[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022202122A1 - 高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置 - Google Patents

高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置 Download PDF

Info

Publication number
WO2022202122A1
WO2022202122A1 PCT/JP2022/008257 JP2022008257W WO2022202122A1 WO 2022202122 A1 WO2022202122 A1 WO 2022202122A1 JP 2022008257 W JP2022008257 W JP 2022008257W WO 2022202122 A1 WO2022202122 A1 WO 2022202122A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
electrolyte material
ionic
block copolymer
segment
Prior art date
Application number
PCT/JP2022/008257
Other languages
English (en)
French (fr)
Inventor
村上和歩
松井一直
田中毅
出原大輔
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280021494.4A priority Critical patent/CN117098798A/zh
Priority to EP22774920.7A priority patent/EP4317252A1/en
Priority to JP2022515039A priority patent/JPWO2022202122A1/ja
Priority to US18/282,278 priority patent/US20240170704A1/en
Publication of WO2022202122A1 publication Critical patent/WO2022202122A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte material, a polymer electrolyte molded body using the same, an electrolyte membrane with a catalyst layer, a membrane electrode assembly, a solid polymer fuel cell, and a water electrolysis hydrogen generator.
  • a fuel cell is a type of power generation device that extracts electrical energy by electrochemically oxidizing fuels such as hydrogen and methanol, and has been attracting attention as a clean energy source in recent years.
  • Polymer electrolyte fuel cells in particular, have a low standard operating temperature of around 100°C and a high energy density. A wide range of applications are expected.
  • Polymer electrolyte fuel cells are also attracting attention as a power source for small mobile devices and mobile devices, and are expected to be used as a substitute for secondary batteries such as nickel-metal hydride batteries and lithium-ion batteries in mobile phones and personal computers. ing.
  • a fuel cell is usually configured as a unit of cells in which a membrane electrode assembly (MEA) is sandwiched between separators.
  • the MEA has catalyst layers arranged on both sides of an electrolyte membrane, and gas diffusion layers further arranged on both sides thereof.
  • a catalyst layer and a gas diffusion layer sandwiching an electrolyte membrane constitute a pair of electrode layers, one of which is an anode electrode and the other is a cathode electrode. Electric power is produced by an electrochemical reaction when fuel gas containing hydrogen comes into contact with the anode electrode and air comes into contact with the cathode electrode.
  • the electrolyte membrane is mainly composed of a polymer electrolyte material. Polymer electrolyte materials are also used as binders for catalyst layers.
  • electrolyte membranes having a phase separation structure have been proposed as hydrocarbon-based polymer electrolyte membranes with improved proton conductivity and mechanical durability (see Patent Documents 1 and 2, for example).
  • the polymer electrolyte membrane disclosed in the above patent document can be expected to have improved proton conductivity and mechanical durability.
  • an object of the present invention is to provide a polymer electrolyte material that achieves both proton conductivity and mechanical durability at relatively high levels.
  • the polymer electrolyte material of the present invention has the following configuration. i.e. A polymer electrolyte material comprising a block copolymer having a segment containing an ionic group and a segment not containing an ionic group, wherein the polymer electrolyte material has a phase-separated structure, and under the following conditions: A polymer electrolyte material that satisfies at least one of 1 and condition 2. ⁇ Condition 1> The saturated crystallinity of the polymer electrolyte material measured by wide-angle X-ray diffraction is 5% or more and 30% or less.
  • the ion exchange capacity (IEC) of the polymer electrolyte material is 1.8 meq/g or more and 3.0 meq/g or less, and the IEC (meq/g) of the polymer electrolyte material and the differential scanning
  • the product with the crystallization heat quantity (J/g) of the polymer electrolyte material measured by calorimetric analysis is 35.0 or more and 47.0 or less.
  • the polymer electrolyte molded body of the present invention has the following configuration. i.e. A polymer electrolyte molded body containing the above polymer electrolyte material.
  • the catalyst layer-attached electrolyte membrane of the present invention has the following configuration. i.e. An electrolyte membrane with a catalyst layer, which is constructed using the polymer electrolyte molded body.
  • the membrane electrode assembly of the present invention adopts the following configuration. That is, it is a membrane electrode assembly constructed using the polymer electrolyte molded body.
  • the solid polymer fuel cell of the present invention adopts the following configuration. That is, it is a solid polymer fuel cell constructed using the polymer electrolyte molded body.
  • the polymer electrolyte material of the present invention preferably has a cocontinuous or lamellar phase separation structure.
  • the phase separation structure preferably has an average periodic size of 15 to 100 nm.
  • the block copolymer is preferably an aromatic polyether copolymer.
  • the block copolymer is preferably an aromatic polyetherketone-based copolymer.
  • the block copolymer preferably has a linker site that connects the ionic segment and the nonionic segment.
  • the nonionic segment preferably contains a structure represented by the following general formula (S3).
  • Ar 5 to Ar 8 each independently represent a substituted or unsubstituted arylene group, provided that none of Ar 5 to Ar 8 has an ionic group.
  • Y 3 and Y 4 each independently represents a ketone group or a protective group that can be derivatized to a ketone group.
  • * represents the general formula (S3) or a bond with another structural unit.
  • the structure represented by the general formula (S3) is preferably a structure represented by the following general formula (S4).
  • Y 3 and Y 4 each independently represent a ketone group or a protecting group that can be derivatized to a ketone group.
  • * represents general formula (S4) or a bond with another structural unit. show.
  • the nonionic segment preferably has a number average molecular weight of 15,000 or more.
  • FIG. 1 is a schematic diagram of a phase separation structure in a polymer electrolyte material.
  • the polymer electrolyte material of the present invention is a block copolymer having a segment containing an ionic group (hereinafter referred to as "ionic segment”) and a segment containing no ionic group (hereinafter referred to as "nonionic segment”). consists of amalgamation.
  • ionic segment an ionic group
  • nonionic segment a segment containing no ionic group
  • a polymer electrolyte material composed of such a block polymer has a feature of easily forming a phase-separated structure.
  • the polymer electrolyte material may be simply referred to as "electrolyte material”.
  • the electrolyte material of the present invention has a phase-separated structure and satisfies at least one of Condition 1 and Condition 2 below.
  • Such an electrolyte material has both mechanical durability and proton conductivity at relatively high levels.
  • ⁇ Condition 1> The saturated crystallinity of the polymer electrolyte material measured by wide-angle X-ray diffraction is 5% or more and 30% or less.
  • the ion exchange capacity (IEC) of the polymer electrolyte material is 1.8 meq/g or more and 3.0 meq/g or less, and the IEC (meq/g) of the polymer electrolyte material and the differential scanning calorific value
  • the product with the heat of crystallization (J/g) of the polymer electrolyte material measured by an analytical method is 35.0 or more and 47.0 or less.
  • saturated crystallinity of the polymer electrolyte material measured by wide-angle X-ray diffraction is “saturated crystallinity”
  • ion exchange capacity is “IEC”
  • heat of crystallization measured by differential scanning calorimetry is “crystal It may be abbreviated as “heat of heat”.
  • achieving both mechanical durability and proton conductivity at a relatively high level specifically means that mechanical durability is relatively good and proton conductivity is excellent, and proton conductivity is relatively high. It means good performance and excellent mechanical durability.
  • the dry-wet dimensional change rate of the electrolyte membrane made of the electrolyte material is small.
  • the dry-wet dimensional change rate of the electrolyte membrane can be obtained by the following measurements.
  • the dimensional change rate of 30% RH in the 10th cycle of repeating the dry-wet cycle of alternately exposing the electrolyte membrane test piece to a dry atmosphere (30% RH) and a humidified atmosphere (90% RH) while applying a constant stress ( %) and the dimensional change rate (%) at 90% RH, and the difference between them is defined as the dry-wet dimensional change rate (%).
  • the confirmation of the phase separation structure of the electrolyte material, the measurement of the saturation crystallinity and the heat of crystallization of the electrolyte material, and the evaluation of the mechanical durability (dry-wet dimensional change rate) and proton conductivity of the electrolyte material are each performed as follows.
  • a membrane (hereinafter referred to as "electrolyte membrane") obtained by applying a solution of an electrolyte material dissolved or dispersed in an appropriate solvent onto a supporting substrate and drying the solution was used.
  • the electrolyte material may be replaced with an electrolyte membrane.
  • phase separation structure The electrolyte material of the present invention has a phase separation structure.
  • that the electrolyte material has a phase-separated structure means that the phase-separated structure can be confirmed when the electrolyte membrane is observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Fig. 1 shows an example of the phase separation structure of the electrolyte membrane.
  • Phase separation structures are roughly classified into four types: bicontinuous (M1), lamellar (M2), cylinder (M3), and sea-island (M4).
  • the electrolyte material of the present invention has a phase separation structure of any one of (M1) to (M4).
  • the continuous phase (phase 1) of the white part is formed by one segment selected from the ionic segment and the nonionic segment, and the continuous phase or dispersed phase of the gray part ( Phase 2) is formed by the other segment.
  • phase separation structure is described, for example, in Annual Review of Physical Chemistry, 41, 1990, p.525.
  • the electrolyte material of the present invention preferably has a bicontinuous (M1) or lamellar (M2) phase separation structure, and preferably has a bicontinuous (M1) phase separation structure.
  • the above domain means a mass formed by aggregation of similar segments in one or more polymer chains.
  • the electrolyte membrane has a cocontinuous (M1) or lamellar (M2) phase separation structure
  • M1 or M2 phase separation structure can be confirmed by the following method.
  • a desired image is observed by the following method, it is defined as having the structure.
  • a three-dimensional view obtained by TEM tomography observation is compared with a three-dimensional view of a digital slice extracted from three directions of length, width, and height.
  • phase separation structure when the phase separation structure is bicontinuous (M1) or lamellar (M2), ion Hydrophilic domains containing ionic segments and hydrophobic domains containing nonionic segments together form a continuous phase.
  • each of the continuous phases shows a complicated pattern
  • lamellar each of the continuous phases shows a layered pattern.
  • the continuous phase means, macroscopically, a phase in which individual domains are connected without being isolated, but it does not matter if there is a part that is not connected.
  • one of the domains does not form a continuous phase on at least one surface, so it can be distinguished from the co-continuous structure (M1) and lamellar structure (M2). Also, the structure can be determined from the patterns shown in each of the three views.
  • the electrolyte membrane is immersed in a 2 wt% lead acetate aqueous solution for 2 days to remove the ionic group with lead.
  • TEM transmission electron microscopy
  • the size of the phase separation structure can be expressed as the periodic size of the hydrophilic domain containing the ionic segment and the hydrophobic domain containing the nonionic segment.
  • the periodic size of such a phase separation structure can be estimated from the autocorrelation function given by the image processing of the phase separation structure obtained by transmission electron microscope (TEM) observation.
  • the average periodic size of the phase separation structure is preferably in the range of 15 to 100 nm, more preferably in the range of 35 to 80 nm, further preferably in the range of 40 to 67 nm. A range of ⁇ 67 nm is particularly preferred.
  • the average period size of the phase separation structure is larger than 100 nm, it becomes difficult to form a co-continuous phase separation structure. preferable.
  • electrolyte material (I) The electrolyte material according to the first embodiment of the present invention (hereinafter referred to as "electrolyte material (I)”) satisfies Condition 1. That is, the electrolyte material (I) has a saturated crystallinity of 5% or more and 30% or less.
  • the saturated degree of crystallinity means the degree of crystallinity at which crystallization does not proceed any further, that is, the maximum degree of crystallinity.
  • the electrolyte membrane made of the electrolyte material described above is hot-pressed at 4.5 MPa at a temperature equal to or higher than the glass transition temperature (Tg) of the electrolyte material, and the crystallinity is measured by wide-angle X-ray diffraction every 5 minutes.
  • the degree of crystallinity when the degree of crystallinity no longer changes is defined as the degree of saturated crystallinity.
  • the heating temperature (T (°C)) during hot pressing is in the range of Tg ⁇ T ⁇ Tg+40°C. Specifically, Tg+5° C. is appropriate.
  • the saturated crystallinity of the electrolyte material (I) is preferably 7% or more, more preferably 9% or more, and particularly preferably 10% or more.
  • the saturated crystallinity of the electrolyte material (I) exceeds 30%, the proton conductivity and workability deteriorate.
  • the saturated crystallinity is preferably 25% or less, more preferably 23% or less, even more preferably 20% or less, and particularly preferably 17% or less.
  • the electrolyte material When the electrolyte material is applied to electrochemical applications such as solid polymer fuel cells and water electrolysis hydrogen generators, it is generally used after being processed into an electrolyte molded film as described later.
  • the crystallinity of the electrolyte molded film using the electrolyte material (I) can reach the saturation crystallinity, but it is not necessary to reach the saturation crystallinity.
  • An electrolyte molded film using the electrolyte material (I), that is, an electrolyte molded film using an electrolyte material composed of a block copolymer having an ionic segment and a nonionic segment, has a degree of crystallinity equal to that of the electrolyte material. It has good mechanical durability and excellent proton conductivity even if it does not reach the saturation crystallinity. For example, it was confirmed that the molded electrolyte membrane has good mechanical durability and excellent proton conductivity even in a state where crystallization has hardly progressed.
  • the crystallinity of the electrolyte molded film using the electrolyte material (I) can be increased by heating at a temperature higher than the glass transition temperature of the electrolyte material (I). This can further improve the proton conductivity and mechanical durability of the electrolyte molded membrane. At this time, the crystallinity of the electrolyte molded film may be increased to the same degree as the saturated crystallinity of the electrolyte material (I), or about 1 to 99% of the saturated crystallinity of the electrolyte material (I). You can increase it as much as possible. A method for adjusting the degree of crystallinity of the molded electrolyte film will be described later.
  • the IEC of the electrolyte material (I) is not particularly limited, but is preferably 1.5 meq/g or more, more preferably 1.8 meq/g or more, still more preferably 1.9 meq/g or more, and 2.0 meq/g or more. Especially preferred.
  • the IEC of the electrolyte material (I) is preferably 3.5 meq/g or less, more preferably 3.0 meq/g or less, even more preferably 2.9 meq/g or less, and particularly preferably 2.8 meq/g or less.
  • IEC is the molar amount of ion exchange groups introduced per unit dry mass of the electrolyte material (block copolymer). IEC can be measured by elemental analysis, neutralization titration, or the like. When the ion exchange group is a sulfonic acid group, it can be calculated from the S/C ratio using elemental analysis, but it is difficult to measure when sulfur sources other than sulfonic acid groups are included. Therefore, in the present invention, IEC is defined as a value determined by the neutralization titration method described below.
  • electrolyte material (II) The electrolyte material according to the second embodiment of the present invention (hereinafter referred to as "electrolyte material (II)") satisfies Condition 2. That is, the electrolyte material (II) has an IEC of 1.8 meq/g or more and 3.0 meq/g or less, and a product of the IEC and the heat of crystallization of 35.0 or more and 47.0 or less.
  • the electrolyte material (II) has an IEC of 1.8 meq/g or more and 3.0 meq/g or less.
  • the electrolyte material (II) having an IEC within the above range has excellent proton conductivity.
  • the IEC of the electrolyte material (II) is preferably 1.9 meq/g or more, more preferably 2.0 meq/g or more, still more preferably 2.1 meq/g or more, and 2.2 meq. / g or more is particularly preferable.
  • the IEC is preferably 2.9 meq/g or less, more preferably 2.8 meq/g or less, and particularly preferably 2.6 meq/g or less.
  • the electrolyte material (II) has crystallinity.
  • “having crystallinity” means having a property of crystallizing at elevated temperature.
  • the degree of crystallinity can be expressed as the heat of crystallization by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • one index is that the heat of crystallization is 0.1 J/g or more.
  • DSC differential scanning calorimetry
  • the temperature was raised to 200° C. under the following conditions without removing the sample from the DSC device, and the temperature modulation difference in the heating stage was measured. Scanning calorimetry is performed.
  • an electrolyte membrane obtained by coating a support substrate with a solution obtained by dissolving or dispersing an electrolyte material in an appropriate solvent and drying the solution is used as the sample.
  • ⁇ Measurement temperature range 30°C to 200°C
  • ⁇ Temperature control AC temperature control
  • ⁇ Temperature increase rate 2°C/min
  • Amplitude ⁇ 3°C
  • ⁇ Applied frequency 0.02 Hz
  • Sample pan Aluminum crimp pan - Atmosphere for measurement and pre-drying: Nitrogen 100 mL/min.
  • the differential scanning calorimetry has the advantage that the specimen is not exposed to the atmosphere (air) from preliminary drying to measurement compared to conventional analysis methods, so the specimen is less susceptible to moisture in the atmosphere. This improves measurement accuracy.
  • the product of the IEC (meq/g) and the heat of crystallization (J/g) of the electrolyte material (II) is 35.0 or more and 47.0 or less.
  • proton conductivity and mechanical durability generally have a trade-off relationship.
  • the product is 35.0 or more and 47.0 or less, both proton conductivity and mechanical durability can be achieved at relatively high levels.
  • proton conductivity and mechanical durability generally have a trade-off relationship.
  • proton conductivity and IEC, and mechanical durability and crystallization heat quantity are roughly correlated, respectively.
  • the IEC and the heat of crystallization are characteristics in which the vectors are in opposite directions. The present inventors have found that the physical quantity obtained by multiplying the IEC by the heat of crystallization is effective as an index for achieving both proton conductivity and mechanical durability, and that the IEC is 1.8 meq/g.
  • the physical quantity obtained by multiplying the IEC by the heat of crystallization acts particularly effectively, and when the range of the physical quantity is 35.0 or more and 47.0 or less, proton conductivity and mechanical It has been found that both physical durability and durability can be achieved at a relatively high level.
  • the product of IEC and the heat of crystallization is preferably 36.0 or more and 47.0 or less, more preferably 37.0 or more and 44.0 or less.
  • the crystallization heat quantity of the electrolyte material (II) is designed so that the product of the IEC and the crystallization heat quantity is within the above range.
  • the heat of crystallization is preferably 12.0 J/g or more, more preferably 13.0 J/g or more, and particularly preferably 14.0 J/g or more.
  • the heat quantity of crystallization of the electrolyte material (II) is preferably 25.0 J/g or less, more preferably 24.0 J/g or less, and particularly preferably 23.0 J/g or less.
  • the IEC of the electrolyte material (II) can be adjusted, for example, by controlling the density of the sulfonic acid groups in the block copolymer, the content of the ionic segment in the block copolymer, and the like.
  • the heat of crystallization of the electrolyte material (II) can be adjusted by controlling, for example, the structure of the nonionic segment, the molecular weight of the nonionic segment, the content of the nonionic segment in the block copolymer, and the like. . Details will be described later.
  • electrolyte material of the present invention naturally includes electrolyte material (I) and electrolyte material (II).
  • the electrolyte material of the present invention consists of block copolymers each having an ionic segment and a nonionic segment.
  • the segment is a partial structure in the block copolymer of the macromonomer used when synthesizing the block copolymer.
  • the nonionic segment is described as containing no ionic group, it may contain a small amount of ionic group as long as it does not adversely affect the effects of the present invention, particularly crystallinity.
  • the block copolymer constituting the polymer electrolyte material of the present invention has two or more mutually incompatible segment chains, that is, an ionic segment that is a hydrophilic segment and a nonionic segment that is a hydrophobic segment. linked to form one polymer chain.
  • segment chains that is, an ionic segment that is a hydrophilic segment and a nonionic segment that is a hydrophobic segment. linked to form one polymer chain.
  • short-range interactions resulting from repulsion between chemically dissimilar segment chains cause phase separation into nano- or micro-domains consisting of individual segment chains.
  • long-range interactions occur, the effect of which is to arrange each domain in a specific order.
  • a higher-order structure produced by aggregation of domains composed of each segment chain is called a nano- or micro-phase separation structure.
  • a domain means a mass formed by aggregation of similar segments in one or more polymer chains.
  • the spatial arrangement of the ion-conducting segments in the membrane, that is, the nano- or micro-phase separation structure, is important for the ion conduction of the electrolyte membrane.
  • the ionic segment in the block copolymer constituting the polymer electrolyte material of the present invention is preferably a hydrocarbon polymer.
  • hydrocarbon-based means a polymer other than a perfluoro-based polymer
  • hydrocarbon-based polymer means a polymer other than a perfluoro-based polymer.
  • the ionic segment is preferably a hydrocarbon-based polymer having an aromatic ring in its main chain (hereinafter referred to as "aromatic hydrocarbon-based polymer").
  • aromatic rings contained in the aromatic hydrocarbon-based polymer may contain not only hydrocarbon-based aromatic rings but also heterocycles.
  • the aromatic ring unit and a partial aliphatic unit may constitute the polymer.
  • aromatic hydrocarbon polymers include polysulfone, polyethersulfone, polyphenylene oxide, polyarylene ether polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene polymer, polyarylene ketone, and polyether.
  • An aromatic polyether-based polymer is a polymer that is mainly composed of aromatic rings and that contains at least ether bonds in the repeating units as a mode of connecting the aromatic ring units.
  • Examples of the structure of the aromatic polyether-based polymer include, but are not limited to, aromatic polyethers, aromatic polyetherketones, aromatic polyetherimides, aromatic polyethersulfones, and the like. From the viewpoint of chemical stability and cost, aromatic polyether ketone-based polymers and aromatic polyether sulfone-based polymers are preferable, and from the viewpoints of mechanical durability and physical durability, aromatic polyether A ketone-based polymer is most preferred.
  • Aromatic polyether ketone-based polymer is a polymer that is mainly composed of aromatic rings and that contains at least ether bonds and ketone bonds in the repeating units as the mode in which the aromatic ring units are linked.
  • Aromatic polyether ketone-based polymers include aromatic polyether ketone, aromatic polyether ether ketone, aromatic polyether ketone ketone, aromatic polyether ether ketone ketone, aromatic polyether ketone ether ketone ketone, etc. be
  • An aromatic polyether sulfone-based polymer is a polymer that is mainly composed of aromatic rings and that contains at least ether bonds and sulfone bonds in the repeating units as the mode of connecting the aromatic ring units.
  • the ionic segment used in the present invention can be synthesized by an aromatic nucleophilic substitution reaction, a coupling reaction, or the like.
  • the ionic segment is preferably an aromatic polyether-based polymer as described above, and the aromatic polyether-based polymer preferably contains a structure represented by the following general formula (S1).
  • Ar 1 to Ar 4 each independently represent a substituted or unsubstituted arylene group, and at least one of Ar 1 to Ar 4 has an ionic group.
  • Y 1 and Y 2 each independently represent a ketone group or a protective group that can be derivatized to a ketone group. * represents a bond with general formula (S1) or another structural unit.
  • the arylene groups represented by Ar 1 to Ar 4 include hydrocarbon arylene groups such as phenylene group, naphthylene group, biphenylene group and fluorenediyl group, and heteroarylene groups such as pyridinediyl, quinoxalinediyl and thiophenediyl. and the like, but are not limited to these.
  • the ionic group is preferably a negatively charged atomic group and preferably has proton exchange ability.
  • Such functional groups include, but are not limited to, sulfonic acid groups, sulfonimide groups, sulfate groups, phosphonic acid groups, phosphoric acid groups, carboxylic acid groups.
  • the above-mentioned ionic group includes the case of being a salt.
  • cations that form such salts include arbitrary metal cations, NR 4 + (where R is an arbitrary organic group), and the like.
  • R is an arbitrary organic group
  • Two or more types of these ionic groups can be included in the ionic segment, and the combination is appropriately determined depending on the structure of the block copolymer. Among them, it is more preferable to contain at least a sulfonic acid group, a sulfonimide group, and a sulfuric acid group from the viewpoint of high proton conductivity, and it is particularly preferable to contain a sulfonic acid group from the viewpoint of raw material cost.
  • Y 1 and Y 2 are preferably a ketone group or a protective group that can be derived to a ketone group, from the viewpoint of forming a phase separation structure. That is, the ionic segment is preferably an aromatic polyetherketone polymer. Protective groups that can be derivatized to ketone groups are described below.
  • the structure represented by the general formula (S1) is preferably a structure represented by the following general formula (P1) from the viewpoint of raw material availability, and among them, a structure represented by the following general formula (S2). It is more preferable from the viewpoint of raw material availability and polymerizability.
  • Y 1 and Y 2 each independently represent a ketone group or a protective group that can be derivatized to a ketone group.
  • M 1 to M 4 each independently represent a hydrogen atom, a metal cation or an ammonium cation.
  • n 1 to n 4 are each independently 0 or 1, and at least one of n 1 to n 4 is 1; * represents a bond with general formula (P1), (S2) or another structural unit.
  • Examples of ionic monomers used for synthesizing the constituent units of the ionic segment as described above include aromatic active dihalide compounds.
  • aromatic active dihalide compounds Using a compound obtained by introducing an ionic acid group into an aromatic active dihalide compound as the aromatic active dihalide compound used in the ionic segment enables precise control of chemical stability, production costs, and the amount of ionic groups. It is preferable from the point of view.
  • Preferred specific examples of monomers having a sulfonic acid group as an ionic group include 3,3'-disulfonate-4,4'-dichlorodiphenyl sulfone, 3,3'-disulfonate-4,4'-difluorodiphenyl Sulfone, 3,3'-disulfonate-4,4'-dichlorodiphenyl ketone, 3,3'-disulfonate-4,4'-difluorodiphenyl ketone, 3,3'-disulfonate-4,4'-dichloro Examples include, but are not limited to, diphenylphenylphosphine oxide, 3,3′-disulfonate-4,4′-difluorodiphenylphenylphosphine oxide, and the like.
  • a sulfonic acid group is most preferable as the ionic group from the viewpoint of proton conductivity and hydrolysis resistance, but the monomer having the ionic group may have other ionic groups.
  • 3,3′-disulfonate-4,4′-dichlorodiphenylketone and 3,3′-disulfonate-4 are preferred from the viewpoint of chemical stability and physical durability.
  • ,4'-difluorodiphenyl ketone is more preferred, and 3,3'-disulfonate-4,4'-difluorodiphenyl ketone is most preferred from the viewpoint of polymerization activity.
  • Ionic segments synthesized using 3,3′-disulfonate-4,4′-dichlorodiphenyl ketone and 3,3′-disulfonate-4,4′-difluorodiphenyl ketone as monomers having an ionic group contains a structural unit represented by the following general formula (p1) and is preferably used.
  • the aromatic polyether polymer is a component that is superior in hot water resistance to the sulfone group, and has dimensional stability, mechanical strength, and physical durability under high-temperature and high-humidity conditions. It is more preferably used because it is an effective component for materials with excellent properties.
  • These sulfonic acid groups are preferably in the form of a salt with a monovalent cation species during polymerization.
  • the monovalent cation species may be sodium, potassium, other metal species, various amines, etc., and is not limited to these.
  • These aromatic active dihalide compounds can be used alone, but it is also possible to use a plurality of aromatic active dihalide compounds together.
  • M 1 and M 2 are hydrogen, metal cations, ammonium cations, a1 and a2 represent integers of 1 to 4.
  • the structural units represented by the general formula (p1) are optionally substituted may be present.
  • the aromatic active dihalide compound it is possible to control the ionic group density by copolymerizing those having ionic groups and those not having ionic groups.
  • the ionic segment from the viewpoint of ensuring continuity of the proton conduction path, it is more preferable not to copolymerize an aromatic active dihalide compound having no ionic group.
  • active aromatic dihalide compounds having no ionic group include 4,4'-dichlorodiphenylsulfone, 4,4'-difluorodiphenylsulfone, 4,4'-dichlorodiphenylketone, 4,4 '-difluorodiphenyl ketone, 4,4'-dichlorodiphenylphenylphosphine oxide, 4,4'-difluorodiphenylphenylphosphine oxide, 2,6-dichlorobenzonitrile, 2,6-difluorobenzonitrile and the like.
  • 4,4'-dichlorodiphenyl ketone and 4,4'-difluorodiphenyl ketone are more preferable from the viewpoint of imparting crystallinity, mechanical strength, physical durability, and hot water resistance, and 4,4'-difluoro from the viewpoint of polymerization activity.
  • Diphenyl ketone is most preferred.
  • aromatic active dihalide compounds can be used alone, but it is also possible to use a plurality of aromatic active dihalide compounds together.
  • the structural site represented by the following general formula (p2) is further added. and is preferably used.
  • the structural unit becomes a component that imparts intermolecular cohesive force and crystallinity, and is preferably used because it becomes a material excellent in dimensional stability, mechanical strength and physical durability under high-temperature and high-humidity conditions.
  • Nonionic monomers used for synthesizing the ionic segment include aromatic diphenol compounds, and aromatic diphenol compounds having a protective group, which will be described later, are particularly preferred.
  • Structures represented by the following general formulas (T1) and (T2) can be included as the ionic segment or as structural units constituting the ionic segment, in addition to the structure represented by the general formula (S1).
  • B represents a divalent organic group containing an aromatic ring.
  • M5 and M6 each independently represent a hydrogen atom, a metal cation or an ammonium cation.
  • the ionic segment has a structure represented by general formula (P1) and structures represented by general formulas (T1) and (T2).
  • P1 and T2 structures represented by general formulas (T1) and (T2).
  • the total molar amount of t1 and t2 is 100 mol p1 is preferably 75 mol parts or more, more preferably 90 mol parts or more, even more preferably 100 mol parts or more.
  • divalent organic group B containing an aromatic ring in the general formulas (T1) and (T2) various dihydric phenol compounds that can be used for the polymerization of aromatic polyether polymers by aromatic nucleophilic substitution reactions and those into which a sulfonic acid group has been introduced can be mentioned.
  • Suitable specific examples of the divalent organic group B containing an aromatic ring include, but are not limited to, groups represented by the following general formulas (X'-1) to (X'-6).
  • These may have an ionic group or an aromatic group. Moreover, these can also be used together as needed. Among them, from the viewpoint of crystallinity, dimensional stability, toughness and chemical stability, more preferably groups represented by general formulas (X'-1) to (X'-4), most preferably general formula ( X'-2) and groups represented by (X'-3).
  • the nonionic segment constituting the block copolymer of the present invention is preferably a hydrocarbon-based polymer, more preferably an aromatic hydrocarbon-based polymer, from the viewpoint of crystallinity and mechanical durability. preferable.
  • the definition of the hydrocarbon-based polymer and specific examples of the aromatic hydrocarbon-based polymer are as described above.
  • aromatic hydrocarbon-based polymers aromatic polyether-based polymers are preferred from the viewpoint of cost and polymerizability, and aromatic polyether ketone-based polymers are preferred from the viewpoints of mechanical durability and physical durability.
  • Aromatic polyethersulfone-based polymers are preferred, and aromatic polyetherketone-based polymers are particularly preferred.
  • the nonionic segment is preferably an aromatic polyether-based polymer as described above, and the aromatic polyether-based polymer preferably contains a structure represented by the following general formula (S3).
  • Ar 5 to Ar 8 each independently represent a substituted or unsubstituted arylene group. However, none of Ar 5 to Ar 8 has an ionic group.
  • Y 3 and Y 4 each independently represent a ketone group or a protective group that can be derivatized to a ketone group. * represents a bond with general formula (S3) or another structural unit.
  • the arylene group represented by Ar 5 to Ar 8 includes hydrocarbon arylene groups such as phenylene group, naphthylene group, biphenylene group and fluorenediyl group, and heteroarylene groups such as pyridinediyl, quinoxalinediyl and thiophenediyl. and the like, but are not limited to these.
  • Y3 and Y4 are ketone groups or protective groups that can be derived from ketone groups from the viewpoint of phase separation structure formation, so that the block copolymer has crystallinity.
  • a phase separation structure is likely to be formed. That is, the nonionic segment is preferably an aromatic polyetherketone polymer.
  • the structure represented by the general formula (S3) preferably contains a structure represented by the following general formula (P2) from the viewpoint of raw material availability, and among them, a structure represented by the following general formula (S4) Containing units is more preferable from the viewpoint of mechanical durability, dimensional stability and physical durability due to crystallinity.
  • Y3 and Y4 each independently represent a ketone group or a protecting group that can be derivatized to a ketone group.
  • * represents a bond with general formulas (P2) and (S4) or other structural units.
  • the content of the structure represented by the general formula (P2) or (S4) in the nonionic segment is preferably 20 mol% or more from the viewpoint of mechanical durability, dimensional stability, and physical durability, and 50 mol % or more is more preferable, and 80 mol % or more is particularly preferable.
  • the protective group that can be derivatized to a ketone group preferably includes, for example, one containing at least one selected from the following general formulas (P3) and (P4).
  • Ar 11 to Ar 14 are any divalent arylene groups
  • R 1 and R 2 are at least one group selected from H and alkyl groups
  • R 3 is any , each of which may represent two or more types of groups.
  • the groups represented by general formulas (P3) and (P4) may be optionally substituted.
  • R 1 and R 2 in the general formula (P3) are more preferably alkyl groups, more preferably alkyl groups having 1 to 6 carbon atoms, and most preferably alkyl groups having 1 to 3 carbon atoms. is the base.
  • R 3 in general formula (P4) is more preferably an alkylene group having 1 to 7 carbon atoms, most preferably an alkylene group having 1 to 4 carbon atoms.
  • R 3 include -CH 2 CH 2 -, -CH(CH 3 )CH 2 -, -CH(CH 3 )CH(CH 3 )-, -C(CH 3 ) 2 CH 2 -, - C(CH 3 ) 2 CH(CH 3 )-, -C(CH 3 ) 2 O(CH 3 ) 2 -, -CH 2 CH 2 CH 2 -, -CH 2 C(CH 3 ) 2 CH 2 -, etc. include, but are not limited to.
  • Preferred organic groups for Ar 11 to Ar 14 in general formulas (P3) and (P4) are a phenylene group, a naphthylene group and a biphenylene group. These may be optionally substituted.
  • Ar 13 and Ar 14 in the general formula (P4) are phenylene groups, most preferably Ar 13 and Both Ar 14 are p-phenylene groups.
  • examples of the method of protecting the ketone site with a ketal include a method of reacting a precursor compound having a ketone group with a monofunctional and/or difunctional alcohol in the presence of an acid catalyst.
  • a precursor compound having a ketone group with a monofunctional and/or difunctional alcohol in the presence of an acid catalyst.
  • an acid catalyst such as hydrogen bromide
  • a solvent such as a monofunctional and/or difunctional alcohol
  • the alcohol is an aliphatic alcohol having 1-20 carbon atoms.
  • An improved method for producing ketal monomers consists of reacting the ketone precursor 4,4'-dihydroxybenzophenone with a difunctional alcohol in the presence of an alkyl orthoester and a solid catalyst.
  • the method of deprotecting at least part of the ketone site protected with a ketal to convert it to a ketone site is not particularly limited.
  • the deprotection reaction can be carried out under heterogeneous or uniform conditions in the presence of water and an acid.
  • a method of acid treatment with is more preferable.
  • the molded film can be deprotected by immersing it in an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution, and the concentration of the acid and the temperature of the aqueous solution can be appropriately selected.
  • the weight ratio of the acidic aqueous solution required to the polymer is preferably 1 to 100 times, but a larger amount of water can also be used.
  • Acid catalysts are preferably used in concentrations of 0.1 to 50% by weight of the water present. Suitable acid catalysts include strong mineral acids such as hydrochloric acid, nitric acid, fluorosulfonic acid, sulfuric acid and strong organic acids such as p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • the amounts of the acid catalyst and excess water, the reaction pressure, and the like can be appropriately selected according to the film thickness of the polymer and the like.
  • a film with a thickness of 50 ⁇ m can be easily deprotected by immersing it in an acidic aqueous solution such as 6N hydrochloric acid solution and heating at 95° C. for 1 to 48 hours. is.
  • an acidic aqueous solution such as 6N hydrochloric acid solution
  • most of the protective groups can be deprotected by immersion in a 1N hydrochloric acid aqueous solution at 25° C. for 24 hours.
  • the conditions for deprotection are not limited to these, and deprotection may be performed with an acidic gas, an organic acid, or the like, or may be deprotected by heat treatment.
  • the position of the protective group to be introduced should be the aromatic ether-based polymer portion from the viewpoint of improving workability. is more preferred.
  • aromatic polyether polymers containing structural units represented by the general formulas (P3) and (P4) are represented by the following general formulas (P3-1) and (P3-1), respectively, as aromatic diphenol compounds. It is possible to use the compound represented by (P4-1) and synthesize it by an aromatic nucleophilic substitution reaction with an aromatic active dihalide compound.
  • the structural units represented by the general formulas (P3) and (P4) may be derived from either the aromatic diphenol compound or the aromatic active dihalide compound. It is more preferred to use provenance.
  • Ar 11 to Ar 14 are any divalent arylene groups
  • R 1 and R 2 are at least one group selected from H and alkyl groups
  • R 3 represents an arbitrary alkylene group
  • Preferred protecting groups have been described above.
  • both the ionic segment and the nonionic segment are preferably aromatic polyether-based polymers. It is preferably coalesced.
  • the IEC and heat of crystallization can be adjusted by controlling the molecular structure of each segment, the molecular weight of each segment, the molecular weight ratio of both segments, the density of sulfonic acid groups, and the like. .
  • the IEC of the block copolymer can be adjusted by controlling the density of the sulfonic acid groups of the ionic segments and the content of the ionic segments in the block copolymer.
  • the saturation crystallinity and the heat of crystallization of the block copolymer can be adjusted.
  • the number average molecular weight of the nonionic segment is more preferably an aromatic polyetherketone-based polymer having a number average molecular weight of 15,000 or more.
  • the polymer electrolyte material of the present invention is an ionic segment containing a structural unit represented by the general formula (S1) and a nonionic segment containing a structural unit represented by the general formula (S3). preferably included.
  • the nonionic segment contains a structural unit represented by the general formula (S3), it is a segment having crystallinity, and by controlling the molecular weight of this nonionic segment and the content in the block copolymer , the desired saturated crystallinity and heat of crystallization can be adjusted.
  • S3 structural unit represented by the general formula (S3)
  • a block copolymer containing a nonionic segment containing a structural unit represented by the general formula (S3) is produced, for example, by molding a block copolymer precursor in which a protecting group is introduced into at least the nonionic segment, It can be produced by deprotecting at least part of the protective groups contained in the molded product.
  • Block copolymers tend to have poorer processability than random copolymers due to the crystallization of the polymer that forms domains.
  • the block copolymer that constitutes the polymer electrolyte material of the present invention has a phase separation structure. That is, in the block copolymer of the present invention, which has an ionic segment and a nonionic segment, the hydrophilic domains formed by aggregation of the ionic segments locally have a high concentration of ionic groups. shows excellent proton conductivity. Hydrophobic domains formed by aggregation of nonionic segments exhibit excellent dimensional stability due to strong intermolecular interactions due to crystallinity.
  • Both the ionic segment and the nonionic segment constituting the block copolymer are aromatic polyether-based polymers, preferably aromatic polyether ketone-based polymers, so that the phase separation structure is easier to form.
  • the block copolymer in the present invention contains an ionic segment containing a structural unit represented by the general formula (S1) and a structural unit represented by the general formula (S3). It preferably contains a non-ionic segment.
  • the block copolymer constituting the polymer electrolyte material of the present invention preferably contains one or more linker sites connecting the ionic segment and the nonionic segment. Coalescence is more preferable because it facilitates the formation of a cocontinuous-like or lamellar-like phase-separated structure.
  • the linker is defined as a site that connects the ionic segment and the nonionic segment and has a chemical structure different from that of the ionic segment and the nonionic segment.
  • the linker has the function of connecting different segments while suppressing randomization of the copolymer due to ether exchange reaction, segment cleavage, and other side reactions that may occur during copolymer synthesis. Therefore, by using a compound that provides such a linker as a raw material, a block copolymer can be obtained without lowering the molecular weight of each segment.
  • linkers include, but are not limited to, decafluorobiphenyl, hexafluorobenzene, 4,4'-difluorodiphenylsulfone, 2,6-difluorobenzonitrile, and the like.
  • the IEC and saturated crystallinity of the block copolymer can be adjusted to the desired ranges described above.
  • the number average molecular weight of the ionic segment is preferably in the range of 10,000 to 150,000, preferably 20,000 to 120,000, from the viewpoint of adjusting the IEC and the average periodic size of the phase separation structure to the desired range. is more preferred, and the range from 45,000 to 100,000 is particularly preferred.
  • the number average molecular weight of the nonionic segment is preferably in the range of 5,000 to 50,000 from the viewpoint of adjusting the saturated crystallinity, the heat of crystallization, and the average periodic size of the phase separation structure to the desired range. , the range of 10,000 to 40,000 is more preferred, and the range of 15,000 to 30,000 is particularly preferred.
  • linkers make the synthesis of long chain polymers relatively easy.
  • linkers include, but are not limited to, decafluorobiphenyl, hexafluorobenzene, 4,4'-difluorodiphenylsulfone, 2,6-difluorobenzonitrile, and the like.
  • the block copolymer constituting the polymer electrolyte material of the present invention when the number average molecular weight of the ionic segment is Mn1 and the number average molecular weight of the nonionic segment is Mn2, the following formula 1 is preferably satisfied. , more preferably satisfies the following formula 2.
  • Such a block copolymer is preferable from the viewpoint of adjusting the IEC, the heat of crystallization, and the average period size of the phase separation structure within the ranges described above.
  • the number average molecular weight (Mn2) of the nonionic segment is 15,000 or more and the above formulas 1 and 2 are satisfied. is preferable from the viewpoint of adjusting to the range described above.
  • a specific method for synthesizing the block copolymer constituting the polymer electrolyte material of the present invention is exemplified below.
  • the present invention is not limited to these.
  • Each segment in the block copolymer that constitutes the polymer electrolyte material of the present invention is preferably synthesized by an aromatic nucleophilic substitution reaction because of ease of process.
  • An aromatic nucleophilic substitution reaction is a method of reacting a monomer mixture of a dihalide compound and a diol compound in the presence of a basic compound.
  • the polymerization can be carried out at a temperature range of 0-350°C, preferably at a temperature of 50-250°C. Although the reaction can be carried out without a solvent, it is preferably carried out in a solvent.
  • Solvents that can be used include N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphontriamide, and the like. However, it is not limited to these, as long as it can be used as a stable solvent in the aromatic nucleophilic substitution reaction. These organic solvents may be used alone or as a mixture of two or more.
  • Examples of basic compounds include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, etc., but they are limited to these as long as they can convert diols into an active phenoxide structure. It can be used without being damaged. It is also suitable to add a crown ether such as 18-crown-6 to increase the nucleophilicity of the phenoxide. Crown ethers can be preferably used because they coordinate with sodium ions and potassium ions of the sulfonic acid group to improve the solubility of the sulfonate portion of the monomer or polymer in organic solvents.
  • water may be generated as a by-product.
  • water can be removed out of the system as an azeotrope by allowing toluene or the like to coexist in the reaction system regardless of the polymerization solvent.
  • a water absorbing agent such as a molecular sieve can also be used.
  • the block copolymer constituting the polymer electrolyte material of the present invention can be produced by synthesizing a block copolymer precursor and then deprotecting at least part of the protecting groups contained in the precursor. .
  • the method for producing the block copolymer and block copolymer precursor of the present invention preferably includes at least the following steps (1) and (2). By providing these steps, it is possible to achieve improved mechanical durability and durability by increasing the molecular weight, and by alternately introducing both segments, the phase separation structure and domain size are strictly controlled Low humidified proton conductivity It is possible to obtain a block copolymer excellent in
  • Step (1) one of an ionic segment having -OM groups at both ends (M represents a hydrogen atom, a metal cation or an ammonium cation) and a nonionic segment having -OM groups at both ends
  • a block copolymer or a block copolymer precursor having an ionic segment and a nonionic segment is produced by polymerizing linker sites at both ends of a segment and -OM groups at both ends of another segment. process to do.
  • segment represented by the general formula (S1) having —OM groups at both ends and the segment represented by the general formula (S2) having —OM groups at both ends include, respectively:
  • Examples include segments having structures represented by the following general formulas (H3-1) and (H3-2).
  • the structures after reacting the segments of the structures represented by the general formulas (H3-1) and (H3-2) with the halide linkers are, for example, the following general formulas (H3-3) and (H3 -4).
  • the present invention is not limited to these.
  • N 1 , N 2 , N 3 and N 4 each independently represent an integer of 1 to 200;
  • N5 and N6 each independently represent an integer of 1 to 200.
  • halogen atoms are represented by F
  • terminal -OM groups are represented by -OK groups
  • alkali metals are represented by Na and K, respectively.
  • these general formulas are inserted for the purpose of assisting the reader's understanding, and do not necessarily represent the chemical structure, exact composition, alignment, position, number, molecular weight, etc. of the sulfonic acid groups of the polymerized components of the polymer. but not limited to these.
  • a ketal group was introduced as a protecting group for any segment, but in the present invention can introduce a protecting group into a component with high crystallinity and low solubility. Therefore, the ionic segment does not necessarily need a protective group, and from the viewpoint of durability and dimensional stability, one without a protective group can also be preferably used.
  • the electrolyte material of the present invention is suitable as a polymer electrolyte molding.
  • the polymer electrolyte molded body means a molded body containing the electrolyte material of the present invention.
  • Examples of such polymer electrolyte molded bodies include membranes (including films and film-like ones), plate-like, fibrous, hollow-fiber-like, particulate, massive, microporous, coatings, foams, and the like. It can take various forms depending on the application. Among these, membranes are preferable because they are applicable to a wide range of applications.
  • a polymer electrolyte molded product of membranes will be referred to as an "electrolyte molded membrane".
  • an electrolyte molded film will be described as a representative example of the polymer electrolyte molded body, but the present invention is not limited to this.
  • a method for producing an electrolyte molded film there is a method of forming a film from a solution state at the stage of having a protective group such as ketal, or a method of forming a film from a molten state.
  • the electrolyte material is dissolved in a solvent such as N-methyl-2-pyrrolidone, and the solution is cast-coated on a glass plate, polyethylene terephthalate film (hereinafter referred to as PET film) or the like, and the solvent is removed.
  • PET film polyethylene terephthalate film
  • Any solvent may be used for film formation as long as it can dissolve the electrolyte material and then remove it.
  • Aprotic polar solvents such as sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphonate triamide, ester solvents such as ⁇ -butyrolactone and butyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, ethylene Alkylene glycol monoalkyl ethers such as glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether, alcoholic solvents such as isopropanol, water and mixtures thereof are preferably used, but aproton A polar solvent is preferred because it has the highest solubility. It is also suitable to add a crown ether such as 18-crown-6 to increase the solubility of the ionic segment.
  • the electrolyte material of the present invention into an electrolyte molded film
  • at least part of the sites protected with the protecting groups are deprotected. be.
  • at least part of the ketone moiety protected by the ketal is deprotected to form a ketone moiety.
  • a step of exchanging the alkali metal or alkaline earth metal cation with a proton is performed. Also good.
  • This step is preferably a step of bringing the molded film into contact with an acidic aqueous solution, and more preferably a step of immersing the molded film in the acidic aqueous solution.
  • protons in the acidic aqueous solution are replaced with cations that are ionically bonded to the ionic groups, and at the same time, residual water-soluble impurities, residual monomers, solvents, residual salts, etc. are removed. be.
  • the acidic aqueous solution is not particularly limited, it is preferable to use sulfuric acid, hydrochloric acid, nitric acid, acetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, phosphoric acid, citric acid, and the like.
  • the temperature and concentration of the acidic aqueous solution should be determined as appropriate, but from the viewpoint of productivity, it is preferable to use a sulfuric acid aqueous solution of 3% by mass or more and 30% by mass or less at a temperature of 0° C. or higher and 80° C. or lower.
  • the thickness of the electrolyte molded membrane in the present invention is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and particularly preferably 3 ⁇ m or more.
  • the thickness is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the electrolyte molded film contains additives such as crystallization nucleating agents, plasticizers, stabilizers, antioxidants, and release agents that are used in ordinary polymer compounds, within the scope not contrary to the purpose of the present invention. may contain.
  • the electrolyte molded membrane for the purpose of improving mechanical strength, thermal stability, processability, etc., various polymers, elastomers, fillers, fine particles, and various additives are added to the electrolyte molded membrane within the range that does not adversely affect the above-mentioned characteristics. It may contain an agent or the like. Also, the electrolyte molded membrane may be reinforced with a microporous membrane, non-woven fabric, mesh or the like.
  • the electrolyte molded membrane can be applied to various uses.
  • medical applications such as artificial skin, filtration applications, ion exchange resin applications such as chlorine-resistant reverse osmosis membranes, various structural material applications, electrochemical applications, humidifying membranes, anti-fogging membranes, antistatic membranes, deoxidizing membranes, solar It can be applied to battery films and gas barrier films.
  • electrochemical applications include polymer electrolyte fuel cells, redox flow batteries, water electrolysis devices, chloralkali electrolysis devices, electrochemical hydrogen pumps, and water electrolysis hydrogen generators.
  • the electrolyte molded membrane is used in a structure in which catalyst layers, electrode substrates and separators are sequentially laminated on both sides.
  • a membrane in which catalyst layers are laminated on both sides of an electrolyte molded membrane that is, a layered structure of catalyst layer/electrolyte molded membrane/catalyst layer
  • an electrolyte membrane with a catalyst layer CCM
  • a membrane in which a catalyst layer and a gas diffusion substrate are sequentially laminated on both sides of the membrane (that is, a layer structure of gas diffusion substrate/catalyst layer/electrolyte molded membrane/catalyst layer/gas diffusion substrate) is used for membrane electrode bonding.
  • MEA membrane electrode bonding
  • the electrolyte material of the present invention is particularly suitable as an electrolyte molded membrane constituting such CCM and MEA.
  • An electrolyte molded film can be produced, for example, by casting an electrolyte solution in which an electrolyte material is dissolved or dispersed in an appropriate solvent onto a support substrate (glass plate, PET film, etc.) and drying.
  • the electrolyte molded membrane thus obtained is subjected to an acid treatment, if necessary, washed with water, and dried.
  • the crystallinity of the electrolyte molded film can be increased by drying at a temperature equal to or higher than the glass transition temperature of the electrolyte material, or by heating at the above temperature after drying. By controlling the heating temperature and heating time at this time, the degree of crystallinity of the electrolyte molded film can be adjusted.
  • the degree of crystallinity of the electrolyte membrane formed film can be adjusted by controlling the heating temperature and press pressure.
  • the present invention will be specifically described with examples. However, the present invention is not limited to these examples.
  • the measurement methods used in this example are shown below.
  • the following electrolyte membrane was used as a sample instead of the block copolymer.
  • ⁇ Preparation of electrolyte membrane (specimen)> A 25% by weight N-methylpyrrolidone (NMP) solution in which a block copolymer is dissolved is pressure-filtered using a glass fiber filter, cast onto a glass substrate, and dried at 100° C. for 4 hours. , under nitrogen at 150° C. for 10 minutes to obtain a film with a thickness of 10 ⁇ m.
  • NMP N-methylpyrrolidone
  • the membrane was immersed in a 10% by weight sulfuric acid aqueous solution at 95° C. for 24 hours to carry out proton substitution and deprotection reactions, and then immersed in a large excess amount of pure water for 24 hours to thoroughly wash and dry to obtain an electrolyte membrane. Obtained.
  • the crystallinity of this electrolyte membrane (specimen) by wide-angle X-ray diffraction (XRD) was 0%.
  • (1) Molecular Weight of Polymer The number average molecular weight and weight average molecular weight of the polymer were measured by GPC. HLC-8022GPC manufactured by Tosoh Corporation as an integrated device of an ultraviolet detector and a differential refractometer, and TSKgelGuardColumnSuperH-H manufactured by Tosoh Corporation as a guard column (inner diameter 4.6 mm, length 3.5 cm), Using two TSKgelSuperHM-H (inner diameter 6.0 mm, length 15 cm) manufactured by Tosoh Corporation as GPC columns, N-methyl-2-pyrrolidone solvent (N-methyl-2- Pyrrolidone solvent) was measured at a sample concentration of 0.1 wt%, a flow rate of 0.2 mL/min, a temperature of 40°C, and a measurement wavelength of 265 nm, and the number average molecular weight and weight average molecular weight were obtained by standard polystyrene conversion.
  • IEC Ion exchange capacity
  • DSC device DSC7000X (manufactured by Hitachi High-Tech Co., Ltd.) Measurement temperature range: 30°C to 200°C Temperature control: AC temperature control Heating rate: 2°C/min Amplitude: ⁇ 3°C Applied frequency: 0.02 Hz Sample pan: aluminum crimp pan measurement, preliminary drying atmosphere: nitrogen 100 mL/min Pre-drying: 110°C, 3 hours.
  • X-ray diffractometer RINT2500V manufactured by Rigaku Corporation
  • X-ray Cu-K ⁇
  • X-ray output 50kV-300mA
  • Slits divergence slit -1/2°, receiving slit -0.15 mm, scattering slit -1/2°
  • each component is separated, the diffraction angle and integrated intensity of each component are obtained, and the integrated intensity of the obtained crystalline peak and amorphous halo is used to calculate the following general formula
  • the degree of crystallinity was calculated from the formula (s2).
  • Crystallinity (%) (sum of integrated intensities of all crystalline peaks)/(sum of integrated intensities of all crystalline peaks and amorphous halo) x 100 (s2).
  • ⁇ Measurement temperature range 30°C to 200°C
  • ⁇ Temperature control AC temperature control
  • ⁇ Temperature increase rate 2°C/min
  • Amplitude ⁇ 3°C
  • ⁇ Applied frequency 0.02 Hz
  • Sample pan Aluminum crimp pan - Atmosphere for measurement and pre-drying: Nitrogen 100 mL/min.
  • TEM Transmission Electron Microscope
  • a phase separation structure was confirmed.
  • a sample piece was immersed in a 2% by weight aqueous solution of lead acetate as a staining agent and allowed to stand at 25° C. for 72 hours.
  • the stained sample was taken out and embedded in epoxy resin.
  • a thin piece of 80 nm was cut at room temperature using an ultramicrotome, and the obtained thin piece was collected on a Cu grid and subjected to TEM observation.
  • the observation was carried out at an accelerating voltage of 100 kV and photographed at a magnification of 10,000 to 100,000 times.
  • the imaging magnification was appropriately set according to the size of the phase separation structure.
  • HT7700 manufactured by Hitachi High-Tech Co., Ltd.
  • the TEM image was fast Fourier transformed (FFT), the spatial frequencies in the TD and ZD directions were measured from the obtained ring-shaped FFT pattern, and the period size of the phase separation structure was calculated therefrom. Spatial frequency was determined by measuring the distance from the center of the image to the center of the thickness of the ring. Digital Micrograph (manufactured by Gatan) was used for FFT and length measurement.
  • CT reconstruction processing was performed based on a total of 124 TEM images obtained from a series of tilted images taken by tilting the sample in increments of 1° in the range of +61° to -62° from the marker. , a three-dimensional phase-separated structure was observed.
  • the MTS740 housed the cell in a temperature controlled chamber and supplied air gas into the chamber through a humidifier with a mass flow controller.
  • a frequency response analyzer PSM1735 (manufactured by Newtons 4th) is connected to the cell, and the resistance can be obtained by sweeping the AC signal from 1 MHz to 1 KHz.
  • the MTS740 and PSM1735 can be connected to a personal computer and controlled by software. After setting the temperature of the chamber to 80° C., air gas of 90% RH was supplied and kept for 1 hour to sufficiently wet the electrolyte membrane. Thereafter, air of 20% RH was supplied to dry the film, air of 30% RH was supplied, the film was held for 30 minutes, and the resistance was measured. At this time, the frequency was swept from 1 MHz to 1 KHz. After that, air of 80% RH was supplied and held for 30 minutes, and the resistance was similarly measured. A Cole-Cole plot was generated from the measured resistance data.
  • the proton conductivity when supplying air at 30% RH is defined as the low humidified proton conductivity
  • the proton conductivity when supplying air at 80% RH is defined as the high humidified proton conductivity.
  • the low humidification proton conductivity is preferably 0.85 mS/cm or more, more preferably 0.90 mS/cm or more, still more preferably 1.00 mS/cm or more, and particularly preferably 1.10 mS/cm or more.
  • the highly humidified proton conductivity is preferably 9.00 mS/cm or higher, more preferably 9.50 mS/cm or higher, even more preferably 11.00 mS/cm or higher, and particularly preferably 13.00 mS/cm or higher.
  • thermomechanical analyzer TMA/SS6100 manufactured by Hitachi High-Tech Science Co., Ltd. having a furnace with a temperature and humidity adjustment function was placed in a sample holder so that the long side of the sample piece was in the measurement direction, and a stress of 20 mN was applied. set.
  • the sample was stabilized in a furnace at 23° C. and 50% RH for 1 hour, and the length of this sample piece was taken as the zero point.
  • the temperature in the furnace was fixed at 23° C., the humidity was adjusted to 30% RH (dry condition) over 30 minutes, and held for 20 minutes.
  • the dry-wet dimensional change rate is preferably 7.0% or less, more preferably 6.5% or less, even more preferably 6.0% or less, and particularly preferably 5.7% or less.
  • the internal temperature was gradually raised to 120°C and kept at 120°C until the distillation of methyl formate, methanol and trimethyl orthoformate stopped completely.
  • the reaction solution was diluted with ethyl acetate.
  • the organic layer was washed with 100 mL of a 5% aqueous potassium carbonate solution and separated, the solvent was distilled off.
  • 80 mL of dichloromethane was added to the residue to precipitate crystals, which were filtered and dried to obtain 52.0 g of 2,2-bis(4-hydroxyphenyl)-1,3-dioxolane. Purity was 99.9%.
  • NMP N-methylpyrrolidone
  • toluene 100 mL
  • polymerization was carried out at 170°C for 3 hours.
  • Reprecipitation purification was performed in a large amount of methanol to obtain the terminal hydroxy base of the nonionic oligomer a1.
  • the number average molecular weight of the terminal hydroxy base of this nonionic oligomer a1 was 20,000.
  • a nonionic oligomer a1 (end: fluoro group) represented by the following general formula (G4).
  • the number average molecular weight of this nonionic oligomer a1 was 21,000.
  • m represents an integer of 1 or more.
  • ionic oligomer a2 (end: OM group) represented by the following general formula (G5).
  • the number average molecular weight of this ionic oligomer a2 was 45,000.
  • M represents a hydrogen atom, Na or K, and n represents an integer of 1 or more.
  • an NMP solution containing an ionic oligomer a2′ (terminal: OM group) represented by general formula (G6).
  • the number average molecular weight of this ionic oligomer a2' was 90,000.
  • M represents a hydrogen atom, Na or K
  • n represents an integer of 1 or more.
  • the block copolymer b1 contains the oligomer a2′ as an ionic segment and the oligomer a1 as a nonionic segment.
  • a 2,000 mL SUS polymerization apparatus equipped with a stirrer, a nitrogen inlet tube, and a Dean-Stark trap was charged with 49.0 g of ionic oligomer a2′ and 7.65 g of nonionic oligomer a1.
  • NMP was added so that the content was 7 wt %, and the reaction was carried out at 105° C. for 24 hours.
  • Reprecipitation in a large amount of isopropyl alcohol/NMP mixed solution (weight ratio 2/1) was carried out, followed by purification with a large amount of isopropyl alcohol to obtain block copolymer b1.
  • This block copolymer b1 had a number average molecular weight of 170,000 and a weight average molecular weight of 410,000.
  • the saturated crystallinity of the block copolymer b1 was 11.6%, the glass transition temperature was 157°C, and the IEC was 2.5 meq/g.
  • the electrolyte membrane prepared using the block copolymer b1 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). It could be confirmed.
  • the block copolymer b2 contains the oligomer a2′ as an ionic segment and the oligomer a1 as a nonionic segment.
  • a block copolymer b2 was obtained in the same manner as in Example 1, except that the amount of nonionic oligomer a1 used was 5.4 g.
  • This block copolymer b2 had a number average molecular weight of 180,000 and a weight average molecular weight of 430,000.
  • the block copolymer b2 had a saturated crystallinity of 9.2%, a glass transition temperature of 160°C, and an IEC of 2.7 meq/g.
  • the electrolyte membrane prepared using the block copolymer b2 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). It could be confirmed.
  • Nonionic oligomer a3 represented by general formula (G4) (terminal: fluoro base) was obtained.
  • the number average molecular weight of this nonionic oligomer a3 was 26,000.
  • the block copolymer b3 contains the oligomer a2′ as an ionic segment and the oligomer a3 as a nonionic segment.
  • a block copolymer b3 was obtained in the same manner as the block copolymer b1, except that the nonionic oligomer a3 (12.3 g) was used instead of the nonionic oligomer a1 (7.65 g).
  • This block copolymer b3 had a number average molecular weight of 160,000 and a weight average molecular weight of 390,000.
  • the block copolymer b3 had a saturated crystallinity of 15.6%, a glass transition temperature of 160°C, and an IEC of 2.1 meq/g.
  • the electrolyte membrane prepared using the block copolymer b3 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). It could be confirmed.
  • Nonionic oligomer a5 represented by general formula (G4) (terminal: fluoro base) was obtained.
  • the number average molecular weight of this nonionic oligomer a5 was 30,000.
  • Ionic oligomer a4 represented by general formula (G5) above> Ionic oligomer a4 was prepared in the same manner as in the synthesis of ionic oligomer a2 except that the amount of disodium-3,3′-disulfonate-4,4′-difluorobenzophenone used was 41.38 g (98.0 mmol). Obtained. The number average molecular weight of this ionic oligomer a4 was 35,000.
  • an NMP solution containing an ionic oligomer a4′ (terminal: OM group) represented by general formula (G7).
  • the number average molecular weight of this ionic oligomer a4' was 70,000.
  • M represents a hydrogen atom, Na or K, and n represents an integer of 1 or more.
  • the block copolymer b4 contains the above oligomer a4′ as an ionic segment and the above oligomer a5 as a nonionic segment.
  • Ionic oligomer a4' (37.16 g) was used instead of ionic oligomer a2' (49.0 g), and nonionic oligomer a5 (12.39 g) was used instead of nonionic oligomer a1 (7.65 g).
  • a block copolymer b4 was obtained in the same manner as in the synthesis of the block copolymer b1 except for the above. This block copolymer b4 had a number average molecular weight of 120,000 and a weight average molecular weight of 360,000.
  • the block copolymer b4 had a saturated crystallinity of 18.0%, a glass transition temperature of 160°C, and an IEC of 1.9 meq/g.
  • the electrolyte membrane prepared using the block copolymer b4 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). It could be confirmed.
  • nonionic oligomer a7 (terminal: fluoro group) represented by the formula (G4) was obtained.
  • the number average molecular weight of this nonionic oligomer a7 was 17,000.
  • the block copolymer b5 contains the oligomer a6 as an ionic segment and the oligomer a7 as a nonionic segment.
  • Ionic oligomer a6 (32.79 g) was used instead of ionic oligomer a2′ (49.0 g), and nonionic oligomer a7 (8.19 g) was used instead of nonionic oligomer a1 (7.65 g).
  • a block copolymer b5 was obtained in the same manner as in the synthesis of the block copolymer b1 except that This block copolymer b5 had a number average molecular weight of 140,000 and a weight average molecular weight of 360,000.
  • the block copolymer b5 had a saturated crystallinity of 13.5%, a glass transition temperature of 159°C, and an IEC of 2.1 meq/g.
  • the electrolyte membrane prepared using the block copolymer b5 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). It could be confirmed.
  • nonionic oligomer a9 (terminal: fluoro group) represented by the general formula (G4).
  • the number average molecular weight of this nonionic oligomer a9 was 8,000.
  • Block copolymer b6 contains oligomer a8 as an ionic segment and oligomer a9 as a nonionic segment. Ionic group oligomer a8 (43.57 g) was used instead of ionic oligomer a2′ (49.0 g), and nonionic oligomer a9 (10.89 g) was used instead of nonionic oligomer a1 (7.65 g).
  • a block copolymer b6 was obtained in the same manner as in the synthesis of the block copolymer b1, except that it was used. This block copolymer b6 had a number average molecular weight of 140,000 and a weight average molecular weight of 400,000.
  • the block copolymer b6 had a saturated crystallinity of 4.1%, a glass transition temperature of 157°C, and an IEC of 2.2 meq/g.
  • the electrolyte membrane prepared using the block copolymer b6 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). It could be confirmed.
  • the block copolymer b7 contains the above oligomer a8 as an ionic segment and the above oligomer a11 as a nonionic segment.
  • Block copolymer b7 was obtained in the same manner as block copolymer b6 except that nonionic oligomer a11 (6.81 g) was used instead of nonionic oligomer a9 (10.89 g). This block copolymer b7 had a number average molecular weight of 130,000 and a weight average molecular weight of 400,000.
  • the saturated crystallinity of the block copolymer b7 was 0.8%, the glass transition temperature was 157°C, and the IEC was 2.4 meq/g.
  • the electrolyte membrane prepared using the block copolymer b7 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). Although it could be confirmed, a partly discontinuous structure was observed.
  • the block copolymer b8 contains the oligomer a12 as an ionic segment and the oligomer a13 as a nonionic segment.
  • Ionic oligomer a12 (45.76 g) and nonionic oligomer a13 (8.93 g) were placed in a 2,000 mL SUS polymerization apparatus equipped with a stirrer, nitrogen inlet tube, and Dean-Stark trap, and the total amount of oligomers was charged. NMP was added so that the amount was 7 wt %, and the reaction was carried out at 105° C. for 24 hours. Reprecipitation in a large amount of isopropyl alcohol/NMP mixed solution (weight ratio 2/1) was carried out, followed by purification with a large amount of isopropyl alcohol to obtain block copolymer b8.
  • This block copolymer b8 had a number average molecular weight of 120,000 and a weight average molecular weight of 290,000.
  • the block copolymer b8 had a saturated crystallinity of 0.0%, a glass transition temperature of 231°C, and an IEC of 2.4 meq/g.
  • the electrolyte membrane prepared using the block copolymer b8 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). It could be confirmed.
  • Table 1 shows the measurement results of the electrolyte materials obtained in Examples 1 to 5 and Comparative Examples 1 to 3, and the evaluation results of proton conductivity and dry-wet dimensional change.
  • Example 1 the electrolyte material (I) having a saturated crystallinity of 5% or more and 30% or less was used, so that the dry-wet dimensional change rate was small and the proton conductivity was high at low and high humidification. It's becoming That is, both mechanical durability and proton conductivity are at relatively high levels.
  • the electrolyte membrane (specimen) prepared from the electrolyte material (I) of the present invention was not crystallized (even if the degree of crystallinity was 0%). ), mechanical durability (dry-wet dimensional change rate) and proton conductivity are both at a relatively high level, but by proceeding with crystallization, as shown in Table 2, mechanical durability (dry-wet dimensional change rate) and proton conductivity are improved.
  • Block copolymer b22 The aforementioned block copolymer b2 was used as the block copolymer b22.
  • the above block copolymer b22 showed a crystallization peak by DSC and had a heat of crystallization of 13.2 J/g. Therefore, the product of IEC and heat of crystallization was 35.6.
  • Example 23 ⁇ Synthesis of ionic oligomer a24 represented by general formula (G5) above> Ionic oligomer a24 was prepared in the same manner as in the synthesis of ionic oligomer a2 except that the amount of disodium-3,3′-disulfonate-4,4′-difluorobenzophenone used was 41.38 g (98.0 mmol). Obtained. The number average molecular weight of this ionic oligomer a24 was 35,000.
  • the block copolymer b23 contains the oligomer a24′ as an ionic segment and the oligomer a1 as a nonionic segment.
  • Block copolymer b23 was obtained in the same manner as synthesis of block copolymer b1, except that the amount of nonionic oligomer a1 used was 5.80 g.
  • This block copolymer b23 had a number average molecular weight of 190,000 and a weight average molecular weight of 440,000.
  • the IEC of the block copolymer b23 was 2.4 meq/g.
  • the electrolyte membrane prepared using the block copolymer b23 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). was confirmed.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 16.6 J/g. Therefore, the product of IEC and heat of crystallization was 39.8.
  • an NMP solution containing an ionic oligomer a24′′ (terminal: OM group) represented by the general formula (G11).
  • the number average molecular weight of this ionic oligomer a24′′ was 70,000. Met.
  • M represents a hydrogen atom, Na or K, and n represents an integer of 1 or more.
  • the block copolymer b24 contains the above oligomer a24′′ as an ionic segment and the above oligomer a21 as a nonionic segment.
  • Block copolymer b1 Synthesis of block copolymer b1 except that ionic oligomer a24′′ (37.16 g) was used instead of ionic oligomer a2′ (49.0 g), and the amount of nonionic oligomer a21 used was 5.80 g.
  • a block copolymer b24 was obtained in the same manner as in 2. This block copolymer b24 had a number average molecular weight of 100,000 and a weight average molecular weight of 260,000.
  • the IEC of the block copolymer b24 was 2.2 meq/g.
  • the electrolyte membrane prepared using the block copolymer b24 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). was confirmed.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 20.1 J/g. Therefore, the product of IEC and heat of crystallization was 44.2.
  • the block copolymer b25 contains the above oligomer a24′′ as an ionic segment and the above oligomer a1 as a nonionic segment.
  • a block copolymer b25 was obtained in the same manner as the block copolymer b24, except that the nonionic oligomer a1 (9.29 g) was used instead of the nonionic oligomer a21 (5.80 g).
  • This block copolymer b25 had a number average molecular weight of 150,000 and a weight average molecular weight of 380,000.
  • the IEC of the block copolymer b25 was 2.1 meq/g.
  • the electrolyte membrane prepared using the block copolymer b25 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). was confirmed.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 22.0 J/g. Therefore, the product of IEC and heat of crystallization was 46.2.
  • Block copolymer b26> The aforementioned block copolymer b5 was used as the block copolymer b26.
  • the above block copolymer b26 had a crystallization peak by DSC, and the heat of crystallization was 21.1 J/g. Therefore, the product of IEC and heat of crystallization was 44.3.
  • the block copolymer b27 contains the above oligomer a2′ as an ionic segment and the above oligomer a1 as a nonionic segment.
  • a block copolymer b27 was obtained in the same manner as in Example 1, except that the amount of nonionic oligomer a1 used was 4.1 g.
  • This block copolymer b27 had a number average molecular weight of 160,000 and a weight average molecular weight of 410,000.
  • the IEC of the block copolymer b27 was 2.9 meq/g.
  • the electrolyte membrane prepared using the block copolymer b27 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). was confirmed.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 12.1 J/g. Therefore, the product of IEC and the heat of crystallization was 35.1.
  • Reprecipitation purification was performed in a large amount of methanol to obtain the terminal hydroxy base of the nonionic oligomer a31.
  • the number average molecular weight of the terminal hydroxy group of this nonionic oligomer a31 was 10,000.
  • nonionic oligomer a31 (end: fluoro group) represented by the following general formula (G12).
  • the number average molecular weight of this nonionic oligomer a31 was 11,000.
  • m represents an integer of 1 or more.
  • the block copolymer b31 contains the oligomer a32 as an ionic segment and the oligomer a31 as a nonionic segment.
  • a block copolymer b31 was obtained by reprecipitation purification in a large amount of isopropyl alcohol. This block copolymer b31 had a number average molecular weight of 150,000 and a weight average molecular weight of 340,000,000.
  • the IEC of the block copolymer b31 was 1.7 meq/g.
  • the electrolyte membrane prepared using the block copolymer b31 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). was confirmed.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 22.5 J/g. Therefore, the product of IEC and heat of crystallization was 38.3.
  • nonionic oligomer a33 ( terminal: fluoro group) was synthesized.
  • the number average molecular weight was 23,000.
  • m represents an integer of 1 or more.
  • the block copolymer b32 contains the oligomer a34 as an ionic segment and the oligomer a33 as a nonionic segment.
  • the IEC of the block copolymer b32 was 1.9 meq/g.
  • the electrolyte membrane prepared using the block copolymer b32 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). was confirmed.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 25.3 J/g. Therefore, the product of IEC and heat of crystallization was 48.1.
  • the block copolymer b33 contains the above oligomer a36 as an ionic segment and the above oligomer a31 as a nonionic segment.
  • a block copolymer b33 was obtained in the same manner as in Comparative Example 21, except that 21 g (1 mmol) of the ionic oligomer a36 was added instead of the ionic oligomer a32.
  • This block copolymer b33 had a number average molecular weight of 140,000 and a weight average molecular weight of 350,000.
  • the IEC of the block copolymer b33 was 2.1 meq/g.
  • the electrolyte membrane prepared using the block copolymer b33 has a co-continuous phase separation structure (a hydrophilic domain containing an ionic group and a hydrophobic domain containing no ionic group both form a continuous phase). was confirmed.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 16.0 J/g. Therefore, the product of IEC and heat of crystallization was 33.6.
  • nonionic oligomer a35 terminal fluoro group represented by the following general formula (G14).
  • the number average molecular weight of this nonionic oligomer a35 was 11,000.
  • m represents an integer of 1 or more.
  • the block copolymer b34 contains the oligomer a38 as an ionic segment and the oligomer a35 as a nonionic segment.
  • Block copolymer b34 had a number average molecular weight of 140,000 and a weight average molecular weight of 320,000.
  • the IEC of the block copolymer b34 was 2.2 meq/g. It was confirmed that the electrolyte membrane prepared using the block copolymer b34 had a lamella-like phase separation structure. A crystallization peak was observed by DSC, and the heat of crystallization was 12.5 J/g. Therefore, the product of IEC and heat of crystallization was 27.5.
  • ionic oligomer a40 After purging the inside of the apparatus with nitrogen, 90 mL of NMP and 45 mL of toluene were added, and after dehydration at 180°C, the temperature was raised to remove toluene, and polymerization was performed at 210°C for 1 hour to obtain ionic oligomer a40.
  • the number average molecular weight of this ionic oligomer a40 was 4,000.
  • the IEC of the block copolymer b35 was 2.1 meq/g. A sea-island-like phase separation structure was confirmed in the electrolyte membrane produced using the block copolymer b35. A crystallization peak was observed by DSC, and the heat of crystallization was 11.1 J/g. Therefore, the product of IEC and heat of crystallization was 23.3.
  • Block copolymer b36 The aforementioned block copolymer b8 was used as the block copolymer b36. No crystallization peak was observed in the above block copolymer b36 by DSC. Therefore, the product of the IEC and the heat of crystallization could not be calculated.
  • Table 3 shows the measurement results of the electrolyte materials obtained in Examples 21-27 and Comparative Examples 21-26.
  • Examples 21 to 27 an electrolyte material having an IEC of 1.8 meq/g or more and 3.0 meq/g or less and a product of IEC and the heat of crystallization (J/g) of 35.0 or more and 47.0 or less Since (II) is used, the dry-wet dimensional change rate is small and the proton conductivity is high at both low and high humidification. That is, both mechanical durability and proton conductivity are at relatively high levels.
  • the dry-wet dimensional change rate is 7.0% or less and the low humidification proton conductivity is 0.85 mS / cm or more
  • the high-humidification proton conductivity is preferably 9.00 mS/cm or more, the dry-wet dimensional change is 6.5% or less, the low-humidification proton conductivity is 0.90 mS/cm or more, and the high-humidification proton conductivity is 9.
  • the dry-wet dimensional change is 6.0% or less, the low humidification proton conductivity is 1.00 mS/cm or more, and the high humidification proton conductivity is 11.00 mS/cm or more. More preferably, the dry-wet dimensional change is 5.7% or less, the low humidification proton conductivity is 1.10 mS/cm or more, and the high humidification proton conductivity is 13.00 mS/cm or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

イオン性基を含有するセグメント(以下「イオン性セグメント」という)とイオン性基を含有しないセグメント(以下「非イオン性セグメント」という)とをそれぞれ有するブロック共重合体からなる高分子電解質材料であって、前記高分子電解質材料は相分離構造を有し、かつ、下記条件1および条件2の少なくとも1つを満たす、高分子電解質材料。 <条件1>広角X線回折によって測定される前記高分子電解質材料の飽和結晶化度が5%以上30%以下である、 <条件2>前記高分子電解質材料のイオン交換容量(IEC)が1.8meq/g以上3.0meq/g以下であり、かつ、前記高分子電解質材料のIEC(meq/g)と、示差走査熱量分析法によって測定される前記高分子電解質材料の結晶化熱量(J/g)との積が、35.0以上47.0以下である。 良好な機械的耐久性および優れたプロトン伝導性を有する高分子電解質材料を提供する。

Description

高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置
 本発明は、高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置に関するものである。
 燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子形燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、固体高分子形燃料電池は、小型移動機器や携帯機器の電源としても注目されており、携帯電話やパソコンにおける、ニッケル水素電池やリチウムイオン電池などの二次電池の代替用途としても期待されている。
 燃料電池は、通常、膜電極接合体(Membrane Electrode Assembly:MEA)がセパレータによって挟まれたセルをユニットとして構成されている。MEAは、電解質膜の両面に触媒層を配置し、その両側にさらにガス拡散層を配置したものである。MEAにおいては、電解質膜を挟んで両側に配置された触媒層とガス拡散層とで一対の電極層が構成され、そのうちの一方がアノード電極であり、他方がカソード電極である。アノード電極に水素を含む燃料ガスが接触するとともに、カソード電極に空気が接触することにより電気化学反応によって電力が作り出される。電解質膜は高分子電解質材料を主として構成される。高分子電解質材料は触媒層のバインダーにも用いられる。
 従来、高分子電解質材料としてフッ素系高分子電解質である“ナフィオン”(登録商標)(ケマーズ(株)製)が広く用いられてきた。一方で、“ナフィオン”(登録商標)に替わり得る、安価で、膜特性に優れた炭化水素系電解質材料の開発も近年活発化している。炭化水素系電解質材料は、低ガス透過性や耐熱性に優れており、芳香族ポリエーテルケトンや芳香族ポリエーテルスルホンを用いた電解質材料について特に活発に検討されてきた。しかしながら、従来の炭化水素系電解質材料は、高加湿条件下においてはフッ素系電解質材料と同等か、またはより優位なプロトン伝導性を示す一方で、プロトン伝導性が不十分であった。
 上記課題に対して、プロトン伝導性および機械的耐久性が向上した炭化水素系高分子電解質膜として、相分離構造を有する電解質膜が提案されている(例えば、特許文献1、2参照)。
国際公開第2008/018487号 国際公開第2013/031675号
 上記特許文献に開示された高分子電解質膜は、プロトン伝導性および機械的耐久性が改良されることが期待できる。
 しかしながら、プロトン伝導性と機械的耐久性は一般的にトレードオフの関係、すなわち、プロトン伝導性を高めると機械的耐久性が低下し、逆に機械的耐久性を高めるとプロトン伝導性が低下するという関係にあり、特許文献1~2に記載の電解質膜を用いてもなお、これらの特性を比較的高いレベルで両立させることは難しいという問題があった。
 そこで、本発明は、かかる従来技術の背景を鑑み、プロトン伝導性および機械的耐久性を比較的高いレベルで両立させた高分子電解質材料を提供することを目的とする。
 本発明の高分子電解質材料は、上記課題を解決するために、以下の構成を採る。すなわち、
イオン性基を含有するセグメントとイオン性基を含有しないセグメントとをそれぞれ有するブロック共重合体からなる高分子電解質材料であって、前記高分子電解質材料は相分離構造を有し、かつ、下記条件1および条件2の少なくとも1つを満たす高分子電解質材料、である。
<条件1>広角X線回折によって測定される前記高分子電解質材料の飽和結晶化度が5%以上30%以下である、
<条件2>前記高分子電解質材料のイオン交換容量(IEC)が1.8meq/g以上3.0meq/g以下であり、かつ、前記高分子電解質材料のIEC(meq/g)と、示差走査熱量分析法によって測定される前記高分子電解質材料の結晶化熱量(J/g)との積が、35.0以上47.0以下である。
 本発明の高分子電解質成型体は、上記課題を解決するために、以下の構成を採る。すなわち、
上記高分子電解質材料を含む高分子電解質成型体、である。
 本発明の触媒層付電解質膜は、上記課題を解決するために、以下の構成を採る。すなわち、
上記高分子電解質成型体を用いて構成される触媒層付電解質膜、である。
 本発明の膜電極接合体は、上記課題を解決するために、以下の構成を採る。すなわち、上記高分子電解質成型体を用いて構成される膜電極接合体、である。
 本発明の固体高分子燃料電池は、上記課題を解決するために、以下の構成を採る。すなわち、上記高分子電解質成型体を用いて構成される固体高分子燃料電池、である。
 本発明の高分子電解質材料は、前記高分子電解質材料が共連続様またはラメラ様の相分離構造を有することが好ましい。
 本発明の高分子電解質材料は、前記相分離構造の平均周期サイズが15~100nmであることが好ましい。
 本発明の高分子電解質材料は、前記ブロック共重合体が、芳香族ポリエーテル系共重合体であることが好ましい。
 本発明の高分子電解質材料は、前記ブロック共重合体が、芳香族ポリエーテルケトン系共重合体であることが好ましい。
 本発明の高分子電解質材料は、前記ブロック共重合体が、前記イオン性セグメントと前記非イオン性セグメントとの間を結合するリンカー部位を有することが好ましい。
 本発明の高分子電解質材料は、前記非イオン性セグメントが、下記一般式(S3)で表される構造を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
(一般式(S3)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基、ケトン基に誘導され得る保護基を表す。*は、一般式(S3)または他の構成単位との結合を表す。)
 本発明の高分子電解質材料は、前記一般式(S3)で表される構造が下記一般式(S4)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(一般式(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S4)または他の構成単位との結合を表す。
 本発明の高分子電解質材料は、前記非イオン性セグメントの数平均分子量が15,000以上であることが好ましい。
 本発明によれば、プロトン伝導性および機械的耐久性を比較的高いレベルで両立させた高分子電解質材料を提供することができる。
図1は、高分子電解質材料における相分離構造の模式図である。
 以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。
 本発明の高分子電解質材料は、イオン性基を含有するセグメント(以下「イオン性セグメント」という)とイオン性基を含有しないセグメント(以下「非イオン性セグメント」という)とをそれぞれ有するブロック共重合体からなる。このようなブロック重合体からなる高分子電解質材料は、相分離構造を形成しやすいという特長を有する。以下、高分子電解質材料を単に「電解質材料」ということがある。
 本発明の電解質材料は、相分離構造を有し、かつ、下記条件1およびは条件2の少なくとも1つを満たす。このような電解質材料は、機械的耐久性とプロトン伝導性とが比較的高いレベルで両立した性能を有する。
<条件1>広角X線回折によって測定される高分子電解質材料の飽和結晶化度が5%以上30%以下である、
<条件2>高分子電解質材料のイオン交換容量(IEC)が1.8meq/g以上3.0meq/g以下であり、かつ、前記高分子電解質材料のIEC(meq/g)と、示差走査熱量分析法によって測定される前記高分子電解質材料の結晶化熱量(J/g)との積が、35.0以上47.0以下である。 
 以下、広角X線回折によって測定される高分子電解質材料の飽和結晶化度を「飽和結晶化度」、イオン交換容量を「IEC」、示差走査熱量分析法によって測定される結晶化熱量を「結晶化熱量」と、それぞれ略記することがある。
 本発明において、機械的耐久性とプロトン伝導性とが比較的高いレベルで両立するとは、具体的には、機械的耐久性が比較的良好でかつプロトン伝導性に優れること、プロトン伝導性が比較的良好でかつ機械的耐久性に優れること、を意味する。
 本発明において機械的耐久性が良好であるとは、電解質材料からなる電解質膜の乾湿寸法変化率が小さいことを意味する。ここで、電解質膜の乾湿寸法変化率は、以下のような測定で求めることができる。電解質膜試験片に一定の応力をかけながら、乾燥雰囲気(30%RH)と加湿雰囲気(90%RH)に交互に曝すという乾湿サイクルを繰り返し実施する10サイクル目の30%RHの寸法変化率(%)と90%RHの寸法変化率(%)を測定し、その差を乾湿寸法変化率(%)とする。
 本発明において、電解質材料の相分離構造の確認、電解質材料の飽和結晶化度および結晶化熱量の測定、電解質材料の機械的耐久性(乾湿寸法変化率)およびプロトン伝導性の評価は、それぞれ、電解質材料を適当な溶媒に溶解あるいは分散した溶液を支持基材上に塗布、乾燥して得られた膜(以下「電解質膜」という)を用いて行ったものである。以下、電解質材料を電解質膜に置き換えて説明することがある。
 [相分離構造]
 本発明の電解質材料は、相分離構造を有する。ここで、電解質材料が相分離構造を有するとは、上記電解質膜を透過型電子顕微鏡(TEM)で観察したときに相分離構造が確認できることを意味する。
 電解質膜の相分離構造の形態例を図1に示す。相分離構造は、共連続(M1)、ラメラ(M2)、シリンダー(M3)、海島(M4)の4つに大きく分類される。本発明の電解質材料は、(M1)~(M4)のいずれかの相分離構造を有する。
  図1の(M1)~(M4)において、白色部の連続相(相1)がイオン性セグメントおよび非イオン性セグメントから選ばれる一方のセグメントにより形成され、グレー色部の連続相または分散相(相2)が他方のセグメントにより形成される。
 上記相分離構造は、例えばアニュアル  レビュー  オブ  フィジカル  ケミストリ-(Annual Review of Physical Chemistry), 41, 1990, p.525等に記載がある。
 イオン性セグメントと非イオン性セグメントの高次構造や形状を制御することで、低加湿および低温条件下においても優れたプロトン伝導性が実現可能となる。すなわち、電解質膜が(M1)~(M4)の相分離構造を有することによって、連続したプロトン伝導チャネルの形成が可能となり、プロトン伝導性が向上する。
 共連続(M1)およびラメラ(M2)からなる相分離構造では、イオン性セグメントおよび非イオン性セグメントが、いずれも連続相を形成する。このような相分離構造を有する電解質膜は、連続したプロトン伝導チャネルが形成されることでプロトン伝導性に優れると同時に、非イオン性セグメントからなるドメインの結晶性によって、優れた機械的耐久性を有する。すなわち、本発明の電解質材料は、共連続様(M1)またはラメラ様(M2)の相分離構造を有することが好ましく、共連続様(M1)の相分離構造を有することが好ましい。
 上記のドメインとは、1本または複数のポリマー鎖において、類似するセグメントが凝集してできた塊のことを意味する。
  電解質膜が共連続様(M1)あるいはラメラ様(M2)の相分離構造を有することは、以下の手法により確認できる。具体的には、以下の手法により所望とする像が観察される場合に、該構造を有すると定義する。その手法として、TEMトモグラフィー観察により得られた3次元図に対して、縦、横、高さの3方向から切り出したデジタルスライス3面図を比較する。例えば、イオン性セグメントと非イオン性セグメントとを有するブロック共重合体を含む電解質膜において、その相分離構造が、共連続様(M1)またはラメラ様(M2)の場合、3面図すべてにおいてイオン性セグメントを含む親水性ドメインと非イオン性セグメントを含む疎水性ドメインがともに連続相を形成する。
 共連続様(M1)の場合は連続相のそれぞれが入り組んだ模様を示し、ラメラ様(M2)の場合は連続相のそれぞれが層状に連なった模様を示す。ここで連続相とは、巨視的に見て、個々のドメインが孤立せずに繋がっている相のことを意味するが、一部繋がっていない部分があってもかまわない。
  一方、シリンダー構造(M3)や海島構造(M4)の場合、少なくとも1面で前記ドメインのいずれかが連続相を形成しないので、上記共連続様(M1)およびラメラ様(M2)とは区別できるし、また3面図の各々が示す模様からも構造を判別することができる。
 相分離構造の観察において、イオン性セグメントと非イオン性セグメントの凝集状態やコントラストを明確にするために、例えば、電解質膜を2重量%酢酸鉛水溶液中に2日間浸漬してイオン性基を鉛でイオン交換した後、透過型電子顕微鏡(TEM)およびTEMトモグラフィー観察に供することができる。
 相分離構造のサイズは、イオン性セグメントを含む親水性ドメインと非イオン性セグメントを含む疎水性ドメインの周期サイズとして表すことができる。かかる相分離構造の周期サイズは、透過型電子顕微鏡(TEM)観察により得られる相分離構造の画像処理が与える自己相関関数から見積もることができる。
 上記相分離構造の平均周期サイズは、プロトン伝導性および機械的耐久性の観点からは、15~100nmの範囲が好ましく、35~80nmの範囲がより好ましく、40~67nmの範囲がさらに好ましく、48~67nmの範囲が特に好ましい。また、相分離構造の平均周期サイズが100nmより大きくなると、共連続様の相分離構造が形成されにくくなるので、共連続様の相分離構造を得るという観点からも、平均周期サイズは上記範囲が好ましい。
 [第1の実施の形態に係る電解質材料]
 本発明の第1の実施の形態に係る電解質材料(以下、「電解質材料(I)」という)は、条件1を満たす。すなわち、電解質材料(I)は、その飽和結晶化度が5%以上30%以下である。
 (飽和結晶化度)
 飽和結晶化度とは、結晶化がこれ以上進行しない結晶化度、すなわち、最大結晶化度を意味する。具体的には、上述の電解質材料からなる電解質膜を、電解質材料のガラス転移温度(Tg)以上の温度で4.5MPaにて加熱プレスし、5分間毎に広角X線回折による結晶化度を測定し、結晶化度が変化しなくなったときの結晶化度を飽和結晶化度とする。加熱プレス時の加熱温度(T(℃))は、Tg≦T≦Tg+40℃の範囲とする。具体的には、Tg+5℃が適当である。
 電解質材料(I)の飽和結晶化度は、機械的耐久性を向上させるという観点から、7%以上が好ましく、9%以上がより好ましく、10%以上が特に好ましい。一方、電解質材料(I)の飽和結晶化度が30%を超えると、プロトン伝導性および加工性が低下する。プロトン伝導性および加工性の観点から、上記飽和結晶化度は、25%以下が好ましく、23%以下がより好ましく、20%以下がさらに好ましく、17%以下が特に好ましい。
 電解質材料を固体高分子燃料電池や水電解式水素発生装置などの電気化学用途に適用する場合は、一般的に、後述するような電解質成型膜に加工されて使用される。電解質材料(I)を用いた電解質成型膜は、その結晶化度が上記飽和結晶化度まで到達され得るが、必ずしも飽和結晶化度まで到達させる必要はない。
 電解質材料(I)を用いた電解質成型膜、すなわち、イオン性セグメントと非イオン性セグメントとをそれぞれ有するブロック共重合体からなる電解質材料を用いた電解質成型膜は、その結晶化度が電解質材料の飽和結晶化度まで到達しなくとも、良好な機械的耐久性と優れたプロトン伝導性を有する。例えば、電解質成型膜の結晶化がほとんど進行していない状態であっても、良好な機械的耐久性と優れたプロトン伝導性を有することを確認した。
 電解質材料(I)を用いた電解質成型膜は、電解質材料(I)のガラス転移温度以上で加熱することによって結晶化度を高めることができる。これによって電解質成型膜のプロトン伝導性と機械的耐久性をさらに向上させることができる。このとき、電解質成型膜の結晶化度は、電解質材料(I)の飽和結晶化度と同程度まで高めてもよく、または、電解質材料(I)の飽和結晶化度の1~99%程度となるように高めてもよい。電解質成型膜の結晶化度を調整する方法は後述する。
 電解質材料(I)のIECは、特に限定されないが、1.5meq/g以上が好ましく、1.8meq/g以上がより好ましく、1.9meq/g以上がさらに好ましく、2.0meq/g以上が特に好ましい。また、電解質材料(I)のIECは、3.5meq/g以下が好ましく、3.0meq/g以下がより好ましく、2.9meq/g以下がさらに好ましく、2.8meq/g以下が特に好ましい。
 IECとは、電解質材料(ブロック共重合体)の単位乾燥質量当たりに導入されたイオン交換基のモル量である。IECは、元素分析、中和滴定法等により測定が可能である。イオン交換基がスルホン酸基である場合、元素分析法を用い、S/C比から算出することもできるが、スルホン酸基以外の硫黄源を含む場合などは測定することが難しい。従って、本発明においては、IECは、後述の中和滴定法により求めた値と定義する。
 [第2の実施の形態に係る電解質材料]
 本発明の第2の実施の形態に係る電解質材料(以下、「電解質材料(II)」という)は、条件2を満たす。すなわち、電解質材料(II)は、IECが1.8meq/g以上3.0meq/g以下であり、かつ、IECと結晶化熱量との積が35.0以上47.0以下である。
 (IEC)
 電解質材料(II)は、そのIECが1.8meq/g以上3.0meq/g以下である。IECが上記範囲である電解質材料(II)は、プロトン伝導性に優れる。電解質材料(II)のIECは、プロトン伝導性を高めるという観点から、1.9meq/g以上が好ましく、2.0meq/g以上がより好ましく、2.1meq/g以上がさらに好ましく、2.2meq/g以上が特に好ましい。また、高い機械的耐久性を確保するという観点から、IECは2.9meq/g以下が好ましく、2.8meq/g以下がより好ましく、2.6meq/g以下が特に好ましい。
 (結晶化熱量)
  電解質材料(II)は結晶性を有する。ここで、「結晶性を有する」とは、昇温で結晶化する性質を有することを意味する。結晶性の程度は、示差走査熱量分析法(DSC)による結晶化熱量として表すことができる。なお、電解質材料が結晶性を有するか否かについて、結晶化熱量が0.1J/g以上であることが一つの指標となる。
 本発明における示差走査熱量分析法(DSC)としては、以下の分析法を用いることができる。
 検体(電解質膜)10mgをDSC装置内において、110℃で3時間予備乾燥した後、検体をDSC装置から出さずに、以下の条件にて200℃まで昇温させ、昇温段階の温度変調示差走査熱量分析を行う。ここで、検体として、前述した、電解質材料を適当な溶媒に溶解あるいは分散した溶液を支持基材上に塗布し乾燥して得られた電解質膜を用いる。
・測定温度範囲:30℃~200℃
・温度制御:交流温度制御
・昇温速度:2℃/min
・振幅:±3℃
・印加周波数:0.02Hz
・試料パン:アルミニウム製クリンプパン
・測定および予備乾燥の雰囲気:窒素100mL/min。
 上記示差走査熱量分析法(DSC)は、従来の分析法に比べて予備乾燥から測定まで検体が大気(空気)に曝されないので、検体が大気中の水分の影響を受け難いという利点があり、これによって測定精度が向上する。
 (IECと結晶化熱量との積)
 電解質材料(II)は、そのIEC(meq/g)と結晶化熱量(J/g)との積が、35.0以上47.0以下である。
 前述したように、プロトン伝導性と機械的耐久性は一般的にトレードオフの関係にあるが、IECが1.8meqJ/g以上3.0meq/g以下の領域において、IECと結晶化熱量との積が35.0以上47.0以下であることによって、プロトン伝導性と機械的耐久性とを比較的高いレベルで両立させることができる。
 電解質膜において、プロトン伝導性と機械的耐久性とは、一般的にトレードオフの関係にあることは前述したとおりである。また、プロトン伝導性とIEC、機械的耐久性と結晶化熱量は、それぞれ概略相関関係にある。すなわち、IECと結晶化熱量とはベクトルが逆方向の特性である。本発明者らは、このようなIECと結晶化熱量とを掛け合わせた物理量は、プロトン伝導性と機械的耐久性とを両立させる指標として有効であること、そして、IECが1.8meq/g以上3.0meq/g以下の領域において、IECと結晶化熱量とを掛け合わせた物理量は特に有効に作用し、該物理量の範囲が35.0以上47.0以下の場合にプロトン伝導性と機械的耐久性とを比較的高いレベルで両立できることを、見出した。
 IECと結晶化熱量との積は、上記観点から、36.0以上47.0以下が好ましく、37.0以上44.0以下がより好ましい。
 電解質材料(II)の結晶化熱量は、IECと結晶化熱量との積が上記範囲内となるように設計される。結晶化熱量は、具体的には、12.0J/g以上が好ましく、13.0J/g以上がより好ましく、14.0J/g以上が特に好ましい。また、電解質材料(II)の結晶化熱量は、25.0J/g以下が好ましく、24.0J/g以下がより好ましく、23.0J/g以下が特に好ましい。結晶化熱量が上記範囲を超えて大きくなると電解質膜が脆くなりやすく、一方、結晶化熱量が上記範囲より小さくなると機械的耐久性が低下しやすくなる。
 電解質材料(II)のIECは、例えば、ブロック共重合体のスルホン酸基の密度、ブロック共重合体におけるイオン性セグメントの含有量などを制御することによって調整することができる。電解質材料(II)の結晶化熱量は、例えば、非イオン性セグメントの構造、非イオン性セグメントの分子量、ブロック共重合体における非イオン性セグメントの含有量などを制御することによって調整することができる。詳細は後述する。
 以下では、上記第1の実施の形態に係る電解質材料および第2の実施の形態に係る電解質材料を含めた、本発明の電解質材料に共通する事項について説明する。なお、以下の説明において「本発明の電解質材料」というときは、電解質材料(I)と電解質材料(II)とを当然に含む。
 [ブロック共重合体]
 本発明の電解質材料は、イオン性セグメントと非イオン性セグメントとをそれぞれ有するブロック共重合体からなる。本発明において、セグメントとは、ブロック共重合体を合成する際に用いるマクロモノマーの、ブロック共重合体中での部分構造である。また、非イオン性セグメントはイオン性基を含有しないと表記しているが、本発明の効果、特に結晶性に悪影響を及ぼさない範囲でイオン性基を少量含んでいても構わない。
 本発明の高分子電解質材料を構成するブロック共重合体は、2種類以上の互いに不相溶なセグメント鎖、すなわち、親水性セグメントであるイオン性セグメントと、疎水性セグメントである非イオン性セグメントが連結され、1つのポリマー鎖を形成したものである。ブロック共重合体においては、化学的に異なるセグメント鎖間の反発から生じる短距離相互作用により、それぞれのセグメント鎖からなるナノまたはミクロドメインに相分離する。そして、セグメント鎖がお互いに共有結合していることから、長距離相互作用が生じ、その効果により、各ドメインが特定の秩序を持って配置せしめられる。各セグメント鎖からなるドメインが集合して作り出す高次構造は、ナノまたはミクロ相分離構造と呼ばれる。ここで、ドメインとは、1本または複数のポリマー鎖において、類似するセグメントが凝集してできた塊のことを意味する。電解質膜のイオン伝導については、膜中におけるイオン伝導セグメントの空間配置、すなわち、ナノまたはミクロ相分離構造が重要になる。
 [イオン性セグメント]
 本発明の高分子電解質材料を構成するブロック共重合体中のイオン性セグメントは、結晶性および機械的耐久性の観点から、炭化水素系重合体であることが好ましい。ここで、炭化水素系とは、パーフルオロ系以外であることを意味し、炭化水素系重合体とはパーフルオロ系以外の重合体であることを意味する。
 さらに、結晶性および機械的耐久性の観点から、イオン性セグメントは、主鎖に芳香環を有する炭化水素系重合体(以下、「芳香族炭化水素系重合体」という)であることが好ましい。
 芳香族炭化水素系重合体に含まれる芳香環は、炭化水素系芳香環だけでなく、ヘテロ環を含んでいてもよい。また、芳香環ユニットと共に一部脂肪族系ユニットがポリマーを構成していてもよい。芳香族炭化水素系重合体の具体例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホンから選択される構造を芳香環とともに主鎖に有するポリマーが挙げられる。この中でも、コスト、重合性の観点から、芳香族ポリエーテル系重合体が好ましい。
 芳香族ポリエーテル系重合体とは、主として芳香環から構成される重合体において、繰り返し単位中に、芳香環ユニットが連結する様式として少なくともエーテル結合が含まれているものをいう。芳香族ポリエーテル系重合体の構造として、例えば、芳香族ポリエーテル、芳香族ポリエーテルケトン、芳香族ポリエーテルイミド、芳香族ポリエーテルスルホンなどが挙げられるが、これらに限定されない。化学的安定性とコストの点から、芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルスルホン系重合体であることが好ましく、機械的耐久性、物理的耐久性の観点から、芳香族ポリエーテルケトン系重合体であることが最も好ましい。
 芳香族ポリエーテルケトン系重合体とは、主として芳香環から構成される重合体において、繰り返し単位中に、芳香環ユニットが連結する様式として少なくともエーテル結合とケトン結合が含まれているものをいう。芳香族ポリエーテルケトン系重合体には、芳香族ポリエーテルケトン、芳香族ポリエーテルエーテルケトン、芳香族ポリエーテルケトンケトン、芳香族ポリエーテルエーテルケトンケトン、芳香族ポリエーテルケトンエーテルケトンケトンなどが含まれる。
 芳香族ポリエーテルスルホン系重合体とは、主として芳香環から構成される重合体において、繰り返し単位中に、芳香環ユニットが連結する様式として少なくともエーテル結合とスルホン結合が含まれているものをいう。
 本発明に使用されるイオン性セグメントは、芳香族求核置換反応やカップリング反応などにより合成することができる。
 イオン性セグメントは、上記したように芳香族ポリエーテル系重合体であることが好ましく、上記芳香族ポリエーテル系重合体は下記一般式(S1)で表される構造を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(S1)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表し、Ar~Arのうち少なくとも1つはイオン性基を有する。YおよびYは、それぞれ独立に、ケトン基、ケトン基に誘導され得る保護基を表す。*は、一般式(S1)または他の構成単位との結合を表す。
 ここで、Ar~Arで表されるアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されない。イオン性基は、負電荷を有する原子団が好ましく、プロトン交換能を有するものが好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が挙げられるが、これらに限定されない。
 上記イオン性基は、塩となっている場合を含む。このような塩を形成するカチオンとしては、任意の金属カチオン、NR (Rは任意の有機基)等を例として挙げることができる。金属カチオンには特に制限はないが、安価で、容易にプロトン置換可能なNa、K、Liが好ましい。
 これらのイオン性基は、イオン性セグメント中に2種類以上含むことができ、組み合わせはブロック共重合体の構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を含有することがより好ましく、原料コストの点からスルホン酸基を含有することが特に好ましい。
 また、一般式(S1)において、YおよびYは、相分離構造形成の観点から、ケトン基またはケトン基に誘導され得る保護基であることが好ましい。すなわち、イオン性セグメントは、芳香族ポリエーテルケトン系重合体であることが好ましい。ケトン基に誘導され得る保護基については後述する。
 上記一般式(S1)で表される構造が、下記一般式(P1)で表される構造であることが原料入手性の点から好ましく、中でも、下記一般式(S2)で表される構造であることが原料入手性と重合性の点からさらに好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(P1)及び一般式(S2)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。M~Mは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。n~nは、それぞれ独立に、0または1であり、n~nのうち少なくとも1つは1である。*は一般式(P1)、(S2)または他の構成単位との結合を表す。
 さらに原料入手性と重合性の点からn=1、n=1、n=0、n=0またはn=0、n=0、n=1、n=1であることが最も好ましい。
 上記のようなイオン性セグメントの構成単位を合成するために用いられるイオン性モノマーとして、例えば芳香族活性ジハライド化合物が挙げられる。イオン性セグメント中に用いる芳香族活性ジハライド化合物として、芳香族活性ジハライド化合物にイオン酸基を導入した化合物を用いることは、化学的安定性、製造コスト、イオン性基の量を精密制御が可能な点から好ましい。イオン性基としてスルホン酸基を有するモノマーの好適な具体例としては、3,3'-ジスルホネート-4,4'-ジクロロジフェニルスルホン、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルスルホン、3,3'-ジスルホネート-4,4'-ジクロロジフェニルケトン、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルケトン、3,3'-ジスルホネート-4,4'-ジクロロジフェニルフェニルホスフィンオキシド、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルフェニルホスフィンオキシド等を挙げることができるが、これらに限定されるものではない。
 プロトン伝導度および耐加水分解性の点からイオン性基としてはスルホン酸基が最も好ましいが、上記イオン性基を有するモノマーは他のイオン性基を有していても構わない。
 上記したスルホン酸基を有するモノマーのなかでも化学的安定性と物理的耐久性の点から、3,3'-ジスルホネート-4,4'-ジクロロジフェニルケトン、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルケトンがより好ましく、重合活性の点から3,3'-ジスルホネート-4,4'-ジフルオロジフェニルケトンが最も好ましい。 
 イオン性基を有するモノマーとして、3,3'-ジスルホネート-4,4'-ジクロロジフェニルケトン、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルケトンを用いて合成したイオン性セグメントとしては、下記一般式(p1)で表される構成単位を含むものとなり、好ましく用いられる。該芳香族ポリエーテル系重合体は、ケトン基の有する高い結晶性の特性に加え、スルホン基よりも耐熱水性に優れる成分となり、高温高湿度条件での寸法安定性、機械強度、物理的耐久性に優れた材料に有効な成分となるのでさらに好ましく用いられる。これらのスルホン酸基は重合の際には、スルホン酸基が1価カチオン種との塩になっていることが好ましい。1価カチオン種としては、ナトリウム、カリウムや他の金属種や各種アミン類等でも良く、これらに制限される訳ではない。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
Figure JPOXMLDOC01-appb-C000007
(一般式(p1)中、MおよびMは水素、金属カチオン、アンモニウムカチオン、a1およびa2は1~4の整数を表す。一般式(p1)で表される構成単位は任意に置換されていてもよい。)
 また、芳香族活性ジハライド化合物としては、イオン性基を有するものと持たないものを共重合することで、イオン性基密度を制御することも可能である。しかしながら、上記イオン性セグメントとしては、プロトン伝導パスの連続性確保の観点から、イオン性基を持たない芳香族活性ジハライド化合物を共重合しないことがより好ましい。
 イオン性基を持たない芳香族活性ジハライド化合物のより好適な具体例としては、4,4'-ジクロロジフェニルスルホン、4,4'-ジフルオロジフェニルスルホン、4,4'-ジクロロジフェニルケトン、4,4'-ジフルオロジフェニルケトン、4,4'-ジクロロジフェニルフェニルホスフィンオキシド、4,4'-ジフルオロジフェニルフェニルホスフィンオキシド、2,6-ジクロロベンゾニトリル、2,6-ジフルオロベンゾニトリル等を挙げることができる。中でも4,4'-ジクロロジフェニルケトン、4,4'-ジフルオロジフェニルケトンが結晶性付与、機械強度や物理的耐久性、耐熱水性の点からより好ましく、重合活性の点から4,4'-ジフルオロジフェニルケトンが最も好ましい。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
 芳香族活性ジハライド化合物として、4,4'-ジクロロジフェニルケトン、4,4'-ジフルオロジフェニルケトンを用いて合成した高分子電解質材料としては、下記一般式(p2)で表される構成部位をさらに含むものとなり、好ましく用いられる。該構成単位は分子間凝集力や結晶性を付与する成分となり、高温高湿度条件での寸法安定性、機械強度、物理的耐久性に優れた材料となるので好ましく用いられる。
Figure JPOXMLDOC01-appb-C000008
(一般式(p2)で表される構成単位は任意に置換されていてもよいが、イオン性基は含有しない。)
 またイオン性セグメントを合成するために用いられる非イオン性モノマーとして、芳香族ジフェノール化合物が挙げられ、特に後述する保護基を有する芳香族ジフェノール化合物であることが好ましい。
 以上、イオン性セグメントの構成単位を合成するために用いられるモノマーについて説明した。
 イオン性セグメントとして、またはイオン性セグメントを構成する構成単位として、一般式(S1)で表される構造以外に下記一般式(T1)および(T2)で表される構造を含むことができる。
Figure JPOXMLDOC01-appb-C000009
 一般式(T1)および(T2)中、Bは芳香環を含む2価の有機基を表す。MおよびMは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。
 この芳香族ポリエーテルケトン系共重合体において、一般式(T1)と(T2)で表される構成単位の組成比を変えることで、イオン交換容量を制御することが可能である。
 イオン性セグメントとして、一般式(P1)で表される構造と、一般式(T1)および(T2)で表される構造とを有することが特に好ましい。このようなイオン性セグメントにおいて、一般式(P1)、(T1)および(T2)で表わされる構成単位の量を、それぞれp1、t1およびt2とするとき、t1とt2の合計モル量を100モル部に対してp1が75モル部以上であることが好ましく、90モル部以上であることがより好ましく、100モル部以上であることがさらに好ましい。
 一般式(T1)および(T2)中の芳香環を含む2価の有機基Bとしては、芳香族求核置換反応による芳香族ポリエーテル系重合体の重合に用いることができる各種2価フェノール化合物の残基や、それにスルホン酸基が導入されたものを挙げることができる。
芳香環を含む2価の有機基Bの好適な具体例としては、下記一般式(X’-1)~(X’-6)で示される基を例示できるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000010
 これらはイオン性基や芳香族基を有していてもよい。また、これらは必要に応じて併用することも可能である。なかでも、結晶性、寸法安定性、強靱性、化学的安定性の観点から、より好ましくは一般式(X’-1)~(X’-4)で示される基、最も好ましくは一般式(X’-2)および(X’-3)で示される基である。
 [非イオン性セグメント]
 本発明のブロック共重合体を構成する非イオン性セグメントは、結晶性および機械的耐久性の観点から、炭化水素系重合体であることが好ましく、芳香族炭化水素系重合体であることがさらに好ましい。ここで、炭化水素系重合体の定義および芳香族炭化水素系重合体の具体例は前述のとおりである。
 芳香族炭化水素系重合体の中でも、コスト、重合性の観点から、芳香族ポリエーテル系重合体が好ましく、機械的耐久性、物理的耐久性の観点から、芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルスルホン系重合体が好ましく、特に芳香族ポリエーテルケトン系重合体が好ましい。
 非イオン性セグメントは、上記したように芳香族ポリエーテル系重合体であることが好ましく、上記芳香族ポリエーテル系重合体は下記一般式(S3)で表される構造を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(S3)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基、ケトン基に誘導され得る保護基を表す。*は、一般式(S3)または他の構成単位との結合を表す。
 ここで、Ar~Arで表されるアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されない。
 また、一般式(S3)において、YおよびYは、相分離構造形成の観点から、ケトン基またはケトン基に誘導され得る保護基であることから、該ブロック共重合体は結晶性を有し、また相分離構造が形成されやすい。すなわち、非イオン性セグメントは、芳香族ポリエーテルケトン系重合体であることが好ましい。
 上記一般式(S3)で表される構造が、下記一般式(P2)で表される構造を含有することが原料入手性の点から好ましく、中でも、下記一般式(S4)で表される構成単位を含有することが結晶性による機械的耐久性、寸法安定性、物理的耐久性の点からさらに好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(P2)および(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(P2)および(S4)または他の構成単位との結合を表す。
  非イオン性セグメントにおける一般式(P2)または(S4)で表される構造の含有量としては、機械的耐久性、寸法安定性、物理的耐久性の観点から、20モル%以上が好ましく、50モル%以上がより好ましく、80モル%以上が特に好ましい。
 ケトン基に誘導され得る保護基としては、例えば下記一般式(P3)および(P4)から選ばれる少なくとも1種を含有するものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000013
(一般式(P3)および(P4)において、Ar11~Ar14は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、それぞれが2種類以上の基を表しても良い。一般式(P3)および(P4)で表される基は任意に置換されていてもよい。)
 一般式(P3)中のRおよびRとしては、安定性の点でアルキル基であることがより好ましく、さらに好ましくは炭素数1~6のアルキル基、最も好ましく炭素数1~3のアルキル基である。また、一般式(P4)中のRとしては、安定性の点で炭素数1~7のアルキレン基であることがより好ましく、最も好ましくは炭素数1~4のアルキレン基である。Rの具体例としては、-CHCH-、-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-C(CHCH(CH)-、-C(CHO(CH-、-CHCHCH-、-CHC(CHCH-等が挙げられるが、これらに限定されるものではない。
 前記一般式(P3)および(P4)中のAr11~Ar14として好ましい有機基は、フェニレン基、ナフチレン基、またはビフェニレン基である。これらは任意に置換されていてもよい。芳香族ポリエーテル系重合体としては、溶解性および原料入手の容易さから、前記一般式(P4)中のAr13およびAr14が共にフェニレン基であることがより好ましく、最も好ましくはAr13およびAr14が共にp-フェニレン基である。
 ここで、ケトン部位をケタールで保護する方法としては、ケトン基を有する前駆体化合物を、酸触媒存在下で1官能および/または2官能アルコールと反応させる方法が挙げられる。例えば、ケトン前駆体の4,4’-ジヒドロキシベンゾフェノンと1官能および/または2官能アルコール、脂肪族又は芳香族炭化水素などの溶媒中で臭化水素などの酸触媒の存在下で反応させることによって製造できる。アルコールは炭素数1~20の脂肪族アルコールである。 
 ケタールモノマーを製造するための改良法は、ケトン前駆体の4,4’-ジヒドロキシベンゾフェノンと2官能アルコールをアルキルオルトエステル及び固体触媒の存在下に反応させることからなる。
 ケタールで保護したケトン部位の少なくとも一部を脱保護せしめ、ケトン部位とする方法は特に限定されるものではない。前記脱保護反応は、不均一又は均一条件下に水及び酸の存在下において行うことが可能であるが、機械強度、物理的耐久性、耐溶剤性の観点からは、膜等に成型した後で酸処理する方法がより好ましい。具体的には、成型された膜を塩酸水溶液や硫酸水溶液中に浸漬することにより脱保護することが可能であり、酸の濃度や水溶液の温度については適宜選択することができる。
 ポリマーに対して必要な酸性水溶液の重量比は、好ましくは1~100倍であるけれども更に大量の水を使用することもできる。酸触媒は好ましくは存在する水の0.1~50重量%の濃度において使用する。好適な酸触媒としては塩酸、硝酸、フルオロスルホン酸、硫酸などのような強鉱酸、及びp-トルエンスルホン酸、トリフルオロメタンルスホン酸などのような強有機酸が挙げられる。ポリマーの膜厚等に応じて、酸触媒及び過剰水の量、反応圧力などは適宜選択できる。
 例えば、膜厚50μmの膜であれば、6N塩酸水溶液に例示されるような酸性水溶液中に浸漬し、95℃で1~48時間加熱することにより、容易にほぼ全量を脱保護することが可能である。また、25℃の1N塩酸水溶液に24時間浸漬しても、大部分の保護基を脱保護することは可能である。ただし、脱保護の条件としてはこれらに限定される物ではなく、酸性ガスや有機酸等で脱保護したり、熱処理によって脱保護しても構わない。
 芳香族ポリエーテル系重合体が直接結合等のエーテル結合以外の結合様式を含む場合においても、加工性向上の点から、導入される保護基の位置としては芳香族エーテル系重合体部分であることがより好ましい。
 具体的には、例えば前記一般式(P3)および(P4)で表される構成単位を含有する芳香族ポリエーテル系重合体は、芳香族ジフェノール化合物としてそれぞれ下記一般式(P3-1)および(P4-1)で表される化合物を使用し、芳香族活性ジハライド化合物との芳香族求核置換反応により合成することが可能である。前記一般式(P3)および(P4)で表される構成単位が芳香族ジフェノール化合物、芳香族活性ジハライド化合物のどちら側由来でも構わないが、モノマーの反応性を考慮して芳香族ジフェノール化合物由来を使用する方がより好ましい。
Figure JPOXMLDOC01-appb-C000014
(一般式(P3-1)および(P4-1)において、Ar11~Ar14は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基を表す。一般式(P3-1)および一般式(P4-1)で表される化合物は任意に置換されていてもよい。)以上、好ましい保護基について説明した。
 [ブロック共重合体の詳細説明]
 本発明の高分子電解質材料を構成するブロック共重合体は、イオン性セグメントおよび非イオン性セグメントが、ともに、芳香族ポリエーテル系重合体であることが好ましく、さらに、芳香族ポリエーテルケトン系重合体であることが好ましい。このような、ブロック共重合体において、各セグメントの分子構造、各セグメントの分子量、両セグメントの分子量比、スルホン酸基の密度などを制御することによって、IECおよび結晶化熱量を調整することができる。
 例えば、イオン性セグメントのスルホン酸基の密度、およびブロック共重合体におけるイオン性セグメントの含有量を制御することによって、ブロック共重合体のIECを調整することができる。
 また、例えば、非イオン性セグメントの分子量、ブロック共重合体における非イオン性セグメントの含有量を調整することによって、ブロック共重合体の飽和結晶化度や結晶化熱量を調整することができる。具体的には、非イオン性セグメントの数平均分子量を15,000以上とすることにより、ブロック共重合体の飽和結晶化度や結晶化熱量を所望の範囲まで高めることができる。すなわち、本発明におけるブロック共重合体を構成する非イオン性セグメントは、数平均分子量が15,000以上の芳香族ポリエーテルケトン系重合体であることがより好ましい
 特に、本発明の高分子電解質材料を構成するブロック共重合体は、上記一般式(S1)で表される構成単位を含有するイオン性セグメントと、上記一般式(S3)で表される構成単位を含有する非イオン性セグメントとを含むことが好ましい。
 非イオン性セグメントが、一般式(S3)で表される構成単位を含有する場合、結晶性を有するセグメントであり、この非イオン性セグメントの分子量やブロック共重合体における含有量を制御することによって、所望の飽和結晶化度や結晶化熱量に調整することができる。
 一般式(S3)で表される構成単位を含有する非イオン性セグメントを含むブロック共重合体は、例えば、少なくとも非イオン性セグメントに保護基を導入したブロック共重合体前駆体を成型した後、成型体に含有される該保護基の少なくとも一部を脱保護せしめることにより製造することができる。ブロック共重合体では、ランダム共重合体よりも、ドメインを形成したポリマーの結晶化により、加工性が不良となる傾向があるので、少なくとも非イオン性セグメントに保護基を導入し、加工性を向上させることが好ましく、イオン性セグメントについても、加工性が不良となる場合には保護基を導入することが好ましい。
 本発明の高分子電解質材料を構成するブロック共重合体は、相分離構造を有する。すなわち、イオン性セグメントと非イオン性セグメントとをそれぞれ有する、本発明のブロック共重合体において、イオン性セグメントが凝集して形成された親水性ドメインは、局所的に高いイオン性基濃度を有することにより、優れたプロトン伝導性を示す。非イオン性セグメントが凝集して形成された疎水性ドメインは、結晶性による強い分子間相互作用を有することにより、優れた寸法安定性を示す。
 ブロック共重合体を構成するイオン性セグメントおよび非イオン性セグメントが、ともに、芳香族ポリエーテル系重合体であることによって、好ましくは芳香族ポリエーテルケトン系重合体であることによって、相分離構造が形成されやすくなる。さらに、上記観点から、本発明におけるブロック共重合体は、上記一般式(S1)で表される構成単位を含有するイオン性セグメントと、上記一般式(S3)で表される構成単位を含有する非イオン性セグメントとを含むことが好ましい。
 また、本発明の高分子電解質材料を構成するブロック共重合体は、イオン性セグメントと非イオン性セグメントとの間を連結するリンカー部位を1個以上含有することが好ましく、このようなブロック共重合体は、共連続様またはラメラ様の相分離構造が形成されやすくなるので、より好ましい。
 上記リンカーとは、イオン性セグメントと非イオン性セグメントとの間を連結する部位であって、イオン性セグメントや非イオン性セグメントとは異なる化学構造を有する部位と定義する。
 リンカーは、エーテル交換反応による共重合体のランダム化、セグメント切断、その他共重合体の合成時に生じうる副反応などを抑制しながら、異なるセグメントを連結する機能を有する。そのため、このようなリンカーを与えるような化合物を原料として用いることで、それぞれのセグメントの分子量を下げることなく、ブロック共重合体を得ることができる。リンカーとしては、例えば、デカフルオロビフェニル、ヘキサフルオロベンゼン、4,4’-ジフルオロジフェニルスルホン、2,6-ジフルオロベンゾニトリル等を挙げることができるが、これらに限定されない。
 本発明の高分子電解質材料を構成するブロック共重合体を構成するイオン性セグメントの数平均分子量と非イオン性セグメントの数平均分子量を制御することによって、ブロック共重合体のIEC、飽和結晶化度や結晶化熱量および相分離構造の平均周期サイズを所望の前述した範囲に調整することができる。例えば、イオン性セグメントの数平均分子量は、IECおよび相分離構造の平均周期サイズを所望の範囲に調整するという観点から、10,000~150,000の範囲が好ましく、20,000~120,000の範囲がより好ましく、45,000~100,000の範囲が特に好ましい。一方、非イオン性セグメントの数平均分子量は、飽和結晶化度や結晶化熱量および相分離構造の平均周期サイズを所望の範囲に調整するという観点から、5,000~50,000の範囲が好ましく、10,000~40,000の範囲がより好ましく、15,000~30,000の範囲が特に好ましい。
 イオン性セグメントの数平均分子量を比較的大きくするために、例えば、数平均分子量を45,000以上にするために、イオン性セグメント内の構成単位間をリンカーによって結合することが好ましい。リンカーを用いることによって、長鎖ポリマーの合成が比較的容易になる。リンカーとしては、例えば、デカフルオロビフェニル、ヘキサフルオロベンゼン、4,4’-ジフルオロジフェニルスルホン、2,6-ジフルオロベンゾニトリル等を挙げることができるが、これらに限定されない。
 また、本発明の高分子電解質材料を構成するブロック共重合体において、イオン性セグメントの数平均分子量をMn1、非イオン性セグメントの数平均分子量をMn2としたとき、下記式1を満たすことが好ましく、下記式2を満たすことがより好ましい。このようなブロック共重合体は、IEC、結晶化熱量および相分離構造の平均周期サイズを前述の範囲に調整するという観点から好ましい。
 1.7≦Mn1/Mn2≦7.0 (式1)
 2.0≦Mn1/Mn2≦5.0 (式2)。
 特に、非イオン性セグメントの数平均分子量(Mn2)が15,000以上でかつ、上記式1および式2を満たすことが、IEC、飽和結晶化度や結晶化熱量および相分離構造の平均周期サイズを前述の範囲に調整するという観点から好ましい。
 本発明の高分子電解質材料を構成するブロック共重合体の具体的な合成方法を以下に例示する。ただし、本発明は、これらに限定されない。
 本発明の高分子電解質材料を構成するブロック共重合体中の各セグメントは、芳香族求核置換反応によって合成することが、プロセス上容易であることから好ましい。芳香族求核置換反応は、ジハライド化合物とジオール化合物のモノマー混合物を塩基性化合物の存在下で反応させる方法である。重合は、0~350℃の温度範囲で行うことができるが、50~250℃の温度であることが好ましい。反応は、無溶媒下で行うこともできるが、溶媒中で行うことが好ましい。使用できる溶媒としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒などを挙げることができるが、これらに限定されることはなく、芳香族求核置換反応において安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用されても良い。
 塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等があげられるが、ジオール類を活性なフェノキシド構造にし得るものであれば、これらに限定されず使用することができる。また、フェノキシドの求核性を高めるために、18-クラウン-6などのクラウンエーテルを添加することも好適である。クラウンエーテル類は、スルホン酸基のナトリウムイオンやカリウムイオンに配位して有機溶媒に対するモノマーやポリマーのスルホン酸塩部の溶解性が向上する場合があり、好ましく使用できる。
 芳香族求核置換反応においては、副生物として水が生成する場合がある。この際は、重合溶媒とは関係なく、トルエンなどを反応系に共存させて共沸物として水を系外に除去することもできる。水を系外に除去する方法としては、モレキュラーシーブなどの吸水剤を使用することもできる。
 本発明の高分子電解質材料を構成するブロック共重合体は、ブロック共重合体前駆体を合成した後、前駆体に含有される保護基の少なくとも一部を脱保護させることにより製造することが出来る。本発明のブロック共重合体およびブロック共重合体前駆体の製造方法としては、少なくとも下記工程(1)~(2)を備えることが好ましい。これら工程を備えることにより、高分子量化による機械的耐久性と耐久性の向上を達成でき、かつ、両セグメントの交互導入によって、相分離構造やドメインサイズが厳密に制御された低加湿プロトン伝導性に優れたブロック共重合体を得ることができる。
 工程(1):両末端に-OM基(Mは、水素原子、金属カチオンまたはアンモニウムカチオンを表す。)を有するイオン性セグメントおよび両末端に-OM基を有する非イオン性セグメントのうちの一方のセグメントについて、そのセグメントの両末端の-OM基とリンカー化合物とを反応させて、そのセグメントの両末端にリンカー部位を導入する工程
 工程(2):工程(1)で合成したリンカー部位を導入したセグメントの両末端リンカー部位と、もう一方のセグメントの両末端の-OM基とを重合させることにより、イオン性セグメントと非イオン性セグメントとを有するブロック共重合体またはブロック共重合体前駆体を製造する工程。
 両末端とも-OM基であるような一般式(S1)で表されるセグメントと、両末端とも-OM基であるような一般式(S2)で表されるセグメントの具体例としては、それぞれ、下記一般式(H3-1)、(H3-2)で表される構造のセグメントが挙げられる。また、一般式(H3-1)、(H3-2)で表される構造のセグメントをそれぞれハライドリンカーと反応させた後の構造としては、例えば、それぞれ下記一般式(H3-3)、(H3-4)で表される構造が挙げられる。ただし、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
 上記一般式(H3-1)~(H3-4)において、N、N、N、Nはそれぞれ独立して1~200の整数を表す。
 イオン性セグメントがリンカーを有するものである場合、上記工程(1)により得られる、リンカー部位を導入したイオン性セグメントの具体例としては、下記一般式(H3-1L)、(H3-3L)で表される構造が挙げられる。ただし、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
 上記一般式(H3-1L)~(H3-3L)において、N5、N6はそれぞれ独立して1~200の整数を表す。
 一般式(H3-1)~(H3-4)、(H3-1L)および(H3-3L)において、ハロゲン原子はF、末端-OM基は-OK基、アルカリ金属はNaおよびKでそれぞれ示しているが、これらに限定されることなく使用することが可能である。また、これらの一般式は読み手の理解を助ける目的で挿入するものであり、ポリマーの重合成分の化学構造、正確な組成、並び方、スルホン酸基の位置、数、分子量などを必ずしも正確に表すわけではなく、これらに限定されるものでない。
 さらに、一般式(H3-1)~(H3-4)、(H3-1L)および(H3-3L)では、いずれのセグメントに対しても、保護基としてケタール基を導入したが、本発明においては、結晶性が高く溶解性が低い成分に保護基を導入すればよい。したがって、上記イオン性セグメントには必ずしも保護基が必要ではなく、耐久性や寸法安定性の観点から、保護基がないものも好ましく使用できる。
 [高分子電解質成型体]
 本発明の電解質材料は、高分子電解質成型体として好適である。ここで、高分子電解質成型体とは、本発明の電解質材料を含む成型体を意味する。かかる高分子電解質成型体としては、膜類(フィルムおよびフィルム状のものを含む)の他、板状、繊維状、中空糸状、粒子状、塊状、微多孔状、コーティング類、発泡体類など、用途によって様々な形態をとりうる。これらの中でも、幅広い用途に適応可能であることから、膜類であることが好ましい。以下、膜類の高分子電解質成型体を「電解質成型膜」という。以下、高分子電解質成型体として電解質成型膜を代表例として説明するが、本発明はこれに限定されない。
 電解質成型膜を製造する方法として、ケタール等の保護基を有する段階で溶液状態より製膜する方法、あるいは溶融状態より製膜する方法が挙げられる。前者では、例えば、電解質材料をN-メチル-2-ピロリドン等の溶媒に溶解し、その溶液をガラス板やポリエチレンテレフタレートフィルム(以下、PETフィルム)等の上に流延塗布し、溶媒を除去することにより製膜する方法が例示できる。
 製膜に用いる溶媒としては、電解質材料を溶解し、その後に除去し得るものであればよく、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、Nメチル-2ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ-ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロパノールなどのアルコール系溶媒、水およびこれらの混合物が好適に用いられるが、非プロトン性極性溶媒が最も溶解性が高く好ましい。また、イオン性セグメントの溶解性を高めるために、18-クラウン-6などのクラウンエーテルを添加することも好適である。
 本発明の電解質材料を電解質成型膜へ転化する方法としては、例えば、該電解質材料から構成される膜を上記手法により製膜後、保護基で保護した部位の少なくとも一部を脱保護するものである。例えば、保護基としてケタール部位を有する場合、ケタールで保護したケトン部位の少なくとも一部を脱保護し、ケトン部位とする。この方法によれば、溶解性に乏しいブロック共重合体の溶液製膜が可能となり、プロトン伝導性と機械的耐久性、物理的耐久性を両立することができる。
 また、含まれるイオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成した状態で製膜した後に、当該アルカリ金属またはアルカリ土類金属の陽イオンをプロトンと交換する工程を行っても良い。この工程は、成型膜を酸性水溶液と接触させる工程であることが好ましく、特に成型膜を酸性水溶液に浸漬する工程であることがより好ましい。この工程においては、酸性水溶液中のプロトンがイオン性基とイオン結合している陽イオンと置換されるとともに、残留している水溶性の不純物や、残存モノマー、溶媒、残存塩などが同時に除去される。
 酸性水溶液は特に限定されないが、硫酸、塩酸、硝酸、酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、リン酸、クエン酸などを用いることが好ましい。酸性水溶液の温度や濃度等も適宜決定すべきであるが、生産性の観点から0℃以上80℃以下の温度で、3質量%以上、30質量%以下の硫酸水溶液を使用することが好ましい。
 本発明における電解質成型膜の厚みとしては、機械的耐久性および物理的耐久性の観点から、1μm以上が好ましく、2μm以上がより好ましく、3μm以上が特に好ましい。一方、発電性能の観点からは、500μm以下が好ましく、300μm以下がより好ましく、200μm以下が特に好ましい。
 また、電解質成型膜は、通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤、酸化防止剤あるいは離型剤等の添加剤を、本発明の目的に反しない範囲内で含有していてもよい。
 また、電解質成型膜は、前述の諸特性に悪影響をおよぼさない範囲内で、機械的強度、熱安定性、加工性などの向上を目的に、各種ポリマー、エラストマー、フィラー、微粒子、各種添加剤などを含有していてもよい。また、電解質成型膜は、微多孔膜、不織布、メッシュ等で補強してもよい。
 電解質成型膜は、種々の用途に適用することができる。例えば、人工皮膚などの医療用途、ろ過用途、耐塩素性逆浸透膜などのイオン交換樹脂用途、各種構造材用途、電気化学用途、加湿膜、防曇膜、帯電防止膜、脱酸素膜、太陽電池用膜、ガスバリアー膜に適用可能である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、固体高分子形燃料電池、レドックスフロー電池、水電解装置、クロロアルカリ電解装置、電気化学式水素ポンプ、水電解式水素発生装置などが挙げられる。
 固体高分子形燃料電池、電気化学式水素ポンプ、および水電解式水素発生装置において、電解質成型膜は、両面に触媒層、電極基材及びセパレータが順次積層された構造体で使用される。このうち、電解質成型膜の両面に触媒層を積層させたもの(すなわち、触媒層/電解質成型膜/触媒層の層構成のもの)は触媒層付電解質膜(CCM)と称され、さらに電解質成型膜の両面に触媒層及びガス拡散基材を順次積層させたもの(すなわち、ガス拡散基材/触媒層/電解質成型膜/触媒層/ガス拡散基材の層構成のもの)は、膜電極接合体(MEA)と称されている。本発明の電解質材料は、こうしたCCMおよびMEAを構成する電解質成型膜として特に好適である。
 電解質成型膜は、例えば、電解質材料を適当な溶媒に溶解もしくは分散した電解質溶液を支持基材(ガラス板やPETフィルムなど)上に流延塗布し、乾燥することによって製造することができる。このようにして得られた電解質成型膜は必要に応じて酸処理が施され、水洗、乾燥される。上記乾燥工程において、電解質材料のガラス転移温度もしくはそれ以上の温度で乾燥するか、もしくは乾燥後に上記温度で加熱することによって、電解質成型膜の結晶化度を高めることができる。このときの加熱温度および加熱時間を制御することによって電解質成型膜の結晶化度を調整することができる。
 また、上記したような触媒層付電解質膜(CCM)を製造するときの加熱プレス工程において、加熱温度およびプレス圧を制御することによって、電解質膜成型膜の結晶化度を調整することができる。
 本発明を実施例にて具体的に説明する。ただし、本発明はこれらの実施例に限定されない。本実施例に使用した測定方法を以下に示す。なお、下記測定方法において、ブロック共重合体での測定が困難であるか、もしくは測定精度が懸念される場合は、ブロック共重合体に替えて以下の電解質膜を検体として用いた。
 <電解質膜(検体)の作製>
 ブロック共重合体を溶解させた25重量%N-メチルピロリドン(NMP)溶液を、ガラス繊維フィルターを用いて加圧ろ過した後、ガラス基板上に流延塗布し、100℃にて4時間乾燥後、窒素下150℃で10分間熱処理し、厚み10μmの膜を得た。次いで、この膜を95℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し乾燥して、電解質膜を得た。この電解質膜(検体)の広角X線回折(XRD)による結晶化度は0%であった。
 (1)ポリマーの分子量
 ポリマーの数平均分子量、重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー(株)製HLC-8022GPCを、またガードカラムとして、東ソー(株)製TSKgelGuardColumnSuperH-H(内径4.6mm、長さ3.5cm)を用い、GPCカラムとして東ソー(株)製TSKgelSuperHM-H(内径6.0mm、長さ15cm)2本を用い、N-メチル-2-ピロリドン溶媒(臭化リチウムを10mmol/L含有するN-メチル-2-ピロリドン溶媒)にて、サンプル濃度0.1wt%、流量0.2mL/min、温度40℃、測定波長265nmで測定し、標準ポリスチレン換算により数平均分子量、重量平均分子量を求めた。
 (2)イオン交換容量(IEC)
 以下の1)~4)に示す中和滴定法により測定した。測定は3回実施し、その平均値を取った。
1)プロトン置換し、純水で十分に洗浄したブロック共重合体の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求めた。
2)ブロック共重合体に5wt%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換した。
3)0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v%を加え、薄い赤紫色になった点を終点とした。
4)IECは下記式により求めた。
IEC(meq/g)=〔水酸化ナトリウム水溶液の濃度(mmol/mL)×滴下量(mL)〕/試料の乾燥重量(g)。
 (3)ガラス転移温度Tgの測定 
 電解質材料10mgを、DSC装置内において、110℃で3時間予備乾燥した後、検体をDSC装置から出さずに、以下の条件にて200℃まで昇温させ、昇温段階の温度変調示差走査熱量分析を行った。このとき、ガラス転移温度は、ベースラインの2本の延長線と吸熱曲線に対する接線から得られる2個の交点の中間点と定義する。
DSC装置:DSC7000X((株)日立ハイテク製)
測定温度範囲:30℃~200℃
温度制御:交流温度制御
昇温速度:2℃/min
振幅:±3℃
印加周波数:0.02Hz
試料パン:アルミニウム製クリンプパン
測定、予備乾燥雰囲気:窒素100mL/min
予備乾燥:110℃、3時間。
 (4)飽和結晶化度の測定
 電解質膜(検体)を5cm×5cmの正方形に切り出し、この検体を2枚のポリイミドフィルム(厚み50μm)の間に挟み込み、これを加熱プレス装置で、それぞれのブロック共重合体のガラス転移温度+5℃の温度で、圧力4.5Mpaにて5分間加熱プレスした後、結晶化度を測定するという作業を繰り返し実施して、結晶化度が変化しなくなったときの結晶化度を飽和結晶化度とした。結晶化度の測定方法を下記する。
<広角X線回折(XRD)による結晶化度測定>
  加熱プレス後の検体を回折計にセットし、以下の条件にてX線回折測定を行った。
X線回折装置:(株)リガク製RINT2500V
X線:Cu-Kα
X線出力:50kV-300mA
光学系:集中法光学系
スキャン速度:2θ=2°/min
スキャン方法:2θ-θ
スキャン範囲:2θ=5~60°
スリット:発散スリット-1/2°、受光スリット-0.15mm、散乱スリット-1/2°
 X線回折測定結果についてプロファイルフィッティングを行うことにより各成分の分離を行い、各成分の回折角と積分強度を求め、得られた結晶質ピークと非晶質ハローの積分強度を用いて下記一般式(s2)の計算式から結晶化度を算出した。
  結晶化度(%)=(全ての結晶質ピークの積分強度の和)/(全ての結晶質ピークと非晶質ハローの積分強度の和)×100・・・(s2)。
 (5)示差走査熱量分析法(DSC)による結晶化熱量測定
 電解質膜(検体)10mgをDSC装置内において、110℃で3時間予備乾燥した後、検体をDSC装置から出さずに、以下の条件にて200℃まで昇温させ、昇温段階の温度変調示差走査熱量分析を行った。
・測定温度範囲:30℃~200℃
・温度制御:交流温度制御
・昇温速度:2℃/min
・振幅:±3℃
・印加周波数:0.02Hz
・試料パン:アルミニウム製クリンプパン
・測定および予備乾燥の雰囲気:窒素100mL/min。
 (6)透過型電子顕微鏡(TEM)による相分離構造の観察
 電解質膜(検体)を用いて、相分離構造を確認した。染色剤として2重量%酢酸鉛水溶液中に試料片を浸漬させ、25℃下で72時間放置した。染色処理された試料を取りだし、エポキシ樹脂で包埋した。ウルトラミクロトームを用いて室温下で薄片80nmを切削し、得られた薄片をCuグリッド上に回収しTEM観察に供した。観察は加速電圧100kVで実施し、撮影倍率1万~10万倍で撮影した。なお、上記撮影倍率は、相分離構造のサイズに応じて適宜設定した。機器としては、HT7700((株)日立ハイテク製)を使用した。
 また、TEM像を高速フーリエ変換(FFT)して、得られたリング状のFFTパターンからTD方向およびZD方向の空間周波数を測長し、そこから相分離構造の周期サイズを算出した。空間周波数は、画像の中心からリングの厚み中心までの距離を測長した。FFTおよび測長はDigitalMicrograph(Gatan社製)を使用した。
 (7)透過型電子顕微鏡(TEM)トモグラフィーによる相分離構造の観察
 上記(6)記載の方法にて作成した薄片試料を、コロジオン膜上にマウントし、以下の条件に従って観察を実施した。
装置: 電界放出型電子顕微鏡(HRTEM)日本電子(株)製JEM 2100F
画像取得: DigitalMicrograph(Gatan社製)
システム: マーカー法
加速電圧: 200kV
撮影倍率: 30,000倍
傾斜角度: +60°~-62°
再構成解像度: 0.71nm/pixel
 3次元再構成処理は、マーカー法を適用した。3次元再構成を実施する際の位置合わせマーカーとして、コロジオン膜上に付与したAuコロイド粒子を用いた。マーカーを基準として、+61°から-62°の範囲で、試料を1°毎に傾斜しTEM像を撮影する連続傾斜像シリーズより取得した計124枚のTEM像を基にCT再構成処理を実施、3次元相分離構造を観察した。
 (8)プロトン伝導度
 セルの白金電極上にイソプロパノールベースのカーボンペースト(イーエムジャパン(株)製 G7711)を塗布し、18mm×6mmにカットされた拡散層電極(E-TEK社製 ELAT GDL 140-HT)を貼り付けた。セルの電極間に30mm×8mmの長方形にカットした電解質膜(検体)を配置し、セルを1MPaで締結してMTS740のチャンバー内に格納した。電解質膜の膜厚方向のプロトン抵抗はMTS740膜抵抗測定システム(Scribner社製)で評価した。MTS740は温度制御したチャンバー内にセルを格納し、加湿器を通してチャンバー内にマスフローコントローラーで空気ガスを供給した。セルには周波数応答アナライザーPSM1735(Newtons4th社製)が接続されており、交流信号を1MHzから1KHzに掃引することにより抵抗を求めることができる。
 MTS740とPSM1735はパソコンに接続されソフトウェアでコントロールすることができる。チャンバーの温度を80℃に設定した後、90%RHの空気ガスを供給し1時間保持し電解質膜を十分湿潤させた。その後、20%RHの空気を供給し乾燥させ、30%RHの空気を供給し30分保持し抵抗を測定した。このとき周波数は1MHzから1KHzまで掃引した。その後、80%RHの空気を供給し30分保持し同様に抵抗を測定した。測定した抵抗のデータからCole-Coleプロットを作成した。1MHz付近の周波数帯はセルとPSM1735を接続するケーブルのインダクタンス成分の影響を受けるため、その影響が少ない200kHzの実軸の値を抵抗値(Ω)とした。30%RHの空気を供給した際のプロトン伝導度を低加湿プロトン伝導度、80%RHの空気を供給した際のプロトン伝導度を高加湿プロトン伝導度として、測定した抵抗値を用いて以下の式より、プロトン伝導度を算出した。
プロトン伝導度(mS/cm)=1/(抵抗値(Ω)×アクティブエリア(cm)/試料厚(cm))。
 低加湿プロトン伝導度は、0.85mS/cm以上が好ましく、0.90mS/cm以上がより好ましく、1.00mS/cm以上がさらに好ましく、1.10mS/cm以上が特に好ましい。高加湿プロトン伝導度は、9.00mS/cm以上が好ましく、9.50mS/cm以上がより好ましく、11.00mS/cm以上がさらに好ましく、13.00mS/cm以上が特に好ましい。
 (9)乾湿寸法変化率
 電解質膜(検体)を3mm×20mmの長方形にカットして試料片とした。温湿度調整機能付炉を有する熱機械分析装置TMA/SS6100((株)日立ハイテクサイエンス製)のサンプルホルダーに上記試料片の長辺が測定方向となるように設置し、20mNの応力がかかるよう設定した。炉内で、23℃、50%RHで試料を1時間定常化し、この試料片の長さをゼロ点とした。炉内温度を23℃で固定し、30分かけて30%RH(乾燥条件)に湿度調整し、20分間ホールドした。次に30分かけて90%RH(加湿条件)に湿度調整した。この乾湿サイクル(30%RH-90%RH)を1サイクルとして、10サイクル目の30%RHの寸法変化率(%)と90%RHの寸法変化率(%)の差を、乾湿寸法変化率(%)とした。乾湿寸法変化率は、7.0%以下が好ましく、6.5%以下がより好ましく、6.0%以下がさらに好ましく、5.7%以下が特に好ましい。
 [ポリマーの合成]
 以下の合成例で得られた化合物の構造は、H-NMRで確認した。純度はキャピラリー電気泳動(有機物)およびイオンクロマトグラフィー(無機物)で定量分析した。
 <合成例1>
 (下記式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成)
 攪拌器、温度計及び留出管を備えた500mLフラスコに、4,4’-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸一水和物0.50gを仕込み、溶液とした。その後78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温し、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで120℃に保った。この反応液を室温まで冷却した後、反応液を酢酸エチルで希釈した。有機層を5%炭酸カリウム水溶液100mLで洗浄し分液した後、溶媒を留去した。残留物にジクロロメタン80mLを加え結晶を析出させ、これを濾過し、乾燥して、2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。純度は99.9%であった。
Figure JPOXMLDOC01-appb-C000017
 <合成例2>
 (下記式(G2)で表されるジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成)
 4,4’-ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩(NaCl)200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。純度は99.3%であった。
Figure JPOXMLDOC01-appb-C000018
 <合成例3>
 (下記式(G3)で表される3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホンの合成)
 4,4-ジフルオロジフェニルスルホン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホンを得た。純度は99.3%であった。
Figure JPOXMLDOC01-appb-C000019
 [電解質材料(I)]
 [実施例1]
 <下記一般式(G4)で表される非イオン性オリゴマーa1の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、合成例1で得たK-DHBP25.83g(100mmol)および4,4’-ジフルオロベンゾフェノン21.38g(アルドリッチ試薬、98mmol)を入れた。装置内を窒素置換した後、N-メチルピロリドン(NMP)300mL、トルエン100mLを加え、150℃で脱水した後、昇温してトルエンを除去し、170℃で3時間重合を行った。多量のメタノールに再沈殿精製を行い、非イオン性オリゴマーa1の末端ヒドロキシ基体を得た。この非イオン性オリゴマーa1の末端ヒドロキシ基体の数平均分子量は20,000であった。
 攪拌器、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、上記非イオン性オリゴマーa1の末端ヒドロキシ基体を20.0g(1mmol)を入れた。装置内を窒素置換した後、NMP100mL、トルエン30mLを加え、100℃で脱水した後、昇温してトルエンを除去した。さらに、ヘキサフルオロベンゼン1.1g(アルドリッチ試薬、6mmol)を入れ、105℃で12時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記一般式(G4)で示される非イオン性オリゴマーa1(末端:フルオロ基)を得た。この非イオン性オリゴマーa1の数平均分子量は21,000であった。なお、一般式(G4)において、mは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000020
 <下記一般式(G5)で表されるイオン性オリゴマーa2の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.64g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBP12.91g(50mmol)、4,4’-ビフェノール9.31g(アルドリッチ試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.60g(98.5mmol)および18-クラウン-6を26.40g(和光純薬100mmol)入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、150℃で脱水した後、昇温してトルエンを除去し、170℃で6時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記一般式(G5)で示されるイオン性オリゴマーa2(末端:OM基)を得た。このイオン性オリゴマーa2の数平均分子量は45,000であった。なお、一般式(G5)において、Mは、水素原子、NaまたはKを表し、nは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000021
 <下記一般式(G6)で表されるイオン性オリゴマーa2’の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム0.56g(アルドリッチ試薬、400mmol)およびイオン性オリゴマーa2を49.0g入れた。装置内を窒素置換した後、NMP500mLを加え、60℃で内容物を溶解させた後に、ヘキサフルオロベンゼン/NMP溶液(1wt%)を19.8g加えた。80℃で18時間反応を行い、一般式(G6)で示されるイオン性オリゴマーa2’(末端:OM基)を含むNMP溶液を得た。このイオン性オリゴマーa2’の数平均分子量は90,000であった。なお、一般式(G6)において、Mは、水素原子、NaまたはKを表し、nは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000022
 <ブロック共重合体b1の合成> 
 ブロック共重合体b1は、イオン性セグメントとして上記オリゴマーa2’、非イオン性セグメントとして上記オリゴマーa1を含有する。
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、イオン性オリゴマーa2’を49.0gおよび非イオン性オリゴマーa1を7.65g入れ、オリゴマーの総仕込み量が7wt%となるようにNMPを加えて、105℃で24時間反応を行った。多量のイソプロピルアルコール/NMP混合液(重量比2/1)への再沈殿を行い、多量のイソプロピルアルコールで精製を行い、ブロック共重合体b1を得た。このブロック共重合体b1の数平均分子量は170,000であり、重量平均分子量は410,000であった。
 ブロック共重合体b1の飽和結晶化度は11.6%、ガラス転移温度は157℃、IECは2.5meq/gであった。ブロック共重合体b1を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。
 [実施例2]
 <ブロック共重合体b2の合成>
 ブロック共重合体b2は、イオン性セグメントして上記オリゴマーa2’、非イオン性セグメントとして上記オリゴマーa1を含有する。
 非イオン性オリゴマーa1の使用量を5.4gとしたこと以外は実施例1と同様にして、ブロック共重合体b2を得た。このブロック共重合体b2の数平均分子量は180,000であり、重量平均分子量は430,000であった。
 ブロック共重合体b2の飽和結晶化度は9.2%、ガラス転移温度は160℃、IECは2.7meq/gであった。ブロック共重合体b2を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。
 [実施例3]
 (上記一般式(G4)で表される非イオン性オリゴマーa3の合成)
 4,4’-ジフルオロベンゾフェノンの使用量を21.45gとしたこと以外はオリゴマーa1の末端ヒドロキシ体の合成と同様にして、オリゴマーa3の末端ヒドロキシ体を得た。このオリゴマーa3の末端ヒドロキシ体の数平均分子量は25,000であった。
 オリゴマーa1の末端ヒドロキシ体の代わりにオリゴマーa3の末端ヒドロキシ体25.0gを用いたこと以外はオリゴマーa1の合成と同様にして、一般式(G4)で示される非イオン性オリゴマーa3(末端:フルオロ基)を得た。この非イオン性オリゴマーa3の数平均分子量は26,000であった。
 <ブロック共重合体b3の合成> 
 ブロック共重合体b3は、イオン性セグメントとして上記オリゴマーa2’、非イオン性セグメントとして上記オリゴマーa3を含有する。
 非イオン性オリゴマーa1(7.65g)に代えて非イオン性オリゴマーa3(12.3g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b3を得た。このブロック共重合体b3の数平均分子量は160,000であり、重量平均分子量は390,000であった。
 ブロック共重合体b3の飽和結晶化度は15.6%、ガラス転移温度は160℃、IECは2.1meq/gであった。ブロック共重合体b3を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。
 [実施例4]
 <上記一般式(G4)で表される非イオン性オリゴマーa5の合成>
 4,4’-ジフルオロベンゾフェノンの使用量を21.51gとしたこと以外はオリゴマーa1の末端ヒドロキシ体の合成と同様にして、オリゴマーa5の末端ヒドロキシ体を得た。このオリゴマーa5の末端ヒドロキシ体の数平均分子量は29,000であった。
 オリゴマーa1の末端ヒドロキシ体の代わりにオリゴマーa5の末端ヒドロキシ基体29.0gを用いたこと以外はオリゴマーa1の合成と同様にして、一般式(G4)で示される非イオン性オリゴマーa5(末端:フルオロ基)を得た。この非イオン性オリゴマーa5の数平均分子量は30,000であった。
 <上記一般式(G5)で表されるイオン性オリゴマーa4の合成>
 ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの使用量を41.38g(98.0mmol)としたこと以外はイオン性オリゴマーa2の合成と同様にして、イオン性オリゴマーa4を得た。このイオン性オリゴマーa4の数平均分子量は35,000であった。
 <下記一般式(G7)で表されるイオン性オリゴマーa4’の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム0.56g(アルドリッチ試薬、400mmol)およびイオン性オリゴマーa4を37.16g入れた。装置内を窒素置換した後、NMP400mLを加え、60℃で内容物を溶解させた後に、2,6-ジフルオロベンゾニトリル/NMP溶液(1wt%)を11.4g加えた。80℃で18時間反応を行い、一般式(G7)で示されるイオン性オリゴマーa4’(末端:OM基)を含むNMP溶液を得た。このイオン性オリゴマーa4’の数平均分子量は70,000であった。なお、一般式(G7)において、Mは、水素原子、NaまたはKを表し、nは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000023
 <ブロック共重合体b4の合成>
 ブロック共重合体b4は、イオン性セグメントして上記オリゴマーa4’、非イオン性セグメントとして上記オリゴマーa5を含有する。
 イオン性オリゴマーa2’(49.0g)の代わりにイオン性オリゴマーa4’(37.16g)を用い、非イオン性オリゴマーa1(7.65g)の代わりに非イオン性オリゴマーa5(12.39g)としたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b4を得た。このブロック共重合体b4の数平均分子量は120,000であり、重量平均分子量は360,000であった。
 ブロック共重合体b4の飽和結晶化度は18.0%、ガラス転移温度は160℃、IECは1.9meq/gであった。ブロック共重合体b4を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。
 [実施例5]
 <上記一般式(G4)で表される非イオン性オリゴマーa7の合成>
 4,4’-ジフルオロベンゾフェノンの使用量を21.27gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa7の末端ヒドロキシ体を得た。この非イオン性オリゴマーa7の末端ヒドロキシ体の数平均分子量は16,000であった。
 非イオン性オリゴマーa1の末端ヒドロキシ体(20.0g)の代わりに非イオン性オリゴマーa7の末端ヒドロキシ体(16.0g)を用いたこと以外は非イオン性オリゴマーa1の合成と同様にして、一般式(G4)で示される非イオン性オリゴマーa7(末端:フルオロ基)を得た。この非イオン性オリゴマーa7の数平均分子量は17,000であった。
 <上記一般式(G5)で表されるイオン性オリゴマーa6の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.64g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBP12.91g(50mmol)および4,4’-ビフェノール9.31g(アルドリッチ試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.85g(99.1mmol)、を入れた。装置内を窒素置換した後、ジメチルスルホキシド(DMSO)300mL、トルエン100mLを加え、133℃で脱水後、昇温してトルエンを除去し、150℃で2時間重合し、155℃に昇温しさらに1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、一般式(G5)で示されるイオン性オリゴマーa6(末端:OM基)を得た。このイオン性オリゴマーa6の数平均分子量は56,000であった。
 <ブロック共重合体b5の合成> 
 ブロック共重合体b5は、イオン性セグメントとして上記オリゴマーa6、非イオン性セグメントとして上記オリゴマーa7を含有する。
 イオン性オリゴマーa2’(49.0g)の代わりにイオン性オリゴマーa6(32.79g)を用い、非イオン性オリゴマーa1(7.65g)の代わりに非イオン性オリゴマーa7(8.19g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b5を得た。このブロック共重合体b5の数平均分子量は140,000、重量平均分子量は360,000であった。
 ブロック共重合体b5の飽和結晶化度は13.5%、ガラス転移温度は159℃、IECは2.1meq/gであった。ブロック共重合体b5を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。
 [比較例1]
 <上記一般式(G4)で表される非イオン性オリゴマーa9の合成>
 4,4’-ジフルオロベンゾフェノンの使用量を20.4gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa9の末端ヒドロキシ体を得た。この非イオン性オリゴマーa9の末端ヒドロキシ体の数平均分子量は7,000であった。
 非イオン性オリゴマーa1の末端ヒドロキシ体(20.0g)の代わりに非イオン性オリゴマーa9の末端ヒドロキシ体(9.0g:1mmol)を用いたこと以外は非イオン性オリゴマーa1の合成と同様にして、一般式(G4)で示される非イオン性オリゴマーa9(末端:フルオロ基)を得た。この非イオン性オリゴマーa9の数平均分子量は8,000であった。
 <上記一般式(G5)で表されるイオン性オリゴマーa8の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.64g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBP12.91g(50mmol)、4,4’-ビフェノール9.31g(アルドリッチ試薬、50mmol、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.47g(98.2mmol)および18-クラウン-6(26.40g:和光純薬100mmol)を入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、150℃で脱水した後、昇温してトルエンを除去し、170℃で6時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、一般式(G5)で示されるイオン性オリゴマーa8(末端:ヒドロキシ基)を得た。このイオン性オリゴマーa8の数平均分子量は42,000であった。
 <ブロック共重合体b6の合成>
 ブロック共重合体b6は、イオン性セグメントしてオリゴマーa8、非イオン性セグメントとしてオリゴマーa9を含有する。
イオン性オリゴマーa2’(49.0g)の代わりにイオン性基オリゴマーa8(43.57g)を用い、非イオン性オリゴマーa1(7.65g)の代わりに非イオン性オリゴマーa9(10.89g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b6を得た。このブロック共重合体b6の数平均分子量は140,000であり、重量平均分子量は400,000であった。
 ブロック共重合体b6の飽和結晶化度は4.1%、ガラス転移温度は157℃、IECは2.2meq/gであった。ブロック共重合体b6を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。
 [比較例2]
 (上記一般式(G4)で表される非イオン性オリゴマーa11の合成)
 4,4’-ジフルオロベンゾフェノンの使用量を20.18gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa11の末端ヒドロキシ体を得た。この非イオン性オリゴマーa11の末端ヒドロキシ体の数平均分子量は5,000であった。
 攪拌器、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム2.2g(アルドリッチ試薬、16mmol)および非イオン性オリゴマーa11の末端ヒドロキシ体10.0gを入れた。装置内を窒素置換した後、NMP100mL、トルエン30mLを加え、100℃で脱水後、昇温してトルエンを除去し、ヘキサフルオロベンゼン2.2g(アルドリッチ試薬、12mmol)を入れ、105℃で12時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、一般式(G4)で示される非イオン性オリゴマーa11(末端:フルオロ基)を得た。この非イオン性オリゴマーa11の数平均分子量は6,000であった。
 <ブロック共重合体b7の合成>
 ブロック共重合体b7は、イオン性セグメントとして上記オリゴマーa8、非イオン性セグメントとして上記オリゴマーa11を含有する。
 非イオン性オリゴマーa9(10.89g)の代わりに非イオン性オリゴマーa11(6.81g)を用いたこと以外はブロック共重合体b6の合成と同様にして、ブロック共重合体b7を得た。このブロック共重合体b7の数平均分子量は130,000であり、重量平均分子量は400,000であった。
 ブロック共重合体b7の飽和結晶化度は0.8%、ガラス転移温度は157℃、IECは2.4meq/gであった。ブロック共重合体b7を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できたが、一部連続していない構造が見られた。
 [比較例3]
 <下記一般式(G8)で表される非イオン性オリゴマーa13の合成>
 4,4’-ジフルオロベンゾフェノンの代わりに、4,4-ジフルオロジフェニルスルホン23.65gを用いたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ基体の合成と同様にして、非イオン性オリゴマーa13の末端ヒドロキシ基体を得た。この非イオン性オリゴマーa13の末端ヒドロキシ基体の数平均分子量は10,000であった。
 非イオン性オリゴマーa1の末端ヒドロキシ基体20.0gの代わりに非イオン性オリゴマーa13の末端ヒドロキシ基体10.0gを用いたこと以外は非イオン性オリゴマーa1の合成と同様にして、一般式(G8)で示される非イオン性オリゴマーa13(末端フルオロ基)を得た。この非イオン性オリゴマーa13の数平均分子量は、11,000であった。なお、一般式(G8)において、mは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000024
 <下記一般式(G9)で表されるイオン性オリゴマーa12の合成>
 ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.60gの代わりに合成例3で得た3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホン44.94g(98.1mmol)を用いたこと以外はイオン性オリゴマーa2の合成と同様にして、一般式(G9)で示されるイオン性オリゴマーa12(末端:OM基)を得た。このイオン性オリゴマーa12の数平均分子量は41,000であった。なお、一般式(G9)において、Mは、水素原子、NaまたはKを表し、nは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000025
 <ブロック共重合体b8の合成>
 ブロック共重合体b8は、イオン性セグメントとして上記オリゴマーa12、非イオン性セグメントとして上記オリゴマーa13を含有する。
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、イオン性オリゴマーa12(45.76g)および非イオン性オリゴマーa13(8.93g)入れ、オリゴマーの総仕込み量が7wt%となるようにNMPを加えて、105℃で24時間反応を行った。多量のイソプロピルアルコール/NMP混合液(重量比2/1)への再沈殿を行い、多量のイソプロピルアルコールで精製を行い、ブロック共重合体b8を得た。このブロック共重合体b8の数平均分子量は120,000であり、重量平均分子量は290,000であった。
 ブロック共重合体b8の飽和結晶化度は0.0%、ガラス転移温度は231℃、IECは2.4meq/gであった。ブロック共重合体b8を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。
 [測定結果]
 上記実施例1~5および比較例1~3で得られた電解質材料の測定結果およびプロトン伝導度と乾湿寸法変化率との評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000026
 実施例1~5では、飽和結晶化度が5%以上30%以下である電解質材料(I)を用いたことから、乾湿寸法変化率が小さく、かつ低加湿および高加湿におけるプロトン伝導度が高くなっている。すなわち、機械的耐久性とプロトン伝導性とが比較的高いレベルで両立している。
 一方、比較例1~3は、いずれも飽和結晶化度が5%より低い。その結果、乾湿寸法変化率もしくはプロトン伝導度が劣っている。すなわち、機械的耐久性とプロトン伝導性とが両立されていない。
 [実施例11~15]
 上記実施例1~5の電解質材料で作製した電解質膜(検体)「結晶化度0%」を、前述の「(4)飽和結晶化度の測定」において、結晶化度が変化しなくなったときの条件にて加熱プレスしたものをサンプルとして用い、乾湿寸法変化率とプロトン伝導度を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000027
 本発明の電解質材料(I)で作製した電解質膜(検体)は、表1の実施例1~5が示すように、結晶化が進行していなくとも(結晶化度が0%であっても)、機械的耐久性(乾湿寸法変化率)とプロトン伝導性とが比較的高いレベルで両立しているが、結晶化を進めることによって、表2に示すように、さらに機械的耐久性(乾湿寸法変化率)およびプロトン伝導性が向上する。
 [電解質材料(II)]
 [実施例21]
  <ブロック共重合体b21>
 ブロック共重合体b21として、前述のブロック共重合体b1を使用した。上記ブロック共重合体b21は、DSCにより結晶化ピークが認められ、結晶化熱量は15.8J/gであった。したがって、IECと結晶化熱量との積は39.5であった。
 [実施例22]
  <ブロック共重合体b22>
 ブロック共重合体b22として、前述のブロック共重合体b2を使用した。上記ブロック共重合体b22は、DSCにより結晶化ピークが認められ、結晶化熱量は13.2J/gであった。したがって、IECと結晶化熱量との積は35.6であった。
 [実施例23]
 <上記一般式(G5)で表されるイオン性オリゴマーa24の合成>
 ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの使用量を41.38g(98.0mmol)としたこと以外はイオン性オリゴマーa2の合成と同様にして、イオン性オリゴマーa24を得た。このイオン性オリゴマーa24の数平均分子量は35,000であった。
 <上記一般式(G6)で表されるイオン性オリゴマーa24’の合成>
 イオン性オリゴマーa2(49.0g)に代えてイオン性オリゴマーa24(37.16g)を用い、NMPの使用量を400mLとし、ヘキサフルオロベンゼン/NMP溶液(1wt%)の使用量を15.3gとしたこと以外はイオン性オリゴマーa2’の合成と同様にして、一般式(G6)で示されるイオン性オリゴマーa24’(末端:OM基)を含むNMP溶液を得た。このオリゴマーa24’の数平均分子量は70,000であった。
 <ブロック共重合体b23の合成>
 ブロック共重合体b23は、イオン性セグメントとして上記オリゴマーa24’、非イオン性セグメントとして上記オリゴマーa1を含有する。
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、イオン性オリゴマーa2’(49.0g)の代わりにイオン性オリゴマーa24’(37.16g)を用い、非イオン性オリゴマーa1の使用量を5.80gとしたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b23を得た。このブロック共重合体b23の数平均分子量は190,000であり、重量平均分子量は440,000であった。
 上記ブロック共重合体b23のIECは、2.4meq/gであった。上記ブロック共重合体b23を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は16.6J/gであった。したがって、IECと結晶化熱量との積は39.8であった。
 [実施例24]
 <下記一般式(G10)で表される非イオン性オリゴマーa21の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)および非イオン性オリゴマーa1の末端ヒドロキシ体を20.0g(1mmol)入れた。装置内を窒素置換した後、NMP100mL、トルエン30mLを加え、100℃で脱水した後、昇温してトルエンを除去した。その後、2,6-ジフルオロベンゾニトリル0.84g(アルドリッチ試薬、6mmol)を入れ、105℃で12時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記一般式(G10)で示される非イオン性オリゴマーa21(末端:フルオロ基)を得た。この非イオン性オリゴマーa21の数平均分子量は21,000であった。なお、一般式(G10)において、mは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000028
 <下記一般式(G11)で表されるイオン性オリゴマーa24”の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム0.56g(アルドリッチ試薬、400mmol)およびイオン性オリゴマーa24を37.16g入れた。装置内を窒素置換した後、NMP400mLを加え、60℃で内容物を溶解させた後に、2,6-ジフルオロベンゾニトリル/NMP溶液(1wt%)を11.4g加えた。80℃で18時間反応を行い、一般式(G11)で示されるイオン性オリゴマーa24”(末端:OM基)を含むNMP溶液を得た。このイオン性オリゴマーa24”の数平均分子量は70,000であった。なお、一般式(G11)において、Mは、水素原子、NaまたはKを表し、nは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000029
 <ブロック共重合体b24の合成>
 ブロック共重合体b24は、イオン性セグメントして上記オリゴマーa24”、非イオン性セグメントとして上記オリゴマーa21を含有する。
 イオン性オリゴマーa2’(49.0g)の代わりにイオン性オリゴマーa24”(37.16g)を用い、非イオン性オリゴマーa21の使用量を5.80gとしたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b24を得た。このブロック共重合体b24の数平均分子量は100,000であり、重量平均分子量は260,000であった。
 上記ブロック共重合体b24のIECは、2.2meq/gであった。上記ブロック共重合体b24を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は20.1J/gであった。したがって、IECと結晶化熱量との積は44.2であった。
 [実施例25]
 <ブロック共重合体b25の合成>
 ブロック共重合体b25は、イオン性セグメントして上記オリゴマーa24”、非イオン性セグメントとして上記オリゴマーa1を含有する。
 非イオン性オリゴマーa21(5.80g)の代わりに非イオン性オリゴマーa1(9.29g)を用いたこと以外はブロック共重合体b24の合成と同様にして、ブロック共重合体b25を得た。このブロック共重合体b25の数平均分子量は、150,000であり、重量平均分子量は380,000であった。
 上記ブロック共重合体b25のIECは、2.1meq/gであった。上記ブロック共重合体b25を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は22.0J/gであった。したがって、IECと結晶化熱量との積は46.2であった。
 [実施例26]
 <ブロック共重合体b26>
 ブロック共重合体b26として、前述のブロック共重合体b5を使用した。上記ブロック共重合体b26は、DSCにより結晶化ピークが認められ、結晶化熱量は21.1J/gであった。したがって、IECと結晶化熱量との積は44.3であった。
 [実施例27]
 <ブロック共重合体b27の合成>
 ブロック共重合体b27は、イオン性セグメントして上記オリゴマーa2’、非イオン性セグメントとして上記オリゴマーa1を含有する。
 非イオン性オリゴマーa1の使用量を4.1gとしたこと以外は実施例1と同様にして、ブロック共重合体b27を得た。このブロック共重合体b27の数平均分子量は160,000であり、重量平均分子量は410,000であった。
 上記ブロック共重合体b27のIECは、2.9meq/gであった。上記ブロック共重合体b27を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は12.1J/gであったしたがって、IECと結晶化熱量との積は35.1であった。
 [比較例21]
 <下記一般式(G12)で表される非イオン性オリゴマーa31の合成>
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、合成例1で得たK-DHBPを25.8g(100mmol)および4,4’-ジフルオロベンゾフェノン20.3g(アルドリッチ試薬、93mmol)を入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、160℃にて脱水した後、昇温してトルエンを除去し、180℃で1時間重合を行った。多量のメタノールに再沈殿精製を行い、非イオン性オリゴマーa31の末端ヒドロキシ基体を得た。この非イオン性オリゴマーa31の末端ヒドロキシ基体の数平均分子量は10,000であった。
  攪拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、非イオン性オリゴマーa31の末端ヒドロキシ体を20.0g(2mmol)を入れた。装置内を窒素置換した後、NMP100mL、シクロヘキサン30mLを加え、100℃にて脱水した後、昇温してシクロヘキサンを除去し、デカフルオロビフェニル4.0g(アルドリッチ試薬、12mmol)を入れ、105℃で1時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記一般式(G12)で示される非イオン性オリゴマーa31(末端:フルオロ基)を得た。この非イオン性オリゴマーa31の数平均分子量は11,000であった。なお、一般式(G12)において、mは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000030
 <上記一般式(G5)で表されるイオン性オリゴマーa32の合成>
 攪拌機、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBPを12.9g(50mmol)および4,4’-ビフェノールを9.3g(アルドリッチ試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを39.3g(93mmol)、および18-クラウン-6エーテルを17.9g(和光純薬、82mmol)入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、170℃にて脱水した後、昇温してトルエンを除去し、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、上記一般式(G5)で示されるイオン性オリゴマーa22(末端:OM基)を得た。このイオン性オリゴマーa32の数平均分子量は16,000であった。
 <ブロック共重合体b31の合成>
 ブロック共重合体b31は、イオン性セグメントとして上記オリゴマーa32、非イオン性セグメントとして上記オリゴマーa31を含有する。
  攪拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム0.56g(アルドリッチ試薬、4mmol)およびイオン性オリゴマーa32を16g(1mmol)入れた。装置内を窒素置換した後、NMP100mL、シクロヘキサン30mLを加え、100℃にて脱水した後、昇温してシクロヘキサンを除去し、非イオン性オリゴマーa31を11g(1mmol)入れ、105℃で24時間反応を行った。多量のイソプロピルアルコールへの再沈殿精製により、ブロック共重合体b31を得た。このブロック共重合体b31の数平均分子量は150,000、重量平均分子量は340,000万であった。
 上記ブロック共重合体b31のIECは、1.7meq/gであった。上記ブロック共重合体b31を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は22.5J/gであった。したがって、IECと結晶化熱量との積は38.3であった。
 [比較例22]
 <下記一般式(G13)で表される非イオン性基オリゴマーa33の合成)
 比較例21の非イオン性オリゴマー31の合成において、K-DHBP25.8g(100mmol)に代えて4,4’-ビフェノール18.62g(アルドリッチ試薬、100mmol)を使用し、かつ4,4’-ジフルオロベンゾフェノンの仕込み量を21.41gに変更した以外は、比較例21と同様の方法で、非イオン性オリゴマーa33の末端ヒドロキシ体の合成を行った。数平均分子量は22,000であった。
  また、非イオン性オリゴマーa31の末端ヒドロキシ体に代えて、非イオン性オリゴマーa33の末端ヒドロキシ体50.0g(2mmol)を仕込む以外は、比較例21と同様の方法で、非イオン性オリゴマーa33(末端:フルオロ基)の合成を行った。数平均分子量は23,000であった。なお、一般式(G13)において、mは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000031
 <上記一般式(G5)で表されるイオン性基オリゴマーa34の合成>
 攪拌機、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、前記合成例1で得たK-DHBPを25.8g(100mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを41.4g(98.1mmol)、および18-クラウン-6エーテルを17.9g(和光純薬、82mmol)入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、170℃で脱水した後、昇温してトルエンを除去し、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、上記一般式(G5)で示されるイオン性オリゴマーa34(末端:OM基)を得た。このイオン性オリゴマーa34の数平均分子量は28,000であった。
 <ブロック共重合体b32の合成>
 ブロック共重合体b32は、イオン性セグメントとして上記オリゴマーa34、非イオン性セグメントとして上記オリゴマーa33を含有する。
  イオン性オリゴマーa32に変えて、イオン性オリゴマーa34を26g(1mmol)入れ、非イオン性オリゴマーa31に変えて、非イオン性オリゴマーa33を21g(1mmol)入れた以外は比較例21と同様の方法で、ブロック共重合体b32を得た。このブロック共重合体b32の数平均分子量は110,000、重量平均分子量は380,000であった。
 上記ブロック共重合体b32のIECは、1.9meq/gであった。上記ブロック共重合体b32を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は25.3J/gであった。したがって、IECと結晶化熱量との積は48.1であった。
 [比較例23]
 <上記一般式(G5)で表されるイオン性基オリゴマーa36の合成
 ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの仕込量を40.1g(95mmol)に変えた以外は、比較例21と同様の方法で、イオン性オリゴマーa36(末端:OM基)を得た。このイオン性オリゴマーa36の数平均分子量は21,000であった。
 <ブロック共重合体b33の合成>
 ブロック共重合体b33は、イオン性セグメントとして上記オリゴマーa36、非イオン性セグメントとして上記オリゴマーa31を含有する。
 イオン性オリゴマーa32に変えて、イオン性オリゴマーa36を21g(1mmol)入れた以外は比較例21と同様の方法で、ブロック共重合体b33を得た。このブロック共重合体b33の数平均分子量は140,000、重量平均分子量350,000であった。
 上記ブロック共重合体b33のIECは、2.1meq/gであった。上記ブロック共重合体b33を用いて作製した電解質膜は、共連続様の相分離構造(イオン性基を含有する親水性ドメインとイオン性基を含有しない疎水性ドメインとがともに連続相を形成)が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は16.0J/gであった。したがって、IECと結晶化熱量との積は33.6であった。
 [比較例24]
 <下記一般式(G14)で表される非イオン性オリゴマーa35の合成>
 攪拌機、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、合成例1で得たK-DHBP25.8g(100mmol)および4,4’-ジフルオロベンゾフェノン20.3g(アルドリッチ試薬、93mmol)を入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、160℃にて脱水した後、昇温してトルエンを除去し、180℃で1時間重合を行った。多量のメタノールで再沈殿することで精製を行い、非イオン性オリゴマーa35の末端ヒドロキシ体を得た。この非イオン性オリゴマーa35の末端ヒドロキシ基体の数平均分子量は10,000であった。
 攪拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)および非イオン性基オリゴマーa35の末端ヒドロキシ体20.0g(2mmol)を入れた。装置内を窒素置換した後、NMP100mL、シクロヘキサン30mLを加え、100℃で脱水した後、昇温してシクロヘキサンを除去し、ビス(4-フルオロフェニルスルホン)3.0g(アルドリッチ試薬、12mmol)を入れ、105℃で1時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記一般式(G14)で示される非イオン性オリゴマーa35(末端フルオロ基)を得た。この非イオン性オリゴマーa35の数平均分子量は11,000であった。なお、一般式(G14)において、mは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000032
 <上記一般式(G5)で表されるイオン性基オリゴマーa38の合成>
 攪拌機、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBP12.9g(50mmol)、4,4’-ビフェノール9.3g(アルドリッチ試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン40.1g(95mmol)および18-クラウン-617.9g(和光純薬82mmol)を入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、1170℃で脱水した後、昇温してトルエンを除去し、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、上記一般式(G5)で示されるイオン性オリゴマーa38(末端:OM基)を得た。このイオン性オリゴマーa38の数平均分子量は21,000であった。
 <ブロック共重合体b34の合成>
 ブロック共重合体b34は、イオン性セグメントとして上記オリゴマーa38、非イオン性セグメントとして上記オリゴマーa35を含有する。
  攪拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム0.56g(アルドリッチ試薬、4mmol)およびイオン性オリゴマーa38を21g(1mmol)入れた。装置内を窒素置換した後、NMP100mL、シクロヘキサン30mLを加え、100℃で脱水した後、昇温してシクロヘキサンを除去し、非イオン性オリゴマーa35を11g(1mmol)入れ、105℃で24時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、ブロック共重合体b34を得た。このブロック共重合体b34の数平均分子量は140,000、重量平均分子量は320,000であった。
 上記ブロック共重合体b34のIECは、2.2meq/gであった。上記ブロック共重合体b34を用いて作製した電解質膜は、ラメラ様の相分離構造が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は12.5J/gであった。したがって、IECと結晶化熱量との積は27.5であった。
 [比較例25]
 <下記一般式(G15)で表される非イオン性オリゴマーa37の合成)
 攪拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム13.82g(アルドリッチ試薬、100mmol)、合成例1で得たK-DHBP20.66g(80mmol)、4,4’-ジフルオロベンゾフェノン20.95g(アルドリッチ試薬、96mmol)を入れた。装置内を窒素置換した後、NMP90mL、トルエン45mLを加え、180℃で脱水した後、昇温してトルエンを除去し、210℃で1時間重合を行った。多量の水で再沈殿することで精製を行い、熱メタノールで洗浄することにより、下記一般式(G15)で示される非イオン性オリゴマーa37を得た。この非イオン性オリゴマーa37の数平均分子量は3,000であった。なお、一般式(G15)において、Nは1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000033
 <ブロック共重合体b35の合成)
 攪拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム8.29g(アルドリッチ試薬、60mmol)、4,4’-ビフェノール8.94g(アルドリッチ試薬、48mmol)および合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン16.89g(40mmol)を入れた。装置内を窒素置換した後、NMP90mL、トルエン45mLを加え、180℃で脱水した後、昇温してトルエンを除去し、210℃で1時間重合を行い、イオン性オリゴマーa40を得た。このイオン性オリゴマーa40の数平均分子量は4,000であった。
 次に、非イオン性オリゴマーa37を17.46g(40mmol)とトルエン20mLを追加し、180℃で再度脱水した後、昇温してトルエンを除去し、230℃で8時間重合を行い、ブロック共重合体b35を得た。このブロック共重合体b35の数平均分子量は110,000、重量平均分子量は271,000であった。
 上記ブロック共重合体b35のIECは、2.1meq/gであった。上記ブロック共重合体b35を用いて作製した電解質膜は、海島様の相分離構造が確認できた。また、DSCにより結晶化ピークが認められ、結晶化熱量は11.1J/gであった。したがって、IECと結晶化熱量との積は23.3であった。
 [比較例26]
 <ブロック共重合体b36>
 ブロック共重合体b36として、前述のブロック共重合体b8を使用した。上記ブロック共重合体b36は、DSCにより結晶化ピークが認められなかった。したがって、IECと結晶化熱量との積は算出できなかった。
 [測定結果]
 実施例21~27および比較例21~26で得られた電解質材料の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000034
 実施例21~27では、IECが1.8meq/g以上3.0meq/g以下で、かつIECと結晶化熱量(J/g)との積が35.0以上47.0以下である電解質材料(II)を用いたことから、乾湿寸法変化率が小さく、かつ低加湿および高加湿におけるプロトン伝導度が高くなっている。すなわち、機械的耐久性とプロトン伝導性とが比較的高いレベルで両立している。
 一方、比較例21~26は、いずれもIECおよびIECと結晶化熱量(J/g)との積のどちらか一方が上記範囲から外れており、乾湿寸法変化率もしくはプロトン伝導度が劣っている。すなわち、機械的耐久性とプロトン伝導性とが両立されていない。
 本発明において、機械的耐久性とプロトン伝導性とを比較的高いレベルで両立させるという観点から、乾湿寸法変化率が7.0%以下でかつ低加湿プロトン伝導度が0.85mS/cm以上、高加湿プロトン伝導度が9.00mS/cm以上であることが好ましく、乾湿寸法変化率が6.5%以下でかつ低加湿プロトン伝導度が0.90mS/cm以上、高加湿プロトン伝導度が9.50mS/cm以上であることがより好ましく、乾湿寸法変化率が6.0%以下で低加湿プロトン伝導度が1.00mS/cm以上、高加湿プロトン伝導度が11.00mS/cm以上であることがさらに好ましく、乾湿寸法変化率が5.7%以下で低加湿プロトン伝導度が1.10mS/cm以上、高加湿プロトン伝導度が13.00mS/cm以上であることが特に好ましい。
1 相1
2 相2

Claims (14)

  1.  イオン性基を含有するセグメント(以下「イオン性セグメント」という)とイオン性基を含有しないセグメント(以下「非イオン性セグメント」という)とをそれぞれ有するブロック共重合体からなる高分子電解質材料であって、前記高分子電解質材料は相分離構造を有し、かつ、下記条件1および条件2の少なくとも1つを満たす高分子電解質材料。
    <条件1>広角X線回折によって測定される前記高分子電解質材料の飽和結晶化度が5%以上30%以下である、
    <条件2>前記高分子電解質材料のイオン交換容量(IEC)が1.8meq/g以上3.0meq/g以下であり、かつ、前記高分子電解質材料のIEC(meq/g)と、示差走査熱量分析法によって測定される前記高分子電解質材料の結晶化熱量(J/g)との積が、35.0以上47.0以下である。
  2.  前記高分子電解質材料が共連続様またはラメラ様の相分離構造を有する請求項1に記載の高分子電解質材料。
  3.  前記相分離構造の平均周期サイズが15~100nmである請求項1または2のいずれかに記載の高分子電解質材料。
  4.  前記ブロック共重合体が、芳香族ポリエーテル系共重合体である請求項1~3のいずれかに記載の高分子電解質材料。
  5.  前記ブロック共重合体が、芳香族ポリエーテルケトン系共重合体である請求項1~4のいずれかに記載の高分子電解質材料。
  6.  前記ブロック共重合体が、前記イオン性セグメントと前記非イオン性セグメントとの間を結合するリンカー部位を有する請求項1~5のいずれかに記載の高分子電解質材料。
  7.  前記非イオン性セグメントが、下記一般式(S3)で表される構造を含有する請求項1~6のいずれかに記載の高分子電解質材料。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(S3)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基、ケトン基に誘導され得る保護基を表す。*は、一般式(S3)または他の構成単位との結合を表す。)
  8. 前記一般式(S3)で表される構造が下記一般式(S4)で表される構造である請求項7に記載の高分子電解質材料。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S4)または他の構成単位との結合を表す。
  9.  前記非イオン性セグメントの数平均分子量が15,000以上である請求項1~8のいずれかに記載の高分子電解質材料。
  10.  請求項1~9のいずれかに記載の高分子電解質材料を含む高分子電解質成型体。
  11.  請求項10に記載の高分子電解質成型体を用いて構成される触媒層付電解質膜。
  12.  請求項10に記載の高分子電解質成型体を用いて構成される膜電極接合体。
  13.  請求項10に記載の高分子電解質成型体を用いて構成される固体高分子燃料電池。
  14.  請求項10に記載の高分子電解質成型体を用いて構成される水電解式水素発生装置。
PCT/JP2022/008257 2021-03-23 2022-02-28 高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置 WO2022202122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280021494.4A CN117098798A (zh) 2021-03-23 2022-02-28 高分子电解质材料、使用其的高分子电解质成型体、带有催化剂层的电解质膜、膜电极接合体、固体高分子燃料电池及水电解式氢气发生装置
EP22774920.7A EP4317252A1 (en) 2021-03-23 2022-02-28 Polymer electrolyte material, polymer electrolyte molded body using same, electrolytic membrane having catalyst layer attached thereto, membrane-electrode assembly, solid polymer fuel cell, and water-electrolysis-type hydrogen generator
JP2022515039A JPWO2022202122A1 (ja) 2021-03-23 2022-02-28
US18/282,278 US20240170704A1 (en) 2021-03-23 2022-02-28 Polymer electrolyte material, polymer electrolyte molded body using same, electrolytic membrane having catalyst layer attached thereto, membrane-electrode assembly, solid polymer fuel cell, and water-electrolysis-type hydrogen generator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-048314 2021-03-23
JP2021048314 2021-03-23
JP2021111235 2021-07-05
JP2021-111235 2021-07-05
JP2021-204233 2021-12-16
JP2021204233 2021-12-16

Publications (1)

Publication Number Publication Date
WO2022202122A1 true WO2022202122A1 (ja) 2022-09-29

Family

ID=83395595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008257 WO2022202122A1 (ja) 2021-03-23 2022-02-28 高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置

Country Status (4)

Country Link
US (1) US20240170704A1 (ja)
EP (1) EP4317252A1 (ja)
JP (1) JPWO2022202122A1 (ja)
WO (1) WO2022202122A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018487A1 (fr) 2006-08-11 2008-02-14 Toray Industries, Inc. Matériau électrolyte polymère, produit moulé d'électrolyte polymère utilisant le matériau électrolyte polymère et procédé de fabrication du produit moulé d'électrolyte polymère, composite membrane électrode et pile à combustible à polymères solides
WO2013002274A1 (ja) * 2011-06-28 2013-01-03 東レ株式会社 芳香族スルホン酸誘導体、スルホン酸基含有ポリマー、ブロック共重合体、高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
WO2013027724A1 (ja) * 2011-08-23 2013-02-28 東レ株式会社 ブロック共重合体およびその製造方法、ならびにそれを用いた高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
WO2013031675A1 (ja) 2011-08-29 2013-03-07 東レ株式会社 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
JP2014071971A (ja) * 2012-09-28 2014-04-21 Hitachi Ltd 固体高分子電解質膜およびそれを用いた燃料電池
JP2015095399A (ja) * 2013-11-13 2015-05-18 株式会社カネカ 高分子電解質、およびその利用
JP2018110108A (ja) * 2016-12-12 2018-07-12 東レ株式会社 高分子電解質組成物、それを用いた高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池、固体高分子形水電解式水素発生装置および電気化学式水素圧縮装置、ならびに高分子電解質組成物の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018487A1 (fr) 2006-08-11 2008-02-14 Toray Industries, Inc. Matériau électrolyte polymère, produit moulé d'électrolyte polymère utilisant le matériau électrolyte polymère et procédé de fabrication du produit moulé d'électrolyte polymère, composite membrane électrode et pile à combustible à polymères solides
WO2013002274A1 (ja) * 2011-06-28 2013-01-03 東レ株式会社 芳香族スルホン酸誘導体、スルホン酸基含有ポリマー、ブロック共重合体、高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
WO2013027724A1 (ja) * 2011-08-23 2013-02-28 東レ株式会社 ブロック共重合体およびその製造方法、ならびにそれを用いた高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
WO2013031675A1 (ja) 2011-08-29 2013-03-07 東レ株式会社 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
JP2014071971A (ja) * 2012-09-28 2014-04-21 Hitachi Ltd 固体高分子電解質膜およびそれを用いた燃料電池
JP2015095399A (ja) * 2013-11-13 2015-05-18 株式会社カネカ 高分子電解質、およびその利用
JP2018110108A (ja) * 2016-12-12 2018-07-12 東レ株式会社 高分子電解質組成物、それを用いた高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池、固体高分子形水電解式水素発生装置および電気化学式水素圧縮装置、ならびに高分子電解質組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Annual Review of Physical Chemistry", vol. 41, 1990, pages: 525

Also Published As

Publication number Publication date
EP4317252A1 (en) 2024-02-07
US20240170704A1 (en) 2024-05-23
JPWO2022202122A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
KR101383938B1 (ko) 고분자 전해질 재료, 이를 이용한 고분자 전해질 성형체 및그의 제조 방법, 막 전극 복합체 및 고체 고분자형 연료 전지
JP5338990B2 (ja) 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
JP7142796B1 (ja) ブロック共重合体、ならびにそれを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
WO2022202122A1 (ja) 高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置
WO2022201958A1 (ja) 高分子電解質膜、ブロック共重合体、高分子電解質材料、高分子電解質成型体、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
JP7276600B2 (ja) ブロック共重合体およびその製造方法、高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池ならびに水電解式水素発生装置
JP2024136654A (ja) 高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置
JP2022167820A (ja) 高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
WO2024058020A1 (ja) ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
CN117098798A (zh) 高分子电解质材料、使用其的高分子电解质成型体、带有催化剂层的电解质膜、膜电极接合体、固体高分子燃料电池及水电解式氢气发生装置
JP2024033206A (ja) 電解質膜、膜電極接合体および膜電極接合体を備えた燃燃料電池の運転方法
CN116997595A (zh) 嵌段共聚物和其制造方法、高分子电解质材料、高分子电解质成型体、高分子电解质膜、带催化剂层的电解质膜、膜电极复合体、固体高分子型燃料电池以及水电解式氢气产生装置
JP2011225737A (ja) 新規イオン伝導性ブロック共重合体ポリマーおよびその用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022515039

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280021494.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18282278

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022774920

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774920

Country of ref document: EP

Effective date: 20231023