[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022265066A1 - SARS-CoV-2の免疫測定方法及び免疫測定キット - Google Patents

SARS-CoV-2の免疫測定方法及び免疫測定キット Download PDF

Info

Publication number
WO2022265066A1
WO2022265066A1 PCT/JP2022/024134 JP2022024134W WO2022265066A1 WO 2022265066 A1 WO2022265066 A1 WO 2022265066A1 JP 2022024134 W JP2022024134 W JP 2022024134W WO 2022265066 A1 WO2022265066 A1 WO 2022265066A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
seq
antibody
chain variable
Prior art date
Application number
PCT/JP2022/024134
Other languages
English (en)
French (fr)
Inventor
次郎 廣田
智 宇野
泰史 落合
静夏 伊藤
圭祐 渡邉
慎也 奥山
智英 浅井
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to US18/290,089 priority Critical patent/US20240255505A1/en
Priority to EP22825054.4A priority patent/EP4357781A1/en
Priority to CA3218423A priority patent/CA3218423A1/en
Priority to CN202280033519.2A priority patent/CN117337392A/zh
Priority to KR1020237037609A priority patent/KR20240022452A/ko
Publication of WO2022265066A1 publication Critical patent/WO2022265066A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/577Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/165Coronaviridae, e.g. avian infectious bronchitis virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/10Detection of antigens from microorganism in sample from host

Definitions

  • the present invention relates to an immunoassay method and an immunoassay kit for SARS-CoV-2.
  • This application claims priority based on Japanese Patent Application No. 2021-100123 filed in Japan on June 16, 2021, the content of which is incorporated herein.
  • SARS-CoV-2 is the virus that causes coronavirus disease 2019 (COVID-19).
  • SARS-CoV-2 belongs to the Coronaviridae family, which has single-stranded positive-strand RNA as its genome.
  • corona virus disease 2019 is prevalent all over the world, and many infected people are occurring.
  • PCR tests and antigen tests are used to detect SARS-CoV-2.
  • the results of the antigen test can be confirmed in about 10 minutes after sample collection, so the test can be performed more easily than the PCR test.
  • a highly sensitive and specific test is required for rapid detection of SARS-CoV-2.
  • antigen tests are generally less sensitive than PCR tests. Therefore, there is a need for more sensitive antigen tests.
  • Bioinformatics has also been used to predict potential epitope regions for immunoassays in the amino acid sequence of SARS-CoV-2 (Non-Patent Document 1).
  • No antibody has been actually produced that recognizes the described region as an epitope.
  • an antigen test that measures antigens with high sensitivity becomes possible.
  • SARS-CoV-2 it was still unclear what kind of antibodies should be combined to construct a sandwich system.
  • An object of the present invention is to provide a SARS-CoV-2 immunoassay kit and a SARS-CoV-2 immunoassay method that enable highly sensitive and rapid immunoassay.
  • the inventors have made extensive studies. Then, in the nucleocapsid protein of SARS-CoV-2, by using two types of monoclonal antibodies or antibody fragments thereof that bind to peptide fragments consisting of 30 consecutive amino acids or less and recognize different epitopes, respectively, the above problems are solved. We have found that the problem can be solved, and have completed the present invention.
  • the present inventors described one embodiment of the immunoassay method of the present invention and Espline (registered trademark) SARS-CoV-2 (Fujirebio Co., Ltd.), which is a commercially available reagent for detecting the SARS-CoV-2 antigen.
  • Non-Patent Document 2 Non-Patent Document 2
  • Quick Navi®-COVID19 Ag Denka
  • Non-Patent Document 3 Quick Navi®-COVID19 Ag
  • An immunoassay method for SARS-CoV-2 in a biological sample comprising a monoclonal antibody or an antibody fragment thereof that binds to a peptide fragment consisting of 30 consecutive amino acids or less in the nucleocapsid protein of SARS-CoV-2.
  • An immunoassay method in which two types of monoclonal antibodies or antibody fragments thereof are used, and the two types of monoclonal antibodies or antibody fragments thereof recognize different epitopes.
  • the immunoassay method according to [1] wherein the peptide fragment consisting of 30 consecutive amino acids or less is a peptide fragment consisting of 27 to 30 amino acids.
  • the two types of monoclonal antibodies or antibody fragments thereof are a first monoclonal antibody or an antibody fragment thereof and a second monoclonal antibody or an antibody fragment thereof, respectively, wherein the first monoclonal antibody or an antibody fragment thereof is a labeling substance is indirectly or directly bound to, and the second monoclonal antibody or antibody fragment thereof is indirectly or directly bound to a solid phase, the immunity according to any one of [1] to [5] Measuring method.
  • the immunoassay method of [6] comprising the following steps.
  • the first monoclonal antibody or antibody fragment thereof is a monoclonal antibody or antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by KQQTVTLLPAADLDFSK (SEQ ID NO: 2)
  • the second monoclonal antibody or antibody fragment thereof is a monoclonal antibody or antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by AADLDDFSKQLQQSMSSA (SEQ ID NO: 3).
  • a heavy chain variable region comprising CDR1 having the amino acid sequence of SEQ ID NO: 4, CDR2 having the amino acid sequence of SEQ ID NO: 5, and CDR3 having the amino acid sequence of SEQ ID NO: 6, and CDR1 having the amino acid sequence of SEQ ID NO: 7 , a light chain variable region comprising a CDR2 having the amino acid sequence of SEQ ID NO:8, and a CDR3 having the amino acid sequence of SEQ ID NO:9.
  • a heavy chain variable region comprising CDR1 having the amino acid sequence of SEQ ID NO: 16, CDR2 having the amino acid sequence of SEQ ID NO: 17, and CDR3 having the amino acid sequence of SEQ ID NO: 18, and CDR1 having the amino acid sequence of SEQ ID NO: 19; , a light chain variable region comprising a CDR2 having the amino acid sequence of SEQ ID NO:20, and a CDR3 having the amino acid sequence of SEQ ID NO:21.
  • An immunoassay kit for SARS-CoV-2 in a biological sample comprising a monoclonal antibody or an antibody fragment thereof that binds to a peptide fragment consisting of 30 consecutive amino acids or less in the nucleocapsid protein of SARS-CoV-2.
  • An immunoassay kit comprising two types of monoclonal antibodies or antibody fragments thereof, each of which recognizes a different epitope.
  • the immunoassay kit according to [11] wherein the peptide fragment consisting of 30 consecutive amino acids or less is a peptide fragment consisting of 27-30 amino acids.
  • the two types of monoclonal antibodies or antibody fragments thereof are a first monoclonal antibody or an antibody fragment thereof and a second monoclonal antibody or an antibody fragment thereof, respectively, wherein the first monoclonal antibody or an antibody fragment thereof is a labeling substance and the second monoclonal antibody or antibody fragment thereof is indirectly or directly bound to a solid phase, [11] to [15]. measurement kit.
  • the first monoclonal antibody or antibody fragment thereof is a monoclonal antibody or antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by KQQTVTLLPAADLDFSK (SEQ ID NO: 2)
  • the second monoclonal antibody or antibody fragment thereof is a monoclonal antibody or antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by AADLDDFSKQLQQSMSSA (SEQ ID NO: 3).
  • the immunoassay kit according to any one of [11] to [17], which is for immunochromatography or ELISA.
  • the immunoassay kit according to any one of [11] to [18], wherein the two types of monoclonal antibodies or antibody fragments thereof are each selected from the group consisting of the following (1) to (4): .
  • (1) A heavy chain variable region comprising CDR1 having the amino acid sequence of SEQ ID NO: 4, CDR2 having the amino acid sequence of SEQ ID NO: 5, and CDR3 having the amino acid sequence of SEQ ID NO: 6, and CDR1 having the amino acid sequence of SEQ ID NO: 7 , a light chain variable region comprising a CDR2 having the amino acid sequence of SEQ ID NO:8, and a CDR3 having the amino acid sequence of SEQ ID NO:9.
  • a heavy chain variable region comprising CDR1 having the amino acid sequence of SEQ ID NO: 16, CDR2 having the amino acid sequence of SEQ ID NO: 17, and CDR3 having the amino acid sequence of SEQ ID NO: 18, and CDR having the amino acid sequence of SEQ ID NO: 19 and a light chain variable region comprising a CDR2 having the amino acid sequence of SEQ ID NO:20 and a CDR3 having the amino acid sequence of SEQ ID NO:21.
  • the present invention also includes the following embodiments.
  • A Two types of monoclonal antibodies or antibody fragments thereof, respectively, a monoclonal antibody or antibody fragment thereof recognizing the amino acid sequence represented by LLPAA (SEQ ID NO: 26) as an epitope, and LDDFSKQLQ (SEQ ID NO: 27).
  • the immunoassay method according to any one of [1] to [10], which is a monoclonal antibody or an antibody fragment thereof that recognizes an epitope in the amino acid sequence of the immunoassay.
  • FIG. 2 shows the amino acid sequence of the nucleocapsid protein
  • FIG. 2 is a diagram showing the correspondence relationship between the amino acid sequences of synthetic peptides used for epitope analysis of antibodies and the amino acid sequences on nucleocapsid proteins.
  • biological sample mainly includes solid tissues and body fluids derived from living organisms. Biological samples include blood, serum, plasma, urine, tears, ear discharge, prostatic fluid, or respiratory secretions. Respiratory secretions are preferred. As used herein, "respiratory secretions” means bodily fluids secreted in or on the tissues of the respiratory tract.
  • Respiratory secretions include bodily fluids secreted in the nostrils, nasal cavities, pharynx, nasopharynx, oral cavity, trachea, bronchi, or lungs, including nasopharyngeal swabs, nasal swabs, saliva, or sputum.
  • the term "respiratory system” is a general term for organs related to respiration, and includes organs from the nasal vestibule to the alveoli (lungs) via the nasal cavity, pharynx, larynx, trachea, bronchi, and bronchioles. say.
  • Subjects from whom biological samples are collected include humans or animals (eg, monkeys, dogs, or cats), preferably humans.
  • a biological sample may be a biological sample itself from a subject, or may be a sample obtained by subjecting a collected biological sample to processing such as dilution and concentration that are usually performed.
  • the person who collects and prepares the biological sample used in the immunoassay method of the present invention may be the same person as the person who performs the immunoassay method of the present invention, or may be a different person.
  • the biological sample used in the present invention may be one collected or prepared during the implementation of the immunoassay method of the present invention, or one previously collected or prepared and stored.
  • epitope refers to a portion of an antigen (SARS-CoV-2 in the case of the present invention) recognized by an antibody.
  • SARS-CoV-2 is the virus that causes coronavirus disease 2019 (COVID-19).
  • SARS-CoV-2 virus particles are composed of four proteins known as the spike, nucleocapsid, membrane, and envelope proteins, and RNA.
  • the SARS-CoV-2 nucleocapsid protein is a protein consisting of 419 amino acids (SEQ ID NO: 22). Mutations can occur in the nucleocapsid protein and thus the nucleocapsid protein contains the amino acid sequence represented by SEQ ID NO: 22 and at least 90%, such as 91%, 92%, 93%, 94%, 95% Peptide fragments represented by amino acid sequences with 96%, 97%, 98% or 99% identity are included.
  • the nucleocapsid protein contains the NTD antigen (containing the N-terminal RNA-binding domain), the CTD antigen (containing the C-terminal dimerization domain), and a centrally located Ser/Arg (SR)-rich linker region. included.
  • the NTD antigen is the region from amino acids 1 to 174 of the nucleocapsid protein. Among them, the region of 1st to 49th amino acids is the N-terminal region, and the region of 50th to 174th amino acids is the RNA binding domain.
  • the amino acid sequence of the NTD antigen is shown below.
  • the linker region is the region from amino acids 175 to 247 of the nucleocapsid protein.
  • the amino acid sequence of the linker region is shown below.
  • the CTD antigen is the region from amino acids 248 to 419 of the nucleocapsid protein. Among them, the region from 248th to 364th amino acids is the dimerization domain, and the region from 365th to 419th amino acids is the C-terminal region.
  • the amino acid sequence of the CTD antigen is shown below. KKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKAD2ADETQALPQRQKFSKQSLDQSSEQ ID NO:TVDTLLPADMS
  • the term "monoclonal antibody” refers to an antibody or antibody molecule that is clonally derived from a single antibody-producing cell.
  • an antibody fragment having the function of the monoclonal antibody can also be used as long as the effect of the present invention can be obtained.
  • Antibody fragments having monoclonal antibody functions include, for example, functional fragments containing the Fab portion of the monoclonal antibody obtained by enzymatic digestion of the monoclonal antibody, and functions containing the Fab portion of the monoclonal antibody produced by genetic recombination. and functional fragments containing scFv produced by the phage display method.
  • the monoclonal antibody or antibody fragment thereof used in the immunoassay method of the present invention binds to a peptide fragment consisting of 30 consecutive amino acids or less in the nucleocapsid protein of SARS-CoV-2.
  • two types of monoclonal antibodies or antibody fragments thereof that bind to a peptide fragment consisting of 30 consecutive amino acids or less in the nucleocapsid protein of SARS-CoV-2 may be referred to as the monoclonal antibody pair of the present invention.
  • one monoclonal antibody that constitutes the monoclonal antibody pair of the present invention may be referred to as the monoclonal antibody of the present invention.
  • Each of the monoclonal antibody pairs of the present invention preferably binds to one peptide fragment consisting of 27 to 30 or less consecutive amino acids in the nucleocapsid protein of SARS-CoV-2, more preferably both Binds to a peptide fragment consisting of an amino acid sequence represented by KQQTVTLPAADLDDFSKQLQQSMSSA (SEQ ID NO: 1) present in the C-terminal region of , and more preferably, one monoclonal antibody binds to the amino acid represented by KQQTVTLLPAADLDDFSK (SEQ ID NO: 2)
  • the other monoclonal antibody can recognize an epitope in the sequence, and the other monoclonal antibody can recognize an epitope in the amino acid sequence represented by AADLDDFSKQLQQSMSSA (SEQ ID NO: 3).
  • the amino acid sequence represented by LLPAA (SEQ ID NO: 26) is recognized as an epitope, and the other monoclonal antibody recognizes an epitope in the amino acid sequence represented
  • the monoclonal antibody pairs of the present invention each recognize different epitopes. "Recognizing different epitopes” means that amino acid sequences recognized as epitopes do not overlap.
  • Each of the monoclonal antibody pairs of the present invention can be an isolated monoclonal antibody or an antibody fragment thereof.
  • each monoclonal antibody pair of the present invention preferably binds to a peptide fragment consisting of 30 or fewer consecutive amino acids present in this C-terminal region. That is, said peptide fragment consisting of 30 consecutive amino acids or less is preferably located in the C-terminal region of the nucleocapsid protein of SARS-CoV-2.
  • the C-terminal region has been reported to be resistant to SARS-CoV-2 amino acid mutations. Therefore, antibodies that recognize the C-terminal region are more likely to be able to bind SARS-CoV-2 with amino acid mutations than antibodies that recognize other regions.
  • the monoclonal antibody pair of the present invention preferably each specifically recognizes an epitope present in a peptide fragment consisting of 30 or fewer consecutive amino acids in the nucleocapsid protein of SARS-CoV-2.
  • "Specifically recognize an epitope” means not substantially binding to anything other than a specific peptide fragment or epitope.
  • one of the monoclonal antibody pairs of the present invention and a peptide fragment having a certain amino acid sequence "substantially do not bind" for example, based on the SPR method, Biacore (registered trademark) or Using T200, one of the monoclonal antibody pairs of the invention can be immobilized and measured.
  • the "substantially no binding” can also be confirmed by methods or means well known to those skilled in the art other than the above SPR method.
  • the monoclonal antibody pair of the present invention is preferably two pairs selected from the group consisting of (1) to (4) below.
  • a heavy chain variable region comprising CDR1 having the amino acid sequence of SEQ ID NO: 4, CDR2 having the amino acid sequence of SEQ ID NO: 5, and CDR3 having the amino acid sequence of SEQ ID NO: 6, and CDR1 having the amino acid sequence of SEQ ID NO: 7 , a light chain variable region comprising a CDR2 having the amino acid sequence of SEQ ID NO:8, and a CDR3 having the amino acid sequence of SEQ ID NO:9.
  • a heavy chain variable region comprising CDR1 having the amino acid sequence of SEQ ID NO: 16, CDR2 having the amino acid sequence of SEQ ID NO: 17, and CDR3 having the amino acid sequence of SEQ ID NO: 18, and CDR1 having the amino acid sequence of SEQ ID NO: 19; , a light chain variable region comprising a CDR2 having the amino acid sequence of SEQ ID NO:20, and a CDR3 having the amino acid sequence of SEQ ID NO:21.
  • the identity of the amino acid sequences is sequence identity to the amino acid sequences (HCCDR1 + HCCDR2 + HCCDR3 + LCCDR1 + LCCDR2 + LCCDR3) that constitute CDR1, CDR2, and CDR3 of the heavy chain variable region and CDR1, CDR2, and CDR3 of the light chain variable region. preferable.
  • CDR1 having the amino acid sequence of SEQ ID NO:4 means that the CDR1 consists of the amino acid sequence of SEQ ID NO:4. The same applies to other CDRs (Complementarity-determining regions).
  • the monoclonal antibody of the present invention can contain a constant region (C region) in addition to the heavy chain variable region and light chain variable region.
  • the constant region can include the CL region in the light chain and the CH region (CH1, CH2, and CH3) in the heavy chain.
  • the monoclonal antibody pair of the present invention is more preferably two pairs selected from the group consisting of (1), (2) and (4) below.
  • a heavy chain variable region comprising CDR1 having the amino acid sequence of SEQ ID NO: 4, CDR2 having the amino acid sequence of SEQ ID NO: 5, and CDR3 having the amino acid sequence of SEQ ID NO: 6, and CDR1 having the amino acid sequence of SEQ ID NO: 7 , a light chain variable region comprising a CDR2 having the amino acid sequence of SEQ ID NO:8, and a CDR3 having the amino acid sequence of SEQ ID NO:9.
  • the monoclonal antibody pair of the present invention is more preferably a pair of the antibody (1) and the antibody (2), wherein the antibody (1) is used as a labeled antibody and the antibody (2) is used as a solid phase antibody. is most preferred.
  • Examples of the antibody (1) include an antibody that recognizes an epitope in the amino acid sequence represented by KQQTVTLPAADLDDFSK (SEQ ID NO: 2), such as the S32213 antibody. Further, the antibody (1) includes an antibody that recognizes the amino acid sequence represented by LLPAA (SEQ ID NO: 26) as an epitope, such as the S32213 antibody.
  • the antibody (2) includes an antibody that recognizes an epitope in the amino acid sequence of AADLDDFSKQLQQSMSSA (SEQ ID NO: 3), such as the S32217 antibody. Further, the antibody (2) includes an antibody that recognizes an epitope in the amino acid sequence represented by LDDFSKQLQ (SEQ ID NO: 27), such as the S32217 antibody.
  • Examples of the antibody (3) include an antibody that recognizes an epitope in the CTD region antigen, such as the S32223 antibody.
  • the S32223 antibody is believed to have similar reactivity as the S32217 antibody.
  • the terms “react with”, “recognize” and “bind” to a specific substance or amino acid sequence by a monoclonal antibody or an antibody fragment thereof are used synonymously. Whether or not a monoclonal antibody “reacts” with an antigen (compound) can be confirmed by antigen-immobilized ELISA, competitive ELISA, sandwich ELISA, or the like. Alternatively, a method (SPR method) using the principle of surface plasmon resonance can be used. The SPR method can be performed using equipment, sensors or reagents sold under the name Biacore®.
  • Example 1 antibody epitope analysis 1
  • the amino acid sequence contained in the peptide fragment with the highest absorbance is recognized as an epitope.
  • the monoclonal antibody of the present invention can be prepared by dissolving a full-length nucleocapsid protein as an antigen (immunogen) in a solvent such as phosphate-buffered saline and administering this solution to a non-human animal for immunization. Immunization may be performed using an emulsion after adding an appropriate adjuvant to the solution as necessary.
  • Adjuvants include widely used adjuvants such as water-in-oil emulsions, water-in-oil-in-water emulsions, oil-in-water emulsions, liposomes, and aluminum hydroxide gels, as well as proteins or peptide substances derived from biological components. good too.
  • Freund's incomplete adjuvant or Freund's complete adjuvant can be preferably used.
  • the administration route, dosage, and administration time of the adjuvant are not particularly limited, but are preferably selected appropriately so as to enhance the desired immune response in the animal immunized with the antigen.
  • the type of animal used for immunization is also not particularly limited, but mammals such as mice, rats, cows, rabbits, goats, sheep, alpacas, mice, or rats are preferred, and mice or rats are more preferred.
  • Animals may be immunized according to common techniques, for example, by subcutaneously, intradermally, intravenously, or intraperitoneally injecting a solution of the antigen, preferably a mixture with an adjuvant, into the animal. Since the immune response generally differs depending on the type and strain of the animal to be immunized, it is desirable to appropriately set the immunization schedule according to the animal used. It is preferable to repeat the antigen administration several times after the initial immunization.
  • the following operations can be performed subsequently, but are not limited to these.
  • Methods for producing monoclonal antibodies per se are well known and widely used in the art, and those skilled in the art can prepare the monoclonal antibodies of the present invention by using the aforementioned antigens (for example, Antibodies , A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1988) Chapter 6, etc.).
  • hybridomas can be produced by extracting antibody-producing spleen cells or lymph node cells from the immunized animal and fusing them with a myeloma-derived cell line with high proliferative potential.
  • Cells with high antibody-producing ability are preferably used for cell fusion, and it is more preferable that the myeloma-derived cell line is compatible with the animal from which the antibody-producing cells to be fused are derived.
  • Cell fusion can be performed according to methods known in the art. For example, a polyethylene glycol method, a method using Sendai virus, a method using electric current, or the like can be employed.
  • the resulting hybridomas can be grown according to conditions commonly used in the art.
  • a desired hybridoma can be selected while confirming the properties of the antibody to be produced.
  • Hybridoma cloning can be performed by well-known methods such as the limiting dilution method and the soft agar method.
  • the binding ability of the produced monoclonal antibody to the full-length nucleocapsid protein can be assayed using methods such as ELISA, RIA, or fluorescent antibody method. These manipulations make it possible to confirm whether the selected hybridomas produce monoclonal antibodies with the desired properties.
  • monoclonal antibodies with desired properties can be produced.
  • the method of mass culture is not particularly limited, but for example, a method of culturing hybridomas in an appropriate medium to produce monoclonal antibodies in the medium, and a method of injecting hybridomas into the peritoneal cavity of mammals to proliferate and culture them in ascites.
  • a method of producing a monoclonal antibody, etc. can be mentioned.
  • monoclonal antibody of the present invention antibody fragments of monoclonal antibodies having antigen-antibody reaction activity can be used in addition to whole antibody molecules.
  • monoclonal antibodies obtained using gene recombination techniques such as chimeric antibodies, humanized antibodies, and human antibodies. Fragments of monoclonal antibodies include, for example, F(ab') 2 , Fab', scFv and the like.
  • a proteolytic enzyme e.g., pepsin or papain
  • cloning the DNA of the antibody and expressing it in a culture system using E. coli or yeast it can be prepared by a proteolytic enzyme (e.g., pepsin or papain), or cloning the DNA of the antibody and expressing it in a culture system using E. coli or yeast. It can be prepared by a proteolytic enzyme (e.g., pepsin or papain), or cloning the DNA of the antibody and expressing it in a culture system using E. coli or yeast
  • a sandwich system can be constructed in the immunoassay method of the present invention.
  • a sandwich system is a method of obtaining high specificity and sensitivity by sandwiching a substance to be detected between two types of antibodies that recognize different epitopes.
  • a solid-phase antibody means a monoclonal antibody directly or indirectly immobilized on a solid phase.
  • a labeled antibody means a monoclonal antibody that is directly or indirectly labeled with a commonly used labeling substance well known to those skilled in the art described below when measuring a signal derived from the labeling substance.
  • a solid-phase antibody can be produced by physically adsorbing or chemically binding a monoclonal antibody to a solid phase (may be via an appropriate spacer).
  • a solid phase composed of a polymer base material such as polystyrene resin, an inorganic base material such as glass, or a polysaccharide base material such as cellulose or agarose can be used.
  • the shape of the solid phase is not particularly limited, and any shape such as a plate (e.g., microplate or membrane), bead or particulate (e.g., latex particles, magnetic particles), or cylindrical (e.g., test tube) can be selected. can.
  • a labeled antibody (secondary antibody) that can directly bind to the monoclonal antibody of the present invention
  • the amount of antibody bound to SARS-CoV-2 or its peptide fragment can also be measured.
  • an antibody bound to the monoclonal antibody of the present invention and bound with a labeling substance is referred to as a secondary antibody.
  • This secondary antibody may be used to indirectly bind a labeling substance to the monoclonal antibody of the invention.
  • Labeling substances for preparing labeled antibodies include, for example, metal complexes, enzymes, insoluble particles, fluorescent substances, chemiluminescent substances, biotin, avidin, radioactive isotopes, gold colloid particles, or colored latex. Physical adsorption, glutaraldehyde method, maleimide method, pyridyl disulfide method, or periodic acid method available to those skilled in the art can be used as methods for binding the labeling substance and the monoclonal antibody.
  • the enzyme's specific substrate can be used to measure the enzymatic activity.
  • O-phenylenediamine (OPD) or 3,3′,5,5′-tetramethylbenzidine (TMB) can be used when the enzyme is HRP
  • p-nitrophenyl Phosphate can be used to measure enzymatic activity.
  • biotin a monoclonal antibody can be labeled with biotin and reacted with avidin or streptavidin labeled with an enzyme, dye, or fluorescent label (preferably HRP).
  • colloidal gold particles are preferably used as the labeling substance.
  • the physical or chemical support of an antigen or antibody on a solid phase, or the state in which it is supported is sometimes expressed as “immobilization” or “immobilization”.
  • the terms “analysis”, “detection” or “measurement” include proving the presence of SARS-CoV-2 or peptide fragments thereof and quantifying SARS-CoV-2 or peptide fragments thereof.
  • the immunoassay method of the present invention uses two types of monoclonal antibodies that recognize different epitopes.
  • one monoclonal antibody may be referred to as the first monoclonal antibody, and the other monoclonal antibody may be referred to as the second monoclonal antibody.
  • the immunoassay method of the present invention can include the following steps (1) to (3).
  • the first complex is contacted with a second monoclonal antibody, and the second complex (including SARS-CoV-2 or a peptide fragment thereof, a labeling substance, a first monoclonal antibody, and a second monoclonal antibody)
  • the second complex including SARS-CoV-2 or a peptide fragment thereof, a labeling substance, a first monoclonal antibody, and a second monoclonal antibody
  • the second complex contains a labeling substance.
  • a measurement method well known to those skilled in the art can be employed depending on the labeling substance. Signal measurement may be performed using a measuring instrument, or may be performed visually.
  • the immunoassay method of the present invention may optionally include a step of pretreating the biological sample and/or a step of comparing the intensity of the obtained signal with the first threshold.
  • pretreatment include filtration of the biological sample and dilution of the biological sample with a sample diluent.
  • the first threshold can be appropriately set in consideration of the sensitivity and the type of biological sample.
  • the first threshold may be a range. "The first threshold is a range” means that there is a specific threshold between the indicated ranges, and the presence or absence of the disease is determined by determining whether the measured value is larger or smaller than the specific threshold. means to
  • the first threshold can be, for example, 1.1 ⁇ 10 2 TCID 50 /mL.
  • the first threshold is between 1.1 ⁇ 10 2 TCID 50 /mL and 2.0 ⁇ 10 2 TCID 50 /mL, and between 1.1 ⁇ 10 2 TCID 50 /mL and 1 8 ⁇ 10 2 TCID 50 /mL, or between 1.1 ⁇ 10 2 TCID 50 /mL and 1.5 ⁇ 10 2 TCID 50 /mL.
  • the immunoassay method of the present invention can include a step of determining that the signal is infected with SARS-CoV-2 if the signal intensity is lower (higher) than the first threshold, or the signal intensity is If higher (lower) than the first threshold, the step of determining not infected with SARS-CoV-2 can be included.
  • the immunoassay method of the present invention can determine the therapeutic effect of a specific drug in a subject infected with SARS-CoV-2 based on signal measurements.
  • the immunoassay method of the present invention can further include the following steps in addition to the above steps.
  • a step of administering a specific drug to a subject and/or a step of comparing the strength of the signal with a second threshold is a step of administering a specific drug to a subject and/or a step of comparing the strength of the signal with a second threshold.
  • the second threshold can be appropriately set in consideration of the sensitivity and the type of biological sample, but SARS-CoV-2 or a peptide fragment thereof in the subject before administering a specific drug may be the measured value of
  • the therapeutic effect may be monitored by measuring every few days.
  • An “immunoassay method” is a method of measuring the level of a substance contained in a biological sample using the reaction between an antigen and an antibody. "Level” includes the amount, concentration, or confirmation of the presence or absence of a substance.
  • the immunoassay method of the present invention includes electrochemiluminescence immunoassay (ECL method), enzyme-linked immunosorbent assay (ELISA), latex immunoturbidimetric assay (LTIA method), chemiluminescence immunoassay, immunochromatography, and fluorescent antibody. Laws include, but are not limited to.
  • the immunoassay method of the present invention is preferably ELISA or immunochromatography, more preferably immunochromatography.
  • the immunoassay method of the present invention can be an in vivo or in vitro immunoassay method.
  • a sensitizer can also be used to enhance sensitivity.
  • the immunoassay method of the present invention can analyze SARS-CoV-2 or its peptide fragment contained in a biological sample in an amount corresponding to 1.1 ⁇ 10 2 TCID 50 /mL or more.
  • the order of adding the monoclonal antibody of the present invention and the biological sample to the assay system is not limited as long as the effects of the present invention can be obtained. That is, the monoclonal antibody of the present invention can be added to the measurement system before the addition of the biological sample, simultaneously with the addition of the biological sample, or after the addition of the biological sample.
  • a monoclonal antibody or an antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by KQQTVTLPAADLDDFSK (SEQ ID NO: 2) is used as a labeled antibody
  • AADLDDFSKQLQQSMSSA (SEQ ID NO: 3) is used as a solid-phase antibody. It is preferable to use a monoclonal antibody or an antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by LLPAA (SEQ ID NO: 26) as a labeled antibody. It is more preferable to use a fragment and use a monoclonal antibody or antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by LDDFSKQLQ (SEQ ID NO: 27) as the solid-phase antibody.
  • Immunochromatography is an immunoassay method that utilizes the property that a labeled antibody bound to a substance to be detected or a labeled antibody flows on a membrane.
  • the general principle of measuring a substance to be detected in immunochromatography is as follows. An antibody against an antigen, which is a substance to be detected, is immobilized on an insoluble membrane carrier, which is a chromatographic medium, to prepare a detection part, which is a stationary phase.
  • a conjugate (labeled substance sensitized by an antibody capable of binding to the substance to be detected) is used as a mobile phase.
  • the substance to be detected and the conjugate, which is the mobile phase are allowed to react specifically, and in the detection part, which is the stationary phase, the substance to be detected bound to the conjugate reacts specifically with the antibody immobilized on the detection part.
  • the measurement procedure and principle when immunochromatography is employed as the immunoassay method of the present invention are as follows.
  • SARS-CoV-2 or a peptide fragment thereof in a biological sample is contacted with a conjugate, and a first complex (including SARS-CoV-2 or a peptide fragment thereof, a labeling substance, and a first monoclonal antibody) is formed.
  • a conjugate is a first monoclonal antibody attached to a labeled substance.
  • the first complex is contacted with the second monoclonal antibody immobilized on the detection part, and the second complex (SARS-CoV-2 or its peptide fragment, labeling substance, first monoclonal antibody, and a second monoclonal antibody) is formed.
  • the second complex SARS-CoV-2 or its peptide fragment, labeling substance, first monoclonal antibody, and a second monoclonal antibody
  • labeling substances include colloidal gold particles, colloidal platinum particles, color latex particles, and magnetic particles. Gold colloidal particles are preferred. Those skilled in the art can appropriately adjust the type and particle size of these labeling substances according to the desired sensitivity.
  • ELISA ELISA using an enzyme label
  • ELISA means a method of detecting an antigen or antibody, which is a substance to be detected contained in a sample, using an antibody or antigen against the substance to be detected, and then detecting the substance using an enzymatic reaction. do.
  • the solid phase is preferably a plate (immunoplate). HRP or ALP can be used as a label.
  • the measurement procedure and principle when using sandwich ELISA as the immunoassay method of the present invention are as follows.
  • SARS-CoV-2 or a peptide fragment thereof in the biological sample binds to the solid phase antibody, and the solid phase is solidified on the solid phase.
  • a complex is formed between the antibody and SARS-CoV-2 or a peptide fragment thereof.
  • the amount of SARS-CoV-2 or its peptide fragment in the biological sample can be measured according to the amount of labeled substance measured.
  • a secondary antibody can also be used in the sandwich ELISA method. By using a secondary antibody, the reaction can be amplified and detection sensitivity can be increased.
  • a secondary antibody is an antibody that specifically recognizes a primary antibody (second monoclonal antibody) in the following example.
  • the electrochemiluminescence immunoassay method means a method of measuring the amount of a substance to be detected by causing a labeling substance to emit light by applying an electric current and detecting the amount of light emitted.
  • a ruthenium complex can be used as a labeling substance in the electrochemiluminescence immunoassay method.
  • An electrode is placed on a solid phase (such as a microplate), and radicals are generated on the electrode to excite the ruthenium complex to emit light. Then, the amount of light emitted from this ruthenium complex can be detected.
  • the measurement procedure and principle when using magnetic particles as a solid phase and a ruthenium complex as a labeling substance are as follows.
  • the labeled antibody binds to SARS-CoV-2 or its peptide fragment bound to the magnetic particles.
  • the magnetic particles After the magnetic particles are washed, they emit light according to the amount of labeled antibody bound to SARS-CoV-2 or its peptide fragment when an electric current is applied. By measuring the amount of luminescence, the amount of the substance to be detected in the biological sample can be accurately measured.
  • Latex immunoturbidimetry is an immunoassay method that utilizes agglutination between an antibody bound to the surface of latex and a substance to be detected (antigen).
  • the latex particles are not particularly limited as long as they are latex particles generally used for in vitro diagnostic agents.
  • concentration of the latex particles, the average particle size of the latex particles, and the like during the agglutination reaction measurement can be appropriately set according to the sensitivity or performance.
  • the measurement procedure and principle when using the latex immunoturbidimetric method are as follows.
  • a first monoclonal antibody and a second monoclonal antibody are bound to latex particles and brought into contact with a biological sample.
  • SARS-CoV-2 or a peptide fragment thereof in the biological sample binds with the first monoclonal antibody and the second monoclonal antibody, and the antibody-bound latex particles agglutinate.
  • a biological sample is irradiated with near-infrared light to measure absorbance or scattered light. Based on the measured values, the antigen concentration can be determined.
  • latex is a solid phase and acts as a labeling substance. That is, both the first monoclonal antibody and the second monoclonal antibody are bound to each solid phase and labeled substance.
  • the immunoassay kit for SARS-CoV-2 in biological samples of the present invention (hereinafter sometimes simply referred to as the immunoassay kit of the present invention) is the immunoassay kit of the present invention.
  • the monoclonal antibody pairs of the invention may be in separate containers.
  • the immunoassay kit of the present invention includes immunoassay kits for performing immunochromatography, ELISA, electrochemiluminescence immunoassay, latex immunoturbidimetry, chemiluminescence immunoassay, and immunofluorescence assay, It is not limited to these.
  • the immunoassay kit of the present invention is preferably an immunoassay kit for performing ELISA or immunochromatography, more preferably an immunoassay kit for performing immunochromatography.
  • the immunoassay kit of the present invention can be an immunoassay kit for analyzing in vivo or in vitro samples.
  • the immunoassay kit of the present invention can also contain other test reagents such as standard antigen substances and quality control antigen samples, specimen diluents, and/or instructions for use.
  • test reagents such as standard antigen substances and quality control antigen samples, specimen diluents, and/or instructions for use.
  • a person skilled in the art can appropriately adjust the concentration of the antibody-containing reagent and the like.
  • a monoclonal antibody or an antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by KQQTVTLPAADLDDFSK (SEQ ID NO: 2) is used as a labeled antibody
  • AADLDDFSKQLQQSMSSA SEQ ID NO: 3
  • a monoclonal antibody or an antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by LLPAA (SEQ ID NO: 26) as a labeled antibody.
  • LLPAA SEQ ID NO: 26
  • a fragment and use a monoclonal antibody or antibody fragment thereof that recognizes an epitope in the amino acid sequence represented by LDDFSKQLQ (SEQ ID NO: 27) as the solid-phase antibody.
  • the immunoassay kit of the present invention can have a form in which an immunochromatographic test strip is stored and mounted in an appropriate container (housing).
  • An immunochromatographic test strip can be composed of a sample pad having a sample supply portion, an insoluble membrane carrier as a chromatographic medium, and an absorbent pad arranged at the downstream end of the insoluble membrane carrier.
  • a detection part immobilized with a first monoclonal antibody can be placed on an insoluble membrane carrier, and a conjugate pad having a conjugate placed thereon can be placed between the sample pad and the insoluble membrane carrier.
  • Conjugates may be contained on sample pads or insoluble membrane supports.
  • the configuration of immunochromatography for example, those described in International Publication No. 2018/012517 or International Publication No. 2016/031892 can be appropriately adopted.
  • labeling substances include colloidal gold particles, colloidal platinum particles, color latex particles, and magnetic particles. Gold colloidal particles are preferred.
  • the type and particle size of these labeling substances can be appropriately adjusted by those skilled in the art.
  • the immunoassay kit of the present invention can include the following (A) and (B).
  • a biological sample is added to the solid phase on which the first monoclonal antibody is immobilized, followed by incubation, removal of the biological sample, and washing.
  • a labeling reagent is added, incubated, and a substrate is added for color development.
  • SARS-CoV-2 or peptide fragments thereof can be analyzed by measuring color development using a plate reader or the like.
  • the immunoassay kit of the present invention can include the following (A) and (B).
  • a labeling reagent comprising a conjugate of a second monoclonal antibody and an electrochemiluminescent substance (eg, a ruthenium complex, etc.).
  • an electrochemiluminescent substance eg, a ruthenium complex, etc.
  • a biological sample is added to magnetic particles immobilized with a first monoclonal antibody that binds to SARS-CoV-2 or a peptide fragment thereof, and the biological sample is reacted. remove and wash.
  • the conjugate is then added and allowed to react. After washing the magnetic particles, electrical energy is applied to cause them to emit light. Then, SARS-CoV-2 or its peptide fragment can be analyzed by measuring the amount of luminescence of the labeled substance.
  • the immunoassay kit of the present invention can include the following (1) and (2).
  • Latex particles bound with a first monoclonal antibody (1) Latex particles bound with a first monoclonal antibody.
  • Latex particles to which a second monoclonal antibody is bound (2) Latex particles to which a second monoclonal antibody is bound.
  • latex is both a solid phase and a labeling substance. Both the first monoclonal antibody and the second monoclonal antibody are thus bound to each of the solid phase and labeling substance.
  • Nucleocapsid protein, His-tag 1-419 aa (hereinafter referred to as Nu antigen, NUN-C5227 manufactured by acrobiosystems) was used as an immunogen.
  • the Nu antigen was mixed 1:1 with Freund's Complete Adjuvant (Difco Laboratories) for the initial immunization and Freund's Complete Adjuvant (Difco Laboratories) for the second and subsequent immunizations.
  • the fused cells were cultured in a 96-well plate, and the culture supernatant was collected 7 or 8 days after the fusion. Thereafter, screening was performed by antigen-immobilized ELISA, which will be described later, and strains showing reactivity to the Nu antigen but not to NHis-cBSA were selected. In addition, the medium was exchanged on the day before the screening.
  • cell culture supernatant (2-fold dilution) and antiserum (1000- and 10000-fold dilution) were dispensed (50 ⁇ L/well) and allowed to stand at room temperature for 1 hour.
  • Goat anti-Mouse IgG (H+L) PAb-HRP manufactured by Southern Biotech, 1031-05, 9500-fold dilution was dispensed (50 ⁇ L/well) and allowed to stand at room temperature for 1 hour.
  • an OPD coloring solution was dispensed (50 ⁇ L/well) and allowed to stand at room temperature for 10 minutes.
  • a stopping solution was dispensed (50 ⁇ L/well), and after stopping the reaction, measurement was performed with a plate reader (Abs. 492 nm). Antibodies that showed reactivity with Nu antigen and no reactivity with NHis-cBSA were selected.
  • Group A (3 types), Group B (15 types), Group C1 (8 types), Group C2 (3 types), Group C3 (3 types), Group C4 (3 types), Group C4 ( 1 species) and Group D (1 species).
  • An immunochromatographic test strip was prepared by the following procedure. 1) Preparation of colloidal gold-labeled antibody solution To 20 mL of a 1 OD/mL colloidal gold solution, 1 mL of phosphate buffer containing 25 ⁇ g/mL of anti-SARS-CoV-2 was added and stirred at room temperature for 10 minutes. Subsequently, 2 mL of 10% BSA solution was added to the colloidal gold solution and stirred at room temperature for 5 minutes. The resulting solution was centrifuged at 10,000 rpm at 10° C. for 45 minutes to remove the supernatant.
  • PBS containing 1.0 mg/mL goat anti-mouse IgG monoclonal antibody and 2.5% sucrose was prepared as a control line coating solution.
  • a test line coating solution and a control line coating solution were each applied on a nitrocellulose membrane at 1.0 ⁇ L / cm and dried to form an antibody solid phase.
  • a modified membrane was obtained.
  • An antibody-immobilized membrane, a conjugate pad, and an absorbent pad were attached to a plastic adhesive sheet, and cut to a width of 5 mm to obtain an immunochromatographic test strip.
  • Test method 1 Sample SARS-CoV-2 (Isolate: USA-WA1/2020) Culture Fluid (Heat Inactivated) (ZeptoMetrix) diluted to 5.0 ⁇ 10 5 TCID 50 / mL with Universal Transport Medium (BD) did. The sample was further diluted 11-fold with a specimen diluent for rapid tester FLU-NEXT (Sekisui Medical Co., Ltd.). 2) Test procedure 120 ⁇ L of the sample was dropped onto the test strip, and after 10 minutes, it was visually determined whether the test line on the antibody-immobilized membrane developed color.
  • Table 2 shows the results of detection tests for SARS-CoV-2 inactivated antigens using test strips made with various antibody combinations. It was found that immunochromatography was able to detect the SARS-CoV-2 inactivating antigen in some antibody group pairs that could be sandwiched by ELISA.
  • Antibody epitope analysis 1 One type of antibody was selected from each antibody group, and it was confirmed whether these antibodies react with the Nu antigen on the N-terminal side or the C-terminal side.
  • An anti-His-tag antibody adjusted to 5 ⁇ g/mL was dispensed at 50 ⁇ L/well into a 96-well ELISA microplate and allowed to stand at 4° C. overnight. After washing three times with PBST, 100 ⁇ L/well of PBST (blocking solution) containing 1% BSA was dispensed and allowed to stand at 4° C. overnight.
  • Nu antigen prepared to 100 ng / ml, SARS-CoV-2 (COVID-19) NP NTD domain V2 Recombinant Protein His-tag, 44-180 aa (hereinafter referred to as NTD side region antigen, ProSci, 92 -749), or Recombinant nucleoprotein (C-term) antigen for COVID-19 (NP-CTD), His-tag 212-417 aa (hereinafter referred to as CTD lateral region antigen, rekom biotech, RAG0071) at 50 ⁇ L/ml and allowed to stand at room temperature for 1 hour.
  • Antibodies belonging to Groups A and D reacted with the NTD region antigen and recognized the N-terminal side of the Nu antigen.
  • Antibodies belonging to Groups B and C reacted with the CTD region antigen and recognized the C-terminal side of the Nu antigen.
  • Combinations in which sandwiching was possible in both Tables 1 and 2 were the combination of GroupB and C, and the combination of GroupC, so when using two antibodies that recognize the C-terminal side of the Nu antigen, Nu It was considered that the antigen could be detected with high sensitivity.
  • Antigen solid-phase ELISA was performed for more detailed epitope analysis of antibodies that react with the C-terminal side of the Nu antigen.
  • a synthetic peptide (10 ⁇ g/mL) corresponding to a specific amino acid sequence of the Nu antigen is dispensed into each 96-well ELISA microplate (50 ⁇ L/well) and allowed to stand at room temperature for 2 hours or 4° C. overnight. did.
  • a blocking solution 1% BSA-PBST was dispensed (100 ⁇ L/well) and allowed to stand at room temperature for 1 hour or at 4° C. overnight.
  • biotin-labeled S32202, S32213, S32212, S32217, and S32209 antibodies (1 ⁇ g/mL) were dispensed (50 ⁇ L/well) and allowed to stand at room temperature for 1 hour.
  • streptavidin-HRP ( ⁇ 5000) was dispensed (50 ⁇ L/well) and allowed to stand at room temperature for 1 hour.
  • OPD coloring solution (2 mg/mL) was dispensed (50 ⁇ L/well) and allowed to stand at room temperature for 10 minutes.
  • a reaction stop solution was dispensed (50 ⁇ L/well), and absorbance was measured with a plate reader (wavelength 492 nm).
  • Table 4 shows the reactivity between the antibodies representing each group and the synthetic peptides. Those that reacted are indicated by "+”, and those that did not react are indicated by "-”.
  • Antibodies belonging to Groups C1 and C2 reacted with the sequence of amino acids 388-405 of the nucleocapsid protein (SEQ ID NO: 48).
  • Antibodies belonging to Groups B, C3, and C4 reacted with the sequence of amino acids 397-414 (SEQ ID NO:49).
  • Example 3 Antibody epitope analysis 3
  • Linear epitope mapping (15 amino acid residue peptide chain length, analyzed by 14 amino acid residue overlapping peptides) and conformational epitope mapping (7, 10, 13 amino acid residue peptide chain length, 6, 9, respectively).
  • Tables 5 and 6 show partial excerpts of the analysis results by analysis using 12 amino acid residue overlapping peptides).
  • the S32213 antibody is LLPAA (SEQ ID NO: 26), which is the 394th to 398th amino acid sequence of the SARS-CoV-2 nucleocapsid protein, and the S32217 antibody is LDDFSKQLQ (SEQ ID NO: 27), which is the 400th to 408th amino acid sequence of the same protein. was shown to recognize epitopes present in LLPAA (SEQ ID NO: 26), which is the 394th to 398th amino acid sequence of the SARS-CoV-2 nucleocapsid protein, and the S32217 antibody is LDDFSKQLQ (SEQ ID NO: 27), which is the 400th to 408th amino acid sequence of the same protein. was shown to recognize epitopes present in
  • Example 4 Detection of SARS-CoV-2 by immunochromatography
  • An immunochromatographic test strip was prepared in the same manner as in Analysis Example 2.
  • the S32213 antibody was used as the labeled antibody, and the S32217 antibody was used as the solid phase antibody.
  • test Method A sample diluent for rapid tester FLU ⁇ NEXT (Sekisui Medical) was dispensed into diluent tubes at 500 ⁇ L each.
  • a sample was prepared by adding Universal Transport Medium (BD) to SARS-CoV-2 PCR positive swab (Trina).
  • BD Universal Transport Medium
  • Trina SARS-CoV-2 PCR positive swab
  • a cotton swab for sample collection was inserted into the sample, and after collecting the sample, the sample was extracted with the diluent in the diluent tube.
  • a sample filtration filter was attached to the diluent tube, and dead end filtration was carried out. 120 ⁇ L of the above sample was dropped onto the test device, and after 10 minutes, the presence or absence of the test line was visually determined.
  • the positive concordance rate with RT-PCR in immunochromatography was 100% (29/29 ⁇ 100).
  • the negative concordance rate with RT-PCR in immunochromatography was 92.3% (24/26 ⁇ 100).
  • the SARS-CoV-2 copy number per test was confirmed for the specimens used. All 29 positive specimens contained >1600 copies of SARS-CoV-2 per test.
  • the package insert of the commercially available SARS-CoV-2 antigen detection reagent describes the positive concordance rate when measuring 1600 copies/test sample.
  • Espline (registered trademark) SARS-CoV-2 (Fujirebio) had a positive concordance rate of 92% (12/13 ⁇ 100) at a measurement time of 30 minutes.
  • Example 5 Evaluation of specificity of immunochromatography
  • 500 ⁇ L of the sample diluent for Rapid Tester FLU ⁇ NEXT was dispensed into each diluent tube, and the sample was extracted from two nasopharyngeal swabs of the same healthy subject per diluent tube.
  • a sample filtration filter was attached to the diluent tube, and dead end filtration was carried out.
  • 120 ⁇ L of each of the above samples was dropped onto the same test device as in Example 5, and after 10 minutes and 30 minutes, visual and instrumental judgments were made.
  • RT-PCR was also performed in the same manner as in Example 5. Table 8 shows the determination results for 30 samples with different donors.
  • the S32223 antibody belongs to the same Group C3 as the S32217 antibody in the antibody classification by sandwich ELISA in Analysis Example 1.
  • the amino acid sequences of CDR1 to CDR3 of the heavy and light chain variable regions of the S32223 antibody have high identity with the amino acid sequences of CDR1 to CDR3 of the heavy and light chain variable regions of the S32217 antibody, respectively. there is therefore, the S32223 antibody is believed to have similar reactivity to the SARS-CoV-2 antigen as the S32217 antibody.
  • Example 7 Comparison with commercially available SARS-CoV-2 antigen detection reagent
  • the SARS-CoV-2-positive specimen was appropriately diluted with the specimen transport medium, and the rapid tester FLU NEXT specimen diluent (Sekisui Medical), Espline (registered trademark) SARS-CoV-2 specimen treatment solution (Fujirebio Co., Ltd. ), or added to Quick Navi (registered trademark) specimen suspension (for COVID19 Ag) (Denka) was used as a sample.
  • the sample is the immunochromatographic test strip used in Example 4, the existing SARS-CoV-2 measurement reagent Espline (registered trademark) SARS-CoV-2 (Fujirebio) and Quick Navi (registered trademark) - Measured with COVID19 Ag (Denka). Table 10 shows the measurement results.
  • the above results demonstrate that a highly sensitive and rapid SARS-CoV-2 measurement system can be established by using two monoclonal antibodies that bind to a peptide fragment containing the amino acid sequence shown in SEQ ID NO: 1. rice field. That is, the measurement reagent of the present invention exhibits a sensitivity equal to or higher than the commercially available SARS-CoV-2 antigen detection reagent in a shorter measurement time, and SARS-CoV-2 can be detected quickly and with high sensitivity. It was shown that it can be detected.
  • SARS-CoV-2 immunoassay kit and a SARS-CoV-2 immunoassay method that enable highly sensitive and rapid analysis, and a monoclonal antibody or antibody fragment thereof that can be used for them can be done.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明により、生体試料中のSARS-CoV-2の免疫測定方法であって、SARS-CoV-2のヌクレオカプシドタンパク質中の連続する30以下のアミノ酸から成るペプチド断片に結合するモノクローナル抗体又はその抗体断片を2種類用い、前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、異なるエピトープを認識する、免疫測定方法が提供される。

Description

SARS-CoV-2の免疫測定方法及び免疫測定キット
 本発明は、SARS-CoV-2の免疫測定方法及び免疫測定キットに関する。
 本願は、2021年6月16日に日本に出願された特願2021-100123号に基づき優先権を主張し、その内容をここに援用する。
 SARS-CoV-2は、coronavirus disease 2019(COVID-19)を引き起こすウイルスである。SARS-CoV-2は、ゲノムとして一本鎖プラス鎖RNAを持つ、コロナウイルス科に属している。現在、coronavirus disease 2019が世界中で流行し、多くの感染者が発生している。
 SARS-CoV-2の検出のために、PCR検査や抗原検査が用いられている。抗原検査は、検体採取から十数分程度で結果の確認が可能であるので、PCR検査より簡便に検査を行うことができる。その反面、SARS-CoV-2の迅速検出のためには高感度で特異的な検査が求められる。しかし、抗原検査は一般的にPCR検査よりも低感度である。したがって、より高感度の抗原検査が求められている。
 バイオインフォマティクスを用いて、SARS-CoV-2のアミノ酸配列中の、免疫測定のためのエピトープとなりうる領域の予測も行われている(非特許文献1)。しかしながら、記載されている領域をエピトープとして認識する抗体の作製は実際に行われていない。
 また、一般に、2種類の抗体を用いてサンドイッチ系を構築することで、抗原を高感度で測定する抗原検査が可能になる。しかしながら、SARS-CoV-2を抗原とした場合、どのような抗体を組み合わせてサンドイッチ系を構築すればよいか、未だ不明であった。
PATHOGENS AND GLOBAL HEALTH 2020,VOL.114,NO.8,463-470 Immunodominant regions prediction of nucleocapsid protein for SARS-CoV-2 early diagnosis: a bioinformatics and immunoinformatics study 「エスプライン(登録商標) SARS-CoV-2」(富士レビオ社)体外診断用医薬品の添付文書 「クイックナビ(登録商標)-COVID19 Ag」(デンカ社)体外診断用医薬品の添付文書
 本発明の課題は、高感度で迅速な免疫測定が可能なSARS-CoV-2免疫測定キット及びSARS-CoV-2の免疫測定方法を提供することである。
 本発明者らは上記課題を解決するために、鋭意検討した。そして、SARS-CoV-2のヌクレオカプシドタンパク質において、連続する30以下のアミノ酸から成るペプチド断片に結合し、それぞれ、異なるエピトープを認識する2種類のモノクローナル抗体又はその抗体断片を用いることで、前記課題を解決できることを見出し、本発明を完成するに至った。
 本発明者らは、実施例において、本発明の免疫測定方法の一実施形態と市販のSARS-CoV-2抗原検出用試薬である、エスプライン(登録商標)SARS-CoV-2(富士レビオ社)(非特許文献2)及びクイックナビ(登録商標)-COVID19 Ag(デンカ社)(非特許文献3)との感度を比較している。本発明の免疫測定方法の一実施形態は、これらの2種の試薬に対して、より短い測定時間で、同等以上の感度を示している。
 具体的に、本発明は以下のとおりである。
[1] 生体試料中のSARS-CoV-2の免疫測定方法であって、SARS-CoV-2のヌクレオカプシドタンパク質中の連続する30以下のアミノ酸から成るペプチド断片に結合するモノクローナル抗体又はその抗体断片を2種類用い、前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、異なるエピトープを認識する、免疫測定方法。
[2] 前記連続する30以下のアミノ酸から成るペプチド断片が、27~30のアミノ酸から成るペプチド断片である、[1]に記載の免疫測定方法。
[3] 前記連続する30以下のアミノ酸から成るペプチド断片が、SARS-CoV-2のヌクレオカプシドタンパク質のC末端領域に位置する、[1]又は[2]に記載の免疫測定方法。
[4] 前記連続する30以下のアミノ酸から成るペプチド断片が、KQQTVTLLPAADLDDFSKQLQQSMSSA(配列番号1)で表されるアミノ酸配列から成るペプチド断片である、[1]に記載の免疫測定方法。
[5] 前記生体試料が、呼吸器分泌液である、[1]~[4]のいずれかに記載の免疫測定方法。
[6] 前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、第一モノクローナル抗体又はその抗体断片、及び第二モノクローナル抗体又はその抗体断片であり、第一モノクローナル抗体又はその抗体断片は、標識物質と間接的又は直接的に結合しており、第二モノクローナル抗体又はその抗体断片は、固相と間接的又は直接的に結合している、[1]~[5]のいずれかに記載の免疫測定方法。
[7] 以下の工程を含む、[6]に記載の免疫測定方法。
(1)生体試料と、標識物質に結合している第一モノクローナル抗体又はその抗体断片とを接触させ、第一複合体を形成する工程、
(2)前記第一複合体と、第二モノクローナル抗体又はその抗体断片とを接触させ、第二複合体を形成する工程、及び
(3)標識物質に由来するシグナルを測定する工程。
[8] 前記第一モノクローナル抗体又はその抗体断片が、KQQTVTLLPAADLDDFSK(配列番号2)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片であり、前記第二モノクローナル抗体又はその抗体断片が、AADLDDFSKQLQQSMSSA(配列番号3)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片である、[7]に記載の免疫測定方法。
[9] イムノクロマトグラフィー、又はELISAである、[1]~[8]のいずれかに記載の免疫測定方法。
[10] 前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、以下の(1)~(4)からなる群から選択される、[1]~[9]のいずれかに記載の免疫測定方法。
(1)配列番号4のアミノ酸配列を有するCDR1、配列番号5のアミノ酸配列を有するCDR2、及び配列番号6のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号7のアミノ酸配列を有するCDR1、配列番号8のアミノ酸配列を有するCDR2、及び配列番号9のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(2)配列番号10のアミノ酸配列を有するCDR1、配列番号11のアミノ酸配列を有するCDR2、及び配列番号12のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号13のアミノ酸配列を有するCDR1、配列番号14のアミノ酸配列を有するCDR2、及び配列番号15のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(3)配列番号16のアミノ酸配列を有するCDR1、配列番号17のアミノ酸配列を有するCDR2、及び配列番号18のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号19のアミノ酸配列を有するCDR1、配列番号20のアミノ酸配列を有するCDR2、及び配列番号21のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(4)前記(1)~(3)のいずれかの抗体又はその抗体断片の重鎖可変領域及び軽鎖可変領域と、それぞれ、80%以上のアミノ酸配列の同一性を有する重鎖可変領域及び軽鎖可変領域を含む抗体又はその抗体断片。
[11] 生体試料中のSARS-CoV-2の免疫測定キットであって、SARS-CoV-2のヌクレオカプシドタンパク質中の連続する30以下のアミノ酸から成るペプチド断片に結合するモノクローナル抗体又はその抗体断片を2種類含み、前記2種類のモノクローナル抗体又はその抗体断片は、それぞれ、異なるエピトープを認識する、免疫測定キット。
[12] 前記連続する30以下のアミノ酸から成るペプチド断片が、27~30のアミノ酸から成るペプチド断片である、[11]に記載の免疫測定キット。
[13] 前記連続する30以下のアミノ酸から成るペプチド断片が、SARS-CoV-2のヌクレオカプシドタンパク質のC末端領域に位置する、[11]又は[12]に記載の免疫測定キット。
[14] 前記連続する30以下のアミノ酸から成るペプチド断片が、KQQTVTLLPAADLDDFSKQLQQSMSSA(配列番号1)で表されるアミノ酸配列から成るペプチド断片である、[11]に記載の免疫測定キット。
[15] 前記生体試料が、呼吸器分泌液である、[11]~[14]のいずれかに記載の免疫測定キット。
[16] 前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、第一モノクローナル抗体又はその抗体断片、及び第二モノクローナル抗体又はその抗体断片であり、第一モノクローナル抗体又はその抗体断片は、標識物質と間接的又は直接的に結合しており、第二モノクローナル抗体又はその抗体断片は、固相と間接的又は直接的に結合している、[11]~[15]のいずれかに記載の免疫測定キット。
[17] 前記第一モノクローナル抗体又はその抗体断片が、KQQTVTLLPAADLDDFSK(配列番号2)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片であり、前記第二モノクローナル抗体又はその抗体断片が、AADLDDFSKQLQQSMSSA(配列番号3)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片である、[16]に記載の免疫測定キット。
[18] イムノクロマトグラフィー、又はELISA用のキットである、[11]~[17]のいずれかに記載の免疫測定キット。
[19] 前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、以下の(1)~(4)からなる群から選択される、[11]~[18]のいずれかに記載の免疫測定キット。
(1)配列番号4のアミノ酸配列を有するCDR1、配列番号5のアミノ酸配列を有するCDR2、及び配列番号6のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号7のアミノ酸配列を有するCDR1、配列番号8のアミノ酸配列を有するCDR2、及び配列番号9のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(2)配列番号10のアミノ酸配列を有するCDR1、配列番号11のアミノ酸配列を有するCDR2、及び配列番号12のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号13のアミノ酸配列を有するCDR1、配列番号14のアミノ酸配列を有するCDR2、及び配列番号15のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(3)配列番号16のアミノ酸配列を有するCDR1、配列番号17のアミノ酸配列を有するCDR2、及び配列番号18のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号19のアミノ酸配列を有するCDRと、配列番号20のアミノ酸配列を有するCDR2、及び配列番号21のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(4)前記(1)~(3)のいずれかの抗体又はその抗体断片の重鎖可変領域及び軽鎖可変領域と、それぞれ、80%以上のアミノ酸配列の同一性を有する重鎖可変領域及び軽鎖可変領域を含む抗体又はその抗体断片。
 また、本発明は、以下の実施形態も包含する。
 (A)2種類のモノクローナル抗体又はその抗体断片が、それぞれ、LLPAA(配列番号26)で表されるアミノ酸配列をエピトープとして認識するモノクローナル抗体又はその抗体断片、及び、LDDFSKQLQ(配列番号27)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片である、[1]~[10]のいずれかに記載の免疫測定方法。
 (B)2種類のモノクローナル抗体又はその抗体断片が、それぞれ、LLPAA(配列番号26)で表されるアミノ酸配列をエピトープとして認識するモノクローナル抗体又はその抗体断片、及び、LDDFSKQLQ(配列番号27)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片である、[11]~[19]のいずれかに記載の免疫測定キット。
 本発明によれば、高感度で迅速な分析が可能なSARS-CoV-2免疫測定キット及びSARS-CoV-2の免疫測定方法を提供することができる。
ヌクレオカプシドタンパク質のアミノ酸配列を示す図である。 抗体のエピトープ解析に用いた合成ペプチドのアミノ酸配列とヌクレオカプシドタンパク質上のアミノ酸配列との対応関係を示す図である。
1.SARS-CoV-2の免疫測定方法
(生体試料)
 本明細書における「生体試料」としては、主に生体由来の固形組織及び体液を挙げることができる。
 生体試料としては、血液、血清、血漿、尿、涙液、耳漏、前立腺液、又は呼吸器分泌液が挙げられる。呼吸器分泌液が好ましい。本明細書において、「呼吸器分泌液」とは、呼吸器の組織内又は表面において分泌される体液を意味する。呼吸器分泌液としては、鼻孔、鼻腔、咽頭、鼻咽頭、口腔、気管、気管支、又は及び肺などにおいて分泌される体液が挙げられるが、鼻咽頭ぬぐい液、鼻腔ぬぐい液、唾液、又は喀痰が特に好ましい。なお、本明細書において「呼吸器」とは、呼吸に関係する器官の総称であり、鼻前庭から、鼻腔、咽頭、喉頭、気管、気管支、細気管支を経た肺胞(肺)までの器官をいう。
 生体試料を採取する対象は、ヒト又は動物(例えば、サル、イヌ、又はネコ)を含み、好ましくはヒトである。生体試料は、対象からの生体試料そのものであってもよく、採取した生体試料に通常行われる希釈、濃縮等の処理を行ったものであってもよい。なお、本発明の免疫測定方法に用いられる生体試料の採取や調製を行う者は、本発明の免疫測定方法を行う者と同一人物でもよく、別人物であってもよい。また、本発明に用いられる生体試料は、本発明の免疫測定方法の実施時に採取又は調製されたものでもよく、予め採取又は調製され保存されたものであってもよい。
 本明細書において、「エピトープ」とは、抗体によって認識される抗原(本発明の場合にはSARS-CoV-2)の一部をいう。
(SARS-CoV-2)
 SARS-CoV-2は、coronavirus disease 2019(COVID-19)を引き起こすウイルスである。SARS-CoV-2のウイルス粒子は、スパイクタンパク質、ヌクレオカプシドタンパク質、膜タンパク質、及びエンベロープタンパク質として知られる4つのタンパク質と、RNAにより構成されている。
 SARS-CoV-2のヌクレオカプシドタンパク質は、419アミノ酸から成るタンパク質である(配列番号22)。ヌクレオカプシドタンパク質には変異が生じる可能性があり、したがって、ヌクレオカプシドタンパク質には、配列番号22で表されるアミノ酸配列と、少なくとも90%、例えば91%、92%、93%、94%、95%、96%、97%、98%、又は99%の同一性を有するアミノ酸配列で表されるペプチド断片が含まれる。
 ヌクレオカプシドタンパク質には、NTD抗原(N末端のRNA結合ドメインを含む)、CTD抗原(C末端の二量体化ドメインを含む)、及び中央部に位置するSer/Arg(SR)リッチなリンカー領域が含まれる。
 NTD抗原は、ヌクレオカプシドタンパク質の第1~第174アミノ酸の領域である。そのうち第1~第49アミノ酸の領域がN末端領域であり、第50~第174アミノ酸の領域がRNA結合ドメインである。
 NTD抗原のアミノ酸配列を以下に示す。
MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGKEDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQLPQGTTLPKGFYAE(配列番号23)
 リンカー領域は、ヌクレオカプシドタンパク質の第175~第247アミノ酸の領域である。
 リンカー領域のアミノ酸配列を以下に示す。
GSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQQQGQTVT(配列番号24)
 CTD抗原は、ヌクレオカプシドタンパク質の第248~第419アミノ酸の領域である。そのうち第248~第364アミノ酸の領域が二量体化ドメインであり、第365~第419アミノ酸の領域がC末端領域である。
 CTD抗原のアミノ酸配列を以下に示す。
KKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQTVTLLPAADLDDFSKQLQQSMSSADSTQA(配列番号25)
(モノクローナル抗体)
 本明細書において、「モノクローナル抗体」とは、単一の抗体産生細胞に由来するクローンから得られた抗体又は抗体分子を意味する。本発明の免疫測定方法では、本発明の効果が得られる限りにおいて、該モノクローナル抗体の機能を有する抗体断片も使用することができる。モノクローナル抗体の機能を有する抗体断片としては、例えば、モノクローナル抗体の酵素的消化により得られる該モノクローナル抗体のFab部分を含む機能性断片、遺伝子組換えによって作製される該モノクローナル抗体のFab部分を含む機能性断片、及びファージディスプレイ法で作製されたscFvを含む機能性断片等が挙げられる。
(連続する30以下のアミノ酸から成るペプチド断片)
 本発明の免疫測定方法で用いられるモノクローナル抗体又はその抗体断片は、SARS-CoV-2のヌクレオカプシドタンパク質中の連続する30以下のアミノ酸から成るペプチド断片に結合する。以後、SARS-CoV-2のヌクレオカプシドタンパク質中の連続する30以下のアミノ酸から成るペプチド断片と結合する2種類のモノクローナル抗体又はその抗体断片を、本発明のモノクローナル抗体ペアと呼ぶことがある。また、本発明のモノクローナル抗体ペアを構成する一のモノクローナル抗体を、本発明のモノクローナル抗体と呼ぶことがある。
 本発明のモノクローナル抗体ペアは、好ましくは、いずれもSARS-CoV-2のヌクレオカプシドタンパク質中の連続する27~30以下のアミノ酸から成る一のペプチド断片と結合し、より好ましくは、いずれも、ヌクレオカプシドタンパク質のC末端側の領域に存在するKQQTVTLLPAADLDDFSKQLQQSMSSA(配列番号1)で表されるアミノ酸配列からなるペプチド断片に結合し、さらに好ましくは、一方のモノクローナル抗体が、KQQTVTLLPAADLDDFSK(配列番号2)で表されるアミノ酸配列中のエピトープを認識することができ、もう一方のモノクローナル抗体が、AADLDDFSKQLQQSMSSA(配列番号3)で表されるアミノ酸配列中のエピトープを認識することができ、最も好ましくは、一方のモノクローナル抗体が、LLPAA(配列番号26)で表されるアミノ酸配列をエピトープとして認識し、もう一方のモノクローナル抗体が、LDDFSKQLQ(配列番号27)で表されるアミノ酸配列中のエピトープを認識する。
 本発明のモノクローナル抗体ペアは、それぞれ、異なるエピトープを認識する。「異なるエピトープを認識する」とは、エピトープとして認識するアミノ酸配列が重複しないことを意味する。
 本発明のモノクローナル抗体ペアは、それぞれ、単離されたモノクローナル抗体又はその抗体断片であることができる。
 なお、モノクローナル抗体又はその抗体断片を「2種類用いる」とは、本発明のモノクローナル抗体を「少なくとも2種類」用いていれば足り、2種類よりも多くの本発明のモノクローナル抗体を用いている実施形態を、本発明の範囲から除外するものではない。
 本明細書では、SARS-CoV-2のヌクレオカプシドタンパク質中の第365~第419アミノ酸をC末端領域と称する。本発明のモノクローナル抗体ペアは、それぞれ、このC末端領域に存在する、連続する30以下のアミノ酸から成るペプチド断片に結合することが好ましい。すなわち、前記連続する30以下のアミノ酸から成るペプチド断片は、SARS-CoV-2のヌクレオカプシドタンパク質のC末端領域に位置することが好ましい。C末端領域は、SARS-CoV-2のアミノ酸変異が生じにくいことが報告されている。したがって、C末端領域を認識する抗体は、他の領域を認識する抗体と比較して、アミノ酸変異が生じたSARS-CoV-2とも結合できる可能性が高い。
 本発明のモノクローナル抗体ペアは、好ましくは、それぞれ、SARS-CoV-2のヌクレオカプシドタンパク質中の連続する30以下のアミノ酸から成るペプチド断片中に存在するエピトープを特異的に認識する。「エピトープを特異的に認識する」とは、特定のペプチド断片又はエピトープ以外には、実質的に結合しないことを意味する。
 本発明のモノクローナル抗体ペアの一方と、あるアミノ酸配列を有するペプチド断片と、が「実質的に結合しない」か否かを確認するために、例えば、SPR法に基づき、Biacore(登録商標)T100やT200を使用し、本発明のモノクローナル抗体ペアの一方を固定化して測定を行うことができる。上記SPR法以外の当業者に周知の方法又は手段によっても「実質的に結合しない」ことを確認できる。
 本発明のモノクローナル抗体ペアは、それぞれ、以下の(1)~(4)からなる群から選択される2種のペアであることが好ましい。
(1)配列番号4のアミノ酸配列を有するCDR1、配列番号5のアミノ酸配列を有するCDR2、及び配列番号6のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号7のアミノ酸配列を有するCDR1、配列番号8のアミノ酸配列を有するCDR2、及び配列番号9のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(2)配列番号10のアミノ酸配列を有するCDR1、配列番号11のアミノ酸配列を有するCDR2、及び配列番号12のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号13のアミノ酸配列を有するCDR1、配列番号14のアミノ酸配列を有するCDR2、及び配列番号15のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体若又はその抗体断片。
(3)配列番号16のアミノ酸配列を有するCDR1、配列番号17のアミノ酸配列を有するCDR2、及び配列番号18のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号19のアミノ酸配列を有するCDR1、配列番号20のアミノ酸配列を有するCDR2、及び配列番号21のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(4)前記(1)~(3)のいずれかの抗体又はその抗体断片の重鎖可変領域及び軽鎖可変領域と、それぞれ、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上のアミノ酸配列の同一性を有する重鎖可変領域及び軽鎖可変領域を含む抗体又はその抗体断片。
 前記のアミノ酸配列の同一性は、重鎖可変領域のCDR1、CDR2、及びCDR3、並びに、軽鎖可変領域のCDR1、CDR2、及びCDR3を構成するアミノ酸配列(HCCDR1+HCCDR2+HCCDR3+LCCDR1+LCCDR2+LCCDR3)に対する配列同一性であることが好ましい。
 なお、「配列番号4のアミノ酸配列を有するCDR1」とは、CDR1が、配列番号4のアミノ酸配列からなることを意味する。その他のCDR(Complementarity-determining region)についても同様である。
 本発明のモノクローナル抗体は、重鎖可変領域及び軽鎖可変領域以外に、定常領域(C領域)を含むことができる。定常領域としては、軽鎖において、CL領域を含むことができ、重鎖において、CH領域(CH1、CH2、及びCH3)を含むことができる。
 本発明のモノクローナル抗体ペアは、それぞれ、以下の(1)、(2)、及び(4)からなる群から選択される2種のペアであることがより好ましい。
(1)配列番号4のアミノ酸配列を有するCDR1、配列番号5のアミノ酸配列を有するCDR2、及び配列番号6のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号7のアミノ酸配列を有するCDR1、配列番号8のアミノ酸配列を有するCDR2、及び配列番号9のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(2)配列番号10のアミノ酸配列を有するCDR1、配列番号11のアミノ酸配列を有するCDR2、及び配列番号12のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号13のアミノ酸配列を有するCDR1、配列番号14のアミノ酸配列を有するCDR2、及び配列番号15のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
(4)前記(1)~(2)のいずれかの抗体又はその抗体断片の重鎖可変領域及び軽鎖可変領域と、それぞれ、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上のアミノ酸配列の同一性を有する重鎖可変領域及び軽鎖可変領域を含む抗体又はその抗体断片。
 本発明のモノクローナル抗体ペアは、(1)の抗体及び(2)の抗体のペアであることがさらに好ましく、(1)の抗体を標識抗体として用い、(2)の抗体を固相抗体として用いることが最も好ましい。
 前記抗体(1)としては、KQQTVTLLPAADLDDFSK(配列番号2)で表されるアミノ酸配列中のエピトープを認識する抗体、例えばS32213抗体が挙げられる。また、前記抗体(1)としては、LLPAA(配列番号26)で表されるアミノ酸配列をエピトープとして認識する抗体、例えばS32213抗体が挙げられる。
 前記抗体(2)としては、AADLDDFSKQLQQSMSSA(配列番号3)のアミノ酸配列中のエピトープを認識する抗体、例えばS32217抗体が挙げられる。また、前記抗体(2)としては、LDDFSKQLQ(配列番号27)で表されるアミノ酸配列中のエピトープを認識する抗体、例えばS32217抗体が挙げられる。
 前記抗体(3)としては、CTD側領域抗原中のエピトープを認識する抗体、例えばS32223抗体が挙げられる。S32223抗体は、S32217抗体と同様の反応性を有すると考えられる。
 本明細書において、モノクローナル抗体又はその抗体断片が特定の物質又はアミノ酸配列と「反応する」、「認識する」、及び「結合する」は、同義で用いられる。モノクローナル抗体が抗原(化合物)と「反応する」か否かの確認は、抗原固相化ELISA、競合ELISA、又はサンドイッチELISAなどにより行うことができる。その他、表面プラズモン共鳴(surface plasmon resonance)の原理を利用した方法(SPR法)などにより行うことができる。SPR法は、Biacore(登録商標)の名称で市販されている、装置、センサ、又は試薬類を使用して行うことができる。
 例えば、後述する実施例1のエピトープ解析(抗体のエピトープ解析1)と同様の操作をした場合に、最も吸光度が高くなったペプチド断片に含まれるアミノ酸配列をエピトープとして認識したと評価することができる。
(モノクローナル抗体の調製方法)
 本発明のモノクローナル抗体は、抗原(免疫原)として、全長のヌクレオカプシドタンパク質をリン酸緩衝生理食塩水などの溶媒に溶解し、この溶液を非ヒト動物に投与して免疫することにより調製できる。必要に応じて前記溶液に適宜のアジュバントを添加した後、エマルジョンを用いて免疫を行ってもよい。アジュバントとしては、油中水型乳剤、水中油中水型乳剤、水中油型乳剤、リポソーム、水酸化アルミニウムゲルなどの汎用されるアジュバントのほか、生体成分由来のタンパク質又はペプチド性物質などを用いてもよい。例えば、フロイントの不完全アジュバント又はフロイントの完全アジュバントなどを好適に用いることができる。アジュバントの投与経路、投与量、投与時期は特に限定されないが、抗原を免疫する動物において所望の免疫応答を増強できるように適宜選択することが望ましい。
 免疫に用いる動物の種類も特に限定されないが、哺乳動物、例えばマウス、ラット、ウシ、ウサギ、ヤギ、ヒツジ、アルパカ、マウス、又はラットが好ましく、より好ましくはマウス又はラットを用いることができる。動物の免疫は、一般的な手法に従って行えばよく、例えば、抗原の溶液、好ましくはアジュバントとの混合物を動物の皮下、皮内、静脈、又は腹腔内に注射することにより行うことができる。免疫応答は、一般的に免疫される動物の種類及び系統によって異なるので、免疫スケジュールは使用される動物に応じて適宜設定することが望ましい。抗原投与は最初の免疫後に何回か繰り返し行うことが好ましい。
 本発明のモノクローナル抗体を得るために、引き続き以下の操作が行われることができるが、これらに限定されることはない。モノクローナル抗体それ自体の製造方法については当業界で周知されており、かつ汎用されているので当業者は前記の抗原を用いることによって本発明のモノクローナル抗体を調製することが可能である(例えば、Antibodies,A Laboratory Manual(Cold Spring Harbor Laboratory Press,1988) 第6章などを参照のこと)。
 最終免疫後、免疫した動物から抗体産生細胞である脾臓細胞あるいはリンパ節細胞を摘出し、高い増殖能を有する骨髄腫由来の細胞株と細胞融合することによりハイブリドーマを作製することができる。細胞融合には抗体産生能(質・量)が高い細胞を用いることが好ましく、また骨髄腫由来の細胞株は融合する抗体産生細胞の由来する動物と適合性があることがより好ましい。細胞融合は、当該分野で公知の方法に従って行うことができる。例えば、ポリエチレングリコール法、センダイウイルスを用いた方法、又は電流を利用する方法などを採用することができる。得られたハイブリドーマは、当業界で汎用の条件に従って増殖させることができる。産生される抗体の性質を確認しつつ、所望のハイブリドーマを選択することができる。ハイブリドーマのクローニングは、例えば限界希釈法や軟寒天法などの周知の方法により行うことが可能である。
 クローニング工程後、産生されるモノクローナル抗体と全長のヌクレオカプシドタンパク質との結合能をELISA、RIA法、又は蛍光抗体法などの方法を用いてアッセイすることができる。これらの操作により、選択されたハイブリドーマが所望の性質を有するモノクローナル抗体を産生するか否かを確認することができる。
 前記のようにして選別されたハイブリドーマを大量培養することにより、所望の特性を有するモノクローナル抗体を製造することができる。大量培養の方法は特に限定されないが、例えば、ハイブリドーマを適宜の培地中で培養してモノクローナル抗体を培地中に産生させる方法、及び哺乳動物の腹腔内にハイブリドーマを注射して増殖させ、腹水中にモノクローナル抗体を産生させる方法などを挙げることができる。
 本発明のモノクローナル抗体としては、抗体分子全体のほかに抗原抗体反応活性を有するモノクローナル抗体の抗体断片を使用することも可能である。前記のように動物への免疫工程を経て得られたもののほか、遺伝子組換え技術を使用して得られるモノクローナル抗体、例えば、キメラ抗体、ヒト化抗体、ヒト抗体等を用いることも可能である。モノクローナル抗体の断片としては例えば、F(ab’)2、Fab’、scFvなどが挙げられる。これらのフラグメントは前記のようにして得られるモノクローナル抗体をタンパク質分解酵素(例えば、ペプシンやパパインなど)で処理すること、あるいは該抗体のDNAをクローニングして大腸菌や酵母を用いた培養系で発現させることにより調製できる。
 本発明のモノクローナル抗体ペアを用いることにより、本発明の免疫測定方法においてサンドイッチ系を構築することができる。サンドイッチ系とは、被検出物質を、異なるエピトープを認識する2種類の抗体で挟みこむことにより、高い特異性及び感度を得る方法である。
 連続する30以下のアミノ酸から成るペプチド断片に結合するモノクローナル抗体又はその抗体断片を2種類用いることで、アミノ酸の変異、及び酵素等によるペプチドの切断に影響されにくくなり、高感度となることが考えられる。
 サンドイッチ系を構築する場合、本発明のモノクローナル抗体ペアのうち少なくとも1つは、固相抗体であり、少なくとも1つは、標識抗体であることが好ましい。本明細書において、固相抗体とは、固相上に直接的又は間接的に固相化されたモノクローナル抗体を意味する。本明細書において、標識抗体とは、標識物質由来のシグナル測定時に、後述する当業者に周知慣用の標識物質で直接的又は間接的に標識されているモノクローナル抗体を意味する。
 例えば、固相にモノクローナル抗体を物理的に吸着させる、又は化学的に結合(適当なスペーサーを介してよい)させることにより固相抗体を製造することができる。固相としては、ポリスチレン樹脂などの高分子基材、ガラスなどの無機基材、又はセルロースやアガロースなどの多糖類基材などからなる固相を用いることができる。固相の形状は特に限定されず、板状(例えば、マイクロプレートやメンブレン)、ビーズ若しくは粒子状(例えば、ラテックス粒子、磁性粒子)、又は筒状(例えば、試験管)など任意の形状を選択できる。
 本発明のモノクローナル抗体と直接的に結合可能な標識抗体(二次抗体)を用いることにより、SARS-CoV-2又はそのペプチド断片に結合した抗体の量を測定することもできる。本明細書では、本発明のモノクローナル抗体に結合し、且つ標識物質を結合させた抗体を二次抗体と称する。この二次抗体を用いて、標識物質を本発明のモノクローナル抗体に間接的に結合させてもよい。
 標識物質が発するシグナルの強さを測定して、生体試料中のSARS-CoV-2又はそのペプチド断片の量を測定することができる。標識抗体を調製するための標識物質としては、例えば金属錯体、酵素、不溶性粒子、蛍光物質、化学発光物質、ビオチン、アビジン、放射性同位体、金コロイド粒子、又は着色ラテックスが挙げられる。標識物質とモノクローナル抗体との結合法としては、当業者に利用可能な物理吸着、グルタルアルデヒド法、マレイミド法、ピリジルジスルフィド法、又は過ヨウ素酸法を用いることができる。ホースラディッシュ・ペルオキシダーゼ(HRP)又はアルカリホスファターゼ(ALP)などの酵素を標識物質として用いる場合には、その酵素の特異的基質を用いて酵素活性を測定することができる。例えば、酵素がHRPの場合には、O-フェニレンジアミン(OPD)又は3,3’,5,5’-テトラメチルベンジジン(TMB)を用いることができ、ALPの場合にはp-ニトロフェニル・ホスフェートを用いて酵素活性を測定することができる。ビオチンを標識物質として用いる場合には、モノクローナル抗体をビオチンで標識し、酵素、色素、又は蛍光標識(好ましくはHRP)で標識したアビジン又はストレプトアビジンを反応させることもできる。本発明の免疫測定方法においては、標識物質として金コロイド粒子を使用することが好ましい。
 本明細書において、抗原や抗体を固相に物理的あるいは化学的に担持させることあるいは担持させた状態を「固定化」又は「固相化」と表現することがある。また、「分析」、「検出」、又は「測定」という用語は、SARS-CoV-2又はそのペプチド断片の存在の証明及びSARS-CoV-2又はそのペプチド断片の定量を含む。
 本発明の免疫測定方法では、異なるエピトープを認識する2種類のモノクローナル抗体を用いる。なお、便宜上、一方のモノクローナル抗体を第一モノクローナル抗体と称し、他方のモノクローナル抗体を第二モノクローナル抗体と称することがある。
 第一モノクローナル抗体が標識抗体であり、第二モノクローナル抗体が固相抗体である場合、本発明の免疫測定方法では、以下の工程(1)~(3)を含むことができる。
(1)生体試料と標識物質に結合している第一モノクローナル抗体とを接触させ、第一複合体(SARS-CoV-2又はそのペプチド断片、標識物質、及び第一モノクローナル抗体を含む)を形成する工程。
(2)前記第一複合体と、第二モノクローナル抗体とを接触させ、第二複合体(SARS-CoV-2又はそのペプチド断片、標識物質、第一モノクローナル抗体、及び第二モノクローナル抗体を含む)を形成する工程。
(3)標識物質に由来するシグナルを測定する工程。
 第二複合体には、標識物質が含まれている。シグナルの測定は、標識物質に応じて、当業者に周知の測定方法を採用することができる。シグナルの測定は、測定機器を用いて行ってもよく、目視により行ってもよい。
 本発明の免疫測定方法では、必要に応じて、生体試料を前処理する工程、及び/又は、得られたシグナルの強さを第一閾値と比較する工程を含んでもよい。前処理としては、生体試料のろ過、及び検体希釈液による生体試料の希釈などが挙げられる。第一閾値は、感度及び生体試料等の種類を考慮して、適宜設定することができる。
 第一閾値は範囲であってもよい。「第一閾値が範囲である」とは、示される範囲の間に、具体的な閾値が存在し、測定値がその具体的な閾値より大きいか又は小さいか判定することにより疾患の有無を判断することを意味する。
 第一閾値は、例えば、1.1×10TCID50/mLであることができる。
 第一閾値が範囲である場合、第一閾値は、1.1×10TCID50/mL~2.0×10TCID50/mLの間、1.1×10TCID50/mL~1.8×10TCID50/mLの間、又は1.1×10TCID50/mL~1.5×10TCID50/mLの間に存在することができる。
 本発明の免疫測定方法では、シグナルの強さが第一閾値より低い(高い)場合は、SARS-CoV-2に感染していると判定する工程を含むことができ、又はシグナルの強さが第一閾値より高い(低い)場合は、SARS-CoV-2に感染していないと判定する工程を含むことができる。
 本発明の免疫測定方法は、シグナルの測定値に基づいて、SARS-CoV-2に感染している対象における、特定の医薬の治療効果を判定することができる。この場合、本発明の免疫測定方法は、上記工程に加えて、以下の工程をさらに含むことができる。
 対象に、特定の医薬を投与する工程、及び/又はシグナルの強さを第二閾値と比較する工程。
 この場合、第二閾値は、感度及び生体試料の種類等を考慮して、適宜設定することができるが、対象に特定の医薬を投与する前の前記対象におけるSARS-CoV-2又はそのペプチド断片の測定値であってもよい。
 本発明の免疫測定方法では、シグナルの強さが第二閾値より低い(高い)場合は、特定の医薬が治療効果があると判定する工程、又はシグナルの強さが第二閾値より高い(低い)場合は、特定の医薬が治療効果がないと判定する工程、を含むことができる。
 前記の治療効果の判定では、数日毎に測定を行い、治療効果をモニタリングしてもよい。
(免疫測定方法)
 「免疫測定方法」とは抗原と抗体の反応を利用して、生体試料の中に含まれる物質のレベルを測定する方法である。「レベル」とは、物質の量、濃度、又は存在若しくは不存在の確認等を含む。
 本発明の免疫測定方法としては、電気化学発光免疫測定法(ECL法)、酵素免疫測定法(ELISA)、ラテックス免疫比濁法(LTIA法)、化学発光免疫測定法、イムノクロマトグラフィー、及び蛍光抗体法が挙げられるが、これらに限定されるものではない。本発明の免疫測定方法は、好ましくは、ELISA、又はイムノクロマトグラフィーであり、より好ましくはイムノクロマトグラフィーである。
 本発明の免疫測定方法は、インビボ又はインビトロの免疫測定方法であることができる。また、感度を増強するために、増感剤を使用することもできる。
 本発明の免疫測定方法は、生体試料に、1.1×10TCID50/mL以上に相当する量で含まれる、SARS-CoV-2又はそのペプチド断片を分析することができる。
 本発明の免疫測定方法において、本発明のモノクローナル抗体と生体試料を測定系に添加する順序は、本発明の効果が得られる限りにおいて、限定されることはない。すなわち、本発明のモノクローナル抗体を、生体試料の添加前に、生体試料の添加と同時に、又は生体試料の添加の後に、測定系に添加することができる。
 以下、採用する免疫測定方法毎に、測定の手順及び原理を説明する。下記は本発明の一実施形態における測定の手順及び原理を単に例示するものであり、本発明の範囲を何ら限定するものではない。
 本発明の免疫測定方法では、標識抗体としてKQQTVTLLPAADLDDFSK(配列番号2)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片を使用し、固相抗体として、AADLDDFSKQLQQSMSSA(配列番号3)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片を使用することが好ましく、標識抗体としてLLPAA(配列番号26)で表されるアミノ酸配列をエピトープとして認識するモノクローナル抗体又はその抗体断片を使用し、固相抗体として、LDDFSKQLQ(配列番号27)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片を使用することがより好ましい。
 下記の免疫測定方法の各々において、モノクローナル抗体の固相への固定化の方法、モノクローナル抗体と標識物質との結合方法、標識物質の種類等の具体的な方法は、前述のものを含め、当業者に周知の方法を制限なく使用することができる。
(イムノクロマトグラフィー)
 イムノクロマトグラフィーとは、被検出物質に結合した標識抗体、又は標識抗体がメンブレン上を流れる性質を利用した免疫測定方法である。イムノクロマトグラフィーにおける被検出物質を測定する一般的な原理は以下のとおりである。
 被検出物質である抗原に対する抗体を、クロマトグラフ媒体である不溶性メンブレン担体上に固定化して、固定相である検出部を作製する。そして、コンジュゲート(上記被検出物質と結合可能な抗体によって感作された標識物質)を移動相として用いる。被検出物質と移動相であるコンジュゲートとを特異的に反応させ、さらに固定相である検出部において、コンジュゲートと結合した被検出物質を、検出部に固定化された抗体に特異的に反応させる。
 本発明の免疫測定方法として、イムノクロマトグラフィーを採用する場合の測定手順及び原理は、以下のとおりである。
(1)生体試料を供給するためのサンプル供給部と生体試料とを接触させる。
(2)生体試料中のSARS-CoV-2又はそのペプチド断片とコンジュゲートとが接触し、第一複合体(SARS-CoV-2又はそのペプチド断片、標識物質、及び第一モノクローナル抗体を含む)が形成される。コンジュゲートは、標識物質に第一モノクローナル抗体が結合したものである。
(3)前記第一複合体と、検出部に固定化された第二モノクローナル抗体とが接触し、第二複合体(SARS-CoV-2又はそのペプチド断片、標識物質、第一モノクローナル抗体、及び第二モノクローナル抗体を含む)が形成される。
(4)コンジュゲートに含まれる標識物質に由来するシグナルの強度を測定することにより、前記第二複合体の形成を確認する。
 標識物質としては、金コロイド粒子、白金コロイド粒子、カラーラテックス粒子、及び磁性粒子などを挙げることができる。金コロイド粒子が好ましい。これらの標識物質の種類及び粒径は、当業者であれば、所望の感度に応じて適宜調整することができる。
(ELISA)
 免疫測定方法の中で、酵素標識を用いるELISAも、簡便且つ迅速に標的を測定することができて好ましい。本明細書においてELISAとは、試料中に含まれる被検出物質である抗原又は抗体を、前記被検出物質に対する抗体又は抗原を利用して捕捉した後に、酵素反応を利用して検出する方法を意味する。固相はプレート(イムノプレート)が好ましい。標識としては、HRP又はALPを使用することができる。
 本発明の免疫測定方法として、サンドイッチELISAを使用する場合の測定手順及び原理は、以下のとおりである。
(1)固相抗体を固定化した固相に生体試料を添加して反応させると、生体試料中のSARS-CoV-2又はそのペプチド断片が固相抗体と結合し、固相上で固相抗体とSARS-CoV-2又はそのペプチド断片との複合体を形成する。
(2)標識した別のエピトープを認識する標識抗体を固相に添加して反応させると、標識抗体は前記捕捉されたSARS-CoV-2又はそのペプチド断片に結合して前述の固相抗体-SARS-CoV-2又はそのペプチド断片の複合体とサンドイッチを形成する。
(3)洗浄後、酵素の基質と反応させて発色させ、吸光度を測定する。
 測定した標識物質の量に応じて、生体試料中のSARS-CoV-2又はそのペプチド断片の量を測定することができる。
 サンドイッチELISA法において、二次抗体を用いることもできる。二次抗体を用いることにより、反応が増幅され、検出感度を高めることができる。二次抗体は、下記の例の場合は、一次抗体(第二モノクローナル抗体)を特異的に認識する抗体である。
 二次抗体を用いる場合、以下の手順(1)~(5)を採用することができる。
(1)第一モノクローナル抗体を固定化した固相に適宜処理し希釈した生体試料を添加した後インキュベートし、生体試料を除去して洗浄する。
(2)一次抗体(第二モノクローナル抗体)を添加してインキュベート及び洗浄を行う。
(3)さらに酵素標識した二次抗体を添加してインキュベートを行う。
(4)基質を加えて発色させる。
(5)プレートリーダー等を用いて発色を測定することによりSARS-CoV-2又はそのペプチド断片の量を測定する。
(電気化学発光免疫測定法)
 電気化学発光免疫測定法とは、通電により標識物質を発光させ、その発光量を検出することで被検出物質の量を測定する方法を意味する。電気化学発光免疫測定法では、標識物質として、ルテニウム錯体を用いることができる。固相(マイクロプレート等)に電極を設置してこの電極上でラジカルを発生させることによりルテニウム錯体を励起状態にして発光させる。そして、このルテニウム錯体の発光量を検出することができる。
 固相として磁性粒子、そして標識物質としてルテニウム錯体を用いた際の測定手順及び原理は、以下のとおりである。
(1)固相抗体を固定化した磁性粒子と生体試料とを接触させると、生体試料中のSARS-CoV-2又はそのペプチド断片が固相抗体と結合する。
(2)磁性粒子を洗浄後に標識抗体を接触させると、磁性粒子に結合したSARS-CoV-2又はそのペプチド断片に標識抗体が結合する。
(3)磁性粒子を洗浄後、通電するとSARS-CoV-2又はそのペプチド断片に結合した標識抗体の量に応じて発光する。この発光量を計測することにより、生体試料中の被検出物質の量を正確に測定することができる。
(ラテックス免疫比濁法)
 ラテックス免疫比濁法とは、ラテックス表面に結合させた抗体と被検出物質質(抗原)との凝集を利用した免疫測定方法である。ラテックス粒子としては、体外診断薬に一般的に用いられているラテックス粒子であれば特に制限されない。凝集反応測定時のラテックス粒子の濃度、ラテックス粒子の平均粒径等は、感度又は性能に応じて適宜設定することができる。
 本発明の免疫測定方法として、ラテックス免疫比濁法を使用する場合の測定手順及び原理は、以下のとおりである。
(1)ラテックス粒子に第一モノクローナル抗体及び第二モノクローナル抗体を結合させて生体試料と接触させる。
(2)生体試料中のSARS-CoV-2又はそのペプチド断片が第一モノクローナル抗体及び第二モノクローナル抗体と結合し、抗体結合ラテックス粒子が凝集する。
(3)生体試料に近赤外光を照射して、吸光度の測定又は散乱光の測定を行う。測定値に基づき、抗原の濃度を求めることができる。
 本発明の免疫測定方法として、ラテックス免疫比濁法を使用する場合、ラテックスは固相であり、且つ標識物質として作用する。すなわち、第一モノクローナル抗体及び第二モノクローナル抗体のいずれもが、固相及び標識物質の各々と結合している。
2.生体試料中のSARS-CoV-2の免疫測定キット
 本発明の生体試料中のSARS-CoV-2の免疫測定キット(以下、単に本発明の免疫測定キットと称することがある)は、本発明のモノクローナル抗体ペアを含む。本発明のモノクローナル抗体ペアは、それぞれ、異なるエピトープを認識する。本発明のモノクローナル抗体ペアは、別々の容器に入れられていてもよい。
 本発明の免疫測定キットとしては、イムノクロマトグラフィー、ELISA、電気化学発光免疫測定法、ラテックス免疫比濁法、化学発光免疫測定法、及び蛍光抗体法を実施するための免疫測定キットが挙げられるが、これらに限定されるものではない。本発明の免疫測定キットは、好ましくは、ELISA、又はイムノクロマトグラフィーを実施するための免疫測定キットであり、より好ましくは、イムノクロマトグラフィーを実施するための免疫測定キットである。
 本発明の免疫測定キットは、インビボ又はインビトロのサンプルを分析するための免疫測定キットであることができる。
 本発明の免疫測定キットには、ほかに、標準抗原物質、精度管理用抗原試料といった、他の検査試薬、検体希釈液、及び/又は使用説明書などを含むこともできる。抗体を含む試薬等の濃度は、当業者であれば適宜調整可能である。
 以下、採用される免疫測定方法ごとに、キットに含まれる試薬を説明する。本発明の免疫測定キットでは、標識抗体としてKQQTVTLLPAADLDDFSK(配列番号2)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片を使用し、固相抗体として、AADLDDFSKQLQQSMSSA(配列番号3)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片を使用することが好ましく、標識抗体としてLLPAA(配列番号26)で表されるアミノ酸配列をエピトープとして認識するモノクローナル抗体又はその抗体断片を使用し、固相抗体として、LDDFSKQLQ(配列番号27)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片を使用することがより好ましい。
 イムノクロマトグラフィーを使用する場合、本発明の免疫測定キットは、イムノクロマトグラフィー用テストストリップを適当な容器(ハウジング)に格納・搭載した形態であることができる。
 イムノクロマトグラフィー用テストストリップは、サンプル供給部を有するサンプルパッド、クロマトグラフ媒体である不溶性メンブレン担体、及び上記不溶性メンブレン担体の下流側端部に配置された吸収パッドから構成されることができる。
 不溶性メンブレン担体上に、第一モノクローナル抗体を固定化した検出部を配置し、サンプルパッドと不溶性メンブレン担体との間に、コンジュゲートを配置したコンジュゲートパッドを配置することができる。
 コンジュゲートは、サンプルパッド又は不溶性メンブレン担体上に、含有させてもよい。
 その他、イムノクロマトグラフィーの構成としては、例えば国際公開第2018/012517号又は国際公開第2016/031892号の記載のものを適宜採用することができる。
 標識物質としては、金コロイド粒子、白金コロイド粒子、カラーラテックス粒子、及び磁性粒子などを挙げることができる。金コロイド粒子が好ましい。これらの標識物質の種類及び粒径は、当業者であれば、適宜調整することができる。
 サンドイッチELISAを使用する場合、本発明の免疫測定キットは、以下(A)及び(B)を含むことができる。(A)第二モノクローナル抗体と酵素(HRP又はALP等)との結合体を含む標識試薬(B)第一モノクローナル抗体を固定化した固相。
 このようなキットでは、まず、第一モノクローナル抗体を固定化した固相に生体試料を添加した後インキュベートし、生体試料を除去して洗浄する。次に、標識試薬を添加した後インキュベートし、基質を加えて発色させる。プレートリーダー等を用いて発色を測定することにより、SARS-CoV-2又はそのペプチド断片を分析することができる。
 電気化学発光免疫測定法を使用する場合、本発明の免疫測定キットは、以下(A)及び(B)を含むことができる。
(A)第二モノクローナル抗体と電気化学発光物質(例えば、ルテニウム錯体等)とのコンジュゲートを含む標識試薬。
(B)SARS-CoV-2又はそのペプチド断片に結合する第一モノクローナル抗体を固定化した固相。
 例えば、固相として磁性粒子を用いたキットでは、SARS-CoV-2又はそのペプチド断片に結合する第一モノクローナル抗体を固定化した磁性粒子に、生体試料を添加して反応させた後、生体試料を除去して洗浄する。そして、コンジュゲートを添加して反応させる。磁性粒子を洗浄後、電気エネルギーを加えて発光させる。そして、標識物質の発光量を測定することにより、SARS-CoV-2又はそのペプチド断片を分析することができる。
 ラテックス免疫比濁法を使用する場合、本発明の免疫測定キットは、以下の(1)及び(2)を含むことができる。
(1)第一モノクローナル抗体を結合させたラテックス粒子。
(2)第二モノクローナル抗体を結合させたラテックス粒子。
 本発明の免疫測定キットとして、ラテックス免疫比濁法用のキットを使用する場合、ラテックスは固相であり、且つ標識物質である。したがって、第一モノクローナル抗体及び第二モノクローナル抗体のいずれもが、固相及び標識物質の各々と結合している。
 以上、発明の態様(aspect)に分けて説明をしているが、それぞれの態様に記載の事項、語句の定義、及び実施形態は、他の態様においても適用可能である。
 次に実施例を挙げて本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。なお、特に説明のない限り、%は質量%を意味する。
[調製例1 モノクローナル抗体の調製]
 SARS-CoV-2(COVID-19)Nuculeocapsid protein,His-tag 1-419 aa(以下、Nu抗原、acrobiosystems社製、NUN-C5227)を免疫原とした。Nu抗原を、初回免疫はFreund’s Complete Adjuvant (Difco Laboratories)、2回目免疫以降はFreund’s Incomplete Adjuvant (Difco Laboratories)と1:1で混合して用いた。Balb/cに対し、初回免疫は20μg、2回目免疫以降10μg(PBSで希釈)の免疫原量を用い、隔週で皮下免疫を継続した。3回免疫実施後に抗原固相化ELISAにより血中抗体力価を評価した。十分な力価上昇の確認できた個体については、解剖の1~3日前にPBSで希釈した免疫原を腹腔免疫した。その後、脾臓細胞、腸骨リンパ節細胞及び鼠頸部リンパ節細胞を回収し、電気融合法によりミエローマ細胞SP2/0と融合した。融合細胞は96wellプレートで培養し、融合から7又は8日後に培養上清を回収した。その後、後述する抗原固相化ELISAによるスクリーニングを実施し、Nu抗原に反応性を示し、かつNHis-cBSAに反応性を示さない株を選択した。なお、スクリーニング前日に培地交換を行った。
[調製例2 抗Nu抗原抗体のスクリーニング(抗原固相化ELISA)]
 ELISA用96穴プレート(NUNC442404)にNu抗原及びNHis-cBSA(His-tag抗原をBSAにconjugateしたもの(自社調製品)、100ng/mL in PBS)を分注し(50μL/well)、室温で2時間静置した。PBSTで3回洗浄後、ブロッキング液(1%BSA-PBST)を分注し(100μL/well)、室温で1時間あるいは4℃で終夜静置した。ブロッキング液を除去後、細胞培養上清(2倍希釈)、抗血清(1000及び10000倍希釈)を分注し(50μL/well)、室温で1時間静置した。PBSTで3回洗浄後、Goat anti-Mouse IgG(H+L)PAb-HRP(SouthernBiotech社製,1031-05、9500倍希釈)を分注し(50μL/well)、室温で1時間静置した。PBSTで3回洗浄後、OPD発色液を分注し(50μL/well)、室温で10分間静置した。停止液を分注し(50μL/well)、反応停止後、プレートリーダーで測定した(Abs.492nm)。Nu抗原に反応性を示し、かつNHis-cBSAに反応性を示さない抗体を選抜した。選抜した抗体を、反応性等を基に、Group A(3種)、Group B(15種)、Group C1(8種)、Group C2(3種)、Group C3(3種)、Group C4(1種)、及びGroup D(1種)に分類した。
[分析例1 サンドイッチELISAによる抗体分類]
 獲得した抗体群から2種を選択してサンドイッチELISAを実施した場合にNu抗原を検出できるかを、下記手順により確認した。
 ELISA用96穴プレート(NUNC442404)に1種の抗体を分注し、室温で2時間静置した。PBSTで3回洗浄後、ブロッキング液(1%BSA-PBST)を分注し(100μL/well)、4℃で終夜静置した。ブロッキング液を除去後、Nu抗原を分注し室温で30分間静置した。PBSTで3回洗浄後、ビオチン標識したもう1種の抗体を添加し、室温で1時間静置した。PBSTで3回洗浄後、5000倍希釈したストレプトアビジン-HRPを50μL/wellで分注し、室温で30分間静置した。PBSTで3回洗浄後、OPD発色液を分注し、室温で10分間静置した。反応停止液を分注し、プレートリーダーで吸光度を測定した(波長492nm)。
 サンドイッチELISAによりNu抗原を検出できなかった場合に、その2種の抗体の抗原認識部位が近いと判断し、その2種を同一の群に分類した。各群の抗体ペアによるサンドイッチ可否は下記の表1の通りである。
Figure JPOXMLDOC01-appb-T000001
[分析例2 イムノクロマトグラフィーによる抗体分類]
 イムノクロマトグラフィー用テストストリップを下記手順で作製した。
1) 金コロイド標識抗体液の調製
 1OD/mLの金コロイド溶液20mLに、25μg/mLの抗SARS-CoV-2を含むりん酸バッファー1mLを添加し、室温で10分間攪拌した。続いて金コロイド溶液に10%BSA溶液2mLを添加し、室温で5分間攪拌した。得られた溶液を、10℃、10,000rpmで45分間遠心し上清を除去した。残渣を、Conjugate Dilution Buffer(Scripps社)で懸濁し、金コロイド標識抗体液を得た。
2) コンジュゲートパッドの作製
 1)で調製した金コロイド標識抗体液を、1.33%カゼイン、4%スクロース溶液(pH7.5)で4OD/mLに希釈しコンジュゲート液を調製した。コンジュゲート液をグラスファイバーパッドにライン状に塗布し、乾燥させてコンジュゲートパッドを得た。
3) 抗体固相化メンブレンの作製
 0.75mg/mLの抗SARS-CoV-2抗体及び2.5%スクロースを含むPBSを調製し、テストライン塗布液とした。1.0mg/mLヤギ抗マウスIgGモノクローナル抗体及び2.5%スクロースを含むPBSを調製し、コントロールライン塗布液とした。イムノクロマト法用ディスペンサー「XYZ3050」(BIO DOT社製)を用い、ニトロセルロースメンブレン上に、テストライン塗布液及びコントロールライン塗布液をそれぞれ1.0μL/cmで塗布し、乾燥させることで、抗体固相化メンブレンを得た。
4) テストデバイスの作製
 プラスチック製粘着シートに抗体固相化メンブレン、コンジュゲートパッド、吸収パッドを貼付し、5mm幅に裁断することで、イムノクロマトグラフィー用テストストリップを得た。
試験方法
1)試料
 SARS-CoV-2 (Isolate: USA-WA1/2020) Culture Fluid (Heat Inactivated)(ZeptoMetrix社)をUniversal Transport Medium(BD社)で5.0×10TCID50/mLに希釈した。ラピッドテスタFLU・NEXT用検体希釈液(積水メディカル社)でさらに11倍希釈し試料とした。
2)試験手順
 試料120μLをテストストリップに滴下し、10分後に、抗体固相化メンブレン上のテストラインが発色しているかを目視で判定した。
 各種抗体組合せで作製したテストストリップを用いたSARS-CoV-2不活化抗原の検出試験結果が下記の表2の通りである。ELISAでサンドイッチ可能であった一部の抗体群ペアにおいて、イムノクロマトグラフィーでSARS-CoV-2不活化抗原を検出可能であることがわかった。
Figure JPOXMLDOC01-appb-T000002
[実施例1 抗体のエピトープ解析1]
 各抗体群から1種の抗体をそれぞれ選択し、それらの抗体がNu抗原のN末端側とC末端側のいずれに反応するのかを確認した。
 5μg/mLに調整した抗His-tag抗体を50μL/wellで96穴ELISA用マイクロプレートに分注し、4℃で一晩静置した。PBSTで3回洗浄後、1%BSAを含むPBST(ブロッキング液)を100μL/wellで分注し、4℃で一晩静置した。ブロッキング液を除去後、100ng/mlに調製したNu抗原、SARS-CoV-2(COVID-19)NP NTD domain V2 Recombinant Protein His-tag,44-180 aa(以下、NTD側領域抗原、ProSci,92-749)、又はRecombinant nucleoprotein (C-term)antigen for COVID-19(NP-CTD),His-tag 212-417 aa(以下、CTD側領域抗原、rekom biotech,RAG0071)を50μL/mlで分注し、室温で1時間静置した。PBSTで3回洗浄後、1μg/mlに調整したビオチン標識した各抗体を50μL/wellで分注し、室温で1時間静置した。PBSTで3回洗浄後、5000倍希釈したストレプトアビジン-HRPを50μL/wellで分注し、室温で30分間静置した。PBSTで3回洗浄後、OPD発色液を分注し、室温で10分間静置した。反応停止液を分注し、プレートリーダーで吸光度を測定した(波長492nm)。
 結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 GroupA及びDに属する抗体は、NTD側領域抗原に反応し、Nu抗原のN末端側を認識していた。GroupB及びCに属する抗体は、CTD側領域抗原に反応し、Nu抗原のC末端側を認識していた。表1及び2のいずれにおいてもサンドイッチが可能であった組合せはGroupBとCの組合せ、及びGroupC同士の組合せであったため、Nu抗原のC末端側を認識する抗体2種を用いた場合に、Nu抗原を高感度で検出可能であると考えられた。
[実施例2 抗体のエピトープ解析2]
 Nu抗原のC末端側に反応する抗体について、より詳細にエピトープを解析するために、抗原固相ELISAを実施した。
 Nu抗原の特定のアミノ酸配列に対応する合成ペプチド(10μg/mL)(図2参照)を96穴ELISA用マイクロプレートにそれぞれ分注し50μL/well)、室温で2時間又は4℃一晩静置した。PBSTで3回洗浄後(400μL/well)、ブロッキング液(1%BSA-PBST)を分注し(100μL/well)、室温で1時間又は4℃で一晩静置した。ブロッキング液を除去後、ビオチン標識したS32202、S32213、S32212、S32217、S32209抗体(1μg/mL)を分注し(50μL/well)、室温で1時間静置した。PBSTで3回洗浄後(400μL/well)、ストレプトアビジン-HRP(×5000)を分注し(50μL/well)、室温で1時間静置した。PBSTで3回洗浄後(400μL/well)、OPD発色液(2mg/mL)を分注し(50μL/well)、室温で10分間静置した。反応停止液を分注し(50μL/well)、プレートリーダーで吸光度を測定した(波長492nm)。
 各群を代表する抗体と合成ペプチドとの反応性を表4に示す。反応したものを「+」、反応しなかったものを「-」で示す。Group C1及びC2に属する抗体は、ヌクレオカプシドタンパク質の第388-第405番アミノ酸の配列(配列番号48)に反応した。Group B、C3、及びC4に属する抗体は、第397-第414アミノ酸の配列(配列番号49)に反応した。
Figure JPOXMLDOC01-appb-T000004
[実施例3 抗体のエピトープ解析3]
 S32213及びS32217抗体の詳細なエピトープ解析を、PEPperPRINT社のPEPperMAP(登録商標)Peptide Microarray 受託解析サービスを利用して実施した。リニアエピトープマッピング(15アミノ酸残基のペプチド鎖長、14アミノ酸残基オーバーラップペプチドにより解析)、及び、立体配座エピトープマッピング(7、10、13アミノ酸残基のペプチド鎖長、それぞれ6、9、12アミノ酸残基オーバーラップペプチドにより解析)による解析結果の一部抜粋を表5及び6に示す。S32213抗体はSARS-CoV-2ヌクレオカプシドタンパク質の394-398番目のアミノ酸配列であるLLPAA(配列番号26)を、S32217抗体は同タンパク質の400-408番目のアミノ酸配列であるLDDFSKQLQ(配列番号27)中に存在するエピトープを認識することが示された。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[実施例4 イムノクロマトグラフィーによるSARS-CoV-2の検出]
 分析例2と同様に、イムノクロマトグラフィー用テストストリップを作製した。標識抗体にはS32213抗体、固相抗体にはS32217抗体を用いた。
試験方法
 ラピッドテスタFLU・NEXT用検体希釈液(積水メディカル)を500μLずつ希釈液チューブに分注した。SARS-CoV-2 PCR positive swab(Trina社)にUniversal Transport Medium(BD社)を添加して試料とした。試料に検体採取用綿棒を挿入し、検体を採取した後、希釈液チューブ内の希釈液で検体を抽出した。希釈液チューブに検体濾過フィルターを装着し、全量濾過した。上記試料をテストデバイスに120μL滴下し、10分後に目視でテストラインの有無を判定した。
 同試料から、QIAmp Viral RNA mini Kit(QIAGEN社)を用いてRNAを抽出した。国立感染症研究所の『病原体検出マニュアル 2019-nCoV Ver.2.9.1』に基づき、RT-PCRを実施した。結果を表7に示す。なお、RT-PCRの結果では、29検体が陽性であり、26検体が陰性であった。検体採取時に陽性であった検体を購入し、試験に用いたが、輸送、凍結融解、及び検体希釈の影響により、一部検体が陰性化したものと考えられる。
Figure JPOXMLDOC01-appb-T000007
 イムノクロマトグラフィーにおけるRT-PCRとの陽性一致率は、100%(29/29×100)であった。イムノクロマトグラフィーにおけるRT-PCRとの陰性一致率は、92.3%(24/26×100)であった。使用した検体について、1テスト当たりのSARS-CoV-2のコピー数を確認した。陽性検体29例すべてが、1テスト当たり1600コピー以上のSARS-CoV-2を含んでいた。
 ここで、市販のSARS-CoV-2抗原検出用試薬の添付文書には、1600コピー/テストの検体を測定した場合の陽性一致率が記載されている。
 エスプライン(登録商標)SARS-CoV-2(富士レビオ社)は、測定時間30分で陽性一致率が92%(12/13×100)であった。
 クイックナビ(登録商標)-COVID19 Ag(デンカ社)は、測定時間15分で陽性一致率が96.3%(26/27×100)であった。
 したがって、本実施例のイムノクロマトグラフィーは、市販のSARS-CoV-2抗原検出用試薬と比較して、より短い測定時間で同等以上の感度を示した。したがって、本実施例のイムノクロマトグラフィーを用いることで、SARS-CoV-2を迅速かつ高感度に検出できるといえる。
[実施例5 イムノクロマトグラフィーの特異性評価]
 実施例4と同様のテストデバイスを用いた。ラピッドテスタFLU・NEXT用検体希釈液を500μLずつ希釈液チューブに分注し、希釈液チューブ1本につき同一の健常人の鼻咽頭拭い綿棒2本から検体を抽出した。希釈液チューブに検体濾過フィルターを装着し、全量濾過した。上記試料を実施例5と同様のテストデバイスに120μLずつ滴下し、10分後及び30分後に目視と装置にて判定した。また、実施例5と同様の方法でRT-PCRも実施した。ドナーがそれぞれ異なる30例の試料についての判定結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 検体1~30は、いずれもRT-PCRで陰性であった。実施例のイムノクロマトグラフィーによる10分後の判定においても、いずれも陰性と判定された。さらに、実施例のイムノクロマトグラフィーの既定の測定時間を超過する30分後の判定においても、全ての検体が陰性と判定された。したがって、本実施例のイムノクロマトグラフィーは、良好な特異性を示した。
[実施例6 モノクローナル抗体のアミノ酸配列の解析]
 公益財団法人かずさDNA研究所の抗体可変領域解析を利用して、S32213抗体、S32217抗体、及びS32223抗体の重鎖可変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ解析した。その結果、重鎖可変領域及び軽鎖可変領域のアミノ酸配列は、それぞれ、以下の表9の通りであった。
Figure JPOXMLDOC01-appb-T000009
 S32223抗体は、分析例1のサンドイッチELISAによる抗体分類において、S32217抗体と同じGroup C3に属する抗体である。S32223抗体の重鎖可変領域及び軽鎖可変領域のCDR1~CDR3のアミノ酸配列は、それぞれ、S32217抗体の重鎖可変領域及び軽鎖可変領域のCDR1~CDR3のアミノ酸配列と高い同一性を有している。したがって、S32223抗体は、SARS-CoV-2抗原に対して、S32217抗体と同様の反応性を有すると考えられる。
[実施例7 市販のSARS-CoV-2抗原検出用試薬との比較]
 SARS-CoV-2陽性検体を検体輸送培地で適宜希釈したものを、ラピッドテスタFLU・NEXT用検体希釈液(積水メディカル)、エスプライン(登録商標)SARS-CoV-2検体処理液(富士レビオ社)、又は、クイックナビ(登録商標)検体浮遊液(COVID19 Ag用)(デンカ社)に添加したものを試料とした。前記試料を、実施例4で用いたイムノクロマトグラフィー用テストストリップ、既存のSARS-CoV-2測定試薬であるエスプライン(登録商標)SARS-CoV-2(富士レビオ社)及びクイックナビ(登録商標)-COVID19 Ag(デンカ社)で測定した。
 測定結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 上記の結果より、配列番号1に示されるアミノ酸配列を含むペプチド断片に結合する2つのモノクローナル抗体を用いることで、高感度かつ迅速なSARS-CoV-2測定系が確立できていることが実証された。
 すなわち、本発明の測定試薬は、市販のSARS-CoV-2抗原検出用試薬と比較して、より短い測定時間で同等以上の感度を示し、かつ、SARS-CoV-2を迅速かつ高感度に検出できることが示された。
[配列一覧]
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 本発明によれば、高感度で迅速な分析が可能なSARS-CoV-2免疫測定キット及びSARS-CoV-2の免疫測定方法、並びにそれらに使用可能なモノクローナル抗体又はその抗体断片を提供することができる。

Claims (19)

  1.  生体試料中のSARS-CoV-2の免疫測定方法であって、SARS-CoV-2のヌクレオカプシドタンパク質中の連続する30以下のアミノ酸から成るペプチド断片に結合するモノクローナル抗体又はその抗体断片を2種類用い、前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、異なるエピトープを認識する、免疫測定方法。
  2.  前記連続する30以下のアミノ酸から成るペプチド断片が、27~30のアミノ酸から成るペプチド断片である、請求項1に記載の免疫測定方法。
  3.  前記連続する30以下のアミノ酸から成るペプチド断片が、SARS-CoV-2のヌクレオカプシドタンパク質のC末端領域に位置する、請求項1又は2に記載の免疫測定方法。
  4.  前記連続する30以下のアミノ酸から成るペプチド断片が、KQQTVTLLPAADLDDFSKQLQQSMSSA(配列番号1)で表されるアミノ酸配列から成るペプチド断片である、請求項1に記載の免疫測定方法。
  5.  前記生体試料が、呼吸器分泌液である、請求項1又は2に記載の免疫測定方法。
  6.  前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、第一モノクローナル抗体又はその抗体断片、及び第二モノクローナル抗体又はその抗体断片であり、第一モノクローナル抗体又はその抗体断片は、標識物質と間接的又は直接的に結合しており、第二モノクローナル抗体又はその抗体断片は、固相と間接的又は直接的に結合している、請求項1又は2に記載の免疫測定方法。
  7.  以下の工程を含む、請求項6に記載の免疫測定方法。
    (1)生体試料と、標識物質に結合している第一モノクローナル抗体又はその抗体断片とを接触させ、第一複合体を形成する工程、
    (2)前記第一複合体と、第二モノクローナル抗体又はその抗体断片とを接触させ、第二複合体を形成する工程、及び
    (3)標識物質に由来するシグナルを測定する工程。
  8.  前記第一モノクローナル抗体又はその抗体断片が、KQQTVTLLPAADLDDFSK(配列番号2)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片であり、前記第二モノクローナル抗体又はその抗体断片が、AADLDDFSKQLQQSMSSA(配列番号3)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片である、請求項7に記載の免疫測定方法。
  9.  イムノクロマトグラフィー、又はELISAである、請求項1又は2に記載の免疫測定方法。
  10.  前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、以下の(1)~(4)からなる群から選択される、請求項1又は2に記載の免疫測定方法。
    (1)配列番号4のアミノ酸配列を有するCDR1、配列番号5のアミノ酸配列を有するCDR2、及び配列番号6のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号7のアミノ酸配列を有するCDR1、配列番号8のアミノ酸配列を有するCDR2、及び配列番号9のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
    (2)配列番号10のアミノ酸配列を有するCDR1、配列番号11のアミノ酸配列を有するCDR2、及び配列番号12のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号13のアミノ酸配列を有するCDR1、配列番号14のアミノ酸配列を有するCDR2、及び配列番号15のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
    (3)配列番号16のアミノ酸配列を有するCDR1、配列番号17のアミノ酸配列を有するCDR2、及び配列番号18のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号19のアミノ酸配列を有するCDR1、配列番号20のアミノ酸配列を有するCDR2、及び配列番号21のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
    (4)前記(1)~(3)のいずれかの抗体又はその抗体断片の重鎖可変領域及び軽鎖可変領域と、それぞれ、80%以上のアミノ酸配列の同一性を有する重鎖可変領域及び軽鎖可変領域を含む抗体又はその抗体断片。
  11.  生体試料中のSARS-CoV-2の免疫測定キットであって、SARS-CoV-2のヌクレオカプシドタンパク質中の連続する30以下のアミノ酸から成るペプチド断片に結合するモノクローナル抗体又はその抗体断片を2種類含み、前記2種類のモノクローナル抗体又はその抗体断片は、それぞれ、異なるエピトープを認識する、免疫測定キット。
  12.  前記連続する30以下のアミノ酸から成るペプチド断片が、27~30のアミノ酸から成るペプチド断片である、請求項11に記載の免疫測定キット。
  13.  前記連続する30以下のアミノ酸から成るペプチド断片が、SARS-CoV-2のヌクレオカプシドタンパク質のC末端領域に位置する、請求項11又は12に記載の免疫測定キット。
  14.  前記連続する30以下のアミノ酸から成るペプチド断片が、KQQTVTLLPAADLDDFSKQLQQSMSSA(配列番号1)で表されるアミノ酸配列から成るペプチド断片である、請求項11に記載の免疫測定キット。
  15.  前記生体試料が、呼吸器分泌液である、請求項11又は12に記載の免疫測定キット。
  16.  前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、第一モノクローナル抗体又はその抗体断片、及び第二モノクローナル抗体又はその抗体断片であり、第一モノクローナル抗体又はその抗体断片は、標識物質と間接的又は直接的に結合しており、第二モノクローナル抗体又はその抗体断片は、固相と間接的又は直接的に結合している、請求項11又は12に記載の免疫測定キット。
  17.  前記第一モノクローナル抗体又はその抗体断片が、KQQTVTLLPAADLDDFSK(配列番号2)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片であり、前記第二モノクローナル抗体又はその抗体断片が、AADLDDFSKQLQQSMSSA(配列番号3)で表されるアミノ酸配列中のエピトープを認識するモノクローナル抗体又はその抗体断片である、請求項16に記載の免疫測定キット。
  18.  イムノクロマトグラフィー、又はELISA用のキットである、請求項11又は12に記載の免疫測定キット。
  19.  前記2種類のモノクローナル抗体又はその抗体断片が、それぞれ、以下の(1)~(4)からなる群から選択される、請求項11又は12に記載の免疫測定キット。
    (1)配列番号4のアミノ酸配列を有するCDR1、配列番号5のアミノ酸配列を有するCDR2、及び配列番号6のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号7のアミノ酸配列を有するCDR1、配列番号8のアミノ酸配列を有するCDR2、及び配列番号9のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
    (2)配列番号10のアミノ酸配列を有するCDR1、配列番号11のアミノ酸配列を有するCDR2、及び配列番号12のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号13のアミノ酸配列を有するCDR1、配列番号14のアミノ酸配列を有するCDR2、及び配列番号15のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
    (3)配列番号16のアミノ酸配列を有するCDR1、配列番号17のアミノ酸配列を有するCDR2、及び配列番号18のアミノ酸配列を有するCDR3を含む重鎖可変領域と、配列番号19のアミノ酸配列を有するCDRと、配列番号20のアミノ酸配列を有するCDR2、及び配列番号21のアミノ酸配列を有するCDR3を含む軽鎖可変領域と、を含む、抗体又はその抗体断片。
    (4)前記(1)~(3)のいずれかの抗体又はその抗体断片の重鎖可変領域及び軽鎖可変領域と、それぞれ、80%以上のアミノ酸配列の同一性を有する重鎖可変領域及び軽鎖可変領域を含む抗体又はその抗体断片。
PCT/JP2022/024134 2021-06-16 2022-06-16 SARS-CoV-2の免疫測定方法及び免疫測定キット WO2022265066A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/290,089 US20240255505A1 (en) 2021-06-16 2022-06-16 Sars-cov-2 immunoassay method and immunoassay kit
EP22825054.4A EP4357781A1 (en) 2021-06-16 2022-06-16 Sars-cov-2 immunoassay method and immunoassay kit
CA3218423A CA3218423A1 (en) 2021-06-16 2022-06-16 Sars-cov-2 immunoassay method and immunoassay kit
CN202280033519.2A CN117337392A (zh) 2021-06-16 2022-06-16 SARS-CoV-2的免疫测定方法及免疫测定试剂盒
KR1020237037609A KR20240022452A (ko) 2021-06-16 2022-06-16 SARS-CoV-2의 면역 측정 방법 및 면역 측정 키트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021100123A JP7105970B1 (ja) 2021-06-16 2021-06-16 SARS-CoV-2の免疫測定方法及び免疫測定キット
JP2021-100123 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022265066A1 true WO2022265066A1 (ja) 2022-12-22

Family

ID=82556733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024134 WO2022265066A1 (ja) 2021-06-16 2022-06-16 SARS-CoV-2の免疫測定方法及び免疫測定キット

Country Status (8)

Country Link
US (1) US20240255505A1 (ja)
EP (1) EP4357781A1 (ja)
JP (1) JP7105970B1 (ja)
KR (1) KR20240022452A (ja)
CN (1) CN117337392A (ja)
CA (1) CA3218423A1 (ja)
TW (1) TW202311744A (ja)
WO (1) WO2022265066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166920A1 (ja) * 2023-02-08 2024-08-15 デンカ株式会社 抗sars-cov-2モノクローナル抗体並びにそれを用いたsars-cov-2の免疫測定方法及び免疫測定器具

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166922A1 (ja) * 2023-02-08 2024-08-15 デンカ株式会社 SARS-CoV-2の検出方法及びそのためのキット
WO2024166923A1 (ja) * 2023-02-08 2024-08-15 デンカ株式会社 SARS-CoV-2の検出方法及びそのためのキット
WO2024166921A1 (ja) * 2023-02-08 2024-08-15 デンカ株式会社 SARS-CoV-2の検出方法及びそのためのキット

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031892A1 (ja) 2014-08-29 2016-03-03 積水メディカル株式会社 イムノクロマトグラフィー用テストストリップ
WO2018012517A1 (ja) 2016-07-13 2018-01-18 積水メディカル株式会社 イムノクロマトグラフィーを利用した検出方法
JP2021100123A (ja) 2013-06-05 2021-07-01 株式会社半導体エネルギー研究所 表示装置
WO2021181994A1 (ja) * 2020-03-10 2021-09-16 デンカ株式会社 SARS-CoV-2の構造タンパク質に対する抗体のエピトープ、該エピトープに反応する抗体、該抗体を用いてSARS-CoV-2を検出する方法、該抗体を含むSARS-CoV-2検出キット、該エピトープのポリペプチドを含む抗SARS-CoV-2抗体を検出する方法、該エピトープのポリペプチドを含む抗SARS-CoV-2抗体検出キット、該エピトープのポリペプチドを含むSARS-CoV-2用ワクチン及び該抗体を含むSARS-CoV-2感染症治療薬
JP6960508B1 (ja) * 2020-07-29 2021-11-05 シスメックス株式会社 試料中のウイルス抗原を測定する方法、抗体セット及び試薬キット
WO2022004622A1 (ja) * 2020-06-29 2022-01-06 公立大学法人横浜市立大学 SARS-CoV-2に対する抗体、該抗体を用いてSARS-CoV-2を検出する方法および該抗体を含むキット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926402A (zh) * 2004-12-14 2014-07-16 爱科来株式会社 检体前处理方法和使用了该方法的免疫测定方法
CN101283093A (zh) * 2005-10-11 2008-10-08 希森美康株式会社 测定sars病毒核衣壳蛋白的测定方法、测定用试剂盒、试验器具、sars病毒核衣壳蛋白单克隆抗体及其产生上述单克隆抗体的杂交瘤
JP2009109426A (ja) * 2007-10-31 2009-05-21 Sysmex Corp 検体前処理液、ウイルス測定用キット及びウイルス検出方法
JP2017145246A (ja) * 2016-02-18 2017-08-24 公立大学法人横浜市立大学 Mersコロナウイルスに対する抗体、該抗体を用いてmersコロナウイルスを検出する方法および該抗体を含むキット
JP6782218B2 (ja) * 2017-11-17 2020-11-11 株式会社東芝 検出装置および検出方法
CN111398588A (zh) * 2020-02-13 2020-07-10 北京华科泰生物技术股份有限公司 一种用于快速检测新型冠状病毒n蛋白的免疫层析试剂盒的使用方法
CN111303254A (zh) * 2020-02-20 2020-06-19 北京新创生物工程有限公司 新型冠状病毒(SARS-CoV-2)抗原检测试剂盒
CN111748032B (zh) * 2020-05-27 2021-03-16 江苏省疾病预防控制中心(江苏省公共卫生研究院) 抗新型冠状病毒的抗体和使用该抗体的免疫检测
CN111848752B (zh) * 2020-06-18 2023-10-03 河南省生物工程技术研究中心 一种新冠病毒n蛋白优势抗原表位肽及其应用
CN111848789B (zh) * 2020-07-02 2022-04-22 武汉华美生物工程有限公司 抗sars-cov-2病毒s蛋白的单链抗体及其用途
CN112079920A (zh) * 2020-09-18 2020-12-15 北京华大蛋白质研发中心有限公司 一种用于检测SARS-CoV-2病毒N蛋白的单克隆抗体及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021100123A (ja) 2013-06-05 2021-07-01 株式会社半導体エネルギー研究所 表示装置
WO2016031892A1 (ja) 2014-08-29 2016-03-03 積水メディカル株式会社 イムノクロマトグラフィー用テストストリップ
WO2018012517A1 (ja) 2016-07-13 2018-01-18 積水メディカル株式会社 イムノクロマトグラフィーを利用した検出方法
WO2021181994A1 (ja) * 2020-03-10 2021-09-16 デンカ株式会社 SARS-CoV-2の構造タンパク質に対する抗体のエピトープ、該エピトープに反応する抗体、該抗体を用いてSARS-CoV-2を検出する方法、該抗体を含むSARS-CoV-2検出キット、該エピトープのポリペプチドを含む抗SARS-CoV-2抗体を検出する方法、該エピトープのポリペプチドを含む抗SARS-CoV-2抗体検出キット、該エピトープのポリペプチドを含むSARS-CoV-2用ワクチン及び該抗体を含むSARS-CoV-2感染症治療薬
WO2022004622A1 (ja) * 2020-06-29 2022-01-06 公立大学法人横浜市立大学 SARS-CoV-2に対する抗体、該抗体を用いてSARS-CoV-2を検出する方法および該抗体を含むキット
JP6960508B1 (ja) * 2020-07-29 2021-11-05 シスメックス株式会社 試料中のウイルス抗原を測定する方法、抗体セット及び試薬キット

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Antibodies, A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY PRESS
"Immunodominant regions prediction of nucleocapsid protein for SARS-CoV-2 early diagnosis: a bioinformatics and immunoinformatics study", PATHOGENS AND GLOBAL HEALTH, vol. 114, no. 8, 2020, pages 463 - 470
"Package insert for in-vitro diagnostic reagent", FUJIREBIO INC, article "Espline (registered trademark) SARS-CoV-2"
"Pathogen Detection Manual 2019-nCoV Ver. 2.9.1", NATIONAL INSTITUTE OF INFECTIOUS DISEASES
TERRY JAMES S.; ANDERSON LORAN BR.; SCHERMAN MICHAEL S.; MCALISTER CARLEY E.; PERERA RUSHIKA; SCHOUNTZ TONY; GEISS BRIAN J.: "Development of a SARS-CoV-2 nucleocapsid specific monoclonal antibody", VIROLOGY, ELSEVIER, AMSTERDAM, NL, vol. 558, 1 February 2021 (2021-02-01), AMSTERDAM, NL , pages 28 - 37, XP086529687, ISSN: 0042-6822, DOI: 10.1016/j.virol.2021.01.003 *
TIAN XINGUI, MO CHUNCONG, ZHOU LILING, YANG YUJIE, ZHOU ZHICHAO, YOU AIPING, FAN YE, LIU WENKUAN, LI XIAO, ZHOU RONG: "Epitope mapping of severe acute respiratory syndrome-related coronavirus nucleocapsid protein with a rabbit monoclonal antibody", VIRUS RESEARCH, AMSTERDAM, NL, vol. 300, 1 July 2021 (2021-07-01), NL , pages 1 - 7, XP093014610, ISSN: 0168-1702, DOI: 10.1016/j.virusres.2021.198445 *
YAMAKAWA, KENTARO: "Development of Rapid Immunochromatographic Enzyme Immunoassay for SARS-COV-2 nucleocapsid antigen", JAPANESE JOURNAL OF MEDICINE AND PHARMACEUTICAL SCIENCE, vol. 77, no. 6, 27 May 2020 (2020-05-27), pages 937 - 944, XP009536599 *
YAMAOKA YUTARO, MIYAKAWA KEI, JEREMIAH SUNDARARAJ STANLEYRAJ, FUNABASHI RIKAKO, OKUDELA KOJI, KIKUCHI SAYAKA, KATADA JUNICHI, WADA: "Highly specific monoclonal antibodies and epitope identification against SARS-CoV-2 nucleocapsid protein for antigen detection tests", CELL REPORTS MEDICINE, vol. 2, 1 June 2021 (2021-06-01), pages 1 - 18, XP055896515, ISSN: 2666-3791, DOI: 10.1016/j.xcrm.2021.100311 *
ZHANG LI, ZHENG BINYANG, GAO XINGSU, ZHANG LIBO, PAN HONGXIN, QIAO YONG, SUO GUANGLI, ZHU FENGCAI: "Development of Patient-Derived Human Monoclonal Antibodies Against Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus 2 for Coronavirus Disease 2019 Diagnosis", FRONTIERS IN IMMUNOLOGY, vol. 11, XP055807872, DOI: 10.3389/fimmu.2020.595970 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166920A1 (ja) * 2023-02-08 2024-08-15 デンカ株式会社 抗sars-cov-2モノクローナル抗体並びにそれを用いたsars-cov-2の免疫測定方法及び免疫測定器具

Also Published As

Publication number Publication date
JP2022191725A (ja) 2022-12-28
US20240255505A1 (en) 2024-08-01
KR20240022452A (ko) 2024-02-20
JP7105970B1 (ja) 2022-07-25
TW202311744A (zh) 2023-03-16
EP4357781A1 (en) 2024-04-24
CA3218423A1 (en) 2022-12-22
CN117337392A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2022265066A1 (ja) SARS-CoV-2の免疫測定方法及び免疫測定キット
JP7216948B1 (ja) SARS-CoV-2の免疫測定方法及び免疫測定キット、並びにモノクローナル抗体又はその抗体断片
WO2007003090A1 (fr) Composition remplaçant un sérum positif utilisée comme témoin dans un agent de diagnostic et application de celle-ci
WO2022193980A1 (zh) 针对新型冠状病毒核衣壳蛋白的抗体或其抗原结合片段及其应用
JP6048923B2 (ja) B型慢性肝炎の検出方法および検出キット
US20240345088A1 (en) Antigen lateral flow
WO2018227643A1 (zh) 一种用于脂肪性肝炎检测的靶标志物gp73及检测应用方法
JP7216949B1 (ja) 等電点9.5以上のタンパク質の免疫測定方法及びそれに用いる検体希釈液、並びにイムノクロマトグラフィーキット
JP7489228B2 (ja) SARS-CoV-2由来ヌクレオカプシド断片および該断片を用いて抗SARS-CoV-2抗体を検出する方法およびキット
CN113196057B (zh) 病毒性肝癌的检测方法
WO2022202876A1 (ja) I型コラーゲンc末端テロペプチドの免疫学的分析方法
WO2023068248A1 (ja) I型コラーゲン架橋n-テロペプチドの免疫測定方法及び免疫測定キット、並びに抗体又はその抗体断片
US20240377396A1 (en) Immunoassay method, specimen diluent, and immunochromatography kit
WO2022054754A1 (ja) 敗血症原因細菌の免疫学的分析方法及び該方法に用いるモノクローナル抗体
JP7315966B2 (ja) 生物学的試料中の遊離aimの免疫学的分析方法
WO2022054753A1 (ja) 敗血症原因細菌の免疫学的分析キット
JP7157061B2 (ja) ジカウイルスを検出する方法及びキット
US20230176056A1 (en) Adenovirus immunoassay method and immunoassay instrument
JP2023128698A (ja) 変異株を含む、体液中のSARS-CoV-2抗原に対する抗SARS-CoV-2抗体、該抗体を用いてSARS-CoV-2を検出する方法、および該抗体を含むキット
CN117178190A (zh) 用于检测sars-cov-2的测定
WO2018132639A1 (en) Methods and kits for the diagnosis and/or prognosis of ocular cicatricial pemphigoid
AU2017334408A1 (en) Point of care assays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033519.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3218423

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18290089

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022825054

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022825054

Country of ref document: EP

Effective date: 20240116