[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022270516A1 - Method for producing granular solidified slag, and production facility line for same - Google Patents

Method for producing granular solidified slag, and production facility line for same Download PDF

Info

Publication number
WO2022270516A1
WO2022270516A1 PCT/JP2022/024777 JP2022024777W WO2022270516A1 WO 2022270516 A1 WO2022270516 A1 WO 2022270516A1 JP 2022024777 W JP2022024777 W JP 2022024777W WO 2022270516 A1 WO2022270516 A1 WO 2022270516A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
mixed
solidified
solid
crushed
Prior art date
Application number
PCT/JP2022/024777
Other languages
French (fr)
Japanese (ja)
Inventor
伸行 紫垣
真穂子 日吉
恵太 田
善幸 中村
建 星野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280043923.8A priority Critical patent/CN117677593A/en
Priority to KR1020247000819A priority patent/KR20240019308A/en
Priority to JP2022559470A priority patent/JP7448033B2/en
Publication of WO2022270516A1 publication Critical patent/WO2022270516A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method for producing granular solidified slag and a series of production facilities suitable for this production.
  • slag is generated as a by-product of steel products.
  • this slag is commercialized after quality control is performed by water granulation treatment, steam aging treatment, or the like. That is, most of the blast furnace slag is granulated and used as a raw material for cement as granulated blast furnace slag.
  • steelmaking slag is used for applications such as roadbed materials after promoting hydration expansion of free calcium oxide (f-CaO) by steam aging treatment in advance.
  • slag has attracted attention from the viewpoint of reducing carbon dioxide (CO 2 ) emissions in recent years.
  • CO 2 carbon dioxide
  • molten slag retains heat of about 1.8 GJ/t-slag, and by recovering heat from slag, it is expected to reduce CO 2 by saving energy.
  • Carbonation of f-CaO in slag is also expected as one of CO 2 fixation technologies.
  • these slag treatment methods are often incompatible with the process for commercializing the slag, and have many problems for practical use.
  • Patent Document 1 discloses that blast furnace slag is solidified into a plate-like shape using a mold, then the plate-like solidified slag is hot crushed, and then the crushed solidified slag is crushed.
  • a method is described for recovering the heat carried by the slag by charging a slag heat recovery facility. According to this method, an energy-saving effect can be obtained by recovering the heat of the slag, and a dense aggregate having a low water absorption rate and excellent abrasion resistance can be produced as a slag product.
  • Patent Document 2 Ca in slag is extracted by a wet treatment using an acid solution, and then reacted with CO 2 to be carbonated. are described. Further, in Patent Documents 3 and 4, when water is sprinkled on the solidified high-temperature steelmaking slag to subject the steelmaking slag to steam aging treatment, CO 2 is supplied to remove the f-CaO contained in the steelmaking slag. is described.
  • JP 2014-85064 A Japanese Patent Application Laid-Open No. 2005-97072 JP-A-6-158124 JP-A-8-259282
  • Patent Documents 3 and 4 describe methods for adjusting the size of slag particles while hot for efficient steam aging treatment and carbonation treatment. has not been disclosed in detail. Therefore, for example, when the slag is in the form of a relatively large mass and the total surface area of the slag relative to the mass of the slag is small, the steam aging treatment and the carbonation treatment take time, and the steam aging treatment and the carbonation treatment are performed efficiently. can't do
  • the present invention has been made in view of the above problems, and its object is to efficiently perform slag treatment such as heat recovery treatment, steam aging treatment, and carbonation treatment on solidified slag.
  • the object of the present invention is to propose a slag production method and a series of production facilities for granular solidified slag.
  • the present invention for solving the above problems is as follows.
  • Molten slag and solid matter are supplied into a mold, and solidification of the molten slag proceeds in a state in which gaps between the solid matter are filled with the molten slag in the mold to produce a mixed solidified product.
  • a mixed coagulum making step A crushing step of crushing the mixed solidified material into granules to produce a crushed mixed material; a separation step of separating the mixed crushed material into a plurality of mixed crushed material groups according to particle size or material to obtain granular solidified slag;
  • a method for producing granular solidified slag comprising:
  • [3] further comprising a first slag heat recovery treatment step of subjecting the crushed mixed material of the crushed mixed material group containing granular solidified slag having a relatively low particle size among the plurality of crushed mixed material groups to heat recovery treatment;
  • the method for producing granular solidified slag according to the above [1] or [2].
  • Granulated solidified slag according to any one of [1] to [9], wherein in the mixed solidified product producing step, two or more types of solids having different particle sizes or materials are supplied into the mold. manufacturing method.
  • Mixed solidified product production equipment having a molten slag supply device for supplying molten slag into the mold and a solid matter supply device for supplying solid matter into the mold; A crushing facility for crushing the mixed solidified material produced by the mixed solidified material production facility to produce a mixed crushed material, and separating the mixed solidified material into a plurality of mixed crushed material groups according to particle size or material to form granules. and separation equipment for obtaining solidified slag.
  • Said [14] which has a steam supply device downstream of said separation facility for supplying steam to said crushed mixed material of a group of crushed mixed material containing granular solidified slag having a relatively low particle size for steam aging.
  • the equipment train for producing granular solidified slag according to any one of [18].
  • a carbon dioxide gas supply device for supplying carbon dioxide gas to the crushed mixed material group containing granular solidified slag with a relatively low particle size to perform carbonation treatment.
  • a conveying path is provided for conveying part or all of the mixed crushed material subjected to the heat recovery treatment to the solid matter supply device.
  • slag treatment such as heat recovery treatment, steam aging treatment, and carbonation treatment can be efficiently performed on solidified slag.
  • FIG. 4 is a diagram showing the relationship between the particle size of granular solidification slag and the fixed amount of carbon dioxide.
  • FIG. 2 is a diagram showing a preferred example of a series of production facilities for granular solidified slag according to the present invention; 4 is a diagram showing a solid-liquid slag mixing solidification facility having a configuration different from that of FIG. 3.
  • FIG. It is a figure which shows the solid-liquid slag mixed solidification installation which has a reduction apparatus. It is a figure which shows the bottom part shape of a casting_mold
  • FIG. 4 is a diagram showing another preferred example of a train of production equipment for granular solidified slag according to the present invention
  • FIG. 4 is a diagram showing yet another preferred example of a train of production equipment for granular solidified slag according to the present invention
  • FIG. 5 is a diagram showing yet another preferred example of a train of production equipment for granular solidified slag according to the present invention
  • FIG. 2 is a diagram showing an example of supplying two types of solids to a mold in a mixed solids production facility according to the present invention
  • FIG. 4 is a diagram showing another example of supplying two types of solids to a mold in a mixed solids production facility according to the present invention
  • FIG. 4 is a diagram showing an example of the shape of the bottom of the mold when two types of solids are supplied to the mold in the equipment for producing a mixed solid according to the present invention.
  • FIG. 2 is a diagram showing a preferred example of a train of equipment for producing granular solidified slag that supplies two types of solids to the mold according to the present invention;
  • FIG. 3 shows another preferred example of a production train for granular solidified slag feeding two types of solids to the mold according to the present invention;
  • molten slag and solids are supplied into a mold, and the molten slag is solidified and mixed while filling the gaps between the solids in the mold with molten slag.
  • a mixed coagulum production process for producing coagulates a crushing process for crushing the mixed coagulates into granules to produce mixed crushed materials, and separating the mixed crushed materials into a plurality of mixed crushed material groups according to particle size or material. and a separation step of obtaining granular solidified slag.
  • the present inventors diligently studied methods for producing granular solidified slag that can efficiently perform slag treatments such as heat recovery treatment, steam aging treatment, and carbonation treatment.
  • slag treatments such as heat recovery treatment, steam aging treatment, and carbonation treatment.
  • the present inventors supply molten slag and solid slag (solid matter) into a mold to produce solid-liquid mixed solidified slag (mixed solidified matter), It has been found that generating cracks in the solidified region where the molten slag is solidified and/or in the solid slag (solid matter) is extremely effective for convenient subsequent hot crushing.
  • the slag stabilization treatment such as steam aging treatment and carbonation treatment
  • the larger the grain size of the granular solidified slag that is, the coarser the grain
  • the f - A long time is required for the hydration reaction and carbonation reaction of CaO to proceed. Therefore, when coarse slag with a large particle size and fine slag with a small particle size are mixed in the granular solidified slag, the treatment time is not uniform.
  • FIG. 2 shows the relationship between the grain size of granular solidified slag and the amount of CO2 fixed, ie, the amount of slag carbonation.
  • FIG. 2 shows the amount of CO 2 fixed when 300 g of steelmaking slag with a particle size of 0 to 60 mm is heated to 120 ° C. and then a CO 2 -steam mixed gas with a CO 2 concentration of 25% is passed for 24 hours. ing.
  • the fixed amount of CO 2 was calculated from a weight change curve obtained by thermogravimetric measurement (TG) of the slag after the CO 2 -steam mixed gas flowed.
  • TG thermogravimetric measurement
  • the processing time for the entire slag is determined by the processing time for the coarse-grained slag, resulting in inefficient processing.
  • the present inventors diligently studied how to efficiently apply slag treatment to granular solidified slag produced by hot crushing solid-liquid mixed solidified slag (mixed solidified material).
  • the granular solidified slag produced as described above is separated into a plurality of mixed crushed material groups according to the particle size or material, and the granular solidified slag is independently subjected to slag treatment for each mixed crushed material group.
  • the inventors have found that it is extremely effective to create a state in which this is possible, and have completed the present invention.
  • FIG. 3 shows a preferred example of a production equipment line used in the method for producing granular solidified slag according to the present invention.
  • the row of production facilities for granular solidified slag shown in FIG. A liquid slag mixing equipment 4, a slag crushing equipment 5 for crushing the solid-liquid mixed solidified slag S produced by the solid-liquid slag mixing and solidifying equipment 4 to produce granular solidified slag Sg, A slag classification facility 7 that classifies into a plurality of granular slag groups according to , and a slag heat recovery facility 8 ( A first slag heat recovery facility 8A) and a slag heat recovery facility 8 (second slag heat recovery facility 8B) for recovering the heat of granular solidified slag Si in a group of granular slags with relatively high grain sizes.
  • "classification” refers to separating the granular solidified slag Sg according to the particle size, and is one form of separation.
  • the mold 1 has recesses to accommodate the solid slag S1 and the molten slag S2, and moves horizontally on a line (not shown).
  • solid slag S1 is supplied to the mold 1 from the solid slag supply device 2
  • molten slag S2 is supplied to the mold 1 from the molten slag supply device 3
  • solidification of the molten slag S2 proceeds in the mold 1 to solidify.
  • a liquid-mixed solidified slag S is produced (solidified slag producing step).
  • the solid slag S1 and the molten slag S2 are supplied to a mold and solidified, and part of the solid-liquid mixed solidified slag S is reused, or manufactured by another manufacturing method. It can be appropriately selected according to the desired slag quality, such as solidified slag.
  • a solid slag S1 may be supplied from the device 2, and the molten slag S2 may be solidified in the mold 1.
  • the solid slag feeder 2 includes a hopper 2a for receiving the solid slag S1 and cutting out a predetermined amount, and a slag gutter for guiding the solid slag S1 cut out by the hopper 2a into the mold 1. 2b.
  • the molten slag supply device 3 includes a tilting ladle 3a that accommodates and tilts the molten slag S2 to supply the molten slag S2, and a slag gutter for pouring the molten slag S2 supplied from the tilting ladle 3a into the mold 1. 3b. Any device is not limited to the illustrated example, and any configuration can be used as long as it can supply a predetermined amount of solid slag S1 and molten slag S2.
  • the method using the solid-liquid slag mixing and solidification equipment 4 shown in FIG. 3 is particularly effective when the mold 1 to be used is relatively small.
  • the mold 1 is relatively large, when the slag flow rate increases when molten slag S2 is supplied, the solid slag S1 charged in advance is swept away by the flow of molten slag S2 and is evenly distributed in the mold 1. It is also assumed that it will not be possible. Therefore, when a large mold 1 is used, the solid-liquid slag mixing and solidification equipment 4 shown in FIG. preferred.
  • a solid slag supply device 2 and a molten slag supply device 3 are arranged so that the solid slag S1 and the molten slag S2 can be simultaneously supplied into the mold 1, and the solid slag S1 and the molten slag S2 are supplied into the mold 1. may be simultaneously supplied to
  • the molten slag is filled in the mold 1 with the gaps between the solid slags S1 filled with the molten slag S2. It is essential to allow the solidification of S2 to proceed and introduce cracks in the solidified zone.
  • the temperature difference is extremely large between the solid slag S1, which is close to room temperature, and the molten slag S2, which is about 1600°C. Therefore, when the molten slag S2 and the solid slag S1 are mixed and solidified, a large thermal stress is generated inside the solidified slag in which the molten slag S2 is solidified, promoting crack generation. Further, the solidified slag thermally shrinks due to cooling, while the solid slag S1 thermally expands due to heating. Therefore, the generation of cracks accompanying the volume change is also promoted. Furthermore, inconsistency of the crystal interface occurs at the boundary between the solidified slag obtained by solidifying the molten slag and the solid slag S1.
  • the solid slag S1 supplied into the mold 1 is preferably supplied until the layer thickness is 3/4 or more of the solidified thickness so that the solid-liquid mixed solidified slag S can be easily crushed.
  • the layer thickness of the solid slag S1 is thinner than the layer thickness of the solid-liquid mixed solidified slag S.
  • the particle size of the solid slag S1 As for the particle size of the solid slag S1, it is most preferable to supply only one layer of solid slag S1 having a particle size of 3/4 or more of the solidification thickness. It may be supplied in multiple layers. However, if the particle size of the solid slag S1 becomes too small, it becomes difficult for the molten slag S2 to penetrate into the gaps between the solid slag S1, and furthermore, cracks that occur at the boundary between the solidified slag and the solid slag S1 also occur due to solid-liquid mixed solidification. It becomes difficult to progress in the thickness direction of the slag S.
  • the particle size of the solid slag S1 is adjusted so that the solid slag S1 in the mold 1 has about three layers or less.
  • the solid-liquid ratio between the solid slag S1 and the solidified slag is not particularly limited as long as the solid-liquid mixed solidified slag S can be easily crushed.
  • the solidified slag is partially vitrified by the rapid cooling action of the solid slag S1 and the mold 1. there is a possibility. Therefore, the cooling rate of the solidified slag and the slag temperature after completion of solidification may be adjusted by suppressing the supply amount of the solid slag S1.
  • the term "crack" refers to the quenching effect of the solid slag S1, the thermal contraction and It is a local crack that occurs due to thermal stress occurring in the vicinity of the interface between the solidified region of the molten slag S2 and the solid slag S1 due to the difference in thermal expansion.
  • This crack develops in a form of relieving the thermal stress inside the solidified slag, and mainly in the solidified region of the gap between the solid slugs S1, and has a length of about 5 to 20 mm in a form that bridges the solid slugs S1.
  • this thermal stress also acts on the solid slug S1 side, cracks may occur on the solid slug S1 side. In any case, it is essential to form crack initiation points by introducing cracks in the solidified zone and/or solid slag S1.
  • the solid-liquid mixed solidified slag S solidified after the solid slag S1 and the molten slag S2 are mixed can be easily granulated in the subsequent slag crushing equipment 5. Can be crushed. That is, the solid-liquid mixed solidified slag S obtained by mixing and solidifying the solid-liquid slag according to the above is easier to break than the conventional solidified slag solidified by supplying only the molten slag, so it can be granulated by simple crushing. is.
  • Pushing S1 toward the bottom of the mold 1 is advantageous in the following points. That is, when the molten slag S2 is solidified in the mold 1, since the temperature of the molten slag S2 is extremely high, the surface of the molten slag S2 is rapidly cooled by the atmosphere to form a solidified layer. There is no problem if the supply of the solid slag S1 is completed before the solidified layer is formed on the surface of the molten slag S2 supplied to the mold 1, but the solidified layer is formed prior to the supply of the solid slag S1.
  • a reduction device 6 is provided on the downstream side of the solid slag supply device 2, and after supplying molten slag S2 into the mold 1, solid slag S1 is supplied into the mold 1. Then, the solid slag S1 is pushed down toward the bottom of the mold 1 by the reduction device 6, so that the solid slag S1 is reliably charged into the molten slag S2 layer in the mold 1. As the solidified layer on the surface of the molten slag S2 grows, it becomes difficult to push the solid slag S1. Therefore, the reduction device 6 is preferably arranged close to the solid slag supply device 2 so that the reduction device 6 can reduce the solid slag S1 at a relatively early stage before the solidified layer grows.
  • screw-down device 6 As the screw-down device 6, a screw-down device that moves up and down with only one vertical axis, and a multi-axis type screw-down device that goes up and down while moving or swinging according to the horizontal movement of the mold 1 can be applied, but the invention is not limited to this. .
  • the mold 1, as shown in FIG. 6, has a plurality of protuberances 1a on its bottom, which is advantageous in the following points. That is, by supporting the solid slag S1 with the plurality of protrusions 1a on the bottom of the mold 1, it is possible to prevent the solid slag S1 from being swept away by the slag flow when the molten slag S2 is supplied.
  • the raised portion 1a itself also has the effect of locally reducing the solidified thickness t in the depth direction of the mold 1, it acts effectively when the solid-liquid mixed solidified slag S is crushed. If the protruding portion 1a has even a small portion protruding from the bottom of the mold 1, it will exhibit the above-described effects. . Therefore, it is preferable that the raised portion 1a has a height capable of supporting the solid slugs S1 and has a relatively gentle raised portion shape so that the solid slugs S1 are distributed at regular intervals.
  • the solid-liquid mixed solidified slag S produced as described above is crushed by the slag crushing equipment 5 to produce granular solidified slag Sg. (slag crushing step).
  • the solid-liquid mixed solidified slag S is easier to crush than the solidified slag obtained by solidifying only the molten slag S2
  • the solid-liquid mixed solidified slag S can be granulated by simple crushing.
  • solid-liquid mixed solidification is performed by applying an impact force due to collision to the solid-liquid mixed solidified slag S as shown in FIG.
  • the rotating body 5a for crushing the slag S can be used, it is not limited to this.
  • the granular solidified slag Sg produced as described above is classified into a plurality of granular slag groups according to the particle size by the slag classification equipment 7 (slag classification step).
  • the solid-liquid mixed solidified slag S is difficult to granulate with a single particle size because the locations where cracks are generated and propagated are not uniform. Therefore, if granular solidified slag with a large particle size distribution is subjected to slag treatment as it is, the time required to treat coarse-grained slag with a relatively high particle size becomes a constraint in the process, and slag is efficiently treated. cannot be applied, and the quality of the obtained product slag is not stable. Moreover, there is also a problem that the equipment becomes large-sized.
  • the granular solidified slag Sg produced by crushing the solid-liquid mixed solidified slag S is classified into a plurality of granular slag groups according to the particle size.
  • slag treatment on granular solidified slag Sg with a certain degree of particle size, and granular solidified slag that can efficiently perform slag treatments such as heat recovery treatment, steam aging treatment, and carbonation treatment. Sg can be produced.
  • a sieve can be used most conveniently as the slag classifying equipment 7 .
  • the slag classifying equipment 7 when classifying at a high temperature immediately after crushing, it is necessary to have a heat-resistant structure such as a water-cooled lattice mesh, so as the slag classifying equipment 7, for example, a dry classifying equipment using an air jet method can be used. .
  • a classification facility based on a cut gate system that uses a gate that allows only slag smaller than a predetermined size to pass through in the conveying direction.
  • the slag classifier 7 can be appropriately selected according to the treatment temperature and treatment amount.
  • the particle size when classifying the granular solidified slag Sg can be arbitrarily set according to the target particle size of the slag product.
  • the granular solidified slag produced by the method according to the present invention is used as a roadbed material slag
  • the granular solidified slag (fine slag) Ss of the granular slag group having a relatively low particle size obtained after the slag classification step is The particle size distribution is set so that it falls within the particle size standard for roadbed material slag.
  • the particle size of the slag may change in the slag heat recovery process and the carbonation treatment process, which will be described later, the particle size of the granular solidified slag in the slag classification process is appropriately adjusted according to the particle size of the final target slag product.
  • the classification of the granular solidified slag Sg is not limited to the classification into two granular slag groups as shown in FIG. 3, and can be classified into three or more granular slag groups.
  • slag heat recovery equipment 8 (first slag heat recovery equipment 8A), among the plurality of granular slag groups classified as described above, granular slag with a relatively low particle size (for example, a particle size of less than 10 mm)
  • a heat recovery treatment is applied to the granular solidified slag Ss of the group (first slag heat recovery treatment step). Since the solid-liquid mixed solidified slag S solidified in the solid-liquid slag mixed solidification equipment 4 can be easily crushed even when hot, high-temperature granular solidified slag Sg can be produced by hot crushing.
  • the granular solidified slag Sg is classified into a plurality of granular slag groups according to the particle size by the slag classifying equipment 7, the granular solidified slag Ss of the granular slag group with a relatively low particle size that can be used as product slag is classified as a first slag. It is charged into the heat recovery facility 8A and filled in the slag filling tank 8a. Then, a cooling gas 8b such as air is supplied into the slag filling tank 8a to recover the inherent heat of the granular solidified slag Ss.
  • a cooling gas 8b such as air is supplied into the slag filling tank 8a to recover the inherent heat of the granular solidified slag Ss.
  • the obtained heat-recovery gas 8c is supplied to, for example, each process in the steelworks, and effective utilization of the heat potential of the molten slag S2 (that is, the potential heat of the granular solidified slag Ss) is achieved.
  • the granular solidified slag Ss is discharged from the first slag heat recovery facility 8A, and then shipped as product slag as a roadbed material or aggregate.
  • a vertical packed tank system such as a coke dry quenching system (CDQ) or a rotary It is possible to appropriately design and use such as a floor system.
  • CDQ coke dry quenching system
  • the particle size of the granular solidified slag Ss charged into the first slag heat recovery equipment 8A is made relatively small by classification. Therefore, the heat can be efficiently recovered in a short period of time compared to the case where the slag is not uniform in particle size and contains slag with a relatively large particle size.
  • the granular solidified slag Si of the granular slag group with a relatively high grain size is used as product slag such as roadbed materials and aggregates. It is not possible. However, the granular solidified slag Si, which has a relatively large grain size, is also at a high temperature like the granular solidified slag Ss, which has a relatively small grain size. Therefore, as shown in FIG. 3, a second slag heat recovery facility 8B is provided separately from the first slag heat recovery facility 8A, and high-temperature granular solidified slag Si is charged into the second slag heat recovery facility 8B.
  • a second slag heat recovery facility 8B is provided separately from the first slag heat recovery facility 8A, and high-temperature granular solidified slag Si is charged into the second slag heat recovery facility 8B.
  • the cooling gas 8b is supplied into the slag-filled tank 8a by filling the slag-filled tank 8a with the cooling gas.
  • the heat of the granular solidified slag Si can be recovered in the same manner as the granular solidified slag Ss (second slag heat recovery step). It takes longer time to recover heat from the granular solidified slag Si than from the granular solidified slag Ss having a relatively low particle size.
  • a transport path 12 for transporting the granular solidified slag Si after heat recovery to the solid slag supply device 2 of the solid-liquid slag mixing and solidification equipment 4 is provided, and part or all of the granular solidified slag Si subjected to heat recovery treatment is preferably reused as solid slag S1 (slag recycling step).
  • coarse slag is inefficient in both heat recovery and slag stabilization processes such as CO2 fixation.
  • the solid slag S1 supplied to the mold 1 in the solid-liquid slag mixing and solidification equipment 4 it is more effective to use slag with a relatively large grain size in order to improve the crushability of the solidified slag. Therefore, it is preferable to reuse part or all of the granular solidified slag Si subjected to the heat recovery treatment as the solid slag S1.
  • the molten slag S2 will flow into the gaps between the particles of the solid slag S1.
  • the molten slag S2 solidifies before it permeates, making uniform solid-liquid mixed solidification difficult. Therefore, it is necessary to increase the particle gap to such an extent that the molten slag S2 can penetrate into the solid slag S1 gap. Therefore, it is preferable that the particle size of the reusable granular solidified slag Si is 10 mm or more.
  • the particle size of the granular solidified slag Si is larger than the slag solidification thickness of the solid-liquid mixed solidified slag S produced in the solid-liquid slag mixing and solidification equipment 4
  • the particle size of the solid slag S1 is larger than the solidification thickness of the molten slag S2.
  • the produced solid-liquid mixed solidified slag S is similarly subjected to hot crushing, and the uncrushed coarse-grained slag having a relatively large grain size is reused.
  • Coarse-grained slag undergoes repeated heat history due to solid-liquid slag mixed solidification and repeated hot crushing, and is gradually refined into fine-grained slag with a relatively small grain size, so it can be reused permanently. It is finally commercialized as fine-grained slag.
  • a vertical type such as a coke dry quenching equipment (CDQ)
  • CDQ coke dry quenching equipment
  • a packed tank system, a rotating bed system such as a sintering cooler, or the like can be appropriately designed and used.
  • the granular solidified slag Ss of the granular slag group with a relatively low grain size is treated for a short time
  • the granular solidified slag Si of the granular slag group with a relatively high grain size is treated for a short time.
  • the first slag heat recovery equipment 8A for granular solidified slag Ss with a relatively low grain size and the second slag heat recovery equipment 8B for granular solidified slag Si with a relatively high grain size are used for slag filling. If the height of the tank 8a is the same, the temperature of the heat recovery gas 8c will be lower for the granular solidified slag Si, which has a smaller total slag surface area per unit volume.
  • the height of the slag filling tank 8a of the second slag heat recovery facility 8B for granular solidified slag Si is higher than the slag filling tank 8a of the first slag heat recovery facility 8A for granular solidified slag Ss. It is also possible to increase the temperature of the heat recovery gas 8c by designing the heat recovery gas 8c to increase the chances of contact with the granular solidified slag Si during gas flow.
  • the granular solidified slag Ss of the group of granular slag having a relatively low particle size was subjected to heat recovery treatment, but steam was supplied as in the slag manufacturing facility line shown in FIG.
  • a steam supply device 9 for performing steam aging treatment is provided, and the granular solidified slag Ss can be subjected to steam aging treatment (steam aging treatment step). That is, the classified high-temperature granular solidified slag Ss is charged into the slag stabilization treatment equipment 10 and steam is supplied from the steam supply device 9 into the slag stabilization treatment equipment 10 .
  • the product slag obtained in this way has undergone an expansion reaction by steam aging treatment, and can be shipped as a roadbed material or aggregate.
  • a carbon dioxide gas supply device 11 for supplying carbon dioxide gas to perform carbonation treatment is provided, and the granular solidified slag Ss can be subjected to carbonation treatment. . That is, the classified high-temperature granular solidified slag Ss is charged into the slag stabilization treatment facility 10, and carbon dioxide gas is supplied from the carbon dioxide supply device 11 into the slag stabilization treatment facility 10.
  • One or both of the steam supply device 9 shown in FIG. 7 and the carbon dioxide gas supply device 11 shown in FIG. 8 can be incorporated into the first slag heat recovery facility 8A shown in FIG. That is, the high temperature granular solidified slag Ss is charged into the first slag heat recovery equipment 8A at a high temperature of about 1000°C.
  • the steam aging treatment and carbonation treatment of slag according to equilibrium theory, the hydration expansion of f-CaO in steam aging treatment is 580 ° C. or less, and the carbonation of f-CaO in carbonation treatment is at 898 ° C. or less. proceed.
  • the supply of the cooling gas 8b can be selected from among air, water vapor and carbon dioxide by means of a switching valve or the like. In this configuration, it is possible, for example, to switch from air supply for heat recovery to steam supply for steam aging according to the progress of slag heat recovery.
  • the slag temperature in the slag filling tank 8a is determined using the shape and temperature of the filled slag, the temperature of the heat recovery gas during heat recovery, etc., as described above, ISIJ International, Vol. 55 (2015), No. 10, pp. 2258-2265.
  • a method of estimating the temperature of the granular solidified slag Ss from the temperature of the inner wall by installing a thermocouple on the inner wall of the slag filling tank 8a that is in direct contact with the slag is also possible.
  • one or both of the steam supply device 9 shown in FIG. 7 and the carbon dioxide gas supply device 11 shown in FIG. 8 can be provided downstream of the first slag heat recovery facility 8A shown in FIG. That is, in the manufacturing equipment line shown in FIG. 3, the granular solidified slag Ss in the slag filling tank 8a of the first slag heat recovery equipment 8A has a temperature distribution in the flow direction of the cooling gas 8b. The temperature in the slag filling tank 8a does not become uniform except for the case where the heat is recovered by heating. For example, for the slag-filled tank 8a in which high-temperature granular solidified slag Ss of about 1000° C.
  • the first slag When performing the steam aging treatment and the carbonation treatment in the heat recovery facility 8A, both treatment effects can be non-uniform. Therefore, one or both of the steam supply device 9 and the carbon dioxide gas supply device 11 are provided downstream of the first slag heat recovery facility 8A independently of the first slag heat recovery facility 8A. Then, after cooling the granular solidified slag Ss to a predetermined temperature in the first slag heat recovery equipment 8A, the granular solidified slag Ss after heat recovery is discharged, and this discharged slag is treated as the slag stabilization shown in FIG. 7 or FIG. It is charged into the chemical treatment facility 10 . Thereby, the effect of the steam aging treatment and/or the carbonation treatment by the steam supply device 9 and the carbon dioxide gas supply device 11 can be made uniform.
  • first slag heat recovery equipment 8A steam supply device 9, and carbon dioxide gas supply device 11.
  • FIG. 9 it is possible to form a manufacturing equipment line in which a first slag heat recovery equipment 8A, a steam supply device 9 and a carbon dioxide gas supply device 11 are arranged in order on the outlet side of the slag classification equipment 7. is.
  • this line of production equipment it is of course possible to have the effects of the first slag heat recovery equipment 8A, the steam supply device 9 and the carbon dioxide gas supply device 11 described above.
  • the present invention has been described above, but as a result of further studies by the present inventors, the following findings have been obtained. That is, in the above explanation, the solid slag S1 and the molten slag S2 are supplied into the mold 1 to produce the solid-liquid mixed solidified slag S. It was found that even when metal particles or the like having As described above, what is supplied to the mold 1 together with the molten slag S2 is not limited to the solid slag S1, and may be a solid material including solid slag and metal particles having a melting point higher than the melting point of the molten slag S2. By supplying the molten slag S2 into the mold 1 together with such solids, the mixed solidified material S can be produced (mixed solidified material producing step).
  • the produced mixed solidified material S is crushed into granules to produce mixed crushed material Sg (crushing step), and the mixed crushed material Sg is separated into a plurality of mixed crushed material groups according to the particle size or material to form granular solidified slag. Ss and Si can be obtained (separation step).
  • the solid slag supply device 2 When supplying the solid matter into the mold 1 together with the molten slag S2, the solid slag supply device 2 is used as the solid matter supply device 2 for supplying the solid matter in the manufacturing equipment line for granular solidified slag shown in FIG.
  • the slag mixing and solidification facility 4 is assumed to be a mixed solidification production facility 2 having a solid matter supply device 2 and a molten slag supply device 3 .
  • the slag crushing equipment 5 is used as the crushing equipment 5 for crushing the mixed solidified material S to produce the crushed mixed material Sg.
  • the slag classifying equipment 7 is a separation equipment 7 for obtaining granular solidified slag by separating the mixed crushed material Sg into a plurality of mixed crushed material groups according to the particle size or material.
  • the melting point of the metal particles M is preferably higher than the melting point of the molten slag S2.
  • particles of a ferromagnetic material such as iron, which can be separated by magnetic separation in a downstream step, are more preferable.
  • the solidified thickness t of the mixed solidified material S is preferably 30 mm or more and 100 mm or less. In particular, in the case of using equipment that can easily control the solidified thickness, the solidified thickness t of the mixed solidified material S is more preferably 30 mm or more and 50 mm or less.
  • the solid matter S1 may be two or more kinds of solid matter having different particle sizes or materials.
  • both solid slag S1 and metal particles M may be used as solids.
  • this can be done by configuring the solid matter feeder 2 with a solid slag feeder 2A that feeds solid slugs S1 and a metal particle feeder 2B that feeds metal particles M.
  • the metal particle supply device 2B includes a hopper that stores the metal particles M and supplies a predetermined amount, and a gutter for guiding the metal particles M supplied from the hopper into the mold 1 .
  • the metal particles M can be placed on the solid slag S1 having a small size.
  • the metal particles M are iron balls that tend to roll easily, they can be stably dispersed and held within the mold 1 .
  • the heat load on the mold 1 can be reduced, the vitrification of the solid slag S1 can be suppressed, and the crushability of the mixed solidified material S by the metal particles M can be improved. Multiple effects can be obtained.
  • metal particles M such as iron balls with high thermal conductivity
  • a configuration may be adopted in which a plurality of protrusions 1a are provided on the bottom of the mold 1 to hold a plurality of metal particles M in a dispersed manner.
  • FIG. 13 shows a preferred example of a production equipment train used in the method for producing granular solidified slag in which two types of solids are supplied to the mold according to the present invention.
  • two types of solids, solid slag S1 and iron balls as metal particles M are used as solids. It is composed of a supply device 2A and a metal particle supply device 2B that supplies metal particles M. As shown in FIG.
  • the viscosity of the molten slag S2 is high, and the mixed solidified material S cannot be controlled to a predetermined solidification thickness, and a coarse mixed solidified material S is formed. If the molten slag S2 is supplied with bare metal mixed therein, supplying the mixed solidified material S as it is to the crushing equipment 5 may lead to damage to the equipment. Therefore, as shown in FIG. 13, a hot separation device 7 (7A) is provided between the mixed solidified material production equipment 4 and the crushing equipment 5, and the mixed solidified material S is separated by grain size or material while hot. It is more desirable to provide a hot separation step for separation. For example, a movable chute or the like can be used as the hot separation equipment 7A.
  • the transport timing of the coarse mixed solidified material S and the base metal is detected, and the mold 1 is reversed to drop the mixed solidified material S.
  • This can be done by moving the separating equipment 7A, such as a movable chute, which is provided directly below the position where the separation is carried out, in accordance with the falling timing of the coarse mixed solidified material S and the base metal.
  • the slag heat recovery equipment 8A and 8B in FIG. 8 can be used not only for heat recovery but also for steam aging and carbonation. It may be configured as a possible slag treatment facility 8A, 8B.
  • the granular solidified slag Ss is charged into the first slag heat recovery equipment 8A and filled in the filling layer 8a, and the water vapor supply device 9 and the carbon dioxide gas are supplied.
  • a mixed gas of carbon dioxide gas and water vapor may be supplied to the granular solidified slag Sg by the device 11 .
  • the calcium on the surface of the granular solidified slag Sg is ionized, the reactivity between the granular solidified slag Sg and the carbon dioxide gas and water vapor is improved, and calcium is produced by the reaction between the water vapor and the carbon dioxide gas.
  • the hydrate serves as an intermediate, which reduces the activation energy during the carbonation reaction and improves the reaction rate of carbonation.
  • the concentration of water vapor is 1 to 80% by volume, more preferably 1 to 60% by volume, where the sum of the concentration of carbon dioxide gas and water vapor is 100% by volume. %.
  • the mixed condensate S produced by the mixed condensate producing apparatus 4 contains iron balls. Therefore, the crushing equipment 5 is preferably of a ball mill type, and as the iron balls for crushing the mixed condensate S, the iron balls contained in the mixed condensate S can be used as they are. When using the ball mill type crushing equipment 5 , iron balls may be additionally charged into the crushing equipment 5 .
  • the mixed crushed material Sg discharged from the crushing equipment 5 is separated into a plurality of mixed crushed material groups according to the particle size or material. In FIG. 13, iron balls are separated together with solidified slag Si having a relatively large grain size.
  • the separated iron balls and the solidified slag Si having a relatively large grain size are subjected to heat recovery by the slag processing equipment 8B, and then to grain size adjustment and separation by grain size or material by the grain size adjustment equipment and the cold separation equipment. , can be reused as solids.
  • FIG. 14 shows another example of a production equipment train used in the method for producing granular solidified slag in which two types of solids are supplied to the mold according to the present invention.
  • iron balls having a relatively small size are used as the metal particles M, and when the mesh of the separation equipment 7 (7B) is large, the iron balls have a relatively large particle size It is supplied to the slag processing facility 8A together with small solidified slag Ss. After performing heat recovery together with the granular solidified slag Ss, the iron balls are finally separated and removed from the product slag by a magnetic separation process, and reused as the solid material supplied by the solid material supply device 2 .
  • slag treatment such as heat recovery treatment, steam aging treatment, and carbonation treatment can be efficiently performed on solidified slag, so it is useful in the steel industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided are a method for producing granular solidified slag, whereby slag processing such as heat recovery processing, steam aging processing, and carbonization processing of solidified slag can be efficiently performed, and a production facility line for granular solidified slag. The present invention is characterized by including a mixed solidified material manufacturing step for feeding molten slag S2 and solids S1, M into a mold 1 and causing solidification of the molten slag S2 to progress in a state in which gaps between the solids S1, M are filled by the molten slag S2 in the mold 1 to manufacture a solid/liquid mixed solidified material S, a slag crushing step for crushing the mixed solidified material S into granules to manufacture a mixed crushed material Sg, and a separation step for separating the mixed crushed material Sg in accordance with grain size or material properties into a plurality of mixed crushed material groups to obtain granular solidified slag.

Description

粒状凝固スラグの製造方法およびその製造設備列Method for producing granular solidified slag and its production equipment
 本発明は、粒状凝固スラグの製造方法およびこの製造に好適な製造設備列に関する。 The present invention relates to a method for producing granular solidified slag and a series of production facilities suitable for this production.
 例えば、高炉法による製鉄プロセスでは、鉄鋼製品の副産物として大量のスラグが発生する。一般に、このスラグは、水砕処理や蒸気エージング処理などにより品質制御を行った上で商品化されている。すなわち、高炉スラグの大半は、水砕処理され、高炉水砕スラグとしてセメント向け原料として使用される。また、製鋼スラグについては、予め蒸気エージング処理により遊離酸化カルシウム(f-CaO)の水和膨張を促進させた後に、路盤材向けなどの用途で使用されている。 For example, in the iron-making process using the blast furnace method, a large amount of slag is generated as a by-product of steel products. Generally, this slag is commercialized after quality control is performed by water granulation treatment, steam aging treatment, or the like. That is, most of the blast furnace slag is granulated and used as a raw material for cement as granulated blast furnace slag. In addition, steelmaking slag is used for applications such as roadbed materials after promoting hydration expansion of free calcium oxide (f-CaO) by steam aging treatment in advance.
 一方、近年の二酸化炭素(CO)排出削減の観点から、スラグの新たな価値が着目されている。例えば、溶融スラグは約1.8GJ/t-slagの熱を保有しており、スラグから熱回収を行うことにより、省エネルギー化によるCOの削減が期待されている。また、スラグ中のf-CaOの炭酸化についても、COの固定化技術の1つとして期待されている。しかしながら、これらのスラグ処理方法は、上記スラグを商品化するためのプロセスと両立しない場合が多く、実用化には多くの課題を有する。 On the other hand, the new value of slag has attracted attention from the viewpoint of reducing carbon dioxide (CO 2 ) emissions in recent years. For example, molten slag retains heat of about 1.8 GJ/t-slag, and by recovering heat from slag, it is expected to reduce CO 2 by saving energy. Carbonation of f-CaO in slag is also expected as one of CO 2 fixation technologies. However, these slag treatment methods are often incompatible with the process for commercializing the slag, and have many problems for practical use.
 溶融スラグが保有する熱を回収するプロセスとして、例えば特許文献1には、鋳型を用いて高炉スラグを板状に凝固させ、次いで板状の凝固スラグを熱間破砕した後、破砕した凝固スラグをスラグの熱回収設備に充填してスラグが保有する熱を回収する方法が記載されている。この方法によれば、スラグの熱回収による省エネルギー効果が得られると共に、スラグ商品として低吸水率かつ耐磨耗性に優れた緻密な骨材を製造することができる。 As a process for recovering heat possessed by molten slag, for example, Patent Document 1 discloses that blast furnace slag is solidified into a plate-like shape using a mold, then the plate-like solidified slag is hot crushed, and then the crushed solidified slag is crushed. A method is described for recovering the heat carried by the slag by charging a slag heat recovery facility. According to this method, an energy-saving effect can be obtained by recovering the heat of the slag, and a dense aggregate having a low water absorption rate and excellent abrasion resistance can be produced as a slag product.
 一方、スラグ中のf-CaOを炭酸化するプロセスとして、例えば特許文献2には、スラグ中のCaを酸液を用いた湿式処理で抽出した後、COと反応させて炭酸化し、COを固定化する方法が記載されている。また、特許文献3および特許文献4には、凝固した高温の製鋼スラグに散水して製鋼スラグに対して蒸気エージング処理を施す際に、COを供給して、製鋼スラグに含まれるf-CaOを炭酸化する方法が記載されている。 On the other hand, as a process for carbonating f-CaO in slag, for example, in Patent Document 2 , Ca in slag is extracted by a wet treatment using an acid solution, and then reacted with CO 2 to be carbonated. are described. Further, in Patent Documents 3 and 4, when water is sprinkled on the solidified high-temperature steelmaking slag to subject the steelmaking slag to steam aging treatment, CO 2 is supplied to remove the f-CaO contained in the steelmaking slag. is described.
特開2014-85064号公報JP 2014-85064 A 特開2005-97072号公報Japanese Patent Application Laid-Open No. 2005-97072 特開平6-158124号公報JP-A-6-158124 特開平8-259282号公報JP-A-8-259282
 特許文献1に記載された方法においては、鋳型を用いて作製された凝固スラグは緻密で強度が高いため、凝固スラグを熱間破砕することが難しい。凝固スラグの熱間破砕を十分に行うことができない場合には、破砕後の凝固スラグが粗粒化してスラグの総表面積が小さくなるため、スラグからの熱回収を効率的に行うことができない。 In the method described in Patent Document 1, since the solidified slag produced using the mold is dense and has high strength, it is difficult to hot crush the solidified slag. If the hot crushing of the solidified slag cannot be sufficiently performed, the crushed solidified slag becomes coarser and the total surface area of the slag becomes smaller, so heat cannot be efficiently recovered from the slag.
 特許文献2に記載された方法では、SiO、Al等を含むCa抽出残渣が多量に発生する。酸液を用いた湿式処理後の抽出残渣は、通常は粒状にはならないため、路盤材などの製品として使用することができない。 In the method described in Patent Document 2, a large amount of Ca extraction residue containing SiO 2 , Al 2 O 3 and the like is generated. The extraction residue after wet treatment using an acid solution usually does not become granular, so it cannot be used as a product such as a roadbed material.
 特許文献3および特許文献4に記載された方法について、特許文献3および特許文献4には、蒸気エージング処理および炭酸化処理を効率的に行うための熱間でのスラグ粒子のサイズの調整方法については詳しく開示されていない。そのため、例えばスラグが比較的大きな塊状であり、スラグの質量に対するスラグの総表面積が小さい場合には、蒸気エージング処理および炭酸化処理に時間を要し、蒸気エージング処理および炭酸化処理を効率的に行うことができない。 Regarding the methods described in Patent Documents 3 and 4, Patent Documents 3 and 4 describe methods for adjusting the size of slag particles while hot for efficient steam aging treatment and carbonation treatment. has not been disclosed in detail. Therefore, for example, when the slag is in the form of a relatively large mass and the total surface area of the slag relative to the mass of the slag is small, the steam aging treatment and the carbonation treatment take time, and the steam aging treatment and the carbonation treatment are performed efficiently. can't do
 本発明は、上記課題を鑑みてなされたものであり、その目的とするところは、凝固スラグに対する熱回収処理、蒸気エージング処理、炭酸化処理などのスラグ処理を効率的に行うことができる粒状凝固スラグの製造方法および粒状凝固スラグの製造設備列を提案することにある。 The present invention has been made in view of the above problems, and its object is to efficiently perform slag treatment such as heat recovery treatment, steam aging treatment, and carbonation treatment on solidified slag. The object of the present invention is to propose a slag production method and a series of production facilities for granular solidified slag.
 上記課題を解決する本発明は、以下の通りである。
[1]鋳型内に溶融スラグおよび固形物を供給し、前記鋳型内において前記固形物相互間の隙間を前記溶融スラグで満たした状態にて前記溶融スラグの凝固を進行させて混合凝固物を作製する混合凝固物作製工程と、
 前記混合凝固物を粒状に破砕して混合破砕物を作製する破砕工程と、
 前記混合破砕物を粒度または材質に応じて複数の混合破砕物群に分離して粒状凝固スラグを得る分離工程と、
を含むことを特徴とする、粒状凝固スラグの製造方法。
The present invention for solving the above problems is as follows.
[1] Molten slag and solid matter are supplied into a mold, and solidification of the molten slag proceeds in a state in which gaps between the solid matter are filled with the molten slag in the mold to produce a mixed solidified product. a mixed coagulum making step;
A crushing step of crushing the mixed solidified material into granules to produce a crushed mixed material;
a separation step of separating the mixed crushed material into a plurality of mixed crushed material groups according to particle size or material to obtain granular solidified slag;
A method for producing granular solidified slag, comprising:
[2]前記混合凝固物作製工程は、前記溶融スラグおよび前記固形物を供給した後、前記固形物を前記鋳型の底部に向かって押し込む押込工程をさらに含む、前記[1]に記載の粒状凝固スラグの製造方法。 [2] The granular solidification according to [1] above, wherein the mixed solidified material preparation step further includes a pushing step of pushing the solid material toward the bottom of the mold after supplying the molten slag and the solid material. A method for producing slag.
[3]前記複数の混合破砕物群のうち、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に対して熱回収処理を施す第1のスラグ熱回収処理工程をさらに含む、前記[1]または[2]に記載の粒状凝固スラグの製造方法。 [3] further comprising a first slag heat recovery treatment step of subjecting the crushed mixed material of the crushed mixed material group containing granular solidified slag having a relatively low particle size among the plurality of crushed mixed material groups to heat recovery treatment; The method for producing granular solidified slag according to the above [1] or [2].
[4]前記複数の混合破砕物群のうち、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に対して水蒸気を供給して蒸気エージング処理を施す蒸気エージング処理工程をさらに含む、前記[1]~[3]のいずれか一項に記載の粒状凝固スラグの製造方法。 [4] A steam aging treatment step of supplying steam to the crushed mixed material group of the crushed mixed material group containing granular solidified slag with a relatively low particle size among the plurality of crushed mixed material groups to perform steam aging treatment. The method for producing granular solidified slag according to any one of [1] to [3], further comprising:
[5]前記複数の混合破砕物群のうち、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に対して炭酸ガスを供給して炭酸化処理を施す炭酸化処理工程をさらに含む、前記[1]~[4]のいずれか一項に記載の粒状凝固スラグの製造方法。 [5] A carbonation treatment step of supplying carbon dioxide gas to the crushed mixed material group of the crushed mixed material group containing granular solidified slag having a relatively low particle size among the plurality of crushed mixed material groups to perform carbonation treatment. The method for producing granular solidified slag according to any one of [1] to [4], further comprising
[6]前記炭酸化処理工程において、前記炭酸ガスと水蒸気との混合ガスを供給する、前記[5]に記載の粒状凝固スラグの製造方法。 [6] The method for producing granular solidified slag according to [5], wherein the mixed gas of carbon dioxide gas and water vapor is supplied in the carbonation treatment step.
[7]前記複数の混合破砕物群のうち、比較的粒度の高い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に対して熱回収処理を施す第2のスラグ熱回収処理工程をさらに含む、前記[1]~[6]のいずれか一項に記載の粒状凝固スラグの製造方法。 [7] further comprising a second slag heat recovery treatment step of performing a heat recovery treatment on the crushed mixed material group of the crushed mixed material group containing granular solidified slag having a relatively high particle size among the plurality of crushed mixed material groups; The method for producing granular solidified slag according to any one of [1] to [6] above.
[8]前記第2のスラグ熱回収工程において熱回収処理が施された、比較的粒度の高い前記粒状凝固スラグを含む混合破砕物群の前記混合破砕物の一部または全てを、前記混合凝固物作製工程において前記固形物として再利用する固形物リサイクル工程をさらに含む、前記[7]に記載の粒状凝固スラグの製造方法。 [8] Part or all of the crushed mixed material group of the crushed mixed material group containing the granular solidified slag having a relatively high particle size, which has been subjected to heat recovery treatment in the second slag heat recovery step, is subjected to the mixed solidification The method for producing granular solidified slag according to [7] above, further comprising a solid matter recycling step of reusing the solid matter in the object producing step.
[9]前記混合凝固物作製工程において作製する前記混合凝固物の凝固厚を、100mm以下とする、前記[1]~[8]のいずれか一項に記載の粒状凝固スラグの製造方法。 [9] The method for producing granular solidified slag according to any one of [1] to [8], wherein the solidified thickness of the mixed coagulum produced in the mixed coagulum producing step is 100 mm or less.
[10]前記混合凝固物作製工程において、前記固形物を固形スラグとする、前記[1]~[9]のいずれか一項に記載の粒状凝固スラグの製造方法。 [10] The method for producing granular solidified slag according to any one of [1] to [9], wherein in the mixed solidified material producing step, the solid material is solid slag.
[11]前記混合凝固物作製工程において、前記固形物を、前記溶融スラグの融点以上の融点を有する金属粒子とする、前記[1]~[9]のいずれか一項に記載の粒状凝固スラグの製造方法。 [11] The granular solidified slag according to any one of [1] to [9], wherein in the mixed solidified product producing step, the solid is metal particles having a melting point equal to or higher than the melting point of the molten slag. manufacturing method.
[12]前記混合凝固物作製工程において、前記鋳型内に粒度または材質の異なる2種類以上の前記固形物を供給する、前記[1]~[9]のいずれか一項に記載の粒状凝固スラグの製造方法。 [12] Granulated solidified slag according to any one of [1] to [9], wherein in the mixed solidified product producing step, two or more types of solids having different particle sizes or materials are supplied into the mold. manufacturing method.
[13]前記混合凝固物作製工程と前記破砕工程との間に、前記混合凝固物を粒度または材質ごとに分離する熱間分離工程をさらに有する、前記[1]~[12]のいずれか一項に記載の粒状凝固スラグの製造方法。 [13] Any one of the above [1] to [12], further comprising a hot separation step of separating the mixed solidified product by particle size or material between the mixed solidified product preparation step and the crushing step. A method for producing granular solidified slag according to the above item.
[14]鋳型内に溶融スラグを供給する溶融スラグ供給装置および、前記鋳型内に固形物を供給する固形物供給装置を有する混合凝固物作製設備と、
 前記混合凝固物作製設備にて作製される混合凝固物を破砕して混合破砕物を作製する破砕設備と、前記混合凝固物を粒度または材質に応じて複数の混合破砕物群に分離して粒状凝固スラグを得る分離設備と、を備えることを特徴とする粒状凝固スラグの製造設備列。
[14] Mixed solidified product production equipment having a molten slag supply device for supplying molten slag into the mold and a solid matter supply device for supplying solid matter into the mold;
A crushing facility for crushing the mixed solidified material produced by the mixed solidified material production facility to produce a mixed crushed material, and separating the mixed solidified material into a plurality of mixed crushed material groups according to particle size or material to form granules. and separation equipment for obtaining solidified slag.
[15]前記混合凝固物作製設備は、前記溶融スラグおよび固形物が供給された前記鋳型に対して前記固形物の押し込みを行う圧下装置を有する、前記[14]に記載の粒状凝固スラグの製造設備列。 [15] Production of granular solidified slag according to the above [14], wherein the mixed solidified material production equipment has a reduction device that presses the solid material into the mold to which the molten slag and solid material are supplied. equipment row.
[16]前記鋳型は、底部に隆起部を有する、前記[14]または[15]に記載の粒状凝固スラグの製造設備列。 [16] The train of equipment for producing granular solidified slag according to the above [14] or [15], wherein the mold has a raised portion at the bottom.
[17]前記破砕設備は、前記混合凝固物を破砕するための回転体を有する、前記[14]~[16]のいずれか一項に記載の粒状凝固スラグの製造設備列。 [17] The train of equipment for producing granular solidified slag according to any one of [14] to [16], wherein the crushing equipment has a rotating body for crushing the mixed solidified matter.
[18]前記分離設備の下流側に、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物の熱を回収する第1のスラグ処理設備を有する、前記[14]~[17]のいずれか一項に記載の粒状凝固スラグの製造設備列。 [18] Said [14] to [14]-[ 17], the production equipment train for granular solidified slag according to any one of the above items.
[19]前記分離設備の下流側に、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に水蒸気を供給して蒸気エージングを行う水蒸気供給装置を有する、前記[14]~[18]のいずれか一項に記載の粒状凝固スラグの製造設備列。 [19] Said [14], which has a steam supply device downstream of said separation facility for supplying steam to said crushed mixed material of a group of crushed mixed material containing granular solidified slag having a relatively low particle size for steam aging. The equipment train for producing granular solidified slag according to any one of [18].
[20]前記分離設備の下流側に、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に炭酸ガスを供給して炭酸化処理を行う炭酸ガス供給装置を有する、前記[14]~[19]のいずれかに記載の粒状凝固スラグの製造設備列。 [20] Downstream of the separation equipment, a carbon dioxide gas supply device for supplying carbon dioxide gas to the crushed mixed material group containing granular solidified slag with a relatively low particle size to perform carbonation treatment. [14] to [19], the production equipment line for granular solidified slag.
[21]前記分離設備の下流側に、比較的粒度の高い粒状凝固スラグを含む混合破砕物群の前記混合破砕物の熱を回収する第2のスラグ処理設備を有する、前記[14]~[20]のいずれかに記載の粒状凝固スラグの製造設備列。 [21] Said [14] to [14]-[ 20].
[22]前記第2のスラグ処理設備と前記固形物供給装置との間に、前記熱回収処理を行った混合破砕物の一部または全てを前記固形物供給装置へ搬送するための搬送路を有する、前記[21]に記載の粒状凝固スラグの製造設備列。 [22] Between the second slag treatment equipment and the solid matter supply device, a conveying path is provided for conveying part or all of the mixed crushed material subjected to the heat recovery treatment to the solid matter supply device. The production equipment line for granular solidified slag according to [21] above.
 本発明によれば、凝固スラグに対する熱回収処理、蒸気エージング処理、炭酸化処理などのスラグ処理を効率的に行うことができる。 According to the present invention, slag treatment such as heat recovery treatment, steam aging treatment, and carbonation treatment can be efficiently performed on solidified slag.
粒状凝固スラグの粒径と熱回収率との関係を示す図である。It is a figure which shows the relationship between the particle size of granular solidification slag, and a heat recovery rate. 粒状凝固スラグの粒径と二酸化炭素の固定量との関係を示す図である。FIG. 4 is a diagram showing the relationship between the particle size of granular solidified slag and the fixed amount of carbon dioxide. 本発明による粒状凝固スラグの製造設備列の好適な一例を示す図である。FIG. 2 is a diagram showing a preferred example of a series of production facilities for granular solidified slag according to the present invention; 図3とは異なる構成を有する固液スラグ混合凝固設備を示す図である。4 is a diagram showing a solid-liquid slag mixing solidification facility having a configuration different from that of FIG. 3. FIG. 圧下装置を有する固液スラグ混合凝固設備を示す図である。It is a figure which shows the solid-liquid slag mixed solidification installation which has a reduction apparatus. 鋳型の底部形状を示す図である。It is a figure which shows the bottom part shape of a casting_mold|template. 本発明による粒状凝固スラグの製造設備列の好適な別の例を示す図である。FIG. 4 is a diagram showing another preferred example of a train of production equipment for granular solidified slag according to the present invention; 本発明による粒状凝固スラグの製造設備列の好適なさらに別の例を示す図である。FIG. 4 is a diagram showing yet another preferred example of a train of production equipment for granular solidified slag according to the present invention; 本発明による粒状凝固スラグの製造設備列の好適なさらにまた別の例を示す図である。FIG. 5 is a diagram showing yet another preferred example of a train of production equipment for granular solidified slag according to the present invention; 本発明による混合凝固物作製設備において、2種類の固形物を鋳型に供給する例を示す図である。FIG. 2 is a diagram showing an example of supplying two types of solids to a mold in a mixed solids production facility according to the present invention; 本発明による混合凝固物作製設備において、2種類の固形物を鋳型に供給する別の例を示す図である。FIG. 4 is a diagram showing another example of supplying two types of solids to a mold in a mixed solids production facility according to the present invention; 本発明による混合凝固物作製設備において、2種類の固形物を鋳型に供給する際の鋳型の底部形状の例を示す図である。FIG. 4 is a diagram showing an example of the shape of the bottom of the mold when two types of solids are supplied to the mold in the equipment for producing a mixed solid according to the present invention. 本発明による、2種類の固形物を鋳型に供給する粒状凝固スラグの製造設備列の好適な例を示す図である。FIG. 2 is a diagram showing a preferred example of a train of equipment for producing granular solidified slag that supplies two types of solids to the mold according to the present invention; 本発明による、2種類の固形物を鋳型に供給する粒状凝固スラグの製造設備列の好適な別の例を示す図である。FIG. 3 shows another preferred example of a production train for granular solidified slag feeding two types of solids to the mold according to the present invention;
 以下、図面を参照して、本発明の実施形態について説明する。本発明による粒状凝固スラグの製造方法は、鋳型内に溶融スラグおよび固形物を供給し、鋳型内において固形物相互間の隙間を溶融スラグで満たした状態にて溶融スラグの凝固を進行させて混合凝固物を作製する混合凝固物作製工程と、混合凝固物を粒状に破砕して混合破砕物を作製する破砕工程と、混合破砕物を粒度または材質に応じて複数の混合破砕物群に分離して粒状凝固スラグを得る分離工程とを含むことを特徴とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the method for producing granular solidified slag according to the present invention, molten slag and solids are supplied into a mold, and the molten slag is solidified and mixed while filling the gaps between the solids in the mold with molten slag. A mixed coagulum production process for producing coagulates, a crushing process for crushing the mixed coagulates into granules to produce mixed crushed materials, and separating the mixed crushed materials into a plurality of mixed crushed material groups according to particle size or material. and a separation step of obtaining granular solidified slag.
 本発明者らは、熱回収処理、蒸気エージング処理、炭酸化処理などのスラグ処理を効率的に行うことができる粒状凝固スラグを製造する方途について鋭意検討した。その結果、本発明者らは、凝固スラグを作製するに当り、鋳型内に、溶融スラグおよび固形スラグ(固形物)を供給して固液混合凝固スラグ(混合凝固物)を作製することによって、溶融スラグが凝固した凝固域および/または固形スラグ(固形物)に亀裂を発生させることが、その後の熱間破砕を簡便に行うのに極めて有効であることを知見した。 The present inventors diligently studied methods for producing granular solidified slag that can efficiently perform slag treatments such as heat recovery treatment, steam aging treatment, and carbonation treatment. As a result, in producing solidified slag, the present inventors supply molten slag and solid slag (solid matter) into a mold to produce solid-liquid mixed solidified slag (mixed solidified matter), It has been found that generating cracks in the solidified region where the molten slag is solidified and/or in the solid slag (solid matter) is extremely effective for convenient subsequent hot crushing.
 しかしながら、上述のように作製した固液混合凝固スラグ(混合凝固物)においては、亀裂の発生および進展箇所が一様でないため、単一粒度での造粒が難しい。そのため、粒度分布の大きい粒状凝固スラグに対してそのままスラグ処理を施すと、比較的粒度の高い粗粒のスラグの処理に必要な時間が工程上の制約となり、スラグに対して効率的にスラグ処理を施すことができず、処理設備が大型化してしまう。 However, in the solid-liquid mixed solidified slag (mixed solidified material) produced as described above, the occurrence and propagation of cracks are not uniform, so granulation with a single particle size is difficult. Therefore, if granular solidified slag with a large particle size distribution is subjected to slag treatment as it is, the time required to treat coarse-grained slag with a relatively high particle size becomes a constraint in the process, and slag is efficiently treated. cannot be applied, and the processing equipment becomes large.
 すなわち、例えば高温の粒状凝固スラグをスラグ充填槽に充填して熱回収を行う場合、図1に示す粒状凝固スラグの粒径と熱回収率との関係から明らかなように、粒状凝固スラグの粒径が大きくなるほど(すなわち、粗粒であるほど)スラグの総表面積(すなわち、伝熱面積)が減少して熱回収ガスの温度が低下し、熱回収率が低くなる。なお、図1は、ISIJ International, Vol. 55 (2015), No. 10, pp. 2258-2265に記載されたスラグ充填槽の非定常伝熱モデルを用いて、スラグ充填槽の内径を3.5m、スラグ充填量を90t、スラグ初期温度を1100℃、熱回収ガスの流通量を50kNm/h、処理時間を4hとしてスラグの熱回収シミュレーションを行って得られたものである。その際、熱回収率は、熱回収ガスの総熱量のうち、100℃以上の熱量を利用可能な回収熱として算出した。 That is, for example, when heat recovery is performed by filling a slag filling tank with high-temperature granular solidified slag, as is clear from the relationship between the particle size of granular solidified slag and the heat recovery rate shown in FIG. The larger the diameter (that is, the coarser the particles), the smaller the total surface area (that is, the heat transfer area) of the slag, the lower the temperature of the heat recovery gas, and the lower the heat recovery rate. In addition, FIG. 5 m, slag filling amount of 90 t, slag initial temperature of 1100° C., flow rate of heat recovery gas of 50 kNm 3 /h, treatment time of 4 hours, slag heat recovery simulation was performed. At that time, the heat recovery rate was calculated by taking the heat quantity of 100° C. or higher out of the total heat quantity of the heat recovery gas as usable recovered heat.
 また、上記スラグの熱回収と同様に、蒸気エージング処理や炭酸化処理などのスラグ安定化処理についても、粒状凝固スラグの粒径が大きいほど(すなわち、粗粒ほど)粒状凝固スラグの内部までf-CaOの水和反応および炭酸化反応を進行させるのに長時間を要する。そのため、粒状凝固スラグの粒径が大きい粗粒スラグと粒径が小さな細粒スラグとが混在している場合、処理時間が一様にならない。 In addition, as with the heat recovery of the slag, in the slag stabilization treatment such as steam aging treatment and carbonation treatment, the larger the grain size of the granular solidified slag (that is, the coarser the grain), the f - A long time is required for the hydration reaction and carbonation reaction of CaO to proceed. Therefore, when coarse slag with a large particle size and fine slag with a small particle size are mixed in the granular solidified slag, the treatment time is not uniform.
 図2は、粒状凝固スラグの粒径とCOの固定量、すなわちスラグの炭酸化量との関係を示している。なお、図2は、粒径が0~60mmの製鋼スラグ300gを120℃まで加熱した後、CO濃度25%のCO-水蒸気混合ガスを24時間流通させた際のCO固定量を示している。また、CO固定量は、CO-水蒸気混合ガス流通後のスラグの熱重量測定(TG)により得られた重量変化曲線から算出した。図2から明らかなように、粒状凝固スラグの粒径が大きくなるにつれてCO固定量が少なくなっており、粗粒スラグであるほど炭酸化処理が進行しにくいことが分かる。従って、品質保証の観点では、細粒スラグと粗粒スラグとが混合した混合スラグの場合には、粗粒スラグに対する処理時間により、スラグ全体の処理時間が決まるため、非効率な処理となる。 FIG. 2 shows the relationship between the grain size of granular solidified slag and the amount of CO2 fixed, ie, the amount of slag carbonation. In addition, FIG. 2 shows the amount of CO 2 fixed when 300 g of steelmaking slag with a particle size of 0 to 60 mm is heated to 120 ° C. and then a CO 2 -steam mixed gas with a CO 2 concentration of 25% is passed for 24 hours. ing. The fixed amount of CO 2 was calculated from a weight change curve obtained by thermogravimetric measurement (TG) of the slag after the CO 2 -steam mixed gas flowed. As is clear from FIG. 2, the larger the grain size of the granular solidified slag, the smaller the amount of CO 2 fixed. Therefore, from the viewpoint of quality assurance, in the case of mixed slag in which fine-grained slag and coarse-grained slag are mixed, the processing time for the entire slag is determined by the processing time for the coarse-grained slag, resulting in inefficient processing.
 そこで、本発明者らは、固液混合凝固スラグ(混合凝固物)を熱間破砕して作製された粒状凝固スラグに対して、スラグ処理を効率的に施すことができる方途について鋭意検討した。その結果、上述のように作製した粒状凝固スラグを、粒度または材質に応じて複数の混合破砕物群に分離し、混合破砕物群ごとに、独立して粒状凝固スラグに対してスラグ処理を施すことが可能な状態にすることが極めて有効であることを見出し、本発明を完成するに至ったのである。 Therefore, the present inventors diligently studied how to efficiently apply slag treatment to granular solidified slag produced by hot crushing solid-liquid mixed solidified slag (mixed solidified material). As a result, the granular solidified slag produced as described above is separated into a plurality of mixed crushed material groups according to the particle size or material, and the granular solidified slag is independently subjected to slag treatment for each mixed crushed material group. The inventors have found that it is extremely effective to create a state in which this is possible, and have completed the present invention.
 図3は、本発明による粒状凝固スラグの製造方法に用いる製造設備列の好適な一例を示している。図3に示した粒状凝固スラグの製造設備列は、鋳型1内に固形スラグS1を供給する固形スラグ供給装置2と、鋳型1内に溶融スラグS2を供給する溶融スラグ供給装置3とを有する固液スラグ混合凝固設備4と、この固液スラグ混合凝固設備4にて作製される固液混合凝固スラグSを破砕して粒状凝固スラグSgを作製するスラグ破砕設備5と、粒状凝固スラグSgを粒度に応じて複数の粒状スラグ群に分級するスラグ分級設備7と、スラグ分級設備7の下流側に、比較的粒度の低い粒状スラグ群の粒状凝固スラグSsの熱を回収するスラグ熱回収設備8(第1のスラグ熱回収設備8A)と、比較的粒度の高い粒状スラグ群の粒状凝固スラグSiの熱を回収するスラグ熱回収設備8(第2のスラグ熱回収設備8B)とを備える。なお、本実施形態において「分級」とは、粒状凝固スラグSgを粒度に応じて分離することを指し、分離の一形態である。 FIG. 3 shows a preferred example of a production equipment line used in the method for producing granular solidified slag according to the present invention. The row of production facilities for granular solidified slag shown in FIG. A liquid slag mixing equipment 4, a slag crushing equipment 5 for crushing the solid-liquid mixed solidified slag S produced by the solid-liquid slag mixing and solidifying equipment 4 to produce granular solidified slag Sg, A slag classification facility 7 that classifies into a plurality of granular slag groups according to , and a slag heat recovery facility 8 ( A first slag heat recovery facility 8A) and a slag heat recovery facility 8 (second slag heat recovery facility 8B) for recovering the heat of granular solidified slag Si in a group of granular slags with relatively high grain sizes. In this embodiment, "classification" refers to separating the granular solidified slag Sg according to the particle size, and is one form of separation.
 この製造設備列において、鋳型1は、固形スラグS1および溶融スラグS2を収容する凹部を有し、図示しないライン上を水平移動する。まず、鋳型1に、固形スラグ供給装置2から固形スラグS1を供給したのち、鋳型1に溶融スラグ供給装置3から溶融スラグS2を供給し、鋳型1内において溶融スラグS2の凝固を進行させて固液混合凝固スラグSを作製する(凝固スラグ作製工程)。 In this line of manufacturing equipment, the mold 1 has recesses to accommodate the solid slag S1 and the molten slag S2, and moves horizontally on a line (not shown). First, solid slag S1 is supplied to the mold 1 from the solid slag supply device 2, then molten slag S2 is supplied to the mold 1 from the molten slag supply device 3, and solidification of the molten slag S2 proceeds in the mold 1 to solidify. A liquid-mixed solidified slag S is produced (solidified slag producing step).
 固形スラグS1としては、後述するように、固形スラグS1および溶融スラグS2を鋳型に供給して凝固させた固液混合凝固スラグSの一部を再利用したものや、別の製造方法にて製造された凝固スラグなど、目的とするスラグ品質に応じて適宜選択可能である。 As the solid slag S1, as will be described later, the solid slag S1 and the molten slag S2 are supplied to a mold and solidified, and part of the solid-liquid mixed solidified slag S is reused, or manufactured by another manufacturing method. It can be appropriately selected according to the desired slag quality, such as solidified slag.
 上述の手順に代えて、図4に示す固液スラグ混合凝固設備4を備える別の製造設備列を用いて、鋳型1に、溶融スラグ供給装置3から溶融スラグS2を供給したのち、固形スラグ供給装置2から固形スラグS1を供給し、鋳型1内において溶融スラグS2の凝固を行ってもよい。 Instead of the above-described procedure, using another manufacturing equipment train equipped with a solid-liquid slag mixing and solidification equipment 4 shown in FIG. A solid slag S1 may be supplied from the device 2, and the molten slag S2 may be solidified in the mold 1.
 なお、図3および図4において、固形スラグ供給装置2は、固形スラグS1を収容し所定量を切り出すホッパー2aと、ホッパー2aで切り出された固形スラグS1を鋳型1内に誘導するためのスラグ樋2bとを備えている。同様に、溶融スラグ供給装置3は、溶融スラグS2を収容し傾動することによって溶融スラグS2を供給する傾動鍋3aと、傾動鍋3aから供給された溶融スラグS2を鋳型1に注ぐためのスラグ樋3bとを備えている。いずれの装置も図示例に限定されず、固形スラグS1および溶融スラグS2の所定量での供給を行うことができれば構成は問わない。 3 and 4, the solid slag feeder 2 includes a hopper 2a for receiving the solid slag S1 and cutting out a predetermined amount, and a slag gutter for guiding the solid slag S1 cut out by the hopper 2a into the mold 1. 2b. Similarly, the molten slag supply device 3 includes a tilting ladle 3a that accommodates and tilts the molten slag S2 to supply the molten slag S2, and a slag gutter for pouring the molten slag S2 supplied from the tilting ladle 3a into the mold 1. 3b. Any device is not limited to the illustrated example, and any configuration can be used as long as it can supply a predetermined amount of solid slag S1 and molten slag S2.
 ちなみに、上記した図3に示した固液スラグ混合凝固設備4を用いる方法は、用いる鋳型1が比較的小さい場合に特に有効である。一方、鋳型1が比較的大きい場合には、溶融スラグS2供給時のスラグ流量が大きくなると、事前に装入した固形スラグS1が溶融スラグS2の流れにより押し流されて鋳型1内に均一に分散配置できなくなる場合も想定される。したがって、大型の鋳型1を用いる場合には、鋳型1内に先に溶融スラグS2を供給した後に、固形スラグS1を装入する、図4に示した固液スラグ混合凝固設備4を用いる方法が好適である。なお、図示しないが、固形スラグ供給装置2および溶融スラグ供給装置3を、固形スラグS1および溶融スラグS2を鋳型1内に同時に供給可能に配置して、固形スラグS1および溶融スラグS2を鋳型1内に同時に供給してもよい。 By the way, the method using the solid-liquid slag mixing and solidification equipment 4 shown in FIG. 3 is particularly effective when the mold 1 to be used is relatively small. On the other hand, when the mold 1 is relatively large, when the slag flow rate increases when molten slag S2 is supplied, the solid slag S1 charged in advance is swept away by the flow of molten slag S2 and is evenly distributed in the mold 1. It is also assumed that it will not be possible. Therefore, when a large mold 1 is used, the solid-liquid slag mixing and solidification equipment 4 shown in FIG. preferred. Although not shown, a solid slag supply device 2 and a molten slag supply device 3 are arranged so that the solid slag S1 and the molten slag S2 can be simultaneously supplied into the mold 1, and the solid slag S1 and the molten slag S2 are supplied into the mold 1. may be simultaneously supplied to
 上記いずれの方法においても、鋳型1内に、固形スラグS1および溶融スラグS2を供給したのち、当該鋳型1内において、固形スラグS1相互間の隙間を溶融スラグS2で満たした状態にて該溶融スラグS2の凝固を進行させて該凝固域に亀裂を導入することが肝要である。 In any of the above methods, after the solid slag S1 and the molten slag S2 are supplied into the mold 1, the molten slag is filled in the mold 1 with the gaps between the solid slags S1 filled with the molten slag S2. It is essential to allow the solidification of S2 to proceed and introduce cracks in the solidified zone.
 すなわち、常温に近い固形スラグS1と約1600℃の溶融スラグS2とでは温度差が極めて大きい。そのため、溶融スラグS2と固形スラグS1とを混合して凝固させると、溶融スラグS2が凝固した凝固スラグの内部に大きな熱応力が発生し、亀裂の発生が促進される。また、凝固スラグは冷却により熱収縮するのに対し、固形スラグS1は加熱により熱膨張する。そのため、体積変化に伴う亀裂の発生も促進される。更に、溶融スラグが凝固した凝固スラグと固形スラグS1との境界部では、結晶界面の不整合が生じる。そのため、凝固スラグと固形スラグS1との境界部は、溶融スラグS2のみを凝固させた凝固スラグに比べると亀裂が進展し易い。以上の相乗効果により、固形スラグS1と溶融スラグS2とを混合して凝固させて作製された固液混合凝固スラグSは、溶融スラグS2のみを凝固させた凝固スラグと比べて熱間破砕し易いため、簡易的な破砕処理により粒状化が可能となる。 That is, the temperature difference is extremely large between the solid slag S1, which is close to room temperature, and the molten slag S2, which is about 1600°C. Therefore, when the molten slag S2 and the solid slag S1 are mixed and solidified, a large thermal stress is generated inside the solidified slag in which the molten slag S2 is solidified, promoting crack generation. Further, the solidified slag thermally shrinks due to cooling, while the solid slag S1 thermally expands due to heating. Therefore, the generation of cracks accompanying the volume change is also promoted. Furthermore, inconsistency of the crystal interface occurs at the boundary between the solidified slag obtained by solidifying the molten slag and the solid slag S1. Therefore, at the boundary between the solidified slag and the solid slag S1, cracks develop more easily than in the solidified slag obtained by solidifying only the molten slag S2. Due to the above synergistic effect, the solid-liquid mixed solidified slag S produced by mixing and solidifying the solid slag S1 and the molten slag S2 is easier to hot crush than the solidified slag obtained by solidifying only the molten slag S2. Therefore, granulation is possible by a simple crushing process.
 上記の相乗効果を確実に発揮させるには、例えば、図3および図4に示すように、鋳型1内において固形スラグS1の積層数を制限(図示例は単層)し、この固形スラグS1の層内に溶融スラグS2を配置して凝固を進行させることによって、上記した相乗効果を確実に現出させて、当該凝固中に亀裂を導入することが有利である。 In order to ensure the above synergistic effect, for example, as shown in FIGS. Advantageously, by placing the molten slag S2 in the layer and allowing the solidification to proceed, the synergistic effect described above is ensured and cracks are introduced during the solidification.
 ここに、鋳型1内に供給する固形スラグS1は、固液混合凝固スラグSを容易に破砕できるようにするため、好ましくは凝固厚の3/4以上の層厚になるまで供給することが好ましい。なぜなら、本発明では固形スラグS1と凝固スラグとの界面近傍に生じる亀裂をスラグ破砕処理における破壊の起点とするため、固形スラグS1の層厚が固液混合凝固スラグSの層厚に比べて薄くなると、凝固スラグ内部に破壊の起点となる亀裂が生じない領域が多くなり、スラグへの破砕処理が困難になるためである。 Here, the solid slag S1 supplied into the mold 1 is preferably supplied until the layer thickness is 3/4 or more of the solidified thickness so that the solid-liquid mixed solidified slag S can be easily crushed. . This is because, in the present invention, since cracks occurring near the interface between the solid slag S1 and the solidified slag are used as starting points of destruction in the slag crushing process, the layer thickness of the solid slag S1 is thinner than the layer thickness of the solid-liquid mixed solidified slag S. As a result, there are many regions in which cracks, which are starting points of fracture, do not occur inside the solidified slag, making it difficult to crush the slag.
 また、固形スラグS1の粒径は、凝固厚の3/4以上の粒径を有する固形スラグS1を1層のみ供給する方法が最も好ましいが、それ以下の粒径である固形スラグS1を用いて複層化して供給してもよい。但し、固形スラグS1の粒径が小さくなり過ぎると、溶融スラグS2が固形スラグS1の間隙に浸透し難くなり、更に、凝固スラグと固形スラグS1との境界部に生じる亀裂も、固液混合凝固スラグSの厚さ方向に対して進展し難くなる。したがって、固形スラグS1を複層化して供給する場合には、鋳型1内の固形スラグS1が3層以下程度になるように固形スラグS1の粒径を調整する。固形スラグS1と凝固スラグの固液比については、固液混合凝固スラグSが容易に破砕可能であれば特に制限はされない。しかし、例えば高炉スラグのようにSiOが多いスラグの場合には、固形スラグS1が溶融スラグS2に対して多過ぎると、固形スラグS1と鋳型1による急冷作用により凝固スラグが一部ガラス化する可能性がある。そのため、固形スラグS1の供給量を抑えて、凝固スラグの冷却速度および凝固完了後のスラグ温度を調整してもよい。 As for the particle size of the solid slag S1, it is most preferable to supply only one layer of solid slag S1 having a particle size of 3/4 or more of the solidification thickness. It may be supplied in multiple layers. However, if the particle size of the solid slag S1 becomes too small, it becomes difficult for the molten slag S2 to penetrate into the gaps between the solid slag S1, and furthermore, cracks that occur at the boundary between the solidified slag and the solid slag S1 also occur due to solid-liquid mixed solidification. It becomes difficult to progress in the thickness direction of the slag S. Therefore, when the solid slag S1 is supplied in multiple layers, the particle size of the solid slag S1 is adjusted so that the solid slag S1 in the mold 1 has about three layers or less. The solid-liquid ratio between the solid slag S1 and the solidified slag is not particularly limited as long as the solid-liquid mixed solidified slag S can be easily crushed. However, in the case of slag with a large amount of SiO 2 such as blast furnace slag, for example, if the solid slag S1 is too much for the molten slag S2, the solidified slag is partially vitrified by the rapid cooling action of the solid slag S1 and the mold 1. there is a possibility. Therefore, the cooling rate of the solidified slag and the slag temperature after completion of solidification may be adjusted by suppressing the supply amount of the solid slag S1.
 上述した特許文献1に記載の方法では、凝固厚が大きくなると鋳型への熱負荷が大きくなるが、本発明による設備を用いると、固形スラグS1に伝わる熱量分だけ鋳型1への熱負荷が小さくなるため、鋳型1の熱負荷低減という観点においても好適である。 In the method described in Patent Document 1 described above, the heat load on the mold increases as the solidified thickness increases, but when the equipment according to the present invention is used, the heat load on the mold 1 is reduced by the amount of heat transferred to the solid slag S1. Therefore, it is also suitable from the viewpoint of reducing the heat load on the mold 1 .
 なお、本発明において、「亀裂」とは、固形スラグS1相互の間隙に浸透した溶融スラグS2が凝固する際に、固形スラグS1による急冷効果や、固形スラグS1と溶融スラグS2との熱収縮および/または熱膨張の差により、溶融スラグS2の凝固域と固形スラグS1との界面近傍に熱応力が生じることによって発生する局所的な亀裂である。この亀裂は、凝固スラグ内部の熱応力を緩和する形で進展し、主には固形スラグS1相互の間隙の凝固域において、固形スラグS1間を橋渡しするような形態で5~20mm程度の長さで発生するが、この熱応力は固形スラグS1側にも作用するため、固形スラグS1側に亀裂が発生する場合もある。いずれにしても、凝固域および/または固形スラグS1に亀裂を導入することによって、割れの起点を形成しておくことが肝要である。 In the present invention, the term "crack" refers to the quenching effect of the solid slag S1, the thermal contraction and It is a local crack that occurs due to thermal stress occurring in the vicinity of the interface between the solidified region of the molten slag S2 and the solid slag S1 due to the difference in thermal expansion. This crack develops in a form of relieving the thermal stress inside the solidified slag, and mainly in the solidified region of the gap between the solid slugs S1, and has a length of about 5 to 20 mm in a form that bridges the solid slugs S1. However, since this thermal stress also acts on the solid slug S1 side, cracks may occur on the solid slug S1 side. In any case, it is essential to form crack initiation points by introducing cracks in the solidified zone and/or solid slag S1.
 上述のように溶融スラグS2の凝固域に亀裂を導入しておけば、固形スラグS1および溶融スラグS2が混合後に凝固した固液混合凝固スラグSを、その後のスラグ破砕設備5において簡便に粒状に破砕することができる。すなわち、上記に従って固液スラグを混合凝固させた固液混合凝固スラグSは、溶融スラグのみを供給して凝固させた従前の凝固スラグに比べて割れ易いため、簡易的な破砕により粒状化が可能である。 If cracks are introduced into the solidified region of the molten slag S2 as described above, the solid-liquid mixed solidified slag S solidified after the solid slag S1 and the molten slag S2 are mixed can be easily granulated in the subsequent slag crushing equipment 5. Can be crushed. That is, the solid-liquid mixed solidified slag S obtained by mixing and solidifying the solid-liquid slag according to the above is easier to break than the conventional solidified slag solidified by supplying only the molten slag, so it can be granulated by simple crushing. is.
 なお、図5に示すように、特に上記した図4の固液スラグ混合凝固設備4を用いた手順において、固形スラグS1および溶融スラグS2をそれぞれ供給した後に、圧下装置6を用いて、固形スラグS1を鋳型1の底部に向かって押し込む(押込工程)ことが、以下の点で有利である。すなわち、溶融スラグS2を鋳型1で凝固させる際、溶融スラグS2の温度が非常に高温であるため、溶融スラグS2の表面が大気により急冷されて凝固層が形成される。鋳型1に供給された溶融スラグS2の表面に凝固層が形成される前に固形スラグS1の供給が完了していれば問題はないが、固形スラグS1の供給に先立って凝固層が形成されてしまうと、固形スラグS1の自重のみで固形スラグS1を鋳型1内に装入することが難しくなる。そのため、図5に示すように、固形スラグ供給装置2の下流側に圧下装置6を設け、鋳型1内に溶融スラグS2を供給した後に、鋳型1内に固形スラグS1を供給する。そして圧下装置6により固形スラグS1を鋳型1の底部方向へ圧下することによって、固形スラグS1を確実に鋳型1内の溶融スラグS2層内に装入する。なお、溶融スラグS2表面の凝固層が成長するに従い固形スラグS1の押し込みが難しくなる。そのため、圧下装置6による固形スラグS1の圧下を凝固層が成長する前の比較的早い段階で実施できるように、圧下装置6は、固形スラグ供給装置2に近接して配置することが望ましい。 As shown in FIG. 5, especially in the procedure using the solid-liquid slag mixing and solidification equipment 4 of FIG. Pushing S1 toward the bottom of the mold 1 (pushing step) is advantageous in the following points. That is, when the molten slag S2 is solidified in the mold 1, since the temperature of the molten slag S2 is extremely high, the surface of the molten slag S2 is rapidly cooled by the atmosphere to form a solidified layer. There is no problem if the supply of the solid slag S1 is completed before the solidified layer is formed on the surface of the molten slag S2 supplied to the mold 1, but the solidified layer is formed prior to the supply of the solid slag S1. Otherwise, it becomes difficult to charge the solid slug S1 into the mold 1 only by the weight of the solid slug S1. Therefore, as shown in FIG. 5, a reduction device 6 is provided on the downstream side of the solid slag supply device 2, and after supplying molten slag S2 into the mold 1, solid slag S1 is supplied into the mold 1. Then, the solid slag S1 is pushed down toward the bottom of the mold 1 by the reduction device 6, so that the solid slag S1 is reliably charged into the molten slag S2 layer in the mold 1. As the solidified layer on the surface of the molten slag S2 grows, it becomes difficult to push the solid slag S1. Therefore, the reduction device 6 is preferably arranged close to the solid slag supply device 2 so that the reduction device 6 can reduce the solid slag S1 at a relatively early stage before the solidified layer grows.
 上記圧下装置6としては、上下1軸のみで昇降する圧下装置や、鋳型1の水平移動に合わせて移動または揺動しながら昇降する多軸型の圧下装置を適用できるが、これに限られない。 As the screw-down device 6, a screw-down device that moves up and down with only one vertical axis, and a multi-axis type screw-down device that goes up and down while moving or swinging according to the horizontal movement of the mold 1 can be applied, but the invention is not limited to this. .
 さらに、鋳型1は、図6に示すように、底部に複数の隆起部1aを有することが、次の点で有利である。すなわち、鋳型1の底部の複数の隆起部1aにより固形スラグS1を支持することにより、固形スラグS1が溶融スラグS2供給時のスラグ流により押し流されるのを防止することができる。また、隆起部1a自体が鋳型1深さ方向の凝固厚tを局所的に小さくする効果もあるため、固液混合凝固スラグSの破砕時に有効に作用する。なお、隆起部1aは鋳型1の底部から隆起する部分が僅かでもあれば、上記した作用を発揮するが、隆起部1aの形状が先鋭だと熱応力が高くなり鋳型1を損傷させる懸念がある。そのため、隆起部1aは、固形スラグS1を支持可能な高さで且つ比較的なだらかな隆起部形状として、等間隔に固形スラグS1が分配される形状とすることが好ましい。 Furthermore, the mold 1, as shown in FIG. 6, has a plurality of protuberances 1a on its bottom, which is advantageous in the following points. That is, by supporting the solid slag S1 with the plurality of protrusions 1a on the bottom of the mold 1, it is possible to prevent the solid slag S1 from being swept away by the slag flow when the molten slag S2 is supplied. In addition, since the raised portion 1a itself also has the effect of locally reducing the solidified thickness t in the depth direction of the mold 1, it acts effectively when the solid-liquid mixed solidified slag S is crushed. If the protruding portion 1a has even a small portion protruding from the bottom of the mold 1, it will exhibit the above-described effects. . Therefore, it is preferable that the raised portion 1a has a height capable of supporting the solid slugs S1 and has a relatively gentle raised portion shape so that the solid slugs S1 are distributed at regular intervals.
 次に、鋳型1を反転させて固液混合凝固スラグSを鋳型1から剥離させた後、スラグ破砕設備5により、上述のように作製した固液混合凝固スラグSを破砕して粒状凝固スラグSgを作製する(スラグ破砕工程)。上述のように、固液混合凝固スラグSは、溶融スラグS2のみを凝固させた凝固スラグと比べて破砕し易いため、簡易的な破砕により固液混合凝固スラグSの粒状化が可能である。固液混合凝固スラグSを鋳型1から取り出したのち粒状に破砕するためのスラグ破砕設備5としては、図3に示すような固液混合凝固スラグSに衝突による衝撃力を与えて固液混合凝固スラグSを破砕する回転体5aを用いることができるが、これに限られない。 Next, after the mold 1 is turned over to separate the solid-liquid mixed solidified slag S from the mold 1, the solid-liquid mixed solidified slag S produced as described above is crushed by the slag crushing equipment 5 to produce granular solidified slag Sg. (slag crushing step). As described above, since the solid-liquid mixed solidified slag S is easier to crush than the solidified slag obtained by solidifying only the molten slag S2, the solid-liquid mixed solidified slag S can be granulated by simple crushing. As a slag crushing equipment 5 for crushing the solid-liquid mixed solidified slag S from the mold 1 and then crushing it into granules, solid-liquid mixed solidification is performed by applying an impact force due to collision to the solid-liquid mixed solidified slag S as shown in FIG. Although the rotating body 5a for crushing the slag S can be used, it is not limited to this.
 続いて、スラグ分級設備7により、上述のように作製された粒状凝固スラグSgを、粒度に応じて複数の粒状スラグ群に分級する(スラグ分級工程)。上述のように、固液混合凝固スラグSは、亀裂の発生および進展箇所が一様でないため、単一粒度での造粒が難しい。そのため、粒度分布の大きい粒状凝固スラグに対してそのままスラグ処理を施すと、比較的粒度の高い粗粒のスラグの処理に必要な時間が工程上の制約となり、スラグに対して効率的にスラグ処理を施すことができず、得られた製品スラグの品質が安定しない。また、設備が大型化する問題もある。 Subsequently, the granular solidified slag Sg produced as described above is classified into a plurality of granular slag groups according to the particle size by the slag classification equipment 7 (slag classification step). As described above, the solid-liquid mixed solidified slag S is difficult to granulate with a single particle size because the locations where cracks are generated and propagated are not uniform. Therefore, if granular solidified slag with a large particle size distribution is subjected to slag treatment as it is, the time required to treat coarse-grained slag with a relatively high particle size becomes a constraint in the process, and slag is efficiently treated. cannot be applied, and the quality of the obtained product slag is not stable. Moreover, there is also a problem that the equipment becomes large-sized.
 そこで、本発明の方法では、固液混合凝固スラグSの破砕により作製された粒状凝固スラグSgを、粒度に応じて複数の粒状スラグ群に分級する。これにより、粒度がある程度揃った粒状凝固スラグSgに対してスラグ処理を施すことが可能となり、熱回収処理、蒸気エージング処理、炭酸化処理などのスラグ処理を効率的に施すことができる粒状凝固スラグSgを製造することができる。 Therefore, in the method of the present invention, the granular solidified slag Sg produced by crushing the solid-liquid mixed solidified slag S is classified into a plurality of granular slag groups according to the particle size. As a result, it is possible to perform slag treatment on granular solidified slag Sg with a certain degree of particle size, and granular solidified slag that can efficiently perform slag treatments such as heat recovery treatment, steam aging treatment, and carbonation treatment. Sg can be produced.
 スラグ分級設備7としては、最も簡便には篩を用いることができる。また、破砕直後の高温で分級する場合には、篩目を水冷格子などの耐熱構造とする必要があるため、スラグ分級設備7としては、例えばエアジェット方式による乾式分級設備などを用いることができる。或いは、所定サイズよりも小さいスラグだけを搬送方向に通過可能なゲートを用いるカットゲート方式による分級設備などを用いることもできる。このように、スラグ分級設備7としては、処理温度や処理量に応じて適宜選定したものを用いることができる。 A sieve can be used most conveniently as the slag classifying equipment 7 . In addition, when classifying at a high temperature immediately after crushing, it is necessary to have a heat-resistant structure such as a water-cooled lattice mesh, so as the slag classifying equipment 7, for example, a dry classifying equipment using an air jet method can be used. . Alternatively, it is also possible to use a classification facility based on a cut gate system that uses a gate that allows only slag smaller than a predetermined size to pass through in the conveying direction. As described above, the slag classifier 7 can be appropriately selected according to the treatment temperature and treatment amount.
 粒状凝固スラグSgを分級する際の粒度については、目標とするスラグ製品の粒度に応じて任意に設定可能である。例えば、本発明による方法で製造した粒状凝固スラグを路盤材用スラグとして用いる場合には、スラグ分級工程後に得られた、比較的粒度の低い粒状スラグ群の粒状凝固スラグ(細粒スラグ)Ssの粒度分布が、路盤材用スラグの粒度規格内に収まるように設定する。スラグの粒度は、後述するスラグ熱回収工程および炭酸化処理工程においても変化する場合があるため、最終的な目標スラグ製品の粒度に応じてスラグ分級工程における粒状凝固スラグの粒度を適宜調整する。 The particle size when classifying the granular solidified slag Sg can be arbitrarily set according to the target particle size of the slag product. For example, when the granular solidified slag produced by the method according to the present invention is used as a roadbed material slag, the granular solidified slag (fine slag) Ss of the granular slag group having a relatively low particle size obtained after the slag classification step is The particle size distribution is set so that it falls within the particle size standard for roadbed material slag. Since the particle size of the slag may change in the slag heat recovery process and the carbonation treatment process, which will be described later, the particle size of the granular solidified slag in the slag classification process is appropriately adjusted according to the particle size of the final target slag product.
 なお、粒状凝固スラグSgの分級は、図3に示したように2つの粒状スラグ群に分級する場合に限られず、3つ以上の粒状スラグ群に分級することができる。 The classification of the granular solidified slag Sg is not limited to the classification into two granular slag groups as shown in FIG. 3, and can be classified into three or more granular slag groups.
 次いで、スラグ熱回収設備8(第1のスラグ熱回収設備8A)により、上述のように分級された複数の粒状スラグ群のうち、比較的粒度の低い(例えば、粒径が10mm未満)粒状スラグ群の粒状凝固スラグSsに対して熱回収処理を施す(第1のスラグ熱回収処理工程)。固液スラグ混合凝固設備4で凝固させた固液混合凝固スラグSは熱間でも容易に破砕可能であるため、熱間破砕により高温の粒状凝固スラグSgを作製することができる。作製した粒状凝固スラグSgをスラグ分級設備7により粒度に応じて複数の粒状スラグ群に分級した後、製品スラグとして利用可能な比較的粒度の低い粒状スラグ群の粒状凝固スラグSsを第1のスラグ熱回収設備8Aへ装入してスラグ充填槽8a内に充填する。そして、このスラグ充填槽8a内に空気等の冷却ガス8bを供給して粒状凝固スラグSsの保有熱を回収する。得られた熱回収ガス8cは、例えば製鉄所の各工程へ供給し、溶融スラグS2の保有熱(すなわち、粒状凝固スラグSsの保有熱)の有効活用が図られる。また、熱回収後の粒状凝固スラグSsは、第1のスラグ熱回収設備8Aから排出されたのち、製品スラグとして路盤材や骨材として出荷される。 Next, by the slag heat recovery equipment 8 (first slag heat recovery equipment 8A), among the plurality of granular slag groups classified as described above, granular slag with a relatively low particle size (for example, a particle size of less than 10 mm) A heat recovery treatment is applied to the granular solidified slag Ss of the group (first slag heat recovery treatment step). Since the solid-liquid mixed solidified slag S solidified in the solid-liquid slag mixed solidification equipment 4 can be easily crushed even when hot, high-temperature granular solidified slag Sg can be produced by hot crushing. After the produced granular solidified slag Sg is classified into a plurality of granular slag groups according to the particle size by the slag classifying equipment 7, the granular solidified slag Ss of the granular slag group with a relatively low particle size that can be used as product slag is classified as a first slag. It is charged into the heat recovery facility 8A and filled in the slag filling tank 8a. Then, a cooling gas 8b such as air is supplied into the slag filling tank 8a to recover the inherent heat of the granular solidified slag Ss. The obtained heat-recovery gas 8c is supplied to, for example, each process in the steelworks, and effective utilization of the heat potential of the molten slag S2 (that is, the potential heat of the granular solidified slag Ss) is achieved. After heat recovery, the granular solidified slag Ss is discharged from the first slag heat recovery facility 8A, and then shipped as product slag as a roadbed material or aggregate.
 第1のスラグ熱回収設備8Aとしては、粒状凝固スラグSsの搬送方法や供給ピッチ等に応じて、コークス乾式消火設備(CDQ)のような縦型充填槽方式や、焼結クーラーのような回転床方式など、適宜に設計して用いることが可能である。 As the first slag heat recovery equipment 8A, a vertical packed tank system such as a coke dry quenching system (CDQ) or a rotary It is possible to appropriately design and use such as a floor system.
 本発明の方法においては、分級により第1のスラグ熱回収設備8Aに装入される粒状凝固スラグSsの粒度が比較的小さい粒度で揃えられている。そのため、スラグの粒度が揃っておらず比較的大きな粒度のスラグを含む場合に比べて、短時間で効率的に熱回収することができる。 In the method of the present invention, the particle size of the granular solidified slag Ss charged into the first slag heat recovery equipment 8A is made relatively small by classification. Therefore, the heat can be efficiently recovered in a short period of time compared to the case where the slag is not uniform in particle size and contains slag with a relatively large particle size.
 また、上記した特許文献1に記載の従来方法では、溶融スラグを鋳型で凝固させる際に、溶融スラグの保有熱(及び凝固潜熱)の多くは鋳型に奪われるか、大気中に熱放散して損失する。これに対して、本発明の方法においては、溶融スラグS2の保有熱の一部は固形スラグS1に移動して蓄熱される。そのため、第1のスラグ熱回収設備8Aによる回収熱量は、特許文献1に記載の従来方法における回収熱量よりも大きくなる。 Further, in the conventional method described in Patent Document 1, when the molten slag is solidified in the mold, most of the heat (and latent heat of solidification) of the molten slag is taken away by the mold or dissipated into the atmosphere. lose. On the other hand, in the method of the present invention, part of the heat stored in the molten slag S2 is transferred to the solid slag S1 and stored therein. Therefore, the amount of heat recovered by the first slag heat recovery facility 8A is greater than the amount of heat recovered in the conventional method described in Patent Document 1.
 一方、分級された複数の粒状スラグ群のうち、比較的粒度の高い(例えば、粒径が10mm以上)粒状スラグ群の粒状凝固スラグSiについては、路盤材や骨材などの製品スラグとして使用することはできない。しかし、比較的粒度の高い粒状凝固スラグSiについても、比較的粒度の低い粒状凝固スラグSsと同様に高温である。そこで、図3に示すように、第1のスラグ熱回収設備8Aとは別に第2のスラグ熱回収設備8Bを設け、高温の粒状凝固スラグSiを第2のスラグ熱回収設備8Bへ装入してスラグ充填槽8a内に充填し、スラグ充填槽8a内に冷却ガス8bを供給することが好ましい。これにより、粒状凝固スラグSsと同様に粒状凝固スラグSiの熱を回収することができる(第2のスラグ熱回収工程)。粒状凝固スラグSiからの熱回収の時間については、比較的粒度の低い粒状凝固スラグSsに比べて多くの時間を要する。 On the other hand, among the classified multiple granular slag groups, the granular solidified slag Si of the granular slag group with a relatively high grain size (for example, a grain size of 10 mm or more) is used as product slag such as roadbed materials and aggregates. It is not possible. However, the granular solidified slag Si, which has a relatively large grain size, is also at a high temperature like the granular solidified slag Ss, which has a relatively small grain size. Therefore, as shown in FIG. 3, a second slag heat recovery facility 8B is provided separately from the first slag heat recovery facility 8A, and high-temperature granular solidified slag Si is charged into the second slag heat recovery facility 8B. It is preferable that the cooling gas 8b is supplied into the slag-filled tank 8a by filling the slag-filled tank 8a with the cooling gas. As a result, the heat of the granular solidified slag Si can be recovered in the same manner as the granular solidified slag Ss (second slag heat recovery step). It takes longer time to recover heat from the granular solidified slag Si than from the granular solidified slag Ss having a relatively low particle size.
 上記第2のスラグ熱回収設備8Bと固形スラグ供給装置2との間に、熱回収後の粒状凝固スラグSiを固液スラグ混合凝固設備4の固形スラグ供給装置2まで搬送するための搬送路12を設け、熱回収処理が施された粒状凝固スラグSiの一部または全てを、固形スラグS1として再利用することが好ましい(スラグリサイクル工程)。図1および図2に示したように、粗粒スラグは、熱回収およびCO固定化などのスラグ安定化処理のいずれにおいても効率が悪い。一方で、固液スラグ混合凝固設備4において鋳型1へ供給される固形スラグS1は、凝固スラグの破砕性を改善するために、比較的粒径の大きなスラグを用いる方が効果的である。そこで、熱回収処理が施された粒状凝固スラグSiの一部または全てを、固形スラグS1として再利用することが好ましい。 Between the second slag heat recovery equipment 8B and the solid slag supply device 2, a transport path 12 for transporting the granular solidified slag Si after heat recovery to the solid slag supply device 2 of the solid-liquid slag mixing and solidification equipment 4 is provided, and part or all of the granular solidified slag Si subjected to heat recovery treatment is preferably reused as solid slag S1 (slag recycling step). As shown in Figures 1 and 2, coarse slag is inefficient in both heat recovery and slag stabilization processes such as CO2 fixation. On the other hand, for the solid slag S1 supplied to the mold 1 in the solid-liquid slag mixing and solidification equipment 4, it is more effective to use slag with a relatively large grain size in order to improve the crushability of the solidified slag. Therefore, it is preferable to reuse part or all of the granular solidified slag Si subjected to the heat recovery treatment as the solid slag S1.
 再利用する粒状凝固スラグSiの粒径が固液スラグ混合凝固設備4において作製される固液混合凝固スラグSのスラグ凝固厚に対して小さ過ぎる場合、固形スラグS1の粒子間隙へ溶融スラグS2が浸透する前に溶融スラグS2が凝固して均一な固液混合凝固が難しくなる。そのため、溶融スラグS2が固形スラグS1間隙に浸透可能な程度に粒子間隙を大きくする必要がある。そのため、再利用する粒状凝固スラグSiの粒径は、10mm以上とすることが好ましい。一方で、粒状凝固スラグSiの粒径が固液スラグ混合凝固設備4において作製される固液混合凝固スラグSのスラグ凝固厚よりも大きい場合、固形スラグS1の粒径が溶融スラグS2の凝固厚よりも大きくなるが、処理としては同様に、作製された固液混合凝固スラグSに対して熱間破砕を行い、破砕されなかった比較的粒径の大きな粗粒スラグは再利用される。粗粒スラグは、繰り返し固液スラグ混合凝固による熱履歴や繰り返し熱間破砕を受けることにより、次第に細粒化されて比較的粒径が小さな細粒スラグとなるため、永続的に再利用されることは無く、最終的には細粒スラグとして製品化される。 If the grain size of the reusable granular solidified slag Si is too small with respect to the slag solidification thickness of the solid-liquid mixed solidified slag S produced in the solid-liquid slag mixing and solidification equipment 4, the molten slag S2 will flow into the gaps between the particles of the solid slag S1. The molten slag S2 solidifies before it permeates, making uniform solid-liquid mixed solidification difficult. Therefore, it is necessary to increase the particle gap to such an extent that the molten slag S2 can penetrate into the solid slag S1 gap. Therefore, it is preferable that the particle size of the reusable granular solidified slag Si is 10 mm or more. On the other hand, when the particle size of the granular solidified slag Si is larger than the slag solidification thickness of the solid-liquid mixed solidified slag S produced in the solid-liquid slag mixing and solidification equipment 4, the particle size of the solid slag S1 is larger than the solidification thickness of the molten slag S2. As a treatment, the produced solid-liquid mixed solidified slag S is similarly subjected to hot crushing, and the uncrushed coarse-grained slag having a relatively large grain size is reused. Coarse-grained slag undergoes repeated heat history due to solid-liquid slag mixed solidification and repeated hot crushing, and is gradually refined into fine-grained slag with a relatively small grain size, so it can be reused permanently. It is finally commercialized as fine-grained slag.
 第2のスラグ熱回収設備8Bについても、第1のスラグ熱回収設備8Aと同様に、粒状凝固スラグSiの搬送方法や供給ピッチ等に応じて、コークス乾式消火設備(CDQ)のような縦型充填槽方式や、焼結クーラーのような回転床方式など、適宜に設計して用いることが可能である。 Regarding the second slag heat recovery equipment 8B, as with the first slag heat recovery equipment 8A, depending on the transportation method and supply pitch of the granular solidified slag Si, a vertical type such as a coke dry quenching equipment (CDQ) A packed tank system, a rotating bed system such as a sintering cooler, or the like can be appropriately designed and used.
 このように、図3に示した製造設備列を用いた粒状凝固スラグの製造方法においては、分級された粒状スラグ群ごとにスラグ熱回収設備8を設けて、スラグ分級設備7により分級された粒状凝固スラグSgの粒度に応じて、それぞれ異なるスラグ熱回収設備8にてスラグ処理を行う。このような構成とすることにより、例えば、比較的粒度の低い粒状スラグ群の粒状凝固スラグSsについては短時間の処理を施す一方、比較的粒度の高い粒状スラグ群の粒状凝固スラグSiに対しては長時間の処理を施すような、独立した処理を施すことができる。 As described above, in the method for producing granular solidified slag using the production equipment line shown in FIG. Depending on the particle size of the solidified slag Sg, different slag heat recovery equipment 8 performs slag treatment. With such a configuration, for example, the granular solidified slag Ss of the granular slag group with a relatively low grain size is treated for a short time, while the granular solidified slag Si of the granular slag group with a relatively high grain size is treated for a short time. can perform independent processing, such as performing long-running processing.
 上述のように、比較的粒度の低い粒状凝固スラグSs用の第1のスラグ熱回収設備8Aと、比較的粒度の高い粒状凝固スラグSi用の第2のスラグ熱回収設備8Bとで、スラグ充填槽8aの高さを同じにすると、単位体積当りのスラグ総表面積が小さい粒状凝固スラグSiの方が熱回収ガス8cの温度が低くなる。そのため、例えば粒状凝固スラグSi用の第2のスラグ熱回収設備8Bのスラグ充填槽8aの高さについては、粒状凝固スラグSs用の第1のスラグ熱回収設備8Aのスラグ充填槽8aよりも高めに設計して、ガス流通時の粒状凝固スラグSiとの接触機会を増やすことによって、熱回収ガス8cの温度を高温化するように構成することも可能である。 As described above, the first slag heat recovery equipment 8A for granular solidified slag Ss with a relatively low grain size and the second slag heat recovery equipment 8B for granular solidified slag Si with a relatively high grain size are used for slag filling. If the height of the tank 8a is the same, the temperature of the heat recovery gas 8c will be lower for the granular solidified slag Si, which has a smaller total slag surface area per unit volume. Therefore, for example, the height of the slag filling tank 8a of the second slag heat recovery facility 8B for granular solidified slag Si is higher than the slag filling tank 8a of the first slag heat recovery facility 8A for granular solidified slag Ss. It is also possible to increase the temperature of the heat recovery gas 8c by designing the heat recovery gas 8c to increase the chances of contact with the granular solidified slag Si during gas flow.
 なお、図3においては、比較的粒度の低い粒状スラグ群の粒状凝固スラグSsに対して熱回収処理を施したが、図7に示したスラグの製造設備列のように、水蒸気を供給して蒸気エージング処理を行うための水蒸気供給装置9を設け、粒状凝固スラグSsに対して蒸気エージング処理を施すことができる(蒸気エージング処理工程)。すなわち、分級後の高温の粒状凝固スラグSsをスラグ安定化処理設備10に装入し、このスラグ安定化処理設備10内に水蒸気供給装置9から水蒸気を供給する。粒状凝固スラグSsは総表面積が比較的大きいため、スラグ内部への水蒸気の浸透効率が高く、効率的な蒸気エージング処理が可能である。そこで、スラグ分級設備7を用いて分級された比較的粒度の低い粒状スラグ群の粒状凝固スラグSsに水蒸気を供給して、以下の式(1)を主反応とする蒸気エージング処理を行う。こうして得られる製品スラグは、蒸気エージング処理によって膨張反応済のものとなり、路盤材や骨材として出荷することが可能になる。
 CaO + HO → Ca(OH)  (1)
In FIG. 3, the granular solidified slag Ss of the group of granular slag having a relatively low particle size was subjected to heat recovery treatment, but steam was supplied as in the slag manufacturing facility line shown in FIG. A steam supply device 9 for performing steam aging treatment is provided, and the granular solidified slag Ss can be subjected to steam aging treatment (steam aging treatment step). That is, the classified high-temperature granular solidified slag Ss is charged into the slag stabilization treatment equipment 10 and steam is supplied from the steam supply device 9 into the slag stabilization treatment equipment 10 . Since the granular solidified slag Ss has a relatively large total surface area, the penetration efficiency of steam into the slag is high, and efficient steam aging treatment is possible. Therefore, steam is supplied to the granular solidified slag Ss of the granular slag group with relatively low particle size classified by the slag classifier 7, and the steam aging treatment is performed with the following formula (1) as the main reaction. The product slag obtained in this way has undergone an expansion reaction by steam aging treatment, and can be shipped as a roadbed material or aggregate.
CaO + H2O → Ca(OH) 2 (1)
 また、図8に示したスラグの製造設備列のように、炭酸ガスを供給して炭酸化処理を行う炭酸ガス供給装置11を設け、粒状凝固スラグSsに対して炭酸化処理を施すことができる。すなわち、分級後の高温の粒状凝固スラグSsをスラグ安定化処理設備10に装入し、このスラグ安定化処理設備10内に炭酸ガス供給装置11から炭酸ガスを供給する。粒状凝固スラグSsは総表面積が比較的大きいため、炭酸ガスについても水蒸気の場合と同様に、スラグ内部への炭酸ガスの浸透効率が高く、効率的な炭酸化処理が可能である。そこで、スラグ分級設備7を用いて分級された比較的粒度の小さい粒状スラグ群の粒状凝固スラグSsに炭酸ガスを供給して、以下の式(2)を主反応とする炭酸化処理を行う。こうして得られる製品スラグは、炭酸化処理によって膨張反応済のものとなり、路盤材や骨材として出荷することが可能になる。
 CaO + CO → CaCO  (2)
Further, as in the slag manufacturing facility line shown in FIG. 8, a carbon dioxide gas supply device 11 for supplying carbon dioxide gas to perform carbonation treatment is provided, and the granular solidified slag Ss can be subjected to carbonation treatment. . That is, the classified high-temperature granular solidified slag Ss is charged into the slag stabilization treatment facility 10, and carbon dioxide gas is supplied from the carbon dioxide supply device 11 into the slag stabilization treatment facility 10. FIG. Since the granular solidified slag Ss has a relatively large total surface area, the efficiency of carbon dioxide gas permeation into the slag is high as in the case of water vapor, enabling efficient carbonation. Therefore, carbon dioxide gas is supplied to the granular solidified slag Ss of the group of granular slags with relatively small particle sizes classified by the slag classifier 7, and the carbonation treatment is performed with the following formula (2) as the main reaction. The product slag obtained in this way has undergone an expansion reaction by carbonation, and can be shipped as a roadbed material or aggregate.
CaO+ CO2CaCO3 (2)
 なお、図3に示した第1のスラグ熱回収設備8Aに、図7に示した水蒸気供給装置9および図8に示した炭酸ガス供給装置11の一方または両方を組み込むことができる。すなわち、高温の粒状凝固スラグSsは、1000℃程度の高温で第1のスラグ熱回収設備8Aへ装入される。ここで、スラグの蒸気エージング処理および炭酸化処理について、平衡論上では、蒸気エージング処理におけるf-CaOの水和膨張は580℃以下、炭酸化処理におけるf-CaOの炭酸化は898℃以下において進行する。そのため、蒸気エージング処理または炭酸化処理に先立って熱回収を行い、スラグ温度が十分に低下した後に、蒸気エージング処理および/または炭酸化処理に切り替えることが有利である。これらの処理方法の切り替えを、同じスラグ充填槽8a(図3参照)内にて行うことが好ましく、そのためには、第1のスラグ熱回収設備8Aに、水蒸気供給装置9および炭酸ガス供給装置11の一方または両方を組み込むことが好ましい。このような設備について特に図示はしないが、図3において、冷却ガス8bの供給を、空気、水蒸気および炭酸ガスに切換弁などにて選択できるように構成すればよい。この構成では、スラグ熱回収の進行度に応じて、例えば熱回収のための空気供給から蒸気エージングのための水蒸気供給への切り替えが可能となる。 One or both of the steam supply device 9 shown in FIG. 7 and the carbon dioxide gas supply device 11 shown in FIG. 8 can be incorporated into the first slag heat recovery facility 8A shown in FIG. That is, the high temperature granular solidified slag Ss is charged into the first slag heat recovery equipment 8A at a high temperature of about 1000°C. Here, regarding the steam aging treatment and carbonation treatment of slag, according to equilibrium theory, the hydration expansion of f-CaO in steam aging treatment is 580 ° C. or less, and the carbonation of f-CaO in carbonation treatment is at 898 ° C. or less. proceed. Therefore, it is advantageous to perform heat recovery prior to steam aging or carbonation and switch to steam aging and/or carbonation after the slag temperature has sufficiently decreased. It is preferable to switch these treatment methods within the same slag filling tank 8a (see FIG. 3). It is preferred to incorporate one or both of Although such equipment is not particularly illustrated, in FIG. 3, the supply of the cooling gas 8b can be selected from among air, water vapor and carbon dioxide by means of a switching valve or the like. In this configuration, it is possible, for example, to switch from air supply for heat recovery to steam supply for steam aging according to the progress of slag heat recovery.
 なお、スラグ充填槽8a内におけるスラグ温度は、充填したスラグの形状および温度、熱回収中の熱回収ガスの温度などを用いて、上述したように、ISIJ International, Vol. 55 (2015), No. 10, pp. 2258-2265に示される、スラグ充填槽8aの非定常伝熱モデルを用いた計算により予測することができる。あるいは、スラグと直接接触しているスラグ充填槽8aの内壁に熱電対を設置して、内壁の温度から粒状凝固スラグSsの温度を予測する方法も可能である。 The slag temperature in the slag filling tank 8a is determined using the shape and temperature of the filled slag, the temperature of the heat recovery gas during heat recovery, etc., as described above, ISIJ International, Vol. 55 (2015), No. 10, pp. 2258-2265. Alternatively, a method of estimating the temperature of the granular solidified slag Ss from the temperature of the inner wall by installing a thermocouple on the inner wall of the slag filling tank 8a that is in direct contact with the slag is also possible.
 また、図3に示した第1のスラグ熱回収設備8Aの下流側に、図7に示した水蒸気供給装置9および図8に示した炭酸ガス供給装置11の一方または両方を設けることができる。すなわち、図3に示した製造設備列では、第1のスラグ熱回収設備8Aのスラグ充填槽8a内の粒状凝固スラグSsは、冷却ガス8bの流通方向に温度分布を有するため、十分な時間をかけて熱回収を行うケース以外では、スラグ充填槽8a内の温度は均一にはならない。例えば、装入直後の1000℃程度の高温の粒状凝固スラグSsと、熱回収終了後の100℃以下程度の低温の粒状凝固スラグSsとが混在するようなスラグ充填槽8aについて、第1のスラグ熱回収設備8A内で蒸気エージング処理および炭酸化処理を行う際に、処理効果が何れも不均一になる可能性がある。そこで、第1のスラグ熱回収設備8Aの下流側に、水蒸気供給装置9および炭酸ガス供給装置11の一方または両方を、第1のスラグ熱回収設備8Aと独立させて設ける。そして、第1のスラグ熱回収設備8Aで所定温度まで粒状凝固スラグSsを冷却した後に、熱回収後の粒状凝固スラグSsを排出し、この排出スラグを、図7または図8に示したスラグ安定化処理設備10に装入する。これにより、水蒸気供給装置9および炭酸ガス供給装置11による、蒸気エージング処理および/または炭酸化処理の効果を均一にすることができる。 Further, one or both of the steam supply device 9 shown in FIG. 7 and the carbon dioxide gas supply device 11 shown in FIG. 8 can be provided downstream of the first slag heat recovery facility 8A shown in FIG. That is, in the manufacturing equipment line shown in FIG. 3, the granular solidified slag Ss in the slag filling tank 8a of the first slag heat recovery equipment 8A has a temperature distribution in the flow direction of the cooling gas 8b. The temperature in the slag filling tank 8a does not become uniform except for the case where the heat is recovered by heating. For example, for the slag-filled tank 8a in which high-temperature granular solidified slag Ss of about 1000° C. immediately after charging and low-temperature granular solidified slag Ss of about 100° C. or lower after completion of heat recovery are mixed, the first slag When performing the steam aging treatment and the carbonation treatment in the heat recovery facility 8A, both treatment effects can be non-uniform. Therefore, one or both of the steam supply device 9 and the carbon dioxide gas supply device 11 are provided downstream of the first slag heat recovery facility 8A independently of the first slag heat recovery facility 8A. Then, after cooling the granular solidified slag Ss to a predetermined temperature in the first slag heat recovery equipment 8A, the granular solidified slag Ss after heat recovery is discharged, and this discharged slag is treated as the slag stabilization shown in FIG. 7 or FIG. It is charged into the chemical treatment facility 10 . Thereby, the effect of the steam aging treatment and/or the carbonation treatment by the steam supply device 9 and the carbon dioxide gas supply device 11 can be made uniform.
 また、上記した第1のスラグ熱回収設備8A、水蒸気供給装置9、炭酸ガス供給装置11の全てを設置することも可能である。例えば、図9に示すように、スラグ分級設備7の出側に、第1のスラグ熱回収設備8A、水蒸気供給装置9および炭酸ガス供給装置11を順に配置した、製造設備列とすることが可能である。この製造設備列によれば、上記した第1のスラグ熱回収設備8A、水蒸気供給装置9および炭酸ガス供給装置11のそれぞれの作用効果を併せ持つことができるのは勿論である。 It is also possible to install all of the above-described first slag heat recovery equipment 8A, steam supply device 9, and carbon dioxide gas supply device 11. For example, as shown in FIG. 9, it is possible to form a manufacturing equipment line in which a first slag heat recovery equipment 8A, a steam supply device 9 and a carbon dioxide gas supply device 11 are arranged in order on the outlet side of the slag classification equipment 7. is. According to this line of production equipment, it is of course possible to have the effects of the first slag heat recovery equipment 8A, the steam supply device 9 and the carbon dioxide gas supply device 11 described above.
 以上、本発明について説明したが、本発明者らがさらに検討を進めた結果、以下の知見を得るに至った。すなわち、上述の説明では、固形スラグS1および溶融スラグS2を鋳型1内に供給して固液混合凝固スラグSを作製しているが、固形スラグS1に代えて、溶融スラグS2の融点以上の融点を有する金属粒子などを鋳型1に供給する場合にも、溶融スラグS2が凝固した凝固域に亀裂を発生させることができ、その後の熱間破砕を簡便に行うことができることを見出した。このように、溶融スラグS2とともに鋳型1に供給するものは固形スラグS1に限定されず、固形スラグ、溶融スラグS2の融点以上の融点を有する金属粒子などを含む固形物とすることができる。こうした固形物とともに溶融スラグS2を鋳型1内に供給して、混合凝固物Sを作製することができる(混合凝固物作成工程)。 The present invention has been described above, but as a result of further studies by the present inventors, the following findings have been obtained. That is, in the above explanation, the solid slag S1 and the molten slag S2 are supplied into the mold 1 to produce the solid-liquid mixed solidified slag S. It was found that even when metal particles or the like having As described above, what is supplied to the mold 1 together with the molten slag S2 is not limited to the solid slag S1, and may be a solid material including solid slag and metal particles having a melting point higher than the melting point of the molten slag S2. By supplying the molten slag S2 into the mold 1 together with such solids, the mixed solidified material S can be produced (mixed solidified material producing step).
 そして、作製した混合凝固物Sを粒状に破砕して混合破砕物Sgを作製し(破砕工程)、混合破砕物Sgを粒度または材質に応じて複数の混合破砕物群に分離して粒状凝固スラグSs、Siを得ることができる(分離工程)。 Then, the produced mixed solidified material S is crushed into granules to produce mixed crushed material Sg (crushing step), and the mixed crushed material Sg is separated into a plurality of mixed crushed material groups according to the particle size or material to form granular solidified slag. Ss and Si can be obtained (separation step).
 溶融スラグS2とともに固形物を鋳型1内に供給する場合、図3に示した粒状凝固スラグの製造設備列において、固形スラグ供給装置2を、固形物を供給する固形物供給装置2とし、固液スラグ混合凝固設備4を、固形物供給装置2と溶融スラグ供給装置3とを有する混合凝固物作製設備2とする。また、スラグ破砕設備5を、混合凝固物Sを破砕して混合破砕物Sgを作製する破砕設備5とする。さらに、スラグ分級設備7を、混合破砕物Sgを粒度または材質に応じて複数の混合破砕物群に分離して粒状凝固スラグを得る分離設備7とする。 When supplying the solid matter into the mold 1 together with the molten slag S2, the solid slag supply device 2 is used as the solid matter supply device 2 for supplying the solid matter in the manufacturing equipment line for granular solidified slag shown in FIG. The slag mixing and solidification facility 4 is assumed to be a mixed solidification production facility 2 having a solid matter supply device 2 and a molten slag supply device 3 . Further, the slag crushing equipment 5 is used as the crushing equipment 5 for crushing the mixed solidified material S to produce the crushed mixed material Sg. Further, the slag classifying equipment 7 is a separation equipment 7 for obtaining granular solidified slag by separating the mixed crushed material Sg into a plurality of mixed crushed material groups according to the particle size or material.
 上記固形物として溶融スラグS2の融点以上の融点を有する金属粒子を用いる場合、金属の高い熱伝導率を利用して溶融スラグS2から効率的に抜熱させることが可能となる。また溶融スラグS2が凝固した凝固スラグとの剥離性も改善して、混合凝固物の破砕処理も簡易化することができる。金属粒子Mの融点は、溶融スラグS2の融点よりも高い融点を有することが好ましい。固形物として金属粒子Mを用いる場合、下工程で磁選による分離が可能な、鉄などの強磁性体の粒子であることがより好ましい。 When metal particles having a melting point equal to or higher than the melting point of the molten slag S2 are used as the solid matter, it is possible to efficiently remove heat from the molten slag S2 by utilizing the high thermal conductivity of the metal. In addition, the separation of the molten slag S2 from the solidified slag is improved, and the crushing process of the mixed solidified product can be simplified. The melting point of the metal particles M is preferably higher than the melting point of the molten slag S2. When metal particles M are used as the solid matter, particles of a ferromagnetic material such as iron, which can be separated by magnetic separation in a downstream step, are more preferable.
 混合凝固物Sは、厚過ぎると破砕工程における破砕設備5の負荷が大きくなり、また未破砕のまま残存する混合凝固物Sが増えるおそれがある。一方で、混合凝固物Sは、薄過ぎると破砕後の混合破砕物Sgの粒度が小さくなり過ぎるため、道路用鉄鋼スラグとして使用することができなくなるおそれがある。そのため、混合凝固物Sの凝固厚tは30mm以上、100mm以下とすることが好ましい。特に、凝固厚の制御が容易な設備を用いる場合においては、混合凝固物Sの凝固厚tは30mm以上、50mm以下とすることがより好ましい。 If the mixed solidified material S is too thick, the load on the crushing equipment 5 in the crushing process will increase, and the mixed solidified material S that remains uncrushed may increase. On the other hand, if the mixed solidified material S is too thin, the particle size of the crushed mixed material Sg after crushing becomes too small, and there is a possibility that it cannot be used as steel slag for roads. Therefore, the solidified thickness t of the mixed solidified material S is preferably 30 mm or more and 100 mm or less. In particular, in the case of using equipment that can easily control the solidified thickness, the solidified thickness t of the mixed solidified material S is more preferably 30 mm or more and 50 mm or less.
 また、上記固形物S1は、粒度または材質の異なる2種類以上の固形物としてもよい。例えば、固形物として、固形スラグS1および金属粒子Mの両方を用いてもよい。これは、図10に示すように、固形物供給装置2を、固形スラグS1を供給する固形スラグ供給装置2Aおよび金属粒子Mを供給する金属粒子供給装置2Bで構成することによって行うことができる。金属粒子供給装置2Bは、金属粒子Mを収容し所定量を供給するホッパーと、ホッパーから供給された金属粒子Mを鋳型1内に誘導するための樋とを備えている。 In addition, the solid matter S1 may be two or more kinds of solid matter having different particle sizes or materials. For example, both solid slag S1 and metal particles M may be used as solids. As shown in FIG. 10, this can be done by configuring the solid matter feeder 2 with a solid slag feeder 2A that feeds solid slugs S1 and a metal particle feeder 2B that feeds metal particles M. The metal particle supply device 2B includes a hopper that stores the metal particles M and supplies a predetermined amount, and a gutter for guiding the metal particles M supplied from the hopper into the mold 1 .
 固形物として固形スラグS1および金属粒子Mの両方を用いる場合、図11に示すように、サイズの小さい固形スラグS1を敷き詰めた上に金属粒子Mを配置することもできる。これにより、金属粒子Mが転がり易い鉄球の場合についても、鋳型1内で安定して分散保持することができる。また、鋳型1の底面にサイズの小さい固形スラグS1を敷き詰めることによって、鋳型1への熱負荷軽減や固形スラグS1のガラス化の抑制、金属粒子Mによる混合凝固物Sの破砕性の改善などの効果を複合的に得ることができる。 When both the solid slag S1 and the metal particles M are used as the solid matter, as shown in FIG. 11, the metal particles M can be placed on the solid slag S1 having a small size. As a result, even if the metal particles M are iron balls that tend to roll easily, they can be stably dispersed and held within the mold 1 . In addition, by laying the solid slag S1 with a small size on the bottom surface of the mold 1, the heat load on the mold 1 can be reduced, the vitrification of the solid slag S1 can be suppressed, and the crushability of the mixed solidified material S by the metal particles M can be improved. Multiple effects can be obtained.
 鋳型1に供給する固形物として粒度または材質の異なる2種類以上の固形物を用いる場合、例えば、図12に示すように、鋳型1の端部に固形物が落ち込むような形状の1つの隆起部1aを鋳型1の底部に設けてもよい。底部の形状をこのような形状にすることによって、固形物の分散保持が容易になるだけでなく、作製される混合凝固物Sにおいて凝固厚が小さい部分および凝固厚が大きい部分を設けることができる。その結果、最終的に作製される粒状凝固スラグの粒度分布を調整することが可能となる。また、凝固厚が大きい鋳型1の端部に熱伝導率が大きい鉄球などの金属粒子Mを配置することによって、溶融スラグS2の凝固速度のバランスも改善することができる。なお、鋳型1の底部において隆起部1aを複数設け、複数の金属粒子Mを分散して保持する構成としてもよい。 When two or more kinds of solids having different particle sizes or materials are used as the solids to be supplied to the mold 1, for example, as shown in FIG. 1a may be provided at the bottom of the mold 1; By making the shape of the bottom portion such a shape, it is possible not only to facilitate the dispersion and retention of the solids, but also to provide a portion with a small solidified thickness and a portion with a large solidified thickness in the mixed solidified product S to be produced. . As a result, it becomes possible to adjust the particle size distribution of the finally produced granular solidified slag. In addition, by arranging metal particles M such as iron balls with high thermal conductivity at the ends of the mold 1 with a large solidified thickness, it is possible to improve the balance of the solidification speed of the molten slag S2. In addition, a configuration may be adopted in which a plurality of protrusions 1a are provided on the bottom of the mold 1 to hold a plurality of metal particles M in a dispersed manner.
 図13は、本発明による、2種類の固形物を鋳型に供給する粒状凝固スラグの製造方法に用いる製造設備列の好適な一例を示している。図13に示した製造設備列においては、固形物として、固形スラグS1および金属粒子Mとしての鉄球の2種類を用いられており、固形物供給装置2は、固形スラグS1を供給する固形スラグ供給装置2Aと金属粒子Mを供給する金属粒子供給装置2Bとで構成されている。 FIG. 13 shows a preferred example of a production equipment train used in the method for producing granular solidified slag in which two types of solids are supplied to the mold according to the present invention. In the production equipment line shown in FIG. 13, two types of solids, solid slag S1 and iron balls as metal particles M, are used as solids. It is composed of a supply device 2A and a metal particle supply device 2B that supplies metal particles M. As shown in FIG.
 混合凝固物作製装置4における混合凝固物作製工程において、例えば、溶融スラグS2の粘度が高く、混合凝固物Sを所定の凝固厚に制御することができずに粗大な混合凝固物Sが形成された場合や、溶融スラグS2の供給時に地金が混入した場合、混合凝固物Sをそのまま破砕設備5へ供給すると、設備の破損に繋がるおそれがある。そのため、図13に示すように、混合凝固物作製設備4と破砕設備5との間に、熱間の分離装置7(7A)を設けて、混合凝固物Sを熱間で粒度または材質ごとに分離する熱間分離工程を設けることがより望ましい。熱間分離設備7Aとしては、例えば、可動シュートなどを用いることができる。 In the mixed solidified material production process in the mixed solidified material production apparatus 4, for example, the viscosity of the molten slag S2 is high, and the mixed solidified material S cannot be controlled to a predetermined solidification thickness, and a coarse mixed solidified material S is formed. If the molten slag S2 is supplied with bare metal mixed therein, supplying the mixed solidified material S as it is to the crushing equipment 5 may lead to damage to the equipment. Therefore, as shown in FIG. 13, a hot separation device 7 (7A) is provided between the mixed solidified material production equipment 4 and the crushing equipment 5, and the mixed solidified material S is separated by grain size or material while hot. It is more desirable to provide a hot separation step for separation. For example, a movable chute or the like can be used as the hot separation equipment 7A.
 上記熱間分離工程は、例えば、レーザー変位計、金属検知器、画像処理などにより、粗大な混合凝固物Sや地金の搬送タイミングを検知し、鋳型1を反転させて混合凝固物Sを落下させる位置の直下に設けた可動シュートなどの分離設備7Aを、粗大な混合凝固物Sや地金の落下タイミングに合わせて移動させることによって、行うことができる。 In the hot separation process, for example, by using a laser displacement meter, a metal detector, image processing, etc., the transport timing of the coarse mixed solidified material S and the base metal is detected, and the mold 1 is reversed to drop the mixed solidified material S. This can be done by moving the separating equipment 7A, such as a movable chute, which is provided directly below the position where the separation is carried out, in accordance with the falling timing of the coarse mixed solidified material S and the base metal.
 また、図8に示したスラグの製造設備列においては、高温の粒状凝固スラグSsをスラグ安定化処理設備10に装入し、このスラグ安定化処理設備10内に炭酸ガス供給装置11から炭酸ガスを供給して炭酸化処理を行っているが、図8におけるスラグ熱回収設備8A、8Bを、図13に示すように、熱回収処理のみならず蒸気エージング処理や炭酸化処理などを行うことが可能なスラグ処理設備8A、8Bとして構成してもよい。また、粒状凝固スラグSsに対して炭酸化処理を施す場合、粒状凝固スラグSsを第1のスラグ熱回収設備8Aへ装入して充填層8a内に充填し、水蒸気供給装置9および炭酸ガス供給装置11により、粒状凝固スラグSgに対して炭酸ガスと水蒸気との混合ガスを供給してもよい。 In the slag manufacturing equipment line shown in FIG. 8, high-temperature granular solidified slag Ss is charged into the slag stabilization treatment equipment 10, and carbon dioxide gas is supplied from the carbon dioxide supply device 11 into the slag stabilization treatment equipment 10. However, as shown in FIG. 13, the slag heat recovery equipment 8A and 8B in FIG. 8 can be used not only for heat recovery but also for steam aging and carbonation. It may be configured as a possible slag treatment facility 8A, 8B. Further, when the granular solidified slag Ss is subjected to the carbonation treatment, the granular solidified slag Ss is charged into the first slag heat recovery equipment 8A and filled in the filling layer 8a, and the water vapor supply device 9 and the carbon dioxide gas are supplied. A mixed gas of carbon dioxide gas and water vapor may be supplied to the granular solidified slag Sg by the device 11 .
 炭酸ガス中に水蒸気を混合することにより、粒状凝固スラグSgの表面のカルシウムがイオン化し、粒状凝固スラグSgと炭酸ガスおよび水蒸気との反応性が向上し、またカルシウムと水蒸気との反応により生成する水和物が中間体となり、炭酸化反応時の活性化エネルギーが低減し、炭酸化の反応速度を向上させることができる。炭酸ガスと水蒸気との混合ガスを用いる場合、水蒸気の濃度は、炭酸ガスの濃度と水蒸気の濃度との合計を100体積%とした場合において、1~80体積%、より好ましくは1~60体積%とすることが好ましい。 By mixing water vapor into carbon dioxide gas, the calcium on the surface of the granular solidified slag Sg is ionized, the reactivity between the granular solidified slag Sg and the carbon dioxide gas and water vapor is improved, and calcium is produced by the reaction between the water vapor and the carbon dioxide gas. The hydrate serves as an intermediate, which reduces the activation energy during the carbonation reaction and improves the reaction rate of carbonation. When using a mixed gas of carbon dioxide gas and water vapor, the concentration of water vapor is 1 to 80% by volume, more preferably 1 to 60% by volume, where the sum of the concentration of carbon dioxide gas and water vapor is 100% by volume. %.
 図13に示した製造設備列においては、混合凝固物作製装置4において作製される混合凝固物Sが鉄球を含む。そのため、破砕設備5としては、ボールミル方式のものが好適であり、混合凝固物Sを破砕するための鉄球として、混合凝固物Sに含まれる鉄球を、そのまま利用可能である。ボールミル方式の破砕設備5を用いる場合、破砕設備5に鉄球を追加で装入してもよい。破砕設備5から排出される混合破砕物Sgは、粒度または材質に応じて複数の混合破砕物群に分離される。図13では、鉄球は比較的粒度の大きい凝固スラグSiとともに分離される。分離された鉄球および比較的粒度の大きい凝固スラグSiは、スラグ処理設備8Bにより熱回収を行った後、粒度調整設備および冷間分離設備により、粒度調整および粒度または材質による分離を行った後、固形物として再利用できる。 In the manufacturing equipment line shown in FIG. 13, the mixed condensate S produced by the mixed condensate producing apparatus 4 contains iron balls. Therefore, the crushing equipment 5 is preferably of a ball mill type, and as the iron balls for crushing the mixed condensate S, the iron balls contained in the mixed condensate S can be used as they are. When using the ball mill type crushing equipment 5 , iron balls may be additionally charged into the crushing equipment 5 . The mixed crushed material Sg discharged from the crushing equipment 5 is separated into a plurality of mixed crushed material groups according to the particle size or material. In FIG. 13, iron balls are separated together with solidified slag Si having a relatively large grain size. The separated iron balls and the solidified slag Si having a relatively large grain size are subjected to heat recovery by the slag processing equipment 8B, and then to grain size adjustment and separation by grain size or material by the grain size adjustment equipment and the cold separation equipment. , can be reused as solids.
 図14は、本発明による、2種類の固形物を鋳型に供給する粒状凝固スラグの製造方法に用いる製造設備列の別の例を示している。図14に示した製造設備列においては、金属粒子Mとしてサイズが比較的小さい鉄球が用いられており、分離設備7(7B)の篩目が大きい場合には、鉄球は比較的粒度の小さい凝固スラグSsとともにスラグ処理設備8Aに供給される。この鉄球は、粒状凝固スラグSsとともに熱回収を行った後、最終的には磁選処理により製品スラグと分離除去されて固形物供給装置2が供給する固形物として再利用される。 FIG. 14 shows another example of a production equipment train used in the method for producing granular solidified slag in which two types of solids are supplied to the mold according to the present invention. In the row of manufacturing equipment shown in FIG. 14, iron balls having a relatively small size are used as the metal particles M, and when the mesh of the separation equipment 7 (7B) is large, the iron balls have a relatively large particle size It is supplied to the slag processing facility 8A together with small solidified slag Ss. After performing heat recovery together with the granular solidified slag Ss, the iron balls are finally separated and removed from the product slag by a magnetic separation process, and reused as the solid material supplied by the solid material supply device 2 .
 本発明によれば、凝固スラグに対する熱回収処理、蒸気エージング処理、炭酸化処理などのスラグ処理を効率的に行うことができるため、製鉄業において有用である。 According to the present invention, slag treatment such as heat recovery treatment, steam aging treatment, and carbonation treatment can be efficiently performed on solidified slag, so it is useful in the steel industry.
1 鋳型
2 固形スラグ供給装置(固形物供給装置)
2A 固形スラグ供給装置
2B 金属粒子供給装置
2a ホッパー
2b,3b スラグ樋
3 溶融スラグ供給装置
3a 傾動鍋
4 固液スラグ混合凝固設備(混合凝固物作製装置)
5 スラグ破砕設備(破砕設備)
5a 回転体
6 圧下装置
7 スラグ分級設備(分離設備)
8,8A,8B スラグ熱回収設備(スラグ処理設備)
8a スラグ充填槽(充填層)
8b 冷却ガス
8c 熱回収ガス
9 水蒸気供給装置
10 スラグ安定化処理設備
11 炭酸ガス供給装置
12 搬送路
S1 固形スラグ
S2 溶融スラグ
S 固液混合凝固スラグ(混合凝固物)
Sg 粒状凝固スラグ
Si 比較的粒度が高い粒状凝固スラグ
Ss 比較的粒度が低い粒状凝固スラグ
t 凝固厚
 
1 mold 2 solid slag feeder (solid feeder)
2A Solid slag feeder 2B Metal particle feeder 2a Hoppers 2b, 3b Slag gutter 3 Molten slag feeder 3a Tilting pan 4 Solid-liquid slag mixed solidification equipment (mixed solidified material producing device)
5 Slag crushing equipment (crushing equipment)
5a Rotating body 6 Reduction device 7 Slag classification equipment (separation equipment)
8, 8A, 8B Slag heat recovery equipment (slag treatment equipment)
8a Slag filling tank (filling bed)
8b Cooling gas 8c Heat recovery gas 9 Water vapor supply device 10 Slag stabilization equipment 11 Carbon dioxide gas supply device 12 Conveyance path S1 Solid slag S2 Molten slag S Solid-liquid mixed solidified slag (mixed solidified material)
Sg Granular solidified slag Si Granular solidified slag with a relatively high grain size Ss Granular solidified slag with a relatively low grain size t Solidified thickness

Claims (22)

  1.  鋳型内に溶融スラグおよび固形物を供給し、前記鋳型内において前記固形物相互間の隙間を前記溶融スラグで満たした状態にて前記溶融スラグの凝固を進行させて混合凝固物を作製する混合凝固物作製工程と、
     前記混合凝固物を粒状に破砕して混合破砕物を作製する破砕工程と、
     前記混合破砕物を粒度または材質に応じて複数の混合破砕物群に分離して粒状凝固スラグを得る分離工程と、
    を含むことを特徴とする、粒状凝固スラグの製造方法。
    Mixed solidification in which molten slag and solids are supplied into a mold, and solidification of the molten slag proceeds in a state in which gaps between the solids in the mold are filled with the molten slag to produce a mixed solidified product. a manufacturing process;
    A crushing step of crushing the mixed solidified material into granules to produce a crushed mixed material;
    a separation step of separating the mixed crushed material into a plurality of mixed crushed material groups according to particle size or material to obtain granular solidified slag;
    A method for producing granular solidified slag, comprising:
  2.  前記混合凝固物作製工程は、前記溶融スラグおよび前記固形物を供給した後、前記固形物を前記鋳型の底部に向かって押し込む押込工程をさらに含む、請求項1に記載の粒状凝固スラグの製造方法。 2. The method for producing granular solidified slag according to claim 1, wherein the mixed solidified material producing step further includes a pushing step of pushing the solid material toward the bottom of the mold after supplying the molten slag and the solid material. .
  3.  前記複数の混合破砕物群のうち、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に対して熱回収処理を施す第1のスラグ熱回収処理工程をさらに含む、請求項1または2に記載の粒状凝固スラグの製造方法。 Further comprising a first slag heat recovery treatment step of subjecting the crushed mixed material of the crushed mixed material group containing granular solidified slag having a relatively low particle size among the plurality of crushed mixed material groups to heat recovery treatment. Item 3. A method for producing granular solidified slag according to Item 1 or 2.
  4.  前記複数の混合破砕物群のうち、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に対して水蒸気を供給して蒸気エージング処理を施す蒸気エージング処理工程をさらに含む、請求項1~3のいずれか一項に記載の粒状凝固スラグの製造方法。 A steam aging treatment step of supplying steam to the crushed mixed material group of the crushed mixed material group containing granular solidified slag having a relatively low particle size among the plurality of crushed mixed material groups to perform steam aging treatment. A method for producing granular solidified slag according to any one of claims 1 to 3.
  5.  前記複数の混合破砕物群のうち、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に対して炭酸ガスを供給して炭酸化処理を施す炭酸化処理工程をさらに含む、請求項1~4のいずれか一項に記載の粒状凝固スラグの製造方法。 Further comprising a carbonation treatment step of supplying carbon dioxide gas to the crushed mixed material group of the crushed mixed material group containing granular solidified slag having a relatively low particle size to carry out carbonation treatment among the plurality of crushed mixed material groups. , The method for producing granular solidified slag according to any one of claims 1 to 4.
  6.  前記炭酸化処理工程において、前記炭酸ガスと水蒸気との混合ガスを供給する、請求項5に記載の粒状凝固スラグの製造方法。 The method for producing granular solidified slag according to claim 5, wherein the mixed gas of carbon dioxide gas and water vapor is supplied in the carbonation treatment step.
  7.  前記複数の混合破砕物群のうち、比較的粒度の高い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に対して熱回収処理を施す第2のスラグ熱回収処理工程をさらに含む、請求項1~6のいずれか一項に記載の粒状凝固スラグの製造方法。 Further comprising a second slag heat recovery treatment step of performing a heat recovery process on the crushed mixed material of the crushed mixed material group containing granular solidified slag having a relatively high particle size among the plurality of crushed mixed material groups. Item 7. A method for producing granular solidified slag according to any one of Items 1 to 6.
  8.  前記第2のスラグ熱回収工程において熱回収処理が施された、比較的粒度の高い前記粒状凝固スラグを含む混合破砕物群の前記混合破砕物の一部または全てを、前記混合凝固物作製工程において前記固形物として再利用する固形物リサイクル工程をさらに含む、請求項7に記載の粒状凝固スラグの製造方法。 Part or all of the crushed mixed material of the crushed mixed material group containing the granular solidified slag having a relatively high particle size, which has been heat-recovered in the second slag heat recovery process, is added to the mixed solidified material producing process. 8. The method for producing granular solidified slag according to claim 7, further comprising a solid matter recycling step of reusing the solid matter in.
  9.  前記混合凝固物作製工程において作製する前記混合凝固物の凝固厚を、100mm以下とする、請求項1~8のいずれか一項に記載の粒状凝固スラグの製造方法。 The method for producing granular solidified slag according to any one of claims 1 to 8, wherein the solidified thickness of the mixed solidified material produced in the mixed solidified material production step is 100 mm or less.
  10.  前記混合凝固物作製工程において、前記固形物を固形スラグとする、請求項1~9のいずれか一項に記載の粒状凝固スラグの製造方法。 The method for producing granular solidified slag according to any one of claims 1 to 9, wherein in the mixed solidified material producing step, the solid material is solid slag.
  11.  前記混合凝固物作製工程において、前記固形物を、前記溶融スラグの融点以上の融点を有する金属粒子とする、請求項1~9のいずれか一項に記載の粒状凝固スラグの製造方法。 The method for producing granular solidified slag according to any one of claims 1 to 9, wherein in the mixed solidified material producing step, the solid material is metal particles having a melting point equal to or higher than the melting point of the molten slag.
  12.  前記混合凝固物作製工程において、前記鋳型内に粒度または材質の異なる2種類以上の前記固形物を供給する、請求項1~9のいずれか一項に記載の粒状凝固スラグの製造方法。 The method for producing granular solidified slag according to any one of claims 1 to 9, wherein in the mixed solidified material producing step, two or more types of solid materials having different particle sizes or materials are supplied into the mold.
  13.  前記混合凝固物作製工程と前記破砕工程との間に、前記混合凝固物を粒度または材質ごとに分離する熱間分離工程をさらに有する、請求項1~12のいずれか一項に記載の粒状凝固スラグの製造方法。 Granular solidification according to any one of claims 1 to 12, further comprising a hot separation step of separating the mixed coagulum by particle size or material between the mixed coagulum preparation step and the crushing step. A method for producing slag.
  14.  鋳型内に溶融スラグを供給する溶融スラグ供給装置および、前記鋳型内に固形物を供給する固形物供給装置を有する混合凝固物作製設備と、
     前記混合凝固物作製設備にて作製される混合凝固物を破砕して混合破砕物を作製する破砕設備と、前記混合凝固物を粒度または材質に応じて複数の混合破砕物群に分離して粒状凝固スラグを得る分離設備と、を備えることを特徴とする粒状凝固スラグの製造設備列。
    A mixed solidified product production facility having a molten slag supply device for supplying molten slag into the mold and a solid substance supply device for supplying solid substances into the mold;
    A crushing facility for crushing the mixed solidified material produced by the mixed solidified material production facility to produce a mixed crushed material, and separating the mixed solidified material into a plurality of mixed crushed material groups according to particle size or material to form granules. and separation equipment for obtaining solidified slag.
  15.  前記混合凝固物作製設備は、前記溶融スラグおよび固形物が供給された前記鋳型に対して前記固形物の押し込みを行う圧下装置を有する、請求項14に記載の粒状凝固スラグの製造設備列。 15. The train of equipment for producing granular solidified slag according to claim 14, wherein the mixed solidified material production equipment has a reduction device that presses the solid material into the mold supplied with the molten slag and solid material.
  16.  前記鋳型は、底部に隆起部を有する、請求項14または15に記載の粒状凝固スラグの製造設備列。 The train of equipment for producing granular solidified slag according to claim 14 or 15, wherein the mold has a raised portion at the bottom.
  17.  前記破砕設備は、前記混合凝固物を破砕するための回転体を有する、請求項14~16のいずれか一項に記載の粒状凝固スラグの製造設備列。 The train of equipment for producing granular solidified slag according to any one of claims 14 to 16, wherein the crushing equipment has a rotating body for crushing the mixed solidified matter.
  18.  前記分離設備の下流側に、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物の熱を回収する第1のスラグ処理設備を有する、請求項14~17のいずれか一項に記載の粒状凝固スラグの製造設備列。 Any one of claims 14 to 17, comprising a first slag treatment facility downstream of the separation facility for recovering the heat of the mixed and crushed mixed material group containing granular solidified slag with a relatively low particle size. A train of equipment for producing granular solidified slag according to the above paragraph.
  19.  前記分離設備の下流側に、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に水蒸気を供給して蒸気エージングを行う水蒸気供給装置を有する、請求項14~18のいずれか一項に記載の粒状凝固スラグの製造設備列。 Any one of claims 14 to 18, comprising a steam supply device downstream of the separation equipment for performing steam aging by supplying steam to the crushed mixed material group of the crushed mixed material group containing granular solidified slag having a relatively low particle size. or a row of production facilities for granular solidified slag according to any one of the above items.
  20.  前記分離設備の下流側に、比較的粒度の低い粒状凝固スラグを含む混合破砕物群の前記混合破砕物に炭酸ガスを供給して炭酸化処理を行う炭酸ガス供給装置を有する、請求項14~19のいずれかに記載の粒状凝固スラグの製造設備列。 Claim 14-, comprising a carbon dioxide gas supply device downstream of the separation equipment for supplying carbon dioxide gas to the crushed mixed material of the crushed mixed material group containing granular solidified slag having a relatively low particle size to perform carbonation treatment. 20. A production facility train for granular solidified slag according to any one of 19.
  21.  前記分離設備の下流側に、比較的粒度の高い粒状凝固スラグを含む混合破砕物群の前記混合破砕物の熱を回収する第2のスラグ処理設備を有する、請求項14~20のいずれかに記載の粒状凝固スラグの製造設備列。 Any one of claims 14 to 20, comprising a second slag treatment facility downstream of the separation facility for recovering the heat of the mixed crushed material of the mixed crushed material group containing granular solidified slag with a relatively high particle size. A production facility train for granular solidified slag as described.
  22.  前記第2のスラグ処理設備と前記固形物供給装置との間に、前記熱回収処理を行った混合破砕物の一部または全てを前記固形物供給装置へ搬送するための搬送路を有する、請求項21に記載の粒状凝固スラグの製造設備列。
     
    Between the second slag treatment equipment and the solids supply device, a transport path is provided for transporting part or all of the crushed mixed material subjected to the heat recovery treatment to the solids supply device. Item 22. Equipment train for producing granular solidified slag according to item 21.
PCT/JP2022/024777 2021-06-23 2022-06-21 Method for producing granular solidified slag, and production facility line for same WO2022270516A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280043923.8A CN117677593A (en) 2021-06-23 2022-06-21 Process for producing granular solidified slag and apparatus for producing the same
KR1020247000819A KR20240019308A (en) 2021-06-23 2022-06-21 Method for producing granular solidified slag and equipment for producing the same
JP2022559470A JP7448033B2 (en) 2021-06-23 2022-06-21 Granular solidified slag manufacturing method and its manufacturing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-104462 2021-06-23
JP2021104462 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270516A1 true WO2022270516A1 (en) 2022-12-29

Family

ID=84545723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024777 WO2022270516A1 (en) 2021-06-23 2022-06-21 Method for producing granular solidified slag, and production facility line for same

Country Status (5)

Country Link
JP (1) JP7448033B2 (en)
KR (1) KR20240019308A (en)
CN (1) CN117677593A (en)
TW (1) TWI852028B (en)
WO (1) WO2022270516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166476A1 (en) * 2023-02-07 2024-08-15 Jfeスチール株式会社 Solidified body, roadbed material, and method for producing solidified body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122816A (en) * 1979-03-16 1980-09-20 Nippon Steel Corp Treating method for converter slag
JPS57187588A (en) * 1981-05-13 1982-11-18 Sumitomo Metal Ind Method of recovering heat of melted slag
JPS5932300U (en) * 1982-08-25 1984-02-28 川崎重工業株式会社 Sensible heat recovery equipment for molten slag
JPS59174551A (en) * 1983-03-18 1984-10-03 川崎製鉄株式会社 Sensible heat recovery from molten slag
JP2013177291A (en) * 2012-01-31 2013-09-09 Jfe Steel Corp Shape control apparatus for solidified slag, shape control method for solidified slag, and solidified slag
JP2014505004A (en) * 2010-12-15 2014-02-27 ポール ヴルス エス.エイ. Granulation of metallurgical slag
JP2019184122A (en) * 2018-04-06 2019-10-24 Jfeスチール株式会社 Heat recovery apparatus for high-temperature coagulation and method of recovering heat from high-temperature coagulation
JP2021116213A (en) * 2020-01-28 2021-08-10 Jfeスチール株式会社 Method for producing granular solidified slag and production facility row therefor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217388A (en) * 1975-07-31 1977-02-09 Nippon Steel Corp Treating apparatus of fused slag
JPS58221378A (en) * 1982-06-18 1983-12-23 住友金属工業株式会社 Manufacture of fixed grain size metallurgical slag lump
JPS58221379A (en) * 1982-06-18 1983-12-23 住友金属工業株式会社 Manufacture of metallurgical slag lump
JPH06158124A (en) 1992-11-17 1994-06-07 Nippon Steel Corp Treatment of cooling steelmaking slag
JPH08259282A (en) 1995-03-20 1996-10-08 Kawasaki Steel Corp Stabilization treatment of steel making slag
JP2000143302A (en) * 1998-11-06 2000-05-23 Kawasaki Steel Corp Method and apparatus for producing expanded slag
JP3954009B2 (en) 2003-08-18 2007-08-08 財団法人地球環境産業技術研究機構 Carbon dioxide immobilization method
JP2005306656A (en) * 2004-04-21 2005-11-04 Nippon Steel Corp Method for solidifying molten slag
KR101587371B1 (en) * 2012-02-17 2016-01-20 제이에프이 스틸 가부시키가이샤 Device for manufacturing solidified slag, device for manufacturing coarse aggregate for concrete, method for manufacturing solidified slag, and method for manufacturing coarse aggregate for concrete
JP5998845B2 (en) 2012-10-24 2016-09-28 Jfeスチール株式会社 Heat recovery system and heat recovery method for solidified slag
JP6318982B2 (en) * 2014-08-27 2018-05-09 Jfeスチール株式会社 Heat recovery method and heat recovery system for solidified slag
JP6414047B2 (en) * 2015-12-25 2018-10-31 Jfeスチール株式会社 Slag lump and method for producing the same
JP6924330B2 (en) * 2017-09-28 2021-08-25 アルセロールミタル Continuous manufacturing method of solidified steel slag and related equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122816A (en) * 1979-03-16 1980-09-20 Nippon Steel Corp Treating method for converter slag
JPS57187588A (en) * 1981-05-13 1982-11-18 Sumitomo Metal Ind Method of recovering heat of melted slag
JPS5932300U (en) * 1982-08-25 1984-02-28 川崎重工業株式会社 Sensible heat recovery equipment for molten slag
JPS59174551A (en) * 1983-03-18 1984-10-03 川崎製鉄株式会社 Sensible heat recovery from molten slag
JP2014505004A (en) * 2010-12-15 2014-02-27 ポール ヴルス エス.エイ. Granulation of metallurgical slag
JP2013177291A (en) * 2012-01-31 2013-09-09 Jfe Steel Corp Shape control apparatus for solidified slag, shape control method for solidified slag, and solidified slag
JP2019184122A (en) * 2018-04-06 2019-10-24 Jfeスチール株式会社 Heat recovery apparatus for high-temperature coagulation and method of recovering heat from high-temperature coagulation
JP2021116213A (en) * 2020-01-28 2021-08-10 Jfeスチール株式会社 Method for producing granular solidified slag and production facility row therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166476A1 (en) * 2023-02-07 2024-08-15 Jfeスチール株式会社 Solidified body, roadbed material, and method for producing solidified body

Also Published As

Publication number Publication date
CN117677593A (en) 2024-03-08
TW202317501A (en) 2023-05-01
JP7448033B2 (en) 2024-03-12
TWI852028B (en) 2024-08-11
KR20240019308A (en) 2024-02-14
JPWO2022270516A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
EP2616559B1 (en) Dry granulation of metallurgical slag
CN103261443B (en) The granulation of metallurgical slag
US8470067B2 (en) Process for preparing a foaming slag former, product and use thereof
JP7255504B2 (en) Method for producing granular solidified slag and its production equipment
WO2022270516A1 (en) Method for producing granular solidified slag, and production facility line for same
JP5998845B2 (en) Heat recovery system and heat recovery method for solidified slag
US20120055658A1 (en) Device for recovering heat of molten slag
JP2017519707A (en) Granulated slag products and processes for their production
JP7173425B1 (en) Granular solidified slag manufacturing method and manufacturing equipment
WO2022270480A1 (en) Granular solidified slag manufacturing method and manufacturing facility
CN104593530A (en) High-temperature tempering and curing method of liquid slag and equipment system of method
JP7310745B2 (en) Method for producing reforming converter slag and method for producing granular material for roadbed material
JP4012344B2 (en) Method for producing blast furnace slag fine aggregate
EP2980232B1 (en) Method for recycling iron-containing by-products discharged from coal-based ironmaking process, system used therefor, and direct-reduced iron agglomeration system
CN105567891B (en) A kind of high-temperature liquid state slag heat energy extracting method
JPH06256047A (en) Method for fractionating steelmaking slag and its apparatus
JP5942427B2 (en) Heat recovery method for molten slag
EP0393731B1 (en) Process for preparing a substance with hydraulic binding properties and substance prepared with this process
JP2963274B2 (en) Cooling method of molten material extracted from waste melting furnace
CZ309236B6 (en) Method of processing molten metallurgical slag
EP2242860B1 (en) Process for preparing a foaming slag former and use thereof
JP2009249269A (en) Apparatus and method for manufacturing foam glass
JPH11114931A (en) Molding facility of slag in melting furnace
JP2001002442A (en) Production of alkali silicate cullet crushed piece
JPH07100830B2 (en) Pretreatment method for sintering raw material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022559470

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317084789

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280043923.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247000819

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000819

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828432

Country of ref document: EP

Kind code of ref document: A1