[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022264314A1 - モータの絶縁抵抗値を計算するモータ駆動装置 - Google Patents

モータの絶縁抵抗値を計算するモータ駆動装置 Download PDF

Info

Publication number
WO2022264314A1
WO2022264314A1 PCT/JP2021/022879 JP2021022879W WO2022264314A1 WO 2022264314 A1 WO2022264314 A1 WO 2022264314A1 JP 2021022879 W JP2021022879 W JP 2021022879W WO 2022264314 A1 WO2022264314 A1 WO 2022264314A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
resistance value
insulation resistance
motor
Prior art date
Application number
PCT/JP2021/022879
Other languages
English (en)
French (fr)
Inventor
拓 佐々木
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/022879 priority Critical patent/WO2022264314A1/ja
Priority to DE112021007484.9T priority patent/DE112021007484T5/de
Priority to US18/566,790 priority patent/US20240272212A1/en
Priority to JP2023528841A priority patent/JPWO2022264314A1/ja
Priority to CN202180099174.6A priority patent/CN117501615A/zh
Publication of WO2022264314A1 publication Critical patent/WO2022264314A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault

Definitions

  • the present invention relates to a motor drive device that calculates the insulation resistance value of a motor.
  • the resistance value (insulation resistance value) of the insulation resistance (insulation resistance value) of the motor coil (winding) to the ground decreases due to the intrusion of oil over time.
  • the insulation resistance value of the motor coil decreases, leakage current flows in the closed circuit formed by the motor, the motor driving device, and the ground.
  • the servo amplifier performs an overcurrent detection operation, or the breaker provided in the input stage trips.
  • the machine tool provided with the motor comes to an emergency stop. If there is such an emergency stop, the machine tool may be stopped for a long time to investigate the cause, which reduces efficiency. Therefore, the operation of measuring the insulation resistance value of the motor is essential for the operation of the motor drive device.
  • a power supply unit that rectifies the power supplied from an AC power supply through a switch with a rectifier circuit and smoothes it with a capacitor, and a motor drive amplifier that converts the DC voltage from the power supply unit into AC to drive a motor.
  • a motor drive amplifier that converts the DC voltage from the power supply unit into AC to drive a motor.
  • one end of the capacitor is connected to the ground and the other end and the motor coil
  • a motor insulation resistance deterioration detection method is known, which detects deterioration of the insulation resistance of a motor by detecting a current flowing in a closed circuit formed by a capacitor, a motor coil, and the ground.
  • an AC voltage supplied from an AC power supply through a switch is rectified into a DC voltage by a rectifier circuit, and the rectified DC voltage is smoothed by a capacitor, and the upper arm and the lower arm switching elements are used.
  • a motor drive amplifier section for converting a DC voltage from a power supply section into an AC voltage to drive a motor, a power supply voltage measurement section for measuring the voltage of the power supply section, a contact section for connecting one end of the capacitor to ground, and
  • a current detection unit is provided between the other end of the capacitor and the motor coil, the switch is turned off, the contact unit is turned on, and the current detection unit is used to detect the contact unit, the capacitor, an insulation resistance deterioration detector for detecting deterioration of the insulation resistance of the motor based on a detection signal obtained from a closed circuit formed by the motor coil and the ground;
  • the switching element of the upper arm or the lower arm of the motor drive amplifier is arbitrarily switched, and the insulation resistance deterioration is detected based on the detection signal in the insulation
  • a converter unit having a rectifier circuit that rectifies AC power, a smoothing capacitor that smoothes the output of the rectifier circuit, and a plurality of inverters that convert DC from the converter unit to AC to drive a plurality of motors.
  • a device for detecting insulation deterioration of a motor connected to a motor drive device comprising: a first switch that grounds one end of the smoothing capacitor by conducting when insulation deterioration is detected; A voltage detection unit that measures the voltage across the smoothing capacitor, and a plurality of second switches that connect the other end of the smoothing capacitor to the windings of the plurality of motors by conducting when insulation deterioration is detected.
  • a plurality of current detection units for detecting discharge currents of the smoothing capacitors flowing through the insulation resistances of the plurality of motors when the first switch and the plurality of second switches are turned on; a plurality of insulation resistance calculators for calculating the insulation resistance of each of the plurality of motors from the voltage detected by the voltage detector and the current detected by each of the plurality of current detectors.
  • a device wherein the one first switch and the one voltage detection unit are provided in the converter unit, the plurality of second switches, the plurality of current detection units, and the plurality of insulation resistance calculation units is provided in each of the plurality of inverter units, and the voltage value detected by the one voltage detection unit and a signal for notifying the timing of turning on the one first switch are transmitted from the converter unit to the plurality of inverters connection by the second switch, current detection by the current detection unit, and insulation resistance calculation by the insulation resistance calculation unit at the same timing in each of the plurality of inverter units.
  • a motor insulation deterioration detection device that performs calculation (see, for example, Patent Document 3).
  • a rectification circuit that rectifies an AC voltage supplied from an AC power supply through a first switch to a DC voltage
  • a power supply unit that smoothes the DC voltage rectified by the rectification circuit with a capacitor
  • the power supply unit An inverter unit that converts a smoothed DC voltage into an AC voltage by switching operation of a semiconductor switching element to drive a motor;
  • a current detector that measures the value of current flowing through the resistor, a voltage detector that measures the voltage across the capacitor, a second switch that grounds the other terminal of the capacitor, and a motor that stops the operation.
  • an electric power supply including a rectifier circuit arranged between an AC power supply and a load and converting an AC voltage from the AC power supply to a DC voltage, and an inverter connected to the rear stage of the rectifier circuit and driving the load.
  • An insulation detector connected between either one of the P bus and the N bus of the equipment and the output line connecting the inverter and the load, wherein a detection resistor and a voltage dividing resistor are connected in series. and a capacitor connected in parallel with the resistor, the impedance of which is lower than that of the detection resistor, and the voltage of the detection resistor divided by the voltage dividing resistor to detect the insulation.
  • the insulation resistance value cannot be measured accurately. Even if a fault detection circuit is provided to detect faults in the insulation resistance detection circuit itself, the insulation resistance detection circuit will degrade over time and cause measurement errors until the fault detection circuit detects a fault in the insulation resistance detection circuit. It gradually increases, and it gradually becomes difficult to accurately measure the insulation resistance value. Therefore, there is a demand for a technique that can accurately detect the insulation resistance value of a motor while accurately detecting a failure in a circuit that detects the insulation resistance value of the motor.
  • a motor drive device includes a first switch that opens and closes an electric circuit from an AC power source, and a rectifier circuit that converts an AC voltage supplied from the AC power source through the first switch that is in a closed state.
  • the power supply unit rectifies the rectified DC voltage with a capacitor, and the switching elements of the upper and lower arms convert the DC voltage from the power supply unit into AC voltage for driving the motor.
  • a motor drive amplifier unit that supplies power to the motor, a first voltage measurement unit that acquires the measured value of the voltage of the power supply unit, one end of the capacitor is connected to the ground when the closed state and one end of the capacitor is connected when the open state.
  • a second switch that is not connected to the ground, a measuring resistor provided between the other end of the capacitor and the motor coil, a second voltage measuring unit that obtains a measured value of the voltage across the terminals of the measuring resistor,
  • the motor Based on the measured value of the voltage of the power supply unit acquired by the first voltage measuring unit, the measured value of the voltage across the terminals of the measuring resistor and the resistance value of the measuring resistor acquired by the second voltage measuring unit, the motor a calculation unit for calculating the insulation resistance value of the insulation resistance value detection unit, the first switch and the second switch are opened, and the switching element of the upper arm or the lower arm of the motor drive amplifier unit is arbitrarily Based on the measured value of the voltage of the power supply unit and the resistance value of the measurement resistor obtained by the first voltage measurement unit when the second closed circuit including the capacitor and the measurement resistor is configured by switching , a voltage
  • a motor drive device that can accurately detect the insulation resistance value of the motor while accurately detecting a failure in the circuit that detects the insulation resistance value of the motor.
  • FIG. 1 illustrates a motor drive device according to an embodiment of the present disclosure
  • FIG. FIG. 5 is a diagram illustrating a second closed circuit configured when executing a process of determining whether or not an insulation resistance value detection unit has a failure in the motor drive device according to the embodiment of the present disclosure
  • 4 is a flow chart showing an operation flow of a process for determining whether or not an insulation resistance value detector has a failure in the motor drive device according to the embodiment of the present disclosure
  • 4 is a diagram illustrating a first closed circuit configured when an insulation resistance value detection unit executes an insulation resistance value detection process in the motor drive device according to the embodiment of the present disclosure
  • 4 is a flowchart (Part 1) showing an operation flow of insulation resistance value detection processing by an insulation resistance value detection unit in the motor drive device according to the embodiment of the present disclosure
  • 2 is a flowchart (part 2) showing an operation flow of insulation resistance value detection processing by an insulation resistance value detection unit in the motor drive device according to the embodiment of the present disclosure
  • It is a circuit diagram showing a part related to the first closed circuit.
  • FIG. 10 is a diagram showing a modification of the motor drive device according to an embodiment of the present disclosure
  • FIG. 7 is a flow chart showing an operation flow of a process for determining whether or not an insulation resistance value detector has a failure in a modified example of the motor drive device according to the embodiment of the present disclosure;
  • a motor drive device that calculates the insulation resistance value of a motor will be described below with reference to the drawings.
  • similar parts are provided with similar reference numerals.
  • the scales of these drawings are appropriately changed.
  • the form shown in drawing is one example for implementing, and it is not limited to the illustrated form.
  • FIG. 1 is a diagram showing a motor drive device according to one embodiment of the present disclosure.
  • the motor 3 is controlled by the motor driving device 1 connected to the AC power supply 2 .
  • the type of the motor 3 is not particularly limited, and may be an induction motor or a synchronous motor, for example.
  • the number of phases of the AC power supply 2 and the motor 3 is not particularly limited in this embodiment, and may be three-phase or single-phase, for example.
  • Machines provided with the motor 3 include, for example, machine tools, robots, forging machines, injection molding machines, industrial machines, various electrical appliances, trains, automobiles, and aircraft.
  • Examples of the AC power supply 2 include a three-phase AC 400V power supply, a three-phase AC 200V power supply, a three-phase AC 600V power supply, and a single-phase AC 100V power supply.
  • the AC power supply 2 and the motor 3 each have three phases.
  • An insulation resistance 4 exists between the motor coil (winding) of the motor 3 and the ground.
  • the insulation resistance value Rm [ ⁇ ] which is the resistance value of the insulation resistor 4, is infinite when there is no deterioration, and gradually decreases from infinity to several M ⁇ , several hundred k ⁇ , and so on as the deterioration progresses.
  • a motor driving device 1 has a function of detecting an insulation resistance value Rm [ ⁇ ] of a motor 3 and a function of determining whether or not the function detecting the insulation resistance value Rm [ ⁇ ] is faulty.
  • a motor drive device 1 includes a first switch 11, a power supply section 12, a motor drive amplifier section 13, a first voltage measurement section 14, an insulation resistance A value detector 15 , a voltage estimator 16 , an error detector 17 , and a failure determiner 18 are provided.
  • the first switch 11 opens and closes the electric circuit between the AC power supply 2 and the rectifier circuit 21 in the power supply section 12 .
  • the opening and closing of the electric circuit by the first switch 11 is controlled by, for example, the control unit 30 in the insulation resistance value detection unit 15, but instead of this, an arithmetic processing unit provided outside the insulation resistance value detection unit 15 may be controlled by any controller (not shown) consisting of
  • the first switch 11 is composed of, for example, an electromagnetic contactor.
  • the closed state of the electric circuit from the AC power supply 2 to the rectifier circuit 21 in the power supply unit 12 is realized by closing the contact of the first switch 11, which is an electromagnetic contactor.
  • the open state of the electric path to the rectifier circuit 21 is realized by opening the contacts of the first switch 11, which is an electromagnetic contactor.
  • the first switch 11 may be a relay, a semiconductor switching element, or the like, instead of the electromagnetic contactor, as long as it can open and close the electric path from the AC power supply 2 .
  • a “DC link” refers to a circuit portion that electrically connects the DC output side of the power supply unit 12 and the DC input side of the motor drive amplifier unit 13. It may also be referred to as a “DC link section” or "DC intermediate circuit”.
  • the power supply unit 12 has a rectifier circuit 21 and a capacitor 22.
  • the rectifier circuit 21 rectifies the AC voltage supplied from the AC power supply 2 through the first switch 11 in an open state to a DC voltage, and the rectified A DC voltage is smoothed by a capacitor 22 and output.
  • the rectifier circuit 21 in the power supply unit 12 may be any circuit as long as it can convert AC voltage to DC voltage. There is a rectifier circuit of the system.
  • the rectifier circuit 21 is configured as a three-phase bridge circuit when the AC power supply 2 is a three-phase AC power supply, and is configured as a single-phase bridge circuit when the AC power supply 2 is a single-phase AC power supply.
  • the rectifier circuit 21 is a PWM switching control type rectifier circuit, it is composed of a switching element and a diode bridge circuit connected in anti-parallel to the switching element.
  • switching elements include IGBTs, thyristors, GTOs (gate turn-off thyristors), and transistors. good too.
  • the capacitor 22 in the power supply unit 12 has a function of smoothing the DC voltage output by the rectifier circuit 21 and a function of accumulating DC power in the DC link.
  • Capacitor 22 may also be referred to as a smoothing capacitor, a DC link capacitor, or the like. Examples of the capacitor 22 include, for example, electrolytic capacitors and film capacitors.
  • a first voltage measuring section 14 is connected to both terminals of the capacitor 22 .
  • the first voltage measurement unit 14 is a measurement circuit that obtains a measured value of the (DC) voltage of the power supply unit 12 , which is the voltage applied to the capacitor 22 .
  • the motor drive amplifier unit 13 has an inverter configured by a bridge circuit in which a pair of switching elements and diodes connected in anti-parallel to the switching elements are provided in upper and lower arms.
  • the motor 3 is a three-phase AC motor, so the inverter in the motor drive amplifier section 13 is configured with a three-phase bridge circuit.
  • the U-phase upper arm switching element is S u1
  • the U-phase lower arm switching element is S u2
  • the V-phase upper arm switching element is S v1
  • the V-phase lower arm switching element is S v2
  • the W-phase is Let S w1 be the switching element in the upper arm of , and S w2 be the switching element in the lower arm of the W phase.
  • the motor drive amplifier unit 13 performs power conversion operation by controlling the ON/OFF operation of the switching elements of the upper arm and the lower arm according to a PWM switching command from a host controller (not shown). That is, the motor drive amplifier unit 13 converts the DC voltage in the DC link into an AC voltage for driving the motor by turning on and off the switching elements of the upper arm and the lower arm, and supplies the AC voltage to the motor 3. The AC voltage regenerated by the motor 3 is converted into a DC voltage and returned to the DC link side.
  • the ON/OFF operation of the switching elements of the upper arm and the lower arm in the motor drive amplifier unit 13 is also controlled by the control unit 30 of the insulation resistance value detection unit 15. will be described later.
  • the insulation resistance value detection unit 15 detects the insulation resistance value Rm [ ⁇ ], which is the resistance value of the insulation resistance 4 between the motor coil (winding) of the motor 3 and the ground.
  • the insulation resistance value detection unit 15 includes a control unit 30, a second switch 31, a measurement resistor 32, a second voltage measurement unit 33, a calculation unit 34, a correction value generation unit 35, and a correction unit 36. and have The insulation resistance value Rm [ ⁇ ] of the insulation resistance 4 of the motor 3 is detected by the insulation resistance value detection unit 15 by opening the first switch 11 and closing the second switch 31, and by closing the motor drive amplifier unit.
  • the first closed circuit is an insulation resistance value detection closed circuit including a second switch 31, a capacitor 22, a measuring resistor 32, a motor coil of the motor 3, and the ground.
  • a voltage dividing resistor 38 is connected to one terminal of the second switch 31 in the insulation resistance value detecting section 15, and a voltage dividing resistor 39 is connected to the other terminal.
  • One terminal of the voltage dividing resistor 38 is connected to the positive power line that connects the rectifying circuit 21 and the capacitor 22 in the power supply section 12 .
  • One terminal of the voltage dividing resistor 39 is connected to the ground.
  • the grounding of the second switch 31 is controlled by its opening and closing. That is, when it is closed, it connects the positive terminal of the capacitor 22 to the ground, and when it is open, it connects one end of the capacitor to ground. Do not connect. Opening and closing of the second switch 31 is controlled by the control section 30 .
  • the second switch 31 is composed of, for example, a relay, a semiconductor switching element, or an electromagnetic contactor.
  • a measuring resistor 32 is provided between the negative terminal of the capacitor 22 and the motor coil of the motor 3 . More specifically, one terminal of the measuring resistor 32 is connected to the negative terminal of the capacitor 22 via the negative power line of the motor drive amplifier section 13 . The other terminal of the measuring resistor 32 is connected via a voltage dividing resistor 37 to a power line for one phase that connects the motor drive amplifier section 13 and the motor coil of the motor 3 . In the illustrated example, as an example, the other terminal of the measuring resistor 32 is connected to a U-phase power line that connects the motor drive amplifier section 13 and the U-phase motor coil of the motor 3 .
  • the second voltage measurement unit 33 is a measurement circuit that acquires the measured value of the voltage across the terminals of the measurement resistor 32 .
  • the isolation amplifier may be constituted by an insulation amplifier composed of the measuring resistor 32 , the second voltage measuring section 33 and the voltage dividing resistor 37 .
  • a voltage dividing resistor 37 is provided to adjust the input voltage to the isolation amplifier so that it falls within an appropriate range.
  • the correction value generation unit 35 generates a correction value based on the error detected by the error detection unit 17 used when the failure determination unit 18, which will be described later, determines that the insulation resistance value detection unit 15 has no failure. .
  • the correction unit 36 converts the measured value of the voltage across the terminals of the measuring resistor 32 acquired by the second voltage measurement unit 33 when the first closed circuit is formed into the correction value generated by the correction value generation unit 35. is used to generate a corrected measured value of the voltage across the terminals of the measuring resistor 32 .
  • the corrected measurement value of the voltage across the terminals of the measuring resistor 32 generated by the correction unit 36 is used by the calculation unit 34 to calculate the insulation resistance value Rm [ ⁇ ] of the motor 3 .
  • the calculation unit 34 calculates the voltage obtained by the first voltage measurement unit 14 when the first closed circuit including the second switch 31, the capacitor 22, the measurement resistor 32, the motor coil of the motor 3, and the ground is configured.
  • the insulation resistance 4 of the motor 3 is determined based on the measured value of the voltage of the power supply unit 12 and the corrected measured value of the voltage across the terminals of the measuring resistor 32 generated by the correcting unit 36 and the resistance value of the measuring resistor 32. Calculate the insulation resistance value Rm [ ⁇ ] for The details of the calculation process of the insulation resistance value by the calculator 34 will be described later.
  • the insulation resistance value of the motor 3 detected by the insulation resistance value detection unit 15 is sent to a display unit (not shown), and the display unit displays the "insulation resistance value of the motor 3" to notify the operator.
  • Examples of the display unit include a stand-alone display device, a display device attached to the motor drive device 1, a display device attached to a host controller (not shown), and a display device attached to a personal computer and a mobile terminal.
  • the insulation resistance value of the motor 3 detected by the insulation resistance value detection unit 15 is sent to an alarm output unit (not shown), and the alarm output unit detects that the insulation resistance value of the motor 3 is below a predetermined value. In this case, an insulation resistance deterioration alarm may be output.
  • the insulation resistance deterioration alarm output from the alarm output unit is sent to a light-emitting device (not shown) such as an LED or a lamp. "deterioration of insulation resistance 4". Also, for example, the insulation resistance deterioration alarm output from the alarm output unit is sent to, for example, audio equipment (not shown), and the audio equipment emits sounds such as voice, speaker, buzzer, chime, etc. when receiving the insulation resistance deterioration alarm. is issued to notify the operator of "deterioration of the insulation resistance 4 of the motor 3". As a result, the operator can reliably and easily grasp the insulation resistance value of the motor 3 and the deterioration of the insulation resistance 4 of the motor 3, and it is easy to replace the motor 3 or disassemble and clean the motor 3. can be taken
  • the presence or absence of failure of the insulation resistance value detection unit 15 is determined by opening the first switch 11 and the second switch 31 and arbitrarily switching the switching elements of the upper arm or the lower arm of the motor drive amplifier unit 13.
  • the second closed circuit is a failure judgment closed circuit including the capacitor 22 and the measuring resistor 32 .
  • the voltage estimation unit 16 opens the first switch 11 and the second switch 31 and arbitrarily switches the switching elements of the upper arm or the lower arm of the motor drive amplifier unit 13 to obtain a capacitor 22 and a measurement voltage. Based on the measured value of the voltage of the power supply unit 12 and the resistance value of the measuring resistor 32 obtained by the first voltage measuring unit 14, according to the circuit equation for the second closed circuit including the measuring resistor 32 An estimate of the voltage across resistor 32 is calculated.
  • the error detection unit 17 detects the measured value of the voltage across the terminals of the measuring resistor 32 obtained by the second voltage measuring unit 33 when the second closed circuit is configured, and the measuring voltage calculated by the voltage estimating unit 16. An error between the estimated value of the voltage across the terminals of the resistor 32 and the error is detected. The error detected by the error detection unit 17 is used for failure determination processing by the failure determination unit 18 and correction value generation processing by the correction value generation unit 35 . Note that the "measured value of the voltage across the measuring resistor 32 acquired by the second voltage measuring section 33" used in the error detection process by the error detecting section 17 is not corrected by the correcting section 36. should be noted.
  • the failure determination unit 18 determines whether or not the insulation resistance value detection unit 15 has a failure. More specifically, if the error detected by the error detection unit 17 is outside the range of a predetermined reference error, the failure determination unit 18 determines that the insulation resistance value detection unit 15 has failed, and the error detection unit 17 If the error detected by is within the range of the reference error, it is determined that the insulation resistance value detector 15 is free of failure.
  • the determination result by the failure determination unit 18 is used for correction value generation processing by the correction value generation unit 35 .
  • the determination result by the failure determination unit 18 may be sent to a display unit (not shown).
  • the display section performs display to notify the operator of "presence or absence of failure in the insulation resistance value detection section 15".
  • Examples of the display unit include a stand-alone display device, a display device attached to the motor drive device 1, a display device attached to a host controller (not shown), and a display device attached to a personal computer and a mobile terminal.
  • the determination result that the insulation resistance value detection unit 15 has a failure is sent to an alarm output unit (not shown), and the alarm output unit outputs the determination result that the insulation resistance value detection unit 15 has a failure. is received, a failure detection alarm may be output.
  • the failure detection alarm output from the alarm output unit is sent to, for example, a light-emitting device (not shown) such as an LED or lamp, and the light-emitting device emits light when receiving the failure detection alarm, thereby telling the worker "Insulation resistance value detection. "failure of unit 15" is notified.
  • the failure detection alarm output from the alarm output unit is sent to, for example, audio equipment (not shown), and the audio equipment emits sounds such as voice, speaker, buzzer, chime, etc. when receiving the failure detection alarm.
  • the operator is notified of the "failure of the insulation resistance detector 15".
  • the operator can reliably and easily ascertain the failure of the insulation resistance value detection unit 15 and can easily take measures such as replacing the insulation resistance value detection unit 15 .
  • An arithmetic processing unit (processor) is provided in the motor drive device 1 .
  • arithmetic processing units include ICs, LSIs, CPUs, MPUs, and DSPs.
  • This arithmetic processing device includes a first voltage measurement unit 14, a control unit 30, a second voltage measurement unit 33, a calculation unit 34, a correction value generation unit 35, a correction unit 36, and a voltage estimation unit 16. , an error detection unit 17 and a failure determination unit 18 .
  • Each of these units of the arithmetic processing unit is, for example, a functional module realized by a computer program executed on the processor.
  • the first voltage measurement unit 14, the control unit 30, the second voltage measurement unit 33, the calculation unit 34, the correction value generation unit 35, the correction unit 36, the voltage estimation unit 16, the error detection unit 17, and the failure determination unit 18 is constructed in the form of a computer program, the function of each part can be realized by operating the arithmetic processing unit according to this computer program.
  • First voltage measurement unit 14, control unit 30, second voltage measurement unit 33, calculation unit 34, correction value generation unit 35, correction unit 36, voltage estimation unit 16, error detection unit 17, and failure determination unit 18 A computer program for executing each process may be provided in a form recorded in a computer-readable recording medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium.
  • the unit 18 may be implemented as a semiconductor integrated circuit in which a computer program that implements the functions of each unit is written.
  • FIG. 2 is a diagram for explaining a second closed circuit configured when executing a process for determining whether or not there is a failure in an insulation resistance value detection unit in a motor drive device according to an embodiment of the present disclosure.
  • illustration of the control unit 30, the calculation unit 34, the correction value generation unit 35, the correction unit 36, the voltage estimation unit 16, the error detection unit 17, and the failure determination unit 18 is omitted.
  • the first switch 11 is closed and the second switch 31 is opened. are all turned off, and the capacitor 22 is charged with power flowing from the AC power supply 2 through the rectifier circuit 21 .
  • the first switch 11 and the second switch 31 are opened, and the switching elements of the upper arm or the lower arm of the motor drive amplifier section 13 are arbitrarily switched, so that the thick line in FIG. It constitutes a second closed circuit 102 indicated by an arrow. Note that the capacitor 22 is sufficiently charged even in a state in which the motor driving device 1 has already driven the motor 3 and then stopped driving the motor 3.
  • the first switch 11 and the second The second closed circuit 102 may be configured by opening the second switch 31 and arbitrarily switching the switching elements of the upper arm or the lower arm of the motor drive amplifier section 13 .
  • the U-phase upper arm switching element S u1 of the motor drive amplifier unit 13 is turned on, and the other switching elements S u2 , S v1 , S v2 , S w1 , and S w2 are turned off. state.
  • a second closed circuit 102 including the capacitor 22, the switching element Su1 , the voltage dividing resistor 37 and the measuring resistor 32 is formed.
  • the voltage between the terminals of the measuring resistor 32 can be estimated.
  • the resistance value of the measuring resistor 32 is Rb [ ⁇ ]
  • the resistance value of the voltage dividing resistor 37 is Ra [ ⁇ ]
  • the power supply obtained by the first voltage measurement unit 14 in the state where the second closed circuit 102 is configured When the measured value of the voltage of the section 12 (the voltage of the capacitor 22) is Vdc [V], the estimated value Vin1 [V] of the voltage between the terminals of the measuring resistor 32 can be obtained based on Equation (1).
  • the second closed circuit 102 also includes the ON resistance of the switching element (for example, IGBT) in the motor drive amplifier section 13, but since its value is very small, ignores the on-resistance of the switching element.
  • the voltage estimating unit 16 calculates the measured value Vdc [V] of the voltage of the power supply unit 12 acquired by the first voltage measuring unit 14 when the second closed circuit 102 is configured, and the measuring resistance Based on the resistance value Rb [ ⁇ ] of the resistor 32 and the resistance value Ra [ ⁇ ] of the voltage dividing resistor 37, an estimated value Vin1 [V] of the voltage across the terminals of the measuring resistor 32 is calculated.
  • the resistance value Rb [ ⁇ ] of the measuring resistor 32 and the resistance value Ra [ ⁇ ] of the voltage dividing resistor 37 are known, and for example, the nominal values of the manufacturer of these parts may be used.
  • the resistance value Rb [ ⁇ ] of the resistor 32 for measurement and the resistance value Ra [ ⁇ ] of the voltage dividing resistor 37 are input in advance into the arithmetic processing unit that constitutes the voltage estimation unit 16, and the It may be used to calculate the estimated value Vin1 [V] of the voltage between the terminals of the resistor 32 .
  • the second voltage measurement unit 33 can also acquire the measured value (actual value) Vin2 [V] of the voltage across the terminals of the measuring resistor 32. .
  • the estimated value Vin1 [V] of the voltage across the terminals of the measuring resistor 32 and the measured value (actual value) Vin2 [V] of the voltage across the terminals of the measuring resistor 32 are: ideally equal.
  • the error ⁇ V [V] between the estimated value Vin1 [V] of the voltage across the terminals of the measuring resistor 32 and the measured value (actual value) Vin2 [V] of the voltage across the terminals of the measuring resistor 32 is given by Equation 2. is represented by
  • the error detection unit 17 calculates the measured value Vin2 [V] of the voltage between the terminals of the measuring resistor 32 obtained by the second voltage measurement unit 33 when the second closed circuit 102 is configured, based on Equation 2, and , and the estimated value Vin1 [V] of the voltage across the measuring resistor 32 calculated by the voltage estimator 16, and the error ⁇ V [V] is detected.
  • the error ⁇ V [V] detected by the error detection section 17 is used for failure determination processing by the failure determination section 18 .
  • the failure determination unit 18 determines that the insulation resistance value detection unit 15 has a failure, and the error detection unit 17 If the error ⁇ V [V] detected by is within the range of the standard error, it is determined that the insulation resistance value detector 15 is free of failure. If the lower limit value of the range of the standard error is Vth1 [V] and the upper limit value is Vth2 [V], Equation 3 used in the failure determination process by the failure determination unit 18 is obtained.
  • the failure determination unit 18 determines whether or not there is a failure in the insulation resistance value detection unit 15 based on the error detected by the error detection unit 17, for example, based on Equation 3.
  • the lower limit value Vth1 [V] and the upper limit value Vth2 [V] of the reference error range used in the failure determination process by the failure determination unit 18 have a relationship of "Vth1 ⁇ Vth2", and each take a positive or negative value. It is what you get.
  • the second voltage measurement unit 33 operates the motor drive device 1 through experiments or actual operations, or through computer simulation. , the application environment of the motor drive device 1, and the relationship between the presence or absence of the alarm signal output from the motor drive device 1 and the like can be obtained in advance and then appropriately set.
  • the lower limit value Vth1 [V] and the upper limit value Vth2 [V] of the reference error range may be stored in a rewritable storage unit (not shown) and rewritable by an external device. , the lower limit value Vth1 [V] and the upper limit value Vth2 [V] of the range of the reference error can be changed to appropriate values as necessary even after they are once set.
  • the storage unit that stores the lower limit value Vth1 [V] and the upper limit value Vth2 [V] of the range of the reference error is an electrically erasable/recordable nonvolatile memory such as EEPROM (registered trademark), or It may be composed of a random access memory such as DRAM, SRAM, etc., which can be read and written at high speed.
  • the lower limit value Vth1 [V] and the upper limit value Vth2 [V] of the set reference error range are input in advance into the arithmetic processing unit constituting the failure determination unit 18, and the failure determination unit 18 performs failure determination. It can be used for processing.
  • FIG. 3 is a flow chart showing an operational flow of a process for determining the presence or absence of failure of an insulation resistance value detector in a motor drive device according to an embodiment of the present disclosure.
  • step S101 the control unit 30 controls the first switch 11 to be closed and the second switch 31 to be open. Further, the control unit 30 controls all the switching elements in the motor drive amplifier unit 13 to be in an OFF state.
  • step S102 the capacitor 22 is charged with the power flowing from the AC power supply 2 through the rectifier circuit 21 .
  • the state of charge of capacitor 22 is monitored by control unit 30 via first voltage measurement unit 14 . Note that in a state in which the motor driving device 1 has already driven the motor 3 and then stopped driving the motor 3, the capacitor 22 is sufficiently charged, so in this case step S102 is omitted. good too.
  • step S103 the control unit 30 switches the first switch 11 from the closed state to the open state, thereby setting the first switch 11 and the second switch 31 to the open state. Further, the control unit 30 arbitrarily switches the switching elements of the upper arm or the lower arm of the motor drive amplifier unit 13 .
  • the switching element S u1 of the U-phase upper arm of the motor drive amplifier unit 13 is turned on, and the other switching elements S u2 , S v1 , S v2 , S w1 , and S w2 are turned on. is turned off.
  • a second closed circuit 102 including the capacitor 22, the switching element Su1 , the voltage dividing resistor 37 and the measuring resistor 32 is formed.
  • step S104 the first voltage measurement unit 14 acquires the measured value of the voltage of the power supply unit 12 (voltage of the capacitor 22).
  • step S105 the voltage estimating unit 16 calculates the measured value Vdc [V] of the voltage of the power supply unit 12 acquired by the first voltage measuring unit 14 when the second closed circuit 102 is configured based on Equation 1. and the resistance value Rb [ ⁇ ] of the measuring resistor 32 and the resistance value Ra [ ⁇ ] of the voltage dividing resistor 37, the estimated value Vin1 [V] of the voltage between the terminals of the measuring resistor 32 is calculated.
  • step S106 the second voltage measuring unit 33 acquires the measured value Vin2 [V] of the voltage across the terminals of the measuring resistor 32 when the second closed circuit 102 is configured.
  • steps S104 to S106 may be changed as appropriate within a consistent range.
  • steps S104 and S105 may be performed after performing step S106, or step S106 may be performed between steps S104 and S105.
  • step S105 should be performed at least after S104.
  • step S107 the error detection unit 17 detects the measured value Vin2 of the voltage between the terminals of the measuring resistor 32 obtained by the second voltage measurement unit 33 when the second closed circuit 102 is configured, based on Equation 2. An error ⁇ V [V] between [V] and the estimated value Vin1 [V] of the voltage between the terminals of the measuring resistor 32 calculated by the voltage estimator 16 is detected.
  • step S108 the failure determination unit 18 determines whether the error ⁇ V [V] detected by the error detection unit 17 is outside the range of a predetermined reference error. If it is determined in step S108 that the error ⁇ V [V] is outside the range of the standard error, the process proceeds to step S109, and the failure determination section 18 determines that the insulation resistance value detection section 15 has failed. If it is not determined in step S108 that the error ⁇ V [V] is outside the range of the standard error (that is, if the error ⁇ V [V] is within the range of the standard error), the process proceeds to step S110. , it is determined that the insulation resistance value detection unit 15 has no failure.
  • FIG. 4 is a diagram for explaining a first closed circuit configured when executing insulation resistance value detection processing by an insulation resistance value detection unit in a motor drive device according to an embodiment of the present disclosure.
  • illustration of the control unit 30, the calculation unit 34, the correction value generation unit 35, the correction unit 36, the voltage estimation unit 16, the error detection unit 17, and the failure determination unit 18 is omitted.
  • FIG. 7 is a circuit diagram showing a portion related to the first closed circuit. In FIG. 7, illustration of the second switch 31 in the closed state is omitted. As shown in FIGS.
  • the first closed circuit 101 includes a capacitor 22, a voltage dividing resistor 38, a closed second switch 31, a voltage dividing resistor 39, and an insulation resistor 4 of the motor coil of the motor 3. It includes a voltage dividing resistor 37 and a measuring resistor 32 .
  • the leakage current I 1 [A] flowing through the first closed circuit 101 can be calculated according to Equation 4.
  • the measured value Vdc [V] of the voltage of the power supply unit 12 acquired by the first voltage measurement unit 14, the first closed circuit 101
  • the flowing leakage current I 1 [A] the resistance value Rb [ ⁇ ] of the measuring resistor 32, the resistance value Ra [ ⁇ ] of the voltage dividing resistor 37, the resistance value Rc [ ⁇ ] of the voltage dividing resistor 38, From the resistance value Rd [ ⁇ ] of the piezoresistor 39 and the insulation resistance value Rm [ ⁇ ] of the insulation resistance 4 of the motor 3, the circuit equation represented by Equation 5 is established.
  • Formula 6 is obtained by substituting formula 5 into formula 4 and transforming it.
  • the insulation resistance value Rm [ ⁇ ] for the insulation resistance 4 of the motor 3 can be calculated according to Equation 6.
  • the output of the second voltage measuring section 33 includes an error ⁇ V due to component errors and aged deterioration of the second voltage measuring section 33, the measuring resistor 32, and the voltage dividing resistor 37, which constitute the insulation amplifier. be Therefore, the value “ ⁇ V [V]” obtained by inverting the polarity of the error ⁇ V [V] is obtained by the second voltage measurement unit 33 when the first closed circuit 101 is configured. It is used as a correction value Vamend [V] for correcting the measured value Vin3 [V] of the inter-terminal voltage.
  • the error ⁇ V [V] used to create the correction value Vamend [V] is determined to be within the range of the reference error, that is, the failure determination unit 18 determines that the insulation resistance value detection unit 15 is not defective. It was used when The correction value Vamend [V] is represented by Equation 7 using the error ⁇ V [V] used when the failure determination unit 18 determines that the insulation resistance value detection unit 15 is free of failure.
  • the second voltage A correction value Vamend [V] for canceling the offset error is generated by adding (plusing) to the measured value Vin3 [V] of the inter-terminal voltage of the measuring resistor 32 acquired by the measuring unit 33 .
  • the correction value generation unit 35 Based on Equation 7, the correction value generation unit 35 generates the correction value Vamend[V ] is generated.
  • the corrected measured value Vin4 [V] of the voltage across the terminals of the measuring resistor 32 is obtained as shown in the equation (8).
  • the correction unit 36 converts the measured value Vin3 [V] of the voltage between the terminals of the measuring resistor 32 obtained by the second voltage measurement unit 33 when the first closed circuit 101 is configured into By performing correction using the correction value Vamend [V] generated by the correction value generation unit 35, the corrected measurement value Vin4 [V] of the voltage across the terminals of the measurement resistor 32 is generated.
  • the calculation unit 34 calculates the first voltage measurement unit 14
  • the measured value Vdc [V] of the voltage of the power supply unit 12 obtained by, the corrected measured value Vin4 [V] of the voltage between the terminals of the measuring resistor 32, and at least the resistance value Rb [ ⁇ ] of the measuring resistor 32 , and the insulation resistance value Rm [ ⁇ ] for the insulation resistance 4 of the motor 3 is calculated. More specifically, in the example shown in FIGS. 1 and 4, when the failure determination unit 18 determines that the insulation resistance value detection unit 15 is not malfunctioning, the calculation unit 34 calculates the first closed state based on Equation 9.
  • the failure determination unit 18 determines that there is no failure in the insulation resistance value detection unit 15, the insulation resistance value detection process of the insulation resistance value detection unit 15 is not executed, and the process ends.
  • FIG. 5 is a flowchart (part 1) showing an operation flow of insulation resistance value detection processing by an insulation resistance value detection unit in a motor drive device according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart (part 2) showing an operation flow of insulation resistance value detection processing by an insulation resistance value detection unit in the motor drive device;
  • Steps S101 to S110 shown in FIG. 5 are the same as steps S101 to S110 shown in FIG.
  • step S108 If it is not determined in step S108 that the error ⁇ V [V] is outside the range of the standard error (that is, if the error ⁇ V [V] is within the range of the standard error), the process proceeds to step S110. , it is determined that the insulation resistance value detection unit 15 has no failure.
  • step S200 following step S110 the insulation resistance value detection unit 15 starts insulation resistance value detection processing.
  • the capacitance of the capacitor 22 (for example, an electrolytic capacitor) is generally large, the leakage current flows only for a short period of time during the error calculation processing from steps S103 to S110. very few. Therefore, in executing the insulation resistance value calculation process after step S200, it is basically unnecessary to recharge the capacitor 22, but the capacitor 22 may be recharged as necessary.
  • step S201 the correction value generation unit 35 corrects using the error ⁇ V [V] used when the failure determination unit 18 determines that the insulation resistance value detection unit 15 has no failure based on Equation 7. Generate the value Vamend[V].
  • step S202 the control unit 30 switches the second switch 31 from the open state to the closed state.
  • the first switch 11 is opened and the second switch 31 is closed.
  • all the switching elements of the upper arm and the lower arm of the motor drive amplifier section 13 are turned off. As a result, a first closed circuit 101 is formed.
  • step S203 the first voltage measurement unit 14 acquires the measured value of the voltage of the power supply unit 12 (voltage of the capacitor 22).
  • step S204 the second voltage measuring unit 33 acquires the measured value Vin3 [V] of the voltage across the terminals of the measuring resistor 32 when the first closed circuit 101 is configured.
  • step S205 based on Equation 8, the correction unit 36 obtains the measured value Vin3[ V] is corrected using the correction value Vamend [V] generated by the correction value generation unit 35 to generate the corrected measurement value Vin4 [V] of the voltage across the terminals of the measurement resistor 32 .
  • step S206 if the failure determination unit 18 determines that there is no failure in the insulation resistance value detection unit 15, the calculation unit 34 calculates the first The measured value Vdc [V] of the voltage of the power supply unit 12 acquired by the voltage measuring unit 14, the corrected measured value Vin4 [V] of the voltage across the terminals of the measuring resistor 32, and at least the resistance value of the measuring resistor 32
  • the insulation resistance value Rm [ ⁇ ] for the insulation resistance 4 of the motor 3 is calculated based on Rb [ ⁇ ]. More specifically, in the example shown in FIGS. 1 and 4, when the failure determination unit 18 determines that the insulation resistance value detection unit 15 is not malfunctioning, the calculation unit 34 calculates the first closed state based on Equation 9.
  • the error ⁇ V [V] due to component errors and aged deterioration of the second voltage measuring unit 33, the measuring resistor 32, and the voltage dividing resistor 37, which constitute the insulation amplifier, is the insulation resistance value Rm [ ⁇ ] on the detection accuracy will be described with numerical examples.
  • the resistance value Rc of the voltage dividing resistor 38 is 1000 k ⁇
  • the resistance value Rd of the voltage dividing resistor 39 is 5 k ⁇
  • the resistance value Rb of the measuring resistor 32 is 5 k ⁇
  • the resistance value Ra of the voltage dividing resistor 37 is 1000 k ⁇
  • the voltage across the terminals of the measuring resistor 32 calculated using Equation 6 based on the first closed circuit 101 is 498 mV.
  • the error ⁇ V of 10 mV is included in 498 mV, which is the measured value Vin3 of the voltage across the terminals of the resistor 32 for measurement acquired by the second voltage measurement unit 33
  • the voltage across the terminals of the measuring resistor 32 calculated using Equation 6 based on the first closed circuit 101 is 29 mV.
  • the error ⁇ V of 10 mV is included in 29 mV, which is the measured value Vin3 of the voltage across the terminals of the resistor 32 for measurement acquired by the second voltage measurement unit 33
  • the insulation resistance value of the motor 3 calculated with the error ⁇ V included in the measured value Vin3 of the voltage between the terminals of 32 includes a larger error.
  • the value “ ⁇ V [V]” obtained by inverting the polarity of the error ⁇ V [V] is used as the correction value Vamend [V] for the measurement resistance 32 obtained by the second voltage measurement unit 33.
  • the measured value Vin3 [V] of the voltage between terminals is corrected, and the insulation resistance value Rm [ ⁇ ] is calculated using the corrected measured value Vin4 [V] of the voltage between terminals of the measuring resistor 32.
  • the insulation resistance value Rm [ ⁇ ] can be accurately detected.
  • the error ⁇ V Since the failure determination process is executed based on [V], failure of the insulation resistance value detection unit 15 that detects the insulation resistance value of the motor 3 can be accurately detected. Further, the measurement value Vin3 [ V] is corrected, and the insulation resistance value Rm [ ⁇ ] of the motor 3 is calculated based on the corrected measured value Vin4 [V] of the measuring resistor 32. Therefore, the insulation resistance value Rm [ ⁇ ] of the motor 3 can be calculated accurately. can be detected.
  • FIG. 8 is a diagram showing a modification of the motor drive device according to one embodiment of the present disclosure.
  • the detection resolution of the second voltage measuring section 33 is ensured by reducing the input voltage range of the isolation amplifier composed of the measuring resistor 32, the second voltage measuring section 33, and the voltage dividing resistor 37.
  • the measurement resistor 32 may The applied voltage may deviate from the input voltage range of the insulation amplifier, making it impossible to accurately determine whether the insulation resistance detector 15 has a failure. Conversely, if an insulation amplifier with a wide input voltage range is used for the purpose of accurately executing the failure determination process of the insulation resistance value detection unit 15, the detection resolution of the second voltage measurement unit 33 is lowered.
  • the first switch 11 and the The second switch 31 is opened and all the switching elements of the upper arm and the lower arm of the motor drive amplifier section 13 are turned off to form a discharge circuit consisting of the capacitor 22 and the first voltage measurement section 14 .
  • the first voltage measuring unit 14 is composed of, for example, a measuring resistor (not shown), a voltage dividing resistor (not shown), and an insulation amplifier.
  • the capacitor 22 can be discharged through a measuring resistor (not shown) and a voltage dividing resistor (not shown) in the measuring section 14 .
  • the second closed circuit 102 is formed again, and the second voltage measurement unit A measured value Vin2 [V] of the voltage across the terminals of the measuring resistor 32 is obtained.
  • the motor drive device 1 further includes a voltage determination section 19 .
  • the voltage determination section 19 detects the voltage of the first voltage measurement section. It is determined whether or not the measured value Vdc [V] of the voltage of the power supply unit 12 (the voltage of the capacitor 22) acquired by 14 has become equal to or less than a predetermined reference voltage Vth3 [V].
  • the voltage determination unit 19 is a functional module that is configured within an arithmetic processing unit and realized by, for example, a computer program executed on a processor.
  • the function of the voltage determination unit 19 can be realized by operating the arithmetic processing unit according to this computer program.
  • a computer program for executing the processing of the voltage determination unit 19 may be provided in a form recorded in a computer-readable recording medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium.
  • the voltage determination unit 19 may be implemented as a semiconductor integrated circuit in which a computer program that implements the function is written.
  • the voltage determination unit 19 determines that the measured value Vdc [V] of the voltage of the unit 12 (voltage of the capacitor 22) has become equal to or less than the reference value Vth3 [V]
  • the second closed circuit 102 is configured again, 2 acquires the measured value of the inter-terminal voltage of the measuring resistor 32 .
  • the reference voltage Vth3 [V] used in the voltage determination process by the voltage determination unit 19 depends on the isolation amplifier having an input voltage range that can ensure the desired detection resolution of the second voltage measurement unit 33. You can set it.
  • the reference voltage Vth3 [V] may be stored in a rewritable storage unit (not shown) and rewritable by an external device. It can be changed to an appropriate value if necessary.
  • the storage unit that stores the reference voltage Vth3 [V] is an electrically erasable/recordable non-volatile memory such as EEPROM (registered trademark), or a high-speed readable and writable memory such as DRAM or SRAM. It may be composed of a random access memory or the like.
  • the set reference voltage Vth3 [V] may be input in advance into the arithmetic processing device constituting the voltage determination unit 19 and used for the voltage determination processing by the voltage determination unit 19 .
  • An example of numerical values of the reference voltage Vth3 [V] is as follows. For example, if the resistance value Rb of the measuring resistor 32 is 5 k ⁇ , the resistance value Ra of the voltage dividing resistor 37 is 1000 k ⁇ , and the input voltage range of the second voltage measuring unit 33 in the isolation amplifier is, for example, from 0 mV to 1000 mV. do.
  • the voltage of the power supply unit 12 (the voltage of the capacitor 22) Vdc is 300 V
  • the voltage Vin2 between the terminals of the measuring resistor 32 when the second closed circuit 102 is configured is, according to Ohm's law, When calculated, it is approximately 1493 mV, which exceeds the upper limit of the input voltage range of the second voltage measuring section 33 .
  • the voltage of the power supply section 12 (the voltage of the capacitor 22) Vdc should be set to about 200V.
  • the voltage determination section 19 may be configured in which the reference voltage Vth3 is set to 200V, for example. Note that the numerical examples given here are just examples.
  • FIG. 9 is a flowchart showing an operation flow of determination processing for determining whether there is a failure in the insulation resistance value detection unit in the modified example of the motor drive device according to the embodiment of the present disclosure.
  • Steps S101 and S102 shown in FIG. 9 are the same as the processing of steps S101 and S102 shown in FIGS.
  • the first switch 11 and the second switch 31 are controlled to be open by switching the first switch 11 from the closed state to the open state by the control unit 30 in step S103, Further, by controlling all the switching elements of the upper arm and the lower arm of the motor drive amplifier section 13 to the OFF state, a discharge circuit composed of the capacitor 22 and the first voltage measurement section 14 is configured.
  • the discharge circuit the capacitor 22 is gradually discharged by the measuring resistor (not shown) and the voltage dividing resistor (not shown) in the first voltage measuring section 14 .
  • the first voltage measurement unit 14 acquires the measured value of the voltage of the power supply unit 12 (voltage of the capacitor 22).
  • step S111 the voltage determination unit 19 determines that the measured value Vdc [V] of the voltage of the power supply unit 12 (the voltage of the capacitor 22) obtained by the first voltage measurement unit 14 is a predetermined reference value. It is determined whether or not the voltage has become equal to or lower than the voltage Vth3 [V]. If it is not determined in step S111 that the measured value Vdc [V] of the voltage of the power supply unit 12 (the voltage of the capacitor 22) has become equal to or lower than the reference voltage Vth3 [V], the process returns to step S104.
  • Step S105 Steps S104 and S111 are repeatedly performed until the capacitor 22 discharges and the measured value Vdc [V] of the voltage of the power supply unit 12 (the voltage of the capacitor 22) becomes equal to or lower than the reference voltage Vth3 [V].
  • Steps S105 to S110 and S200 shown in FIG. 9 are the same as steps S105 to S110 and S200 shown in FIG. After the process of step S200 shown in FIG. 9, steps S201 to S206 shown in FIG. 6 are further executed.
  • the detection resolution of the second voltage measurement unit 33 can be effectively ensured, so that the insulation resistance value of the motor 3 can be accurately detected, and the insulation resistance value Rm [ ⁇ ] of the motor 3 can be detected more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

モータ駆動装置は、測定用抵抗の端子間電圧の測定値と測定用抵抗の抵抗値とに基づいてモータの絶縁抵抗値を検出する絶縁抵抗値検出部と、測定用抵抗の端子間電圧の測定値と推定値との誤差に基づいて、モータの絶縁抵抗値を検出する絶縁抵抗値検出部の故障の有無を判定する故障判定部を備える。

Description

モータの絶縁抵抗値を計算するモータ駆動装置
 本発明は、モータの絶縁抵抗値を計算するモータ駆動装置に関する。
 工作機械などに設けられるサーボモータでは、経年的な油の侵入等により、モータコイル(巻線)の大地に対する絶縁抵抗の抵抗値(絶縁抵抗値)が低下する。モータコイルの絶縁抵抗値が低下すると、モータとモータ駆動装置と大地とからなる閉回路に漏洩電流が流れる。通常のモータ駆動電流に加えて漏洩電流がモータ駆動装置内に流れることで、サーボアンプが過電流検出動作を行ったり、入力段に設けられたブレーカが落ちたりする。その結果、当該モータが設けられた工作機械は緊急停止してしまう。このような緊急停止があると、原因究明のために長期間にわたって工作機械を停止させることもあり、効率が落ちる。このため、モータの絶縁抵抗値を測定する作業はモータ駆動装置の運用上欠かせない。
 例えば、スイッチを介して交流電源から供給された電力を整流回路で整流し、かつコンデンサで平滑化する電源部と、該電源部からの直流電圧を交流に変換してモータを駆動するモータ駆動アンプを備えたモータ駆動装置によって駆動されるモータの絶縁抵抗劣化検出方法であって、前記スイッチをオフとし、モータの運転を停止した後、前記コンデンサの一端を大地に接続すると共に他端とモータコイル間を接続し、コンデンサ、モータコイルおよび大地で形成される閉回路に流れる電流を検出してモータの絶縁抵抗劣化を検出するようにしたことを特徴とするモータの絶縁抵抗劣化検出方法が知られている(例えば、特許文献1参照。)。
 例えば、スイッチを介して交流電源から供給された交流電圧を整流回路で直流電圧に整流し、整流された直流電圧をコンデンサで平滑化する電源部と、上アーム及び下アームスイッチング素子を用いて前記電源部からの直流電圧を交流電圧に変換してモータを駆動するモータ駆動アンプ部と、前記電源部の電圧を測定する電源電圧測定部と、前記コンデンサの一端を大地に接続する接点部、及び前記コンデンサの他端とモータコイルとの間に設けられた電流検出部を備え、前記スイッチをオフ状態とし、前記接点部をオン状態として、前記電流検出部を用いて前記接点部、前記コンデンサ、前記モータコイル、及び大地で形成される閉回路から得られる検出信号に基づいてモータの絶縁抵抗の劣化の有無を検出する絶縁抵抗劣化検出部と、前記接点部をオン状態からオフ状態とし、前記モータ駆動アンプ部の上アームもしくは下アームのスイッチング素子を任意にスイッチングさせ、前記絶縁抵抗劣化検出部における前記検出信号と前記電源電圧測定部で測定された電圧値に基づいて、前記絶縁抵抗劣化検出部の故障の有無を検出する故障検出部と、を備えることを特徴とするモータの絶縁抵抗劣化検出部の故障検出機能を備えたモータ駆動装置が知られている(例えば、特許文献2参照。)。
 例えば、交流電源を整流する整流回路を有するコンバータ部と、該整流回路の出力を平滑化する平滑コンデンサと、該コンバータ部からの直流を交流に変換して複数のモータをそれぞれ駆動する複数のインバータ部を具備するモータ駆動装置に接続されるモータの絶縁劣化を検出する装置であって、絶縁劣化検出時において、導通することによって前記平滑コンデンサの一端を接地する1つの第1のスイッチと、前記平滑コンデンサの両端の電圧を測定する1つの電圧検出部と、絶縁劣化検出時において、導通することによって前記平滑コンデンサの他端を前記複数のモータの巻線にそれぞれ接続する複数の第2のスイッチと、前記第1のスイッチおよび前記複数の第2のスイッチが導通することにより前記複数のモータの各々の絶縁抵抗を経て流れる前記平滑コンデンサの放電電流をそれぞれ検出する複数の電流検出部と、前記電圧検出部が検出する電圧と前記複数の電流検出部の各々が検出する電流とから、前記複数のモータの各々の絶縁抵抗を算出する複数の絶縁抵抗算出部とを具備するモータの絶縁劣化検出装置であって、前記1つの第1のスイッチおよび前記1つの電圧検出部は前記コンバータ部に設けられ、前記複数の第2のスイッチ、前記複数の電流検出部、および前記複数の絶縁抵抗算出部は前記複数のインバータ部にそれぞれ設けられ、前記1つの電圧検出部が検出した電圧値と、前記1つの第1のスイッチをオンするタイミングを通知する信号とを前記コンバータ部から、前記複数のインバータ部へ伝達する通信手段を具備し、前記複数のインバータ部のそれぞれにおいて同一のタイミングで一斉に、前記第2のスイッチによる接続、電流検出部による電流の検出、および絶縁抵抗算出部による絶縁抵抗の算出が行われることを特徴とした、モータの絶縁劣化検出装置が知られている(例えば、特許文献3参照。)。
 例えば、第1のスイッチを介して交流電源から供給される交流電圧を直流電圧に整流する整流回路と、前記整流回路によって整流された直流電圧をコンデンサで平滑化する電源部と、前記電源部によって平滑化された直流電圧を半導体スイッチング素子のスイッチング動作により交流電圧に変換してモータを駆動するインバータ部と、前記モータのコイルに一端を接続し、前記コンデンサの一方の端子に他端を接続した抵抗器に流れる電流値を測定する電流検出部と、前記コンデンサの両端の電圧値を測定する電圧検出部と、前記コンデンサの他方の端子を接地する第2のスイッチと、モータの運転を停止し、前記第1のスイッチをオフし、かつ、前記第2のスイッチをオフした状態とオンした状態の2つの状態において測定された2組の前記電流値及び前記電圧値を用いて、モータのコイルと大地との間の抵抗であるモータの絶縁抵抗値を検出する絶縁抵抗検出部と、を有することを特徴とするモータ駆動装置が知られている(例えば、特許文献4参照。)。
 例えば、交流電源と負荷との間に配され、前記交流電源からの交流電圧を直流電圧に変換する整流回路と、前記整流回路の後段に接続されて前記負荷を駆動するインバータと、を含む電気機器のP母線及びN母線のいずれか一方と、前記インバータと前記負荷とを接続する出力線との間に接続される絶縁検出器であって、検出抵抗と分圧抵抗とが直列に接続されて構成される抵抗器と、該抵抗器に並列接続された、前記検出抵抗よりもインピーダンスが低いコンデンサと、前記分圧抵抗で分圧された前記検出抵抗の電圧を検出することで前記絶縁検出器の両端の電圧値を測定する電圧検出器とを備え、前記電圧検出器で測定された前記絶縁検出器の両端の電圧値から、前記負荷と対地又は筐体との間の絶縁抵抗を前記交流電源から分断されることなく検出することを特徴とする絶縁検出器が知られている(例えば、特許文献5参照。)。
特許第4554501号公報 特許第5832578号公報 特許第4565036号公報 特許第5788538号公報 特開2017-142269号公報
 モータの絶縁抵抗検出回路が故障すると、絶縁抵抗値を正確に測定することができない。絶縁抵抗検出回路自体の故障を検出する故障検出回路を設けたとしても、故障検出回路が絶縁抵抗検出回路の故障を検出するに至るまでの間に絶縁抵抗検出回路は経年劣化によりその測定誤差が徐々に大きくなり、絶縁抵抗値の正確な測定が次第に難しくなる。したがって、モータの絶縁抵抗値を検出する回路の故障を的確に検出しつつモータの絶縁抵抗値を正確に検出できる技術が望まれている。 
 本開示の一態様によれば、モータ駆動装置は、交流電源からの電路を開閉する第1のスイッチと、閉状態にある第1のスイッチを介して交流電源から供給された交流電圧を整流回路で直流電圧に整流し、整流された直流電圧をコンデンサで平滑化する電源部と、上アーム及び下アームのスイッチング素子を用いて電源部からの直流電圧をモータ駆動用の交流電圧に変換してモータに供給するモータ駆動アンプ部と、電源部の電圧の測定値を取得する第1の電圧測定部と、閉状態のときにコンデンサの一端を大地に接続し開状態のときにコンデンサの一端を大地に接続しない第2のスイッチと、コンデンサの他端とモータコイルとの間に設けられた測定用抵抗と、測定用抵抗の端子間電圧の測定値を取得する第2の電圧測定部と、第1のスイッチを開状態としかつ第2のスイッチを閉状態とすることで第2のスイッチ、コンデンサ、測定用抵抗、モータコイル、及び大地を含む第1の閉回路を構成したときにおいて、第1の電圧測定部により取得された電源部の電圧の測定値と第2の電圧測定部により取得された測定用抵抗の端子間電圧の測定値と測定用抵抗の抵抗値とに基づいて、モータの絶縁抵抗値を計算する計算部と、を有する絶縁抵抗値検出部と、第1のスイッチ及び第2のスイッチを開状態としかつモータ駆動アンプ部の上アームまたは下アームのスイッチング素子を任意にスイッチングさせることでコンデンサ及び測定用抵抗を含む第2の閉回路を構成したときにおいて、第1の電圧測定部により取得された電源部の電圧の測定値と測定用抵抗の抵抗値とに基づいて、測定用抵抗の端子間電圧の推定値を計算する電圧推定部と、第2の閉回路を構成したときにおいて第2の電圧測定部により取得された測定用抵抗の端子間電圧の測定値と電圧推定部により計算された測定用抵抗の端子間電圧の推定値との誤差を検出する誤差検出部と、誤差検出部により検出された誤差に基づいて、絶縁抵抗値検出部の故障の有無を判定する故障判定部と、を備える。
 本開示の一態様によれば、モータの絶縁抵抗値を検出する回路の故障を的確に検出しつつモータの絶縁抵抗値を正確に検出できるモータ駆動装置を実現することができる。
本開示の一実施形態によるモータ駆動装置を示す図である。 本開示の一実施形態によるモータ駆動装置において絶縁抵抗値検出部の故障の有無の判定処理を実行する際に構成される第2の閉回路を説明する図である。 本開示の一実施形態によるモータ駆動装置における絶縁抵抗値検出部の故障の有無の判定処理の動作フローを示すフローチャートである。 本開示の一実施形態によるモータ駆動装置において絶縁抵抗値検出部による絶縁抵抗値検出処理を実行する際に構成される第1の閉回路を説明する図である。 本開示の一実施形態によるモータ駆動装置における絶縁抵抗値検出部による絶縁抵抗値検出処理の動作フローを示すフローチャート(その1)である。 本開示の一実施形態によるモータ駆動装置における絶縁抵抗値検出部による絶縁抵抗値検出処理の動作フローを示すフローチャート(その2)である。 第1の閉回路に関連する部分を示した回路図である。 本開示の一実施形態によるモータ駆動装置の変形例を示す図である。 本開示の一実施形態によるモータ駆動装置の変形例における絶縁抵抗値検出部の故障の有無の判定処理の動作フローを示すフローチャートである。
 以下図面を参照して、モータの絶縁抵抗値を計算するモータ駆動装置について説明する。各図面において、同様の部材には同様の参照符号が付けられている。また、理解を容易にするために、これらの図面は縮尺を適宜変更している。また、図面に示される形態は実施するための一つの例であり、図示された形態に限定されるものではない。
 図1は、本開示の一実施形態によるモータ駆動装置を示す図である。
 一例として、交流電源2に接続されたモータ駆動装置1により、モータ3を制御する場合について示す。なお、本実施形態においては、モータ3の種類は特に限定されず、例えば誘導モータであっても同期モータであってもよい。また、交流電源2及びモータ3の相数は本実施形態を特に限定するものではなく、例えば三相であっても単相であってもよい。モータ3が設けられる機械には、例えば工作機械、ロボット、鍛圧機械、射出成形機、産業機械、各種電化製品、電車、自動車、航空機などが含まれる。また、交流電源2の一例を挙げると、三相交流400V電源、三相交流200V電源、三相交流600V電源、単相交流100V電源などがある。図示の例では、交流電源2及びモータ3をそれぞれ三相としている。
 モータ3のモータコイル(巻線)と大地との間には、絶縁抵抗4が存在する。絶縁抵抗4の抵抗値である絶縁抵抗値Rm[Ω]は、劣化がない場合は無限大であり、劣化が進むにつれ、無限大から、数MΩ、数百kΩ、・・・といった具合に徐々に低下する。本開示の一実施形態によるモータ駆動装置1は、モータ3の絶縁抵抗値Rm[Ω]を検出する機能と、当該絶縁抵抗値Rm[Ω]を検出する機能の故障の有無を判定する機能とを有する。
 図1に示すように、本開示の一実施形態によるモータ駆動装置1は、第1のスイッチ11と、電源部12と、モータ駆動アンプ部13と、第1の電圧測定部14と、絶縁抵抗値検出部15と、電圧推定部16と、誤差検出部17と、故障判定部18と、を備える。
 第1のスイッチ11は、交流電源2と電源部12内の整流回路21との間の電路を開閉する。第1のスイッチ11による電路の開閉は、例えば、絶縁抵抗値検出部15内の制御部30によって制御されるが、これに代えて、絶縁抵抗値検出部15の外部に設けられた演算処理装置からなる任意の制御部(図示せず)によって制御されてもよい。第1のスイッチ11は、例えば電磁接触器にて構成される。交流電源2から電源部12内の整流回路21への電路の閉状態は、電磁接触器である第1のスイッチ11の接点が閉成することにより実現され、交流電源2から電源部12内の整流回路21への電路の開状態は、電磁接触器である第1のスイッチ11の接点が開離することにより実現される。なお、第1のスイッチ11については、交流電源2からの電路を開閉することができるものであれば、電磁接触器に代えて、例えばリレーや半導体スイッチング素子などであってもよい。
 電源部12とモータ駆動アンプ部13とは、DCリンクを介して接続される。「DCリンク」とは、電源部12の直流出力側とモータ駆動アンプ部13の直流入力側とを電気的に接続する回路部分のことを指し、「DCリンク部」、「直流リンク」、「直流リンク部」または「直流中間回路」などとも称されることもある。
 電源部12は、整流回路21及びコンデンサ22を有し、開状態にある第1のスイッチ11を介して交流電源2から供給された交流電圧を整流回路21で直流電圧に整流し、整流された直流電圧をコンデンサ22で平滑化して出力する。
 電源部12内の整流回路21は、交流電圧を直流電圧に変換することができるものであればよく、例えば、ダイオード整流回路、120度通電型整流回路、あるいは内部にスイッチング素子を備えるPWMスイッチング制御方式の整流回路などがある。整流回路21は、交流電源2が三相交流電源である場合は三相のブリッジ回路として構成され、交流電源2が単相交流電源である場合は単相ブリッジ回路で構成される。整流回路21がPWMスイッチング制御方式の整流回路である場合は、スイッチング素子及びこれに逆並列に接続されたダイオードのブリッジ回路からなる。この場合、スイッチング素子の例としては、IGBT、サイリスタ、GTO(ゲートターンオフサイリスタ)、トランジスタなどがあるが、スイッチング素子の種類自体は本実施形態を限定するものではなく、その他のスイッチング素子であってもよい。
 電源部12内のコンデンサ22は、整流回路21が出力する直流電圧を平滑化する機能とともにDCリンクにおいて直流電力を蓄積する機能を有する。コンデンサ22は、平滑コンデンサまたはDCリンクコンデンサなどとも称されることもある。コンデンサ22の例としては、例えば電解コンデンサやフィルムコンデンサなどがある。
 また、コンデンサ22の両極端子には第1の電圧測定部14が接続されている。第1の電圧測定部14は、コンデンサ22に印加される電圧である電源部12の(直流)電圧の測定値を取得する測定回路である。
 モータ駆動アンプ部13は、スイッチング素子及びこれに逆並列に接続されたダイオードからなる組が上アーム及び下アームに設けられたブリッジ回路にて構成されるインバータを有する。図示の例では、モータ3を三相交流モータとしたので、モータ駆動アンプ部13内のインバータは三相ブリッジ回路で構成される。U相の上アームのスイッチング素子をSu1、U相の下アームのスイッチング素子をSu2、V相の上アームのスイッチング素子をSv1、V相の下アームのスイッチング素子をSv2、W相の上アームのスイッチング素子をSw1、W相の下アームのスイッチング素子をSw2とする。
 モータ駆動アンプ部13は、上位制御装置(図示せず)からのPWMスイッチング指令により上アーム及び下アームのスイッチング素子のオンオフ動作が制御されることで、電力変換動作を行う。すなわち、モータ駆動アンプ部13は、上アーム及び下アームのスイッチング素子がオンオフ動作されることで、DCリンクにおける直流電圧をモータ駆動用の交流電圧に変換してモータ3へ供給するとともにモータ回生時にはモータ3で回生された交流電圧を直流電圧に変換してDCリンク側へ戻す。また、本開示の一実施形態では、モータ駆動アンプ部13内の上アーム及び下アームのスイッチング素子のオンオフ動作は、絶縁抵抗値検出部15の制御部30によっても制御されるが、その詳細については後述する。
 絶縁抵抗値検出部15は、モータ3のモータコイル(巻線)と大地との間の絶縁抵抗4の抵抗値である絶縁抵抗値Rm[Ω]を検出する。絶縁抵抗値検出部15は、制御部30と、第2のスイッチ31と、測定用抵抗32と、第2の電圧測定部33と、計算部34と、補正値生成部35と、補正部36と、を有する。絶縁抵抗値検出部15によるモータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]の検出は、第1のスイッチ11を開状態としかつ第2のスイッチ31を閉状態とし、モータ駆動アンプ部13内のスイッチング素子を全てオフにすることで得られる第1の閉回路に関して得られる各種データを用いて行われる。第1の閉回路は、第2のスイッチ31と、コンデンサ22と、測定用抵抗32と、モータ3のモータコイルと、大地とを含む絶縁抵抗値検出用閉回路である。
 絶縁抵抗値検出部15内の第2のスイッチ31は、一方の端子に分圧抵抗38が接続されており、他方の端子に分圧抵抗39が接続されている。分圧抵抗38は、一方の端子が電源部12内の整流回路21とコンデンサ22とを結ぶ正側電力線に接続されている。分圧抵抗39は、一方の端子が大地に接続されている。第2のスイッチ31は、その開閉により接地が制御されるものであり、すなわち、閉状態のときにコンデンサ22の正側端子を大地に接続し、開状態のときに前記コンデンサの一端を大地に接続しない。第2のスイッチ31の開閉は、制御部30によって制御される。第2のスイッチ31は、例えば、リレー、半導体スイッチング素子、あるいは電磁接触器などにて構成される。
 測定用抵抗32は、コンデンサ22の負側端子とモータ3のモータコイルとの間に設けられる。より詳しくは、測定用抵抗32の一方の端子は、モータ駆動アンプ部13の負側電力線を介してコンデンサ22の負側端子に接続される。測定用抵抗32の他方の端子は、分圧抵抗37を介して、モータ駆動アンプ部13とモータ3のモータコイルとを結ぶ1相分の電力線に接続される。図示の例では、一例として、測定用抵抗32の他方の端子は、モータ駆動アンプ部13とモータ3のU相モータコイルとを結ぶU相の電力線に接続されている。第2の電圧測定部33は、測定用抵抗32の端子間電圧の測定値を取得する測定回路である。例えば、測定用抵抗32と第2の電圧測定部33と分圧抵抗37とからなる絶縁アンプによって構成すればよい。分圧抵抗37は、当該絶縁アンプへの入力電圧を適切な範囲内に収めるよう調整するために設けられるものである。
 補正値生成部35は、後述する故障判定部18により絶縁抵抗値検出部15の故障無しと判定された際に用いられた誤差検出部17により検出された誤差に基づいて、補正値を生成する。
 補正部36は、第1の閉回路を構成したときに第2の電圧測定部33により取得された測定用抵抗32の端子間電圧の測定値を、補正値生成部35により生成された補正値を用いて補正することで、測定用抵抗32の端子間電圧の補正後の測定値を生成する。補正部36により生成された測定用抵抗32の端子間電圧の補正後の測定値は、計算部34によるモータ3の絶縁抵抗値Rm[Ω]の計算に用いられる。
 計算部34は、第2のスイッチ31、コンデンサ22、測定用抵抗32、モータ3のモータコイル、及び大地を含む第1の閉回路を構成したときにおいて、第1の電圧測定部14により取得された電源部12の電圧の測定値と補正部36により生成された測定用抵抗32の端子間電圧の補正後の測定値と測定用抵抗32の抵抗値とに基づいて、モータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]を計算する。計算部34による絶縁抵抗値の計算処理の詳細については後述する。
 絶縁抵抗値検出部15により検出されたモータ3の絶縁抵抗値は、表示部(図示せず)に送られ、表示部は、「モータ3の絶縁抵抗値」を作業者に通知する表示を行う。表示部の例としては、単体のディスプレイ装置、モータ駆動装置1に付属のディスプレイ装置、上位制御装置(図示せず)に付属のディスプレイ装置、並びに、パソコン及び携帯端末に付属のディスプレイ装置などがある。また例えば、絶縁抵抗値検出部15により検出されたモータ3の絶縁抵抗値は、アラーム出力部(図示せず)に送られ、アラーム出力部は、モータ3の絶縁抵抗値が所定の値を下回った場合は、絶縁抵抗劣化アラームを出力するようにしてもよい。アラーム出力部から出力された絶縁抵抗劣化アラームは、例えばLEDやランプなどの発光機器(図示せず)に送られ、発光機器は絶縁抵抗劣化アラーム受信時に発光することで、作業者に「モータ3の絶縁抵抗4の劣化」を通知する。また例えば、アラーム出力部から出力された絶縁抵抗劣化アラームは、例えば音響機器(図示せず)に送られ、音響機器は絶縁抵抗劣化アラーム受信時に例えば音声、スピーカ、ブザー、チャイムなどのような音を発することで、作業者に「モータ3の絶縁抵抗4の劣化」を通知する。これにより、作業者は、モータ3の絶縁抵抗値やモータ3の絶縁抵抗4の劣化を確実かつ容易に把握することができ、モータ3を交換したり、モータ3を分解清掃するといった対応も容易にとることができる。
 絶縁抵抗値検出部15の故障の有無の判定は、第1のスイッチ11及び第2のスイッチ31を開状態としかつモータ駆動アンプ部13の上アームまたは下アームのスイッチング素子を任意にスイッチングさせることで得られる第2の閉回路に関して得られる各種データを用いて行われる。第2の閉回路は、コンデンサ22と測定用抵抗32とを含む故障判定用閉回路である。
 電圧推定部16は、第1のスイッチ11及び第2のスイッチ31を開状態としかつモータ駆動アンプ部13の上アームまたは下アームのスイッチング素子を任意にスイッチングさせることで得られる、コンデンサ22及び測定用抵抗32を含む第2の閉回路についての回路方程式に従い、第1の電圧測定部14により取得された電源部12の電圧の測定値と測定用抵抗32の抵抗値とに基づいて、測定用抵抗32の端子間電圧の推定値を計算する。
 誤差検出部17は、第2の閉回路を構成したときにおいて第2の電圧測定部33により取得された測定用抵抗32の端子間電圧の測定値と、電圧推定部16により計算された測定用抵抗32の端子間電圧の推定値と、の誤差を検出する。誤差検出部17により検出された誤差は、故障判定部18による故障判定処理、及び補正値生成部35による補正値生成処理に用いられる。なお、誤差検出部17による誤差検出処理に用いられる「第2の電圧測定部33により取得された測定用抵抗32の端子間電圧の測定値」は、補正部36により補正されたものではない点に留意すべきである。
 故障判定部18は、誤差検出部17により検出された誤差に基づいて、絶縁抵抗値検出部15の故障の有無を判定する。より詳しくは、故障判定部18は、誤差検出部17により検出された誤差が予め規定された基準誤差の範囲外である場合は絶縁抵抗値検出部15の故障有りと判定し、誤差検出部17により検出された誤差が基準誤差の範囲内である場合は絶縁抵抗値検出部15の故障無しと判定する。
 故障判定部18による判定結果は、補正値生成部35による補正値生成処理に用いられる。
 またオプションとして、故障判定部18による判定結果は、表示部(図示せず)に送られてもよい。この場合、表示部は、「絶縁抵抗値検出部15の故障の有無」を作業者に通知する表示を行う。表示部の例としては、単体のディスプレイ装置、モータ駆動装置1に付属のディスプレイ装置、上位制御装置(図示せず)に付属のディスプレイ装置、並びに、パソコン及び携帯端末に付属のディスプレイ装置などがある。また例えば、絶縁抵抗値検出部15の故障の有ありとの判定結果は、アラーム出力部(図示せず)に送られ、アラーム出力部は、絶縁抵抗値検出部15の故障有りとの判定結果を受信した場合は、故障検出アラームを出力するようにしてもよい。アラーム出力部から出力された故障検出アラームは、例えばLEDやランプなどの発光機器(図示せず)に送られ、発光機器は故障検出アラーム受信時に発光することで、作業者に「絶縁抵抗値検出部15の故障」を通知する。また例えば、アラーム出力部から出力された故障検出アラームは、例えば音響機器(図示せず)に送られ、音響機器は故障検出アラーム受信時に例えば音声、スピーカ、ブザー、チャイムなどのような音を発することで、作業者に「絶縁抵抗値検出部15の故障」を通知する。これにより、作業者は、絶縁抵抗値検出部15の故障を確実かつ容易に把握することができ、絶縁抵抗値検出部15を交換するといった対応も容易にとることができる。
 モータ駆動装置1内には、演算処理装置(プロセッサ)が設けられる。演算処理装置としては、例えばIC、LSI、CPU、MPU、DSPなどがある。この演算処理装置は、第1の電圧測定部14と、制御部30と、第2の電圧測定部33と、計算部34と、補正値生成部35と、補正部36と、電圧推定部16と、誤差検出部17と、故障判定部18とを有する。演算処理装置が有するこれらの各部は、例えば、プロセッサ上で実行されるコンピュータプログラムにより実現される機能モジュールである。例えば、第1の電圧測定部14、制御部30、第2の電圧測定部33、計算部34、補正値生成部35、補正部36、電圧推定部16、誤差検出部17、及び故障判定部18をコンピュータプログラム形式で構築する場合は、演算処理装置をこのコンピュータプログラムに従って動作させることで、各部の機能を実現することができる。第1の電圧測定部14、制御部30、第2の電圧測定部33、計算部34、補正値生成部35、補正部36、電圧推定部16、誤差検出部17、及び故障判定部18の各処理を実行するためのコンピュータプログラムは、半導体メモリ、磁気記録媒体または光記録媒体といった、コンピュータ読取可能な記録媒体に記録された形で提供されてもよい。またあるいは、第1の電圧測定部14、制御部30、第2の電圧測定部33、計算部34、補正値生成部35、補正部36、電圧推定部16、誤差検出部17、及び故障判定部18を、各部の機能を実現するコンピュータプログラムを書き込んだ半導体集積回路として実現してもよい。
 続いて、絶縁抵抗値検出部15の故障の有無の判定について、より詳細に説明する。
 図2は、本開示の一実施形態によるモータ駆動装置において絶縁抵抗値検出部の故障の有無の判定処理を実行する際に構成される第2の閉回路を説明する図である。図2において、制御部30、計算部34、補正値生成部35、補正部36、電圧推定部16、誤差検出部17、及び故障判定部18については図示を省略している。
 絶縁抵抗値検出部15の故障の有無の判定処理を実行するにあたっては、まず、第1のスイッチ11を閉状態としかつ第2のスイッチ31を開状態としさらにモータ駆動アンプ部13内のスイッチング素子を全てオフ状態にして、交流電源2から整流回路21を介して流入する電力にてコンデンサ22を充電する。コンデンサ22を充電が完了したら、第1のスイッチ11及び第2のスイッチ31を開状態としかつモータ駆動アンプ部13の上アームまたは下アームのスイッチング素子を任意にスイッチングさせることで、図中太線の矢印で示される第2の閉回路102を構成する。なお、モータ駆動装置1により既にモータ3を駆動していてその後にモータ3の駆動を停止させていた状態においてもコンデンサ22は十分に充電されているので、この状態において第1のスイッチ11及び第2のスイッチ31を開状態としかつモータ駆動アンプ部13の上アームまたは下アームのスイッチング素子を任意にスイッチングさせることで第2の閉回路102を構成してもよい。図示の例では、一例として、モータ駆動アンプ部13のU相の上アームのスイッチング素子Su1をオン状態とし、他のスイッチング素子Su2、Sv1、Sv2、Sw1、及びSw2をオフ状態としている。これにより、コンデンサ22とスイッチング素子Su1と分圧抵抗37と測定用抵抗32とを含む第2の閉回路102が構成される。
 第2の閉回路102が構成された状態において第1の電圧測定部14により取得された電源部12の電圧(コンデンサ22の電圧)の測定値を用いることで、測定用抵抗32の端子間電圧を推定することができる。測定用抵抗32の抵抗値をRb[Ω]、分圧抵抗37の抵抗値をRa[Ω]、第2の閉回路102が構成された状態において第1の電圧測定部14により取得された電源部12の電圧(コンデンサ22の電圧)の測定値をVdc[V]としたとき、測定用抵抗32の端子間電圧の推定値Vin1[V]は式1に基づいて求めることができる。なお、第2の閉回路102にはモータ駆動アンプ部13内のスイッチング素子(例えばIGBTなど)のオン抵抗も含まれるが、その値は微小であるので、式1及びこれ以降に記載する数式においては当該スイッチング素子のオン抵抗は無視している。
Figure JPOXMLDOC01-appb-M000001
 電圧推定部16は、式1に基づいて、第2の閉回路102を構成したときにおいて第1の電圧測定部14により取得された電源部12の電圧の測定値Vdc[V]と測定用抵抗32の抵抗値Rb[Ω]と分圧抵抗37の抵抗値Ra[Ω]とに基づいて、測定用抵抗32の端子間電圧の推定値Vin1[V]を計算する。測定用抵抗32の抵抗値Rb[Ω]及び分圧抵抗37の抵抗値Ra[Ω]は既知であり、例えばこれら部品の製造メーカの公称値を用いればよい。電圧推定部16を構成する演算処理装置内に測定用抵抗32の抵抗値Rb[Ω]及び分圧抵抗37の抵抗値Ra[Ω]を事前に入力しておき、電圧推定部16による測定用抵抗32の端子間電圧の推定値Vin1[V]の計算に用いればよい。
 一方、同じく第2の閉回路102を構成したときにおいては、第2の電圧測定部33により、測定用抵抗32の端子間電圧の測定値(実測値)Vin2[V]を取得することもできる。
 第2の閉回路102を構成したときにおいて、測定用抵抗32の端子間電圧の推定値Vin1[V]と測定用抵抗32の端子間電圧の測定値(実測値)Vin2[V]とは、理想的には等しい。しかし、実際には、絶縁アンプを構成する第2の電圧測定部33、測定用抵抗32及び分圧抵抗37の部品誤差や経年劣化などに起因する誤差が、両者の間に存在する。測定用抵抗32の端子間電圧の推定値Vin1[V]と測定用抵抗32の端子間電圧の測定値(実測値)Vin2[V]との間の誤差ΔV[V]は、式2のように表される。
Figure JPOXMLDOC01-appb-M000002
 誤差検出部17は、式2に基づいて、第2の閉回路102を構成したときにおいて第2の電圧測定部33により取得された測定用抵抗32の端子間電圧の測定値Vin2[V]と、電圧推定部16により計算された測定用抵抗32の端子間電圧の推定値Vin1[V]と、の誤差ΔV[V]を検出する。誤差検出部17により検出された誤差ΔV[V]は、故障判定部18による故障判定処理に用いられる。
 故障判定部18は、誤差検出部17により検出された誤差ΔV[V]が予め規定された基準誤差の範囲外である場合は絶縁抵抗値検出部15の故障有りと判定し、誤差検出部17により検出された誤差ΔV[V]が基準誤差の範囲内である場合は絶縁抵抗値検出部15の故障無しと判定する。基準誤差の範囲の下限値を例えばVth1[V]とし上限値を例えばVth2[V]とすると、故障判定部18による故障判定処理に用いられる式3が得られる。
Figure JPOXMLDOC01-appb-M000003
 故障判定部18は、例えば式3に基づいて、誤差検出部17により検出された誤差に基づいて絶縁抵抗値検出部15の故障の有無を判定する。
 なお、故障判定部18による故障判定処理に用いられる基準誤差の範囲の下限値Vth1[V]及び上限値Vth2[V]は、「Vth1<Vth2」の関係を有し、それぞれ正負の値をとり得るものである。基準誤差の範囲の下限値Vth1[V]及び上限値Vth2[V]については、例えば実験もしくは実際の運用によりモータ駆動装置1を動作させたり、またはコンピュータによるシミュレーションにより、第2の電圧測定部33を含む絶縁アンプの適用環境、モータ駆動装置1の適用環境、モータ駆動装置1におけるアラーム信号の出力の有無との関係性などを事前に求めたうえで、適宜設定することができる。基準誤差の範囲の下限値Vth1[V]及び上限値Vth2[V]については、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、これによれば、基準誤差の範囲の下限値Vth1[V]及び上限値Vth2[V]を一旦設定した後であっても、必要に応じて適切な値に変更することができる。基準誤差の範囲の下限値Vth1[V]及び上限値Vth2[V]を記憶する記憶部は、例えばEEPROM(登録商標)などのような電気的に消去・記録可能な不揮発性メモリ、または、例えばDRAM、SRAMなどのような高速で読み書きのできるランダムアクセスメモリなどで構成されてもよい。設定された基準誤差の範囲の下限値Vth1[V]及び上限値Vth2[V]については、故障判定部18を構成する演算処理装置内に事前に入力しておき、故障判定部18による故障判定処理に用いればよい。
 図3は、本開示の一実施形態によるモータ駆動装置における絶縁抵抗値検出部の故障の有無の判定処理の動作フローを示すフローチャートである。
 ステップS101において、制御部30は、第1のスイッチ11を閉状態かつ第2のスイッチ31を開状態に制御する。また、制御部30は、モータ駆動アンプ部13内のスイッチング素子を全てオフ状態に制御する。これにより、ステップS102において、交流電源2から整流回路21を介して流入する電力にてコンデンサ22が充電される。コンデンサ22の充電状態は、制御部30によって第1の電圧測定部14を介して監視される。なお、モータ駆動装置1により既にモータ3を駆動していてその後にモータ3の駆動を停止させていた状態においては、コンデンサ22は十分に充電されているので、この場合はステップS102を省略してもよい。
 コンデンサ22の充電が完了したら、ステップS103において、制御部30は、第1のスイッチ11を閉状態から開状態に切り替えることで第1のスイッチ11及び第2のスイッチ31を開状態に設定する。また、制御部30は、モータ駆動アンプ部13の上アームまたは下アームのスイッチング素子を任意にスイッチングさせる。図2に示す例では、一例として、モータ駆動アンプ部13のU相の上アームのスイッチング素子Su1をオン状態とし、他のスイッチング素子Su2、Sv1、Sv2、Sw1、及びSw2をオフ状態としている。これにより、コンデンサ22とスイッチング素子Su1と分圧抵抗37と測定用抵抗32とを含む第2の閉回路102が構成される。
 ステップS104において、第1の電圧測定部14は、電源部12の電圧(コンデンサ22の電圧)の測定値を取得する。
 ステップS105において、電圧推定部16は、式1に基づいて、第2の閉回路102を構成したときにおいて第1の電圧測定部14により取得された電源部12の電圧の測定値Vdc[V]と測定用抵抗32の抵抗値Rb[Ω]と分圧抵抗37の抵抗値Ra[Ω]とに基づいて、測定用抵抗32の端子間電圧の推定値Vin1[V]を計算する。
 ステップS106において、第2の電圧測定部33は、第2の閉回路102を構成したときにおいて測定用抵抗32の端子間電圧の測定値Vin2[V]を取得する。
 なお、ステップS104~S106は、矛盾の無い範囲で実行順序を適宜入れ替えてもよい。例えば、ステップS106を実行した後にステップS104及びステップS105を実行してもよく、あるいはステップS104とステップS105との間にステップS106を実行してもよい。ただし、ステップS105は少なくともS104よりも後に実行されるべきである。
 ステップS107において、誤差検出部17は、式2に基づいて、第2の閉回路102を構成したときにおいて第2の電圧測定部33により取得された測定用抵抗32の端子間電圧の測定値Vin2[V]と、電圧推定部16により計算された測定用抵抗32の端子間電圧の推定値Vin1[V]と、の誤差ΔV[V]を検出する。
 ステップS108において、故障判定部18は、誤差検出部17により検出された誤差ΔV[V]が予め規定された基準誤差の範囲外であるか否かを判定する。ステップS108において誤差ΔV[V]が基準誤差の範囲外であると判定された場合は、ステップS109へ進み、故障判定部18は、絶縁抵抗値検出部15の故障有りと判定する。ステップS108において誤差ΔV[V]が基準誤差の範囲外であると判定されなかった場合(すなわち誤差ΔV[V]が基準誤差の範囲内である場合)は、ステップS110へ進み、故障判定部18は、絶縁抵抗値検出部15の故障無しと判定する。
 続いて、絶縁抵抗値検出部15によるモータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]の検出について、より詳細に説明する。
 図4は、本開示の一実施形態によるモータ駆動装置において絶縁抵抗値検出部による絶縁抵抗値検出処理を実行する際に構成される第1の閉回路を説明する図である。図4において、制御部30、計算部34、補正値生成部35、補正部36、電圧推定部16、誤差検出部17、及び故障判定部18については図示を省略している。
 絶縁抵抗値検出部15による絶縁抵抗値検出処理を実行するにあたっては、まず、第1のスイッチ11を閉状態としかつ第2のスイッチ31を開状態としさらにモータ駆動アンプ部13内のスイッチング素子を全てオフ状態にして、交流電源2から整流回路21を介して流入する電力にてコンデンサ22を充電する。コンデンサ22の充電が完了したら、第1のスイッチ11を開状態とし第2のスイッチ31を閉状態とし、かつモータ駆動アンプ部13の上アーム及び下アームのスイッチング素子を全てオフ状態にすることで、図中太線の矢印で示される第1の閉回路101を構成する。図7は、第1の閉回路に関連する部分を示した回路図である。図7において、閉状態にある第2のスイッチ31については図示を省略している。図4及び図7に示すように、第1の閉回路101は、コンデンサ22と分圧抵抗38と閉状態の第2のスイッチ31と分圧抵抗39とモータ3のモータコイルの絶縁抵抗4と分圧抵抗37と測定用抵抗32とを含む。
 第1の閉回路101が構成された状態において、第2の電圧測定部33により取得された測定用抵抗32の端子間電圧の測定値(実測値)Vin3[V]と測定用抵抗32の抵抗値Rb[Ω]とから、式4に従って第1の閉回路101を流れる漏洩電流I1[A]を計算することができる。
Figure JPOXMLDOC01-appb-M000004
 第1の閉回路101が構成された状態において、第1の電圧測定部14により取得された電源部12の電圧(コンデンサ22の電圧)の測定値Vdc[V]、第1の閉回路101を流れる漏洩電流I1[A]と、測定用抵抗32の抵抗値Rb[Ω]と、分圧抵抗37の抵抗値Ra[Ω]と、分圧抵抗38の抵抗値Rc[Ω]と、分圧抵抗39の抵抗値Rd[Ω]と、モータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]とから、式5で表されるような回路方程式が成り立つ。
Figure JPOXMLDOC01-appb-M000005
 式5を式4に代入して変形すると式6が得られる。
Figure JPOXMLDOC01-appb-M000006
 式6に従い、モータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]を計算することができる。ただし、第2の電圧測定部33の出力には、絶縁アンプを構成する第2の電圧測定部33、測定用抵抗32及び分圧抵抗37の部品誤差や経年劣化などに起因する誤差ΔVが含まれる。そこで、誤差ΔV[V]の極性を反転させた値「-ΔV[V]」を、第1の閉回路101を構成したときにおいて第2の電圧測定部33により取得される測定用抵抗32の端子間電圧の測定値Vin3[V]を補正するための補正値Vamend[V]として用いる。ここで、補正値Vamend[V]の作成に用いられる誤差ΔV[V]は、基準誤差の範囲内であると判定された際すなわち故障判定部18により絶縁抵抗値検出部15の故障無しと判定された際に用いられたものである。補正値Vamend[V]は、故障判定部18により絶縁抵抗値検出部15の故障無しと判定された際に用いられた誤差ΔV[V]を用いて、式7のように表される。誤差ΔV[V]はゲイン誤差よりもオフセット誤差の方が支配的であるので、本実施形態では、一例として式7に示すように、第1の閉回路101を構成したときにおいて第2の電圧測定部33により取得される測定用抵抗32の端子間電圧の測定値Vin3[V]に加算(プラス)することでオフセット誤差を打ち消すための補正値Vamend[V]を生成する。
Figure JPOXMLDOC01-appb-M000007
 補正値生成部35は、式7に基づいて、故障判定部18により絶縁抵抗値検出部15の故障無しと判定された際に用いられた誤差ΔV[V]を用いて、補正値Vamend[V]を生成する。
 第1の閉回路101を構成したときにおいて第2の電圧測定部33により取得される測定用抵抗32の端子間電圧の測定値Vin3[V]に、補正値Vamend[V]を加算することで、式8に示すように測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]が得られる。
Figure JPOXMLDOC01-appb-M000008
 補正部36は、式8に基づいて、第1の閉回路101を構成したときに第2の電圧測定部33により取得された測定用抵抗32の端子間電圧の測定値Vin3[V]を、補正値生成部35により生成された補正値Vamend[V]を用いて補正することで、測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]を生成する。
 式6の測定用抵抗32の端子間電圧の測定値Vin3[V]を測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]に置き換えることで得られる式9に基づいて、モータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]を計算することで、絶縁抵抗値Rm[Ω]の精度が向上する。
Figure JPOXMLDOC01-appb-M000009
 計算部34は、故障判定部18により絶縁抵抗値検出部15の故障無しと判定された場合は、式9に基づいて、第1の閉回路101を構成したときに第1の電圧測定部14により取得された電源部12の電圧の測定値Vdc[V]と、測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]と、少なくとも測定用抵抗32の抵抗値Rb[Ω]と、に基づいて、モータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]を計算する。より詳しくは、図1及び図4に示す例では、計算部34は、故障判定部18により絶縁抵抗値検出部15の故障無しと判定された場合は、式9に基づいて、第1の閉回路101を構成したときに第1の電圧測定部14により取得された電源部12の電圧の測定値Vdc[V]と、測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]と、測定用抵抗32の抵抗値Rb[Ω]と、分圧抵抗37の抵抗値Ra[Ω]と、分圧抵抗38の抵抗値Rc[Ω]と、分圧抵抗39の抵抗値Rd[Ω]と、に基づいて、モータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]を計算する。一方、故障判定部18により絶縁抵抗値検出部15の故障無有りと判定された場合は、絶縁抵抗値検出部15の絶縁抵抗値検出処理は実行せずに、処理を終了する。
 図5は、本開示の一実施形態によるモータ駆動装置における絶縁抵抗値検出部による絶縁抵抗値検出処理の動作フローを示すフローチャート(その1)であり、図6は、本開示の一実施形態によるモータ駆動装置における絶縁抵抗値検出部による絶縁抵抗値検出処理の動作フローを示すフローチャート(その2)である。
 図5に示すステップS101~S110については、図3に示したステップS101~S110の処理と同様である。
 ステップS108において誤差ΔV[V]が基準誤差の範囲外であると判定されなかった場合(すなわち誤差ΔV[V]が基準誤差の範囲内である場合)は、ステップS110へ進み、故障判定部18は、絶縁抵抗値検出部15の故障無しと判定する。
 ステップS110に続くステップS200において、絶縁抵抗値検出部15は、絶縁抵抗値検出処理を開始する。
 なお、コンデンサ22(例えば電解コンデンサ)の容量は一般的に大きいことから、ステップS103~S110までの誤差計算処理の間は漏洩電流が短時間に流れるのみであるので、コンデンサ22の電荷の減少量は非常に少ない。よって、ステップS200以降の絶縁抵抗値計算処理を実行するにあたり、コンデンサ22の再充電は基本的には不要であるが、必要に応じてコンデンサ22の再充電を行ってもよい。
 ステップS201では、補正値生成部35は、式7に基づいて、故障判定部18により絶縁抵抗値検出部15の故障無しと判定された際に用いられた誤差ΔV[V]を用いて、補正値Vamend[V]を生成する。
 ステップS202において、制御部30は、第2のスイッチ31を開状態から閉状態に切り替える。これにより、第1のスイッチ11は開状態となり第2のスイッチ31は閉状態になる。また、モータ駆動アンプ部13の上アーム及び下アームのスイッチング素子を全てオフ状態にする。この結果、第1の閉回路101が構成される。
 ステップS203において、第1の電圧測定部14は、電源部12の電圧(コンデンサ22の電圧)の測定値を取得する。
 ステップS204において、第2の電圧測定部33は、第1の閉回路101を構成したときにおける測定用抵抗32の端子間電圧の測定値Vin3[V]を取得する。
 ステップS205において、補正部36は、式8に基づいて、第1の閉回路101を構成したときに第2の電圧測定部33により取得された測定用抵抗32の端子間電圧の測定値Vin3[V]を、補正値生成部35により生成された補正値Vamend[V]を用いて補正することで、測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]を生成する。
 ステップS206において、計算部34は、故障判定部18により絶縁抵抗値検出部15の故障無しと判定された場合は、式9に基づいて、第1の閉回路101を構成したときに第1の電圧測定部14により取得された電源部12の電圧の測定値Vdc[V]と、測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]と、少なくとも測定用抵抗32の抵抗値Rb[Ω]と、に基づいて、モータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]を計算する。より詳しくは、図1及び図4に示す例では、計算部34は、故障判定部18により絶縁抵抗値検出部15の故障無しと判定された場合は、式9に基づいて、第1の閉回路101を構成したときに第1の電圧測定部14により取得された電源部12の電圧の測定値Vdc[V]と、測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]と、測定用抵抗32の抵抗値Rb[Ω]と、分圧抵抗37の抵抗値Ra[Ω]と、分圧抵抗38の抵抗値Rc[Ω]と、分圧抵抗39の抵抗値Rd[Ω]と、に基づいて、モータ3の絶縁抵抗4についての絶縁抵抗値Rm[Ω]を計算する。
 ここで、絶縁アンプを構成する第2の電圧測定部33、測定用抵抗32及び分圧抵抗37の部品誤差や経年劣化などに起因する誤差ΔV[V]が、モータ3の絶縁抵抗値Rm[Ω]の検出精度に与える影響について、数値例を挙げて説明する。
 例えば、分圧抵抗38の抵抗値Rcを1000kΩとし、分圧抵抗39の抵抗値Rdを5kΩとし、測定用抵抗32の抵抗値Rbを5kΩとし、分圧抵抗37の抵抗値Raを1000kΩとし、電源部12の電圧(コンデンサ22の電圧)Vdcを300Vとした数値例を考える。
 モータ3の絶縁抵抗値の実際の値Rmが1MΩであった場合、第1の閉回路101に基づき式6を用いて測定用抵抗32の端子間電圧を計算すると498mVである。第2の電圧測定部33が取得した測定用抵抗32の端子間電圧の測定値Vin3である498mVに誤差ΔVとして10mVが含まれていたとすると、正しい測定用抵抗32の端子間電圧の測定値Vin3は488mVであるはずなので、Vin3=488mVを式6に代入してモータ3の絶縁抵抗値Rmを計算し直すと1.06MΩとなり、モータ3の絶縁抵抗値の実際の値Rm=1MΩからずれたものとなる。
 モータ3の絶縁抵抗値の実際の値Rmが10MΩであった場合、第1の閉回路101に基づき式6を用いて測定用抵抗32の端子間電圧を計算すると125mVである。第2の電圧測定部33が取得した測定用抵抗32の端子間電圧の測定値Vin3である125mVに誤差ΔVとして10mVが含まれていたとすると、正しい測定用抵抗32の端子間電圧の測定値Vin3は115mVであるはずなので、Vin3=115mVを式6に代入してモータ3の絶縁抵抗値Rmを計算し直すと11.03MΩとなり、モータ3の絶縁抵抗値の実際の値Rm=10MΩからずれたものとなる。
 モータ3の絶縁抵抗値の実際の値Rmが50MΩであった場合、第1の閉回路101に基づき式6を用いて測定用抵抗32の端子間電圧を計算すると29mVである。第2の電圧測定部33が取得した測定用抵抗32の端子間電圧の測定値Vin3である29mVに誤差ΔVとして10mVが含まれていたとすると、正しい測定用抵抗32の端子間電圧の測定値Vin3は19mVであるはずなので、Vin3=19mVを式6に代入してモータ3の絶縁抵抗値Rmを計算し直すと76.94MΩとなり、モータ3の絶縁抵抗値の実際の値Rm=50MΩからずれたものとなる。
 上述の数値例が示す通り、モータ3の絶縁抵抗値の実際の値Rm[Ω]が大きいほど、第1の閉回路101を構成したときに第2の電圧測定部33が取得した測定用抵抗32の端子間電圧の測定値Vin3に誤差ΔVが含まれたままの状態で計算されたモータ3の絶縁抵抗値は、より大きな誤差を含んだものとなる。本実施形態によれば、誤差ΔV[V]の極性を反転させた値「-ΔV[V]」を補正値Vamend[V]として第2の電圧測定部33により取得される測定用抵抗32の端子間電圧の測定値Vin3[V]を補正し、測定用抵抗32の端子間電圧の補正後の測定値Vin4[V]を用いて絶縁抵抗値Rm[Ω]を計算するので、モータ3の絶縁抵抗値Rm[Ω]を正確に検出することができる。
 以上説明したように、本開示の一実施形態によるモータ駆動装置1によれば、第2の電圧測定部33、測定用抵抗32及び分圧抵抗37の部品誤差や経年劣化などに起因する誤差ΔV[V]に基づいて故障判定処理を実行するので、モータ3の絶縁抵抗値を検出する絶縁抵抗値検出部15の故障を的確に検出することができる。また、故障判定部18により絶縁抵抗値検出部15の故障無しと判定された際に用いられた誤差ΔV[V]を用いて第2の電圧測定部33による測定用抵抗32の測定値Vin3[V]を補正し、測定用抵抗32の補正後の測定値Vin4[V]に基づいてモータ3の絶縁抵抗値Rm[Ω]を計算するので、モータ3の絶縁抵抗値Rm[Ω]を正確に検出することができる。
 続いて、本開示の一実施形態によるモータ駆動装置1の変形例について説明する。
 図8は、本開示の一実施形態によるモータ駆動装置の変形例を示す図である。
 図4及び図7に示した絶縁抵抗値検出部15の絶縁抵抗値検出処理に用いられる第1の閉回路101においては、電源部12の電圧(コンデンサ22の電圧)Vdc[V]が、分圧抵抗39と分圧抵抗39とモータ3の絶縁抵抗4と分圧抵抗37と測定用抵抗32とで得られる合成抵抗に印加されるので、第1の閉回路101に流れる漏洩電流I1[A]は非常に小さい。そこで、測定用抵抗32と第2の電圧測定部33と分圧抵抗37とからなる絶縁アンプの入力電圧範囲を小さくすることで、第2の電圧測定部33の検出分解能を確保している。一方、図2に示した絶縁抵抗値検出部15の故障の有無の判定処理に用いられる第2の閉回路102においては、電源部12の電圧(コンデンサ22の電圧)Vdc[V]が、分圧抵抗37と測定用抵抗32とで得られる合成抵抗に印加されるので、第2の閉回路102に流れる電流は、第1の閉回路101に流れる漏洩電流I1[A]よりも大きくなる。このため、第2の電圧測定部33の検出分解能の確保を目的として入力電圧範囲の小さい絶縁アンプを用いると、絶縁抵抗値検出部15の故障の有無の判定処理の際に測定用抵抗32に印加される電圧が、絶縁アンプの入力電圧範囲を逸脱してしまい、絶縁抵抗値検出部15の故障の有無の判定処理が正確に実行できなくなってしまうことがある。逆に、絶縁抵抗値検出部15の故障の有無の判定処理の正確な実行を目的として入力電圧範囲の大きい絶縁アンプを用いると、第2の電圧測定部33の検出分解能が低下してしまう。
 このような問題を解決するために、本開示の一実施形態によるモータ駆動装置の変形例では、絶縁抵抗値検出部15の故障の有無の判定処理を実行する前に、第1のスイッチ11及び第2のスイッチ31を開状態としモータ駆動アンプ部13の上アーム及び下アームの全てのスイッチング素子をオフ状態にして、コンデンサ22と第1の電圧測定部14とからなる放電回路を構成する。第1の電圧測定部14は、例えば測定用抵抗(図示せず)と分圧抵抗(図示せず)と絶縁アンプとから構成されるので、当該放電回路を構成することにより、第1の電圧測定部14内の測定用抵抗(図示せず)と分圧抵抗(図示せず)を介してコンデンサ22の電荷を放電させることができる。そして、放電により電源部12の電圧(コンデンサ22の電圧)Vdc[V]が予め規定された基準電圧以下になった後に、再び第2の閉回路102を構成し、第2の電圧測定部に測定用抵抗32の端子間電圧の測定値Vin2[V]を取得させる。
 本変形例によるモータ駆動装置1は、電圧判定部19をさらに備える。電圧判定部19は、第1のスイッチ11及び第2のスイッチ31を開状態としモータ駆動アンプ部13の上アーム及び下アームの全てのスイッチング素子をオフ状態にしたときにおいて第1の電圧測定部14により取得された電源部12の電圧(コンデンサ22の電圧)の測定値Vdc[V]が、予め規定された基準電圧Vth3[V]以下になったか否かを判定する。電圧判定部19は、演算処理装置内に構成され、例えば、プロセッサ上で実行されるコンピュータプログラムにより実現される機能モジュールである。例えば、電圧判定部19をコンピュータプログラム形式で構築する場合は、演算処理装置をこのコンピュータプログラムに従って動作させることで、電圧判定部19の機能を実現することができる。電圧判定部19の処理を実行するためのコンピュータプログラムは、半導体メモリ、磁気記録媒体または光記録媒体といった、コンピュータ読取可能な記録媒体に記録された形で提供されてもよい。またあるいは、電圧判定部19を、当該機能を実現するコンピュータプログラムを書き込んだ半導体集積回路として実現してもよい。
 第1のスイッチ11及び第2のスイッチ31を開状態としモータ駆動アンプ部13の上アーム及び下アームの全てのスイッチング素子をオフ状態にしたときにおいて第1の電圧測定部14により取得された電源部12の電圧(コンデンサ22の電圧)の測定値Vdc[V]が基準値Vth3[V]以下になったと電圧判定部19により判定された後、第2の閉回路102を再び構成し、第2の電圧測定部33は、測定用抵抗32の端子間電圧の測定値を取得する。
 なお、電圧判定部19による電圧判定処理に用いられる基準電圧Vth3[V]については、第2の電圧測定部33の所望の検出分解能を確保することができる入力電圧範囲を有する絶縁アンプに応じて設定すればよい。基準電圧Vth3[V]については、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、基準電圧Vth3[V]を一旦設定した後であっても、必要に応じて適切な値に変更することができる。基準電圧Vth3[V]を記憶する記憶部は、例えばEEPROM(登録商標)などのような電気的に消去・記録可能な不揮発性メモリ、または、例えばDRAM、SRAMなどのような高速で読み書きのできるランダムアクセスメモリなどで構成されてもよい。設定された基準電圧Vth3[V]については、電圧判定部19を構成する演算処理装置内に事前に入力しておき、電圧判定部19による電圧判定処理に用いればよい。
 基準電圧Vth3[V]の数値例について一例をあげると次の通りである。例えば、測定用抵抗32の抵抗値Rbを5kΩとし、分圧抵抗37の抵抗値Raを1000kΩとし、絶縁アンプ内の第2の電圧測定部33の入力電圧範囲が例えば0mVから1000mVまでであるとする。この例の場合、電源部12の電圧(コンデンサ22の電圧)Vdcを300Vとしたとき、第2の閉回路102が構成されたときにおける測定用抵抗32の端子間電圧Vin2は、オームの法則に従って計算すると、約1493mVとなり、第2の電圧測定部33の入力電圧範囲の上限値を超えてしまう。測定用抵抗32の端子間電圧Vin2[V]を第2の電圧測定部33の入力電圧範囲の上限値1000mV以下に収めるためには、電源部12の電圧(コンデンサ22の電圧)Vdcを約200Vまで低下させる必要がある。そこで、基準電圧Vth3を例えば200Vに設定した電圧判定部19を構成すればよい。なお、ここで挙げた数値例はあくまでも一例である。
 本変形例によるモータ駆動装置1における電圧判定部19及び第2の電圧測定部33以外の構成は、図1を参照して説明した通りである。
 図9は、本開示の一実施形態によるモータ駆動装置の変形例における絶縁抵抗値検出部の故障の有無の判定処理の動作フローを示すフローチャートである。
 図9に示すステップS101及びS102については、図1及び図3に示したステップS101及びS102の処理と同様である。ステップS102のコンデンサ22の充電完了後、ステップS103において制御部30により第1のスイッチ11を閉状態から開状態に切り替えることで第1のスイッチ11及び第2のスイッチ31を開状態に制御し、かつモータ駆動アンプ部13の上アーム及び下アームの全てのスイッチング素子をオフ状態に制御することで、コンデンサ22と第1の電圧測定部14とからなる放電回路を構成する。当該放電回路を構成することにより、第1の電圧測定部14内の測定用抵抗(図示せず)と分圧抵抗(図示せず)にてコンデンサ22を徐々に放電させる。ステップS104において、第1の電圧測定部14は、電源部12の電圧(コンデンサ22の電圧)の測定値を取得する。
 ステップS104に続くステップS111において、電圧判定部19は、第1の電圧測定部14により取得された電源部12の電圧(コンデンサ22の電圧)の測定値Vdc[V]が、予め規定された基準電圧Vth3[V]以下になったか否かを判定する。ステップS111において電源部12の電圧(コンデンサ22の電圧)の測定値Vdc[V]が基準電圧Vth3[V]以下になったと判定されない場合はステップS104へ戻り、ステップS111において電源部12の電圧(コンデンサ22の電圧)の測定値Vdc[V]が基準電圧Vth3[V]以下になったと判定された場合はモータ駆動アンプ部13内のスイッチング素子を任意にスイッチングさせることで第2の閉回路102を構成した後、ステップS105へ進む。コンデンサ22が放電して電源部12の電圧(コンデンサ22の電圧)の測定値Vdc[V]が基準電圧Vth3[V]以下になるまで、ステップS104及びS111は繰り返し実行される。
 図9に示すステップS105~S110及びS200については、図3に示したステップS105~S110及びS200の処理と同様である。また、図9に示すステップS200の処理の後は、図6に示したステップS201~S206がさらに実行される。
 以上説明したように、本開示の一実施形態によるモータ駆動装置1の変形例によれば、第2の電圧測定部33の検出分解能を有効に確保することができるので、モータ3の絶縁抵抗値を検出する絶縁抵抗値検出部15の回路の故障を的確に検出することができ、なおかつモータ3の絶縁抵抗値Rm[Ω]をさらに正確に検出することができる。
 1  モータ駆動装置
 2  交流電源
 3  モータ
 4  絶縁抵抗
 11  第1のスイッチ
 12  電源部
 13  モータ駆動アンプ部
 14  第1の電圧測定部
 15  絶縁抵抗値検出部
 16  電圧推定部
 17  誤差検出部
 18  故障判定部
 19  電圧判定部
 21  整流回路
 22  コンデンサ
 30  制御部
 31  第2のスイッチ
 32  測定用抵抗
 33  第2の電圧測定部
 34  計算部
 35  補正値生成部
 36  補正部
 37、38、39  分圧抵抗
 101  第1の閉回路
 102  第2の閉回路

Claims (4)

  1.  交流電源からの電路を開閉する第1のスイッチと、
     閉状態にある前記第1のスイッチを介して前記交流電源から供給された交流電圧を整流回路で直流電圧に整流し、整流された直流電圧をコンデンサで平滑化する電源部と、
     上アーム及び下アームのスイッチング素子を用いて前記電源部からの直流電圧をモータ駆動用の交流電圧に変換してモータに供給するモータ駆動アンプ部と、
     前記電源部の電圧の測定値を取得する第1の電圧測定部と、
     閉状態のときに前記コンデンサの一端を大地に接続し開状態のときに前記コンデンサの一端を大地に接続しない第2のスイッチと、前記コンデンサの他端とモータコイルとの間に設けられた測定用抵抗と、前記測定用抵抗の端子間電圧の測定値を取得する第2の電圧測定部と、前記第1のスイッチを開状態としかつ前記第2のスイッチを閉状態とすることで前記第2のスイッチ、前記コンデンサ、前記測定用抵抗、前記モータコイル、及び大地を含む第1の閉回路を構成したときにおいて、前記第1の電圧測定部により取得された前記電源部の電圧の測定値と前記第2の電圧測定部により取得された前記測定用抵抗の端子間電圧の測定値と前記測定用抵抗の抵抗値とに基づいて、モータの絶縁抵抗値を計算する計算部と、を有する絶縁抵抗値検出部と、
     前記第1のスイッチ及び前記第2のスイッチを開状態としかつ前記モータ駆動アンプ部の前記上アームまたは前記下アームの前記スイッチング素子を任意にスイッチングさせることで前記コンデンサ及び前記測定用抵抗を含む第2の閉回路を構成したときにおいて、前記第1の電圧測定部により取得された前記電源部の電圧の測定値と前記測定用抵抗の抵抗値とに基づいて、前記測定用抵抗の端子間電圧の推定値を計算する電圧推定部と、
     前記第2の閉回路を構成したときにおいて前記第2の電圧測定部により取得された前記測定用抵抗の端子間電圧の測定値と前記電圧推定部により計算された前記測定用抵抗の端子間電圧の推定値との誤差を検出する誤差検出部と、
     前記誤差検出部により検出された誤差に基づいて、前記絶縁抵抗値検出部の故障の有無を判定する故障判定部と、
    を備える、モータ駆動装置。
  2.  前記故障判定部は、前記誤差検出部により検出された誤差が予め規定された基準誤差の範囲外である場合は前記絶縁抵抗値検出部の故障有りと判定し、前記誤差検出部により検出された誤差が前記基準誤差の範囲内である場合は前記絶縁抵抗値検出部の故障無しと判定する、請求項1に記載のモータ駆動装置。
  3.  前記絶縁抵抗値検出部は、
     前記故障判定部により前記絶縁抵抗値検出部の故障無しと判定された際に用いられた前記誤差検出部により検出された誤差に基づいて、補正値を生成する補正値生成部と、
     前記第1の閉回路を構成したときに前記第2の電圧測定部により取得された前記測定用抵抗の端子間電圧の測定値を、前記補正値生成部により生成された補正値を用いて補正することで、前記測定用抵抗の端子間電圧の補正後の測定値を生成する補正部と、
    をさらに有し、
     前記計算部は、前記第1の閉回路を構成したときに前記第1の電圧測定部により取得された前記電源部の電圧の測定値と、前記測定用抵抗の端子間電圧の補正後の測定値と、前記測定用抵抗の抵抗値と、に基づいて、モータの絶縁抵抗値を検出する、請求項2に記載のモータ駆動装置。
  4.  前記第1の電圧測定部により取得された前記電源部の電圧の測定値が、予め規定された基準電圧以下になったか否かを判定する電圧判定部をさらに備え、
     前記第2の電圧測定部は、前記第1のスイッチ及び前記第2のスイッチを開状態とし前記モータ駆動アンプ部の前記上アーム及び前記下アームの前記スイッチング素子をオフ状態にしたときにおいて前記第1の電圧測定部により取得された前記電源部の電圧の測定値が前記基準値以下になったと前記電圧判定部により判定された後に、前記第2の閉回路を構成したときにおいて前記測定用抵抗の端子間電圧の測定値を取得する、請求項3に記載のモータ駆動装置。
PCT/JP2021/022879 2021-06-16 2021-06-16 モータの絶縁抵抗値を計算するモータ駆動装置 WO2022264314A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/022879 WO2022264314A1 (ja) 2021-06-16 2021-06-16 モータの絶縁抵抗値を計算するモータ駆動装置
DE112021007484.9T DE112021007484T5 (de) 2021-06-16 2021-06-16 Motoransteuerungsvorrichtung zur berechnung des isolationswiderstandswerts eines motors
US18/566,790 US20240272212A1 (en) 2021-06-16 2021-06-16 Motor drive device calculating insulation resistance value of motor
JP2023528841A JPWO2022264314A1 (ja) 2021-06-16 2021-06-16
CN202180099174.6A CN117501615A (zh) 2021-06-16 2021-06-16 计算马达的绝缘电阻值的马达驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022879 WO2022264314A1 (ja) 2021-06-16 2021-06-16 モータの絶縁抵抗値を計算するモータ駆動装置

Publications (1)

Publication Number Publication Date
WO2022264314A1 true WO2022264314A1 (ja) 2022-12-22

Family

ID=84526294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022879 WO2022264314A1 (ja) 2021-06-16 2021-06-16 モータの絶縁抵抗値を計算するモータ駆動装置

Country Status (5)

Country Link
US (1) US20240272212A1 (ja)
JP (1) JPWO2022264314A1 (ja)
CN (1) CN117501615A (ja)
DE (1) DE112021007484T5 (ja)
WO (1) WO2022264314A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788538B2 (ja) * 2014-01-08 2015-09-30 ファナック株式会社 絶縁劣化検出機能を備えたモータ駆動装置及びモータの絶縁抵抗検出方法
JP5832578B2 (ja) * 2014-04-15 2015-12-16 ファナック株式会社 モータの絶縁抵抗劣化検出部の故障検出機能を備えたモータ駆動装置及び故障検出方法
JP2017009423A (ja) * 2015-06-22 2017-01-12 株式会社デンソー 電流検出システム及び電流検出icの出力信号調整方法
JP2018048624A (ja) * 2016-09-14 2018-03-29 株式会社デンソー 空燃比検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554501B2 (ja) 2005-01-18 2010-09-29 ファナック株式会社 モータの絶縁抵抗劣化検出方法、絶縁抵抗劣化検出装置およびモータ駆動装置
JP4565036B2 (ja) 2009-01-05 2010-10-20 ファナック株式会社 モータの絶縁劣化検出装置
WO2015075821A1 (ja) 2013-11-22 2015-05-28 三菱電機株式会社 絶縁検出器及び電気機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788538B2 (ja) * 2014-01-08 2015-09-30 ファナック株式会社 絶縁劣化検出機能を備えたモータ駆動装置及びモータの絶縁抵抗検出方法
JP5832578B2 (ja) * 2014-04-15 2015-12-16 ファナック株式会社 モータの絶縁抵抗劣化検出部の故障検出機能を備えたモータ駆動装置及び故障検出方法
JP2017009423A (ja) * 2015-06-22 2017-01-12 株式会社デンソー 電流検出システム及び電流検出icの出力信号調整方法
JP2018048624A (ja) * 2016-09-14 2018-03-29 株式会社デンソー 空燃比検出装置

Also Published As

Publication number Publication date
CN117501615A (zh) 2024-02-02
US20240272212A1 (en) 2024-08-15
DE112021007484T5 (de) 2024-02-01
JPWO2022264314A1 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
US7929323B2 (en) Method and apparatus for pre-charging power converters and diagnosing pre-charge faults
JP5606387B2 (ja) モータ制御装置及びモータの絶縁劣化検出方法
Trabelsi et al. PWM-Switching pattern-based diagnosis scheme for single and multiple open-switch damages in VSI-fed induction motor drives
US20120068645A1 (en) Control apparatus for rotary electric machines
US20090009920A1 (en) Abnormality detecting device of electric power converting device and abnormality detecting method
JP5827821B2 (ja) ハイブリッド自動車の故障診断装置および方法
JP5728914B2 (ja) インバータ装置
JP2012233826A5 (ja)
JP5095530B2 (ja) 充放電システムの異常判定方法及び異常判定装置
JP2021090268A (ja) Dcリンク電圧変動の原因を判定するモータ駆動装置
US20160134221A1 (en) Inverter apparatus
US10605843B2 (en) Inverter open/short failure detection
JP2010252536A (ja) インバータ装置及びその故障診断方法
US9941815B2 (en) Power conversion apparatus with overcurrent simulating circuit
CN106154076B (zh) 用于检测逆变器故障的方法及装置
CN114448266A (zh) 具有电机绝缘性检查功能的逆变器系统
WO2022264314A1 (ja) モータの絶縁抵抗値を計算するモータ駆動装置
US20230268847A1 (en) Power conversion device and method of diagnosing failures of switching devices
WO2022264315A1 (ja) モータの絶縁抵抗値を計算するモータ駆動装置
CN113504435B (zh) 三电平逆变器开路故障诊断方法及系统
JP5369818B2 (ja) インバータ装置の故障検出方法
JP2013099187A (ja) 電力変換装置
JP2022014382A (ja) 電力変換装置及び電力変換制御装置
JP6673124B2 (ja) モータ駆動装置、コンピュータプログラム及びモータ駆動装置の動作方法
JP2020127361A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945991

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528841

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112021007484

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202180099174.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21945991

Country of ref document: EP

Kind code of ref document: A1