerant temperature sensor 70. and the temperature of the low-pressure refrigerant on the outlet side of the first evaporator 14 .
  • the control signal output to the indoor fan 53 (in other words, the air volume of the indoor fan 53) is determined based on the target outlet temperature TAO. For example, the control signal output to the indoor fan 53 is determined so that the air volume of the indoor fan 53 increases in the high temperature range and low temperature range of the target air temperature TAO.
  • Control signals output to the servomotor of the air mix door 54 include the target outlet temperature TAO, the first evaporator temperature TE1 detected by the first evaporator temperature sensor 64, the heater core temperature TH detected by the heater core temperature sensor 66, and the , the air mix opening degree SW is determined. Then, the control signal to be output to the electric actuator 44a for the air mix door is determined so that the determined air mix opening degree SW is obtained. The air mix opening degree SW is determined so that the temperature of the air blown into the vehicle interior approaches the target air temperature TAO.
  • the control signal output to the on-off valve 24 is determined so that the temperature TW of the coolant in the high-temperature coolant circuit 20 detected by the high-temperature coolant temperature sensor 68 approaches the target outlet temperature TAO. That is, when the temperature TW of the coolant in the high-temperature coolant circuit 20 is higher than the target blowout temperature TAO, the on-off valve 24 is opened. As a result, in the high temperature cooling water circuit 20, the cooling water circulates through the high temperature side radiator 23, and the radiator 23 radiates heat from the cooling water to the outside air. When the temperature TW of the coolant in the high-temperature coolant circuit 20 is lower than the target blowout temperature TAO, the on-off valve 24 is closed. As a result, in the high temperature cooling water circuit 20 , the cooling water does not circulate through the high temperature side radiator 23 and the radiator 23 does not radiate heat from the cooling water to the outside air.
  • the state of the refrigerant circulating in the cycle changes as follows.
  • the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 .
  • the refrigerant is cooled and condensed in the condenser 12 .
  • the refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the first evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
  • the refrigerant that has flowed out of the first evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
  • the cooling water in the high-temperature cooling water circuit 20 radiated from the refrigerant in the condenser 12 is circulated to the heater core 22 .
  • the air cooled by the first evaporator 14 is heated by the cooling water of the high temperature cooling water circuit 20 .
  • the first evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, cools the air, heats the cooled air with the heater core 22, and blows it into the vehicle interior. This makes it possible to air-condition the passenger compartment.
  • control device 60 operates the compressor 11, the high-temperature side pump 21, the low-temperature side pump 31, and the indoor fan 53 to throttle the first expansion valve 13 and throttle the second expansion valve 16. .
  • the control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target blowout temperature TAO, detection signals from the sensor group, and the like.
  • the second 1 The temperature TE1 of the evaporator 14 is determined so as to approach the standard target temperature TEOs.
  • the degree of superheat of the refrigerant at the outlet of the first evaporator 14 is determined by the cycle.
  • the coefficient of performance (so-called COP) is determined so as to approach the first target degree of superheat, which is predetermined so as to approach the maximum value.
  • the degree of superheat of the refrigerant at the outlet of the second evaporator 17 is the coefficient of performance (so-called COP) of the cycle. is determined to approach a second target degree of superheat which is predetermined to approach a maximum value.
  • the degree of superheat of the outlet refrigerant of the second evaporator 17 is the pressure of the low-pressure refrigerant on the outlet side of the second evaporator 17 detected by the second low-pressure refrigerant pressure sensor 71 and the second low-pressure refrigerant temperature sensor 72. and the temperature of the low-pressure refrigerant on the outlet side of the second evaporator 17 .
  • the control signal output to the indoor fan 53 (in other words, the air volume of the indoor fan 53) is determined based on the target outlet temperature TAO, as in the air conditioning mode.
  • the control signal (in other words, the air mix opening degree SW) output to the servo motor of the air mix door 54
  • the temperature of the air blown into the passenger compartment is determined so as to approach the target air temperature TAO.
  • the control signal output to the on-off valve 24 is determined so that the temperature TW of the coolant in the high-temperature coolant circuit 20 detected by the high-temperature coolant temperature sensor 68 approaches the target outlet temperature TAO. .
  • the state of the refrigerant circulating in the cycle changes in the same way as in the air conditioning mode.
  • the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 .
  • the refrigerant is cooled and condensed in the condenser 12 .
  • the refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the first evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
  • the refrigerant that has flowed out of the first evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
  • the cooling water in the high-temperature cooling water circuit 20 radiated from the refrigerant in the condenser 12 is circulated to the heater core 22 .
  • the air cooled by the first evaporator 14 is heated by the cooling water of the high temperature cooling water circuit 20 .
  • the first evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, cools the air, heats the cooled air with the heater core 22, and blows it into the passenger compartment. This makes it possible to air-condition the passenger compartment.
  • the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the second evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled.
  • the cooling water of the low-temperature cooling water circuit 30 cooled by the second evaporator 17 flows into the battery 33 and absorbs heat from the battery 33 . Thereby, the battery 33 is cooled.
  • control device 60 operates the compressor 11, the high temperature side pump 21, the low temperature side pump 31, and the indoor fan 53, throttles the first expansion valve 13, and sets the second expansion
  • the valve 16 is put in the throttling state.
  • the control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target blowout temperature TAO, detection signals from the sensor group, and the like.
  • the control signal output to the compressor 11 (in other words, the rotation speed of the compressor 11) based on the deviation between the high cooling target temperature TEOc and the temperature TE2 of the second evaporator 17, by a feedback control method,
  • the temperature TE2 of the second evaporator 17 is determined so as to approach the high cooling target temperature TEOc.
  • the high cooling target temperature TEOc is determined to be lower than the standard target temperature TEOs.
  • the rotation speed of the compressor 11 is higher in the high cooling mode than in the standard mode.
  • the degree of superheat of the refrigerant at the outlet of the second evaporator 17 is determined by the cycle.
  • the coefficient of performance (so-called COP) is determined so as to approach a predetermined second target degree of superheat so as to approach the maximum value.
  • the control signal output to the indoor fan 53 (in other words, the air volume of the indoor fan 53) is determined based on the target outlet temperature TAO, as in the air conditioning mode.
  • the control signal (in other words, the air mix opening degree SW) output to the servo motor of the air mix door 54
  • the temperature of the air blown into the passenger compartment is determined so as to approach the target air temperature TAO.
  • control signal output to the on-off valve 24 is determined so that the temperature TW of the coolant in the high-temperature coolant circuit 20 detected by the high-temperature coolant temperature sensor 68 approaches the target outlet temperature TAO. .
  • the state of the refrigerant circulating in the cycle changes in the same way as in the standard mode.
  • the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 .
  • the refrigerant is cooled and condensed in the condenser 12 .
  • the refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the first evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
  • the temperature of the first evaporator 14 is maintained at the standard target temperature TEOs as in the standard mode. Thereby, frost formation on the first evaporator 14 is suppressed.
  • the refrigerant that has flowed out of the first evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
  • the cooling water in the high-temperature cooling water circuit 20 radiated from the refrigerant in the condenser 12 is circulated to the heater core 22 .
  • the air cooled by the first evaporator 14 is heated by the cooling water of the high temperature cooling water circuit 20 .
  • the first evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, cools the air, heats the cooled air with the heater core 22, and blows it into the passenger compartment. This makes it possible to air-condition the passenger compartment.
  • the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the second evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled.
  • the cooling water of the low-temperature cooling water circuit 30 cooled by the second evaporator 17 flows into the battery 33 and absorbs heat from the battery 33 . Thereby, the battery 33 is cooled.
  • the rotation speed of the compressor 11 is increased and the temperature TE2 of the second evaporator 17 is lowered compared to the standard mode, so the battery can be cooled with a higher capacity compared to the standard mode.
  • control device 60 operates the compressor 11, the high temperature side pump 21, the low temperature side pump 31, and the indoor fan 53 to throttle the first expansion valve 13 and the second expansion valve. 16 is the aperture state.
  • the control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target blowout temperature TAO, detection signals from the sensor group, and the like.
  • the second 1 The temperature TE1 of the evaporator 14 is determined so as to approach the energy-saving target temperature TEOe.
  • the energy-saving target temperature TEOe is determined to be higher than the standard target temperature TEOs.
  • the rotational speed of the compressor 11 is lower than in the standard mode.
  • the degree of superheat of the refrigerant at the outlet of the first evaporator 14 is determined by the cycle.
  • the coefficient of performance (so-called COP) is determined so as to approach the first target degree of superheat, which is predetermined so as to approach the maximum value.
  • the degree of superheat of the refrigerant at the outlet of the second evaporator 17 is determined by the cycle.
  • the coefficient of performance (so-called COP) is determined so as to approach a predetermined second target degree of superheat so as to approach the maximum value.
  • the control signal output to the indoor fan 53 (in other words, the air volume of the indoor fan 53) is determined based on the target outlet temperature TAO, as in the standard mode.
  • the target outlet temperature TAO and the first evaporator temperature sensor 64 detected by the first evaporator temperature sensor 64 1 Based on the evaporator temperature TE1 and the heater core temperature TH detected by the heater core temperature sensor 66, the temperature of the air blown into the passenger compartment is determined so as to approach the target air temperature TAO.
  • control signal output to the on-off valve 24 is determined so that the temperature TW of the coolant in the high-temperature coolant circuit 20 detected by the high-temperature coolant temperature sensor 68 approaches the target outlet temperature TAO. .
  • the state of the refrigerant circulating in the cycle changes in the same way as in the standard mode.
  • the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 .
  • the refrigerant is cooled and condensed in the condenser 12 .
  • the refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the first evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
  • the refrigerant that has flowed out of the first evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
  • the cooling water in the high-temperature cooling water circuit 20 radiated from the refrigerant in the condenser 12 is circulated to the heater core 22 .
  • the air cooled by the first evaporator 14 is heated by the cooling water of the high temperature cooling water circuit 20 .
  • the first evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, cools the air, heats the cooled air with the heater core 22, and blows it into the passenger compartment. This makes it possible to air-condition the passenger compartment.
  • the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the second evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled.
  • the cooling water of the low-temperature cooling water circuit 30 cooled by the second evaporator 17 flows into the battery 33 and absorbs heat from the battery 33 . Thereby, the battery 33 is cooled.
  • the rotation speed of the compressor 11 is made lower than in the standard mode, so power saving (that is, energy saving) of the compressor 11 can be achieved compared to the standard mode.
  • control device 60 operates the compressor 11, the high-temperature side pump 21, and the low-temperature side pump 31, stops the indoor fan 53, fully closes the first expansion valve 13, and closes the second expansion valve 16. Aperture state.
  • the control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target battery temperature TBO, detection signals from the sensor group, and the like.
  • the second The temperature TE2 of the second evaporator 17 is determined so as to approach the single target temperature TEOa.
  • the independent target temperature TEOa is determined by referring to the control map stored in the control device 60 based on the target battery temperature TBO and the like.
  • the target battery temperature TBO is the target temperature of the battery 33 .
  • the target battery temperature TBO is determined by referring to a control map stored in the control device 60 based on the amount of heat generated by the battery 33, the outside air temperature Tam, and the like.
  • the target battery temperature TBO is determined to decrease as the amount of heat generated by the battery 33 increases.
  • the target battery temperature TBO is determined to decrease as the outside air temperature Tam increases.
  • the single target temperature TEOa is determined to decrease as the target battery temperature TBO decreases. As shown in FIG. 4, the single target temperature TEOa is determined to be lower than the ambient temperature of the first evaporator 14 (in this example, approximately the first evaporator temperature TE1 is used). As a result, in the single mode, the pressure in the first evaporator 14 is higher than the pressure of the refrigerant at the outlet of the second evaporator 17, so that the refrigerant is prevented from stagnating in the first evaporator 14.
  • the degree of superheat of the refrigerant at the outlet of the second evaporator 17 is determined by the cycle.
  • the coefficient of performance (so-called COP) is determined so as to approach a predetermined second target degree of superheat so as to approach the maximum value.
  • the on-off valve 24 is opened, so the cooling water circulates in the high-temperature side radiator 23, and the radiator 23 radiates heat from the cooling water to the outside air.
  • the state of the refrigerant circulating in the cycle changes as follows.
  • the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 .
  • the refrigerant is cooled and condensed in the condenser 12 .
  • the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the second evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled.
  • the cooling water of the low-temperature cooling water circuit 30 cooled by the second evaporator 17 flows into the battery 33 and absorbs heat from the battery 33 . Thereby, the battery 33 is cooled.
  • the refrigerant flowing out of the second evaporator 17 flows to the suction side of the compressor 11 and is compressed by the compressor 11 again.
  • the pressure inside the first evaporator 14 is higher than the pressure of the refrigerant at the outlet of the second evaporator 17, so the refrigerant can be prevented from stagnating inside the first evaporator 14.
  • the control device 60 switches between the air conditioning mode, the standard mode, the energy saving mode, and the independent mode by executing the control processing shown in the flowchart of FIG.
  • step S100 it is determined whether or not the battery 33 needs to be cooled. For example, when the temperature TB of the battery 33 detected by the battery temperature sensor 73 exceeds the cooling reference temperature RTB, it is determined that the battery 33 needs to be cooled.
  • step S100 If it is determined in step S100 that the battery 33 does not need to be cooled, the process proceeds to step S110 and switches to the air conditioning mode.
  • step S100 If it is determined in step S100 that the battery 33 needs to be cooled, the process proceeds to step S120 to determine whether it is necessary to dehumidify the vehicle interior. Specifically, when the air conditioner switch on the operation panel 75 is turned on, it is determined that it is necessary to dehumidify the vehicle interior. That is, when the air conditioner switch on the operation panel 75 is turned on, it is determined that the first evaporator 14 needs to cool and dehumidify the air.
  • step S120 If it is determined in step S120 that it is not necessary to dehumidify the vehicle interior, the process proceeds to step S130 and is switched to the single mode.
  • step S120 When it is determined in step S120 that it is necessary to dehumidify the vehicle interior, the process proceeds to step S140, in which it is determined whether or not the target battery temperature TBO exceeds the energy saving reference temperature ⁇ e.
  • the energy-saving reference temperature ⁇ e is a value higher than the high cooling target temperature TEOc.
  • step S140 If it is determined in step S140 that the target battery temperature TBO is higher than the energy saving reference temperature ⁇ e, the process proceeds to step S150 to switch to the energy saving mode.
  • step S140 If it is determined in step S140 that the target battery temperature TBO does not exceed the energy saving reference temperature ⁇ e, the process proceeds to step S160 to determine whether or not the target battery temperature TBO exceeds the high cooling reference temperature ⁇ c.
  • the high cooling reference temperature ⁇ c is higher than the high cooling target temperature TEOc and lower than the energy saving reference temperature ⁇ e.
  • step S160 If it is determined in step S160 that the target battery temperature TBO is higher than the high cooling reference temperature ⁇ c, the process proceeds to step S170 to switch to the standard mode.
  • step S160 If it is determined in step S160 that the target battery temperature TBO does not exceed the high cooling reference temperature ⁇ c, the process advances to step S180 to switch to the high cooling mode.
  • the control device 60 has an energy saving mode for controlling the compressor 11 so that the temperature TE1 of the first evaporator 14 approaches the energy saving target temperature TEOe, and in the energy saving mode, the target temperature TBO of the battery 33 is the energy saving reference temperature.
  • the temperature TE1 of the first evaporator 14 switches to the standard mode in which the compressor 11 is controlled so as to approach the standard target temperature TEOs, which is lower than the energy-saving target temperature TEOe.
  • the energy saving mode can save energy, and the standard mode can secure the cooling capacity.
  • the controller 60 controls the compressor 11 so that the temperature TE1 of the first evaporator 14 approaches the standard target temperature TEOs, and in the standard mode, the target temperature TBO of the battery 33 is set to the high cooling standard.
  • the temperature TE2 of the second evaporator 17 switches to a high cooling mode that controls the compressor 11 so as to approach the high cooling target temperature TEOc that is lower than the standard target temperature TEOs.
  • the standard mode saves energy, and the high cooling mode ensures cooling capacity.
  • control device 60 has a standard mode for controlling the compressor 11 so that the temperature TE1 of the first evaporator 14 approaches the standard target temperature TEOs, and in the standard mode, the first expansion valve 13 is set to the first evaporator. 14, and controls the compressor 11 so that the temperature TE2 of the second evaporator 17 approaches the single target temperature TEOa that is lower than the temperature TE1 of the first evaporator 14. Switch to and from solo mode.
  • control device 60 switches to the energy saving mode when the target temperature TBO of the battery 33 exceeds the energy saving reference temperature ⁇ e in the standard mode.
  • the control device 60 switches to the energy saving mode when the target temperature TBO of the battery 33 exceeds the energy saving reference temperature ⁇ e in the standard mode.
  • control device 60 switches to the standard mode when the target temperature TBO of the battery 33 exceeds the high cooling reference temperature ⁇ c in the high cooling mode.
  • control device 60 switches to the standard mode when the first expansion valve 13 causes the refrigerant to flow to the first evaporator 14 in the independent mode.
  • the control device 60 sets the temperature of the second evaporator 17 to the high cooling target temperature lower than the standard target temperature TEOs. Switch to a high cooling mode that controls the compressor 11 to approach TEOc. As a result, the energy saving mode, the standard mode, and the high cooling mode can be appropriately switched to achieve both energy saving and securing of cooling capacity.
  • the control device 60 sets the temperature TE1 of the first evaporator 14 to the energy-saving target temperature TEOe higher than the standard target temperature TEOs. is switched to an energy-saving mode that controls the compressor 11 so as to approach
  • the control device 60 controls the first expansion valve 13 based on the degree of superheat of the refrigerant flowing out of the first evaporator 14, and superheats the refrigerant flowing out of the second evaporator 17.
  • the first expansion valve 13 is controlled based on the degree of superheat of the refrigerant flowing out of the first evaporator 14 and outflowing from the second evaporator 17
  • the second expansion valve 16 is controlled based on the degree of superheat of the refrigerant.
  • the control device 60 controls the first expansion valve 13 based on the degree of superheat of the refrigerant flowing out of the first evaporator 14, and superheats the refrigerant flowing out of the second evaporator 17.
  • the second expansion valve 16 is controlled based on the degree of superheat of the refrigerant flowing out of the second evaporator 17 .
  • the control device 60 controls the first expansion valve 13 based on the degree of superheat of the refrigerant flowing out of the first evaporator 14, and superheats the refrigerant flowing out of the second evaporator 17.
  • the second expansion valve 16 is controlled based on the degree of superheat of the refrigerant flowing out of the second evaporator 17 .
  • first expansion valve 13 and the first evaporator 14, and the second expansion valve 16 and the second evaporator 17 are arranged in parallel with each other in the refrigerant flow. Thereby, pressure loss can be reduced and good performance can be obtained.
  • the first evaporator 14 and the second evaporator 17 are arranged in parallel with each other in the refrigerant flow of the refrigeration cycle device 10, but in this embodiment, as shown in FIG.
  • the evaporator 14 and the second evaporator 17 are arranged in series with each other in the refrigerant flow of the refrigeration cycle device 10 .
  • the second expansion valve 16 and the second evaporator 17 are arranged downstream of the first evaporator 14 in the refrigerant flow.
  • the refrigeration cycle device 10 has a bypass flow path 40 .
  • the bypass flow path 40 is a refrigerant flow path through which the refrigerant flowing out of the receiver 18 bypasses the first expansion valve 13 and the first evaporator 14 and flows to the second expansion valve 16 .
  • a bypass opening/closing valve 41 is arranged in the bypass flow path 40 .
  • the bypass opening/closing valve 41 is an electromagnetic valve that opens and closes the bypass flow path 40 and is controlled by the controller 60 .
  • the controller 60 When switching to the air conditioning mode, the controller 60 closes the bypass on-off valve 41, so the refrigerant absorbs heat from the air and evaporates in the first evaporator 14. In the air conditioning mode, the control device 60 fully opens the second expansion valve 16 and stops the low temperature side pump 31, so that heat exchange between the refrigerant and the cooling water of the low temperature cooling water circuit 30 is not performed in the second evaporator 17. rarely done.
  • the control device 60 When switching to the standard mode, the high cooling mode, and the energy saving mode, the control device 60 closes the bypass on-off valve 41, so the refrigerant absorbs heat from the air in the first evaporator 14 and evaporates, and the refrigerant in the second evaporator 17 It absorbs heat from the cooling water in the low-temperature cooling water circuit 30 and evaporates.
  • control device 60 When switching to the independent mode, the control device 60 opens the bypass on-off valve 41 and closes the first expansion valve 13, so that heat exchange between the refrigerant and the air is not performed in the first evaporator 14, and the second evaporator At 17, the refrigerant absorbs heat from the cooling water in the low-temperature cooling water circuit 30 and evaporates.
  • the air conditioning mode, standard mode, high cooling mode, energy saving mode, and single mode are switched under the same switching conditions as in the first embodiment, and the standard mode, high cooling mode, energy saving mode, and single mode are switched in the same manner as in the first embodiment.
  • the compressor 11, the first expansion valve 13, the second expansion valve 16, etc. By controlling the compressor 11, the first expansion valve 13, the second expansion valve 16, etc., the same effects as those of the first embodiment can be obtained.
  • a nanofluid may be used as a heat carrier.
  • a nanofluid is a fluid mixed with nanoparticles having a particle size on the order of nanometers.
  • a freon-based refrigerant is used as a refrigerant, but the type of refrigerant is not limited to this, and natural refrigerants such as carbon dioxide, hydrocarbon-based refrigerants, etc. may be used. good.
  • the refrigerating cycle device 10 of the above embodiment constitutes a subcritical refrigerating cycle in which the high pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but a supercritical refrigerating cycle in which the high pressure side refrigerant pressure exceeds the critical pressure of the refrigerant.
  • the high temperature side radiator 23 and the low temperature side radiator 32 are separate radiators, but the high temperature side radiator 23 and the low temperature side radiator 32 may be configured as a single radiator.
  • the tank of the high temperature side radiator 23 and the tank of the low temperature side radiator 32 may be integrated with each other so that the high temperature side radiator 23 and the low temperature side radiator 32 are configured as one radiator.
  • the first expansion valve 13 is configured integrally with the decompression portion for decompressing the refrigerant and the shutoff portion 13a for shutting off the flow of the refrigerant by fully closing the flow path of the refrigerant.
  • the cutoff portion 13a may be separate from the first expansion valve 13 .
  • the condenser 12 in the above embodiment is a heat exchanger that exchanges heat between refrigerant and cooling water, but the condenser 12 may be a heat exchanger that exchanges heat between refrigerant and air.
  • the battery 33 is cooled by cooling water cooled by the refrigerant in the second evaporator 17, but the battery 33 may be directly cooled by the refrigerant or cooled by air cooled by the refrigerant. may be
  • the refrigeration cycle device 10 is a receiver cycle having the receiver 18 in the above embodiment, the refrigeration cycle device 10 may be an accumulator cycle having an accumulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The present invention comprises: a compressor (11) that sucks in, compresses, and discharges a refrigerant; a heat dissipation unit (12) that dissipates heat from the refrigerant discharged from the compressor; a first decompression unit (13) and a second decompression unit (16) that decompress the refrigerant from which heat has been dissipated by the heat dissipation unit; a first evaporator (14) that evaporates the refrigerant by causing the refrigerant decompressed by the first decompression unit to absorb heat from the air blown into a space to be air-conditioned; a second evaporator (17) that evaporates the refrigerant by causing the refrigerant decompressed by the second decompression unit to absorb heat from an object to be cooled (33); and a control unit (60) that switches between an energy-saving mode in which the compressor is controlled so that the temperature (TE1) of the first evaporator approaches an energy-saving target temperature (TEOe), and a standard mode that is executed when the target temperature (TBO) of the object to be cooled falls below an energy-saving reference temperature (αe) in the energy-saving mode and in which the compressor is controlled so that the temperature of the first evaporator approaches a standard target temperature (TEOs) that is lower than the energy-saving target temperature.

Description

冷凍サイクル装置refrigeration cycle equipment 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年3月22日に出願された日本特許出願2021-46982号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2021-46982 filed on March 22, 2021, and the content thereof is incorporated herein.
 本開示は、空気および冷却対象物を冷却する冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device that cools air and objects to be cooled.
 従来、特許文献1には、室内蒸発器とチラーとを有する冷凍サイクル装置が記載されている。室内蒸発器は、車室内へ送風される空気を低圧冷媒で吸熱して冷却する熱交換器である。チラーは、電池冷却用熱媒体を低圧冷媒で吸熱して冷却する熱交換器である。 Conventionally, Patent Document 1 describes a refrigeration cycle device having an indoor evaporator and a chiller. The indoor evaporator is a heat exchanger that uses a low-pressure refrigerant to absorb heat from the air blown into the passenger compartment to cool the air. A chiller is a heat exchanger that cools a battery cooling heat medium by absorbing heat with a low-pressure refrigerant.
特開2020-104604号公報JP 2020-104604 A
 電気自動車の航続距離の延伸に伴い、電気自動車に搭載される電池は増加する傾向にある。しかるに、高負荷走行や急速充電等により電池の温度が高くなることがあるので、電池冷却能力の向上が求められている。 As the cruising range of electric vehicles increases, the number of batteries installed in electric vehicles tends to increase. However, since the temperature of the battery may rise due to high-load driving, rapid charging, etc., improvement of the battery cooling capacity is required.
 本開示は、上記点に鑑みて、省エネルギー化と冷却能力の確保とを両立可能な冷凍サイクル装置を提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a refrigeration cycle apparatus capable of achieving both energy saving and securing of cooling capacity.
 本開示の第一の態様による冷凍サイクル装置は、圧縮機と、放熱部と、第1減圧部および第2減圧部と、第1蒸発部と、第2蒸発部と、制御部とを備える。 A refrigeration cycle apparatus according to a first aspect of the present disclosure includes a compressor, a heat radiating section, first and second pressure reducing sections, a first evaporating section, a second evaporating section, and a control section.
 圧縮機は、冷媒を吸入して圧縮し吐出する。放熱部は、圧縮機から吐出された冷媒を放熱させる。第1減圧部および第2減圧部は、放熱部で放熱された冷媒を減圧させる。第1蒸発部は、第1減圧部で減圧された冷媒に、空調対象空間へ送風される空気から吸熱させることによって冷媒を蒸発させる。第2蒸発部は、第2減圧部で減圧された冷媒に冷却対象物から吸熱させることによって冷媒を蒸発させる。 The compressor sucks in the refrigerant, compresses it, and discharges it. The heat radiating section radiates heat from the refrigerant discharged from the compressor. The first pressure reducing section and the second pressure reducing section reduce the pressure of the refrigerant radiated by the heat radiating section. The first evaporator causes the refrigerant decompressed by the first decompressor to absorb heat from the air blown into the air-conditioned space, thereby evaporating the refrigerant. The second evaporator evaporates the refrigerant by allowing the refrigerant decompressed by the second decompressor to absorb heat from the object to be cooled.
 制御部は、第1蒸発部の温度が省エネ目標温度に近づくように圧縮機を制御する省エネモードと、省エネモードにおいて冷却対象物の目標温度が省エネ基準温度を下回った場合に実行され、第1蒸発部の温度が、省エネ目標温度よりも低い標準目標温度に近づくように圧縮機を制御する標準モードとを切り替える。 The control unit is executed in an energy-saving mode for controlling the compressor so that the temperature of the first evaporator approaches the energy-saving target temperature, and when the target temperature of the object to be cooled in the energy-saving mode is below the energy-saving reference temperature. Switches to the standard mode in which the compressor is controlled so that the temperature of the evaporator approaches the standard target temperature, which is lower than the energy-saving target temperature.
 これによると、省エネモードにより省エネルギー化を図り、標準モードにより冷却能力を確保できる。 According to this, the energy saving mode can save energy, and the standard mode can secure the cooling capacity.
 本開示の第二の態様による冷凍サイクル装置は、圧縮機と、放熱部と、第1減圧部および第2減圧部と、第1蒸発部と、圧力調整部と、第2蒸発部と、制御部とを備える。 A refrigeration cycle device according to a second aspect of the present disclosure includes a compressor, a heat radiating section, a first pressure reducing section and a second pressure reducing section, a first evaporating section, a pressure adjusting section, a second evaporating section, a control and a part.
 圧縮機は、冷媒を吸入して圧縮し吐出する。放熱部は、圧縮機から吐出された冷媒を放熱させる。第1減圧部および第2減圧部は、放熱部で放熱された冷媒を減圧させる。第1蒸発部は、第1減圧部で減圧された冷媒に、空調対象空間へ送風される空気から吸熱させることによって冷媒を蒸発させる。圧力調整部は、第1蒸発部から流出した冷媒の圧力を所定圧力以上に維持する。第2蒸発部は、第2減圧部で減圧された冷媒に冷却対象物から吸熱させることによって冷媒を蒸発させる。 The compressor sucks in the refrigerant, compresses it, and discharges it. The heat radiating section radiates heat from the refrigerant discharged from the compressor. The first pressure reducing section and the second pressure reducing section reduce the pressure of the refrigerant radiated by the heat radiating section. The first evaporator causes the refrigerant decompressed by the first decompressor to absorb heat from the air blown into the air-conditioned space, thereby evaporating the refrigerant. The pressure adjusting section maintains the pressure of the refrigerant flowing out of the first evaporating section at or above a predetermined pressure. The second evaporator evaporates the refrigerant by allowing the refrigerant decompressed by the second decompressor to absorb heat from the object to be cooled.
 制御部は、第1蒸発部の温度が標準目標温度に近づくように圧縮機を制御する標準モードと、標準モードにおいて冷却対象物の目標温度が高冷却基準温度を下回った場合に実行され、第2蒸発部の温度が、標準目標温度よりも低い高冷却目標温度に近づくように圧縮機を制御する高冷却モードとを切り替える。 The control unit is executed in a standard mode for controlling the compressor so that the temperature of the first evaporator approaches the standard target temperature, and when the target temperature of the object to be cooled is lower than the high cooling reference temperature in the standard mode. 2 Switches to a high cooling mode in which the compressor is controlled so that the temperature of the evaporator approaches a high cooling target temperature that is lower than the standard target temperature.
 これによると、標準モードにより省エネルギー化を図り、高冷却モードにより冷却能力を確保できる。 According to this, the standard mode saves energy, and the high cooling mode ensures cooling capacity.
 本開示の第三の態様による冷凍サイクル装置は、圧縮機と、放熱部と、第1減圧部および第2減圧部と、第1蒸発部と、第2蒸発部と、遮断部と、制御部とを備える。 A refrigeration cycle device according to a third aspect of the present disclosure includes a compressor, a heat radiating section, a first pressure reducing section and a second pressure reducing section, a first evaporating section, a second evaporating section, a cutoff section, and a control section. and
 圧縮機は、冷媒を吸入して圧縮し吐出する。放熱部は、圧縮機から吐出された冷媒を放熱させる。第1減圧部および第2減圧部は、放熱部で放熱された冷媒を減圧させる。第1蒸発部は、第1減圧部で減圧された冷媒に、空調対象空間へ送風される空気から吸熱させることによって冷媒を蒸発させる。第2蒸発部は、第2減圧部で減圧された冷媒に冷却対象物から吸熱させることによって冷媒を蒸発させる。遮断部は、第1蒸発部への冷媒の流通を遮断させる。 The compressor sucks in the refrigerant, compresses it, and discharges it. The heat radiating section radiates heat from the refrigerant discharged from the compressor. The first pressure reducing section and the second pressure reducing section reduce the pressure of the refrigerant radiated by the heat radiating section. The first evaporator causes the refrigerant decompressed by the first decompressor to absorb heat from the air blown into the air-conditioned space, thereby evaporating the refrigerant. The second evaporator evaporates the refrigerant by allowing the refrigerant decompressed by the second decompressor to absorb heat from the object to be cooled. The blocking section blocks the flow of the refrigerant to the first evaporating section.
 制御部は、第1蒸発部の温度が標準目標温度に近づくように圧縮機を制御する標準モードと、標準モードにおいて遮断部が第1蒸発部への冷媒の流通を遮断させた場合に実行され、第2蒸発部の温度が、第1蒸発部の温度よりも低い単独目標温度に近づくように圧縮機を制御する単独モードとを切り替える。 The control unit is executed in a standard mode for controlling the compressor so that the temperature of the first evaporator approaches the standard target temperature, and when the cutoff unit cuts off the flow of refrigerant to the first evaporator in the standard mode. , and a single mode in which the compressor is controlled so that the temperature of the second evaporator approaches a single target temperature lower than the temperature of the first evaporator.
 これによると、標準モードにより省エネルギー化を図り、単独モードにより冷却能力を確保できる。 According to this, it is possible to save energy in the standard mode and secure cooling capacity in the independent mode.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確となる。
第1実施形態の冷凍サイクル装置を示す全体構成図である。 第1実施形態の冷凍サイクル装置の電気制御部を示すブロック図である。 第1実施形態の冷凍サイクル装置の省エネモード、標準モードおよび高冷却モードの作動を説明する説明図である。 第1実施形態の冷凍サイクル装置の標準モードおよび単独モードの作動を説明する説明図である。 第1実施形態の冷凍サイクル装置の制御装置が実行する制御処理を示すフローチャートである。 第2実施形態の冷凍サイクル装置を示す全体構成図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows the refrigerating-cycle apparatus of 1st Embodiment. It is a block diagram which shows the electric-control part of the refrigerating-cycle apparatus of 1st Embodiment. It is an explanatory view explaining operation of an energy-saving mode, a standard mode, and a high cooling mode of a refrigerating cycle device of a 1st embodiment. It is explanatory drawing explaining the operation|movement of the standard mode of the refrigerating-cycle apparatus of 1st Embodiment, and independent mode. 4 is a flowchart showing control processing executed by the control device of the refrigeration cycle apparatus of the first embodiment; It is a whole block diagram which shows the refrigerating-cycle apparatus of 2nd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合わせることも可能である。 A plurality of modes for carrying out the present disclosure will be described below with reference to the drawings. In each embodiment, portions corresponding to items described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only part of the configuration is described in each embodiment, the other embodiments previously described can be applied to other portions of the configuration. Not only the combination of the parts that are specifically stated that the combination is possible in each embodiment, but also the embodiments can be partially combined even if it is not specified unless there is a particular problem with the combination. It is possible.
 (第1実施形態)
 以下、実施形態について図に基づいて説明する。図1に示す冷凍サイクル装置10は、電気自動車またはハイブリッド自動車に搭載された車両用空調装置1に適用されている。電気自動車は、電動モータから走行用の駆動力を得る車両である。ハイブリッド自動車は、エンジン(換言すれば内燃機関)および走行用電動モータから車両走行用の駆動力を得る車両である。
(First embodiment)
Embodiments will be described below with reference to the drawings. A refrigeration cycle device 10 shown in FIG. 1 is applied to a vehicle air conditioner 1 mounted on an electric vehicle or a hybrid vehicle. An electric vehicle is a vehicle that obtains driving force for running from an electric motor. A hybrid vehicle is a vehicle that obtains driving force for driving the vehicle from an engine (in other words, an internal combustion engine) and an electric motor for driving.
 車両用空調装置1は、電池温度調整機能付きの空調装置である。車両用空調装置1は、空調対象空間である車室内の空調を行うとともに、電池33の温度を調整する。 The vehicle air conditioner 1 is an air conditioner with a battery temperature adjustment function. The vehicle air conditioner 1 air-conditions the interior of the vehicle, which is a space to be air-conditioned, and adjusts the temperature of the battery 33 .
 電池33は、電動モータ等の車載機器へ供給される電力を蓄える二次電池である。本実施形態の電池33は、リチウムイオン電池である。電池33は、図示しない複数の電池セルを積層配置し、これらの電池セルを電気的に直列あるいは並列に接続することによって形成された、いわゆる組電池である。 The battery 33 is a secondary battery that stores power to be supplied to in-vehicle equipment such as an electric motor. The battery 33 of this embodiment is a lithium ion battery. The battery 33 is a so-called assembled battery formed by stacking a plurality of battery cells (not shown) and electrically connecting the battery cells in series or in parallel.
 この種の電池は、低温になると出力が低下しやすく、高温になると劣化が進行しやすい。このため、電池の温度は、電池の充放電容量を充分に活用することができる適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されている必要がある。 The output of this type of battery tends to decrease at low temperatures, and deterioration tends to progress at high temperatures. Therefore, the temperature of the battery must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment) that allows the battery to fully utilize its charge/discharge capacity. .
 そこで、車両用空調装置1では、冷凍サイクル装置10によって生成された冷熱によって電池33を冷却することができるようになっている。本実施形態の冷凍サイクル装置10における冷却対象物は、空気および電池33である。 Therefore, in the vehicle air conditioner 1 , the cold heat generated by the refrigeration cycle device 10 can cool the battery 33 . Objects to be cooled in the refrigeration cycle apparatus 10 of this embodiment are the air and the battery 33 .
 冷凍サイクル装置10は、圧縮機11、凝縮器12、第1膨張弁13、第1蒸発器14、定圧弁15、第2膨張弁16、第2蒸発器17およびレシーバ18を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油(具体的には、PAGオイル)が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The refrigeration cycle device 10 is a vapor compression refrigeration system comprising a compressor 11, a condenser 12, a first expansion valve 13, a first evaporator 14, a constant pressure valve 15, a second expansion valve 16, a second evaporator 17 and a receiver 18. machine. In the refrigerating cycle device 10 of the present embodiment, a freon-based refrigerant is used as a refrigerant, and a subcritical refrigerating cycle is constructed in which the pressure of the refrigerant on the high-pressure side does not exceed the critical pressure of the refrigerant. Refrigerant oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
 圧縮機11は、電池33から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル装置10の冷媒を吸入して圧縮して吐出する。圧縮機11は、ベルトによって駆動される可変容量圧縮機であってもよい。 The compressor 11 is an electric compressor driven by electric power supplied from the battery 33, and sucks, compresses, and discharges the refrigerant of the refrigeration cycle device 10. Compressor 11 may be a variable displacement compressor driven by a belt.
 凝縮器12は、圧縮機11から吐出された高圧側冷媒と高温冷却水回路20の冷却水とを熱交換させることによって高圧側冷媒を凝縮させる高圧側冷媒熱媒体熱交換器である。 The condenser 12 is a high pressure side refrigerant heat medium heat exchanger that condenses the high pressure side refrigerant by exchanging heat between the high pressure side refrigerant discharged from the compressor 11 and the cooling water of the high temperature cooling water circuit 20 .
 高温冷却水回路20の冷却水は、熱媒体としての流体である。高温冷却水回路20の冷却水は高温熱媒体である。本実施形態では、高温冷却水回路20の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。高温冷却水回路20は、高温熱媒体が循環する高温熱媒体回路である。 The cooling water of the high temperature cooling water circuit 20 is a fluid as a heat medium. The cooling water in the high temperature cooling water circuit 20 is a high temperature heat medium. In this embodiment, as the cooling water for the high-temperature cooling water circuit 20, a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used. The high-temperature cooling water circuit 20 is a high-temperature heat medium circuit in which a high-temperature heat medium circulates.
 レシーバ18は、凝縮器12から流出した冷媒の気液を分離して液相冷媒を下流側に流出させるとともに、サイクルの余剰冷媒を貯える気液分離部である。レシーバ18から流出した液相冷媒の流れは、分岐部10aにて分岐される。 The receiver 18 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant that has flowed out of the condenser 12 and causes the liquid-phase refrigerant to flow out downstream, and stores surplus refrigerant in the cycle. The flow of the liquid-phase refrigerant that has flowed out of the receiver 18 is branched at the branching portion 10a.
 第1膨張弁13は、レシーバ18から流出した液相冷媒を減圧膨張させる第1減圧部である。第1膨張弁13は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒の流路の開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。 The first expansion valve 13 is a first decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the receiver 18 . The first expansion valve 13 is an electric variable throttle mechanism, and has a valve body and an electric actuator. The valve body is configured to be able to change the degree of opening of the flow path of the refrigerant (in other words, the degree of throttle opening). The electric actuator has a stepping motor that changes the throttle opening of the valve body.
 第1膨張弁13は、冷媒の流路を全閉する全閉機能付きの可変絞り機構で構成されている。つまり、第1膨張弁13は、冷媒の流路を全閉にすることで冷媒の流れを遮断する遮断部13aを有している。第1膨張弁13の作動は、図2に示す制御装置60から出力される制御信号によって制御される。 The first expansion valve 13 is composed of a variable throttle mechanism with a fully closing function that fully closes the flow path of the refrigerant. In other words, the first expansion valve 13 has a blocking portion 13a that blocks the flow of the refrigerant by fully closing the flow path of the refrigerant. The operation of the first expansion valve 13 is controlled by control signals output from the control device 60 shown in FIG.
 第1蒸発器14は、第1膨張弁13から流出した冷媒と車室内へ送風される空気とを熱交換させることによって冷媒を蒸発させて車室内へ送風される空気を冷却する冷媒空気熱交換器である。第1蒸発器14は、冷媒を蒸発させて空気を冷却する空気用蒸発器である。第1蒸発器14は第1蒸発部である。 The first evaporator 14 exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the air blown into the vehicle interior, thereby evaporating the refrigerant and cooling the air blown into the vehicle interior. It is a vessel. The first evaporator 14 is an air evaporator that cools air by evaporating a refrigerant. The first evaporator 14 is the first evaporator.
 定圧弁15は、第1蒸発器14の出口側における冷媒の圧力を所定範囲に維持する圧力調整部(換言すれば圧力調整用減圧部)である。定圧弁15は、第1蒸発器14における冷媒の圧力(換言すれば、冷媒の温度)を所定値以上に維持することによって第1蒸発器14の着霜を抑制する。 The constant pressure valve 15 is a pressure regulating section (in other words, pressure regulating decompression section) that maintains the pressure of the refrigerant on the outlet side of the first evaporator 14 within a predetermined range. The constant pressure valve 15 suppresses frost formation on the first evaporator 14 by maintaining the pressure of the refrigerant (in other words, the temperature of the refrigerant) in the first evaporator 14 at a predetermined value or higher.
 定圧弁15は、機械式の可変絞り機構で構成されている。具体的には、定圧弁15は、第1蒸発器14の出口側における冷媒の圧力が所定値を下回ると冷媒の流路の面積(すなわち絞り開度)を減少させ、第1蒸発器14の出口側における冷媒の圧力が所定値を超えると冷媒の流路の面積(すなわち絞り開度)を増加させる。 The constant pressure valve 15 is composed of a mechanical variable throttle mechanism. Specifically, when the pressure of the refrigerant on the outlet side of the first evaporator 14 falls below a predetermined value, the constant pressure valve 15 reduces the flow path area of the refrigerant (that is, the opening degree of the throttle). When the pressure of the refrigerant on the outlet side exceeds a predetermined value, the area of the refrigerant flow path (that is, the throttle opening) is increased.
 サイクルを循環する循環冷媒流量の変動が少ない場合等には、定圧弁15に代えて、オリフィス、キャピラリチューブ等からなる固定絞りを採用してもよい。 In cases such as when there is little variation in the flow rate of the circulating refrigerant that circulates through the cycle, instead of the constant pressure valve 15, a fixed throttle made up of an orifice, capillary tube, or the like may be employed.
 第2膨張弁16および第2蒸発器17は、冷媒の流れにおいて、第1膨張弁13、第1蒸発器14および定圧弁15に対して並列に配置されている。 The second expansion valve 16 and the second evaporator 17 are arranged in parallel with the first expansion valve 13, the first evaporator 14 and the constant pressure valve 15 in the refrigerant flow.
 第2膨張弁16は、凝縮器12から流出した液相冷媒を減圧膨張させる第2減圧部である。第2膨張弁16は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒の流路の開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。 The second expansion valve 16 is a second decompression section that decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 12 . The second expansion valve 16 is an electric variable throttle mechanism, and has a valve body and an electric actuator. The valve body is configured to be able to change the degree of opening of the flow path of the refrigerant (in other words, the degree of throttle opening). The electric actuator has a stepping motor that changes the throttle opening of the valve body.
 第2膨張弁16は、冷媒の流路を全閉する全閉機能付きの可変絞り機構で構成されている。つまり、第2膨張弁16は、冷媒の流路を全閉にすることで冷媒の流れを遮断することができる。第2膨張弁16の作動は、制御装置60から出力される制御信号によって制御される。 The second expansion valve 16 is composed of a variable throttle mechanism with a fully closing function that fully closes the refrigerant passage. That is, the second expansion valve 16 can block the flow of the refrigerant by fully closing the flow path of the refrigerant. The operation of the second expansion valve 16 is controlled by control signals output from the controller 60 .
 第2蒸発器17は、第2膨張弁16を流出した低圧冷媒と低温冷却水回路30の冷却水とを熱交換させることによって冷媒を蒸発させて冷却水を冷却する低圧側冷媒熱媒体熱交換器である。第2蒸発器17は、冷媒を蒸発させて冷却水を冷却する冷却用蒸発器である。第2蒸発器17は第2蒸発部である。 The second evaporator 17 performs heat exchange between the low-pressure refrigerant flowing out of the second expansion valve 16 and the cooling water in the low-temperature cooling water circuit 30 to evaporate the refrigerant and cool the cooling water. It is a vessel. The second evaporator 17 is a cooling evaporator that evaporates refrigerant to cool cooling water. The second evaporator 17 is a second evaporator.
 第2蒸発器17で蒸発した気相冷媒は、定圧弁15から流出した冷媒と合流部10bにて合流した後、圧縮機11に吸入されて圧縮される。 The vapor-phase refrigerant evaporated in the second evaporator 17 joins the refrigerant flowing out of the constant pressure valve 15 at the confluence portion 10b, and then is sucked into the compressor 11 and compressed.
 低温冷却水回路30の冷却水は、熱媒体としての流体である。低温冷却水回路30の冷却水は低温熱媒体である。本実施形態では、低温冷却水回路30の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。低温冷却水回路30は、低温熱媒体が循環する低温熱媒体回路である。 The cooling water of the low-temperature cooling water circuit 30 is a fluid as a heat medium. The cooling water in the low-temperature cooling water circuit 30 is a low-temperature heat medium. In this embodiment, as the cooling water for the low-temperature cooling water circuit 30, a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used. The low-temperature cooling water circuit 30 is a low-temperature heat medium circuit in which a low-temperature heat medium circulates.
 高温冷却水回路20には、凝縮器12、高温側ポンプ21、ヒータコア22、高温側ラジエータ23、開閉弁24および電気ヒータ25が配置されている。 A condenser 12, a high temperature side pump 21, a heater core 22, a high temperature side radiator 23, an on-off valve 24 and an electric heater 25 are arranged in the high temperature cooling water circuit 20.
 高温側ポンプ21は、冷却水を吸入して吐出する熱媒体ポンプである。高温側ポンプ21は電動式のポンプである。高温側ポンプ21は、高温冷却水回路20を循環する冷却水の流量を調整する高温側流量調整部である。 The high temperature side pump 21 is a heat medium pump that sucks and discharges cooling water. The high temperature side pump 21 is an electric pump. The high-temperature side pump 21 is a high-temperature side flow rate adjusting section that adjusts the flow rate of cooling water circulating in the high-temperature cooling water circuit 20 .
 ヒータコア22は、高温冷却水回路20の冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱用熱交換器である。ヒータコア22では、冷却水が車室内へ送風される空気に放熱する。凝縮器12、高温冷却水回路20およびヒータコア22は、圧縮機11から吐出された冷媒と車室内へ送風される空気とを熱交換させて空気に放熱させる放熱部である。 The heater core 22 is an air heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the cooling water of the high-temperature cooling water circuit 20 and the air blown into the vehicle interior. In the heater core 22, the cooling water radiates heat to the air blown into the vehicle interior. The condenser 12, the high-temperature cooling water circuit 20, and the heater core 22 are heat radiating units that exchange heat between the refrigerant discharged from the compressor 11 and the air blown into the vehicle interior, and radiate heat to the air.
 高温側ラジエータ23は、高温冷却水回路20の冷却水と外気とを熱交換させる高温熱媒体外気熱交換器である。高温側ラジエータ23および開閉弁24は、高温側冷却水の流れにおいて、ヒータコア22に対して並列に配置されている。 The high-temperature side radiator 23 is a high-temperature heat medium outside air heat exchanger that exchanges heat between the cooling water of the high-temperature cooling water circuit 20 and outside air. The high temperature side radiator 23 and the on-off valve 24 are arranged in parallel with the heater core 22 in the flow of the high temperature side cooling water.
 開閉弁24は、高温側ラジエータ23側の冷却水流路を開閉する電磁弁である。開閉弁24の作動は、制御装置60によって制御される。開閉弁24は、高温冷却水回路20における冷却水の流れを切り替える高温切替部である。 The on-off valve 24 is an electromagnetic valve that opens and closes the coolant flow path on the high temperature side radiator 23 side. The operation of the on-off valve 24 is controlled by the controller 60 . The on-off valve 24 is a high-temperature switching unit that switches the flow of cooling water in the high-temperature cooling water circuit 20 .
 開閉弁24は、サーモスタットであってもよい。サーモスタットは、温度によって体積変化するサーモワックスによって弁体を変位させて冷却水流路を開閉する機械的機構を備える冷却水温度応動弁である。 The on-off valve 24 may be a thermostat. A thermostat is a cooling water temperature responsive valve having a mechanical mechanism that opens and closes a cooling water flow path by displacing a valve body with thermowax whose volume changes with temperature.
 電気ヒータ25は、高温冷却水回路20の冷却水を補助的に加熱する補助加熱部である。電気ヒータ25は、ヒータコア22で空気を加熱するための補助的な熱源である。電気ヒータ25としては、電力を供給されることによって発熱するPTCヒータ等を採用することができる。電気ヒータ25は、ジュール熱を発生するジュール熱発生部である。電気ヒータ25の発熱量は、制御装置60から出力される制御電圧によって制御される。 The electric heater 25 is an auxiliary heating unit that auxiliary heats the cooling water of the high-temperature cooling water circuit 20 . The electric heater 25 is an auxiliary heat source for heating the air with the heater core 22 . As the electric heater 25, a PTC heater or the like that generates heat when supplied with electric power can be used. The electric heater 25 is a Joule heat generator that generates Joule heat. The amount of heat generated by the electric heater 25 is controlled by a control voltage output from the controller 60 .
 低温冷却水回路30には、第2蒸発器17、低温側ポンプ31、低温側ラジエータ32、電池33および三方弁38が配置されている。 A second evaporator 17, a low temperature side pump 31, a low temperature side radiator 32, a battery 33 and a three-way valve 38 are arranged in the low temperature cooling water circuit 30.
 低温側ポンプ31は、冷却水を吸入して吐出する熱媒体ポンプである。低温側ポンプ31は電動式のポンプである。低温側ポンプ31は、低温冷却水回路30を循環する冷却水の流量を調整する低温側流量調整部である。低温側ラジエータ32は、低温冷却水回路30の冷却水と外気とを熱交換させる低温熱媒体外気熱交換器である。 The low temperature side pump 31 is a heat medium pump that sucks and discharges cooling water. The low temperature side pump 31 is an electric pump. The low-temperature side pump 31 is a low-temperature side flow rate adjusting section that adjusts the flow rate of cooling water circulating in the low-temperature cooling water circuit 30 . The low-temperature side radiator 32 is a low-temperature heat medium outside air heat exchanger that exchanges heat between the cooling water of the low-temperature cooling water circuit 30 and the outside air.
 電池33は、車両に搭載された車載機器であり、作動に伴って発熱する発熱機器である。電池33は、作動に伴って発生する廃熱を低温冷却水回路30の冷却水に放熱する。換言すれば、電池33は、低温冷却水回路30の冷却水に熱を供給する。 The battery 33 is an in-vehicle device mounted in a vehicle, and is a heat-generating device that generates heat as it operates. The battery 33 radiates waste heat generated during operation to the cooling water of the low-temperature cooling water circuit 30 . In other words, the battery 33 supplies heat to the cooling water of the low temperature cooling water circuit 30 .
 低温側ラジエータ32および電池33は、低温側冷却水の流れにおいて互いに並列に配置されている。三方弁38は、低温側ラジエータ32および電池33に対する低温側冷却水の流れを切り替える。三方弁38の作動は、制御装置60によって制御される。 The low temperature side radiator 32 and the battery 33 are arranged in parallel with each other in the flow of the low temperature side cooling water. The three-way valve 38 switches the flow of the low temperature side cooling water to the low temperature side radiator 32 and the battery 33 . Actuation of the three-way valve 38 is controlled by a controller 60 .
 第1蒸発器14およびヒータコア22は、室内空調ユニット50のケーシング51(以下、空調ケーシングと言う。)に収容されている。室内空調ユニット50は、車室内前部の図示しない計器盤の内側に配置されている。空調ケーシング51は、空気通路を形成する空気通路形成部材である。 The first evaporator 14 and the heater core 22 are housed in a casing 51 (hereinafter referred to as an air conditioning casing) of the indoor air conditioning unit 50. The indoor air conditioning unit 50 is arranged inside a not-shown instrument panel in the front part of the passenger compartment. The air conditioning casing 51 is an air passage forming member that forms an air passage.
 ヒータコア22は、空調ケーシング51内の空気通路において、第1蒸発器14の空気流れ下流側に配置されている。空調ケーシング51には、内外気切替箱52と室内送風機53とが配置されている。内外気切替箱52は、内外気切替ドア52aを有している。内外気切替ドア52aは、空調ケーシング51内の空気通路に内気と外気とを切替導入する内外気切替部である。内外気切替ドア52aは、空調ケーシング51内の空気通路に導入される内気と外気との比率を調整する内外気調整部である。 The heater core 22 is arranged downstream of the first evaporator 14 in the air passage in the air conditioning casing 51 . An inside/outside air switching box 52 and an indoor fan 53 are arranged in the air conditioning casing 51 . The inside/outside air switching box 52 has an inside/outside air switching door 52a. The inside/outside air switching door 52 a is an inside/outside air switching portion that switches between introducing inside air and outside air into the air passage in the air conditioning casing 51 . The inside/outside air switching door 52 a is an inside/outside air adjustment unit that adjusts the ratio between the inside air and the outside air introduced into the air passage in the air conditioning casing 51 .
 室内送風機53は、内外気切替箱52を通して空調ケーシング51内の空気通路に導入された内気および外気を吸入して送風する。内外気切替ドア52aおよび室内送風機53は、制御装置60によって制御される。 The indoor air blower 53 draws in the inside air and the outside air introduced into the air passage in the air conditioning casing 51 through the inside/outside air switching box 52 and blows the air. The inside/outside air switching door 52 a and the indoor blower 53 are controlled by the control device 60 .
 空調ケーシング51内の空気通路において第1蒸発器14とヒータコア22との間には、エアミックスドア54が配置されている。エアミックスドア54は、第1蒸発器14を通過した冷風のうちヒータコア22に流入する冷風と冷風バイパス通路55を流れる冷風との風量割合を調整する。 An air mix door 54 is arranged between the first evaporator 14 and the heater core 22 in the air passage in the air conditioning casing 51 . The air mix door 54 adjusts the air volume ratio between the cold air flowing into the heater core 22 and the cold air flowing through the cold air bypass passage 55 among the cold air that has passed through the first evaporator 14 .
 冷風バイパス通路55は、第1蒸発器14を通過した冷風がヒータコア22をパイパスして流れる空気通路である。 The cold air bypass passage 55 is an air passage through which the cold air that has passed through the first evaporator 14 bypasses the heater core 22 .
 エアミックスドア54は、空調ケーシング51に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。エアミックスドア54の開度位置を調整することによって、空調ケーシング51から車室内に吹き出される空調風の温度を所望温度に調整できる。 The air mix door 54 is a rotary door having a rotating shaft rotatably supported with respect to the air conditioning casing 51 and a door base plate portion coupled to the rotating shaft. By adjusting the opening position of the air mix door 54, the temperature of the air-conditioned air blown out from the air-conditioning casing 51 into the passenger compartment can be adjusted to a desired temperature.
 エアミックスドア54の回転軸は、サーボモータによって駆動される。サーボモータの作動は、制御装置60によって制御される。 The rotating shaft of the air mix door 54 is driven by a servomotor. The operation of the servo motors is controlled by controller 60 .
 エアミックスドア54は、空気流れと略直交する方向にスライド移動するスライドドアであってもよい。スライドドアは、剛体で形成された板状のドアであってもよいし。可撓性を有するフィルム材で形成されたフィルムドアであってもよい。 The air mix door 54 may be a sliding door that slides in a direction substantially perpendicular to the air flow. The sliding door may be a plate-shaped door made of a rigid body. A film door formed of a flexible film material may be used.
 エアミックスドア54によって温度調整された空調風は、空調ケーシング51に形成された吹出口56から車室内へ吹き出される。 The air-conditioned air whose temperature has been adjusted by the air mix door 54 is blown into the vehicle interior through the outlet 56 formed in the air-conditioning casing 51 .
 図2に示す制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置60は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置60の出力側には各種制御対象機器が接続されている。制御装置60は、各種制御対象機器の作動を制御する制御部である。 The control device 60 shown in FIG. 2 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits. The control device 60 performs various calculations and processes based on control programs stored in the ROM. Various devices to be controlled are connected to the output side of the control device 60 . The control device 60 is a control unit that controls the operation of various controlled devices.
 制御装置60によって制御される制御対象機器は、圧縮機11、第1膨張弁13、第2膨張弁16、高温側ポンプ21、開閉弁24、電気ヒータ25、低温側ポンプ31、三方弁38、内外気切替ドア52aおよび室内送風機53等である。 Equipment to be controlled by the control device 60 includes the compressor 11, the first expansion valve 13, the second expansion valve 16, the high temperature side pump 21, the on-off valve 24, the electric heater 25, the low temperature side pump 31, the three-way valve 38, They are the inside/outside air switching door 52a, the indoor blower 53, and the like.
 制御装置60のうち圧縮機11の電動モータを制御するソフトウェアおよびハードウェアは、冷媒吐出能力制御部である。制御装置60のうち第1膨張弁13を制御するソフトウェアおよびハードウェアは、第1絞り制御部である。制御装置60のうち第2膨張弁16を制御するソフトウェアおよびハードウェアは、第2絞り制御部である。 The software and hardware for controlling the electric motor of the compressor 11 in the control device 60 is a refrigerant discharge capacity control section. Software and hardware for controlling the first expansion valve 13 in the control device 60 are a first throttle control section. The software and hardware for controlling the second expansion valve 16 in the control device 60 is a second throttle control section.
 制御装置60のうち高温側ポンプ21を制御するソフトウェアおよびハードウェアは、高温熱媒体流量制御部である。制御装置60のうち開閉弁24を制御するソフトウェアおよびハードウェアは、開閉弁制御部である。 The software and hardware for controlling the high temperature side pump 21 in the control device 60 is a high temperature heat medium flow control unit. Software and hardware for controlling the on-off valve 24 in the control device 60 is an on-off valve control unit.
 制御装置60のうち電気ヒータ25を制御するソフトウェアおよびハードウェアは、補助加熱制御部である。制御装置60のうち低温側ポンプ31を制御するソフトウェアおよびハードウェアは、低温熱媒体流量制御部である。制御装置60のうち三方弁38を制御するソフトウェアおよびハードウェアは、三方弁制御部である。 The software and hardware for controlling the electric heater 25 in the control device 60 is an auxiliary heating control section. The software and hardware for controlling the low-temperature side pump 31 in the control device 60 is a low-temperature heat medium flow rate controller. Software and hardware for controlling the three-way valve 38 in the control device 60 is a three-way valve control section.
 制御装置60の入力側には、内気温度センサ61、外気温度センサ62、日射量センサ63、第1蒸発器温度センサ64、第2蒸発器温度センサ65、ヒータコア温度センサ66、高圧冷媒圧力センサ67、高温冷却水温度センサ68、第1低圧冷媒圧力センサ69、第1低圧冷媒温度センサ70、第2低圧冷媒圧力センサ71、第2低圧冷媒温度センサ72、電池温度センサ73等の種々の制御用センサ群が接続されている。 The input side of the control device 60 includes an inside air temperature sensor 61, an outside air temperature sensor 62, a solar radiation sensor 63, a first evaporator temperature sensor 64, a second evaporator temperature sensor 65, a heater core temperature sensor 66, and a high pressure refrigerant pressure sensor 67. , high-temperature cooling water temperature sensor 68, first low-pressure refrigerant pressure sensor 69, first low-pressure refrigerant temperature sensor 70, second low-pressure refrigerant pressure sensor 71, second low-pressure refrigerant temperature sensor 72, battery temperature sensor 73, etc. A group of sensors is connected.
 内気温度センサ61は車室内温度Trを検出する。外気温度センサ62は外気温Tamを検出する。日射量センサ63は車室内の日射量Asを検出する。 The inside air temperature sensor 61 detects the vehicle interior temperature Tr. An outside air temperature sensor 62 detects outside air temperature Tam. The solar radiation sensor 63 detects the solar radiation As in the passenger compartment.
 第1蒸発器温度センサ64は、第1蒸発器14の温度TE1(以下、第1蒸発器温度と言う。)を検出する温度検出部である。第1蒸発器温度センサ64は、例えば、第1蒸発器14の熱交換フィンの温度を検出するフィンサーミスタや、第1蒸発器14を流れる冷媒の温度を検出する冷媒温度センサ等である。 The first evaporator temperature sensor 64 is a temperature detection unit that detects the temperature TE1 of the first evaporator 14 (hereinafter referred to as the first evaporator temperature). The first evaporator temperature sensor 64 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the first evaporator 14, a refrigerant temperature sensor that detects the temperature of refrigerant flowing through the first evaporator 14, or the like.
 第2蒸発器温度センサ65は、第2蒸発器17の温度TE2(以下、第2蒸発器温度と言う。)を検出する温度検出部である。第2蒸発器温度センサ65は、例えば、第2蒸発器17を流れる冷媒の温度を検出する冷媒温度センサ等である。 The second evaporator temperature sensor 65 is a temperature detection unit that detects the temperature TE2 of the second evaporator 17 (hereinafter referred to as the second evaporator temperature). The second evaporator temperature sensor 65 is, for example, a refrigerant temperature sensor or the like that detects the temperature of refrigerant flowing through the second evaporator 17 .
 ヒータコア温度センサ66は、ヒータコア22の温度TH(以下、ヒータコア温度と言う。)を検出する温度検出部である。ヒータコア温度センサ66は、例えば、ヒータコア22の熱交換フィンの温度を検出するフィンサーミスタや、ヒータコア22を流れる冷却水の温度を検出する冷媒温度センサ、ヒータコア22から流出した空気の温度を検出する空気温度センサ等である。 The heater core temperature sensor 66 is a temperature detection unit that detects the temperature TH of the heater core 22 (hereinafter referred to as heater core temperature). The heater core temperature sensor 66 includes, for example, a fin thermistor that detects the temperature of the heat exchange fins of the heater core 22, a coolant temperature sensor that detects the temperature of cooling water flowing through the heater core 22, and an air temperature sensor that detects the temperature of air flowing out of the heater core 22. A temperature sensor or the like.
 高圧冷媒圧力センサ67は、レシーバ18の出口側における高圧冷媒の圧力を検出する高圧冷媒圧力検出部である。 The high-pressure refrigerant pressure sensor 67 is a high-pressure refrigerant pressure detection section that detects the pressure of the high-pressure refrigerant on the outlet side of the receiver 18 .
 高温冷却水温度センサ68は、高温冷却水回路20の冷却水の温度TWを検出する温度検出部である。例えば、高温冷却水温度センサ68は、凝縮器12の冷却水の温度を検出する。 The high-temperature cooling water temperature sensor 68 is a temperature detection unit that detects the temperature TW of the cooling water in the high-temperature cooling water circuit 20 . For example, hot coolant temperature sensor 68 detects the temperature of the coolant in condenser 12 .
 第1低圧冷媒圧力センサ69は、第1蒸発器14の出口側における低圧冷媒の圧力を検出する第1低圧冷媒圧力検出部である。第1低圧冷媒温度センサ70は、第1蒸発器14の出口側における低圧冷媒の温度を検出する第1低圧冷媒圧力検出部である。 The first low-pressure refrigerant pressure sensor 69 is a first low-pressure refrigerant pressure detection section that detects the pressure of the low-pressure refrigerant on the outlet side of the first evaporator 14 . The first low-pressure refrigerant temperature sensor 70 is a first low-pressure refrigerant pressure detection section that detects the temperature of the low-pressure refrigerant on the outlet side of the first evaporator 14 .
 第2低圧冷媒圧力センサ71は、第2蒸発器17の出口側における低圧冷媒の圧力を検出する第2低圧冷媒圧力検出部である。第2低圧冷媒温度センサ72は、第2蒸発器17の出口側における低圧冷媒の温度を検出する第2低圧冷媒圧力検出部である。 The second low-pressure refrigerant pressure sensor 71 is a second low-pressure refrigerant pressure detection section that detects the pressure of the low-pressure refrigerant on the outlet side of the second evaporator 17 . The second low-pressure refrigerant temperature sensor 72 is a second low-pressure refrigerant pressure detection section that detects the temperature of the low-pressure refrigerant on the outlet side of the second evaporator 17 .
 電池温度センサ73は、電池33の温度TBを検出する電池温度検出部である。電池温度センサ73は、電池33の複数の箇所の温度を検出する複数の温度センサで構成されていることが望ましい。 The battery temperature sensor 73 is a battery temperature detection unit that detects the temperature TB of the battery 33. The battery temperature sensor 73 is desirably composed of a plurality of temperature sensors that detect temperatures at a plurality of locations on the battery 33 .
 制御装置60の入力側には、操作パネル75に設けられた各種操作スイッチが接続されている。各種操作スイッチは乗員によって操作される。操作パネル75は車室内前部の計器盤付近に配置されている。制御装置60には、各種操作スイッチからの操作信号が入力される。 Various operation switches provided on the operation panel 75 are connected to the input side of the control device 60 . Various operation switches are operated by the passenger. The operation panel 75 is arranged near the instrument panel in the front part of the passenger compartment. Operation signals from various operation switches are input to the control device 60 .
 各種操作スイッチは、エアコンスイッチ、温度設定スイッチ等である。エアコンスイッチは、室内空調ユニット50にて空気の冷却を行うか否かを設定するためのスイッチである。温度設定スイッチは、車室内の設定温度を設定するためのスイッチである。 Various operation switches are air conditioner switches, temperature setting switches, etc. The air conditioner switch is a switch for setting whether or not the indoor air conditioning unit 50 cools the air. The temperature setting switch is a switch for setting the preset temperature in the vehicle compartment.
 次に、上記構成における作動を説明する。制御装置60は、目標吹出温度TAO等に基づいて空調の運転モードを、空調モード、標準モード、高冷却モード、省エネモードおよび単独モードのいずれかに切り替える。 Next, the operation of the above configuration will be explained. The control device 60 switches the operation mode of the air conditioning between the air conditioning mode, the standard mode, the high cooling mode, the energy saving mode, and the independent mode based on the target outlet temperature TAO and the like.
 空調モードは、電池33を冷却することなく車室内を空調する際に切り替えられる運転モード(換言すれば、空調単独モード)である。 The air-conditioning mode is an operation mode (in other words, air-conditioning only mode) that is switched when air-conditioning the vehicle interior without cooling the battery 33 .
 標準モードは、車室内を空調し、かつ電池を冷却する際に切り替えられる運転モード(換言すれば、標準空調電池モード)である。 The standard mode is an operation mode (in other words, standard air conditioning battery mode) that is switched when air-conditioning the vehicle interior and cooling the battery.
 高冷却モードは、車室内を空調し、かつ標準モードと比較して高い能力で電池を冷却する際に切り替えられる運転モード(換言すれば、高冷却空調電池モード)である。 The high cooling mode is an operation mode (in other words, high cooling air conditioning battery mode) that can be switched when air-conditioning the vehicle interior and cooling the battery with a higher capacity than in the standard mode.
 省エネモードは、標準モードと比較して低い能力で車室内の空調および電池の冷却を行う際に切り替えられる運転モード(換言すれば、省エネ空調電池モード)である。 The energy-saving mode is an operation mode (in other words, an energy-saving air-conditioning battery mode) that can be switched when air-conditioning the vehicle interior and cooling the battery with lower capacity than the standard mode.
 単独モードは、車室内を空調することなく電池33を冷却する際に切り替えられる運転モード(換言すれば、電池単独モード)である。 The stand-alone mode is an operation mode (in other words, stand-alone battery mode) that is switched when cooling the battery 33 without air-conditioning the interior of the vehicle.
 空調モードでは、制御装置60が、圧縮機11、高温側ポンプ21および室内送風機53を作動させ、第1膨張弁13を絞り状態とし、第2膨張弁16を全閉状態とする。 In the air conditioning mode, the control device 60 operates the compressor 11, the high temperature side pump 21, and the indoor fan 53 to throttle the first expansion valve 13 and fully close the second expansion valve 16.
 制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target blowout temperature TAO, detection signals from the sensor group, and the like.
 目標吹出温度TAOは、車室内へ吹き出す吹出空気の目標温度である。目標吹出温度TAOは、車両用空調装置1に要求される空調負荷(換言すれば、空調熱負荷)を示す指標である。制御装置60は、目標吹出温度TAOを以下の数式F1に基づいて算出する。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 この数式において、Tsetは操作パネル75の温度設定スイッチによって設定された車室内設定温度、Trは内気温度センサ61によって検出された内気温、Tamは外気温度センサ62によって検出された外気温、Asは日射量センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
The target blowout temperature TAO is the target temperature of the blown air blown into the vehicle compartment. The target blowout temperature TAO is an index indicating the air conditioning load (in other words, air conditioning heat load) required of the vehicle air conditioner 1 . The control device 60 calculates the target outlet temperature TAO based on the following formula F1.
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C (F1)
In this formula, Tset is the vehicle interior set temperature set by the temperature setting switch on the operation panel 75, Tr is the inside temperature detected by the inside temperature sensor 61, Tam is the outside temperature detected by the outside temperature sensor 62, and As is It is the amount of solar radiation detected by the solar radiation sensor 63 . Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)については、標準目標温度TEOsと第1蒸発器14の温度TE1との偏差に基づいて、フィードバック制御手法により、第1蒸発器14の温度TE1が標準目標温度TEOsに近づくように決定される。 Regarding the control signal output to the compressor 11 (in other words, the rotation speed of the compressor 11), the second 1 The temperature TE1 of the evaporator 14 is determined so as to approach the standard target temperature TEOs.
 標準目標温度TEOsは、目標吹出温度TAOに基づいて、制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、標準目標温度TEOsが上昇するように決定される。 The standard target temperature TEOs is determined by referring to the control map stored in the control device 60 based on the target outlet temperature TAO. In the control map of this embodiment, the standard target temperature TEOs is determined to rise as the target outlet temperature TAO rises.
 第1膨張弁13へ出力される制御信号(換言すれば、第1膨張弁13の絞り開度)については、第1蒸発器14の出口冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた第1目標過熱度に近づくように決定される。 Regarding the control signal output to the first expansion valve 13 (in other words, the throttle opening of the first expansion valve 13), the degree of superheat of the refrigerant at the outlet of the first evaporator 14 is the coefficient of performance (so-called COP) of the cycle. is determined to approach a first target degree of superheat that is predetermined to approach a maximum value.
 第1蒸発器14の出口冷媒の過熱度は、第1低圧冷媒圧力センサ69によって検出された第1蒸発器14の出口側における低圧冷媒の圧力と、第1低圧冷媒温度センサ70によって検出された第1蒸発器14の出口側における低圧冷媒の温度とに基づいて算出される。 The degree of superheat of the outlet refrigerant of the first evaporator 14 is the pressure of the low-pressure refrigerant on the outlet side of the first evaporator 14 detected by the first low-pressure refrigerant pressure sensor 69 and the first low-pressure refrigerant temperature sensor 70. and the temperature of the low-pressure refrigerant on the outlet side of the first evaporator 14 .
 室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、目標吹出温度TAOに基づいて決定される。例えば、室内送風機53へ出力される制御信号は、目標吹出温度TAOの高温域および低温域では室内送風機53の風量が多くなるように決定される。 The control signal output to the indoor fan 53 (in other words, the air volume of the indoor fan 53) is determined based on the target outlet temperature TAO. For example, the control signal output to the indoor fan 53 is determined so that the air volume of the indoor fan 53 increases in the high temperature range and low temperature range of the target air temperature TAO.
 エアミックスドア54のサーボモータへ出力される制御信号については、目標吹出温度TAO、第1蒸発器温度センサ64によって検出された第1蒸発器温度TE1、ヒータコア温度センサ66によって検出されたヒータコア温度THに基づいて、エアミックス開度SWを決定する。そして、決定されたエアミックス開度SWとなるように、エアミックスドア用の電動アクチュエータ44aへ出力される制御信号を決定する。エアミックス開度SWは、車室内へ吹き出される空気の温度が目標吹出温度TAOに近づくように決定される。 Control signals output to the servomotor of the air mix door 54 include the target outlet temperature TAO, the first evaporator temperature TE1 detected by the first evaporator temperature sensor 64, the heater core temperature TH detected by the heater core temperature sensor 66, and the , the air mix opening degree SW is determined. Then, the control signal to be output to the electric actuator 44a for the air mix door is determined so that the determined air mix opening degree SW is obtained. The air mix opening degree SW is determined so that the temperature of the air blown into the vehicle interior approaches the target air temperature TAO.
 開閉弁24へ出力される制御信号については、高温冷却水温度センサ68で検出した高温冷却水回路20の冷却水の温度TWが目標吹出温度TAOに近づくように決定される。すなわち、高温冷却水回路20の冷却水の温度TWが目標吹出温度TAOよりも高い場合、開閉弁24を開ける。これにより、高温冷却水回路20では、高温側ラジエータ23に冷却水が循環してラジエータ23で冷却水から外気に放熱される。高温冷却水回路20の冷却水の温度TWが目標吹出温度TAOよりも低い場合、開閉弁24を閉じる。これにより、高温冷却水回路20では、高温側ラジエータ23に冷却水が循環せずラジエータ23で冷却水から外気に放熱されない。 The control signal output to the on-off valve 24 is determined so that the temperature TW of the coolant in the high-temperature coolant circuit 20 detected by the high-temperature coolant temperature sensor 68 approaches the target outlet temperature TAO. That is, when the temperature TW of the coolant in the high-temperature coolant circuit 20 is higher than the target blowout temperature TAO, the on-off valve 24 is opened. As a result, in the high temperature cooling water circuit 20, the cooling water circulates through the high temperature side radiator 23, and the radiator 23 radiates heat from the cooling water to the outside air. When the temperature TW of the coolant in the high-temperature coolant circuit 20 is lower than the target blowout temperature TAO, the on-off valve 24 is closed. As a result, in the high temperature cooling water circuit 20 , the cooling water does not circulate through the high temperature side radiator 23 and the radiator 23 does not radiate heat from the cooling water to the outside air.
 空調モード時の冷凍サイクル装置10では、サイクルを循環する冷媒の状態が以下のように変化する。  In the refrigeration cycle device 10 in the air conditioning mode, the state of the refrigerant circulating in the cycle changes as follows.
 すなわち、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水に放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。 That is, the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 . The refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 . As a result, the refrigerant is cooled and condensed in the condenser 12 .
 凝縮器12から流出した冷媒は、第1膨張弁13へ流入して、第1膨張弁13にて低圧冷媒となるまで減圧膨張される。第1膨張弁13にて減圧された低圧冷媒は、第1蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却される。 The refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the first expansion valve 13 flows into the first evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
 そして、第1蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant that has flowed out of the first evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
 凝縮器12にて冷媒から放熱された高温冷却水回路20の冷却水はヒータコア22に循環される。ヒータコア22では、第1蒸発器14で冷却された空気が高温冷却水回路20の冷却水によって加熱される。 The cooling water in the high-temperature cooling water circuit 20 radiated from the refrigerant in the condenser 12 is circulated to the heater core 22 . In the heater core 22 , the air cooled by the first evaporator 14 is heated by the cooling water of the high temperature cooling water circuit 20 .
 以上の如く、空調モードでは、第1蒸発器14にて低圧冷媒に空気から吸熱させて空気を冷却し、冷却された空気をヒータコア22で加熱して車室内へ吹き出すことができる。これにより、車室内の空調を実現することができる。 As described above, in the air conditioning mode, the first evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, cools the air, heats the cooled air with the heater core 22, and blows it into the vehicle interior. This makes it possible to air-condition the passenger compartment.
 標準モードでは、制御装置60が、圧縮機11、高温側ポンプ21、低温側ポンプ31および室内送風機53を作動させ、第1膨張弁13を絞り状態とし、第2膨張弁16を絞り状態とする。 In the standard mode, the control device 60 operates the compressor 11, the high-temperature side pump 21, the low-temperature side pump 31, and the indoor fan 53 to throttle the first expansion valve 13 and throttle the second expansion valve 16. .
 制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target blowout temperature TAO, detection signals from the sensor group, and the like.
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)については、標準目標温度TEOsと第1蒸発器14の温度TE1との偏差に基づいて、フィードバック制御手法により、第1蒸発器14の温度TE1が標準目標温度TEOsに近づくように決定される。 Regarding the control signal output to the compressor 11 (in other words, the rotation speed of the compressor 11), the second 1 The temperature TE1 of the evaporator 14 is determined so as to approach the standard target temperature TEOs.
 第1膨張弁13へ出力される制御信号(換言すれば、第1膨張弁13の絞り開度)については、空調モードと同様に、第1蒸発器14の出口冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた第1目標過熱度に近づくように決定される。 Regarding the control signal output to the first expansion valve 13 (in other words, throttle opening degree of the first expansion valve 13), as in the air conditioning mode, the degree of superheat of the refrigerant at the outlet of the first evaporator 14 is determined by the cycle. The coefficient of performance (so-called COP) is determined so as to approach the first target degree of superheat, which is predetermined so as to approach the maximum value.
 第2膨張弁16へ出力される制御信号(換言すれば、第2膨張弁16の絞り開度)については、第2蒸発器17の出口冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた第2目標過熱度に近づくように決定される。 Regarding the control signal output to the second expansion valve 16 (in other words, the throttle opening degree of the second expansion valve 16), the degree of superheat of the refrigerant at the outlet of the second evaporator 17 is the coefficient of performance (so-called COP) of the cycle. is determined to approach a second target degree of superheat which is predetermined to approach a maximum value.
 第2蒸発器17の出口冷媒の過熱度は、第2低圧冷媒圧力センサ71によって検出された第2蒸発器17の出口側における低圧冷媒の圧力と、第2低圧冷媒温度センサ72によって検出された第2蒸発器17の出口側における低圧冷媒の温度とに基づいて算出される。 The degree of superheat of the outlet refrigerant of the second evaporator 17 is the pressure of the low-pressure refrigerant on the outlet side of the second evaporator 17 detected by the second low-pressure refrigerant pressure sensor 71 and the second low-pressure refrigerant temperature sensor 72. and the temperature of the low-pressure refrigerant on the outlet side of the second evaporator 17 .
 室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、空調モードと同様に、目標吹出温度TAOに基づいて決定される。 The control signal output to the indoor fan 53 (in other words, the air volume of the indoor fan 53) is determined based on the target outlet temperature TAO, as in the air conditioning mode.
 エアミックスドア54のサーボモータへ出力される制御信号(換言すれば、エアミックス開度SW)については、空調モードと同様に、目標吹出温度TAO、第1蒸発器温度センサ64によって検出された第1蒸発器温度TE1、ヒータコア温度センサ66によって検出されたヒータコア温度THに基づいて、車室内へ吹き出される空気の温度が目標吹出温度TAOに近づくように決定される。 Regarding the control signal (in other words, the air mix opening degree SW) output to the servo motor of the air mix door 54, the target outlet temperature TAO and the first evaporator temperature sensor 64 detected by the first evaporator temperature sensor 64 1 Based on the evaporator temperature TE1 and the heater core temperature TH detected by the heater core temperature sensor 66, the temperature of the air blown into the passenger compartment is determined so as to approach the target air temperature TAO.
 開閉弁24へ出力される制御信号については、空調モードと同様に、高温冷却水温度センサ68で検出した高温冷却水回路20の冷却水の温度TWが目標吹出温度TAOに近づくように決定される。 As in the air conditioning mode, the control signal output to the on-off valve 24 is determined so that the temperature TW of the coolant in the high-temperature coolant circuit 20 detected by the high-temperature coolant temperature sensor 68 approaches the target outlet temperature TAO. .
 標準モード時の冷凍サイクル装置10では、サイクルを循環する冷媒の状態が空調モードと同様に変化する。  In the refrigeration cycle device 10 in the standard mode, the state of the refrigerant circulating in the cycle changes in the same way as in the air conditioning mode.
 すなわち、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水に放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。 That is, the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 . The refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 . As a result, the refrigerant is cooled and condensed in the condenser 12 .
 凝縮器12から流出した冷媒は、第1膨張弁13へ流入して、第1膨張弁13にて低圧冷媒となるまで減圧膨張される。第1膨張弁13にて減圧された低圧冷媒は、第1蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却される。 The refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the first expansion valve 13 flows into the first evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
 そして、第1蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant that has flowed out of the first evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
 凝縮器12にて冷媒から放熱された高温冷却水回路20の冷却水はヒータコア22に循環される。ヒータコア22では、第1蒸発器14で冷却された空気が高温冷却水回路20の冷却水によって加熱される。 The cooling water in the high-temperature cooling water circuit 20 radiated from the refrigerant in the condenser 12 is circulated to the heater core 22 . In the heater core 22 , the air cooled by the first evaporator 14 is heated by the cooling water of the high temperature cooling water circuit 20 .
 以上の如く、標準モードでは、第1蒸発器14にて低圧冷媒に空気から吸熱させて空気を冷却し、冷却された空気をヒータコア22で加熱して車室内へ吹き出すことができる。これにより、車室内の空調を実現することができる。 As described above, in the standard mode, the first evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, cools the air, heats the cooled air with the heater core 22, and blows it into the passenger compartment. This makes it possible to air-condition the passenger compartment.
 さらに、標準モードでは、凝縮器12から流出した冷媒は、第2膨張弁16へ流入して、第2膨張弁16にて低圧冷媒となるまで減圧膨張される。第2膨張弁16にて減圧された低圧冷媒は、第2蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却される。第2蒸発器17で冷却された低温冷却水回路30の冷却水は、電池33に流入し、電池33から吸熱する。これにより、電池33が冷却される。 Furthermore, in the standard mode, the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the second expansion valve 16 flows into the second evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled. The cooling water of the low-temperature cooling water circuit 30 cooled by the second evaporator 17 flows into the battery 33 and absorbs heat from the battery 33 . Thereby, the battery 33 is cooled.
 高冷却モードでは、標準モードと同様に、制御装置60が、圧縮機11、高温側ポンプ21、低温側ポンプ31および室内送風機53を作動させ、第1膨張弁13を絞り状態とし、第2膨張弁16を絞り状態とする。 In the high cooling mode, as in the standard mode, the control device 60 operates the compressor 11, the high temperature side pump 21, the low temperature side pump 31, and the indoor fan 53, throttles the first expansion valve 13, and sets the second expansion The valve 16 is put in the throttling state.
 制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target blowout temperature TAO, detection signals from the sensor group, and the like.
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)については、高冷却目標温度TEOcと第2蒸発器17の温度TE2との偏差に基づいて、フィードバック制御手法により、第2蒸発器17の温度TE2が高冷却目標温度TEOcに近づくように決定される。図3に示すように、高冷却目標温度TEOcは、標準目標温度TEOsよりも低い値に決定される。これにより、高冷却モードでは、標準モードと比較して圧縮機11の回転数が高くなる。 Regarding the control signal output to the compressor 11 (in other words, the rotation speed of the compressor 11), based on the deviation between the high cooling target temperature TEOc and the temperature TE2 of the second evaporator 17, by a feedback control method, The temperature TE2 of the second evaporator 17 is determined so as to approach the high cooling target temperature TEOc. As shown in FIG. 3, the high cooling target temperature TEOc is determined to be lower than the standard target temperature TEOs. As a result, the rotation speed of the compressor 11 is higher in the high cooling mode than in the standard mode.
 第2膨張弁16へ出力される制御信号(換言すれば、第2膨張弁16の絞り開度)については、標準モードと同様に、第2蒸発器17の出口冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた第2目標過熱度に近づくように決定される。 Regarding the control signal output to the second expansion valve 16 (in other words, the throttle opening degree of the second expansion valve 16), as in the standard mode, the degree of superheat of the refrigerant at the outlet of the second evaporator 17 is determined by the cycle. The coefficient of performance (so-called COP) is determined so as to approach a predetermined second target degree of superheat so as to approach the maximum value.
 室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、空調モードと同様に、目標吹出温度TAOに基づいて決定される。 The control signal output to the indoor fan 53 (in other words, the air volume of the indoor fan 53) is determined based on the target outlet temperature TAO, as in the air conditioning mode.
 エアミックスドア54のサーボモータへ出力される制御信号(換言すれば、エアミックス開度SW)については、空調モードと同様に、目標吹出温度TAO、第1蒸発器温度センサ64によって検出された第1蒸発器温度TE1、ヒータコア温度センサ66によって検出されたヒータコア温度THに基づいて、車室内へ吹き出される空気の温度が目標吹出温度TAOに近づくように決定される。 Regarding the control signal (in other words, the air mix opening degree SW) output to the servo motor of the air mix door 54, the target outlet temperature TAO and the first evaporator temperature sensor 64 detected by the first evaporator temperature sensor 64 1 Based on the evaporator temperature TE1 and the heater core temperature TH detected by the heater core temperature sensor 66, the temperature of the air blown into the passenger compartment is determined so as to approach the target air temperature TAO.
 開閉弁24へ出力される制御信号については、標準モードと同様に、高温冷却水温度センサ68で検出した高温冷却水回路20の冷却水の温度TWが目標吹出温度TAOに近づくように決定される。 As in the standard mode, the control signal output to the on-off valve 24 is determined so that the temperature TW of the coolant in the high-temperature coolant circuit 20 detected by the high-temperature coolant temperature sensor 68 approaches the target outlet temperature TAO. .
 高冷却モード時の冷凍サイクル装置10では、サイクルを循環する冷媒の状態が標準モードと同様に変化する。  In the refrigeration cycle device 10 in the high cooling mode, the state of the refrigerant circulating in the cycle changes in the same way as in the standard mode.
 すなわち、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水に放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。 That is, the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 . The refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 . As a result, the refrigerant is cooled and condensed in the condenser 12 .
 凝縮器12から流出した冷媒は、第1膨張弁13へ流入して、第1膨張弁13にて低圧冷媒となるまで減圧膨張される。第1膨張弁13にて減圧された低圧冷媒は、第1蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却される。このとき、第1蒸発器14の圧力は定圧弁15によって所定範囲に維持されるので、第1蒸発器14の温度は標準モードと同様に標準目標温度TEOsに維持される。これにより、第1蒸発器14の着霜が抑制される。 The refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the first expansion valve 13 flows into the first evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior. At this time, since the pressure of the first evaporator 14 is maintained within a predetermined range by the constant pressure valve 15, the temperature of the first evaporator 14 is maintained at the standard target temperature TEOs as in the standard mode. Thereby, frost formation on the first evaporator 14 is suppressed.
 そして、第1蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant that has flowed out of the first evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
 凝縮器12にて冷媒から放熱された高温冷却水回路20の冷却水はヒータコア22に循環される。ヒータコア22では、第1蒸発器14で冷却された空気が高温冷却水回路20の冷却水によって加熱される。 The cooling water in the high-temperature cooling water circuit 20 radiated from the refrigerant in the condenser 12 is circulated to the heater core 22 . In the heater core 22 , the air cooled by the first evaporator 14 is heated by the cooling water of the high temperature cooling water circuit 20 .
 以上の如く、高冷却モードでは、第1蒸発器14にて低圧冷媒に空気から吸熱させて空気を冷却し、冷却された空気をヒータコア22で加熱して車室内へ吹き出すことができる。これにより、車室内の空調を実現することができる。 As described above, in the high cooling mode, the first evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, cools the air, heats the cooled air with the heater core 22, and blows it into the passenger compartment. This makes it possible to air-condition the passenger compartment.
 さらに、高冷却モードでは、凝縮器12から流出した冷媒は、第2膨張弁16へ流入して、第2膨張弁16にて低圧冷媒となるまで減圧膨張される。第2膨張弁16にて減圧された低圧冷媒は、第2蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却される。第2蒸発器17で冷却された低温冷却水回路30の冷却水は、電池33に流入し、電池33から吸熱する。これにより、電池33が冷却される。 Furthermore, in the high cooling mode, the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the second expansion valve 16 flows into the second evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled. The cooling water of the low-temperature cooling water circuit 30 cooled by the second evaporator 17 flows into the battery 33 and absorbs heat from the battery 33 . Thereby, the battery 33 is cooled.
 高冷却モードでは、標準モードと比較して圧縮機11の回転数が高くされて第2蒸発器17の温度TE2が低くされるので、標準モードと比較して高い能力で電池を冷却できる。 In the high cooling mode, the rotation speed of the compressor 11 is increased and the temperature TE2 of the second evaporator 17 is lowered compared to the standard mode, so the battery can be cooled with a higher capacity compared to the standard mode.
 省エネモードでは、標準モードと同様に、制御装置60が、圧縮機11、高温側ポンプ21、低温側ポンプ31および室内送風機53を作動させ、第1膨張弁13を絞り状態とし、第2膨張弁16を絞り状態とする。 In the energy saving mode, as in the standard mode, the control device 60 operates the compressor 11, the high temperature side pump 21, the low temperature side pump 31, and the indoor fan 53 to throttle the first expansion valve 13 and the second expansion valve. 16 is the aperture state.
 制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target blowout temperature TAO, detection signals from the sensor group, and the like.
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)については、省エネ目標温度TEOeと第1蒸発器14の温度TE1との偏差に基づいて、フィードバック制御手法により、第1蒸発器14の温度TE1が省エネ目標温度TEOeに近づくように決定される。図3に示すように、省エネ目標温度TEOeは、標準目標温度TEOsよりも高い値に決定される。これにより、省エネモードでは、標準モードと比較して圧縮機11の回転数が低くなる。 Regarding the control signal output to the compressor 11 (in other words, the rotation speed of the compressor 11), the second 1 The temperature TE1 of the evaporator 14 is determined so as to approach the energy-saving target temperature TEOe. As shown in FIG. 3, the energy-saving target temperature TEOe is determined to be higher than the standard target temperature TEOs. As a result, in the energy saving mode, the rotational speed of the compressor 11 is lower than in the standard mode.
 第1膨張弁13へ出力される制御信号(換言すれば、第1膨張弁13の絞り開度)については、標準モードと同様に、第1蒸発器14の出口冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた第1目標過熱度に近づくように決定される。 Regarding the control signal output to the first expansion valve 13 (in other words, the throttle opening degree of the first expansion valve 13), as in the standard mode, the degree of superheat of the refrigerant at the outlet of the first evaporator 14 is determined by the cycle. The coefficient of performance (so-called COP) is determined so as to approach the first target degree of superheat, which is predetermined so as to approach the maximum value.
 第2膨張弁16へ出力される制御信号(換言すれば、第2膨張弁16の絞り開度)については、標準モードと同様に、第2蒸発器17の出口冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた第2目標過熱度に近づくように決定される。 Regarding the control signal output to the second expansion valve 16 (in other words, the throttle opening degree of the second expansion valve 16), as in the standard mode, the degree of superheat of the refrigerant at the outlet of the second evaporator 17 is determined by the cycle. The coefficient of performance (so-called COP) is determined so as to approach a predetermined second target degree of superheat so as to approach the maximum value.
 室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、標準モードと同様に、目標吹出温度TAOに基づいて決定される。 The control signal output to the indoor fan 53 (in other words, the air volume of the indoor fan 53) is determined based on the target outlet temperature TAO, as in the standard mode.
 エアミックスドア54のサーボモータへ出力される制御信号(換言すれば、エアミックス開度SW)については、標準モードと同様に、目標吹出温度TAO、第1蒸発器温度センサ64によって検出された第1蒸発器温度TE1、ヒータコア温度センサ66によって検出されたヒータコア温度THに基づいて、車室内へ吹き出される空気の温度が目標吹出温度TAOに近づくように決定される。 Regarding the control signal (in other words, the air mix opening SW) output to the servomotor of the air mix door 54, the target outlet temperature TAO and the first evaporator temperature sensor 64 detected by the first evaporator temperature sensor 64 1 Based on the evaporator temperature TE1 and the heater core temperature TH detected by the heater core temperature sensor 66, the temperature of the air blown into the passenger compartment is determined so as to approach the target air temperature TAO.
 開閉弁24へ出力される制御信号については、標準モードと同様に、高温冷却水温度センサ68で検出した高温冷却水回路20の冷却水の温度TWが目標吹出温度TAOに近づくように決定される。 As in the standard mode, the control signal output to the on-off valve 24 is determined so that the temperature TW of the coolant in the high-temperature coolant circuit 20 detected by the high-temperature coolant temperature sensor 68 approaches the target outlet temperature TAO. .
 省エネモード時の冷凍サイクル装置10では、サイクルを循環する冷媒の状態が標準モードと同様に変化する。  In the refrigeration cycle device 10 in the energy saving mode, the state of the refrigerant circulating in the cycle changes in the same way as in the standard mode.
 すなわち、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水に放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。 That is, the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 . The refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 . As a result, the refrigerant is cooled and condensed in the condenser 12 .
 凝縮器12から流出した冷媒は、第1膨張弁13へ流入して、第1膨張弁13にて低圧冷媒となるまで減圧膨張される。第1膨張弁13にて減圧された低圧冷媒は、第1蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却される。 The refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the first expansion valve 13 flows into the first evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
 そして、第1蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant that has flowed out of the first evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
 凝縮器12にて冷媒から放熱された高温冷却水回路20の冷却水はヒータコア22に循環される。ヒータコア22では、第1蒸発器14で冷却された空気が高温冷却水回路20の冷却水によって加熱される。 The cooling water in the high-temperature cooling water circuit 20 radiated from the refrigerant in the condenser 12 is circulated to the heater core 22 . In the heater core 22 , the air cooled by the first evaporator 14 is heated by the cooling water of the high temperature cooling water circuit 20 .
 以上の如く、省エネモードでは、第1蒸発器14にて低圧冷媒に空気から吸熱させて空気を冷却し、冷却された空気をヒータコア22で加熱して車室内へ吹き出すことができる。これにより、車室内の空調を実現することができる。 As described above, in the energy-saving mode, the first evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, cools the air, heats the cooled air with the heater core 22, and blows it into the passenger compartment. This makes it possible to air-condition the passenger compartment.
 さらに、省エネモードでは、凝縮器12から流出した冷媒は、第2膨張弁16へ流入して、第2膨張弁16にて低圧冷媒となるまで減圧膨張される。第2膨張弁16にて減圧された低圧冷媒は、第2蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却される。第2蒸発器17で冷却された低温冷却水回路30の冷却水は、電池33に流入し、電池33から吸熱する。これにより、電池33が冷却される。 Furthermore, in the energy saving mode, the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the second expansion valve 16 flows into the second evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled. The cooling water of the low-temperature cooling water circuit 30 cooled by the second evaporator 17 flows into the battery 33 and absorbs heat from the battery 33 . Thereby, the battery 33 is cooled.
 省エネモードでは、標準モードと比較して圧縮機11の回転数が低くされるので、標準モードと比較して圧縮機11の省動力化(すなわち省エネルギー化)を図ることができる。 In the energy-saving mode, the rotation speed of the compressor 11 is made lower than in the standard mode, so power saving (that is, energy saving) of the compressor 11 can be achieved compared to the standard mode.
 単独モードでは、制御装置60が、圧縮機11、高温側ポンプ21、低温側ポンプ31を作動させ、室内送風機53を停止させ、第1膨張弁13を全閉状態とし、第2膨張弁16を絞り状態とする。 In the independent mode, the control device 60 operates the compressor 11, the high-temperature side pump 21, and the low-temperature side pump 31, stops the indoor fan 53, fully closes the first expansion valve 13, and closes the second expansion valve 16. Aperture state.
 制御装置60は、目標電池温度TBO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 60 determines the operating states of various control devices connected to the control device 60 (control signals to be output to various control devices) based on the target battery temperature TBO, detection signals from the sensor group, and the like.
 圧縮機11へ出力される制御信号(換言すれば、圧縮機11の回転数)については、単独目標温度TEOaと第2蒸発器17の温度TE2との偏差に基づいて、フィードバック制御手法により、第2蒸発器17の温度TE2が単独目標温度TEOaに近づくように決定される。 Regarding the control signal output to the compressor 11 (in other words, the rotation speed of the compressor 11), the second The temperature TE2 of the second evaporator 17 is determined so as to approach the single target temperature TEOa.
 単独目標温度TEOaは、目標電池温度TBO等に基づいて、制御装置60に記憶された制御マップを参照して決定される。目標電池温度TBOは、電池33の目標温度である。例えば、目標電池温度TBOは、電池33の発熱量、外気温Tam等に基づいて、制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、電池33の発熱量の増加に伴って、目標電池温度TBOが低下するように決定される。本実施形態の制御マップでは、外気温Tamの上昇に伴って、目標電池温度TBOが低下するように決定される。 The independent target temperature TEOa is determined by referring to the control map stored in the control device 60 based on the target battery temperature TBO and the like. The target battery temperature TBO is the target temperature of the battery 33 . For example, the target battery temperature TBO is determined by referring to a control map stored in the control device 60 based on the amount of heat generated by the battery 33, the outside air temperature Tam, and the like. In the control map of this embodiment, the target battery temperature TBO is determined to decrease as the amount of heat generated by the battery 33 increases. In the control map of the present embodiment, the target battery temperature TBO is determined to decrease as the outside air temperature Tam increases.
 本実施形態の制御マップでは、目標電池温度TBOの低下に伴って、単独目標温度TEOaが低下するように決定される。図4に示すように、単独目標温度TEOaは、第1蒸発器14の周囲温度(本例では、近似的に第1蒸発器温度TE1が用いられる。)よりも低い温度に決定される。これにより、単独モードでは、第1蒸発器14内の圧力が第2蒸発器17の出口冷媒の圧力よりも高くなるので、第1蒸発器14内に冷媒が寝込むことが抑制される。 In the control map of the present embodiment, the single target temperature TEOa is determined to decrease as the target battery temperature TBO decreases. As shown in FIG. 4, the single target temperature TEOa is determined to be lower than the ambient temperature of the first evaporator 14 (in this example, approximately the first evaporator temperature TE1 is used). As a result, in the single mode, the pressure in the first evaporator 14 is higher than the pressure of the refrigerant at the outlet of the second evaporator 17, so that the refrigerant is prevented from stagnating in the first evaporator 14.
 第2膨張弁16へ出力される制御信号(換言すれば、第2膨張弁16の絞り開度)については、標準モードと同様に、第2蒸発器17の出口冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた第2目標過熱度に近づくように決定される。 Regarding the control signal output to the second expansion valve 16 (in other words, the throttle opening degree of the second expansion valve 16), as in the standard mode, the degree of superheat of the refrigerant at the outlet of the second evaporator 17 is determined by the cycle. The coefficient of performance (so-called COP) is determined so as to approach a predetermined second target degree of superheat so as to approach the maximum value.
 単独モードでは、開閉弁24をあけるので、高温側ラジエータ23に冷却水が循環してラジエータ23で冷却水から外気に放熱される。 In the independent mode, the on-off valve 24 is opened, so the cooling water circulates in the high-temperature side radiator 23, and the radiator 23 radiates heat from the cooling water to the outside air.
 単独モード時の冷凍サイクル装置10では、サイクルを循環する冷媒の状態については、以下のように変化する。  In the refrigeration cycle device 10 in the single mode, the state of the refrigerant circulating in the cycle changes as follows.
 すなわち、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水に放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。 That is, the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 . The refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 . As a result, the refrigerant is cooled and condensed in the condenser 12 .
 凝縮器12から流出した冷媒は、第2膨張弁16へ流入して、第2膨張弁16にて低圧冷媒となるまで減圧膨張される。第2膨張弁16にて減圧された低圧冷媒は、第2蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却される。第2蒸発器17で冷却された低温冷却水回路30の冷却水は、電池33に流入し、電池33から吸熱する。これにより、電池33が冷却される。 The refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the second expansion valve 16 flows into the second evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled. The cooling water of the low-temperature cooling water circuit 30 cooled by the second evaporator 17 flows into the battery 33 and absorbs heat from the battery 33 . Thereby, the battery 33 is cooled.
 そして、第2蒸発器17から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant flowing out of the second evaporator 17 flows to the suction side of the compressor 11 and is compressed by the compressor 11 again.
 単独モードでは、第1蒸発器14内の圧力が第2蒸発器17の出口冷媒の圧力よりも高くなるので、第1蒸発器14内に冷媒が寝込むことを抑制できる。 In the single mode, the pressure inside the first evaporator 14 is higher than the pressure of the refrigerant at the outlet of the second evaporator 17, so the refrigerant can be prevented from stagnating inside the first evaporator 14.
 すなわち、第2蒸発器17から流出して圧縮機11に吸入側へと流れる冷媒の一部が、第1蒸発器14の出口側から逆流して第1蒸発器14内に滞留することを抑制できる。 That is, it is suppressed that part of the refrigerant flowing out of the second evaporator 17 and flowing to the suction side of the compressor 11 flows back from the outlet side of the first evaporator 14 and stays in the first evaporator 14. can.
 制御装置60は、図5のフローチャートに示す制御処理を実行することによって、空調モード、標準モード、省エネモードおよび単独モードを切り替える。 The control device 60 switches between the air conditioning mode, the standard mode, the energy saving mode, and the independent mode by executing the control processing shown in the flowchart of FIG.
 ステップS100では、電池33を冷却する必要があるか否かが判定される。例えば、電池温度センサ73で検出された電池33の温度TBが冷却基準温度RTBを上回っている場合、電池33を冷却する必要があると判定される。 In step S100, it is determined whether or not the battery 33 needs to be cooled. For example, when the temperature TB of the battery 33 detected by the battery temperature sensor 73 exceeds the cooling reference temperature RTB, it is determined that the battery 33 needs to be cooled.
 ステップS100にて電池33を冷却する必要がないと判定された場合、ステップS110へ進み、空調モードに切り替えられる。 If it is determined in step S100 that the battery 33 does not need to be cooled, the process proceeds to step S110 and switches to the air conditioning mode.
 ステップS100にて電池33を冷却する必要があると判定された場合、ステップS120へ進み、車室内を除湿する必要があるか否かが判定される。具体的には、操作パネル75のエアコンスイッチがオンされている場合、車室内を除湿する必要があると判定される。すなわち、操作パネル75のエアコンスイッチがオンされている場合、第1蒸発器14で空気を冷却除湿する必要があると判定される。 If it is determined in step S100 that the battery 33 needs to be cooled, the process proceeds to step S120 to determine whether it is necessary to dehumidify the vehicle interior. Specifically, when the air conditioner switch on the operation panel 75 is turned on, it is determined that it is necessary to dehumidify the vehicle interior. That is, when the air conditioner switch on the operation panel 75 is turned on, it is determined that the first evaporator 14 needs to cool and dehumidify the air.
 ステップS120にて車室内を除湿する必要がないと判定された場合、ステップS130へ進み、単独モードに切り替えられる。 If it is determined in step S120 that it is not necessary to dehumidify the vehicle interior, the process proceeds to step S130 and is switched to the single mode.
 ステップS120にて車室内を除湿する必要があると判定された場合、ステップS140へ進み、目標電池温度TBOが省エネ基準温度αeを上回っているか否かが判定される。省エネ基準温度αeは、高冷却目標温度TEOcよりも高い値である。 When it is determined in step S120 that it is necessary to dehumidify the vehicle interior, the process proceeds to step S140, in which it is determined whether or not the target battery temperature TBO exceeds the energy saving reference temperature αe. The energy-saving reference temperature αe is a value higher than the high cooling target temperature TEOc.
 ステップS140にて目標電池温度TBOが省エネ基準温度αeを上回っていると判定された場合、ステップS150へ進み、省エネモードに切り替えられる。 If it is determined in step S140 that the target battery temperature TBO is higher than the energy saving reference temperature αe, the process proceeds to step S150 to switch to the energy saving mode.
 ステップS140にて目標電池温度TBOが省エネ基準温度αeを上回っていないと判定された場合、ステップS160へ進み、目標電池温度TBOが高冷却基準温度αcを上回っているか否かが判定される。高冷却基準温度αcは、高冷却目標温度TEOcよりも高く、かつ省エネ基準温度αeよりも低い値である。 If it is determined in step S140 that the target battery temperature TBO does not exceed the energy saving reference temperature αe, the process proceeds to step S160 to determine whether or not the target battery temperature TBO exceeds the high cooling reference temperature αc. The high cooling reference temperature αc is higher than the high cooling target temperature TEOc and lower than the energy saving reference temperature αe.
 ステップS160にて目標電池温度TBOが高冷却基準温度αcを上回っていると判定された場合、ステップS170へ進み、標準モードに切り替えられる。 If it is determined in step S160 that the target battery temperature TBO is higher than the high cooling reference temperature αc, the process proceeds to step S170 to switch to the standard mode.
 ステップS160にて目標電池温度TBOが高冷却基準温度αcを上回っていないと判定された場合、ステップS180へ進み、高冷却モードに切り替えられる。 If it is determined in step S160 that the target battery temperature TBO does not exceed the high cooling reference temperature αc, the process advances to step S180 to switch to the high cooling mode.
 本実施形態では、制御装置60は、第1蒸発器14の温度TE1が省エネ目標温度TEOeに近づくように圧縮機11を制御する省エネモードと、省エネモードにおいて電池33の目標温度TBOが省エネ基準温度αeを下回った場合に実行され、第1蒸発器14の温度TE1が、省エネ目標温度TEOeよりも低い標準目標温度TEOsに近づくように圧縮機11を制御する標準モードとを切り替える。 In this embodiment, the control device 60 has an energy saving mode for controlling the compressor 11 so that the temperature TE1 of the first evaporator 14 approaches the energy saving target temperature TEOe, and in the energy saving mode, the target temperature TBO of the battery 33 is the energy saving reference temperature. When the temperature falls below αe, the temperature TE1 of the first evaporator 14 switches to the standard mode in which the compressor 11 is controlled so as to approach the standard target temperature TEOs, which is lower than the energy-saving target temperature TEOe.
 これによると、省エネモードにより省エネルギー化を図り、標準モードにより冷却能力を確保できる。 According to this, the energy saving mode can save energy, and the standard mode can secure the cooling capacity.
 本実施形態では、制御装置60は、第1蒸発器14の温度TE1が標準目標温度TEOsに近づくように圧縮機11を制御する標準モードと、標準モードにおいて電池33の目標温度TBOが高冷却基準温度αcを下回った場合に実行され、第2蒸発部17の温度TE2が、標準目標温度TEOsよりも低い高冷却目標温度TEOcに近づくように圧縮機11を制御する高冷却モードとを切り替える。 In this embodiment, the controller 60 controls the compressor 11 so that the temperature TE1 of the first evaporator 14 approaches the standard target temperature TEOs, and in the standard mode, the target temperature TBO of the battery 33 is set to the high cooling standard. When the temperature falls below the temperature αc, the temperature TE2 of the second evaporator 17 switches to a high cooling mode that controls the compressor 11 so as to approach the high cooling target temperature TEOc that is lower than the standard target temperature TEOs.
 これによると、標準モードにより省エネルギー化を図り、高冷却モードにより冷却能力を確保できる。 According to this, the standard mode saves energy, and the high cooling mode ensures cooling capacity.
 本実施形態では、制御装置60は、第1蒸発器14の温度TE1が標準目標温度TEOsに近づくように圧縮機11を制御する標準モードと、標準モードにおいて第1膨張弁13が第1蒸発部14への冷媒の流通を遮断させた場合に実行され、第2蒸発部17の温度TE2が、第1蒸発部14の温度TE1よりも低い単独目標温度TEOaに近づくように圧縮機11を制御する単独モードとを切り替える。 In the present embodiment, the control device 60 has a standard mode for controlling the compressor 11 so that the temperature TE1 of the first evaporator 14 approaches the standard target temperature TEOs, and in the standard mode, the first expansion valve 13 is set to the first evaporator. 14, and controls the compressor 11 so that the temperature TE2 of the second evaporator 17 approaches the single target temperature TEOa that is lower than the temperature TE1 of the first evaporator 14. Switch to and from solo mode.
 これによると、標準モードにより省エネルギー化を図り、単独モードにより冷却能力を確保できる。 According to this, it is possible to save energy in the standard mode and secure cooling capacity in the independent mode.
 本実施形態では、制御装置60は、標準モードにおいて電池33の目標温度TBOが省エネ基準温度αeを上回った場合、省エネモードに切り替える。これにより、標準モードと省エネモードとを適切に切り替えて省エネルギー化と冷却能力の確保とを両立できる。 In this embodiment, the control device 60 switches to the energy saving mode when the target temperature TBO of the battery 33 exceeds the energy saving reference temperature αe in the standard mode. As a result, it is possible to appropriately switch between the standard mode and the energy saving mode to achieve both energy saving and securing of cooling capacity.
 本実施形態では、制御装置60は、高冷却モードにおいて電池33の目標温度TBOが高冷却基準温度αcを上回った場合、標準モードに切り替える。これにより、高冷却モードと標準モードとを適切に切り替えて省エネルギー化と冷却能力の確保とを両立できる。 In this embodiment, the control device 60 switches to the standard mode when the target temperature TBO of the battery 33 exceeds the high cooling reference temperature αc in the high cooling mode. As a result, it is possible to appropriately switch between the high cooling mode and the standard mode to achieve both energy saving and securing of cooling capacity.
 本実施形態では、制御装置60は、単独モードにおいて第1膨張弁13が第1蒸発器14へ冷媒を流通させた場合、標準モードに切り替える。これにより、単独モードと標準モードとを適切に切り替えて省エネルギー化と冷却能力の確保とを両立できる。 In this embodiment, the control device 60 switches to the standard mode when the first expansion valve 13 causes the refrigerant to flow to the first evaporator 14 in the independent mode. As a result, it is possible to appropriately switch between the independent mode and the standard mode to achieve both energy saving and securing of cooling capacity.
 本実施形態では、制御装置60は、標準モードにおいて電池33の目標温度TBOが高冷却基準温度αcを下回った場合、第2蒸発器17の温度が、標準目標温度TEOsよりも低い高冷却目標温度TEOcに近づくように圧縮機11を制御する高冷却モードに切り替える。これにより、省エネモードと標準モードと高冷却モードとを適切に切り替えて省エネルギー化と冷却能力の確保とを両立できる。 In the present embodiment, when the target temperature TBO of the battery 33 is lower than the high cooling reference temperature αc in the standard mode, the control device 60 sets the temperature of the second evaporator 17 to the high cooling target temperature lower than the standard target temperature TEOs. Switch to a high cooling mode that controls the compressor 11 to approach TEOc. As a result, the energy saving mode, the standard mode, and the high cooling mode can be appropriately switched to achieve both energy saving and securing of cooling capacity.
 本実施形態では、制御装置60は、標準モードにおいて電池33の目標温度TBOが省エネ基準温度αeを上回った場合、第1蒸発器14の温度TE1が、標準目標温度TEOsよりも高い省エネ目標温度TEOeに近づくように圧縮機11を制御する省エネモードに切り替える。 In the present embodiment, when the target temperature TBO of the battery 33 exceeds the energy-saving reference temperature αe in the standard mode, the control device 60 sets the temperature TE1 of the first evaporator 14 to the energy-saving target temperature TEOe higher than the standard target temperature TEOs. is switched to an energy-saving mode that controls the compressor 11 so as to approach
 これにより、標準モードと高冷却モードと省エネモードとを適切に切り替えて省エネルギー化と冷却能力の確保とを両立できる。 As a result, it is possible to appropriately switch between standard mode, high cooling mode, and energy saving mode to achieve both energy saving and cooling capacity.
 本実施形態では、制御装置60は、省エネモードでは、第1蒸発器14から流出した冷媒の過熱度に基づいて第1膨張弁13を制御し、かつ第2蒸発器17から流出した冷媒の過熱度に基づいて第2膨張弁16を制御し、標準モードでは、第1蒸発器14から流出した冷媒の過熱度に基づいて第1膨張弁13を制御し、かつ第2蒸発器17から流出した冷媒の過熱度に基づいて第2膨張弁16を制御する。これにより、省エネモードと標準モードで良好なサイクル効率を得ることができる。 In the present embodiment, in the energy saving mode, the control device 60 controls the first expansion valve 13 based on the degree of superheat of the refrigerant flowing out of the first evaporator 14, and superheats the refrigerant flowing out of the second evaporator 17. In the standard mode, the first expansion valve 13 is controlled based on the degree of superheat of the refrigerant flowing out of the first evaporator 14 and outflowing from the second evaporator 17 The second expansion valve 16 is controlled based on the degree of superheat of the refrigerant. Thereby, good cycle efficiency can be obtained in the energy saving mode and the standard mode.
 本実施形態では、制御装置60は、標準モードでは、第1蒸発器14から流出した冷媒の過熱度に基づいて第1膨張弁13を制御し、かつ第2蒸発器17から流出した冷媒の過熱度に基づいて第2膨張弁16を制御し、高冷却モードでは、第2蒸発器17から流出した冷媒の過熱度に基づいて第2膨張弁16を制御する。これにより、標準モードと高冷却モードで良好なサイクル効率を得ることができる。 In the present embodiment, in the standard mode, the control device 60 controls the first expansion valve 13 based on the degree of superheat of the refrigerant flowing out of the first evaporator 14, and superheats the refrigerant flowing out of the second evaporator 17. In the high cooling mode, the second expansion valve 16 is controlled based on the degree of superheat of the refrigerant flowing out of the second evaporator 17 . Thereby, good cycle efficiency can be obtained in the standard mode and the high cooling mode.
 本実施形態では、制御装置60は、標準モードでは、第1蒸発器14から流出した冷媒の過熱度に基づいて第1膨張弁13を制御し、かつ第2蒸発器17から流出した冷媒の過熱度に基づいて第2膨張弁16を制御し、単独モードでは、第2蒸発器17から流出した冷媒の過熱度に基づいて第2膨張弁16を制御する。これにより、標準モードと単独モードで良好なサイクル効率を得ることができる。 In the present embodiment, in the standard mode, the control device 60 controls the first expansion valve 13 based on the degree of superheat of the refrigerant flowing out of the first evaporator 14, and superheats the refrigerant flowing out of the second evaporator 17. In the independent mode, the second expansion valve 16 is controlled based on the degree of superheat of the refrigerant flowing out of the second evaporator 17 . Thereby, good cycle efficiency can be obtained in the standard mode and the independent mode.
 本実施形態では、第1膨張弁13および第1蒸発器14と、第2膨張弁16および第2蒸発器17とが、冷媒の流れにおいて互いに並列に配置されている。これにより、圧力損失を低減して良好な性能を得ることができる。 In this embodiment, the first expansion valve 13 and the first evaporator 14, and the second expansion valve 16 and the second evaporator 17 are arranged in parallel with each other in the refrigerant flow. Thereby, pressure loss can be reduced and good performance can be obtained.
 (第2実施形態)
 上記実施形態では、第1蒸発器14と第2蒸発器17とが冷凍サイクル装置10の冷媒流れにおいて互いに並列に配置されているが、本実施形態では、図6に示すように、第1蒸発器14と第2蒸発器17とが冷凍サイクル装置10の冷媒流れにおいて互いに直列に配置されている。
(Second embodiment)
In the above embodiment, the first evaporator 14 and the second evaporator 17 are arranged in parallel with each other in the refrigerant flow of the refrigeration cycle device 10, but in this embodiment, as shown in FIG. The evaporator 14 and the second evaporator 17 are arranged in series with each other in the refrigerant flow of the refrigeration cycle device 10 .
 第2膨張弁16および第2蒸発器17は、第1蒸発器14の冷媒流れ下流側に配置されている。 The second expansion valve 16 and the second evaporator 17 are arranged downstream of the first evaporator 14 in the refrigerant flow.
 冷凍サイクル装置10は、バイパス流路40を有している。バイパス流路40は、レシーバ18から流出した冷媒が第1膨張弁13および第1蒸発器14をバイパスして第2膨張弁16へと流れる冷媒流路である。バイパス流路40には、バイパス開閉弁41が配置されている。バイパス開閉弁41は、バイパス流路40を開閉する電磁弁であり、制御装置60によって制御される。 The refrigeration cycle device 10 has a bypass flow path 40 . The bypass flow path 40 is a refrigerant flow path through which the refrigerant flowing out of the receiver 18 bypasses the first expansion valve 13 and the first evaporator 14 and flows to the second expansion valve 16 . A bypass opening/closing valve 41 is arranged in the bypass flow path 40 . The bypass opening/closing valve 41 is an electromagnetic valve that opens and closes the bypass flow path 40 and is controlled by the controller 60 .
 空調モードに切り替える際は、制御装置60はバイパス開閉弁41を閉じるので、第1蒸発器14では冷媒が空気から吸熱して蒸発する。空調モードでは、制御装置60は第2膨張弁16を全開状態とし、低温側ポンプ31を停止させるので、第2蒸発器17では冷媒と低温冷却水回路30の冷却水との間の熱交換がほとんど行われない。 When switching to the air conditioning mode, the controller 60 closes the bypass on-off valve 41, so the refrigerant absorbs heat from the air and evaporates in the first evaporator 14. In the air conditioning mode, the control device 60 fully opens the second expansion valve 16 and stops the low temperature side pump 31, so that heat exchange between the refrigerant and the cooling water of the low temperature cooling water circuit 30 is not performed in the second evaporator 17. rarely done.
 標準モード、高冷却モードおよび省エネモードに切り替える際は、制御装置60はバイパス開閉弁41を閉じるので、第1蒸発器14では冷媒が空気から吸熱して蒸発し、第2蒸発器17では冷媒が低温冷却水回路30の冷却水から吸熱して蒸発する。 When switching to the standard mode, the high cooling mode, and the energy saving mode, the control device 60 closes the bypass on-off valve 41, so the refrigerant absorbs heat from the air in the first evaporator 14 and evaporates, and the refrigerant in the second evaporator 17 It absorbs heat from the cooling water in the low-temperature cooling water circuit 30 and evaporates.
 単独モードに切り替える際は、制御装置60はバイパス開閉弁41を開けて第1膨張弁13を閉じるので、第1蒸発器14では冷媒と空気との間の熱交換が行われず、第2蒸発器17では冷媒が低温冷却水回路30の冷却水から吸熱して蒸発する。 When switching to the independent mode, the control device 60 opens the bypass on-off valve 41 and closes the first expansion valve 13, so that heat exchange between the refrigerant and the air is not performed in the first evaporator 14, and the second evaporator At 17, the refrigerant absorbs heat from the cooling water in the low-temperature cooling water circuit 30 and evaporates.
 空調モード、標準モード、高冷却モード、省エネモードおよび単独モードを上記第1実施形態と同様の切替条件で切り替え、標準モード、高冷却モード、省エネモードおよび単独モードにおいて上記第1実施形態と同様に圧縮機11、第1膨張弁13および第2膨張弁16等を制御することによって、上記第1実施形態と同様の作用効果を奏することができる。 The air conditioning mode, standard mode, high cooling mode, energy saving mode, and single mode are switched under the same switching conditions as in the first embodiment, and the standard mode, high cooling mode, energy saving mode, and single mode are switched in the same manner as in the first embodiment. By controlling the compressor 11, the first expansion valve 13, the second expansion valve 16, etc., the same effects as those of the first embodiment can be obtained.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the scope of the present disclosure.
 上記実施形態では、熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。 Although cooling water is used as the heat medium in the above embodiment, various media such as oil may be used as the heat medium. A nanofluid may be used as a heat carrier. A nanofluid is a fluid mixed with nanoparticles having a particle size on the order of nanometers.
 上記実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。 In the refrigeration cycle apparatus 10 of the above-described embodiment, a freon-based refrigerant is used as a refrigerant, but the type of refrigerant is not limited to this, and natural refrigerants such as carbon dioxide, hydrocarbon-based refrigerants, etc. may be used. good.
 また、上記実施形態の冷凍サイクル装置10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。 Further, the refrigerating cycle device 10 of the above embodiment constitutes a subcritical refrigerating cycle in which the high pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but a supercritical refrigerating cycle in which the high pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. may constitute
 上記実施形態では、高温側ラジエータ23と低温側ラジエータ32とが別々のラジエータになっているが、高温側ラジエータ23と低温側ラジエータ32とが1つのラジエータで構成されていてもよい。 In the above embodiment, the high temperature side radiator 23 and the low temperature side radiator 32 are separate radiators, but the high temperature side radiator 23 and the low temperature side radiator 32 may be configured as a single radiator.
 例えば、高温側ラジエータ23のタンクと低温側ラジエータ32のタンクとが互いに一体化されていることによって、高温側ラジエータ23と低温側ラジエータ32とが1つのラジエータで構成されていてもよい。 For example, the tank of the high temperature side radiator 23 and the tank of the low temperature side radiator 32 may be integrated with each other so that the high temperature side radiator 23 and the low temperature side radiator 32 are configured as one radiator.
 上記実施形態では、第1膨張弁13は、冷媒を減圧する減圧部と、冷媒の流路を全閉にすることで冷媒の流れを遮断する遮断部13aとが一体に構成されたものであるが、遮断部13aが第1膨張弁13と別体になっていてもよい。 In the above-described embodiment, the first expansion valve 13 is configured integrally with the decompression portion for decompressing the refrigerant and the shutoff portion 13a for shutting off the flow of the refrigerant by fully closing the flow path of the refrigerant. However, the cutoff portion 13a may be separate from the first expansion valve 13 .
 上記実施形態の凝縮器12は、冷媒と冷却水とを熱交換させる熱交換器であるが、凝縮器12は、冷媒と空気とを熱交換させる熱交換器であってもよい。 The condenser 12 in the above embodiment is a heat exchanger that exchanges heat between refrigerant and cooling water, but the condenser 12 may be a heat exchanger that exchanges heat between refrigerant and air.
 上記実施形態では、電池33は、第2蒸発器17にて冷媒で冷却された冷却水によって冷却されるが、電池33は冷媒で直接冷却されてもよいし、冷媒で冷却された空気によって冷却されてもよい。 In the above embodiment, the battery 33 is cooled by cooling water cooled by the refrigerant in the second evaporator 17, but the battery 33 may be directly cooled by the refrigerant or cooled by air cooled by the refrigerant. may be
 上記実施形態では、冷凍サイクル装置10はレシーバ18を有するレシーバサイクルであるが、冷凍サイクル装置10はアキュムレータを有するアキュムレータサイクルであってもよい。 Although the refrigeration cycle device 10 is a receiver cycle having the receiver 18 in the above embodiment, the refrigeration cycle device 10 may be an accumulator cycle having an accumulator.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (12)

  1.  冷媒を吸入して圧縮し吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱部(12)と、
     前記放熱部で放熱された前記冷媒を減圧させる第1減圧部(13)および第2減圧部(16)と、
     前記第1減圧部で減圧された前記冷媒に、空調対象空間へ送風される空気から吸熱させることによって前記冷媒を蒸発させる第1蒸発部(14)と、
     前記第2減圧部で減圧された前記冷媒に冷却対象物(33)から吸熱させることによって前記冷媒を蒸発させる第2蒸発部(17)と、
     前記第1蒸発部の温度(TE1)が省エネ目標温度(TEOe)に近づくように前記圧縮機を制御する省エネモードと、前記省エネモードにおいて前記冷却対象物の目標温度(TBO)が省エネ基準温度(αe)を下回った場合に実行され、前記第1蒸発部の温度が、前記省エネ目標温度よりも低い標準目標温度(TEOs)に近づくように前記圧縮機を制御する標準モードとを切り替える制御部(60)とを備える冷凍サイクル装置。
    a compressor (11) that sucks, compresses, and discharges refrigerant;
    a heat radiating section (12) for radiating heat from the refrigerant discharged from the compressor;
    a first decompression section (13) and a second decompression section (16) for decompressing the refrigerant radiated by the heat radiation section;
    a first evaporator (14) that evaporates the refrigerant decompressed by the first decompressor by causing the refrigerant to absorb heat from the air that is blown into the air-conditioned space;
    a second evaporator (17) for evaporating the refrigerant by allowing the refrigerant decompressed by the second decompression unit to absorb heat from an object (33) to be cooled;
    an energy saving mode for controlling the compressor so that the temperature (TE1) of the first evaporator approaches the energy saving target temperature (TEOe); αe), and the temperature of the first evaporator switches to the standard mode that controls the compressor so that it approaches a standard target temperature (TEOs) that is lower than the energy saving target temperature ( 60).
  2.  冷媒を吸入して圧縮し吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱部(12)と、
     前記放熱部で放熱された前記冷媒を減圧させる第1減圧部(13)および第2減圧部(16)と、
     前記第1減圧部で減圧された前記冷媒に、空調対象空間へ送風される空気から吸熱させることによって前記冷媒を蒸発させる第1蒸発部(14)と、
     前記第1蒸発部から流出した前記冷媒の圧力を所定圧力以上に維持する圧力調整部(15)と、
     前記第2減圧部で減圧された前記冷媒に冷却対象物(33)から吸熱させることによって前記冷媒を蒸発させる第2蒸発部(17)と、
     前記第1蒸発部の温度(TE1)が標準目標温度(TEOs)に近づくように前記圧縮機を制御する標準モードと、前記標準モードにおいて前記冷却対象物の目標温度(TBO)が高冷却基準温度(αc)を下回った場合に実行され、前記第2蒸発部の温度(TE2)が、前記標準目標温度よりも低い高冷却目標温度(TEOc)に近づくように前記圧縮機を制御する高冷却モードとを切り替える制御部(60)とを備える冷凍サイクル装置。
    a compressor (11) that sucks, compresses, and discharges refrigerant;
    a heat radiating section (12) for radiating heat from the refrigerant discharged from the compressor;
    a first decompression section (13) and a second decompression section (16) for decompressing the refrigerant radiated by the heat radiation section;
    a first evaporator (14) that evaporates the refrigerant decompressed by the first decompressor by causing the refrigerant to absorb heat from the air that is blown into the air-conditioned space;
    a pressure adjusting section (15) for maintaining the pressure of the refrigerant flowing out of the first evaporating section at a predetermined pressure or higher;
    a second evaporator (17) for evaporating the refrigerant by allowing the refrigerant decompressed by the second decompression unit to absorb heat from an object (33) to be cooled;
    a standard mode for controlling the compressor so that the temperature (TE1) of the first evaporator approaches the standard target temperature (TEOs); (αc), the temperature of the second evaporator (TE2) controls the compressor to approach a high cooling target temperature (TEOc) that is lower than the standard target temperature. A refrigeration cycle apparatus comprising a control unit (60) for switching between and.
  3.  冷媒を吸入して圧縮し吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱部(12)と、
     前記放熱部で放熱された前記冷媒を減圧させる第1減圧部(13)および第2減圧部(16)と、
     前記第1減圧部で減圧された前記冷媒に、空調対象空間へ送風される空気から吸熱させることによって前記冷媒を蒸発させる第1蒸発部(14)と、
     前記第2減圧部で減圧された前記冷媒に冷却対象物(33)から吸熱させることによって前記冷媒を蒸発させる第2蒸発部(17)と、
     前記第1蒸発部への前記冷媒の流通を遮断させる遮断部(13a)と、
     前記第1蒸発部の温度(TE1)が標準目標温度(TEOs)に近づくように前記圧縮機を制御する標準モードと、前記標準モードにおいて前記遮断部が前記第1蒸発部への前記冷媒の流通を遮断させた場合に実行され、前記第2蒸発部の温度(TE2)が、前記第1蒸発部の温度よりも低い単独目標温度(TEOa)に近づくように前記圧縮機を制御する単独モードとを切り替える制御部(60)とを備える冷凍サイクル装置。
    a compressor (11) that sucks, compresses, and discharges refrigerant;
    a heat radiating section (12) for radiating heat from the refrigerant discharged from the compressor;
    a first decompression section (13) and a second decompression section (16) for decompressing the refrigerant radiated by the heat radiation section;
    a first evaporator (14) that evaporates the refrigerant decompressed by the first decompressor by causing the refrigerant to absorb heat from the air that is blown into the air-conditioned space;
    a second evaporator (17) for evaporating the refrigerant by allowing the refrigerant decompressed by the second decompression unit to absorb heat from an object (33) to be cooled;
    a blocking portion (13a) for blocking circulation of the refrigerant to the first evaporating portion;
    a standard mode in which the compressor is controlled so that the temperature (TE1) of the first evaporator approaches a standard target temperature (TEOs); is shut off, and the temperature of the second evaporator (TE2) controls the compressor so that it approaches a single target temperature (TEOa) lower than the temperature of the first evaporator; A refrigeration cycle device comprising a control unit (60) for switching between.
  4.  前記制御部は、前記標準モードにおいて前記冷却対象物の目標温度が前記省エネ基準温度を上回った場合、前記省エネモードに切り替える請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the control unit switches to the energy saving mode when the target temperature of the object to be cooled exceeds the energy saving reference temperature in the standard mode.
  5.  前記制御部は、前記高冷却モードにおいて前記冷却対象物の目標温度が前記高冷却基準温度を上回った場合、前記標準モードに切り替える請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the control unit switches to the standard mode when the target temperature of the object to be cooled exceeds the high cooling reference temperature in the high cooling mode.
  6.  前記制御部は、前記単独モードにおいて前記遮断部が前記第1蒸発部へ前記冷媒を流通させた場合、前記標準モードに切り替える請求項3に記載の冷凍サイクル装置。 4. The refrigeration cycle apparatus according to claim 3, wherein the control unit switches to the standard mode when the cutoff unit causes the refrigerant to flow to the first evaporator in the independent mode.
  7.  前記第1蒸発部から流出した前記冷媒の圧力を所定圧力以上に維持する圧力調整部(15)を備え、
     前記制御部は、前記標準モードにおいて前記冷却対象物の目標温度が高冷却基準温度を下回った場合、前記第2蒸発部の温度が、前記標準目標温度よりも低い高冷却目標温度(TEOc)に近づくように前記圧縮機を制御する高冷却モードに切り替える請求項1に記載の冷凍サイクル装置。
    a pressure adjusting unit (15) for maintaining the pressure of the refrigerant flowing out of the first evaporating unit at a predetermined pressure or higher;
    When the target temperature of the object to be cooled falls below a high cooling reference temperature in the standard mode, the control unit sets the temperature of the second evaporator to a high cooling target temperature (TEOc) lower than the standard target temperature. 2. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is switched to a high cooling mode in which the compressor is controlled to approach.
  8.  前記制御部は、前記標準モードにおいて前記冷却対象物の目標温度が省エネ基準温度を上回った場合、前記第1蒸発部の温度(TE1)が、前記標準目標温度よりも高い省エネ目標温度(TEOe)に近づくように前記圧縮機を制御する省エネモードに切り替える請求項2に記載の冷凍サイクル装置。 When the target temperature of the object to be cooled exceeds the energy-saving reference temperature in the standard mode, the control unit sets the temperature (TE1) of the first evaporator to an energy-saving target temperature (TEOe) higher than the standard target temperature. 3. The refrigeration cycle apparatus according to claim 2, wherein the switching is made to an energy saving mode in which the compressor is controlled so as to approach .
  9.  前記制御部は、
     前記省エネモードでは、前記第1蒸発部から流出した前記冷媒の状態に基づいて前記第1減圧部を制御し、かつ前記第2蒸発部から流出した前記冷媒の状態に基づいて前記第2減圧部を制御し、
     前記標準モードでは、前記第1蒸発部から流出した前記冷媒の状態に基づいて前記第1減圧部を制御し、かつ前記第2蒸発部から流出した前記冷媒の状態に基づいて前記第2減圧部を制御する請求項1、4、7、8のいずれか1つに記載の冷凍サイクル装置。
    The control unit
    In the energy saving mode, the first pressure reducing unit is controlled based on the state of the refrigerant flowing out of the first evaporating unit, and the second pressure reducing unit is controlled based on the state of the refrigerant flowing out of the second evaporating unit. to control the
    In the standard mode, the first pressure reducing section is controlled based on the state of the refrigerant flowing out of the first evaporating section, and the second pressure reducing section is controlled based on the state of the refrigerant flowing out of the second evaporating section. The refrigeration cycle apparatus according to any one of claims 1, 4, 7, and 8, which controls
  10.  前記制御部は、
     前記標準モードでは、前記第1蒸発部から流出した前記冷媒の状態に基づいて前記第1減圧部を制御し、かつ前記第2蒸発部から流出した前記冷媒の状態に基づいて前記第2減圧部を制御し、
     前記高冷却モードでは、前記第2蒸発部から流出した前記冷媒の状態に基づいて前記第2減圧部を制御する請求項2、5、7、8のいずれか1つに記載の冷凍サイクル装置。
    The control unit
    In the standard mode, the first pressure reducing section is controlled based on the state of the refrigerant flowing out of the first evaporating section, and the second pressure reducing section is controlled based on the state of the refrigerant flowing out of the second evaporating section. to control the
    The refrigeration cycle apparatus according to any one of claims 2, 5, 7, and 8, wherein in the high cooling mode, the second pressure reducing section is controlled based on the state of the refrigerant flowing out of the second evaporating section.
  11.  前記制御部は、
     前記標準モードでは、前記第1蒸発部から流出した前記冷媒の状態に基づいて前記第1減圧部を制御し、かつ前記第2蒸発部から流出した前記冷媒の状態に基づいて前記第2減圧部を制御し、
     前記単独モードでは、前記第2蒸発部から流出した前記冷媒の状態に基づいて前記第2減圧部を制御する請求項3または6に記載の冷凍サイクル装置。
    The control unit
    In the standard mode, the first pressure reducing section is controlled based on the state of the refrigerant flowing out of the first evaporating section, and the second pressure reducing section is controlled based on the state of the refrigerant flowing out of the second evaporating section. to control the
    7. The refrigeration cycle apparatus according to claim 3, wherein in said independent mode, said second pressure reducing section is controlled based on the state of said refrigerant flowing out of said second evaporating section.
  12.  前記第1減圧部および前記第1蒸発部と、前記第2減圧部および前記第2蒸発部とが、前記冷媒の流れにおいて互いに並列に配置されている請求項1ないし11のいずれか1つに記載の冷凍サイクル装置。 12. The method according to any one of claims 1 to 11, wherein the first decompression section and the first evaporator, and the second decompression section and the second evaporator are arranged in parallel with each other in the flow of the refrigerant. A refrigeration cycle apparatus as described.
PCT/JP2022/010179 2021-03-22 2022-03-09 Refrigeration cycle device WO2022202307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-046982 2021-03-22
JP2021046982A JP2022146159A (en) 2021-03-22 2021-03-22 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2022202307A1 true WO2022202307A1 (en) 2022-09-29

Family

ID=83395625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010179 WO2022202307A1 (en) 2021-03-22 2022-03-09 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2022146159A (en)
WO (1) WO2022202307A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160594A (en) * 2013-02-20 2014-09-04 Denso Corp Cooling system
JP2019219122A (en) * 2018-06-21 2019-12-26 株式会社デンソー Refrigeration cycle device
WO2020166270A1 (en) * 2019-02-11 2020-08-20 株式会社デンソー Refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160594A (en) * 2013-02-20 2014-09-04 Denso Corp Cooling system
JP2019219122A (en) * 2018-06-21 2019-12-26 株式会社デンソー Refrigeration cycle device
WO2020166270A1 (en) * 2019-02-11 2020-08-20 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2022146159A (en) 2022-10-05

Similar Documents

Publication Publication Date Title
US11498391B2 (en) Air conditioner
US20220032732A1 (en) Battery heating device for vehicle
CN108779942B (en) Refrigeration cycle device
US11718156B2 (en) Refrigeration cycle device
US20190111756A1 (en) Refrigeration cycle device
CN111094028B (en) Air conditioner for vehicle
CN109983287B (en) Refrigeration cycle device
CN114514129B (en) Refrigeration cycle device
US11897316B2 (en) Refrigeration cycle device
CN113646595A (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
CN110914082B (en) Air conditioner
CN110997369A (en) Refrigeration cycle device
CN113423596A (en) Refrigeration cycle device
CN115666985A (en) Refrigeration cycle device
CN112638674A (en) Refrigeration cycle device
US20220088996A1 (en) Refrigeration cycle device
WO2022064880A1 (en) Refrigeration cycle device
WO2022264743A1 (en) Vehicle air-conditioning device
WO2022202307A1 (en) Refrigeration cycle device
JP7487562B2 (en) Refrigeration Cycle Equipment
WO2022239602A1 (en) Air-conditioning device for vehicle
JP7472744B2 (en) Refrigeration Cycle Equipment
WO2024053334A1 (en) Refrigeration cycle device
US20240010045A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775099

Country of ref document: EP

Kind code of ref document: A1