WO2022264307A1 - 自己校正機能付きadコンバータ - Google Patents
自己校正機能付きadコンバータ Download PDFInfo
- Publication number
- WO2022264307A1 WO2022264307A1 PCT/JP2021/022842 JP2021022842W WO2022264307A1 WO 2022264307 A1 WO2022264307 A1 WO 2022264307A1 JP 2021022842 W JP2021022842 W JP 2021022842W WO 2022264307 A1 WO2022264307 A1 WO 2022264307A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- unit
- reference voltage
- integrated
- integration
- Prior art date
Links
- 230000010354 integration Effects 0.000 claims abstract description 60
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 238000005259 measurement Methods 0.000 claims description 26
- 238000012937 correction Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 102100025599 Microfibrillar-associated protein 2 Human genes 0.000 description 1
- 101710147473 Microfibrillar-associated protein 2 Proteins 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1014—Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
Definitions
- the present invention relates to an AD converter with a self-calibration function that does not require a measuring instrument for calibration.
- the AD converter consists of a DA converter that outputs a known voltage and a comparator, and is the smallest DA converter that changes the output value of the DA converter sequentially and the output of the comparator changes from a low output voltage to a high output voltage. is used as the conversion value of the AD converter (Non-Patent Document 1). Variation due to aging of the offset and linearity of the DA converter leads to aging of the AD converter.
- Typical DA converters include R-2R ladder circuits, resistor string circuits (Non-Patent Document 2), and PWM circuits (Non-Patent Document 3).
- the resistor string circuit has low power consumption and high monotonicity, but the linearity of the output to the setting code depends on the uniformity and layout of the resistor elements, so trial and error is required for layout design and manufacturing.
- PWM circuits do not require a row of resistor elements and can be manufactured using only digital circuits, so they have the advantage of stable performance.
- the following low-pass filters must be designed and manufactured with high frequency accuracy.
- Non-Patent Document 2 discloses a method for determining whether conversion accuracy is a long period of time.
- the present invention has been made in view of this problem, and an object of the present invention is to provide an AD converter with a self-calibrating function that does not require a measuring instrument for calibration.
- An AD converter with a self-calibration function includes a first reference voltage section that generates a temperature-compensated first reference voltage, and a second reference voltage section that generates a second reference voltage calibrated with the first reference voltage.
- 2 a reference voltage unit, an integrator that generates an integrated voltage by accumulating a unit voltage using any one of the first reference voltage, the second reference voltage, and the ground voltage as an initial value during calibration, and the integrated voltage and the threshold voltage.
- a comparator for comparing the value voltage and outputting a judgment signal; and an offset between the unit voltage and the comparator for measuring the integrated time from the initial value until the integrated voltage exceeds the threshold voltage during calibration.
- a calibration control unit that calibrates the voltage, and a conversion control unit that converts the input voltage into a digital value using the conversion integration time, which is the integration time when the input voltage is the initial value, and the second reference voltage.
- the gist is to provide
- an AD converter with a self-calibration function that does not require an external measuring device for calibration.
- FIG. 1 is a functional block diagram showing a configuration example of an AD converter with a self-calibration function according to an embodiment of the present invention
- FIG. 2 is a diagram for explaining the operation of an integrator shown in FIG. 1
- FIG. It is a figure explaining switching of a unit voltage.
- 2 is a diagram showing the relationship between integrated voltage and current values and the number of times of integration in the integration unit shown in FIG. 1;
- FIG. 1 is a functional block diagram showing a configuration example of an AD converter with a self-calibration function according to an embodiment of the present invention
- FIG. 2 is a diagram for explaining the operation of an integrator shown in FIG. 1
- FIG. It is a figure explaining switching of a unit voltage
- 2 is a diagram showing the relationship between integrated voltage and current values and the number of times of integration in the integration unit shown in FIG. 1;
- FIG. 1 is a functional block diagram showing a configuration example of an AD converter with self-calibration function according to an embodiment of the present invention.
- the AD converter 100 shown in FIG. 1 generates an integrated voltage by integrating the unit voltage with the input voltage as an initial value in the integrating/converting section, and compares the integrated voltage with the threshold voltage in the comparator and converts it into a digital value. do.
- the AD converter 100 includes a first reference voltage section 10 , a second reference voltage section 11 , an integration/conversion section 30 and a control section 20 .
- the integrating/converting section 30 includes a switching section 31 , an integrating section 32 , a threshold voltage section 33 and a comparator 34 .
- the control unit 20 is composed of a calibration control unit 21 and a conversion control unit 22.
- the calibration control section 21 includes an offset measurement section 210 , a correlation measurement section 211 , a unit voltage measurement section 212 and a reference voltage correction section 213 .
- the first reference voltage unit 10 generates a temperature-compensated first reference voltage.
- the second reference voltage unit 11 generates a second reference voltage calibrated with the first reference voltage.
- the integrator 32 generates an integrated voltage by accumulating unit voltages using any one of the first reference voltage, the second reference voltage, and the ground voltage as an initial value during calibration.
- the comparator 34 compares the integrated voltage and the threshold voltage and outputs a determination signal.
- the calibration control unit 21 measures the integration time from the initial value until the integrated voltage exceeds the threshold voltage, and calibrates the unit voltage and the offset voltage of the comparator 34 .
- the conversion control unit 22 converts the input voltage into a digital value using the conversion integration time, which is the integration time when the input voltage is the initial value, and the second reference voltage.
- FIG. 2 is a diagram showing a circuit model of the integrating section 32. As shown in FIG.
- the integrating section 32 includes a current source 320, SW1, and a capacitor C0.
- FIG. 2 shows a1 and d1 of SW1 necessary for explaining the integration operation for integrating the unit voltage, and other terminals are omitted.
- the voltage Vo,1 of the capacitor C0 is obtained by the following equation in one integration operation in which a1 and d1 of SW1 are connected for ⁇ t seconds and then a1 and d1 are disconnected.
- Voltage Vo can be expressed by the following equation.
- the unit voltage VG and the offset voltage of the comparator 34 need to be calibrated.
- the calibration is performed by controlling the integration/conversion section 30 with a signal from the calibration control section 21 and measuring the number of times of integration.
- the calibration control unit 21 includes an offset measurement unit 210, a correlation measurement unit 211, a unit voltage measurement unit 212, and a reference voltage correction unit 213.
- the offset measurement unit 210 performs offset measurement processing.
- the second reference voltage Vrefs is used as an initial value, and the number of integrations until the voltage Vo of the capacitor C0 reaches the threshold voltage Vth is measured.
- the offset voltage Vofc of the comparator 34 is Vth+Vofc>Vo before the start of integration, but becomes Vth+Vofc ⁇ Vo after repeating the integration operation.
- the controller 20 repeats the integration operation after setting the initial value, and measures the number of times of integration until the determination signal changes. .
- the number of integrations of the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1 repeated until the determination signal changes is ko2 and ko1. holds.
- Switching between the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1 can be performed by the following method.
- FIG. 3 shows a circuit for explaining the switching operation between VG2 and VG1.
- I2 and I1 be the current values of current source 320 at VG2 and VG1, respectively.
- a signal MAGP from the control unit 20 is used to switch the current value.
- FIG. 4 is a diagram showing the relationship between the integrated voltage and current values in the integrating section 32 and the number of times of integration.
- FIG. 4(a) shows the relationship between the number of times of integration and the integrated voltage
- FIG. 4(b) shows the relationship between the number of times of integration and the current value.
- the correlation measurement unit 211 After setting the reference voltage to the initial value, the correlation measurement unit 211 integrates the coarse adjustment unit voltages for the number of times obtained by subtracting 1 from the first coarse adjustment number, and then integrates the fine adjustment unit voltage. Correlation measurement processing is performed to integrate until the value Vth is exceeded.
- the unit voltage measurement unit 212 integrates the second rough adjustment integration count, which is the integration count until the integrated voltage obtained by integrating the coarse adjustment unit voltage with the ground voltage as the initial value exceeds the threshold voltage Vth, and the fine adjustment unit voltage.
- a unit voltage measurement process is performed to measure the second fine adjustment integration count, which is the integration count until the integrated voltage obtained exceeds the threshold voltage Vth.
- the ground voltage is used as the initial value, and the integration operation is repeated until the determination signal changes.
- ki2 and ki1 are the number of integrations for the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1, respectively, the following equations hold.
- the input voltage Vi is used as the initial value, and the accumulation operation is repeated until the determination signal changes.
- kv2 and kv1 are the number of integrations for the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1, respectively, the following equations hold.
- the input voltage can be expressed by the following equation from ko2, ko1, kp1, ki2, ki1 measured during calibration and kv2, kv1 measured during conversion.
- Equation (8) represents the voltage after conversion.
- the conversion error can be improved because Vofc and the unit voltage are calibrated at the time of calibration.
- a high-precision reference voltage source that is capable of temperature compensation and uses a Zener diode or the like is known to have small fluctuations in reference voltage with respect to temperature fluctuations and small drifts.
- the voltage is large because of the Zener diode, and the power consumption is large because a heater is used for temperature compensation. Therefore, constant use of the reference voltage source for calibration is unsuitable because the continuous use time of the battery-driven terminal will be shortened.
- the high-precision reference voltage Vrefo (first reference voltage) is set equal to the stored reference voltage Vref.
- reference voltage calibration processing is performed in addition to offset measurement processing, correlation measurement processing, and unit voltage measurement processing.
- the high-precision reference voltage Vrefo is set as the initial value, and the accumulation operation is repeated until the determination signal changes. Assuming that kr2 and kr1 are the number of integrations for the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1, respectively, the following equations hold.
- VG1 can be derived from equations (4) to (6) as follows.
- Vrefs can be expressed by the following formula.
- the AD converter 100 according to the present embodiment has high long-term stability of conversion accuracy and low power consumption.
- the AD converter 100 includes the first reference voltage section 10 that generates the temperature-compensated first reference voltage, the second reference voltage section 11 that generates the second reference voltage calibrated with the reference voltage, At the time of calibration, an integrator 32 that generates an integrated voltage by accumulating a unit voltage with any of the first reference voltage, the second reference voltage, and the ground voltage as an initial value, and a determination signal that compares the integrated voltage with the threshold voltage a calibration control unit 21 that measures the integration time from the initial value until the integrated voltage exceeds the threshold voltage during calibration, and calibrates the unit voltage and the offset voltage of the comparator 34; It also includes a conversion control unit 22 that converts the input voltage into a digital value using the conversion integration time, which is the integration time when the input voltage is the initial value, and the second reference voltage. This makes it possible to provide an AD converter with a self-calibration function that does not require an external measuring device for calibration.
- the calibration control unit 21 controls the first integration count until the integrated voltage obtained by integrating the coarse adjustment unit voltage with the second reference voltage as the initial value exceeds the threshold voltage, and the integrated voltage obtained by integrating the fine adjustment unit voltage. After setting the second reference voltage to the initial value, the rough adjustment unit voltage is integrated by the number of times obtained by subtracting 1 from the first integration number.
- the correlation measurement unit 211 measures the third integration number until the integrated voltage obtained by integrating the fine adjustment unit voltage exceeds the threshold voltage
- the integrated voltage obtained by integrating the coarse adjustment unit voltage with the ground voltage as the initial value is a unit voltage measuring unit 212 for measuring a fourth integration number of times until the threshold voltage is exceeded and a fifth integration number of times until the integrated voltage obtained by integrating the fine adjustment unit voltage exceeds the threshold voltage; and a second reference voltage.
- the offset of the comparator 34 and the capacitance constituting the integration unit fluctuate over time
- the offset of the comparator 34 and the integration unit 32 which is the analog value output unit of the DA converter, can be calibrated, and an AD converter with high long-term stability can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
図2は、積算部32の回路モデルを示す図である。積算部32は、電流源320、SW1、及び容量C0を備える。
バンドギャップレファレンスなどの集積回路で構成された低電力な基準電圧源から出力される基準電圧は温度変動や時間で変動することが知られている。本ADコンバータ100の変換動作では基準電圧Vrefmは予め記憶しているため、実際の標準基準電圧Vrefsが記憶している基準電圧Vrefmから変動すると実際の入力電圧と変換後の電圧との間に誤差が生じる。実際の標準基準電圧Vrefsでの変換値をVi,s、記憶している基準電圧Vrefmでの変換値をVi,mとすると、変換誤差は次式で表される。
温度補償可能でツェナーダイオード等を利用した高精度基準電圧源は、温度変動に対する基準電圧の変動が小さくドリフトも小さいことが知られている。しかし、ツェナーダイオードのため電圧が大きく、温度補償のためにヒータを使用することから消費電力が大きい。このため、基準電圧源として常時校正に使用することは電池駆動の端末の連続使用時間が短くなり不向きである。
11:第2基準電圧部
20:制御部
21:校正制御部
22:変換制御部
30:積算・変換部
31:切替部
32:積算部
33:しきい値電圧部
34:比較器
100:自己校正機能付きADコンバータ
210:オフセット計測部
211:相関計測部
212:単位電圧計測部
213:基準電圧補正部
320:電流源
Claims (2)
- 温度補償された第1基準電圧を生成する第1基準電圧部と、
前記第1基準電圧で校正される第2基準電圧を生成する第2基準電圧部と、
校正時に、前記第1基準電圧、前記第2基準電圧、及びグランド電圧の何れかを初期値として単位電圧を積算した積算電圧を生成する積算部と、
前記積算電圧としきい値電圧を比較して判定信号を出力する比較器と、
校正時に、前記積算電圧が前記初期値から前記しきい値電圧を越えるまでの積算時間を計測し、前記単位電圧と前記比較器のオフセット電圧を校正する校正制御部と、
変換時に、入力電圧を初期値とした場合の前記積算時間である変換積算時間と前記第2基準電圧を用いて前記入力電圧をデジタル値に変換する変換制御部と
を備える自己校正機能付きADコンバータ。 - 前記校正制御部は、
前記第2基準電圧を初期値として粗調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第1積算回数と、微調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第2積算回数を計測するオフセット計測部と、
前記第2基準電圧を初期値にした後、前記第1積算回数から1を減した回数分前記粗調整単位電圧を積算した後に、前記微調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第3積算回数を計測する相関計測部と、
前記グランド電圧を初期値として粗調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第4積算回数と、前記微調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第5積算回数を計測する単位電圧計測部と、
前記第2基準電圧を初期値として粗調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第6積算回数と、前記微調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第7積算回数を計測する基準電圧補正部と
を備える請求項1に記載の自己校正機能付きADコンバータ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/022842 WO2022264307A1 (ja) | 2021-06-16 | 2021-06-16 | 自己校正機能付きadコンバータ |
JP2023528834A JPWO2022264307A1 (ja) | 2021-06-16 | 2021-06-16 | |
US18/563,115 US20240275396A1 (en) | 2021-06-16 | 2021-06-16 | Self-calibration-function-equipped a/d converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/022842 WO2022264307A1 (ja) | 2021-06-16 | 2021-06-16 | 自己校正機能付きadコンバータ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022264307A1 true WO2022264307A1 (ja) | 2022-12-22 |
Family
ID=84526362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/022842 WO2022264307A1 (ja) | 2021-06-16 | 2021-06-16 | 自己校正機能付きadコンバータ |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240275396A1 (ja) |
JP (1) | JPWO2022264307A1 (ja) |
WO (1) | WO2022264307A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020080456A (ja) * | 2018-11-12 | 2020-05-28 | 日本電信電話株式会社 | 自己校正機能付きadコンバータ |
WO2020234995A1 (ja) * | 2019-05-21 | 2020-11-26 | 日本電信電話株式会社 | 自己校正機能付きadコンバータ |
WO2021084645A1 (ja) * | 2019-10-30 | 2021-05-06 | 日本電信電話株式会社 | 自己校正機能付きadコンバータ |
-
2021
- 2021-06-16 US US18/563,115 patent/US20240275396A1/en active Pending
- 2021-06-16 WO PCT/JP2021/022842 patent/WO2022264307A1/ja active Application Filing
- 2021-06-16 JP JP2023528834A patent/JPWO2022264307A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020080456A (ja) * | 2018-11-12 | 2020-05-28 | 日本電信電話株式会社 | 自己校正機能付きadコンバータ |
WO2020234995A1 (ja) * | 2019-05-21 | 2020-11-26 | 日本電信電話株式会社 | 自己校正機能付きadコンバータ |
WO2021084645A1 (ja) * | 2019-10-30 | 2021-05-06 | 日本電信電話株式会社 | 自己校正機能付きadコンバータ |
Also Published As
Publication number | Publication date |
---|---|
US20240275396A1 (en) | 2024-08-15 |
JPWO2022264307A1 (ja) | 2022-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7079914B2 (ja) | 自己校正機能付きadコンバータ | |
US20080278359A1 (en) | Analog-to-Digital Converter Offset and Gain Calibration Using Internal Voltage References | |
US20120200440A1 (en) | A/d converter and semiconductor device | |
JP7315868B2 (ja) | 自己校正機能付きadコンバータ | |
JP7239863B2 (ja) | 自己校正機能付きadコンバータ | |
US9823285B2 (en) | Charge measurement | |
WO2022264307A1 (ja) | 自己校正機能付きadコンバータ | |
US20100013546A1 (en) | Systems and methods for filter tuning using binary search algorithm | |
US11984903B2 (en) | Variable reference voltage source | |
JPH0755588A (ja) | 温度検出器 | |
US7112950B2 (en) | Integrated circuit for use with an external hall sensor, and hall sensor module | |
JP5488159B2 (ja) | 定電力制御回路 | |
JP7406168B2 (ja) | 自己校正機能付きadコンバータ | |
KR20120066708A (ko) | 온도보상기능을 갖는 홀 집적회로 | |
US7796075B2 (en) | Method and apparatus for internally calibrating mixed-signal devices | |
KR102052728B1 (ko) | Adc 측정범위의 확장방법 및 장치 | |
US11714437B2 (en) | Variable reference voltage source | |
US11515858B2 (en) | Time constant calibration circuit and method | |
KR101446759B1 (ko) | 용량성 압력센서의 출력사양 조정장치 | |
CN109962692B (zh) | 使用不精密部件的精密振荡器 | |
JP5763558B2 (ja) | 測定装置及びそれを用いた測定方法 | |
JP2000337982A (ja) | 圧力センサ回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21945984 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023528834 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18563115 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21945984 Country of ref document: EP Kind code of ref document: A1 |