WO2022269698A1 - 補間装置、歩容計測システム、補間方法、および記録媒体 - Google Patents
補間装置、歩容計測システム、補間方法、および記録媒体 Download PDFInfo
- Publication number
- WO2022269698A1 WO2022269698A1 PCT/JP2021/023444 JP2021023444W WO2022269698A1 WO 2022269698 A1 WO2022269698 A1 WO 2022269698A1 JP 2021023444 W JP2021023444 W JP 2021023444W WO 2022269698 A1 WO2022269698 A1 WO 2022269698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- walking
- data
- missing
- interpolation
- waveform
- Prior art date
Links
- 230000005021 gait Effects 0.000 title claims abstract description 295
- 238000005259 measurement Methods 0.000 title claims description 83
- 238000000034 method Methods 0.000 title claims description 63
- 230000010365 information processing Effects 0.000 claims abstract description 140
- 230000033001 locomotion Effects 0.000 claims abstract description 25
- 230000001133 acceleration Effects 0.000 claims description 78
- 230000008569 process Effects 0.000 claims description 19
- 238000004458 analytical method Methods 0.000 claims description 14
- 230000006735 deficit Effects 0.000 claims description 7
- 210000002683 foot Anatomy 0.000 description 53
- 238000010586 diagram Methods 0.000 description 31
- 238000004891 communication Methods 0.000 description 29
- 238000001514 detection method Methods 0.000 description 26
- 230000005540 biological transmission Effects 0.000 description 24
- 238000012545 processing Methods 0.000 description 22
- 210000002414 leg Anatomy 0.000 description 19
- 210000003371 toe Anatomy 0.000 description 13
- 230000007547 defect Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 210000002303 tibia Anatomy 0.000 description 8
- 239000000284 extract Substances 0.000 description 7
- 230000008439 repair process Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 206010061159 Foot deformity Diseases 0.000 description 2
- 208000001963 Hallux Valgus Diseases 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000000245 forearm Anatomy 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000003363 endpoint correction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
Definitions
- the present disclosure relates to an interpolation device or the like that interpolates missing time-series data.
- a measuring device including an inertial sensor is mounted on footwear such as shoes to analyze a user's gait.
- sensor data data measured by sensors
- data loss may occur due to factors such as communication failure.
- Patent Document 1 discloses a gait aiming at removing drift that exhibits different characteristics in the period in which the foot is in contact with the ground (stance phase) and in the period in which the foot is off the ground (swing phase).
- a capacity measurement system is disclosed.
- the system of Patent Literature 1 detects at least one walking phase from acceleration data measured by an inertial measurement unit, and calculates velocity data by time-integrating the acceleration data.
- the system of Patent Literature 1 calculates a correction amount corresponding to each walking phase based on the walking phase and speed data.
- the system of Patent Document 1 subtracts a correction amount from the speed data corresponding to each walking phase to calculate corrected speed data, and time-integrates the calculated corrected speed data to calculate trajectory data.
- Patent Document 2 discloses a signal interpolation method for interpolating missing portions of an input signal.
- the period of the signal before the loss of the input signal is detected, and the detected input signal is accumulated.
- the accumulated signal is read out to interpolate the missing portion.
- the polarity and level at the start of the dropout of the input signal are identified, and the stored waveform signals of the polarity and level that maintain continuity with the input signal immediately before the dropout are sequentially read out.
- the missing portion of the input signal is interpolated so as to maintain continuity.
- Patent Document 3 discloses a data interpolation device that interpolates missing data measured by sensors and devices connected to a network.
- the device of Patent Literature 3 stores a data time series model and an interpolation method for interpolating missing data. Interpolation methods correspond to phases in the time-series model that are identified as common ranges of temporal changes in data.
- the device of Patent Document 3 accumulates data output from external devices for each external device, and determines to which time-series model the time change pattern of the accumulated data corresponds.
- the device of Patent Document 3 determines in which phase of the determined time-series model the deficit included in part of the accumulated data is located, and removes the deficit by an interpolation method according to the determined phase. to interpolate.
- Patent Literature 4 discloses a biological information measuring device that supplements missing portions included in biological information.
- the device of Patent Literature 4 supplements missing portions included in time-series data (biological information) measured by a pulse wave sensor and an electrocardiographic sensor.
- the device of Patent Literature 4 complements the missing part of the data measured by one of the time-series data measured by the two sensors based on the data measured by the other sensor.
- the index indicating the correlation between the missing portion and the time-series data of the same time interval satisfies a predetermined condition. Identify the corresponding interval that satisfies.
- the device of Patent Literature 4 complements the missing portion using the time-series data of the section at the same time as the corresponding section in the data measured by one of the sensors.
- Patent Document 1 According to the method of Patent Document 1, it is possible to remove drifts that exhibit distinctly different characteristics in different walking periods, such as the stance phase and the swing phase.
- the technique of Patent Literature 1 cannot interpolate missing portions that occur locally in individual walking periods such as the stance phase and the swing phase. Therefore, the technique of Patent Document 1 cannot restore the features included in the missing portion.
- An object of the present disclosure is to provide an interpolation device or the like that can interpolate data in missing intervals, including the characteristics of missing intervals in data included in time-series data of sensor data.
- An interpolation device generates a gait waveform for each walking cycle using time-series data of sensor data related to leg movements, and a gait information processing unit that identifies a missing section of data in the time-series data. Then, the missing section is interpolated using the missing information processing unit that calculates the walking phase of the identified missing section and the walking phase data of the missing section in the walking waveform of the walking cycle different from the walking cycle that includes the missing section. and an interpolating unit that generates interpolated data to fill the missing section with the generated interpolated data.
- a computer generates a gait waveform for each gait cycle using time-series data of sensor data related to leg movements, identifies data missing sections in the time-series data, and identifies Calculate the gait phase of the missing section, and use the data of the gait phase of the missing section in the gait waveform with a gait cycle different from the gait cycle containing the missing section to generate interpolation data for interpolating the missing section. Interpolate the interpolated data into the missing interval.
- a program includes a process of generating a gait waveform for each gait cycle using time-series data of sensor data related to leg movement, a process of identifying a missing section of data in the time-series data, and A process of calculating the walking phase of the missing section, and a process of generating interpolation data for interpolating the missing section using the walking phase data of the missing section in the walking waveform with a walking cycle different from the walking cycle that includes the missing section. and a process of interpolating the generated interpolated data into the missing section.
- an interpolation device or the like that can interpolate the data in the missing section including the features of the missing section of the data included in the time-series data of the sensor data.
- FIG. 1 is a block diagram showing an example of the configuration of a gait measurement system according to a first embodiment
- FIG. FIG. 2 is a conceptual diagram showing an arrangement example of measuring devices of the gait measuring system according to the first embodiment
- FIG. 3 is a conceptual diagram for explaining an example of a coordinate system set in the measuring device of the gait measuring system according to the first embodiment
- It is a conceptual diagram for explaining a walking cycle.
- FIG. 4 is a conceptual diagram for explaining loss that occurs in time-series data of sensor data
- FIG. 4 is a conceptual diagram for explaining an example of interpolating a loss occurring in time-series data of sensor data by an analytical method
- FIG. 4 is a conceptual diagram for explaining interpolation of a missing section by the interpolation device of the gait measurement system according to the first embodiment
- 1 is a block diagram showing an example of a configuration of a measurement device of a gait measurement system according to a first embodiment
- FIG. 2 is a block diagram showing an example of the configuration of an interpolation device of the gait measurement system according to the first embodiment
- FIG. 4 is a conceptual diagram showing an example of interpolation of a defect by the interpolation device of the gait measurement system according to the first embodiment
- FIG. 4 is a conceptual diagram for explaining interpolation of defects by the interpolation device of the gait measurement system according to the first embodiment
- 1 is a block diagram showing an example of the configuration of a gait measuring device of the gait measuring system according to the first embodiment
- FIG. 4 is a conceptual diagram for explaining interpolation of defects by the interpolation device of the gait measurement system according to the first embodiment
- 1 is a block diagram showing an example of the configuration of a gait measuring device of the gait measuring system according to the first embodiment
- FIG. 7 is a flowchart for explaining an example of the operation of a gait information processing unit included in the interpolation device of the gait measuring device of the gait measuring system according to the first embodiment
- 4 is a flowchart for explaining an example of the operation of a loss information processing unit included in the interpolation device of the gait measuring device of the gait measuring system according to the first embodiment
- 4 is a flowchart for explaining an example of the operation of an interpolator included in the interpolator of the gait measuring device of the gait measuring system according to the first embodiment
- 9 is a flowchart for explaining another example of the operation of the interpolator included in the interpolator of the gait measuring device of the gait measuring system according to the first embodiment
- FIG. 11 is a block diagram showing an example of the configuration of a gait measurement system according to a second embodiment;
- FIG. 11 is a block diagram showing an example of the configuration of an interpolation device of a gait measurement system according to a second embodiment;
- FIG. It is an example of time-series data of sensor data over a plurality of walking cycles. It is an example of a walking waveform obtained by normalizing time-series data for one step cycle extracted from time-series data of sensor data over a plurality of walking cycles.
- FIG. 10 is a frequency distribution of data values in a walking phase P1 and a walking phase P2, with walking waveforms of a plurality of walking cycles as a sample group (whole);
- FIG. 10 is a graph showing the correlation of deviation values in the overall distribution of data values of data N and data N+1 in consecutive walking phases;
- FIG. 7 is a graph showing the correlation coefficient of the deviation value according to the distance from the target walking phase;
- FIG. 11 is a graph for explaining interpolation of missing sections by the interpolation device according to the second embodiment;
- FIG. 9 is a flowchart for explaining the operation of the interpolation device according to the second embodiment;
- FIG. 11 is a block diagram showing an example of the configuration of an interpolation device according to a third embodiment;
- FIG. It is a block diagram showing an example of hardware constitutions which perform control and processing concerning each embodiment.
- the gait measurement system of the present embodiment measures physical quantities (sensor data) related to foot movements by means of measurement devices installed on footwear worn by the user.
- the measuring device includes an acceleration sensor and an angular velocity sensor.
- physical quantities related to foot movement include acceleration in three-axis directions (also called spatial acceleration) measured by an acceleration sensor and angular velocity around three axes (also called spatial angular velocity) measured by an angular velocity sensor.
- the gait measurement system of the present embodiment interpolates missing portions of data that occur during communication of measured sensor data.
- FIG. 1 is a block diagram showing the configuration of a gait measuring system 1 of this embodiment.
- a gait measurement system 1 includes a measurement device 11 , an interpolation device 12 , and a gait measurement device 13 .
- the interpolation device 12 may be connected to the measurement device 11 and the gait measurement device 13 by wire or wirelessly.
- the measurement device 11, the interpolation device 12, and the gait measurement device 13 may be configured as a single device.
- the gait measurement system 1 may be composed of the interpolation device 12 and the gait measurement device 13 except for the measurement device 11 .
- the measuring device 11 is installed on the foot.
- the measuring device 11 is installed on footwear such as shoes.
- the measuring device 11 is placed on the back side of the arch of the foot.
- the measuring device 11 includes an acceleration sensor and an angular velocity sensor.
- the measuring device 11 measures acceleration measured by an acceleration sensor (also referred to as spatial acceleration) and angular velocity measured by an angular velocity sensor (also referred to as spatial angular velocity) as physical quantities relating to the movement of the user's feet wearing footwear.
- the physical quantities related to the movement of the foot measured by the measurement device 11 include velocity, angle, and position (trajectory) calculated by integrating acceleration and angular velocity.
- the measuring device 11 converts the measured physical quantity into digital data (also called sensor data).
- the measurement device 11 transmits the converted sensor data to the interpolation device 12 .
- the sensor data includes a time stamp corresponding to the time the sensor data was acquired.
- a time stamp is a time-series number assigned to sensor data.
- the measurement device 11 is connected to the interpolation device 12 via a mobile terminal (not shown) carried by the user.
- a mobile terminal is a communication device that can be carried by a user.
- a mobile terminal is a mobile communication device having a communication function, such as a smart phone, a smart watch, or a mobile phone.
- the mobile terminal receives sensor data regarding the movement of the user's foot from the measuring device 11 .
- the mobile terminal transmits the received sensor data to a server, cloud, or the like in which the interpolation device 12 is implemented.
- the functions of the interpolation device 12 and the gait measurement device 13 may be implemented by application software or the like installed in the mobile terminal. In that case, the mobile terminal processes the received sensor data using application software or the like installed therein.
- the measuring device 11 is implemented by an inertial measuring device including, for example, an acceleration sensor and an angular velocity sensor.
- An example of an inertial measurement device is an IMU (Inertial Measurement Unit).
- the IMU includes an acceleration sensor that measures acceleration along three axes and an angular velocity sensor that measures angular velocity around three axes.
- the measuring device 11 may be realized by an inertial measuring device such as VG (Vertical Gyro) or AHRS (Attitude Heading).
- the measuring device 11 may be realized by a GPS/INS (Global Positioning System/Inertial Navigation System).
- FIG. 2 is a conceptual diagram showing an example of arranging the measuring device 11 inside the shoe 100.
- the measuring device 11 is arranged at a position that contacts the back side of the arch.
- the measuring device 11 is arranged on an insole that is inserted into the shoe 100 .
- the measuring device 11 is arranged on the bottom surface of the shoe 100 .
- the measuring device 11 may be embedded in the main body of the shoe 100.
- the measurement device 11 may be removable from the shoe 100 or may not be removable from the shoe 100 .
- the measuring device 11 may be arranged at a position other than the back side of the arch as long as it can acquire sensor data regarding the movement of the foot.
- the measuring device 11 may be installed on a sock worn by the user or an accessory such as an anklet worn by the user. Moreover, the measuring device 11 may be attached directly to the foot or embedded in the foot.
- FIG. 2 shows an example in which the measuring device 11 is arranged on the shoe 100 on the right foot side, the measuring device 11 may be arranged on the shoes 100 on both feet. If the measuring devices 11 are arranged in the shoes 100 for both feet, the gait can be measured based on the movement of the feet for both feet.
- FIG. 3 shows a local coordinate system (x-axis, y-axis, z-axis) set in the measuring device 11 and a world coordinate system set with respect to the ground when the measuring device 11 is installed on the back side of the foot arch.
- FIG. 2 is a conceptual diagram for explaining (X-axis, Y-axis, Z-axis);
- the world coordinate system X-axis, Y-axis, Z-axis
- the lateral direction of the user is the X-axis direction (right direction is positive)
- the front direction of the user (moving direction) is the Y-axis direction ( Forward is positive)
- the direction of gravity is set to be the Z-axis direction (vertically upward is positive).
- a local coordinate system consisting of x-direction, y-direction, and z-direction with reference to the measuring device 11 is set.
- FIG. 4 is a conceptual diagram for explaining the step cycle based on the right foot.
- FIG. 4 shows one gait cycle of the right foot starting when the heel of the right foot touches the ground and then ending when the heel of the right foot touches the ground.
- FIG. 4 shows the walking cycle normalized with one walking cycle of the right leg as 100%.
- One walking cycle of one leg is roughly divided into a stance phase in which at least part of the sole of the foot is in contact with the ground, and a swing phase in which the sole of the foot is separated from the ground.
- the gait cycle is normalized so that the stance phase accounts for 60% and the swing phase accounts for 40%.
- the stance phase is further subdivided into early stance T1, middle stance T2, final stance T3, and early swing T4.
- the swing phase is further subdivided into early swing phase T5, middle swing phase T6, and final swing phase T7.
- the walking waveform for one step cycle does not have to start from the time when the heel touches the ground.
- the gait waveform for one step cycle may start and end when the heel is lifted.
- FIG. 4(a) represents an event (heel strike) in which the heel of the right foot touches the ground (HS: Heel Strike).
- FIG. 4B shows an event in which the toe of the left foot leaves the ground while the sole of the right foot touches the ground (OTO: Opposite Toe Off).
- FIG. 4(c) shows an event in which the heel of the right foot is lifted (HR: Heel Rise) while the sole of the right foot is in contact with the ground.
- FIG. 4(d) shows an event in which the heel of the left foot touches the ground (opposite heel strike) (OHS: Opposite Heel Strike).
- FIG. 4(a) represents an event (heel strike) in which the heel of the right foot touches the ground (HS: Heel Strike).
- FIG. 4B shows an event in which the toe of the left foot leaves the ground while the sole of the right foot touches the ground (OTO: Opposite Toe Off).
- FIG. 4(c) shows an event in which
- FIG. 4(e) represents an event (toe off) in which the toe of the right foot leaves the ground while the sole of the left foot touches the ground (TO: Toe Off).
- FIG. 4(f) represents an event (foot crossing) in which the left foot and the right foot cross each other with the ground contact surface of the sole of the left foot touching the ground (FA: Foot Adjacent).
- FIG. 4(g) represents an event (tibia vertical) in which the tibia of the right foot becomes almost vertical to the ground while the sole of the left foot is in contact with the ground (TV: Tibia Vertical).
- FIG. 4(h) represents an event (heel strike) in which the heel of the right foot touches the ground (HS: Heel Strike).
- FIG. 4(h) corresponds to the end point of the walking cycle starting from FIG. 4(a) and the starting point of the next walking cycle.
- the initial stance T1 is the period from heel strike HS to opposite foot toe takeoff OTO.
- the middle stance T2 is the period from opposite foot toe take-off OTO to heel lift HR.
- the stance final stage T3 is the period from heel lift HR to opposite foot heel strike OHS.
- the free leg initial period T4 is a period from opposite foot heel contact OHS to toe take-off TO.
- the free leg initial period T5 is a period from toe take-off TO to foot crossing FA.
- Mid-swing T6 is the period from foot crossing FA to tibia vertical TV.
- Terminal swing T7 is the period from tibia vertical TV to heel strike HS. Note that the timing at which a walking event occurs differs depending on the person, physical condition, and walking condition, and therefore does not always match the expected walking cycle.
- the skeleton and muscles used at the same timing of different gait cycles are nearly identical. Therefore, the waveforms of time-series data of sensor data measured during walking are similar in each walking phase.
- the missing section of the time-series data of the gait cycle to be interpolated is interpolated using the non-missing data included in the time-series data of the gait cycle different from the gait cycle to be interpolated.
- the interpolation device 12 receives sensor data from the measurement device 11 .
- the interpolator 12 generates time-series data of the received sensor data.
- the interpolation device 12 generates time series data based on the time stamps included in the sensor data.
- the interpolator 12 cuts out a waveform for one step period from the generated time-series data. For example, the interpolator 12 cuts out a waveform for one step cycle starting from the timing of heel contact or heel lift.
- the interpolator 12 normalizes the clipped waveform for one step cycle to generate a waveform for one step cycle (also called a walking waveform).
- the interpolation device 12 identifies a portion where the timestamp number is missing in the time-series data of the sensor data as a missing section.
- the interpolation device 12 generates interpolated data for interpolating the data of the missing section by using a walking waveform in another walking cycle with no loss in the same walking phase as the missing section.
- the interpolation device 12 uses the generated interpolation data to interpolate the missing section.
- FIG. 5 is a conceptual diagram for comparing a normal waveform and a waveform containing a defect (also called a defective waveform).
- FIG. 5 shows walking waveforms of traveling direction acceleration (Y-direction acceleration) in one-step cycles starting from heel lifting.
- the missing waveform in FIG. 5 includes two missing sections. As shown in FIG. 5, the missing interval data may include gait features.
- FIG. 6 is a conceptual diagram for explaining an example of interpolation of missing sections of time-series data in the related art.
- FIG. 6 shows an example of interpolating data in missing sections by an analytical method with reference to time stamps of sensor data included in time-series data.
- FIG. 6 shows linear interpolation (dashed line) that connects the start and end points of the missing section with a line segment (linear function), and polynomial interpolation (chain line) that connects the start and end points of the missing section with a curve.
- linear interpolation a line segment connects the start and end points of the missing interval.
- Linear interpolation cannot restore the unevenness of the amplitude appearing in the time-series data, and therefore cannot restore the features of the section including the unevenness.
- Polynomial interpolation connects the start and end points of the missing interval with a curve. Polynomial interpolation can roughly restore unevenness in time-series data, but cannot restore fine features included in unevenness.
- FIG. 7 is a conceptual diagram for explaining an example of restoration of missing sections of time-series data in this embodiment.
- the data of the missing sections S1 to S5 included in the walking waveforms of the walking cycles i to i+3 are mutually interpolated (i is a natural number).
- the walking waveform of walking cycle i includes missing section S1 and missing section S5.
- the walking waveform of walking cycle i+1 includes missing section S2 and missing section S3.
- the walking waveform of walking cycle i+2 includes missing section S4.
- the gait waveform of gait cycle i+3 does not include a missing interval.
- the interpolation device 12 interpolates the missing section S1 included in the walking waveform of the walking cycle i using the walking phase data corresponding to the missing section S1 included in the walking waveform of the walking cycle i+1 to 3.
- the interpolation device 12 interpolates the missing section S5 included in the walking waveform of the walking cycle i using the walking phase data corresponding to the missing section S5 included in the walking waveform of the walking cycle i+1 to 3.
- the interpolation device 12 interpolates the missing section S2 included in the walking waveform of the walking cycle i+1 with data of the walking phase corresponding to the missing section S2 included in the walking waveforms of the walking cycles i, i+2 to i+3.
- the interpolation device 12 interpolates the missing section S3 included in the walking waveform of the walking cycle i+1 with data of the walking phase corresponding to the missing section S3 included in the walking waveforms of the walking cycles i, i+2 to i+3.
- the interpolation device 12 interpolates the missing section S4 included in the walking waveform of the walking cycle i+2 with data of the walking phase corresponding to the missing section S4 included in the walking waveforms of the walking cycles i to i+1 and i+3.
- the interpolator 12 extracts walking phase data corresponding to a missing section of time-series data that occurs in certain time-series data from at least one walking waveform in which the data of the missing section is not missing. Select at least one.
- the interpolation device 12 uses the selected data to generate interpolation data for interpolating the missing section.
- the interpolation device 12 extracts a plurality of walking phase data corresponding to a missing section from a plurality of walking waveforms in which the data of the missing section is not missing for a missing section of the time-series data that occurs in certain time-series data. select.
- the interpolation device 12 calculates an average value such as an addition average or a weighted average for the selected plurality of data, and uses the calculated average value to generate interpolation data for interpolating the missing section.
- the interpolator 12 generates interpolated data using the data having the closest starting point and ending point values of the missing interval among the selected data.
- the interpolation device 12 may select a method of interpolating the data of the missing section according to the walking period of the missing section. For example, the waveform of the acceleration (Y-direction acceleration) of the forward walking has a small fluctuation during the stance phase and a large fluctuation during the swing phase. Therefore, the interpolation device 12 uses an analytical method to interpolate the data of the missing section that occurred in the stance phase, and the missing section that occurred in the swing phase is missing based on the gait waveform of another gait cycle. It may be configured to interpolate interval data.
- the interpolation device 12 is implemented in a server or the like (not shown).
- the interpolator 12 may be implemented by an application server.
- the interpolation device 12 may be realized by application software or the like installed in a mobile terminal (not shown).
- the gait measurement device 13 acquires a walking waveform that does not include the missing section from the interpolation device 12.
- the gait measuring device 13 uses the acquired walking waveform to measure the gait.
- the gait measuring device 13 detects a walking event from a walking waveform, and measures the user's gait based on the detected walking event.
- the gait measuring device 13 measures gait such as stride length, step length, stride length, step interval, foot angle, and walking speed based on the detected walking event.
- the gait measuring device 13 estimates physical conditions such as the degree of pronation/supination, the progression of hallux valgus, the symmetry of the body, and the degree of flexibility of the body, based on the measured gait.
- the gait measuring device 13 may measure body parameters such as the lengths of upper and lower legs, upper arms, forearms, upper legs, and lower legs based on the measured gait. Items to be measured by the gait measuring device 13 are not particularly limited.
- the gait measurement device 13 outputs the measurement result (also called gait information) regarding the gait.
- the gait measuring device 13 outputs gait information to a display device (not shown) or a mobile terminal (not shown).
- the gait information output to the display device is displayed on the screen of the display device or mobile terminal.
- the gait measuring device 13 outputs gait information to an external system (not shown).
- the gait information output from the gait measuring device 13 can be used for any purpose.
- a communication function for outputting gait information by the gait measuring device 13 is not particularly limited.
- the gait measuring device 13 is implemented in a server or the like (not shown).
- the gait measuring device 13 may be realized by an application server.
- the gait measuring device 13 may be implemented by application software or the like installed in a mobile terminal (not shown).
- FIG. 8 is a block diagram showing an example of the detailed configuration of the measuring device 11. As shown in FIG.
- the measuring device 11 has an acceleration sensor 111 , an angular velocity sensor 112 , a control section 113 and a transmission section 115 . Note that the measuring device 11 includes a power supply (not shown).
- the acceleration sensor 111 is a sensor that measures acceleration in three axial directions (also called spatial acceleration).
- the acceleration sensor 111 outputs the measured acceleration to the controller 113 .
- the acceleration sensor 111 can be a sensor of a piezoelectric type, a piezoresistive type, a capacitive type, or the like. It should be noted that the sensor used for the acceleration sensor 111 is not limited in its measurement method as long as it can measure acceleration.
- the angular velocity sensor 112 is a sensor that measures angular velocities in three axial directions (also called spatial angular velocities).
- the angular velocity sensor 112 outputs the measured angular velocity to the controller 113 .
- the angular velocity sensor 112 can be a vibration type sensor or a capacitance type sensor. It should be noted that the sensor used for the angular velocity sensor 112 is not limited in its measurement method as long as it can measure the angular velocity.
- the control unit 113 acquires accelerations in three-axis directions and angular velocities around three axes from each of the acceleration sensor 111 and the angular velocity sensor 112 .
- the control unit 113 converts the acquired acceleration and angular velocity into digital data, and outputs the converted digital data (also referred to as sensor data) to the transmission unit 115 .
- the sensor data includes at least acceleration data converted into digital data and angular velocity data converted into digital data.
- the acceleration data includes acceleration vectors in three axial directions.
- the angular velocity data includes angular velocity vectors around three axes. Acceleration data and angular velocity data are associated with acquisition times of the data.
- control unit 113 may be configured to output sensor data obtained by adding corrections such as mounting error, temperature correction, linearity correction, etc. to the acquired acceleration data and angular velocity data. Also, the control unit 113 may generate angle data about three axes using the acquired acceleration data and angular velocity data.
- control unit 113 is a microcomputer or microcontroller that performs overall control of the measuring device 11 and data processing.
- the control unit 113 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), flash memory, and the like.
- Control unit 113 controls acceleration sensor 111 and angular velocity sensor 112 to measure angular velocity and acceleration.
- the control unit 113 performs AD conversion (Analog-to-Digital Conversion) on physical quantities (analog data) such as measured angular velocity and acceleration.
- the control unit 113 stores the converted digital data in a storage unit (not shown) such as a flash memory.
- Physical quantities (analog data) measured by acceleration sensor 111 and angular velocity sensor 112 may be converted into digital data by acceleration sensor 111 and angular velocity sensor 112, respectively.
- Digital data stored in the storage unit is output to the transmission unit 115 at a predetermined timing.
- the transmission unit 115 acquires sensor data from the control unit 113.
- the transmission unit 115 transmits the acquired sensor data to the interpolation device 12 .
- the transmission unit 115 transmits sensor data to the interpolation device 12 via a wire such as a cable.
- the transmission unit 115 transmits sensor data to the interpolation device 12 via wireless communication.
- the transmission unit 115 is configured to transmit the sensor data to the interpolator 12 via a wireless communication function (not shown) conforming to standards such as Bluetooth (registered trademark) and WiFi (registered trademark). Note that the communication function of the transmission unit 115 may conform to standards other than Bluetooth (registered trademark) and WiFi (registered trademark).
- FIG. 9 is a block diagram for explaining the detailed configuration of the interpolation device 12.
- the interpolation device 12 has a receiving section 121 , a gait information processing section 122 , a loss information processing section 123 , a storage section 125 , an interpolation section 126 and a transmission section 128 .
- the receiving unit 121 receives sensor data from the measuring device 11 .
- the receiving unit 121 outputs the received sensor data to the gait information processing unit 122 .
- the receiving unit 121 receives sensor data from the measuring device 11 via a wire such as a cable.
- the receiving unit 121 receives sensor data from the measuring device 11 via wireless communication.
- the receiving unit 121 is configured to receive sensor data from the measuring device 11 via a wireless communication function (not shown) conforming to standards such as Bluetooth (registered trademark) and WiFi (registered trademark). Note that the communication function of the receiving unit 121 may conform to standards other than Bluetooth (registered trademark) and WiFi (registered trademark).
- the gait information processing unit 122 acquires from the receiving unit 121 sensor data measured as the user walks wearing the shoes 100 on which the measuring device 11 is installed.
- the gait information processing unit 122 generates time-series data of the acquired sensor data based on the time stamps included in the sensor data. For example, the gait information processing unit 122 transforms the coordinate system of the acquired sensor data from the local coordinate system to the world coordinate system.
- the gait information processing unit 122 uses sensor data to generate time-series data of physical quantities related to leg movements. For example, the gait information processing unit 122 generates time-series data such as spatial acceleration and spatial angular velocity. The gait information processing unit 122 also integrates the spatial acceleration and the spatial angular velocity to generate time-series data such as the spatial velocity, the spatial angle (plantar angle), and the spatial trajectory. These time-series data correspond to walking waveforms. The gait information processing unit 122 generates time-series data at predetermined timings and time intervals that are set in accordance with a general walking cycle or a user-specific walking cycle. The timing at which the gait information processing unit 122 generates the time-series data can be set arbitrarily. For example, the gait information processing unit 122 is configured to continue generating time-series data while the user continues walking. Also, the gait information processing section 122 may be configured to generate time-series data at a specific timing.
- the gait information processing unit 122 cuts out a waveform for one step cycle from the generated time-series data. For example, the gait information processing unit 122 cuts out a waveform for one step cycle starting from heel contact. For example, the gait information processing unit 122 detects the heel contact timing in the walking waveform of the traveling direction acceleration (Y-direction acceleration) for one step cycle. In the walking waveform of the traveling direction acceleration for one walking cycle, the timing of heel contact is the midpoint timing between the timing at which the minimum peak is detected and the timing at which the maximum peak that appears next to the minimum peak is detected. For example, the gait information processing unit 122 cuts out the time-series data starting at the timing of the preceding heel contact and ending at the timing of the succeeding heel contact as waveforms for one step cycle starting from the heel contact.
- the gait information processing unit 122 detects the timing of the toe-off in the walking waveform of the traveling direction acceleration for one step cycle.
- the timing of the toe-off is the timing of the trough appearing between the two peaks included in the maximum peak.
- the gait information processing unit 122 detects the timing of a trough appearing between two peaks included in the maximum peak in the walking waveform of the acceleration in the direction of travel for one step cycle as the timing of the toe-off.
- the gait information processing unit 122 may extract a waveform for one step cycle starting from heel lifting.
- the state in which the toe is positioned above the heel (dorsiflexion) is defined as negative, and the state in which the toe is positioned below the heel (plantar flexion) is defined as positive.
- the time when the walking waveform of the plantar angle becomes minimum corresponds to the timing of the start of the stance phase.
- the time when the walking waveform of the plantar angle reaches a maximum corresponds to the timing of the start of the swing phase.
- the midpoint time between the start time of the stance phase and the start time of the swing phase corresponds to the middle timing of the stance phase.
- the timing in the middle of the stance phase corresponds to the heel lift timing.
- the gait information processing unit 122 cuts out time-series data with the preceding timing as the starting point and the subsequent timing as the ending point, of the two heel-lift timings included in the time-series data for two walks.
- the extracted time-series data is a walking waveform for one step cycle starting from heel lift.
- the gait information processing unit 122 normalizes the extracted waveform for one step cycle to generate a waveform for one step cycle (also called a walking waveform).
- the gait information processing unit 122 normalizes the time axis of the waveform for one step cycle to a walking cycle in which the starting point timing is 0 and the ending point timing is 100.
- the gait cycle of the normalized waveform is divided by 100 and expressed as a percentage. Each percentage of the gait cycle is called a gait phase.
- the gait information processing unit 122 normalizes the walking cycle of the walking waveform so that the ratio between the stance phase and the swing phase is 60:40.
- the gait information processing unit 122 may normalize the walking waveform based on walking events appearing in the walking waveform.
- the gait information processing unit 122 normalizes the gait waveform starting from the timing of heel lifting so that the timing of toe-off is 30% and the timing of heel contact is 70%. become Note that the timing at which a walking event occurs differs depending on the person, physical condition, and walking condition, and therefore does not always match the expected walking phase.
- the gait information processing unit 122 may normalize the amplitude of the walking waveform (values of acceleration and angular velocity) for one step cycle. For example, the gait information processing unit 122 normalizes the amplitude of the walking waveform for one step cycle so that the fluctuation width of the amplitude is within a certain range. For example, the gait information processing unit 122 normalizes the amplitude of the gait waveform so that the maximum value of the amplitude is 1 and the maximum value of the amplitude is -1 with respect to the gait waveform for one step cycle.
- the gait information processing unit 122 may normalize the baseline of the walking waveform for one step cycle. For example, the gait information processing unit 122 normalizes the gait waveform for one step cycle so that the slope of the baseline becomes zero. By normalizing the baseline of the gait waveform, the gradients of the baselines of the gait waveforms of a plurality of gait cycles are aligned. Therefore, if the baseline of the walking waveform is normalized, it becomes easier to interpolate the data in the missing section.
- the gait information processing unit 122 causes the storage unit 125 to store the normalized walking waveform.
- the gait information processing unit 122 causes the storage unit 125 to store only walking waveforms without missing sections.
- a walking waveform having a missing section also referred to as a missing waveform
- all walking waveforms including missing waveforms may be stored in the storage unit 125 .
- the missing waveform stored in the storage unit 125 is obtained by the missing information processing unit 123, and the missing section included in the missing waveform is specified.
- the data of the missing section of the walking waveform stored in the storage unit 125 (also referred to as normal data) is used to interpolate the missing section included in the missing waveform.
- the missing information processing unit 123 acquires missing waveforms.
- the loss information processing unit 123 may acquire the loss waveform from the gait information processing unit 122 or may acquire the loss waveform from the storage unit 125 .
- the loss information processing unit 123 identifies, as a loss section, a portion in which the time stamp number is missing in the acquired loss waveform. For example, the loss information processing unit 123 determines which data is missing from the starting point of the missing section in the walking waveform of the one-step cycle, and calculates the missing walking phase. For example, the loss information processing unit 123 may identify the walking period of the missing section based on the timestamp number.
- the missing information processing unit 123 causes the storage unit 125 to store information about the missing section included in the missing waveform (also called missing information) in association with the missing waveform.
- the loss information processing unit 123 causes the storage unit 125 to store the walking phases at the starting point and the end point of the missing section as missing information in association with the missing waveform.
- the loss information processing unit 123 may cause the storage unit 125 to store the walking phases at the starting point and the ending point of the missing section and the amplitude values in the walking phases as missing information in association with the missing waveform.
- the loss information processing section 123 may be configured to output loss information to the interpolation section 126 .
- a walking waveform is stored in the storage unit 125 .
- the storage unit 125 stores walking waveforms (also referred to as normal waveforms) that do not include missing sections.
- the storage unit 125 also stores a walking waveform including a missing section (also referred to as a missing waveform) and a walking waveform in which the missing section is repaired (also referred to as a repaired waveform).
- the missing waveform is the interpolation target of the missing interval. Missing waveforms are associated with missing information of the missing waveforms.
- the normal waveform and the repair waveform are used for gait measurement by the gait measuring device 13 .
- the walking waveform stored in the storage unit 125 is acquired by the transmission unit 128 at a predetermined timing and transmitted from the transmission unit 128 to the gait measuring device 13 .
- the interpolation unit 126 acquires the missing waveform.
- the interpolation unit 126 acquires the missing waveform from the storage unit 125 or the missing information processing unit 123 .
- the missing waveform acquired by the interpolating unit 126 includes information (missing information) about the missing section specified by the missing information processing unit 123 .
- the interpolating unit 126 interpolates the missing section included in the missing waveform using the data of the walking waveform having a walking cycle different from the acquired missing waveform.
- the interpolation unit 126 extracts normal data in the walking phase corresponding to the missing section from the walking waveform of the walking cycle different from the missing waveform.
- the interpolation unit 126 uses the extracted interpolation data to generate interpolation data for interpolating the missing section.
- the missing waveform includes a missing section in the section where the walking phase is 10% to 20%.
- the interpolating unit 126 selects at least one walking waveform that does not include a loss in the interval of 10% to 20% of the walking phase from among the walking waveforms stored in the storage unit 125 .
- the interpolating unit 126 extracts normal data in the section where the walking phase is 10% to 20% from at least one selected walking waveform.
- the interpolation unit 126 selects at least one normal data of the walking phase corresponding to the missing section from at least one walking waveform in which the data of the missing section is not missing for the missing section included in the missing waveform. do.
- the interpolation unit 126 uses the selected normal data to generate interpolation data for interpolating the missing section.
- the interpolating unit 126 selects a plurality of walking phase data corresponding to the missing section from a plurality of walking waveforms in which the data of the missing section is not missing for the missing section included in a certain missing waveform. For example, the interpolation unit 126 calculates interpolation data for each single walking phase included in the missing section. The interpolation unit 126 calculates an average value such as an arithmetic average or a weighted average of the selected multiple data, and uses the calculated average value to generate interpolation data for interpolating the missing section. For example, the interpolating unit 126 generates interpolated data using the data having the closest starting point and ending point values of the missing interval among the plurality of selected data.
- the interpolation unit 126 may select a method of interpolating the data of the missing section according to the walking period of the missing section.
- the waveform of the acceleration (Y-direction acceleration) of the forward walking has a small fluctuation during the stance phase and a large fluctuation during the swing phase. That is, the swing phase period (also referred to as the first gait period) has greater fluctuations in data than the stance phase period (also referred to as the second gait period), so it is difficult to analytically interpolate the data.
- the data during the stance phase (second walking period) has less variation than the data during the swing phase (first walking period), so the data can be analytically interpolated.
- the interpolation unit 126 may interpolate the missing section included in the period of the stance phase (the second walking period) using an analytical method. Then, the missing section included in the period of the swing phase (first walking period) may be interpolated based on the walking waveform of another walking cycle. It should be noted that the interpolation unit 126 may also interpolate a missing section included in the swing phase (first walking period) by an analytical method as long as the section has a small change.
- FIG. 10 is a conceptual diagram for explaining interpolation of missing sections in analytically interpolated sections.
- amplitude fluctuations are small in the section where the walking phase is from 0% to 20% and the section where the walking phase is from 80% to 100%.
- the interpolating unit 126 may perform analytical interpolation for a section in which the walking phase is 0 to 20% and a section in which the walking phase is 80% to 100%. Since amplitude fluctuations are large in the section where the walking phase is 20% to 80%, the interpolating section 126 should preferably generate interpolation data using data of other walking waveforms.
- the interpolation unit 126 uses the generated interpolation data to interpolate the missing section included in the missing waveform. For example, the interpolation unit 126 interpolates the missing waveform by inserting interpolation data into the missing section. For example, the interpolation unit 126 sequentially interpolates the missing section with normal data included in the interpolation data from the starting point to the ending point of the missing section. For example, the interpolation unit 126 may sequentially interpolate the missing section with normal data included in the interpolation data from the end point to the starting point of the missing section. For example, the interpolation unit 126 may sequentially interpolate normal data included in the interpolation data from the end point and start point of the missing section.
- the interpolating unit 126 inserts a waveform formed by interpolated data into the missing interval.
- the interpolating unit 126 inserts a waveform configured by interpolated data so that each of the starting point and end point of the interpolated data coincides with each of the starting point and end point of the missing section.
- the interpolating unit 126 rotates the baseline of the interpolated data so that each of the starting point and end point of the interpolated data and each of the starting point and end point of the missing section coincide with each other, and converts the interpolated data into the missing section.
- the interpolator 126 calculates the amplitudes of the start and end points of the missing section based on normal waveforms of other walking cycles. For example, the interpolating unit 126 adjusts the baseline according to the difference between the calculated amplitudes of the start and end points of the missing section and the actual amplitudes of the start and end points of the missing section.
- FIG. 11 is a conceptual diagram showing an example of inserting a waveform composed of interpolated data into a missing section.
- the interpolating section 126 generates interpolated data for missing sections included in the missing waveform.
- the interpolation unit 126 inserts the generated interpolated data into the missing section of the missing waveform.
- the interpolator 126 sets a baseline for the interpolated data inserted into the missing section of the missing waveform.
- the interpolation unit 126 rotates the baseline of the interpolated data inserted into the missing interval of the missing waveform so that the starting point and ending point of the interpolated data match the starting point and ending point of the missing interval. Perform start/end point correction.
- the interpolation unit 126 causes the storage unit 125 to store the walking waveform (restoration waveform) in which the missing section is interpolated.
- the interpolation unit 126 may label the walking phases included in the missing section so that the recovered missing section can be identified in the repair waveform.
- the interpolation unit 126 may cause the storage unit 125 to store a restoration waveform (also referred to as a temporary restoration waveform) in which temporary interpolation data is inserted in the missing section.
- the gait measuring device 13 may correct the interpolated data inserted into the missing section included in the temporary restoration waveform.
- the repair waveform stored in the storage unit 125 is used for gait measurement by the gait measurement device 13, like other walking waveforms that do not include defects.
- the transmission unit 128 acquires the walking waveform from the storage unit 125.
- the transmitter 128 acquires the walking waveform including the normal waveform and the repaired waveform from the storage 125 .
- the transmitting unit 128 transmits the acquired walking waveform to the gait measuring device 13 .
- the transmission unit 128 transmits the walking waveform to the gait measuring device 13 via a wire such as a cable.
- the transmitter 128 transmits the walking waveform to the gait measuring device 13 via wireless communication.
- a communication method between the transmission unit 128 and the gait measuring device 13 is not particularly limited.
- FIG. 12 is a block diagram showing an example of the detailed configuration of the gait measuring device 13.
- the gait measurement device 13 has an acquisition unit 131 , a detection unit 132 and a gait measurement unit 133 .
- an output unit (communication interface) for outputting the result of estimation by the gait measuring unit 133 is provided, but in FIG.
- the acquisition unit 131 acquires the walking waveform from the interpolation device 12.
- the acquisition unit 131 acquires the walking waveform including the normal waveform and the repair waveform from the interpolator 12 .
- the acquisition unit 131 outputs the acquired walking waveform to the detection unit 132 .
- the acquisition unit 131 receives the walking waveform from the interpolator 12 via a wire such as a cable.
- the acquisition unit 131 receives the walking waveform from the interpolation device 12 via wireless communication.
- a communication method between the interpolation device 12 and the acquisition unit 131 is not particularly limited.
- the detection unit 132 acquires the walking waveform from the acquisition unit 131 .
- the detection unit 132 detects walking periods and walking events from the acquired walking waveform. For example, the detection unit 132 detects a walking period such as a stance phase or a swing phase from the walking waveform.
- the detection unit 132 detects walking events such as heel contact, opposite foot toe-off, heel lift, opposite foot heel-contact, toe off, foot crossing, and vertical tibia from the walking waveform.
- the detection unit 132 detects a walking period such as the initial stage of stance, the middle stage of stance, the final stage of stance, the early stage of swing, the early stage of swing, the middle stage of swing, and the end of swing, and converts the walking period into a walking waveform. Detect from a walking period such as the initial stage of stance, the middle stage of stance, the final stage of stance, the early stage of swing, the early stage of swing, the middle stage of swing, and the end of swing, and converts the walking period into a walking waveform. Detect from
- the detection unit 132 detects a walking period or a walking event from the walking waveform based on the walking phase percentage. If the same person walks under the same conditions, the timing at which the walking period and the walking event are detected is almost constant. Even if the person is different, the walking period and the timing at which the walking event is detected show the same tendency. Therefore, gait periods or gait events can be identified based on the percentage of gait phases.
- the detection unit 132 may detect walking periods and walking events based on features extracted from walking waveforms. For example, the detection unit 132 detects the timing at which the walking waveform of the plantar angle becomes minimum as the timing to start the stance phase. For example, the detection unit 132 detects the timing at which the walking waveform of the plantar angle reaches a maximum as the timing to start the swing phase. For example, the detection unit 132 detects the timing of the midpoint between the start of the stance phase and the start of the swing phase as the heel lift timing.
- the detection unit 132 detects a walking event based on a walking waveform starting from the heel lift timing.
- the detection unit 132 detects the timing at which a trough appears between two peaks included in the maximum peak in the walking waveform of the traveling direction acceleration (Y-direction acceleration) as the toe-off timing.
- the detection unit 132 detects the minimum peak when the walking cycle exceeds 60% in the walking waveform of the traveling direction acceleration (Y-direction acceleration) as the timing of sudden deceleration of the leg at the end of swing.
- the detection unit 132 detects the maximum peak around 70% of the walking cycle in the walking waveform of the acceleration in the direction of travel (acceleration in the Y direction) as the heel rocker timing.
- the detection unit 132 detects the timing of the midpoint between the minimum peak and the maximum peak in the walking waveform of the traveling direction acceleration (Y-direction acceleration) as the heel contact timing. For example, the detection unit 132 detects the timing of the maximum peak between toe-off and heel-strike in the vertical acceleration (Z-direction acceleration) walking waveform as the tibia vertical timing. For example, the detection unit 132 detects the timing of the gentle maximal peak between the toe-off timing and the vertical timing of the tibia in the walking waveform of the traveling direction acceleration (Y-direction acceleration) as the timing of crossing the legs.
- the detection unit 132 detects the timing of the heel contact of the opposite foot and the toe-off of the opposite foot from the walking waveform of the roll angular velocity. For example, the detection unit 132 detects the timing of the acceleration inflection point in the curve extending from the starting point to the timing of the toe-off in the walking waveform of the roll angular velocity as the timing of the opposite heel contact. For example, the detection unit 132 detects the timing of the deceleration inflection point in the curve from the timing of heel contact to the end point in the walking waveform of the roll angular velocity as the timing of the toe-off of the opposite foot.
- the gait measurement unit 133 acquires information on walking periods and walking events detected by the detection unit 132 .
- the gait measurement unit 133 uses the information acquired from the detection unit 132 to measure the gait.
- the gait measurement unit 133 measures the user's gait based on the walking event detected from the walking waveform.
- the gait measurement unit 133 measures gaits such as stride length, step length, stride length, step interval, foot angle, and walking speed based on the detected walking event.
- the gait measurement unit 133 estimates physical conditions such as the degree of pronation/supination, the progression of hallux valgus, the symmetry of the body, and the degree of flexibility of the body, based on the measured gait.
- the gait measurement unit 133 may estimate a physical condition such as muscular weakness, bone density, and basal metabolism based on the measured gait.
- the gait measurement unit 133 may measure body parameters such as the lengths of upper and lower legs, upper arms, forearms, upper legs, and lower legs based on the measured gait. Items to be measured by the gait measurement unit 133 are not particularly limited.
- the gait measuring device 13 outputs the result (also called gait information) measured by the gait measuring unit 133 .
- the gait measuring device 13 outputs gait information to a display device (not shown) or a mobile terminal (not shown).
- the gait information output to the display device is displayed on the screen of the display device or mobile terminal.
- the gait measuring device 13 outputs gait information to an external system (not shown).
- the gait information output from the gait measuring device 13 can be used for any purpose.
- a communication function for outputting gait information by the gait measuring device 13 is not particularly limited.
- FIG. 13 is a flowchart for explaining gait information processing by the gait information processing unit 122 .
- the gait information processing unit 122 will be explained as the subject of action.
- the gait information processing unit 122 acquires time series data of sensor data (step S111).
- step S112 If there is a defect in the time-series data (Yes in step S112), the gait information processing unit 122 outputs the time-series data including the defect to the loss information processing unit 123 (step S113).
- the gait information processing section 122 may cause the storage section 125 to store the time-series data including the loss. After step S113, the process proceeds to step S118.
- the gait information processing unit 122 detects a walking event from the acquired time-series data (step S114). For example, the gait information processing unit 122 detects walking events such as heel contact, toe off, and heel lift from the walking waveform.
- the gait information processing unit 122 cuts out a walking waveform for one step cycle based on the detected walking event (step S115). For example, the gait information processing unit 122 cuts out a walking waveform for one step cycle starting from heel contact. For example, the gait information processing unit 122 cuts out a walking waveform for one step cycle starting from the toe-off.
- the gait information processing unit 122 normalizes the extracted walking waveform for one cycle (step S116). For example, the gait information processing unit 122 normalizes the walking phase and amplitude of the walking waveform.
- the gait information processing unit 122 stores the normalized walking waveform in the storage unit 125 (step S117).
- the gait waveforms stored in the storage unit 125 are used for interpolation of missing sections included in the missing waveforms and for gait measurement by the gait measuring device 13 .
- step S118 When continuing the process (Yes in step S118), the process returns to step S111. If the process is not to be continued (No in step S118), the process according to the flowchart of FIG. 13 ends.
- the condition for determining the continuation of the process of step S118 may be set in advance.
- FIG. 14 is a flowchart for explaining loss information processing by the loss information processing unit 123. As shown in FIG. In the description of the processing according to the flowchart of FIG. 14, the loss information processing unit 123 will be described as an operating body.
- the loss information processing unit 123 first acquires time-series data (deficit waveform) including the loss from the gait information processing unit 122 (step S121).
- the missing information processing unit 123 may acquire the missing waveform from the storage unit 125 .
- the missing information processing unit 123 identifies the missing section included in the acquired missing waveform based on the time stamp (step S122).
- the loss information processing unit 123 calculates the walking phase of the specified missing section (step S123).
- the missing information processing unit 123 causes the storage unit 125 to store information (missing information) about the walking phase of the missing section included in the missing waveform (step S124).
- the missing information stored in the storage unit 125 is used for interpolation of the missing section by the interpolation unit 126 .
- interpolation processing Next, interpolation processing by the interpolation unit 126 will be described with reference to a flowchart. Here, an example (FIG. 15) in which interpolation data is generated for all sections and an example (FIG. 16) for interpolation using an analytical technique in some sections will be described.
- FIG. 15 is a flowchart for explaining interpolation processing of the interpolation unit 126 when interpolation data is generated for all sections.
- the interpolating unit 126 will be described as an operating entity.
- the interpolating unit 126 acquires time-series data (missing waveform) including missing intervals from the storage unit 125 (step S131).
- the interpolation unit 126 may acquire the missing waveform from the gait information processing unit 122 .
- the missing waveform is associated with missing information indicating the walking phase of the missing section.
- the interpolation unit 126 acquires from the storage unit 125 a walking waveform of another walking cycle in which there is no loss in the walking phase of the missing section (step S132).
- the interpolation unit 126 uses the acquired walking waveform data to generate interpolation data for the missing section (step S133).
- the interpolating unit 126 corrects the starting point and ending point of the interpolated data and inserts the interpolated data into the missing section (step S134).
- Step S135 is performed because the original time-series data is required when calculating walking speed, stride length, and the like. If the original time-series data is not required, step S135 may be omitted.
- FIG. 16 is a flowchart for explaining interpolation processing of the interpolation unit 126 when interpolation is performed using an analytical method in some sections.
- the interpolation unit 126 will be described as an operating body.
- the interpolating unit 126 acquires time-series data (missing waveform) including missing intervals from the storage unit 125 (step S141).
- the interpolation unit 126 may acquire the missing waveform from the gait information processing unit 122 .
- the missing waveform is associated with missing information indicating the walking phase of the missing section.
- step S142 If the missing section can use an analytical method (Yes in step S142), the interpolation unit 126 interpolates the data of the missing section using an analytical method (step S143). After step S143, the process proceeds to step S147.
- the interpolating unit 126 acquires from the storage unit 125 a walking waveform of another walking cycle in which there is no defect in the walking phase of the missing section. (step S144).
- the interpolation unit 126 uses the acquired walking waveform data to generate interpolation data for the missing section (step S145).
- the interpolating unit 126 corrects the starting point and ending point of the interpolated data and inserts the interpolated data into the missing section (step S146).
- Step S146 the interpolator 126 resamples the corrected waveform and returns it to time-series data.
- Step S146 is performed because the original time-series data is required when calculating walking speed, stride length, and the like. If the original time-series data is not required, step S146 may be omitted.
- the gait measurement system of this embodiment includes a measurement device, an interpolation device, and a gait measurement device.
- the measuring device is placed on the user's footwear.
- the measuring device measures spatial acceleration and spatial angular velocity according to the walking of the user.
- a measurement device generates sensor data based on the measured spatial acceleration and spatial angular velocity.
- the measurement device outputs the generated sensor data to the interpolation device.
- the interpolation device has a receiving section, a gait information processing section, a loss information processing section, a storage section, an interpolation section, and a transmission section.
- the receiving unit receives sensor data transmitted from the measuring device.
- the gait information processing unit generates time-series data of sensor data.
- the gait information processing unit generates a walking waveform for each walking cycle using the time-series data of the sensor data related to the movement of the legs, and identifies data missing sections in the time-series data.
- the gait information processing unit causes the storage unit to store the generated walking waveform and information on the identified missing section.
- the storage unit stores a walking waveform, information about the missing section, and a restoration waveform obtained by interpolating the missing section.
- the missing information processing unit calculates the walking phase of the specified missing section.
- the interpolating unit generates interpolation data for interpolating the missing section using the walking phase data of the missing section in the walking waveform of the walking cycle different from the walking cycle including the missing section.
- the interpolator interpolates the generated interpolated data into the missing section.
- the gait measuring device obtains from the interpolator a walking waveform that does not include the missing section generated by the interpolation device using the time-series data of the sensor data, and a walking waveform obtained by interpolating the data of the missing section by the interpolation device.
- the gait measuring device measures the user's gait based on walking events detected from the acquired walking waveform.
- the gait measuring device outputs information on the measured gait of the user.
- interpolation data is generated for interpolating missing sections of data generated in time-series data of sensor data measured according to the user's walking.
- interpolated data is generated using data of the same walking phase of walking waveforms of different walking cycles. Therefore, according to the method of the present embodiment, interpolation data generated by focusing on the periodicity of walking is used. Data can be interpolated.
- the similarity and periodicity of the walking motions are used to interpolate the data missing section, so the data in the long missing section covering several to ten and several percent of walking phases can be interpolated.
- the method of the present embodiment can be used to remove outliers measured due to circuit-related factors, and to level abnormal values measured due to unknown factors.
- the gait information processing section cuts out a waveform for one step cycle from the time-series data.
- the gait information processing unit normalizes the walking phases included in the extracted waveform to generate a walking waveform. According to this aspect, since the walking phases of the plurality of walking waveforms generated from the time-series data of the sensor data are unified, it becomes easier to mutually interpolate the data among the plurality of walking waveforms.
- the interpolating unit for a missing section included in the time-series data, extracts the walking waveform included in the missing section from at least one walking waveform in which the data of the walking phase included in the missing section is not missing. Select at least one phase data.
- the interpolator generates interpolated data using the data of the selected walking phase.
- the missing section can be interpolated using data of other walking cycles.
- the interpolator calculates the average value of data of walking phases selected from walking waveforms of a plurality of walking cycles.
- the interpolation unit generates interpolation data using the calculated average value of the walking phase data. According to this aspect, since the data of the missing section is interpolated based on the average value of the data of a plurality of walking cycles, it is possible to generate the interpolated data that better reflects the characteristics of walking.
- the interpolating section generates interpolated data using an analytical method for walking periods with small data fluctuations.
- the interpolating unit generates interpolated data using data of a walking cycle different from the walking cycle including the missing section for a walking period in which data fluctuates greatly.
- the interpolated data is generated by the analytical method for the walking period in which the data fluctuation is small, so that the calculation time and the amount of calculation can be reduced.
- the gait measurement system of the present embodiment generates interpolated data for missing sections based on deviation values in the overall distribution of data values (amplitude values) for each walking phase regarding walking waveforms of a plurality of walking cycles. It differs from the first embodiment.
- FIG. 17 is a block diagram showing the configuration of the gait measurement system 2 of this embodiment.
- the gait measurement system 2 includes a measurement device 21 , an interpolation device 22 and a gait measurement device 23 .
- the interpolation device 22 may be connected to the measuring device 21 and the gait measuring device 23 by wire or wirelessly.
- the measurement device 21, the interpolation device 22, and the gait measurement device 23 may be configured as a single device.
- the gait measurement system 2 may be composed of an interpolation device 22 and a gait measurement device 23 except for the measurement device 21 .
- the measuring device 21 has the same configuration as the measuring device 11 of the first embodiment.
- the measuring device 21 is installed on the foot.
- the measuring device 21 measures the acceleration (also called spatial acceleration) measured by the acceleration sensor and the angular velocity (also called spatial angular velocity) measured by the angular velocity sensor as physical quantities related to the movement of the foot of the user wearing the footwear.
- the physical quantities related to the movement of the foot measured by the measurement device 21 include velocity, angle, and position (trajectory) calculated by integrating acceleration and angular velocity.
- the measuring device 21 converts the measured physical quantity into digital data (also called sensor data).
- the measurement device 21 transmits the converted sensor data to the interpolation device 22 .
- the interpolation device 22 receives sensor data from the measurement device 21 .
- the interpolator 22 generates time-series data of the received sensor data.
- the interpolation device 22 generates time series data based on the time stamps included in the sensor data.
- the interpolator 22 cuts out a waveform for one step cycle from the generated time-series data. For example, the interpolator 22 extracts a waveform for one step cycle starting from the timing of heel contact or heel lift.
- the interpolator 22 normalizes the clipped waveform for one step cycle to generate a waveform for one step cycle (also called a walking waveform).
- the interpolation device 22 identifies a portion where the timestamp number is missing as a missing section in the time-series data of the sensor data.
- the interpolation device 22 generates interpolation data for interpolating the data of the missing section based on the overall distribution of the data values of the walking phases included in the missing section.
- the overall distribution is the distribution of the data values for each walking phase included in the missing section, which is the whole of the walking waveforms of a plurality of walking cycles used for interpolation of the missing section.
- the interpolation device 22 uses the data values (amplitude values) of the gait waveforms of a plurality of gait cycles in which there is no loss in the gait phase of the missing section to determine the overall distribution of the data values of the gait phase corresponding to the missing section. Calculate statistics.
- the interpolator 22 generates interpolated data for the missing section based on statistics in the overall distribution of data values for each walking phase included in the missing section.
- the interpolation device 22 generates interpolation data for the missing section based on the representative value in the overall distribution of the data values for each walking phase included in the missing section.
- the interpolation device 22 generates interpolation data for the missing section based on the deviation value in the overall distribution of the data values (amplitude values) for each walking phase included in the missing section. For example, the interpolation device 22 may generate interpolation data for the missing section based on standard deviation, variance, deviation, etc., instead of the deviation value. The interpolation device 22 uses the generated interpolation data to interpolate the missing section.
- the gait measuring device 23 has the same configuration as the gait measuring device 13 of the first embodiment.
- the gait measuring device 23 acquires a walking waveform that does not include the missing section from the interpolating device 22 .
- the gait measuring device 23 uses the acquired walking waveform to measure the gait.
- the gait measuring device 23 outputs a measurement result (also referred to as gait information) relating to gait.
- the interpolation device 22 and the gait measurement device 23 are implemented in a server or the like (not shown).
- the interpolation device 22 and the gait measurement device 23 may be realized by an application server.
- the interpolation device 22 and the gait measurement device 23 may be realized by application software or the like installed in a mobile terminal (not shown).
- FIG. 18 is a block diagram showing an example of the detailed configuration of the interpolation device 22.
- the interpolation device 22 includes a receiving section 221 , a gait information processing section 222 , a loss information processing section 223 , a storage section 225 , an interpolation section 226 and a transmission section 228 .
- the receiving unit 221 has the same configuration as the receiving unit 121 of the first embodiment.
- the receiving unit 221 receives sensor data from a measuring device (not shown).
- the receiving unit 221 outputs the received sensor data to the gait information processing unit 222 .
- the gait information processing unit 222 has the same configuration as the gait information processing unit 122 of the first embodiment.
- the gait information processing unit 222 acquires sensor data from the receiving unit 221 .
- the gait information processing unit 222 generates time-series data of the acquired sensor data.
- the gait information processing section 222 generates time-series data based on the time stamps included in the sensor data.
- the gait information processing unit 222 cuts out a waveform for one step cycle from the generated time-series data.
- the gait information processing unit 222 normalizes the extracted waveform for one step cycle to generate a walking waveform for one step cycle.
- the gait information processing section 222 causes the storage section 225 to store the normalized walking waveform.
- the loss information processing unit 223 has the same configuration as the loss information processing unit 123 of the first embodiment.
- the missing information processing unit 223 acquires missing waveforms.
- the missing information processing unit 223 stores information (also referred to as missing information) about the missing section included in the missing waveform in the storage unit 225 in association with the missing waveform.
- the storage unit 225 has the same configuration as the storage unit 125 of the first embodiment.
- a walking waveform is stored in the storage unit 225 .
- the walking waveforms stored in the storage unit 225 include a walking waveform that does not include a missing section (also referred to as a normal waveform), a walking waveform that includes a missing section (also referred to as a missing waveform), and a walking waveform in which a missing section is repaired (a repaired waveform). also called) are included. Missing waveforms are associated with missing information of the missing waveforms.
- the walking waveform stored in the storage unit 225 is acquired by the transmission unit 228 at a predetermined timing and transmitted from the transmission unit 228 to the gait measuring device (not shown).
- the interpolation unit 226 acquires, from the storage unit 225, a plurality of walking waveforms without defects in the walking phases of the missing sections included in the missing waveforms to be interpolated.
- the interpolating unit 226 uses the obtained data values (amplitude values) of the plurality of walking waveforms to calculate the statistics of the overall distribution of the data values of the walking phase corresponding to the missing section in the data group of the plurality of walking waveforms. calculate.
- the interpolating unit 226 calculates, as statistics, representative values such as deviation values, standard deviations, variances, and deviations.
- the interpolation unit 226 calculates the deviation value of the data values of the walking phases included in the missing section in the overall distribution of the data groups of the plurality of walking waveforms.
- the interpolator 226 generates interpolated data based on the calculated statistic.
- the interpolator 226 generates interpolated data based on the deviation value.
- the interpolation unit 226 may generate interpolated data for the missing section based on standard deviation, variance, deviation, etc., instead of the deviation value.
- the interpolation unit 226 interpolates the missing section using the generated interpolation data.
- FIG. 19 is time-series data of traveling-direction acceleration (Y-direction acceleration) measured as the user walks.
- the time-series data of FIG. 19 includes waveforms of a plurality of walking cycles during a measurement period of 20 seconds. The waveforms of each walking cycle show similar patterns although the data values (amplitude values) are different.
- FIG. 20 is a waveform (walking waveform) obtained by cutting out one of the multiple walking cycle waveforms included in the time series data of FIG. 19 and normalizing the cut out waveform.
- FIG. 20 shows the walking phases (P1, P2) used in the subsequent description.
- the walking phase P1 and the walking phase P2 are applied not only to the walking cycle of FIG. 20 but also to a plurality of walking cycles.
- FIG. 21 is a frequency distribution of data values (amplitude values) in the walking phase P1 and the walking phase P2, with the walking waveforms of a plurality of walking cycles cut out from the time-series data of FIG. 19 as a sample group (whole). .
- the frequency distribution of data values exhibits a distribution close to a normal distribution.
- the frequency distribution of data values also shows a distribution close to the normal distribution.
- the frequency distribution of the data values for each 1% was normalized and discriminated by the Kolmogorov-Smirnov test, and positive results were obtained.
- interpolated data can be estimated based on the overall distribution of data values for each walking phase with respect to walking waveforms of a plurality of walking cycles.
- interpolated data can be estimated based on statistics in the overall distribution of data values for each walking phase with respect to walking waveforms of a plurality of walking cycles.
- FIG. 22 is a graph showing the correlation of deviation values in the overall distribution of data values of data N and data N+1 in continuous walking phases in the time-series data of the sensor data of FIG. 19 (N is a natural number). As shown in FIG. 22, the deviation values of continuous data N and data N+1 exhibit a substantially proportional relationship. That is, the deviation values in the overall distribution of data values in the walking phase P2 show similar values for continuous data N and data N+1.
- FIG. 23 is a graph showing the correlation coefficient of the deviation value according to the distance from the target walking phase (walking phase P2).
- the solid line in FIG. 23 indicates the deviation values of the data values of the walking phase P2 and the data values of the walking phase different from the walking phase P2 regarding the sample groups of the walking waveforms of the plurality of walking cycles extracted from the time-series data of FIG. shows the correlation coefficient with
- the dashed line in FIG. 23 is a curve obtained by fitting the correlation coefficient (solid line) to a polynomial. As shown in FIG. 23, it can be seen that the closer the distance from the target walking phase is to the walking phase, the larger the correlation coefficient of the deviation value is, and the deviation values show similar values.
- the closer the walking phase is to the target walking phase the larger the correlation coefficient and the closer the deviation value. That is, using the data value of the walking phase having a deviation value close to the deviation value of the target walking phase, the interpolation data of the target walking phase can be generated.
- the interpolating unit 226 calculates interpolated data by calculating back from the calculated deviation value of the walking phase, and generates interpolated data for interpolating the missing section.
- the interpolator 226 may generate interpolated data based on representative values such as standard deviation, variance, and deviation instead of deviation values.
- the interpolator 226 calculates the value d j of the interpolated data in the walking phase j by back-calculating Equation 1 below.
- Formula 1 below is a formula for calculating the deviation value T j of the data values of the walking phase j included in the missing section.
- ⁇ is the average value of the data values of walking phase j in a plurality of walking waveforms included in the target data group.
- ⁇ is the standard deviation of the data values of walking phase j in a plurality of walking waveforms included in the target data group.
- the interpolating unit 226 may estimate the interpolated data of the missing section based on the deviation values of the data values of the starting point and the ending point of the missing section included in the missing waveform to be interpolated.
- FIG. 24 is a graph for explaining an example of interpolation of a missing section based on the deviation values of the starting point (walking phase M1) and the ending point (walking phase M2) of the missing section included in the missing waveform to be interpolated.
- the interpolation unit 226 calculates the average value of the deviation value in the overall distribution of the data values in the walking phase M1 and the deviation value in the overall distribution of the data values in the walking phase M2 for the missing section.
- the interpolator 226 estimates interpolated data from the overall distribution of data values using the average value of the deviation values of the data values in the walking phase M1 and the walking phase M2. In the method of FIG. 24, the closer the distance between the walking phase M1 and the walking phase M2 in the missing section, the higher the estimation accuracy of the interpolated data.
- interpolation data generation method by the interpolation unit 226 of the present embodiment may be combined with the interpolation data generation method by the interpolation unit 126 of the first embodiment.
- interpolation data may be generated by the method of the first embodiment, and the starting point and end point of the generated interpolation data may be corrected by the method of the present embodiment.
- the interpolation unit 226 causes the storage unit 225 to store the walking waveform (restoration waveform) in which the missing section is interpolated.
- the interpolator 226 may label the missing sections in the repair waveform so that the repaired missing sections can be identified.
- the interpolation unit 226 may cause the storage unit 225 to store a restoration waveform (also referred to as a temporary restoration waveform) obtained by inserting temporary interpolation data into the missing section.
- the restoration waveform stored in the storage unit 225 is used for gait measurement by a gait measuring device (not shown), like other walking waveforms.
- the transmission unit 228 acquires the walking waveform from the storage unit 225.
- the transmitter 228 acquires the walking waveform including the normal waveform and the repair waveform from the storage 225 .
- the transmitter 228 transmits the acquired walking waveform to a gait measuring device (not shown).
- the transmitter 228 may transmit the walking waveform to the gait measuring device via a cable such as a cable, or may transmit the walking waveform to the gait measuring device via wireless communication.
- a communication method between the transmission unit 228 and the gait measuring device is not particularly limited.
- interpolator 22 Next, the operation of the interpolator 22 will be described with reference to the drawings.
- An example in which the interpolating section 226 included in the interpolating device 22 interpolates the missing section based on the deviation values of the starting point and the ending point of the missing section will be described below.
- the following operations of the interpolator 22 may involve different processes and orders than the interpolator 226 described above.
- the processing of the gait information processing unit 222 and the loss information processing unit 223 is the same as that of the first embodiment, and therefore will be omitted.
- FIG. 25 is a flowchart for explaining the interpolation processing of the interpolation unit 226.
- FIG. 25 In the description according to the flowchart of FIG. 25, the interpolating unit 226 will be described as an operating entity.
- the interpolating unit 226 acquires time-series data (missing waveform) including missing intervals from the storage unit 225 (step S231).
- the interpolation section 226 may acquire the missing waveform from the gait information processing section 222 .
- the missing waveform is associated with missing information indicating the walking phase of the missing section.
- the interpolation unit 226 acquires from the storage unit 225 walking waveforms of a plurality of walking cycles with no deficit in the walking phase of the missing section included in the missing waveform (step S232).
- the interpolating unit 226 derives the overall distribution of the walking phase data corresponding to the missing section using the plurality of acquired walking waveform data (step S233).
- the interpolation unit 226 calculates the deviation values of the walking phases at the starting point and the ending point of the missing section in the overall distribution of the data values of the walking phases included in the missing section (step S234).
- the interpolation unit 226 uses the calculated deviation value to generate interpolation data for the missing section (step S235).
- the interpolation unit 226 inserts the generated interpolation data into the missing section (step S236).
- the interpolation unit 226 corrects the start point and end point of the interpolation data and inserts the interpolation data into the missing section.
- Step S237 is performed because the original time-series data is required when calculating walking speed, step length, and the like. If the original time-series data is not required, step S237 may be omitted.
- the gait measurement system of this embodiment includes a measurement device, an interpolation device, and a gait measurement device.
- the measuring device is placed on the user's footwear.
- the measuring device measures spatial acceleration and spatial angular velocity according to the walking of the user.
- a measurement device generates sensor data based on the measured spatial acceleration and spatial angular velocity.
- the measurement device outputs the generated sensor data to the interpolation device.
- the interpolation device has a receiving section, a gait information processing section, a loss information processing section, a storage section, an interpolation section, and a transmission section.
- the receiving unit receives sensor data transmitted from the measuring device.
- the gait information processing unit generates time-series data of sensor data.
- the gait information processing unit generates a walking waveform for each walking cycle using the time-series data of the sensor data related to the movement of the legs, and identifies data missing sections in the time-series data.
- the gait information processing unit causes the storage unit to store the generated walking waveform and information on the identified missing section.
- the storage unit stores a walking waveform, information about the missing section, and a restoration waveform obtained by interpolating the missing section.
- the missing information processing unit calculates the walking phase of the specified missing section.
- the interpolating unit generates interpolation data of the missing section based on a representative value of data for each walking phase included in the missing section in the data group of walking waveforms of a plurality of walking cycles used for interpolation of the missing section.
- the interpolation unit generates interpolation data for the missing section using the deviation value of the data for each walking phase included in the missing section.
- the interpolator interpolates the generated interpolated data into the missing section.
- the gait measuring device obtains from the interpolator a walking waveform that does not include the missing section generated by the interpolation device using the time-series data of the sensor data, and a walking waveform obtained by interpolating the data of the missing section by the interpolation device.
- the gait measuring device measures the user's gait based on walking events detected from the acquired walking waveform.
- the gait measuring device outputs information on the measured gait of the user.
- the method of this embodiment focuses on the periodicity of walking and generates interpolated data that interpolates missing sections of data that occur in time-series data of sensor data that is measured according to the user's walking.
- interpolation data is generated based on the representative value of the data for each walking phase included in the missing section.
- interpolation data is generated based on the distribution of data of walking waveforms of a plurality of walking cycles generated from time-series data. According to the method of the present embodiment, by generating the interpolated data based on the overall distribution, the walking waveform data including sudden abnormalities is smoothed. can be restored.
- FIG. 26 is a block diagram showing an example of the configuration of the interpolation device 32 of this embodiment.
- the interpolation device 32 includes a gait information processing section 322 , a loss information processing section 323 and an interpolation section 326 .
- the gait information processing unit 322 generates a gait waveform for each walking cycle using the time-series data of the sensor data related to the movement of the legs, and identifies data missing sections in the time-series data.
- the missing information processing unit 323 calculates the walking phase of the specified missing section.
- the interpolation unit 326 generates interpolation data for interpolating the missing section using the walking phase data of the missing section in the walking waveform of the walking cycle different from the walking cycle including the missing section.
- the interpolation unit 326 interpolates the generated interpolated data into the missing section.
- the interpolated data generated by focusing on the periodicity of walking is used, it is possible to interpolate the data of the missing section including the features of the missing section of the data included in the time-series data of the sensor data. .
- the information processing device 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input/output interface 95, and a communication interface 96.
- the interface is abbreviated as I/F (Interface).
- Processor 91 , main storage device 92 , auxiliary storage device 93 , input/output interface 95 , and communication interface 96 are connected to each other via bus 98 so as to enable data communication.
- the processor 91 , the main storage device 92 , the auxiliary storage device 93 and the input/output interface 95 are connected to a network such as the Internet or an intranet via a communication interface 96 .
- the processor 91 loads the program stored in the auxiliary storage device 93 or the like into the main storage device 92 .
- the processor 91 executes programs developed in the main memory device 92 .
- a configuration using a software program installed in the information processing device 90 may be used.
- the processor 91 executes control and processing according to this embodiment.
- the main storage device 92 has an area in which programs are expanded.
- a program stored in the auxiliary storage device 93 or the like is developed in the main storage device 92 by the processor 91 .
- the main memory device 92 is realized by a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, as the main storage device 92, a non-volatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured/added.
- the auxiliary storage device 93 stores various data such as programs.
- the auxiliary storage device 93 is implemented by a local disk such as a hard disk or flash memory. It should be noted that it is possible to store various data in the main storage device 92 and omit the auxiliary storage device 93 .
- the input/output interface 95 is an interface for connecting the information processing device 90 and peripheral devices based on standards and specifications.
- a communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on standards and specifications.
- the input/output interface 95 and the communication interface 96 may be shared as an interface for connecting with external devices.
- Input devices such as a keyboard, mouse, and touch panel may be connected to the information processing device 90 as necessary. These input devices are used to enter information and settings.
- a touch panel is used as an input device, the display screen of the display device may also serve as an interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input/output interface 95 .
- the information processing device 90 may be equipped with a display device for displaying information.
- the information processing device 90 is preferably provided with a display control device (not shown) for controlling the display of the display device.
- the display device may be connected to the information processing device 90 via the input/output interface 95 .
- the information processing device 90 may be equipped with a drive device. Between the processor 91 and a recording medium (program recording medium), the drive device mediates reading of data and programs from the recording medium, writing of processing results of the information processing device 90 to the recording medium, and the like.
- the drive device may be connected to the information processing device 90 via the input/output interface 95 .
- the above is an example of the hardware configuration for enabling control and processing according to each embodiment of the present invention.
- the hardware configuration of FIG. 27 is an example of a hardware configuration for executing control and processing according to each embodiment, and does not limit the scope of the present invention.
- the scope of the present invention also includes a program that causes a computer to execute control and processing according to each embodiment.
- the scope of the present invention also includes a program recording medium on which the program according to each embodiment is recorded.
- the recording medium can be implemented as an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
- the recording medium may be implemented by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card.
- the recording medium may be realized by a magnetic recording medium such as a flexible disk, or other recording medium.
- each embodiment may be combined arbitrarily. Also, the components of each embodiment may be realized by software or by circuits.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Dentistry (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
センサデータの時系列データに含まれるデータの欠損区間の特徴を含めて、欠損区間のデータを補間するために、足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成するとともに、時系列データにおけるデータの欠損区間を特定する歩容情報処理部と、特定された欠損区間の歩行フェーズを計算する欠損情報処理部と、欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、欠損区間の歩行フェーズのデータを用いて、欠損区間を補間する補間データを生成し、生成された補間データを欠損区間に補間する補間部と、を備える補間装置とする。
Description
本開示は、時系列データの欠損を補間する補間装置等に関する。
体調管理を行うヘルスケアへの関心の高まりから、歩行パターンに含まれる特徴(歩容とも呼ぶ)を計測し、歩容に応じた情報をユーザに提供するサービスが注目されている。例えば、慣性センサを含む計測装置を靴等の履物に実装し、ユーザの歩容を解析する装置が開発されている。このような歩容解析においては、センサによって計測されたデータ(センサデータとも呼ぶ)を計測装置から無線送信する際に、通信障害などの要因によって、データの欠損が発生することがある。
特許文献1には、足が地面に接地している期間(立脚相)と、足が地面から離れている期間(遊脚相)とで異なる特性を示すドリフトを除去することを目的とした歩容計測システムについて開示されている。特許文献1のシステムは、慣性計測ユニットによって計測される加速度データから少なくとも一つの歩行フェーズを検出するとともに、加速度データを時間積分して速度データを計算する。特許文献1のシステムは、歩行フェーズと速度データに基づいて、それぞれの歩行フェーズに対応する補正量を計算する。特許文献1のシステムは、それぞれの歩行フェーズに対応する速度データから補正量を減じて補正速度データを計算し、算出した補正速度データを時間積分して軌跡データを計算する。
特許文献2には、入力信号の欠落部分を補間する信号補間方式について開示されている。特許文献2の方式では、入力信号の欠落以前の信号の周期を検出し、検出された入力信号を蓄積する。特許文献2の方式では、入力信号の検出に応じて、蓄積された信号を読み出して、欠落部分を補間する。特許文献2の方式では、入力信号の欠落開始時点の極性およびレベルを識別し、欠落直前の入力信号との連続性を保つ極性およびレベルの蓄積波形信号を順次読み出す。特許文献2の方式では、蓄積波形信号のレベルを入力信号のレベルに次第に近似させることで、入力信号の欠落部分を連続性が保たれるように補間する。
特許文献3には、ネットワークに接続されたセンサや機器によって計測されるデータの欠損を補間するデータ補間装置について開示されている。特許文献3の装置は、データの時系列モデルと、データの欠損を補間する補間方法とを格納する。補間方法は、時系列モデルにおいて、データの時間変化が共通する範囲として特定されるフェーズに対応する。特許文献3の装置は、外部装置から出力されるデータを外部装置ごとに蓄積し、蓄積されたデータの時間変化パターンがいずれの時系列モデルに該当するかを判定する。特許文献3の装置は、蓄積されたデータの一部に含まれる欠損が、判定された時系列モデルのいずれのフェーズに位置しているかを判定し、判定されたフェーズに応じた補間方法で欠損を補間する。
特許文献4には、生体情報に含まれる欠落部分を補完する生体情報測定装置について開示されている。特許文献4の装置は、脈波センサおよび心電センサによって計測された時系列データ(生体情報)に含まれる欠落部分を補完する。特許文献4の装置は、二つのセンサによって計測された時系列データのうち、一方のセンサによって計測されたデータの欠落部分を、他方のセンサによって計測されたデータに基づいて補完する。特許文献4の装置は、他方のセンサによって計測された時系列データの欠落部分の始点以前のデータのうち、欠落部分と同時刻の区間の時系列データとの相関を示す指標が所定の条件を満たす対応区間を特定する。特許文献4の装置は、一方のセンサによって計測されたデータのうち、対応区間と同時刻の区間の時系列データを用いて欠落部分を補完する。
特許文献1の手法によれば、立脚相や遊脚相のように、異なる歩行ピリオドにおいて明確に異なる特性を示すドリフトを除去することはできる。しかしながら、特許文献1の手法では、立脚相や遊脚相などの個々の歩行ピリオドにおいて局所的に発生した欠落部分を補間することができなかった。そのため、特許文献1の手法では、欠落部分に含まれる特徴までは復元することができなかった。
特許文献2の手法では、入力信号に欠落があった場合、欠落開始時から欠落終了時にかけて連続性が得られるように、蓄積された信号を繰り返し読み出して、欠落部分を補間する。特許文献2の手法によれば、入力信号の周期性や形状が単純な場合には、欠落部分を補間できる。しかしながら、特許文献2の手法では、センサデータのように規則性や波形が複雑な場合には、欠落開始時から欠落終了時にかけて連続性が得られるように、欠落部分を補間することが難しかった。そのため、特許文献2の手法では、欠落部分に含まれる特徴が失われてしまう可能性があった。
特許文献3の手法では、時系列モデルと補間方法を予め格納しておく必要がある。そのため、特許文献3の手法では、時系列モデルや補間方法を特定できない欠損に関しては、データの欠損を補間することができなかった。
特許文献4の手法では、同時刻に計測された互いに関連し合う二つの時系列データを対応させて、一方の時系列データの欠落部分を他方のデータに基づいて補完する。そのため、特許文献4の手法は、同時刻に計測された時系列データがない限り、欠落部分を補完することができなかった。
本開示の目的は、センサデータの時系列データに含まれるデータの欠損区間の特徴を含めて、欠損区間のデータを補間できる補間装置等を提供することにある。
本開示の一態様の補間装置は、足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成するとともに、時系列データにおけるデータの欠損区間を特定する歩容情報処理部と、特定された欠損区間の歩行フェーズを計算する欠損情報処理部と、欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、欠損区間の歩行フェーズのデータを用いて、欠損区間を補間する補間データを生成し、生成された補間データを欠損区間に補間する補間部と、を備える。
本開示の一態様の補間方法においては、コンピュータが、足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成し、時系列データにおけるデータの欠損区間を特定し、特定された欠損区間の歩行フェーズを計算し、欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、欠損区間の歩行フェーズのデータを用いて、欠損区間を補間する補間データを生成し、生成された補間データを欠損区間に補間する。
本開示の一態様のプログラムは、足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成する処理と、時系列データにおけるデータの欠損区間を特定する処理と、特定された欠損区間の歩行フェーズを計算する処理と、欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、欠損区間の歩行フェーズのデータを用いて、欠損区間を補間する補間データを生成する処理と、生成された補間データを欠損区間に補間する処理と、をコンピュータに実行させる。
本開示によれば、センサデータの時系列データに含まれるデータの欠損区間の特徴を含めて、欠損区間のデータを補間できる補間装置等を提供することが可能になる。
以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。
(第1の実施形態)
まず、第1の実施形態に係る歩容計測システムについて図面を参照しながら説明する。本実施形態の歩容計測システムは、ユーザの履く履物に設置された計測装置によって、足の動きに関する物理量(センサデータ)を計測する。計測装置は、加速度センサや角速度センサを含む。例えば、足の動きに関する物理量は、加速度センサによって計測される3軸方向の加速度(空間加速度とも呼ぶ)や、角速度センサによって計測される3軸周りの角速度(空間角速度とも呼ぶ)を含む。本実施形態の歩容計測システムは、計測されたセンサデータの通信時などに発生したデータの欠損部分を補間する。
まず、第1の実施形態に係る歩容計測システムについて図面を参照しながら説明する。本実施形態の歩容計測システムは、ユーザの履く履物に設置された計測装置によって、足の動きに関する物理量(センサデータ)を計測する。計測装置は、加速度センサや角速度センサを含む。例えば、足の動きに関する物理量は、加速度センサによって計測される3軸方向の加速度(空間加速度とも呼ぶ)や、角速度センサによって計測される3軸周りの角速度(空間角速度とも呼ぶ)を含む。本実施形態の歩容計測システムは、計測されたセンサデータの通信時などに発生したデータの欠損部分を補間する。
(構成)
図1は、本実施形態の歩容計測システム1の構成を示すブロック図である。歩容計測システム1は、計測装置11、補間装置12、および歩容計測装置13を備える。補間装置12は、計測装置11および歩容計測装置13に有線で接続されてもよいし、無線で接続されてもよい。また、計測装置11、補間装置12、および歩容計測装置13は、単一の装置で構成されてもよい。また、歩容計測システム1は、計測装置11を除き、補間装置12および歩容計測装置13で構成されてもよい。
図1は、本実施形態の歩容計測システム1の構成を示すブロック図である。歩容計測システム1は、計測装置11、補間装置12、および歩容計測装置13を備える。補間装置12は、計測装置11および歩容計測装置13に有線で接続されてもよいし、無線で接続されてもよい。また、計測装置11、補間装置12、および歩容計測装置13は、単一の装置で構成されてもよい。また、歩容計測システム1は、計測装置11を除き、補間装置12および歩容計測装置13で構成されてもよい。
計測装置11は、足部に設置される。例えば、計測装置11は、靴等の履物に設置される。例えば、計測装置11は、足弓の裏側の位置に配置される。計測装置11は、加速度センサおよび角速度センサを含む。計測装置11は、履物を履くユーザの足の動きに関する物理量として、加速度センサによって計測される加速度(空間加速度とも呼ぶ)や、角速度センサによって計測される角速度(空間角速度とも呼ぶ)を計測する。計測装置11が計測する足の動きに関する物理量には、加速度や角速度を積分することによって計算される速度や角度、位置(軌跡)も含まれる。計測装置11は、計測された物理量をデジタルデータ(センサデータとも呼ぶ)に変換する。計測装置11は、変換後のセンサデータを補間装置12に送信する。センサデータには、センサデータが取得された時刻に対応するタイムスタンプを含む。タイムスタンプは、センサデータに付与された時系列の番号である。例えば、計測装置11は、ユーザが携帯する携帯端末(図示しない)を介して、補間装置12に接続される。
携帯端末(図示しない)は、ユーザによって携帯可能な通信機器である。例えば、携帯端末は、スマートフォンやスマートウォッチ、携帯電話等の通信機能を有する携帯型の通信機器である。携帯端末は、ユーザの足の動きに関するセンサデータを計測装置11から受信する。携帯端末は、受信されたセンサデータを、補間装置12が実装されたサーバやクラウド等に送信する。なお、補間装置12や歩容計測装置13の機能は、携帯端末にインストールされたアプリケーションソフトウェア等によって実現されていてもよい。その場合、携帯端末は、受信されたセンサデータを、自身にインストールされたアプリケーションソフトウェア等によって処理する。
計測装置11は、例えば、加速度センサと角速度センサを含む慣性計測装置によって実現される。慣性計測装置の一例として、IMU(Inertial Measurement Unit)があげられる。IMUは、3軸方向の加速度を計測する加速度センサと、3軸周りの角速度を計測する角速度センサを含む。また、計測装置11は、VG(Vertical Gyro)やAHRS(Attitude Heading)などの慣性計測装置によって実現されてもよい。また、計測装置11は、GPS/INS(Global Positioning System/Inertial Navigation System)によって実現されてもよい。
図2は、計測装置11を靴100の中に配置する一例を示す概念図である。図2の例では、計測装置11は、足弓の裏側に当たる位置に配置される。例えば、計測装置11は、靴100の中に挿入されるインソールに配置される。例えば、計測装置11は、靴100の底面に配置される。例えば、計測装置11は、靴100の本体に埋設されてもよい。計測装置11は、靴100から着脱できてもよいし、靴100から着脱できなくてもよい。なお、計測装置11は、足の動きに関するセンサデータを取得できさえすれば、足弓の裏側ではない位置に配置されてもよい。また、計測装置11は、ユーザが履く靴下や、ユーザが装着するアンクレット等の装飾品に設置されてもよい。また、計測装置11は、足に直に貼り付けられたり、足に埋め込まれたりしてもよい。図2においては、右足側の靴100に計測装置11が配置される例を示すが、両足分の靴100に計測装置11が配置されてもよい。両足分の靴100に計測装置11が配置されれば、両足分の足の動きに基づいて、歩容を計測できる。
図3は、計測装置11を足弓の裏側に設置する場合に、計測装置11に設定されるローカル座標系(x軸、y軸、z軸)と、地面に対して設定される世界座標系(X軸、Y軸、Z軸)について説明するための概念図である。世界座標系(X軸、Y軸、Z軸)では、ユーザが直立した状態で、ユーザの横方向がX軸方向(右向きが正)、ユーザの正面の方向(進行方向)がY軸方向(前向きが正)、重力方向がZ軸方向(鉛直上向きが正)に設定される。本実施形態においては、計測装置11を基準とするx方向、y方向、およびz方向からなるローカル座標系を設定する。
図4は、右足を基準とする一歩行周期について説明するための概念図である。図4は、右足の踵が地面に着地した時点を起点とし、次に右足の踵が地面に着地した時点を終点とする、右足の一歩行周期を表す。図4は、右足の一歩行周期を100%として、正規化された歩行周期である。片足の一歩行周期は、足の裏側の少なくとも一部が地面に接している立脚相と、足の裏側が地面から離れている遊脚相とに大別される。本実施形態においては、立脚相が60%を占め、遊脚相が40%を占めるように、歩行周期を正規化する。立脚相は、さらに、立脚初期T1、立脚中期T2、立脚終期T3、遊脚前期T4に細分される。遊脚相は、さらに、遊脚初期T5、遊脚中期T6、遊脚終期T7に細分される。なお、一歩行周期分の歩行波形は、踵が地面に着地した時点を起点としなくてもよい。例えば、一歩行周期分の歩行波形は、踵が持ち上がる時点を起点および終点としてもよい。
図4(a)は、右足の踵が接地する事象(踵接地)を表す(HS:Heel Strike)。図4(b)は、右足の足裏の接地面が接地した状態で、左足の爪先が地面から離れる事象(反対足爪先離地)を表す(OTO:Opposite Toe Off)。図4(c)は、右足の足裏の接地面が接地した状態で、右足の踵が持ち上がる事象(踵持ち上がり)を表す(HR:Heel Rise)。図4(d)は、左足の踵が接地した事象(反対足踵接地)である(OHS:Opposite Heel Strike)。図4(e)は、左足の足裏の接地面が接地した状態で、右足の爪先が地面から離れる事象(爪先離地)を表す(TO:Toe Off)。図4(f)は、左足の足裏の接地面が接地した状態で、左足と右足が交差する事象(足交差)を表す(FA:Foot Adjacent)。図4(g)は、左足の足裏が接地した状態で、右足の脛骨が地面に対してほぼ垂直になる事象(脛骨垂直)を表す(TV:Tibia Vertical)。図4(h)は、右足の踵が接地する事象(踵接地)を表す(HS:Heel Strike)。図4(h)は、図4(a)から始まる歩行周期の終点に相当するとともに、次の歩行周期の起点に相当する。
立脚初期T1は、踵接地HSから反対足爪先離地OTOまでの期間である。立脚中期T2は、反対足爪先離地OTOから踵持ち上がりHRまでの期間である。立脚終期T3は、踵持ち上がりHRから反対足踵接地OHSまでの期間である。遊脚前期T4は、反対足踵接地OHSから爪先離地TOまでの期間である。遊脚初期T5は、爪先離地TOから足交差FAまでの期間である。遊脚中期T6は、足交差FAから脛骨垂直TVまでの期間である。遊脚終期T7は、脛骨垂直TVから踵接地HSまでの期間である。なお、歩行イベントが発現するタイミングは、人物や身体状態、歩行状態に応じて異なるため、想定される歩行周期と完全に一致するとは限らない。
歩行動作においては、図4のように、周期的な動作が繰り返される。そのため、異なる歩行周期の同じタイミング(歩行フェーズとも呼ぶ)において使われる骨格と筋肉は、ほぼ同じである。そのため、歩行に伴って計測されるセンサデータの時系列データの波形は、各歩行フェーズにおいて相似する。本実施形態では、欠損の補間対象の歩行周期とは異なる歩行周期の時系列データに含まれる欠損のないデータを用いて、欠損の補間対象の歩行周期の時系列データの欠損区間を補間する。
補間装置12は、計測装置11からセンサデータを受信する。補間装置12は、受信したセンサデータの時系列データを生成する。補間装置12は、センサデータに含まれるタイムスタンプに基づいて、時系列データを生成する。補間装置12は、生成された時系列データから一歩行周期分の波形を切り出す。例えば、補間装置12は、踵接地や踵持ち上がりのタイミングを起点とする一歩行周期分の波形を切り出す。補間装置12は、切り出された一歩行周期分の波形を正規化して、一歩行周期分の波形(歩行波形とも呼ぶ)を生成する。
補間装置12は、センサデータの時系列データにおいて、タイムスタンプの番号が抜けている部分を欠損区間として特定する。補間装置12は、欠損区間と同じ歩行フェーズにおいて欠損のない他の歩行周期における歩行波形を用いて、欠損区間のデータを補間するための補間データを生成する。補間装置12は、生成された補間データを用いて、欠損区間を補間する。
図5は、正常波形と、欠損を含む波形(欠損波形とも呼ぶ)とを比較するための概念図である。図5は、踵持ち上がりを起点とする一歩行周期の進行方向加速度(Y方向加速度)の歩行波形である。図5の欠損波形には、二か所の欠損区間が含まれる。図5のように、欠損区間のデータには、歩行の特徴が含まれる可能性がある。
図6は、関連技術における、時系列データの欠損区間の補間の一例について説明するための概念図である。図6は、時系列データに含まれるセンサデータのタイムスタンプを参照して、解析的な手法で欠損区間のデータを補間する例を示す。図6には、欠損区間の始点と終点を線分(一次関数)で接続する線形補間(破線)と、欠損区間の始点と終点を曲線で接続する多項式補間(一点鎖線)とを示す。線形補間では、欠損区間の始点と終点が線分で結ばれる。線形補間では、時系列データに表れる振幅の凹凸を復元することができないため、凹凸を含む区間の特徴を復元することができない。多項式補間では、欠損区間の始点と終点が曲線で結ばれる。多項式補間では、時系列データの凹凸を大まかに復元することはできるものの、凹凸の部分に含まれる細かい特徴を復元することができない。
図7は、本実施形態における、時系列データの欠損区間の復元の一例について説明するための概念図である。図7の例では、歩行周期i~i+3の歩行波形の各々に含まれる欠損区間S1~S5のデータを相互に補間する(iは自然数)。歩行周期iの歩行波形は、欠損区間S1および欠損区間S5を含む。歩行周期i+1の歩行波形は、欠損区間S2および欠損区間S3を含む。歩行周期i+2の歩行波形は、欠損区間S4を含む。歩行周期i+3の歩行波形は、欠損区間を含まない。
補間装置12は、歩行周期i+1~3の歩行波形に含まれる欠損区間S1に対応する歩行フェーズのデータを用いて、歩行周期iの歩行波形に含まれる欠損区間S1を補間する。補間装置12は、歩行周期i+1~3の歩行波形に含まれる欠損区間S5に対応する歩行フェーズのデータを用いて、歩行周期iの歩行波形に含まれる欠損区間S5を補間する。補間装置12は、歩行周期i+1の歩行波形に含まれる欠損区間S2を、歩行周期i、i+2~3の歩行波形に含まれる欠損区間S2に対応する歩行フェーズのデータで補間する。補間装置12は、歩行周期i+1の歩行波形に含まれる欠損区間S3を、歩行周期i、i+2~3の歩行波形に含まれる欠損区間S3に対応する歩行フェーズのデータで補間する。補間装置12は、歩行周期i+2の歩行波形に含まれる欠損区間S4を、歩行周期i~i+1、i+3の歩行波形に含まれる欠損区間S4に対応する歩行フェーズのデータで補間する。
例えば、補間装置12は、ある時系列データで発生した時系列データの欠損区間に関して、その欠損区間のデータが欠損していない少なくとも一つの歩行波形から、その欠損区間に対応する歩行フェーズのデータを少なくとも一つ選択する。例えば、補間装置12は、選択されたデータを用いて、欠損区間を補間するための補間データを生成する。
例えば、補間装置12は、ある時系列データで発生した時系列データの欠損区間に関して、その欠損区間のデータが欠損していない複数の歩行波形から、その欠損区間に対応する歩行フェーズのデータを複数選択する。補間装置12は、選択された複数のデータに対して加算平均や加重平均などの平均値を計算し、算出された平均値を用いて、欠損区間を補間するための補間データを生成する。例えば、補間装置12は、選択された複数のデータのうち、欠損区間の始点および終点の値が最も近いデータを用いて、補間データを生成する。
例えば、補間装置12は、欠損区間の歩行ピリオドに応じて、欠損区間のデータを補間する手法を選択してもよい。例えば、進行歩行の加速度(Y方向加速度)の波形は、立脚相の期間においては変動が小さく、遊脚相の期間においては変動が大きい。そのため、補間装置12は、立脚相において発生した欠損区間に関しては解析的な手法で欠損区間のデータを補間し、遊脚相において発生した欠損区間に関しては他の歩行周期の歩行波形に基づいて欠損区間のデータを補間するように構成されてもよい。
例えば、補間装置12は、図示しないサーバ等に実装される。例えば、補間装置12は、アプリケーションサーバによって実現されてもよい。例えば、補間装置12は、携帯端末(図示しない)にインストールされたアプリケーションソフトウェア等によって実現されてもよい。
歩容計測装置13は、補間装置12から、欠損区間を含まない歩行波形を取得する。歩容計測装置13は、取得した歩行波形を用いて、歩容に関する計測を実行する。例えば、歩容計測装置13は、歩行波形から歩行イベントを検出し、検出された歩行イベントに基づいて、ユーザの歩容を計測する。例えば、歩容計測装置13は、検出された歩行イベントに基づいて、ストライド長やステップ長、歩幅、歩隔、足角、歩行速度などの歩容を計測する。例えば、歩容計測装置13は、計測された歩容に基づいて、回内/回外の度合や、外反母趾の進行度、身体の対称性、身体の柔軟度などの身体的な状態を推定してもよい。例えば、歩容計測装置13は、計測された歩容に基づいて、上肢や下肢、上腕、前腕、上腿、下腿の長さなどの身体パラメータを計測してもよい。歩容計測装置13による計測対象項目には、特に限定を加えない。
歩容計測装置13は、歩容に関する計測結果(歩容情報とも呼ぶ)を出力する。例えば、歩容計測装置13は、表示装置(図示しない)や携帯端末(図示しない)に歩容情報を出力する。表示装置に出力された歩容情報は、表示装置や携帯端末の画面に表示される。例えば、歩容計測装置13は、外部システム(図示しない)に歩容情報を出力する。歩容計測装置13から出力される歩容情報は、任意の用途に使用できる。歩容計測装置13が歩容情報を出力する通信機能については、特に限定を加えない。
例えば、歩容計測装置13は、図示しないサーバ等に実装される。例えば、歩容計測装置13は、アプリケーションサーバによって実現されてもよい。例えば、歩容計測装置13は、携帯端末(図示しない)にインストールされたアプリケーションソフトウェア等によって実現されてもよい。
〔計測装置〕
次に、計測装置11の詳細構成について図面を参照しながら説明する。図8は、計測装置11の詳細構成の一例を示すブロック図である。計測装置11は、加速度センサ111、角速度センサ112、制御部113、および送信部115を有する。なお、計測装置11は、図示しない電源を含む。
次に、計測装置11の詳細構成について図面を参照しながら説明する。図8は、計測装置11の詳細構成の一例を示すブロック図である。計測装置11は、加速度センサ111、角速度センサ112、制御部113、および送信部115を有する。なお、計測装置11は、図示しない電源を含む。
加速度センサ111は、3軸方向の加速度(空間加速度とも呼ぶ)を計測するセンサである。加速度センサ111は、計測した加速度を制御部113に出力する。例えば、加速度センサ111には、圧電型や、ピエゾ抵抗型、静電容量型等の方式のセンサを用いることができる。なお、加速度センサ111に用いられるセンサは、加速度を計測できれば、その計測方式に限定を加えない。
角速度センサ112は、3軸方向の角速度(空間角速度とも呼ぶ)を計測するセンサである。角速度センサ112は、計測した角速度を制御部113に出力する。例えば、角速度センサ112には、振動型や静電容量型等の方式のセンサを用いることができる。なお、角速度センサ112に用いられるセンサは、角速度を計測できれば、その計測方式に限定を加えない。
制御部113は、加速度センサ111および角速度センサ112の各々から、3軸方向の加速度と3軸周りの角速度を取得する。制御部113は、取得した加速度および角速度をデジタルデータに変換し、変換後のデジタルデータ(センサデータとも呼ぶ)を送信部115に出力する。センサデータには、デジタルデータに変換された加速度データと、デジタルデータに変換された角速度データとが少なくとも含まれる。加速度データは、3軸方向の加速度ベクトルを含む。角速度データは、3軸周りの角速度ベクトルを含む。なお、加速度データおよび角速度データには、それらのデータの取得時間が紐付けられる。また、制御部113は、取得した加速度データおよび角速度データに対して、実装誤差や温度補正、直線性補正などの補正を加えたセンサデータを出力するように構成してもよい。また、制御部113は、取得した加速度データおよび角速度データを用いて、3軸周りの角度データを生成してもよい。
例えば、制御部113は、計測装置11の全体制御やデータ処理を行うマイクロコンピュータまたはマイクロコントローラである。例えば、制御部113は、CPU(Central Processing Unit)やRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等を有する。制御部113は、加速度センサ111および角速度センサ112を制御して角速度や加速度を計測する。例えば、制御部113は、計測された角速度および加速度等の物理量(アナログデータ)をAD変換(Analog-to-Digital Conversion)する。制御部113は、変換後のデジタルデータをフラッシュメモリ等の記憶部(図示しない)に記憶させる。なお、加速度センサ111および角速度センサ112によって計測された物理量(アナログデータ)は、加速度センサ111および角速度センサ112の各々においてデジタルデータに変換されてもよい。記憶部に記憶されたデジタルデータは、所定のタイミングで送信部115に出力される。
送信部115は、制御部113からセンサデータを取得する。送信部115は、取得したセンサデータを補間装置12に送信する。例えば、送信部115は、ケーブルなどの有線を介して、センサデータを補間装置12に送信する。例えば、送信部115は、無線通信を介して、センサデータを補間装置12に送信する。例えば、送信部115は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、センサデータを補間装置12に送信するように構成される。なお、送信部115の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。
〔補間装置〕
次に、補間装置12の詳細構成について図面を参照しながら説明する。図9は、補間装置12の詳細構成について説明するためのブロック図である。補間装置12は、受信部121、歩容情報処理部122、欠損情報処理部123、記憶部125、補間部126、および送信部128を有する。
次に、補間装置12の詳細構成について図面を参照しながら説明する。図9は、補間装置12の詳細構成について説明するためのブロック図である。補間装置12は、受信部121、歩容情報処理部122、欠損情報処理部123、記憶部125、補間部126、および送信部128を有する。
受信部121は、計測装置11からセンサデータを受信する。受信部121は、受信したセンサデータを歩容情報処理部122に出力する。例えば、受信部121は、ケーブルなどの有線を介して、センサデータを計測装置11から受信する。例えば、受信部121は、無線通信を介して、センサデータを計測装置11から受信する。例えば、受信部121は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、センサデータを計測装置11から受信するように構成される。なお、受信部121の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。
歩容情報処理部122は、計測装置11が設置された靴100を履いたユーザの歩行に伴って計測されたセンサデータを、受信部121から取得する。歩容情報処理部122は、センサデータに含まれるタイムスタンプに基づいて、取得したセンサデータの時系列データを生成する。例えば、歩容情報処理部122は、取得されたセンサデータの座標系を、ローカル座標系から世界座標系に変換する。
歩容情報処理部122は、センサデータを用いて、足の動きに関する物理量の時系列データを生成する。例えば、歩容情報処理部122は、空間加速度や空間角速度などの時系列データを生成する。また、歩容情報処理部122は、空間加速度や空間角速度を積分し、空間速度や空間角度(足底角)、空間軌跡などの時系列データを生成する。これらの時系列データが歩行波形に相当する。歩容情報処理部122は、一般的な歩行周期や、ユーザに固有の歩行周期に合わせて設定された所定のタイミングや時間間隔において、時系列データを生成する。歩容情報処理部122が時系列データを生成するタイミングは、任意に設定できる。例えば、歩容情報処理部122は、ユーザの歩行が継続されている期間、時系列データを生成し続けるように構成される。また、歩容情報処理部122は、特定のタイミングにおいて、時系列データを生成するように構成されてもよい。
歩容情報処理部122は、生成された時系列データから一歩行周期分の波形を切り出す。例えば、歩容情報処理部122は、踵接地を起点とする一歩行周期分の波形を切り出す。例えば、歩容情報処理部122は、一歩行周期分の進行方向加速度(Y方向加速度)の歩行波形において、踵接地のタイミングを検出する。一歩行周期分の進行方向加速度の歩行波形において、踵接地のタイミングは、最小ピークが検出されるタイミングと、最小ピークの次に現れる極大ピークが検出されるタイミングとの中点のタイミングである。例えば、歩容情報処理部122は、先行する踵接地のタイミングを起点とし、後続する踵接地のタイミングを終点とする時系列データを、踵接地を起点とする一歩行周期分の波形として切り出す。
例えば、歩容情報処理部122は、一歩行周期分の進行方向加速度の歩行波形において、爪先離地のタイミングを検出する。一歩行周期分の進行方向加速度の歩行波形において、爪先離地のタイミングは、最大ピークに含まれる二つの山の間に表れる谷のタイミングである。例えば、歩容情報処理部122は、一歩行周期分の進行方向加速度の歩行波形において、最大ピークに含まれる二つの山の間に表れる谷のタイミングを、爪先離地のタイミングとして検出する。
例えば、歩容情報処理部122は、踵持ち上がりを起点とする一歩行周期分の波形を抽出してもよい。足底角の歩行波形において、爪先が踵よりも上に位置する状態(背屈)を負と定義し、爪先が踵よりも下に位置する状態(底屈)を正と定義する。足底角の歩行波形が極小となる時刻は、立脚相開始のタイミングに相当する。足底角の歩行波形が極大となる時刻は、遊脚相開始のタイミングに相当する。立脚相開始の時刻と遊脚相開始の時刻との中点の時刻が、立脚相の中央のタイミングに相当する。立脚相の中央のタイミングは、踵持ち上がりのタイミングに相当する。例えば、歩容情報処理部122は、二歩行分の時系列データに含まれる二つの踵持ち上がりのタイミングのうち、先行するタイミングを起点とし、後続するタイミングを終点とする時系列データを、切り出す。切り出された時系列データは、踵持ち上がりを起点とする一歩行周期分の歩行波形である。
歩容情報処理部122は、切り出された一歩行周期分の波形を正規化して、一歩行周期分の波形(歩行波形とも呼ぶ)を生成する。歩容情報処理部122は、一歩行周期分の波形の時間軸を、起点のタイミングが0であり、終点のタイミングが100である歩行周期に正規化する。正規化された波形の歩行周期は、100等分されてパーセンテージで表現される。歩行周期の各パーセンテージを、歩行フェーズと呼ぶ。例えば、歩容情報処理部122は、立脚相と遊脚相の比率が60:40になるように、歩行波形の歩行周期を正規化する。例えば、歩容情報処理部122は、歩行波形に表れる歩行イベントに基づいて、歩行波形を正規化してもよい。例えば、歩容情報処理部122は、踵持ち上がりのタイミングを起点とする歩行波形に関して、爪先離地のタイミングが30%になり、踵接地のタイミングが70%になるように、その歩行波形を正規化する。なお、歩行イベントが発現するタイミングは、人物や身体状態、歩行状態に応じて異なるため、想定される歩行フェーズと完全に一致するとは限らない。
また、歩容情報処理部122は、一歩行周期分の歩行波形の振幅(加速度や角速度の値)を正規化してもよい。例えば、歩容情報処理部122は、一歩行周期分の歩行波形に関して、振幅の変動幅が一定の範囲内になるように、歩行波形の振幅を正規化する。例えば、歩容情報処理部122は、一歩行周期分の歩行波形に関して、振幅の最大値が1、振幅の最大値が-1になるように、歩行波形の振幅を正規化する。歩行波形の振幅を正規化すれば、複数の歩行周期の歩行波形の振幅が揃うため、欠損区間にデータを補間しやすくなる。また、歩容情報処理部122は、一歩行周期分の歩行波形のベースラインを正規化してもよい。例えば、歩容情報処理部122は、ベースラインの傾きが0となるように、一歩行周期分の歩行波形を正規化する。歩行波形のベースラインを正規化すれば、複数の歩行周期の歩行波形のベースラインの傾きが揃う。そのため、歩行波形のベースラインを正規化すれば、欠損区間のデータを補間しやすくなる。
歩容情報処理部122は、正規化された歩行波形を記憶部125に記憶させる。例えば、歩容情報処理部122は、欠損区間のない歩行波形のみを記憶部125に記憶させる。その場合、欠損区間のある歩行波形(欠損波形とも呼ぶ)は、欠損情報処理部123が欠損区間を特定してから記憶部125に記憶させればよい。例えば、欠損波形を含めた全ての歩行波形を記憶部125に記憶させてもよい。その場合、記憶部125に記憶された欠損波形を欠損情報処理部123が取得し、その欠損波形に含まれる欠損区間を特定すればよい。記憶部125に記憶された歩行波形の欠損の無い区間のデータ(正常データとも呼ぶ)は、欠損波形に含まれる欠損区間を補間するために用いられる。
欠損情報処理部123は、欠損波形を取得する。欠損情報処理部123は、歩容情報処理部122から欠損波形を取得してもよいし、記憶部125から欠損波形を取得してもよい。欠損情報処理部123は、取得した欠損波形において、タイムスタンプの番号が抜けている部分を欠損区間として特定する。例えば、欠損情報処理部123は、一歩行周期の歩行波形において、欠損区間の起点から何番目のデータが欠損しているかを判別し、欠損している歩行フェーズを計算する。例えば、欠損情報処理部123は、タイムスタンプの番号に基づいて、欠損区間の歩行ピリオドを特定してもよい。
欠損情報処理部123は、欠損波形に含まれる欠損区間に関する情報(欠損情報とも呼ぶ)を、その欠損波形に対応付けて記憶部125に記憶させる。例えば、欠損情報処理部123は、欠損情報として、欠損区間の起点と終点の歩行フェーズを、その欠損波形に対応付けて記憶部125に記憶させる。例えば、欠損情報処理部123は、欠損情報として、欠損区間の起点と終点の歩行フェーズと、その歩行フェーズにおける振幅の値とを、その欠損波形に対応付けて記憶部125に記憶させてもよい。また、欠損情報処理部123は、補間部126に欠損情報を出力するように、構成されてもよい。
記憶部125には、歩行波形が記憶される。記憶部125には、欠損区間を含まない歩行波形(正常波形とも呼ぶ)が記憶される。また、記憶部125には、欠損区間を含む歩行波形(欠損波形とも呼ぶ)や、欠損区間が修復された歩行波形(修復波形とも呼ぶ)が記憶される。欠損波形は、欠損区間の補間対象である。欠損波形には、その欠損波形の欠損情報が対応付けられる。正常波形と修復波形は、歩容計測装置13による歩容計測に用いられる。記憶部125に記憶された歩行波形は、所定のタイミングで送信部128によって取得され、送信部128から歩容計測装置13に送信される。
補間部126は、欠損波形を取得する。補間部126は、記憶部125または欠損情報処理部123から欠損波形を取得する。補間部126が取得する欠損波形には、欠損情報処理部123によって特定された欠損区間に関する情報(欠損情報)が含まれる。補間部126は、取得した欠損波形とは異なる歩行周期の歩行波形のデータを用いて、その欠損波形に含まれる欠損区間を補間する。補間部126は、欠損波形とは異なる歩行周期の歩行波形から、その欠損区間に対応する歩行フェーズにおける正常データを抽出する。補間部126は、抽出された補間データを用いて、欠損区間を補間するための補間データを生成する。
例えば、欠損波形は、歩行フェーズが10~20%の区間に欠損区間を含むものとする。その場合、補間部126は、記憶部125に記憶された歩行波形のうち、歩行フェーズが10~20%の区間に欠損を含まない歩行波形を少なくとも一つ選択する。補間部126は、選択された少なくとも一つの歩行波形から、歩行フェーズが10~20%の区間の正常データを抽出する。例えば、補間部126は、ある欠損波形に含まれる欠損区間に関して、その欠損区間のデータが欠損していない少なくとも一つの歩行波形から、その欠損区間に対応する歩行フェーズの正常データを少なくとも一つ選択する。補間部126は、選択された正常データを用いて、欠損区間を補間するための補間データを生成する。
例えば、補間部126は、ある欠損波形に含まれる欠損区間に関して、その欠損区間のデータが欠損していない複数の歩行波形から、その欠損区間に対応する歩行フェーズのデータを複数選択する。例えば、補間部126は、欠損区間に含まれる単独の歩行フェーズごとに、補間データを計算する。補間部126は、選択された複数のデータに加算平均や加重平均などの平均値を計算し、算出された平均値を用いて、欠損区間を補間するための補間データを生成する。例えば、補間部126は、選択された複数のデータのうち、欠損区間の始点および終点の値が最も近いデータを用いて、補間データを生成する。
例えば、補間部126は、欠損区間の歩行ピリオドに応じて、欠損区間のデータを補間する手法を選択してもよい。例えば、進行歩行の加速度(Y方向加速度)の波形は、立脚相の期間においては変動が小さく、遊脚相の期間においては変動が大きい。すなわち、遊脚相の期間(第1歩行ピリオドとも呼ぶ)は、立脚相の期間(第2歩行ピリオドとも呼ぶ)と比べてデータの変動が激しいため、解析的にデータを補間することが難しい。言い換えると、立脚相の期間(第2歩行ピリオド)は、遊脚相の期間(第1歩行ピリオド)と比べてデータの変動が小さいため、解析的にデータを補間することができる。そのため、補間部126は、立脚相の期間(第2歩行ピリオド)に含まれる欠損区間に関しては解析的な手法で補間してもよい。そして、遊脚相の期間(第1歩行ピリオド)に含まれる欠損区間に関しては、他の歩行周期の歩行波形に基づいて補間すればよい。なお、補間部126は、変動が小さい区間であれば、遊脚相(第1歩行ピリオド)に含まれる欠損区間に対しても、解析的な手法で補間してもよい。
図10は、解析的に補間する区間における欠損区間の補間について説明するための概念図である。図10の例では、歩行フェーズが0~20%の区間や、歩行フェーズが80%~100%の区間においては、振幅の変動が小さい。それに対し、歩行フェーズが20~80%の区間においては、振幅の変動が大きい。このような場合、補間部126は、歩行フェーズが0~20%の区間や、歩行フェーズが80%~100%の区間については、解析的な補間を行ってもよい。歩行フェーズが20~80%の区間については、振幅の変動が大きいため、補間部126は、他の歩行波形のデータを用いて補間データを生成した方がよい。
補間部126は、生成された補間データを用いて、欠損波形に含まれる欠損区間を補間する。例えば、補間部126は、補間データを欠損区間に挿入することで、欠損波形を補間する。例えば、補間部126は、欠損区間の始点から終点に向けて、補間データに含まれる正常データで欠損区間を順番に補間する。例えば、補間部126は、欠損区間の終点から始点に向けて、補間データに含まれる正常データで欠損区間を順番に補間してもよい。例えば、補間部126は、欠損区間の終点および始点から、補間データに含まれる正常データを順番に補間してもよい。
例えば、補間部126は、補間データによって構成される波形を欠損区間に挿入する。例えば、補間部126は、補間データの始点および終点の各々が欠損区間の始点および終点の各々と一致するように、補間データによって構成される波形を挿入する。例えば、補間データの始点および終点の各々が、欠損区間の始点および終点の各々と一致しない場合が想定される。このような場合、補間部126は、補間データのベースラインを回転させ、補間データの始点および終点の各々と、欠損区間の始点および終点の各々とが一致するようにして、補間データを欠損区間に挿入する。例えば、補間部126は、欠損区間の起点および終点の振幅を、他の歩行周期の正常波形に基づいて計算する。例えば、補間部126は、算出された欠損区間の起点および終点の振幅と、その欠損区間の実際の起点および終点の振幅との差に応じて、ベースラインを調整する。
図11は、補間データによって構成される波形を、欠損区間に挿入する一例を示す概念図である。(1)補間部126は、欠損波形に含まれる欠損区間の補間データを生成する。(2)補間部126は、生成された補間データを、欠損波形の欠損区間に挿入する。(3)補間部126は、欠損波形の欠損区間に挿入された補間データにベースラインを設定する。(4)補間部126は、欠損波形の欠損区間に挿入された補間データのベースラインを回転させて、欠損区間の起点および終点の各々に、補間データの起点および終点の各々が一致するように起点終点補正を行う。
補間部126は、欠損区間が補間された歩行波形(修復波形)を記憶部125に記憶させる。例えば、補間部126は、修復波形において、修復された欠損区間を特定できるように、欠損区間に含まれる歩行フェーズにラベルを付してもよい。例えば、補間部126は、欠損区間に仮の補間データが挿入された修復波形(仮修復波形とも呼ぶ)を記憶部125に記憶させてもよい。例えば、歩容計測装置13が、仮修復波形に含まれる欠損区間に挿入された補間データを補正してもよい。記憶部125に格納された修復波形は、欠損を含まない他の歩行波形と同様に、歩容計測装置13による歩容計測に用いられる。
送信部128は、記憶部125から歩行波形を取得する。送信部128は、正常波形および修復波形を含む歩行波形を記憶部125から取得する。送信部128は、取得した歩行波形を歩容計測装置13に送信する。例えば、送信部128は、ケーブルなどの有線を介して、歩容計測装置13に歩行波形を送信する。例えば、送信部128は、無線通信を介して、歩容計測装置13に歩行波形を送信する。送信部128と歩容計測装置13の間の通信方式に関しては、特に限定しない。
〔歩容計測装置〕
次に、歩容計測システム1が備える歩容計測装置13の詳細構成について図面を参照しながら説明する。図12は、歩容計測装置13の詳細構成の一例を示すブロック図である。歩容計測装置13は、取得部131、検出部132、および歩容計測部133を有する。実際には、歩容計測部133による推測結果を出力する出力部(通信インターフェース)が設けられるが、図12においては出力部の機能が歩容計測部133に含まれるものとする。
次に、歩容計測システム1が備える歩容計測装置13の詳細構成について図面を参照しながら説明する。図12は、歩容計測装置13の詳細構成の一例を示すブロック図である。歩容計測装置13は、取得部131、検出部132、および歩容計測部133を有する。実際には、歩容計測部133による推測結果を出力する出力部(通信インターフェース)が設けられるが、図12においては出力部の機能が歩容計測部133に含まれるものとする。
取得部131は、補間装置12から歩行波形を取得する。取得部131は、正常波形および修復波形を含む歩行波形を補間装置12から取得する。取得部131は、取得した歩行波形を検出部132に出力する。例えば、取得部131は、ケーブルなどの有線を介して、補間装置12から歩行波形を受信する。例えば、取得部131は、無線通信を介して、補間装置12から歩行波形を受信する。補間装置12と取得部131の間の通信方式に関しては、特に限定しない。
検出部132は、取得部131から歩行波形を取得する。検出部132は、取得した歩行波形から、歩行ピリオドや歩行イベントを検出する。例えば、検出部132は、立脚相や遊脚相などの歩行ピリオドを歩行波形から検出する。例えば、検出部132は、踵接地や、反対足爪先離地、踵持ち上がり、反対足踵接地、爪先離地、足交差、脛骨垂直などの歩行イベントを、歩行波形から検出する。例えば、検出部132は、検出された歩行イベントに基づいて、立脚初期や、立脚中期、立脚終期、遊脚前期、遊脚初期や、遊脚中期、遊脚終期などの歩行ピリオドを、歩行波形から検出する。
例えば、検出部132は、歩行フェーズのパーセンテージに基づいて、歩行ピリオドや歩行イベントを歩行波形から検出する。同じ人物が同じ条件で歩行していれば、歩行ピリオドや歩行イベントが検出されるタイミングは、ほぼ一定である。人物が異なっていても、歩行ピリオドや歩行イベントが検出されるタイミングは、同じ傾向を示す。そのため、歩行フェーズのパーセンテージに基づいて、歩行ピリオドや歩行イベントを特定できる。
例えば、検出部132は、歩行波形から抽出される特徴に基づいて、歩行ピリオドや歩行イベントを検出してもよい。例えば、検出部132は、足底角の歩行波形が極小となるタイミングを、立脚相開始のタイミングとして検出する。例えば、検出部132は、足底角の歩行波形が極大となるタイミングを、遊脚相開始のタイミングとして検出する。例えば、検出部132は、立脚相開始と遊脚相開始の中点のタイミングを、踵持ち上がりのタイミングとして検出する。
例えば、検出部132は、踵持ち上がりのタイミングを起点とする歩行波形に基づいて、歩行イベントを検出する。検出部132は、進行方向加速度(Y方向加速度)の歩行波形において、最大ピークに含まれる二つの山の間に谷が表れるタイミングを、爪先離地のタイミングとして検出する。例えば、検出部132は、進行方向加速度(Y方向加速度)の歩行波形において、歩行周期が60%を超えたあたりの最小ピークを、遊脚終期における足の急減速のタイミングとして検出する。例えば、検出部132は、進行方向加速度(Y方向加速度)の歩行波形において、歩行周期が70%のあたりの極大ピークを、ヒールロッカーのタイミングとして検出する。例えば、検出部132は、進行方向加速度(Y方向加速度)の歩行波形において、極小ピークと極大ピークの中点のタイミングを、踵接地のタイミングとして検出する。例えば、検出部132は、垂直方向加速度(Z方向加速度)の歩行波形において、爪先離地と踵接地の間の最大ピークのタイミングを、脛骨垂直のタイミングとして検出する。例えば、検出部132は、進行方向加速度(Y方向加速度)の歩行波形において、爪先離地と脛骨垂直のタイミングの間のなだらかな極大ピークのタイミングを、足交差のタイミングとして検出する。例えば、検出部132は、ロール角速度の歩行波形から、反対足踵接地および反対足爪先離地のタイミングを検出する。例えば、検出部132は、ロール角速度の歩行波形において、起点から爪先離地のタイミングに亘る曲線における加速変曲点のタイミングを、反対足踵接地のタイミングとして検出する。例えば、検出部132は、ロール角速度の歩行波形において、踵接地のタイミングから終点に亘る曲線における減速変曲点のタイミングを、反対足爪先離地のタイミングとして検出する。
歩容計測部133は、検出部132によって検出された歩行ピリオドや歩行イベントに関する情報を取得する。歩容計測部133は、検出部132から取得される情報を用いて、歩容に関する計測を行う。例えば、歩容計測部133は、歩行波形から検出された歩行イベントに基づいて、ユーザの歩容を計測する。例えば、歩容計測部133は、検出された歩行イベントに基づいて、ストライド長やステップ長、歩幅、歩隔、足角、歩行速度などの歩容を計測する。例えば、歩容計測部133は、計測された歩容に基づいて、回内/回外の度合や、外反母趾の進行度、身体の対称性、身体の柔軟度などの身体的な状態を推定してもよい。例えば、歩容計測部133は、計測された歩容に基づいて、筋力低下状況や、骨密度、基礎代謝などの身体的な状態を推定してもよい。例えば、歩容計測部133は、計測された歩容に基づいて、上肢や下肢、上腕、前腕、上腿、下腿の長さなどの身体パラメータを計測してもよい。歩容計測部133による計測対象の項目には、特に限定を加えない。
歩容計測装置13は、歩容計測部133によって計測された結果(歩容情報とも呼ぶ)を出力する。例えば、歩容計測装置13は、表示装置(図示しない)や携帯端末(図示しない)に歩容情報を出力する。表示装置に出力された歩容情報は、表示装置や携帯端末の画面に表示される。例えば、歩容計測装置13は、外部システム(図示しない)に歩容情報を出力する。歩容計測装置13から出力される歩容情報は、任意の用途に使用できる。歩容計測装置13が歩容情報を出力する通信機能については、特に限定を加えない。
(動作)
次に、歩容計測システム1の補間装置12の動作について、図面を参照しながら説明する。計測装置11および歩容計測装置13の動作については、説明を省略する。以下においては、補間装置12に含まれる、歩容情報処理部122、欠損情報処理部123、および補間部126の行う処理について個別に説明する。以下の補間装置12の動作には、上述した補間装置12とは異なる処理や順序が含まれる場合がある。
次に、歩容計測システム1の補間装置12の動作について、図面を参照しながら説明する。計測装置11および歩容計測装置13の動作については、説明を省略する。以下においては、補間装置12に含まれる、歩容情報処理部122、欠損情報処理部123、および補間部126の行う処理について個別に説明する。以下の補間装置12の動作には、上述した補間装置12とは異なる処理や順序が含まれる場合がある。
〔歩容情報処理〕
まず、歩容情報処理部122による歩容情報処理について、フローチャートを参照しながら説明する。図13は、歩容情報処理部122による歩容情報処理について説明するためのフローチャートである。図13のフローチャートに沿った処理の説明においては、歩容情報処理部122を動作主体として説明する。
まず、歩容情報処理部122による歩容情報処理について、フローチャートを参照しながら説明する。図13は、歩容情報処理部122による歩容情報処理について説明するためのフローチャートである。図13のフローチャートに沿った処理の説明においては、歩容情報処理部122を動作主体として説明する。
図13において、まず、歩容情報処理部122は、センサデータの時系列データを取得する(ステップS111)。
時系列データに欠損がある場合(ステップS112でYes)、歩容情報処理部122は、欠損を含む時系列データを欠損情報処理部123に出力する(ステップS113)。歩容情報処理部122は、欠損を含む時系列データを記憶部125に記憶させてもよい。ステップS113の次は、ステップS118に進む。
一方、時系列データに欠損がない場合(ステップS112でNo)、歩容情報処理部122は、取得した時系列データから歩行イベントを検出する(ステップS114)。例えば、歩容情報処理部122は、踵接地や爪先離地、踵持ち上がりなどの歩行イベントを歩行波形から検出する。
ステップS114の次に、歩容情報処理部122は、検出された歩行イベントに基づいて、一歩行周期分の歩行波形を切り出す(ステップS115)。例えば、歩容情報処理部122は、踵接地を起点とする一歩行周期分の歩行波形を切り出す。例えば、歩容情報処理部122は、爪先離地を起点とする一歩行周期分の歩行波形を切り出す。
次に、歩容情報処理部122は、切り出された一周期分の歩行波形を正規化する(ステップS116)。例えば、歩容情報処理部122は、歩行波形の歩行フェーズや振幅を正規化する。
次に、歩容情報処理部122は、正規化された歩行波形を記憶部125に記憶させる(ステップS117)。記憶部125に記憶された歩行波形は、欠損波形に含まれる欠損区間の補間や、歩容計測装置13による歩容計測に用いられる。
処理を継続する場合(ステップS118でYes)、ステップS111に戻る。処理を継続しない場合(ステップS118でNo)、図13のフローチャートに沿った処理は終了である。ステップS118の処理の継続を決定する条件に関しては、予め設定しておけばよい。
〔欠損情報処理〕
次に、欠損情報処理部123による欠損情報処理について、フローチャートを参照しながら説明する。図14は、欠損情報処理部123による欠損情報処理について説明するためのフローチャートである。図14のフローチャートに沿った処理の説明においては、欠損情報処理部123を動作主体として説明する。
次に、欠損情報処理部123による欠損情報処理について、フローチャートを参照しながら説明する。図14は、欠損情報処理部123による欠損情報処理について説明するためのフローチャートである。図14のフローチャートに沿った処理の説明においては、欠損情報処理部123を動作主体として説明する。
図14において、まず、欠損情報処理部123は、欠損を含む時系列データ(欠損波形)を歩容情報処理部122から取得する(ステップS121)。欠損情報処理部123は、記憶部125から欠損波形を取得してもよい。
次に、欠損情報処理部123は、タイムスタンプに基づいて、取得した欠損波形に含まれる欠損区間を特定する(ステップS122)。
次に、欠損情報処理部123は、特定された欠損区間の歩行フェーズを計算する(ステップS123)。
次に、欠損情報処理部123は、欠損波形に含まれる欠損区間の歩行フェーズに関する情報(欠損情報)を記憶部125に記憶させる(ステップS124)。記憶部125に記憶された欠損情報は、補間部126による欠損区間の補間に用いられる。
〔補間処理〕
次に、補間部126による補間処理について、フローチャートを参照しながら説明する。ここでは、全ての区間において補間データを生成する例(図15)と、一部の区間において解析的な手法を用いて補間する例(図16)とについて説明する。
次に、補間部126による補間処理について、フローチャートを参照しながら説明する。ここでは、全ての区間において補間データを生成する例(図15)と、一部の区間において解析的な手法を用いて補間する例(図16)とについて説明する。
図15は、全ての区間において補間データを生成する場合における、補間部126の補間処理について説明するためのフローチャートである。図15のフローチャートに沿った説明においては、補間部126を動作主体として説明する。
図15において、まず、補間部126は、欠損区間を含む時系列データ(欠損波形)を記憶部125から取得する(ステップS131)。補間部126は、歩容情報処理部122から欠損波形を取得してもよい。欠損波形には、欠損区間の歩行フェーズを示す欠損情報が対応付けられる。
次に、補間部126は、欠損区間の歩行フェーズに欠損がない、他の歩行周期の歩行波形を記憶部125から取得する(ステップS132)。
次に、補間部126は、取得された歩行波形のデータを用いて、欠損区間の補間データを生成する(ステップS133)。
次に、補間部126は、補間データの起点と終点を補正して、補間データを欠損区間に挿入する(ステップS134)。
次に、補間部126は、補正された波形をリサンプリングして、時系列データに戻す(ステップS135)。ステップS135は、歩行速度や歩幅などを計算する際に、元の時系列データが必要となるために行われる。元の時系列データが必要ない場合、ステップS135は省略してもよい。
図16は、一部の区間において解析的な手法を用いて補間する場合における、補間部126の補間処理について説明するためのフローチャートである。図16のフローチャートに沿った説明においては、補間部126を動作主体として説明する。
図16において、まず、補間部126は、欠損区間を含む時系列データ(欠損波形)を記憶部125から取得する(ステップS141)。補間部126は、歩容情報処理部122から欠損波形を取得してもよい。欠損波形には、欠損区間の歩行フェーズを示す欠損情報が対応付けられる。
解析的な手法を使用可能な欠損区間である場合(ステップS142でYes)、補間部126は、解析的な手法で欠損区間のデータを補間する(ステップS143)。ステップS143の次は、ステップS147に進む。
一方、解析的な手法を使用可能な欠損区間ではない場合(ステップS142でNo)、補間部126は、欠損区間の歩行フェーズに欠損がない、他の歩行周期の歩行波形を記憶部125から取得する(ステップS144)。
次に、補間部126は、取得された歩行波形のデータを用いて、欠損区間の補間データを生成する(ステップS145)。
次に、補間部126は、補間データの起点と終点を補正して、補間データを欠損区間に挿入する(ステップS146)。
次に、補間部126は、補正された波形をリサンプリングして、時系列データに戻す(ステップS146)。ステップS146は、歩行速度や歩幅などを計算する際に、元の時系列データが必要となるために行われる。元の時系列データが必要ない場合、ステップS146は省略してもよい。
以上のように、本実施形態の歩容計測システムは、計測装置、補間装置、および歩容計測装置を備える。計測装置は、ユーザの履物に配置される。計測装置は、ユーザの歩行に応じて空間加速度および空間角速度を計測する。計測装置は、計測された空間加速度および空間角速度に基づくセンサデータを生成する。計測装置は、生成されたセンサデータを補間装置に出力する。補間装置は、受信部、歩容情報処理部、欠損情報処理部、記憶部、補間部、および送信部を有する。受信部は、計測装置から送信されたセンサデータを受信する。歩容情報処理部は、センサデータの時系列データを生成する。歩容情報処理部は、足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成するとともに、時系列データにおけるデータの欠損区間を特定する。歩容情報処理部は、生成された歩行波形や、特定された欠損区間に関する情報を記憶部に記憶させる。記憶部には、歩行波形や、欠損区間に関する情報、欠損区間が補間された修復波形が記憶される。欠損情報処理部は、特定された欠損区間の歩行フェーズを計算する。補間部は、欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、欠損区間の歩行フェーズのデータを用いて、欠損区間を補間する補間データを生成する。補間部は、生成された補間データを欠損区間に補間する。
歩容計測装置は、センサデータの時系列データを用いて補間装置が生成した欠損区間を含まない歩行波形と、補間装置が欠損区間のデータを補間した歩行波形とを補間装置から取得する。歩容計測装置は、取得した歩行波形から検出される歩行イベントに基づいてユーザの歩容を計測する。歩容計測装置は、計測されたユーザの歩容に関する情報を出力する。
歩容計測装置は、センサデータの時系列データを用いて補間装置が生成した欠損区間を含まない歩行波形と、補間装置が欠損区間のデータを補間した歩行波形とを補間装置から取得する。歩容計測装置は、取得した歩行波形から検出される歩行イベントに基づいてユーザの歩容を計測する。歩容計測装置は、計測されたユーザの歩容に関する情報を出力する。
本実施形態の手法では、歩行の周期性に着目して、ユーザの歩行に応じて計測されるセンサデータの時系列データに発生したデータの欠損区間を補間するための補間データを生成する。本実施形態の手法では、異なる歩行周期の歩行波形の同じ歩行フェーズのデータを用いて、補間データを生成する。そのため、本実施形態の手法によれば、歩行の周期性に着目して生成された補間データを用いるため、センサデータの時系列データに含まれるデータの欠損区間の特徴を含めて、欠損区間のデータを補間できる。
無線通信機能を有するウエラブルセンサによって計測されたセンサデータを通信する場合、通信障害によりデータの欠損が起こりうる。通信障害で起こりうるデータの欠損は、離散的ではなく、連続的であることが多い。例えば、センサデータの時系列データから、特徴抽出などに用いられる重要なデータが丸ごと欠損することもありうる。本実施形態の手法によれば、歩行動作の相似性と周期性を利用してデータの欠損区間を補間するため、数%から十数%の歩行フェーズに亘る長い欠損区間のデータを補間できる。また、本実施形態の手法は、回路的な要因で計測された外れ値の除去や、原因不明の要因で計測された異常な値の平準化にも用いることができる。
本実施形態の一態様において、歩容情報処理部は、時系列データから一歩行周期分の波形を切り出す。歩容情報処理部は、切り出された波形に含まれる歩行フェーズを正規化して歩行波形を生成する。本態様によれば、センサデータの時系列データから生成される複数の歩行波形の歩行フェーズが統一されるので、複数の歩行波形の間で相互にデータを補間しやすくなる。
本実施形態の一態様において、補間部は、時系列データに含まれる欠損区間に関して、欠損区間に含まれる歩行フェーズのデータが欠損していない少なくとも一つの歩行波形から、欠損区間に含まれる前記歩行フェーズのデータを少なくとも一つ選択する。補間部は、選択された歩行フェーズのデータを用いて、補間データを生成する。本態様によれば、他の歩行周期のデータを用いて、欠損区間を補間できる。
本実施形態の一態様において、補間部は、複数の歩行周期の歩行波形から選択された歩行フェーズのデータの平均値を計算する。補間部は、算出された歩行フェーズのデータの平均値を用いて、補間データを生成する。本態様によれば、複数の歩行周期のデータの平均値に基づいて欠損区間のデータを補間するため、歩行の特徴がより反映された補間データを生成できる。
本実施形態の一態様において、補間部は、データの変動が小さい歩行ピリオドに関しては、解析的な手法で補間データを生成する。補間部は、データの変動が大きい歩行ピリオドに関しては、欠損区間を含む歩行周期とは異なる歩行周期のデータを用いて補間データを生成する。本態様によれば、データの変動が小さい歩行ピリオドに関しては、解析的な手法で補間データを生成するため、計算時間や計算量を低減できる。
(第2の実施形態)
次に、第2の実施形態に係る歩容計測システムについて図面を参照しながら説明する。本実施形態の歩容計測システムは、複数の歩行周期の歩行波形に関する歩行フェーズごとのデータ値(振幅の値)の全体分布における偏差値に基づいて、欠損区間の補間データを生成する点において、第1の実施形態とは異なる。
次に、第2の実施形態に係る歩容計測システムについて図面を参照しながら説明する。本実施形態の歩容計測システムは、複数の歩行周期の歩行波形に関する歩行フェーズごとのデータ値(振幅の値)の全体分布における偏差値に基づいて、欠損区間の補間データを生成する点において、第1の実施形態とは異なる。
(構成)
図17は、本実施形態の歩容計測システム2の構成を示すブロック図である。歩容計測システム2は、計測装置21、補間装置22、および歩容計測装置23を備える。補間装置22は、計測装置21および歩容計測装置23に有線で接続されてもよいし、無線で接続されてもよい。また、計測装置21、補間装置22、および歩容計測装置23は、単一の装置で構成されてもよい。また、歩容計測システム2は、計測装置21を除き、補間装置22および歩容計測装置23で構成されてもよい。
図17は、本実施形態の歩容計測システム2の構成を示すブロック図である。歩容計測システム2は、計測装置21、補間装置22、および歩容計測装置23を備える。補間装置22は、計測装置21および歩容計測装置23に有線で接続されてもよいし、無線で接続されてもよい。また、計測装置21、補間装置22、および歩容計測装置23は、単一の装置で構成されてもよい。また、歩容計測システム2は、計測装置21を除き、補間装置22および歩容計測装置23で構成されてもよい。
計測装置21は、第1の実施形態の計測装置11と同様の構成である。計測装置21は、足部に設置される。計測装置21は、履物を履くユーザの足の動きに関する物理量として、加速度センサによって計測される加速度(空間加速度とも呼ぶ)や、角速度センサによって計測される角速度(空間角速度とも呼ぶ)を計測する。計測装置21が計測する足の動きに関する物理量には、加速度や角速度を積分することによって計算される速度や角度、位置(軌跡)も含まれる。計測装置21は、計測された物理量をデジタルデータ(センサデータとも呼ぶ)に変換する。計測装置21は、変換後のセンサデータを補間装置22に送信する。
補間装置22は、計測装置21からセンサデータを受信する。補間装置22は、受信したセンサデータの時系列データを生成する。補間装置22は、センサデータに含まれるタイムスタンプに基づいて、時系列データを生成する。補間装置22は、生成された時系列データから一歩行周期分の波形を切り出す。例えば、補間装置22は、踵接地や踵持ち上がりのタイミングを起点とする一歩行周期分の波形を抽出する。補間装置22は、切り出された一歩行周期分の波形を正規化して、一歩行周期分の波形(歩行波形とも呼ぶ)を生成する。
補間装置22は、センサデータの時系列データにおいて、タイムスタンプの番号が抜けている部分を欠損区間として特定する。補間装置22は、欠損区間に含まれる歩行フェーズのデータ値の全体分布に基づいて、欠損区間のデータを補間するための補間データを生成する。全体分布とは、欠損区間の補間に用いられる複数の歩行周期の歩行波形を全体とする、欠損区間に含まれる歩行フェーズごとのデータ値の分布である。言い換えると、補間装置22は、欠損区間の歩行フェーズに欠損がない複数の歩行周期の歩行波形のデータ値(振幅の値)を用いて、欠損区間に対応する歩行フェーズのデータ値の全体分布における統計量を計算する。補間装置22は、欠損区間に含まれる歩行フェーズごとのデータ値の全体分布における統計量に基づいて、欠損区間の補間データを生成する。特に、補間装置22は、欠損区間に含まれる歩行フェーズごとのデータ値の全体分布における代表値に基づいて、欠損区間の補間データを生成する。例えば、補間装置22は、欠損区間に含まれる歩行フェーズごとのデータ値(振幅の値)の全体分布における偏差値に基づいて、欠損区間の補間データを生成する。例えば、補間装置22は、偏差値の代わりに、標準偏差や分散、偏差などに基づいて、欠損区間の補間データを生成してもよい。補間装置22は、生成された補間データを用いて、欠損区間を補間する。
歩容計測装置23は、第1の実施形態の歩容計測装置13と同様の構成である。歩容計測装置23は、補間装置22から、欠損区間を含まない歩行波形を取得する。歩容計測装置23は、取得した歩行波形を用いて、歩容に関する計測を実行する。歩容計測装置23は、歩容に関する計測結果(歩容情報とも呼ぶ)を出力する。
例えば、補間装置22および歩容計測装置23は、図示しないサーバ等に実装される。例えば、補間装置22および歩容計測装置23は、アプリケーションサーバによって実現されてもよい。例えば、補間装置22および歩容計測装置23は、携帯端末(図示しない)にインストールされたアプリケーションソフトウェア等によって実現されてもよい。
〔補間装置〕
次に、補間装置22の詳細構成について図面を参照しながら説明する。図18は、補間装置22の詳細構成の一例を示すブロックである。補間装置22は、受信部221、歩容情報処理部222、欠損情報処理部223、記憶部225、補間部226、および送信部228を備える。
次に、補間装置22の詳細構成について図面を参照しながら説明する。図18は、補間装置22の詳細構成の一例を示すブロックである。補間装置22は、受信部221、歩容情報処理部222、欠損情報処理部223、記憶部225、補間部226、および送信部228を備える。
受信部221は、第1の実施形態の受信部121と同様の構成である。受信部221は、計測装置(図示しない)からセンサデータを受信する。受信部221は、受信したセンサデータを歩容情報処理部222に出力する。
歩容情報処理部222は、第1の実施形態の歩容情報処理部122と同様の構成である。歩容情報処理部222は、受信部221からセンサデータを取得する。歩容情報処理部222は、取得したセンサデータの時系列データを生成する。歩容情報処理部222は、センサデータに含まれるタイムスタンプに基づいて、時系列データを生成する。歩容情報処理部222は、生成された時系列データから一歩行周期分の波形を切り出す。歩容情報処理部222は、切り出された一歩行周期分の波形を正規化して、一歩行周期分の歩行波形を生成する。歩容情報処理部222は、正規化された歩行波形を記憶部225に記憶させる。
欠損情報処理部223は、第1の実施形態の欠損情報処理部123と同様の構成である。欠損情報処理部223は、欠損波形を取得する。欠損情報処理部223は、欠損波形に含まれる欠損区間に関する情報(欠損情報とも呼ぶ)を、その欠損波形に対応付けて記憶部225に記憶させる。
記憶部225は、第1の実施形態の記憶部125と同様の構成である。記憶部225には、歩行波形が記憶される。記憶部225に記憶される歩行波形は、欠損区間を含まない歩行波形(正常波形とも呼ぶ)や、欠損区間を含む歩行波形(欠損波形とも呼ぶ)、欠損区間が修復された歩行波形(修復波形とも呼ぶ)が含まれる。欠損波形には、その欠損波形の欠損情報が対応付けられる。記憶部225に記憶された歩行波形は、所定のタイミングで送信部228によって取得され、送信部228から歩容計測装置(図示しない)に送信される。
補間部226は、補間対象の欠損波形に含まれる欠損区間の歩行フェーズに欠損がない複数の歩行波形を、記憶部225から取得する。補間部226は、取得された複数の歩行波形のデータ値(振幅の値)を用いて、複数の歩行波形のデータ群における、欠損区間に対応する歩行フェーズのデータ値の全体分布における統計量を計算する。特に、補間部226は、統計量として、偏差値や、標準偏差、分散、偏差などの代表値を計算する。例えば、補間部226は、複数の歩行波形のデータ群の全体分布における、欠損区間に含まれる歩行フェーズのデータ値の偏差値を計算する。補間部226は、算出された統計量に基づいて、補間データを生成する。例えば、補間部226は、偏差値に基づいて、補間データを生成する。例えば、補間部226は、偏差値の代わりに、標準偏差や分散、偏差などに基づいて、欠損区間の補間データを生成してもよい。補間部226は、生成された補間データを用いて、欠損区間を補間する。
ここで、統計量(代表値)の一つである偏差値に基づいて補間データを生成する方法について、いくつかの図面(図19~図23)を用いて説明する。図19は、ユーザの歩行に伴って計測された進行方向加速度(Y方向加速度)の時系列データである。図19の時系列データは、20秒間の計測期間における複数の歩行周期の波形を含む。各歩行周期の波形は、データ値(振幅の値)に違いがあるものの、同様のパターンを示す。
図20は、図19の時系列データに含まれる複数の歩行周期の波形のうち一つを切り出し、切り出された波形を正規化した波形(歩行波形)である。図20の歩行波形には、歩行の特徴を含むパターンがみられる。図20には、後続する説明で用いられる歩行フェーズ(P1、P2)を示す。以下において、歩行フェーズP1および歩行フェーズP2は、図20の歩行周期のみならず、複数の歩行周期に関しても適用される。
図21は、図19の時系列データから切り出された複数の歩行周期の歩行波形をサンプル群(全体)とする、歩行フェーズP1および歩行フェーズP2におけるデータ値(振幅の値)の頻度分布である。歩行フェーズP1に関しては、データ値の頻度分布が正規分布に近い分布を示す。歩行フェーズP2に関しても、データ値の頻度分布が正規分布に近い分布を示す。その他の全ての歩行フェーズに関しても、1%ごとのデータ値の頻度分布をコルモゴロフ-スミルノフ検定で正規化判別したところ、陽性結果が得られた。すなわち、複数の歩行周期の歩行波形の各歩行フェーズにおけるデータ値の頻度分布は、歩行周期に関わらず、正規分布に近い分布を示す。これは、複数の歩行周期の歩行波形に関して、歩行フェーズごとのデータ値の全体分布に基づいて、補間データを推定可能であることを示す。言い換えると、複数の歩行周期の歩行波形に関して、歩行フェーズごとのデータ値の全体分布における統計量に基づいて、補間データを推定可能である。
図22は、図19のセンサデータの時系列データにおいて、連続する歩行フェーズのデータNおよびデータN+1のデータ値の全体分布における偏差値の相関関係を示すグラフである(Nは自然数)。図22のように、連続するデータNとデータN+1の偏差値は、ほぼ比例関係を示す。すなわち、歩行フェーズP2におけるデータ値の全体分布における偏差値は、連続するデータNとデータN+1に関して同様の値を示す。
図23は、対象歩行フェーズ(歩行フェーズP2)からの距離に応じた偏差値の相関係数を示すグラフである。図23の実線は、図19の時系列データから切り出された複数の歩行周期の歩行波形のサンプル群に関する、歩行フェーズP2のデータ値の偏差値と、歩行フェーズP2とは異なる歩行フェーズのデータ値との相関係数を示す。図23の破線は、相関係数(実線)を多項式にフィッティングさせた曲線である。図23のように、対象歩行フェーズからの距離が近い歩行フェーズほど、偏差値の相関係数が大きく、偏差値が同様の値を示すことが分かる。言い換えると、対象歩行フェーズからの距離が近い歩行フェーズほど、相関係数が大きく、偏差値の値が近くなる。すなわち、対象歩行フェーズの偏差値に近い偏差値の歩行フェーズのデータ値を用いて、その対象歩行フェーズの補間データを生成できる。
例えば、補間部226は、算出された歩行フェーズの偏差値から逆算して補間データを計算し、欠損区間を補間するための補間データを生成する。例えば、補間部226は、偏差値の代わりに、標準偏差や分散、偏差などの代表値に基づいて、補間データを生成してもよい。例えば、補間部226は、以下の式1を逆算して、歩行フェーズjにおける補間データの値djを計算する。以下の式1は、欠損区間に含まれる歩行フェーズjのデータ値の偏差値Tjの計算式である。
上記の式1において、μは、対象のデータ群に含まれる複数の歩行波形における歩行フェーズjのデータ値の平均値である。σは、対象のデータ群に含まれる複数の歩行波形における歩行フェーズjのデータ値の標準偏差である。偏差値の代わりに、標準偏差や分散、偏差などの代表値に基づいて補間データを生成する場合、標準偏差や分散、偏差などの計算式を逆算して、補間データの値を計算すればよい。
例えば、補間部226は、補間対象の欠損波形に含まれる欠損区間の起点および終点のデータ値の偏差値に基づいて、欠損区間の補間データを推定してもよい。図24は、補間対象の欠損波形に含まれる欠損区間の起点(歩行フェーズM1)および終点(歩行フェーズM2)の偏差値に基づく欠損区間の補間の一例について説明するためのグラフである。例えば、補間部226は、欠損区間に関して、歩行フェーズM1のデータ値の全体分布における偏差値と、歩行フェーズM2のデータ値の全体分布における偏差値との平均値を計算する。補間部226は、歩行フェーズM1と歩行フェーズM2のデータ値の偏差値の平均値を用いて、データ値の全体分布から補間データを推定する。図24の手法では、欠損区間の歩行フェーズM1と歩行フェーズM2の距離が近いほど、補間データの推定精度が高い。
例えば、本実施形態の補間部226による補間データの生成方法は、第1の実施形態の補間部126による補間データの生成方法と組み合わせてもよい。例えば、第1の実施形態の手法で補間データを生成し、生成された補間データの起点および終点を本実施形態の手法で補正してもよい。
補間部226は、欠損区間が補間された歩行波形(修復波形)を記憶部225に記憶させる。例えば、補間部226は、修復波形において、修復された欠損区間を特定できるように、欠損区間にラベルを付してもよい。例えば、補間部226は、欠損区間に仮の補間データを挿入した修復波形(仮修復波形とも呼ぶ)を記憶部225に記憶させてもよい。記憶部225に格納された修復波形は、他の歩行波形と同様に、歩容計測装置(図示しない)による歩容計測に用いられる。
送信部228は、記憶部225から歩行波形を取得する。送信部228は、正常波形および修復波形を含む歩行波形を記憶部225から取得する。送信部228は、取得した歩行波形を歩容計測装置(図示しない)に送信する。送信部228は、ケーブルなどの有線を介して歩容計測装置に歩行波形を送信してもよいし、無線通信を介して歩容計測装置に歩行波形を送信してもよい。送信部228と歩容計測装置の間の通信方式に関しては、特に限定しない。
(動作)
次に、補間装置22の動作について、図面を参照しながら説明する。以下においては、補間装置22に含まれる補間部226による、欠損区間の起点および終点の偏差値に基づいて欠損区間の補間を行う例について説明する。以下の補間装置22の動作は、上述した補間部226とは異なる処理や順序を含む場合もある。歩容情報処理部222および欠損情報処理部223の処理は、第1の実施形態と同様なので省略する。
次に、補間装置22の動作について、図面を参照しながら説明する。以下においては、補間装置22に含まれる補間部226による、欠損区間の起点および終点の偏差値に基づいて欠損区間の補間を行う例について説明する。以下の補間装置22の動作は、上述した補間部226とは異なる処理や順序を含む場合もある。歩容情報処理部222および欠損情報処理部223の処理は、第1の実施形態と同様なので省略する。
〔補間処理〕
補間部226による補間処理について、フローチャートを参照しながら説明する。図25は、補間部226の補間処理について説明するためのフローチャートである。図25のフローチャートに沿った説明においては、補間部226を動作主体として説明する。
補間部226による補間処理について、フローチャートを参照しながら説明する。図25は、補間部226の補間処理について説明するためのフローチャートである。図25のフローチャートに沿った説明においては、補間部226を動作主体として説明する。
図25において、まず、補間部226は、欠損区間を含む時系列データ(欠損波形)を記憶部225から取得する(ステップS231)。補間部226は、歩容情報処理部222から欠損波形を取得してもよい。欠損波形には、欠損区間の歩行フェーズを示す欠損情報が対応付けられる。
次に、補間部226は、欠損波形に含まれる欠損区間の歩行フェーズに欠損がない複数の歩行周期の歩行波形を記憶部225から取得する(ステップS232)。
次に、補間部226は、取得された複数の歩行波形のデータを用いて、欠損区間に対応する歩行フェーズのデータの全体分布を導出する(ステップS233)。
次に、補間部226は、欠損区間に含まれる歩行フェーズのデータ値の全体分布における、欠損区間の起点および終点の歩行フェーズの偏差値を計算する(ステップS234)。
次に、補間部226は、算出された偏差値を用いて、欠損区間の補間データを生成する(ステップS235)。
次に、補間部226は、生成された補間データを欠損区間に挿入する(ステップS236)。例えば、補間部226は、補間データの起点と終点を補正して、補間データを欠損区間に挿入する。
次に、補間部226は、補正された波形をリサンプリングして、時系列データに戻す(ステップS237)。ステップS237は、歩行速度や歩幅などを計算する際に、元の時系列データが必要となるために行われる。元の時系列データが必要ない場合、ステップS237は省略してもよい。
以上のように、本実施形態の歩容計測システムは、計測装置、補間装置、および歩容計測装置を備える。計測装置は、ユーザの履物に配置される。計測装置は、ユーザの歩行に応じて空間加速度および空間角速度を計測する。計測装置は、計測された空間加速度および空間角速度に基づくセンサデータを生成する。計測装置は、生成されたセンサデータを補間装置に出力する。補間装置は、受信部、歩容情報処理部、欠損情報処理部、記憶部、補間部、および送信部を有する。受信部は、計測装置から送信されたセンサデータを受信する。歩容情報処理部は、センサデータの時系列データを生成する。歩容情報処理部は、足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成するとともに、時系列データにおけるデータの欠損区間を特定する。歩容情報処理部は、生成された歩行波形や、特定された欠損区間に関する情報を記憶部に記憶させる。記憶部には、歩行波形や、欠損区間に関する情報、欠損区間が補間された修復波形が記憶される。欠損情報処理部は、特定された欠損区間の歩行フェーズを計算する。補間部は、欠損区間の補間に用いられる複数の歩行周期の歩行波形のデータ群における、欠損区間に含まれる歩行フェーズごとのデータの代表値に基づいて、欠損区間の補間データを生成する。例えば、補間部は、欠損区間に含まれる歩行フェーズごとのデータの偏差値を用いて、欠損区間の補間データを生成する。補間部は、生成された補間データを欠損区間に補間する。歩容計測装置は、センサデータの時系列データを用いて補間装置が生成した欠損区間を含まない歩行波形と、補間装置が欠損区間のデータを補間した歩行波形とを補間装置から取得する。歩容計測装置は、取得した歩行波形から検出される歩行イベントに基づいてユーザの歩容を計測する。歩容計測装置は、計測されたユーザの歩容に関する情報を出力する。
本実施形態の手法では、歩行の周期性に着目し、ユーザの歩行に応じて計測されるセンサデータの時系列データに発生したデータの欠損区間を補間する補間データを生成する。本実施形態の手法では、欠損区間に含まれる歩行フェーズごとのデータの代表値に基づいて、補間データを生成する。本実施形態の手法では、時系列データから生成された複数の歩行周期の歩行波形のデータの分布に基づいて、補間データを生成する。本実施形態の手法によれば、全体的な分布に基づいて補間データを生成することで、突発的な異常を含む歩行波形のデータが平滑化されるため、欠損区間のデータをより高精度に復元できる。
(第3の実施形態)
次に、第3の実施形態に係る補間装置について図面を参照しながら説明する。本実施形態の補間装置は、第1~第2の実施形態の補間装置を簡略化した構成である。図26は、本実施形態の補間装置32の構成の一例を示すブロック図である。補間装置32は、歩容情報処理部322、欠損情報処理部323、および補間部326を備える。
次に、第3の実施形態に係る補間装置について図面を参照しながら説明する。本実施形態の補間装置は、第1~第2の実施形態の補間装置を簡略化した構成である。図26は、本実施形態の補間装置32の構成の一例を示すブロック図である。補間装置32は、歩容情報処理部322、欠損情報処理部323、および補間部326を備える。
歩容情報処理部322は、足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成するとともに、時系列データにおけるデータの欠損区間を特定する。欠損情報処理部323は、特定された欠損区間の歩行フェーズを計算する。補間部326は、欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、欠損区間の歩行フェーズのデータを用いて、欠損区間を補間する補間データを生成する。補間部326は、生成された補間データを欠損区間に補間する。
本実施形態によれば、歩行の周期性に着目して生成された補間データを用いるため、センサデータの時系列データに含まれるデータの欠損区間の特徴を含めて、欠損区間のデータを補間できる。
(ハードウェア)
ここで、本開示の各実施形態に係る制御や処理を実行するハードウェア構成について、図27の情報処理装置90を一例として挙げて説明する。なお、図27の情報処理装置90は、各実施形態の制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。
ここで、本開示の各実施形態に係る制御や処理を実行するハードウェア構成について、図27の情報処理装置90を一例として挙げて説明する。なお、図27の情報処理装置90は、各実施形態の制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。
図27のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図27においては、インターフェースをI/F(Interface)と略記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して、互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93、および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。
プロセッサ91は、補助記憶装置93等に格納されたプログラムを、主記憶装置92に展開する。プロセッサ91は、主記憶装置92に展開されたプログラムを実行する。本実施形態においては、情報処理装置90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、本実施形態に係る制御や処理を実行する。
主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92には、プロセッサ91によって、補助記憶装置93等に格納されたプログラムが展開される。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリによって実現される。また、主記憶装置92として、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリが構成/追加されてもよい。
補助記憶装置93は、プログラムなどの種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって実現される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。
入出力インターフェース95は、規格や仕様に基づいて、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。
情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器が接続されてもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成としてもよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。
また、情報処理装置90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
また、情報処理装置90には、ドライブ装置が備え付けられてもよい。ドライブ装置は、プロセッサ91と記録媒体(プログラム記録媒体)との間で、記録媒体からのデータやプログラムの読み込み、情報処理装置90の処理結果の記録媒体への書き込みなどを仲介する。ドライブ装置は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
以上が、本発明の各実施形態に係る制御や処理を可能とするためのハードウェア構成の一例である。なお、図27のハードウェア構成は、各実施形態に係る制御や処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、各実施形態に係る制御や処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。さらに、各実施形態に係るプログラムを記録したプログラム記録媒体も本発明の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体によって実現されてもよい。また、記録媒体は、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現されてもよい。プロセッサが実行するプログラムが記録媒体に記録されている場合、その記録媒体はプログラム記録媒体に相当する。
各実施形態の構成要素は、任意に組み合わせてもよい。また、各実施形態の構成要素は、ソフトウェアによって実現されてもよいし、回路によって実現されてもよい。
以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1、2 歩容計測システム
11、21 計測装置
12、22、32 補間装置
13、23 歩容計測装置
111 加速度センサ
112 角速度センサ
113 制御部
115 送信部
121、221 受信部
122、222、322 歩容情報処理部
123、223、323 欠損情報処理部
125、225 記憶部
126、226、326 補間部
128、228 送信部
131 取得部
132 検出部
133 歩容計測部
11、21 計測装置
12、22、32 補間装置
13、23 歩容計測装置
111 加速度センサ
112 角速度センサ
113 制御部
115 送信部
121、221 受信部
122、222、322 歩容情報処理部
123、223、323 欠損情報処理部
125、225 記憶部
126、226、326 補間部
128、228 送信部
131 取得部
132 検出部
133 歩容計測部
Claims (10)
- 足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成するとともに、前記時系列データにおけるデータの欠損区間を特定する歩行情報処理手段と、
特定された前記欠損区間の歩行フェーズを計算する欠損情報処理手段と、
前記欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、前記欠損区間の前記歩行フェーズのデータを用いて、前記欠損区間を補間する補間データを生成し、生成された前記補間データを前記欠損区間に補間する補間手段と、を備える補間装置。 - 前記歩行情報処理手段は、
前記時系列データから一歩行周期分の波形を切り出し、
切り出された前記波形に含まれる前記歩行フェーズを正規化して前記歩行波形を生成する請求項1に記載の補間装置。 - 前記補間手段は、
前記時系列データに含まれる前記欠損区間に関して、前記欠損区間に含まれる前記歩行フェーズのデータが欠損していない少なくとも一つの前記歩行波形から、前記欠損区間に含まれる前記歩行フェーズのデータを少なくとも一つ選択し、
選択された前記歩行フェーズのデータを用いて、前記補間データを生成する請求項1または2に記載の補間装置。 - 前記補間手段は、
複数の前記歩行周期の前記歩行波形から選択された前記歩行フェーズのデータの平均値を計算し、
算出された前記歩行フェーズのデータの平均値を用いて、前記補間データを生成する請求項3に記載の補間装置。 - 前記補間手段は、
データの変動が小さい歩行ピリオドに関しては、解析的な手法で前記補間データを生成し、
データの変動が大きい前記歩行ピリオドに関しては、前記欠損区間を含む前記歩行周期とは異なる前記歩行周期のデータを用いて前記補間データを生成する請求項1乃至4のいずれか一項に記載の補間装置。 - 前記補間手段は、
前記欠損区間の補間に用いられる複数の前記歩行周期の前記歩行波形のデータ群における、前記欠損区間に含まれる前記歩行フェーズごとのデータの代表値に基づいて、前記欠損区間の前記補間データを生成する請求項1乃至5のいずれか一項に記載の補間装置。 - 前記補間手段は、
前記欠損区間に含まれる前記歩行フェーズごとのデータの偏差値を用いて、前記欠損区間の前記補間データを生成する請求項6に記載の補間装置。 - 請求項1乃至7のいずれか一項に記載の補間装置と、
ユーザの履物に配置され、前記ユーザの歩行に応じて空間加速度および空間角速度を計測し、計測された前記空間加速度および前記空間角速度に基づくセンサデータを生成し、生成された前記センサデータを前記補間装置に出力する計測装置と、
前記センサデータの時系列データを用いて前記補間装置が生成した欠損区間を含まない歩行波形と、前記補間装置が欠損区間のデータを補間した歩行波形とを前記補間装置から取得し、取得した前記歩行波形から検出される歩行イベントに基づいて前記ユーザの歩容を計測し、計測された前記ユーザの歩容に関する情報を出力する歩容計測装置と、を備える歩容計測システム。 - コンピュータが、
足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成し、
前記時系列データにおけるデータの欠損区間を特定し、
特定された前記欠損区間の歩行フェーズを計算し、
前記欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、前記欠損区間の前記歩行フェーズのデータを用いて、前記欠損区間を補間する補間データを生成し、
生成された前記補間データを前記欠損区間に補間する補間方法。 - 足の動きに関するセンサデータの時系列データを用いて歩行周期ごとの歩行波形を生成する処理と、
前記時系列データにおけるデータの欠損区間を特定する処理と、
特定された前記欠損区間の歩行フェーズを計算する処理と、
前記欠損区間を含む歩行周期とは異なる歩行周期の歩行波形における、前記欠損区間の前記歩行フェーズのデータを用いて、前記欠損区間を補間する補間データを生成する処理と、
生成された前記補間データを前記欠損区間に補間する処理と、をコンピュータに実行させるプログラムを記録させた非一過性の記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/023444 WO2022269698A1 (ja) | 2021-06-21 | 2021-06-21 | 補間装置、歩容計測システム、補間方法、および記録媒体 |
JP2023529225A JPWO2022269698A5 (ja) | 2021-06-21 | 補間装置、歩容計測システム、補間方法、およびプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/023444 WO2022269698A1 (ja) | 2021-06-21 | 2021-06-21 | 補間装置、歩容計測システム、補間方法、および記録媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022269698A1 true WO2022269698A1 (ja) | 2022-12-29 |
Family
ID=84545273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/023444 WO2022269698A1 (ja) | 2021-06-21 | 2021-06-21 | 補間装置、歩容計測システム、補間方法、および記録媒体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022269698A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016137228A (ja) * | 2015-01-23 | 2016-08-04 | 村田機械株式会社 | 歩行計測システム |
JP2020130335A (ja) * | 2019-02-14 | 2020-08-31 | 日本電信電話株式会社 | 時間特徴量算出装置、算出方法及びそのプログラム |
-
2021
- 2021-06-21 WO PCT/JP2021/023444 patent/WO2022269698A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016137228A (ja) * | 2015-01-23 | 2016-08-04 | 村田機械株式会社 | 歩行計測システム |
JP2020130335A (ja) * | 2019-02-14 | 2020-08-31 | 日本電信電話株式会社 | 時間特徴量算出装置、算出方法及びそのプログラム |
Non-Patent Citations (1)
Title |
---|
UCHIDA, RYOUMA ET AL.: "Improving Fault Tolerance of Wearable Sensor-based Activity Recognition Technique using Completing Defective Value by ARAR Algorithm", IPSJ TECHNICAL REPORT, vol. 2013 -MB, no. 38, 15 March 2013 (2013-03-15), JP , pages 242 - 252, XP009542250, ISSN: 1884-0930 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022269698A1 (ja) | 2022-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7327516B2 (ja) | 異常検出装置、判定システム、異常検出方法、およびプログラム | |
JP7120449B2 (ja) | 歩行周期判定システム、歩行周期判定方法、およびプログラム | |
WO2022269698A1 (ja) | 補間装置、歩容計測システム、補間方法、および記録媒体 | |
US20240065581A1 (en) | Gait measurement system, gait measurement method, and program recording medium | |
WO2023105740A1 (ja) | 特徴量データ生成装置、歩容計測装置、身体状態推定システム、特徴量データ生成方法、および記録媒体 | |
US20240172966A1 (en) | Harmonic index estimation device, estimation system, harmonic index estimation method, and recording medium | |
JP7459965B2 (ja) | 判別装置、判別システム、判別方法、およびプログラム | |
US20240257975A1 (en) | Estimation device, estimation system, estimation method, and recording medium | |
JP7525052B2 (ja) | 特徴量生成装置、歩容計測システム、特徴量生成方法、およびプログラム | |
US20240138757A1 (en) | Pelvic inclination estimation device, estimation system, pelvic inclination estimation method, and recording medium | |
WO2023157161A1 (ja) | 検出装置、検出システム、歩容計測システム、検出方法、および記録媒体 | |
US20240277259A1 (en) | Gait index calculation device, gait measurement system, gait index calculation method, and recording medium | |
JP7509229B2 (ja) | 検出装置、検出システム、検出方法、およびプログラム | |
US20230397839A1 (en) | Waist swinging estimation device, estimation system, waist swinging estimation method, and recording medium | |
US20240161921A1 (en) | Biometric information processing device, information processing system, biometric information processing method, and recording medium | |
US20240324967A1 (en) | Knee pain risk estimation device, physical condition estimation system, knee pain risk estimation method, and recording medium | |
WO2023127007A1 (ja) | 筋力指標推定装置、筋力指標推定システム、筋力指標推定方法、および記録媒体 | |
WO2023062666A1 (ja) | 歩容計測装置、歩容計測システム、歩容計測方法、および記録媒体 | |
JP7494941B2 (ja) | 歩行指標計算装置、歩行指標計算システム、歩行指標計算方法、およびプログラム | |
US20240108249A1 (en) | Detection device, detection method, and program recording medium | |
JP7582318B2 (ja) | 推定装置、推定システム、推定方法、およびプログラム | |
US20240148278A1 (en) | Estimation device, estimation method, and program recording medium | |
WO2023127008A1 (ja) | 動的バランス推定装置、動的バランス推定システム、動的バランス推定方法、および記録媒体 | |
WO2023127010A1 (ja) | 移動能力推定装置、移動能力推定システム、移動能力推定方法、および記録媒体 | |
JP2023178636A (ja) | 指標値推定装置、推定システム、指標値推定方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946988 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023529225 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21946988 Country of ref document: EP Kind code of ref document: A1 |