[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022264345A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2022264345A1
WO2022264345A1 PCT/JP2021/022981 JP2021022981W WO2022264345A1 WO 2022264345 A1 WO2022264345 A1 WO 2022264345A1 JP 2021022981 W JP2021022981 W JP 2021022981W WO 2022264345 A1 WO2022264345 A1 WO 2022264345A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
temperature
compressor
threshold
expansion valve
Prior art date
Application number
PCT/JP2021/022981
Other languages
English (en)
French (fr)
Inventor
克也 前田
光晃 松尾
雅章 上川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/022981 priority Critical patent/WO2022264345A1/ja
Publication of WO2022264345A1 publication Critical patent/WO2022264345A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle device including a compressor.
  • Patent Literature 1 discloses a refrigeration cycle device that cools lubricating oil by causing refrigerant sent from a condenser to flow through an oil cooling mechanism provided inside a compressor.
  • the present disclosure has been made to solve the above problems, and simplifies the structure of the compressor in the refrigeration cycle device.
  • a refrigeration cycle device is a refrigeration cycle device in which a compressor, an oil separator, a condenser, a first expansion valve, and an evaporator are annularly connected by a first refrigerant pipe and a refrigerant circulates, A second refrigerant pipe branched from between the condenser and the first expansion valve in the first refrigerant pipe and connected to the compressor, an oil separator and the compressor, and the oil separated by the oil separator a flowing oil pipe, an oil cooler provided in the second refrigerant pipe for cooling the oil flowing through the oil pipe with the refrigerant flowing through the second refrigerant pipe and sending the oil to the compressor, and a condenser and the oil in the second refrigerant pipe.
  • a second expansion valve provided between the cooler, a discharge temperature sensor provided on the discharge side of the compressor in the first refrigerant pipe, and a control device for controlling the second expansion valve; controls the degree of opening of the second expansion valve so that the discharge temperature of the compressor based on the detection result of the discharge temperature sensor is within a predetermined temperature range, and the temperature range has the first threshold as the upper limit.
  • a second threshold is a lower limit value
  • the first threshold is a temperature lower than a predetermined first set temperature than a protection threshold that serves as a reference for stopping the compressor when the discharge temperature reaches.
  • control device controls the opening of the second expansion valve provided between the condenser and the oil cooler, thereby controlling the discharge temperature of the compressor to a temperature within a predetermined temperature range.
  • the control device controls the opening of the second expansion valve provided between the condenser and the oil cooler, thereby controlling the discharge temperature of the compressor to a temperature within a predetermined temperature range.
  • FIG. 1 is a circuit diagram showing refrigeration cycle apparatus 1 according to Embodiment 1.
  • FIG. 2 is a functional block diagram showing control device 40 according to Embodiment 1.
  • FIG. 4 is a flow chart showing a control method of the second expansion valve 11 based on discharge temperature according to Embodiment 1.
  • FIG. 4 is a flow chart showing a method of controlling the third expansion valve 13 based on the temperature of the motor 23 according to Embodiment 1.
  • FIG. FIG. 5 is a circuit diagram showing a refrigeration cycle apparatus 1A according to Embodiment 2;
  • FIG. 10 is a functional block diagram showing a control device 40 according to Embodiment 2;
  • FIG. 8 is a flow chart showing a control method of the second expansion valve 11 based on the discharge temperature according to Embodiment 2.
  • FIG. 11 is a circuit diagram showing a refrigeration cycle device 1B according to Embodiment 3;
  • FIG. 11 is a functional block diagram showing a control device 40 according to Embodiment 3;
  • 10 is a flow chart showing a method of controlling the second expansion valve 11 based on the discharge temperature and the oil temperature according to Embodiment 3.
  • FIG. 11 is a circuit diagram showing a refrigeration cycle device 1B according to Embodiment 3;
  • FIG. 11 is a functional block diagram showing a control device 40 according to Embodiment 3;
  • 10 is a flow chart showing a method of controlling the second expansion valve 11 based on the discharge temperature and the oil temperature according to Embodiment 3.
  • Embodiment 1 Embodiments of the present disclosure will be described below with reference to the drawings.
  • the same reference numerals denote the same or corresponding parts, and are common throughout the embodiments described below.
  • the forms of the components shown in the entire specification are merely examples and are not limited to these descriptions.
  • combinations of constituent elements are not limited to combinations in each embodiment, and constituent elements described in other embodiments can be appropriately applied to other embodiments. It is assumed that the level of the temperature is not determined in relation to an absolute value, but is relatively determined by the state, operation, etc. of the system, device, or the like.
  • FIG. 1 is a circuit diagram showing a refrigeration cycle device 1 according to Embodiment 1.
  • the refrigeration cycle device 1 includes a first refrigerant pipe 2, a second refrigerant pipe 3, a third refrigerant pipe 4, an oil pipe 5, a compressor 6, an oil separator 7, a condenser 8, a first An expansion valve 9 , an evaporator 10 , a second expansion valve 11 , an oil cooler 12 and a third expansion valve 13 are provided.
  • the first refrigerant pipe 2 annularly connects the compressor 6, the oil separator 7, the condenser 8, the first expansion valve 9, and the evaporator 10.
  • the second refrigerant pipe 3 branches from between the condenser 8 and the first expansion valve 9 in the first refrigerant pipe 2, and passes through the second expansion valve 11 and the refrigerant flow path side of the oil cooler 12, which will be described later. It is connected to the intermediate pressure chamber 25 of the compressor 6 .
  • the third refrigerant pipe 4 branches from between the condenser 8 and the first expansion valve 9 in the first refrigerant pipe 2, and is connected to the motor chamber 24 of the compressor 6, which will be described later, via the third expansion valve 13. ing.
  • a refrigerant circuit is configured by the first refrigerant pipe 2, the second refrigerant pipe 3, the third refrigerant pipe 4, and the devices to which the first refrigerant pipe 2, the second refrigerant pipe 3, and the third refrigerant pipe 4 are connected. , the refrigerant circulates in the refrigerant circuit.
  • the refrigerant for example, an HFC refrigerant such as R410A or an HFO mixed refrigerant such as R448A or R449A is used.
  • the oil pipe 5 is connected from the oil separator 7 to a low-stage compression section 21 and a high-stage compression section 22 of the compressor 6, which will be described later, via the oil flow path side of the oil cooler 12.
  • An oil supply path is configured by the oil pipe 5 , the oil separator 7 , and the oil cooler 12 .
  • the lubricating oil separated from the refrigerant by the oil separator 7 flows through the oil supply path through the oil separator 7, the oil cooler 12, and the compressor 6 in this order.
  • the lubricating oil is supplied to the compressor 6 for the purpose of lubricating each part of the compressor 6, cooling the parts, or the like.
  • polyol ester oil (POE) is used when an HFC refrigerant is used
  • polyvinyl ether oil PVE is used in addition to polyol ester oil (POE) when an HFO mixed refrigerant is used.
  • the compressor 6 is, for example, a two-stage screw compressor, which sucks in low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, converts it into high-temperature and high-pressure refrigerant, and discharges it.
  • the compressor 6 has a low stage compression section 21 , a high stage compression section 22 and a motor 23 .
  • the low-stage compression section 21 compresses the sucked refrigerant from low pressure to intermediate pressure.
  • the high-stage compression section 22 further compresses the refrigerant compressed by the low-stage compression section 21 from intermediate pressure to high pressure.
  • a motor 23 is connected in series with the low-stage compression section 21 and the high-stage compression section 22 to rotationally drive them.
  • the motor 23 is controlled by, for example, an inverter (not shown).
  • the motor 23 has a motor frame 23a as an outer shell and is housed in a motor chamber 24. As shown in FIG. Between the low stage compression section 21 and the high stage compression section 22, an intermediate pressure chamber 25 is formed through which refrigerant that is being compressed flows.
  • the compressor 6 includes, for example, an insulator of the motor 23, an insulating sleeve, a coating of wiring, a bearing holding portion, and parts for forming a compression chamber together with the screw rotor in the gate rotor (none of them are shown) made of resin. Consists of parts.
  • the resin member all or part of PPS resin, polyamide resin, epoxy resin, aramid resin, fluorine resin, polyethylene terephthalate resin, or polyester resin is used.
  • the heat resistance temperature of these resin members is generally around 100°C.
  • the heat resistance temperature of polyamide resin is about 90°C
  • the heat resistance temperature of epoxy resin is about 150°C
  • the heat resistance temperature of polyester resin is about 130°C.
  • the oil separator 7 separates lubricating oil from the refrigerant discharged from the compressor 6 .
  • the oil separator 7 may be either demister type or cyclone type.
  • the condenser 8 exchanges heat between the refrigerant and the outside air to condense the refrigerant.
  • the first expansion valve 9 is provided between the condenser 8 and the evaporator 10 in the refrigerant circuit. The first expansion valve 9 decompresses and expands the refrigerant, and is, for example, an electronic expansion valve whose opening degree can be variably controlled.
  • the evaporator 10 exchanges heat between the refrigerant and the outside air to evaporate the refrigerant.
  • the second expansion valve 11 is provided between the branched portion of the second refrigerant pipe 3 from the first refrigerant pipe 2 and the oil cooler 12 .
  • the second expansion valve 11 decompresses and expands the refrigerant, and is, for example, an electronic expansion valve whose opening degree can be variably controlled.
  • the oil cooler 12 is provided between the second expansion valve 11 and the compressor 6 in the second refrigerant pipe 3 and between the oil separator 7 and the compressor 6 in the oil pipe 5 .
  • the oil cooler 12 is connected to the second refrigerant pipe 3 and has a refrigerant channel through which the refrigerant flows, and an oil channel connected to the oil pipe 5 and through which lubricating oil flows.
  • the oil cooler 12 performs heat exchange between the refrigerant flowing through the refrigerant channel and the lubricating oil flowing through the oil channel to cool the lubricating oil. Oil cooler 12 delivers cooled oil to compressor 6 .
  • the third expansion valve 13 is provided between the branched portion of the third refrigerant pipe 4 from the first refrigerant pipe 2 and the compressor 6 .
  • the third expansion valve 13 decompresses and expands the refrigerant, and is, for example, an electronic expansion valve whose opening degree can be variably controlled.
  • refrigerant compressed in the low-stage compression section 21 of the compressor 6 passes through the intermediate pressure chamber 25 and is further compressed in the high-stage compression section 22 before being discharged from the high-stage compression section 22 .
  • the refrigerant discharged from the high-stage compression section 22 is separated into gas refrigerant and lubricating oil by the oil separator 7 , and the gas refrigerant flows into the condenser 8 .
  • the gas refrigerant that has flowed into the condenser 8 is condensed into liquid refrigerant and sent to the first expansion valve 9 .
  • the liquid refrigerant that has flowed into the first expansion valve 9 is decompressed and expanded into a low-pressure wet gas state and sent to the evaporator 10 .
  • the refrigerant sent to the evaporator 10 exchanges heat with air, evaporates into a gaseous state, and flows into the compressor 6 .
  • the high-temperature lubricating oil separated from the gas refrigerant in the oil separator 7 is cooled by exchanging heat with the refrigerant flowing through the refrigerant flow path in the oil cooler 12, and then the low-stage compression part of the compressor 6 21 and high-stage compression section 22 .
  • the coolant sent to the motor chamber 24 cools the motor 23 .
  • the refrigeration cycle device 1 also includes a discharge temperature sensor 31 , a motor temperature sensor 32 and a control device 40 .
  • the discharge temperature sensor 31 is provided on the discharge side of the compressor 6 in the first refrigerant pipe 2 .
  • the discharge temperature sensor 31 is composed of a thermocouple, for example, and detects the temperature state, etc. on the discharge side of the compressor 6 .
  • the discharge temperature sensor 31 outputs detection results to the control device 40 .
  • the motor temperature sensor 32 is mounted on the motor frame 23a.
  • the motor temperature sensor 32 may be provided near the motor 23 and may be built in the motor frame 23 a or the motor 23 .
  • the motor temperature sensor 32 is composed of a thermocouple, for example, and detects the temperature state of the motor 23 or the motor frame 23a. Motor temperature sensor 32 outputs the detection result to control device 40 .
  • the controller 40 controls the degree of opening of the second expansion valve 11 so that the discharge temperature based on the detection result of the discharge temperature sensor 31 falls within a predetermined temperature range.
  • the discharge temperature is the temperature of gas refrigerant discharged from the compressor 6 .
  • the control device 40 increases the opening of the second expansion valve 11 , thereby increasing the amount of refrigerant flowing into the oil cooler 12 .
  • the amount of refrigerant flowing into the oil cooler 12 increases, the amount of heat exchanged in the oil cooler 12 increases, and the temperature of the lubricating oil supplied to the compressor 6 decreases.
  • the temperature of the lubricating oil drops, the temperature of the refrigerant gas during compression drops, and finally the discharge temperature of the refrigerant gas discharged from the compressor 6 drops.
  • control device 40 reduces the degree of opening of the second expansion valve 11, so that the amount of refrigerant flowing into the oil cooler 12 is reduced.
  • the amount of refrigerant flowing into the oil cooler 12 decreases, the heat exchange amount in the oil cooler 12 decreases, and the temperature of the lubricating oil supplied to the compressor 6 rises.
  • the temperature of the refrigerant gas during compression also rises, and finally the discharge temperature of the refrigerant gas discharged from the compressor 6 rises.
  • control device 40 controls the inverter and adjusts the operating frequency of the compressor 6 so that the discharge temperature reaches a predetermined temperature. Specifically, the discharge temperature is raised by increasing the operating frequency of the compressor 6 . Also, by reducing the operating frequency of the compressor 6, the discharge temperature is lowered.
  • control device 40 controls the degree of opening of the third expansion valve 13 so that the temperature of the motor 23 based on the detection result of the motor temperature sensor 32 reaches a predetermined temperature. Specifically, the control device 40 increases the degree of opening of the third expansion valve 13 , thereby increasing the amount of refrigerant supplied to the motor chamber 24 . Further, the control device 40 reduces the degree of opening of the third expansion valve 13, so that the amount of refrigerant supplied to the motor chamber 24 is reduced.
  • the control device 40 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer or processor) that executes programs stored in dedicated hardware or a storage unit 45 (not shown). called). If the control device 40 is dedicated hardware, the control device 40 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each functional unit implemented by the control device 40 may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
  • CPU Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer or processor
  • FIG. 2 is a functional block diagram showing the control device 40 according to the first embodiment.
  • the control device 40 has a discharge temperature measurement section 41, a motor temperature measurement section 42, and a control section 43 as functional sections.
  • the control device 40 also has a storage unit 45 .
  • each functional unit executed by the control device 40 is implemented by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the storage unit 45 .
  • the CPU implements each functional unit by reading and executing a program stored in the storage unit 45 .
  • a part of the functions of the control device 40 may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
  • the discharge temperature measurement unit 41 measures the discharge temperature based on the detection results from the discharge temperature sensor 31 .
  • the discharge temperature measurement unit 41 communicates the measured discharge temperature to the control unit 43 .
  • a motor temperature measurement unit 42 measures the temperature of the motor 23 based on the detection result of the motor temperature sensor 32 .
  • the motor temperature measurement unit 42 communicates the measured temperature of the motor 23 to the control unit 43 .
  • the control unit 43 controls the opening degree of the second expansion valve 11 based on the results of comparison between the discharge temperature measured by the discharge temperature measurement unit 41 and the protection threshold, first threshold, second threshold, and third threshold. do.
  • the protection threshold, the first threshold, the second threshold, and the third threshold are determined stepwise for the purpose of both protecting the resin material inside the compressor 6 and maintaining the operating efficiency of the refrigeration cycle device 1.
  • the protection threshold is the allowable upper limit of the discharge temperature, and is a reference threshold for stopping the operation of the compressor 6 .
  • the protection threshold is generally determined from within the range of 100°C to 150°C. Here, a case where the protection threshold is set to 100° C. will be described as an example.
  • the first threshold is a temperature lower than the protection threshold by a predetermined first set temperature.
  • the first preset temperature is set within a range of 10° C. to 20° C., for example.
  • the second threshold is a temperature that is a predetermined second set temperature lower than the first threshold.
  • the second preset temperature is set within the range of 5° C. to 10° C., for example.
  • the case where the second set temperature is set to 5° C., that is, the second threshold is set to 75° C. will be described as an example.
  • the third threshold is a temperature lower than the protection threshold by a predetermined third set temperature and lower than the heat resistant temperature of the resin member.
  • the third preset temperature is set within a range of 5° C. to 10° C., for example.
  • a case where the third preset temperature is set to 5° C., that is, the third threshold is set to 95° C. will be described as an example.
  • the control unit 43 determines whether or not the discharge temperature of the compressor 6 is equal to or higher than the protection threshold. The control unit 43 immediately stops the operation of the compressor 6 in a short time when the discharge temperature is equal to or higher than the protection threshold. As a result, the parts inside the compressor 6 are protected from wear and tear. The controller 43 continues the operation of the compressor 6 when the discharge temperature is less than the protection threshold.
  • the control unit 43 determines whether or not the ejection temperature is equal to or lower than the first threshold. When the discharge temperature exceeds the first threshold, the control unit 43 increases the degree of opening of the second expansion valve 11 to lower the oil temperature, thereby lowering the discharge temperature.
  • the control unit 43 determines whether or not the ejection temperature is equal to or higher than the second threshold. When the discharge temperature is less than the second threshold value, the control unit 43 reduces the degree of opening of the second expansion valve 11 to increase the oil temperature, thereby increasing the discharge temperature.
  • the control unit 43 maintains the opening degree of the second expansion valve 11 when the discharge temperature is equal to or lower than the first threshold and equal to or higher than the second threshold.
  • the control unit 43 controls the opening degree of the second expansion valve 11 based on the discharge temperature and the result of comparison between the first threshold value and the second threshold value.
  • the control unit 43 can control the discharge temperature to a temperature within a temperature range determined by setting the first threshold as the upper limit and the second threshold as the lower limit, that is, to a temperature between 75° C. and 80° C. here. can.
  • the control unit 43 determines whether or not the ejection temperature is equal to or higher than the third threshold.
  • the controller 43 reduces the frequency of the compressor 6 to reduce the refrigerant flow rate. As a result, even if the suction temperature of the compressor 6 rises sharply, the rise in the discharge temperature is suppressed. This prevents the discharge temperature from reaching the protection threshold.
  • control unit 43 controls the opening degree of the third expansion valve 13 based on the results of comparison between the motor temperature measured by the motor temperature measurement unit 42, the first motor threshold value, and the second motor threshold value.
  • the first motor threshold is the upper limit of the motor temperature for the purpose of suppressing abnormal heating of the motor 23 .
  • the first motor threshold is, for example, 70°C.
  • the second motor threshold is the lower limit of the motor temperature for the purpose of suppressing condensation of the motor 23 .
  • the second motor threshold is, for example, 20°C.
  • the control unit 43 determines whether or not the motor temperature is equal to or lower than the first motor threshold. When the motor temperature exceeds the first motor threshold value, the controller 43 increases the degree of opening of the third expansion valve 13 to increase the amount of refrigerant supplied to the motor chamber 24, thereby lowering the motor temperature.
  • the control unit 43 determines whether or not the motor temperature is equal to or higher than the second motor threshold. When the motor temperature is less than the second motor threshold value, the control unit 43 decreases the degree of opening of the third expansion valve 13 to decrease the amount of refrigerant supplied to the motor chamber 24, thereby increasing the motor temperature. .
  • the control unit 43 maintains the opening degree of the third expansion valve 13 when the motor temperature is equal to or lower than the first motor threshold and equal to or higher than the second motor threshold. In this manner, the control unit 43 controls the opening degree of the third expansion valve 13 based on the motor temperature and the result of comparison between the first motor threshold value and the second motor threshold value. Thereby, the controller 43 can control the motor temperature to a temperature between the first motor threshold value and the second motor threshold value, that is, a temperature between 20.degree. C. and 70.degree.
  • control device 40 also controls the opening of the first expansion valve 9, a conventional method can be applied to that control, so a description thereof will be omitted here.
  • the storage unit 45 is, for example, nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, and EEPROM.
  • the storage unit 45 stores, for example, setting information related to control of the refrigeration cycle apparatus 1, such as a protection threshold, a first threshold, a second threshold, and a third threshold.
  • the storage unit 45 temporarily or continuously stores measurement results such as the discharge temperature and the temperature of the motor 23 .
  • FIG. 3 is a flow chart showing a control method for the second expansion valve 11 based on the discharge temperature according to the first embodiment. The processing shown in FIG. 3 is performed periodically.
  • the controller 43 determines whether or not the ejection temperature is equal to or lower than the first threshold (S1). When the ejection temperature is equal to or lower than the first threshold (S1: YES), the controller 43 determines whether or not the ejection temperature is equal to or higher than the second threshold (S2). If the discharge temperature is equal to or higher than the second threshold (S2: YES), the controller 43 maintains the opening of the second expansion valve 11 (S3). If the discharge temperature is less than the second threshold (S2: NO), the controller 43 reduces the opening of the second expansion valve 11 (S4). This increases the oil temperature and discharge temperature.
  • the controller 43 increases the opening of the second expansion valve 11 (S5). This lowers the oil temperature and the discharge temperature. After the degree of opening of the second expansion valve 11 is increased, the controller 43 determines whether or not the discharge temperature is equal to or higher than the third threshold (S6). When the discharge temperature is equal to or higher than the third threshold (S6: YES), the controller 43 reduces the operating frequency of the compressor 6 (S7). This lowers the ejection temperature. The control unit 43 repeats the processes of S6 and S7 until the ejection temperature becomes less than the third threshold.
  • the controller 43 determines again whether the ejection temperature is equal to or lower than the first threshold (S1). The above process is repeated until the discharge temperature becomes equal to or lower than the first threshold value and equal to or higher than the second threshold value, and the opening degree of the second expansion valve 11 is maintained (S3).
  • FIG. 4 is a flow chart showing a method of controlling the third expansion valve 13 based on the temperature of the motor 23 according to Embodiment 1.
  • FIG. 4 The processing shown in FIG. 4 is performed periodically.
  • the control unit 43 determines whether or not the temperature of the motor 23 is equal to or lower than the first motor threshold (S101).
  • the controller 43 determines whether the temperature of the motor 23 is equal to or higher than the second motor threshold (S102).
  • the controller 43 maintains the opening degree of the third expansion valve 13 (S103).
  • the controller 43 reduces the degree of opening of the third expansion valve 13 (S104). As a result, the temperature of the motor 23 rises.
  • the controller 43 increases the opening of the third expansion valve 13 (S105). As a result, the temperature of the motor 23 is lowered. Then, the control unit 43 determines again whether the temperature of the motor 23 is equal to or lower than the first motor threshold value (S101). The above process is repeated until the temperature of the motor 23 becomes equal to or lower than the first motor threshold value and equal to or higher than the second motor threshold value, and the degree of opening of the third expansion valve 13 is maintained (S103).
  • the control device 40 controls the degree of opening of the second expansion valve 11 provided between the condenser 8 and the oil cooler 12 so that the compressor 6 is controlled within a predetermined temperature range.
  • the refrigeration cycle apparatus 1 of Embodiment 1 in order to control the discharge temperature of the compressor 6, it is not necessary to provide a mechanism for cooling the lubricating oil inside the compressor 6. The structure can be simplified.
  • the refrigeration cycle device 1 is stopped until the compressor 6 starts operating again.
  • the operating efficiency of the refrigerating cycle device 1 is lowered.
  • wear of the resin material inside the compressor 6 may be accelerated.
  • refrigerants such as R410A, R448A, or R449A, whose temperature tends to rise, it has been an important issue to achieve both protection of the resin material inside the compressor 6 and maintenance of the operating efficiency of the refrigeration cycle device 1. .
  • Embodiment 1 Furthermore, in the case of low-temperature equipment such as air conditioners in distribution warehouses, even a single stoppage of operation has a large effect on stored items in the warehouse.
  • the second expansion valve 11 opening is controlled.
  • the operation of the refrigeration cycle device 1 can be controlled so that the discharge temperature does not reach the protection threshold while the protection threshold is set to a temperature that does not accelerate the wear of the resin material inside the compressor 6. Therefore, in Embodiment 1, both the protection of the resin material inside the compressor 6 and the maintenance of the operating efficiency of the refrigeration cycle device 1 are achieved.
  • an HFC refrigerant may be used as the refrigerant, and a polyol ester oil may be used as the lubricating oil.
  • the control device 40 performs control based on a third threshold lower than the heat-resistant temperature of the resin member. Therefore, it is possible to maintain the operating efficiency of the refrigerating cycle device 1 and to extend the life of the resin member.
  • an HFO mixed refrigerant may be used as the refrigerant, and polyol ester oil or polyvinyl ether oil may be used as the lubricating oil.
  • the control device 40 performs control based on a third threshold lower than the heat-resistant temperature of the resin member. Therefore, it is possible to maintain the operating efficiency of the refrigerating cycle device 1 and to extend the life of the resin member.
  • the control device 40 sets the second threshold 5° C. to 10° C. lower than the first threshold so that excessive cooling of the lubricating oil can A decrease in compression efficiency and an increase in required electrical input can be suppressed.
  • FIG. 5 is a circuit diagram showing a refrigeration cycle apparatus 1A according to Embodiment 2.
  • the refrigeration cycle apparatus 1A has a heater 34.
  • the heater 34 is provided in the oil separator 7 and heats the lubricating oil inside the oil separator 7 .
  • the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
  • FIG. 6 is a functional block diagram showing the control device 40 according to the second embodiment.
  • the control unit 43 of the control device 40 controls the discharge temperature measured by the discharge temperature measurement unit 41 and the fourth The degree of opening of the second expansion valve 11 is controlled based on the comparison result with the threshold value.
  • a fourth threshold is determined based on the viscosity of the lubricating oil. Specifically, the fourth threshold is set to such an extent that when the discharge temperature becomes equal to or lower than the fourth threshold, the viscosity of the lubricating oil increases and injection into the compressor 6 is prevented by viscous resistance.
  • the fourth threshold is 0° C., for example.
  • the control unit 43 determines whether or not the ejection temperature is equal to or lower than the fourth threshold. When the discharge temperature is equal to or lower than the fourth threshold, the controller 43 activates the heater 34 to heat the lubricating oil. The controller 43 stops the heater 34 when the ejection temperature exceeds the fourth threshold. However, when the heater 34 is stopped, the controller 43 does not start the heater 34 .
  • the storage unit 45 stores a fourth threshold in addition to the information described in the first embodiment.
  • FIG. 7 is a flow chart showing a control method for the second expansion valve 11 based on the discharge temperature according to the second embodiment.
  • the processing shown in FIG. 7 is performed periodically. Since the processes of S1 to S7 are the same as those of the first embodiment, they are omitted.
  • the control unit 43 when the control unit 43 reduces the degree of opening of the second expansion valve 11 (S4), it determines whether or not the discharge temperature is equal to or lower than the fourth threshold (S8). If the ejection temperature is equal to or lower than the fourth threshold (S8: YES), the controller 43 activates the heater 34 (S9). Thereby, the lubricating oil inside the oil separator 7 is heated.
  • the controller 43 stops or does not start the heater 34 (S10). After controlling the heater 34, the controller 43 again determines whether or not the ejection temperature is equal to or lower than the first threshold (S1). The above process is repeated until the discharge temperature becomes equal to or lower than the first threshold and equal to or higher than the second threshold, and the degree of opening of the second expansion valve 11 is maintained (S3).
  • the structure of the compressor 6 can be simplified.
  • the heater 34 is activated when the ejection temperature becomes equal to or lower than the fourth threshold.
  • the state in which the oil temperature is low and the viscosity of the lubricating oil is high is resolved, and the compressor 6 is supplied with oil. Therefore, wear and damage of the bearings are suppressed, and the reliability of the compressor 6 can be kept high.
  • FIG. 8 is a circuit diagram showing a refrigeration cycle apparatus 1B according to Embodiment 3. As shown in FIG. As shown in FIG. 8, the refrigeration cycle device 1B has an oil temperature sensor 33. As shown in FIG. In the third embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
  • the oil temperature sensor 33 is provided in the oil separator 7.
  • the oil temperature sensor 33 is composed of a thermocouple, for example, and detects the temperature state of the oil separator 7 and the like.
  • the oil temperature sensor 33 outputs detection results to the control device 40 .
  • the control device 40 controls the degree of opening of the second expansion valve 11 so that the discharge temperature based on the detection result of the discharge temperature sensor 31 and the oil temperature based on the detection result of the oil temperature sensor 33 reach predetermined temperatures.
  • the oil temperature is the temperature of lubricating oil stored in the oil separator 7 .
  • FIG. 9 is a functional block diagram showing the control device 40 according to the third embodiment.
  • Control device 40 has an oil temperature measurement section 44 as a functional section in addition to the configuration described in the first embodiment.
  • the oil temperature measuring section 44 measures the oil temperature based on the detection result of the oil temperature sensor 33 .
  • the control unit 43 controls the opening degree of the second expansion valve 11 based on the results of comparison between the discharge temperature measured by the discharge temperature measurement unit 41 and the protection threshold, first threshold, second threshold, and third threshold. do. Further, the control unit 43 controls the degree of opening of the second expansion valve 11 based on the result of comparing the oil temperature measured by the oil temperature measuring unit 44 with the first oil temperature threshold value and the second oil temperature threshold value. .
  • the first oil temperature threshold is a temperature that is 5°C to 10°C lower than the second threshold.
  • the second oil temperature threshold is a temperature lower than the first oil temperature threshold.
  • the oil temperature will be described with an example in which the second oil temperature threshold is set to 35°C.
  • the control unit 43 determines whether or not the oil temperature is equal to or higher than the first oil temperature threshold. When the oil temperature is equal to or higher than the first oil temperature threshold, the control unit 43 increases the degree of opening of the second expansion valve 11 to lower the oil temperature.
  • the control unit 43 determines whether or not the oil temperature is equal to or lower than the second oil temperature threshold. When the oil temperature is equal to or lower than the second oil temperature threshold, the control unit 43 reduces the degree of opening of the second expansion valve 11 to raise the oil temperature.
  • the control unit 43 maintains the degree of opening of the second expansion valve 11 when the oil temperature is less than the first oil temperature threshold and exceeds the second oil temperature threshold. In this manner, the control unit 43 controls the degree of opening of the second expansion valve 11 based on the oil temperature and the result of comparison between the first oil temperature threshold value and the second oil temperature threshold value, thereby reducing the oil temperature. It can be controlled between a first oil temperature threshold and a second oil temperature threshold, here between 35°C and 70°C.
  • the adjustment unit of the degree of opening is changed from that when controlling the degree of opening of the second expansion valve 11 based on the discharge temperature.
  • the degree of opening is expanded or enlarged more finely than when controlling the degree of opening of the second expansion valve 11 based on the discharge temperature. You may make it shrink.
  • the storage unit 45 temporarily or continuously stores the measurement result of the oil temperature.
  • FIG. 10 is a flow chart showing a control method for the second expansion valve 11 based on the discharge temperature and oil temperature according to the third embodiment.
  • the processing shown in FIG. 10 is performed periodically. Since the processes of S1 to S3 and S5 to S7 are the same as those of the first embodiment, they are omitted.
  • the control unit 43 determines whether or not the oil temperature is equal to or higher than the first oil temperature threshold (S11). If the oil temperature is equal to or higher than the first oil temperature threshold (S11: YES), the controller 43 increases the opening of the second expansion valve 11 (S12). This lowers the oil temperature.
  • the processing of S11 and S12 is repeated until the oil temperature becomes less than the first oil temperature threshold.
  • the control unit 43 determines whether the oil temperature is equal to or less than the second oil temperature threshold (S13). If the oil temperature is equal to or lower than the second oil temperature threshold (S13: YES), the controller 43 reduces the degree of opening of the second expansion valve 11 (S14). The processing from S11 to S14 is repeated until the oil temperature falls below the first oil temperature threshold and exceeds the second oil temperature threshold. When the oil temperature is less than the first oil temperature threshold value and exceeds the second oil temperature threshold value (S13: NO), the control unit 43 determines that the oil temperature has sufficiently decreased while maintaining the minimum allowable temperature.
  • the degree of opening of the second expansion valve 11 is reduced (S15), and it is determined again whether or not the discharge temperature is equal to or lower than the first threshold value (S1). The above process is repeated until the discharge temperature becomes equal to or lower than the first threshold and equal to or higher than the second threshold, and the degree of opening of the second expansion valve 11 is maintained (S3).
  • the opening degree of the second expansion valve 11 is controlled based on the result of comparison between the oil temperature and the first and second oil temperature thresholds. As a result, the oil temperature is adjusted to a temperature between the first oil temperature threshold and the second oil temperature threshold. etc. can be suppressed.
  • the compressor 6 may be a constant speed machine instead of a form in which the operating frequency is adjusted by control of the inverter.
  • a slide valve whose opening degree can be controlled is provided on the suction side of the compressor 6, and the timing of starting compression is changed to perform mechanical capacity control.
  • the discharge temperature is equal to or higher than the third threshold value, the discharge temperature can be lowered by mechanical capacity control as in the first embodiment.
  • the inverter-type capacity control when the discharge temperature is equal to or higher than the third threshold, the inverter-type capacity control is performed.
  • the discharge temperature is equal to or higher than the third threshold value, even if the opening degree of the second expansion valve 11 is increased and the opening degree of the second expansion valve 11 is fully opened, the discharge temperature does not fall below the third threshold value.
  • the operating frequency of the compressor 6 may be gradually lowered by an inverter.
  • the mechanical capacity control may be performed. Specifically, for example, if the discharge temperature does not fall below the third threshold value even when the degree of opening of the second expansion valve 11 is fully opened, the inverter reduces the operating frequency by 10%.
  • the operating frequency is further reduced by 10%. Then, when the discharge temperature does not fall below the third threshold value even when the operating frequency is lowered to the lowest operating frequency or a preset frequency, in addition to the control of the second expansion valve and the inverter type capacity control, the mechanical type Perform capacity control.
  • Inverter-type capacity control is for decelerating the compressor 6 within the range of normal operation for stable operation.
  • the mechanical capacity control is intended to protect the compressor 6, and to reduce the discharge temperature at once. Therefore, when the discharge temperature is lowered by the inverter type capacity control, the time until the operation of the compressor 6 is restored can be shortened compared to when the discharge temperature is lowered by the mechanical type capacity control. Since the mechanical capacity control reduces the low pressure at once, it effectively lowers the discharge temperature. executed.
  • a two-stage screw compressor is taken as an example, but the compressor 6 does not have to be equipped with a mechanism for cooling oil.
  • the content of the present disclosure can be applied regardless of whether the compressor 6 is, for example, a single-stage compressor, a scroll compressor, a rotary compressor, a reciprocating compressor, or the like.
  • the method of controlling the second expansion valve 11 or the third expansion valve 13 based on the control of each discharge temperature, the temperature of the motor, or the temperature of the oil is not limited to those described in each embodiment.
  • the control of the second expansion valve 11 based on the oil temperature described in Embodiment 3 may be performed independently of the control of the third expansion valve 13 based on the discharge temperature.
  • 1 refrigeration cycle device 1A refrigeration cycle device, 1B refrigeration cycle device, 2 first refrigerant pipe, 3 second refrigerant pipe, 4 third refrigerant pipe, 5 oil pipe, 6 compressor, 7 oil separator, 8 condenser, 9 first expansion valve, 10 evaporator, 11 second expansion valve, 12 oil cooler, 13 third expansion valve, 21 low-stage compression section, 22 high-stage compression section, 23 motor, 23a motor frame, 24 motor room, 25 Intermediate pressure chamber 31 Discharge temperature sensor 32 Motor temperature sensor 33 Oil temperature sensor 34 Heater 40 Control device 41 Discharge temperature measurement unit 42 Motor temperature measurement unit 43 Control unit 44 Oil temperature measurement unit 45 memory unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

冷凍サイクル装置は、圧縮機、油分離器、凝縮器、第1膨張弁、及び蒸発器が第1冷媒配管によって環状に接続され、冷媒が循環する冷凍サイクル装置であって、第1冷媒配管における凝縮器と第1膨張弁との間から分岐し、圧縮機に接続された第2冷媒配管と、油分離器と圧縮機とに接続され、油分離器によって分離された油が流れる油配管と、第2冷媒配管に設けられ、第2冷媒配管を流れる冷媒によって、油配管を流れる油を冷却し、圧縮機に送出する油冷却器と、第2冷媒配管における凝縮器と油冷却器との間に設けられた第2膨張弁と、第1冷媒配管における圧縮機の吐出側に設けられた吐出温度センサと、第2膨張弁を制御する制御装置と、を備え、制御装置は、吐出温度センサの検知結果に基づく圧縮機の吐出温度が予め定められた温度範囲内の温度になるように、第2膨張弁の開度を制御し、温度範囲は、第1閾値を上限値とし、第2閾値を下限値とし、第1閾値は、吐出温度が到達した場合に圧縮機を停止させる基準となる保護閾値よりも予め定められた第1設定温度低い温度である。

Description

冷凍サイクル装置
 本開示は、圧縮機を備える冷凍サイクル装置に関する。
 冷凍サイクル装置では、圧縮機の吐出ガス温度が過度に上昇した場合、潤滑油が劣化し、圧縮機を構成する樹脂部品が破損してしまうことがある。そこで、圧縮機の吐出ガス温度を許容上限に制御するため、冷却した潤滑油により圧縮途中の冷媒ガスの温度を低下させる方法が知られている。特許文献1には、圧縮機内部に設けられた油冷却機構に、凝縮器から送出された冷媒を流すことで、潤滑油を冷却させる冷凍サイクル装置が開示されている。
特開2013-253734号公報
 しかしながら、特許文献1の冷凍サイクル装置では、圧縮機の内部に油冷却機構が設けられているため、圧縮機の内部構造が複雑化している。
 本開示は、上記のような課題を解決するためになされたもので、冷凍サイクル装置において、圧縮機の構造を簡素化するものである。
 本開示に係る冷凍サイクル装置は、圧縮機、油分離器、凝縮器、第1膨張弁、及び蒸発器が第1冷媒配管によって環状に接続され、冷媒が循環する冷凍サイクル装置であって、第1冷媒配管における凝縮器と第1膨張弁との間から分岐し、圧縮機に接続された第2冷媒配管と、油分離器と圧縮機とに接続され、油分離器によって分離された油が流れる油配管と、第2冷媒配管に設けられ、第2冷媒配管を流れる冷媒によって、油配管を流れる油を冷却し、圧縮機に送出する油冷却器と、第2冷媒配管における凝縮器と油冷却器との間に設けられた第2膨張弁と、第1冷媒配管における圧縮機の吐出側に設けられた吐出温度センサと、第2膨張弁を制御する制御装置と、を備え、制御装置は、吐出温度センサの検知結果に基づく圧縮機の吐出温度が予め定められた温度範囲内の温度になるように、第2膨張弁の開度を制御し、温度範囲は、第1閾値を上限値とし、第2閾値を下限値とし、第1閾値は、吐出温度が到達した場合に圧縮機を停止させる基準となる保護閾値よりも予め定められた第1設定温度低い温度である。
 本開示では、制御装置が凝縮器と油冷却器との間に設けられた第2膨張弁の開度を制御することで、圧縮機の吐出温度が予め定められた温度範囲内の温度に制御される。このように、本開示の冷凍サイクル装置では、圧縮機の吐出温度を制御する上で、圧縮機の内部に潤滑油を冷却する機構を設ける必要がないため、圧縮機の構造を簡素化することができる。
実施の形態1に係る冷凍サイクル装置1を示す回路図である。 実施の形態1に係る制御装置40を示す機能ブロック図である。 実施の形態1に係る吐出温度に基づく第2膨張弁11の制御方法を示すフローチャートである。 実施の形態1に係るモータ23の温度に基づく第3膨張弁13の制御方法を示すフローチャートである。 実施の形態2に係る冷凍サイクル装置1Aを示す回路図である。 実施の形態2に係る制御装置40を示す機能ブロック図である。 実施の形態2に係る吐出温度に基づく第2膨張弁11の制御方法を示すフローチャートである。 実施の形態3に係る冷凍サイクル装置1Bを示す回路図である。 実施の形態3に係る制御装置40を示す機能ブロック図である。 実施の形態3に係る吐出温度及び油温度に基づく第2膨張弁11の制御方法を示すフローチャートである。
 実施の形態1.
 以下、本開示の実施の形態について、図面を参照しつつ説明する。ここで、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適宜、適用することができる。温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。
 図1は、実施の形態1に係る冷凍サイクル装置1を示す回路図である。図1に示すように、冷凍サイクル装置1は、第1冷媒配管2、第2冷媒配管3、第3冷媒配管4、油配管5、圧縮機6、油分離器7、凝縮器8、第1膨張弁9、蒸発器10、第2膨張弁11、油冷却器12、及び第3膨張弁13を備えている。
 第1冷媒配管2は、圧縮機6、油分離器7、凝縮器8、第1膨張弁9、及び蒸発器10を環状に接続している。第2冷媒配管3は、第1冷媒配管2における凝縮器8と第1膨張弁9との間から分岐し、第2膨張弁11、及び油冷却器12の冷媒流路側を介して、後述する圧縮機6の中間圧室25に接続している。第3冷媒配管4は、第1冷媒配管2における凝縮器8と第1膨張弁9との間から分岐し、第3膨張弁13を介して、後述する圧縮機6のモータ室24に接続している。
 第1冷媒配管2、第2冷媒配管3及び第3冷媒配管4、並びに第1冷媒配管2、第2冷媒配管3及び第3冷媒配管4が接続している各機器によって、冷媒回路が構成され、冷媒が冷媒回路を循環する。冷媒には、例えば、R410A等のHFC冷媒、又はR448A若しくはR449A等のHFO混合冷媒が用いられる。
 油配管5は、油分離器7から油冷却器12の油流路側を介して、後述する圧縮機6の低段圧縮部21及び高段圧縮部22に接続している。油配管5、油分離器7、及び油冷却器12によって油供給路が構成されている。油分離器7によって冷媒から分離からされた潤滑油は、油供給路を油分離器7、油冷却器12、及び圧縮機6の順に流通する。潤滑油は、圧縮機6の各部品の潤滑、又は冷却等を目的として、圧縮機6に供給されるものである。潤滑油には、例えば、HFC冷媒を使用した場合はポリオールエステル油(POE)が用いられ、HFO混合冷媒を使用した場合はポリオールエステル油(POE)に加え、ポリビニルエーテル油(PVE)が用いられる。
 圧縮機6は、例えば、二段スクリュー圧縮機であり、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。圧縮機6は、低段圧縮部21、高段圧縮部22、及びモータ23を有する。低段圧縮部21は、吸入した冷媒を低圧から中間圧まで圧縮する。高段圧縮部22は、低段圧縮部21によって圧縮された冷媒を中間圧から高圧まで更に圧縮する。モータ23は、低段圧縮部21と、高段圧縮部22とに直列に接続され、これらを回転駆動させる。また、モータ23は、例えば、インバータ(図示せず)によって制御される。モータ23は、モータフレーム23aによって外殻が構成され、モータ室24に格納されている。低段圧縮部21と高段圧縮部22との間には、圧縮途中の冷媒が流通する中間圧室25が形成されている。
 圧縮機6は、例えば、モータ23のインシュレータ、絶縁スリーブ、配線の被覆、軸受の保持部、及びゲートロータにおけるスクリューロータとで圧縮室を形成するための部品(いずれも図示せず)等が樹脂部材からなる。樹脂部材としては、PPS樹脂、ポリアミド樹脂、エポキシ樹脂、アラミド樹脂、フッ素樹脂、ポリエチレンテレフタレート樹脂、若しくはポリエステル樹脂の全て又は一部が用いられる。これらの樹脂部材の耐熱温度は一般的には100℃前後である。例えば、ポリアミド樹脂の耐熱温度は約90℃、エポキシ樹脂の耐熱温度は約150℃であり、ポリエステル樹脂の耐熱温度は約130℃である。
 油分離器7は、圧縮機6から吐出された冷媒から、潤滑油を分離させるものである。油分離器7は、デミスタ式、又はサイクロン式の何れであってもよい。凝縮器8は、冷媒と外気との間で熱交換を行って、冷媒を凝縮させるものである。第1膨張弁9は、冷媒回路において、凝縮器8と蒸発器10との間に設けられている。第1膨張弁9は、冷媒を減圧して膨張させるものであり、例えば、開度が可変に制御可能な電子膨張弁である。蒸発器10は、冷媒と外気との間で熱交換を行って、冷媒を蒸発させるものである。
 第2膨張弁11は、第2冷媒配管3における第1冷媒配管2からの分岐部分と油冷却器12との間に設けられている。第2膨張弁11は、冷媒を減圧して膨張させるものであり、例えば、開度が可変に制御可能な電子膨張弁である。油冷却器12は、第2冷媒配管3における第2膨張弁11と圧縮機6との間、且つ油配管5における油分離器7と圧縮機6との間に設けられている。油冷却器12は、第2冷媒配管3に接続され、冷媒が流れる冷媒流路、及び油配管5に接続され、潤滑油が流れる油流路を有している。油冷却器12は、冷媒流路を流れる冷媒と油流路を流れる潤滑油との間で熱交換を行い、潤滑油を冷却するものである。油冷却器12は、冷却した油を圧縮機6に送出する。
 第3膨張弁13は、第3冷媒配管4における第1冷媒配管2からの分岐部分と圧縮機6との間に設けられている。第3膨張弁13は、冷媒を減圧して膨張させるものであり、例えば、開度が可変に制御可能な電子膨張弁である。
 ここで、冷凍サイクル装置1の動作、並びに冷媒及び潤滑油の流れについて説明する。先ず、圧縮機6の低段圧縮部21で圧縮された冷媒は、中間圧室25を通り、更に高段圧縮部22で圧縮された後、高段圧縮部22から吐出される。高段圧縮部22から吐出された冷媒は、油分離器7にてガス冷媒と潤滑油とに分離され、ガス冷媒は凝縮器8に流入する。凝縮器8に流入したガス冷媒は、凝縮して液冷媒となり、第1膨張弁9に送られる。第1膨張弁9に流入した液冷媒は、減圧され、膨張して、低圧の湿りガス状態となり、蒸発器10に送られる。蒸発器10に送られた冷媒は、空気と熱交換し、蒸発してガス状態となり、圧縮機6に流入する。
 また、凝縮器8にて凝縮した液冷媒の一部は、第2冷媒配管3に流入し、第2膨張弁11にて減圧され、膨張して、油冷却器12に送られる。油冷却器12に送られた冷媒は、油流路を流れる潤滑油と熱交換してガス状態となり、圧縮機6の中間圧室25へ流入する。
 一方、油分離器7にてガス冷媒と分離された高温の潤滑油は、油冷却器12にて冷媒流路を流れる冷媒と熱交換して冷却された後、圧縮機6の低段圧縮部21、及び高段圧縮部22に供給される。
 また、凝縮器8にて凝縮した液冷媒の一部は、第3冷媒配管4に流入し、第3膨張弁13にて減圧され、膨張して、中間圧力の飽和湿りガス状態となり、モータ室24に送られる。モータ室24に送られた冷媒は、モータ23を冷却する。
 また、冷凍サイクル装置1は、吐出温度センサ31、モータ温度センサ32、及び制御装置40を備える。吐出温度センサ31は、第1冷媒配管2における圧縮機6の吐出側に設けられている。吐出温度センサ31は、例えば、熱電対からなり、圧縮機6の吐出側の温度状態等を検知するものである。吐出温度センサ31は、検知結果を制御装置40に出力する。モータ温度センサ32は、モータフレーム23aに外装されている。なお、モータ温度センサ32は、モータ23近傍に設けられていればよく、モータフレーム23a又はモータ23に内蔵されてもよい。モータ温度センサ32は、例えば、熱電対からなり、モータ23又はモータフレーム23aの温度状態等を検知するものである。モータ温度センサ32は、検知結果を制御装置40に出力する。
 制御装置40は、吐出温度センサ31による検知結果に基づく吐出温度が予め定められた温度範囲になるように、第2膨張弁11の開度を制御する。吐出温度は、圧縮機6から吐出されたガス冷媒の温度である。具体的には、制御装置40が第2膨張弁11の開度を拡大することで、油冷却器12に流入する冷媒量が多くなる。油冷却器12に流入する冷媒が多くなることで、油冷却器12での熱交換量が大きくなり、圧縮機6に供給される潤滑油の温度が低下する。潤滑油の温度の低下に伴い、圧縮途中の冷媒ガスの温度が低下し、最終的に圧縮機6から吐出される冷媒ガスの吐出温度が低下する。
 また、制御装置40が第2膨張弁11の開度を縮小することで、油冷却器12に流入する冷媒量が少なくなる。油冷却器12に流入する冷媒が少なくなることで、油冷却器12での熱交換量が小さくなり、圧縮機6に供給される潤滑油の温度が上昇する。潤滑油の温度の上昇に伴い、圧縮途中の冷媒ガスの温度も上昇し、最終的に圧縮機6から吐出される冷媒ガスの吐出温度が上昇する。
 また、制御装置40は、吐出温度が所定の温度になるように、インバータを制御して、圧縮機6の運転周波数を調整する。具体的には、圧縮機6の運転周波数を増加させることで、吐出温度を上昇させる。また、圧縮機6の運転周波数を減少させることで、吐出温度を低下させる。
 また、制御装置40は、モータ温度センサ32による検知結果に基づくモータ23の温度が所定の温度になるように、第3膨張弁13の開度を制御する。具体的には、制御装置40が第3膨張弁13の開度を拡大することで、モータ室24に供給される冷媒量が増加する。また、制御装置40が第3膨張弁13の開度を縮小することで、モータ室24に供給される冷媒量が減少する。
 制御装置40は、専用のハードウェア又は記憶部45(図示せず)に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ又はプロセッサとも称される)で構成される。制御装置40が専用のハードウェアである場合、制御装置40は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置40が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
 図2は、実施の形態1に係る制御装置40を示す機能ブロック図である。図2に示すように、制御装置40は、機能部として、吐出温度測定部41、モータ温度測定部42、及び制御部43を有している。また、制御装置40は、記憶部45を有している。
 制御装置40がCPUの場合、制御装置40が実行する各機能部は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、記憶部45に格納される。CPUは、記憶部45に格納されたプログラムを読み出して実行することにより、各機能部を実現する。なお、制御装置40の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
 吐出温度測定部41は、吐出温度センサ31による検知結果に基づいて、吐出温度を測定する。吐出温度測定部41は、測定した吐出温度を制御部43に通信する。モータ温度測定部42は、モータ温度センサ32による検知結果に基づいて、モータ23の温度を測定する。モータ温度測定部42は、測定したモータ23の温度を制御部43に通信する。
 制御部43は、吐出温度測定部41が測定した吐出温度と、保護閾値、第1閾値、第2閾値、及び第3閾値との比較結果に基づいて、第2膨張弁11の開度を制御する。保護閾値、第1閾値、第2閾値、及び第3閾値は、圧縮機6内部の樹脂材等の保護と、冷凍サイクル装置1の運転効率の維持との両立を目的として段階的に定められている。保護閾値は、吐出温度の許容上限値であり、圧縮機6の運転を停止させる基準の閾値である。保護閾値は、一般的には、100℃~150℃の範囲内から決定される。ここでは、保護閾値を100℃に設定した場合を例にして説明する。
 第1閾値は、保護閾値よりも予め定められた第1設定温度低い温度である。第1設定温度は、例えば、10℃~20℃の範囲から設定される。ここでは、第1設定温度を20℃、つまり第1閾値を80℃に設定した場合を例にして説明する。第2閾値は、第1閾値よりも予め定められた第2設定温度低い温度である。第2設定温度は、例えば、5℃~10℃の範囲から設定される。ここでは、第2設定温度を5℃、つまり第2閾値を75℃に設定した場合を例にして説明する。第3閾値は、保護閾値よりも予め定められた第3設定温度低い温度であり、樹脂部材の耐熱温度よりも低い温度である。第3設定温度は、例えば、5℃~10℃の範囲から設定される。ここでは、第3設定温度を5℃、つまり第3閾値を95℃に設定した場合を例にして説明する。
 制御部43は、圧縮機6の吐出温度が保護閾値以上であるか否かを判定する。制御部43は、吐出温度が保護閾値以上であった場合、圧縮機6の運転を短時間で直ちに停止する。これにより、圧縮機6内部の部品等が損耗から保護される。制御部43は、吐出温度が保護閾値未満であった場合、圧縮機6の運転を継続させる。
 制御部43は、吐出温度が第1閾値以下であるか否かを判定する。制御部43は、吐出温度が第1閾値を超える場合、第2膨張弁11の開度を大きくし、油温度を低下させることで、吐出温度を低下させる。
 制御部43は、吐出温度が第2閾値以上であるか否かを判定する。制御部43は、吐出温度が第2閾値未満であった場合、第2膨張弁11の開度を小さくし、油温度を上昇させることで、吐出温度を上昇させる。
 制御部43は、吐出温度が第1閾値以下、且つ第2閾値以上であった場合、第2膨張弁11の開度を維持する。このように、制御部43は、吐出温度と、第1閾値及び第2閾値との比較結果とに基づいて第2膨張弁11の開度を制御している。これにより、制御部43は、吐出温度を、第1閾値を上限値、第2閾値を下限値として定まる温度範囲内の温度、即ちここでは75℃~80℃の間の温度に制御することができる。
 制御部43は、吐出温度が第3閾値以上であるか否かを判定する。制御部43は、吐出温度が第3閾値以上であった場合、圧縮機6の周波数を低下させ、冷媒流量を減少させる。これにより、圧縮機6の吸入温度が急上昇した場合であっても、吐出温度の上昇を抑制する。これにより、吐出温度が保護閾値に到達することが抑制されている。
 また、制御部43は、モータ温度測定部42が測定したモータ温度と、第1モータ閾値、及び第2モータ閾値との比較結果に基づいて、第3膨張弁13の開度を制御する。第1モータ閾値は、モータ23の異常加熱の抑制を目的とする上でのモータ温度の上限値である。第1モータ閾値は、例えば70℃である。第2モータ閾値は、モータ23の結露の抑制を目的とする上でのモータ温度の下限値である。第2モータ閾値は、例えば20℃である。
 制御部43は、モータ温度が第1モータ閾値以下であるか否かを判定する。制御部43は、モータ温度が第1モータ閾値を超える場合、第3膨張弁13の開度を大きくし、モータ室24に供給される冷媒量を増加させることで、モータ温度を低下させる。
 制御部43は、モータ温度が第2モータ閾値以上であるか否かを判定する。制御部43は、モータ温度が第2モータ閾値未満であった場合、第3膨張弁13の開度を小さくし、モータ室24に供給される冷媒量を減少させることで、モータ温度を上昇させる。
 制御部43は、モータ温度が第1モータ閾値以下、且つ第2モータ閾値以上であった場合、第3膨張弁13の開度を維持する。このように、制御部43は、モータ温度と、第1モータ閾値及び第2モータ閾値との比較結果とに基づいて、第3膨張弁13の開度を制御している。これにより、制御部43は、モータ温度を第1モータ閾値と第2モータ閾値との間の温度、即ちここでは20℃~70℃の間の温度に制御することができる。
 なお、制御装置40は第1膨張弁9の開度も制御するが、その制御には従来の方法が適用できるため、ここではその説明は省略する。
 記憶部45は、記憶部45は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の不揮発性又は揮発性の半導体メモリである。記憶部45には、例えば、保護閾値、第1閾値、第2閾値、及び第3閾値等の冷凍サイクル装置1の制御に関する設定情報等が記憶されている。また、記憶部45には、吐出温度及びモータ23の温度等の測定結果が一時的又は継続的に記憶される。
 図3は、実施の形態1に係る吐出温度に基づく第2膨張弁11の制御方法を示すフローチャートである。図3に示す処理が周期的に行われる。先ず、制御部43は、吐出温度が第1閾値以下であるか否かを判定する(S1)。吐出温度が第1閾値以下であった場合(S1:YES)、制御部43は、吐出温度が第2閾値以上であるか否かを判定する(S2)。吐出温度が第2閾値以上であった場合(S2:YES)、制御部43は、第2膨張弁11の開度を維持する(S3)。吐出温度が第2閾値未満であった場合(S2:NO)、制御部43は、第2膨張弁11の開度を縮小する(S4)。これにより、油温度及び吐出温度が上昇する。
 吐出温度が第1閾値を超える場合(S1:NO)、制御部43は、第2膨張弁11の開度を拡大する(S5)。これにより、油温度及び吐出温度が低下する。第2膨張弁11の開度が拡大された後、制御部43は、吐出温度が第3閾値以上であるか否かを判定する(S6)。吐出温度が第3閾値以上である場合(S6:YES)、制御部43は、圧縮機6の運転周波数を減少させる(S7)。これにより、吐出温度が低下する。制御部43は、吐出温度が第3閾値未満になるまで、S6及びS7の処理を繰り返す。吐出温度が閾値未満である場合(S6:NO)、制御部43は、再び、吐出温度が第1閾値以下であるか否かを判定する(S1)。吐出温度が第1閾値以下、且つ第2閾値以上になり、第2膨張弁11の開度が維持される(S3)まで、以上の処理が繰り返される。
 図4は、実施の形態1に係るモータ23の温度に基づく第3膨張弁13の制御方法を示すフローチャートである。図4に示す処理が周期的に行われる。先ず、制御部43は、モータ23の温度が第1モータ閾値以下であるか否かを判定する(S101)。モータ23の温度が第1モータ閾値以下であった場合(S101:YES)、制御部43は、モータ23の温度が第2モータ閾値以上であるか否かを判定する(S102)。モータ23の温度が第2モータ閾値以上であった場合(S102:YES)、制御部43は、第3膨張弁13の開度を維持する(S103)。モータ23の温度が第2モータ閾値未満であった場合(S102:NO)、制御部43は、第3膨張弁13の開度を縮小する(S104)。これにより、モータ23の温度が上昇する。
 モータ23の温度が第1モータ閾値を超える場合(S101:NO)、制御部43は、第3膨張弁13の開度を拡大する(S105)。これにより、モータ23の温度が低下する。そして、制御部43は、再び、モータ23の温度が第1モータ閾値以下であるか否かを判定する(S101)。モータ23の温度が第1モータ閾値以下、且つ第2モータ閾値以上になり、第3膨張弁13の開度が維持される(S103)まで、以上の処理が繰り返される。
 以上説明したように、実施の形態1によれば、制御装置40が凝縮器8と油冷却器12との間に設けられた第2膨張弁11の開度を制御することで、圧縮機6の吐出温度が予め定められた温度範囲内の温度に制御される。このように、実施の形態1の冷凍サイクル装置1では、圧縮機6の吐出温度を制御する上で、圧縮機6の内部に潤滑油を冷却する機構を設ける必要がないため、圧縮機6の構造を簡素化することができる。
 また、圧縮機6の構造を簡素化することで、設計負荷の軽減、及び製造費用の削減を達成することができる。
 また、一般的に、圧縮機6の吐出温度が保護閾値に達し、圧縮機6の運転が停止した場合、圧縮機6が再度運転を開始するまでは冷凍サイクル装置1が停止しているため、冷凍サイクル装置1の運転効率が落ちてしまう。一方で、保護閾値を高くして、冷凍サイクル装置1の運転効率を維持しようした場合、圧縮機6内部の樹脂材等の損耗が促進されることがある。特に、R410A、R448A、又はR449A等の温度が上昇しやすい冷媒において、圧縮機6内部の樹脂材等の保護と、冷凍サイクル装置1の運転効率の維持との両立は、重要な課題であった。更に、物流倉庫の空調等のような低温機器の場合、一度の運転停止によっても倉庫内の保存物等への影響が大きい。これに対して、実施の形態1では、保護閾値を基準に段階的に設定された第1閾値、第2閾値、及び第3閾値と、吐出温度との比較結果に基づいて、第2膨張弁11の開度を制御している。これにより、保護閾値を圧縮機6内部の樹脂材等の損耗が促進されない温度に設定しつつも、吐出温度が保護閾値に達しないように、冷凍サイクル装置1の運転を制御することができる。したがって、実施の形態1においては、圧縮機6内部の樹脂材等の保護と、冷凍サイクル装置1の運転効率の維持とが両立されている。
 また、実施の形態1によれば、冷媒にHFC冷媒が用いられ、潤滑油にポリオールエステル油が用いられていてもよい。そして、制御装置40は、樹脂部材の耐熱温度よりも低い第3閾値に基づいて制御を行う。このため、冷凍サイクル装置1の運転効率を維持すると共に、樹脂部材の長寿命化を実現することができる。
 また、実施の形態1によれば、冷媒にHFO混合冷媒が用いられ、潤滑油にポリオールエステル油又はポリビニルエーテル油が用いられていてもよい。そして、制御装置40は、樹脂部材の耐熱温度よりも低い第3閾値に基づいて制御を行う。このため、冷凍サイクル装置1の運転効率を維持すると共に、樹脂部材の長寿命化を実現することができる。
 また、一般的に、潤滑油を過度に冷却した場合、中間圧室25に供給される冷媒ガスが増加し、中間圧が上昇する。中間圧が過度に上昇した場合、低段圧縮部21の圧縮効率が低下することに加えて、必要な電気入力が大きくなる。これに対して、実施の形態1では、制御装置40は、第1閾値よりも5℃~10℃低い第2閾値を設けることで、潤滑油の過度な冷却による、低段圧縮部21での圧縮効率の低下、及び必要な電気入力の増加を抑制することができる。
 実施の形態2.
 図5は、実施の形態2に係る冷凍サイクル装置1Aを示す回路図である。図5に示すように、冷凍サイクル装置1Aは、ヒータ34を有する。ヒータ34は、油分離器7に設けられ、油分離器7内部の潤滑油を加熱するものである。実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
 図6は、実施の形態2に係る制御装置40を示す機能ブロック図である。図6に示すように、制御装置40の制御部43は、実施の形態1で説明した吐出温度及びモータ23の温度の制御に加えて、吐出温度測定部41が測定した吐出温度と、第4閾値との比較結果に基づいて、第2膨張弁11の開度を制御する。第4閾値は、潤滑油の粘度に基づいて定められる。具体的に、第4閾値は、吐出温度が第4閾値以下の温度になった場合、潤滑油の粘度が大きくなり、粘性抵抗によって圧縮機6へのインジェクションが妨げられる程度に定められる。第4閾値は、例えば0℃である。
 制御部43は、吐出温度が第4閾値以下であるか否かを判定する。制御部43は、吐出温度が第4閾値以下であった場合、ヒータ34を起動し、潤滑油を加熱する。制御部43は、吐出温度が第4閾値を超える場合、ヒータ34を停止する。もっとも、ヒータ34が停止中の場合、制御部43は、ヒータ34を起動させない。
 記憶部45には、実施の形態1で説明した情報に加えて、第4閾値が記憶されている。
 図7は、実施の形態2に係る吐出温度に基づく第2膨張弁11の制御方法を示すフローチャートである。図7に示す処理が周期的に行われる。S1~S7の処理は、実施の形態1と同様であるため、省略する。実施の形態2では、制御部43は、第2膨張弁11の開度を縮小する(S4)と、吐出温度が第4閾値以下であるか否かを判定する(S8)。吐出温度が第4閾値以下であった場合(S8:YES)、制御部43は、ヒータ34を起動する(S9)。これにより、油分離器7内部の潤滑油が加熱される。吐出温度が第4閾値を超える場合(S8:NO)、制御部43は、ヒータ34を停止する、又は起動させない(S10)。ヒータ34の制御を行った後、制御部43は、再び、吐出温度が第1閾値以下であるか否かを判定する(S1)。そして、吐出温度が第1閾値以下、且つ第2閾値以上になり、第2膨張弁11の開度が維持される(S3)まで、以上の処理が繰り返される。
 以上のように、実施の形態2の冷凍サイクル装置1Aでも、実施の形態1と同様に圧縮機6の吐出温度を制御する上で、圧縮機6の内部に潤滑油を冷却する機構を設ける必要がないため、圧縮機6の構造を簡素化することができる。
 また、一般に、吐出温度が第4閾値以下になった場合、圧縮機6の軸受けの潤滑状態が悪化し、結果的に軸受の摩耗促進、又は破損等の不具合を起こすことがある。これに対して、実施の形態2では、吐出温度が第4閾値以下になった場合、ヒータ34を起動する。これにより、油温度が低く、潤滑油の粘度が大きい状態が解消され、圧縮機6への給油が行われる。したがって、軸受の摩耗及び破損が抑制され、圧縮機6の信頼性を高く保つことができる。
 実施の形態3.
 図8は、実施の形態3に係る冷凍サイクル装置1Bを示す回路図である。図8に示すように、冷凍サイクル装置1Bは、油温度センサ33を有する。実施の形態3では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
 油温度センサ33は、油分離器7に設けられている。油温度センサ33は、例えば、熱電対からなり、油分離器7の温度状態等を検知するものである。油温度センサ33は、検知結果を制御装置40に出力する。
 制御装置40は、吐出温度センサ31による検知結果に基づく吐出温度、及び油温度センサ33による検知結果に基づく油温度が所定の温度になるように、第2膨張弁11の開度を制御する。油温度は、油分離器7に貯留された潤滑油の温度である。
 図9は、実施の形態3に係る制御装置40を示す機能ブロック図である。制御装置40は、実施の形態1で説明した構成に加えて、機能部として油温度測定部44を有する。油温度測定部44は、油温度センサ33による検知結果に基づいて、油温度を測定する。
 制御部43は、吐出温度測定部41が測定した吐出温度と、保護閾値、第1閾値、第2閾値、及び第3閾値との比較結果に基づいて、第2膨張弁11の開度を制御する。また、制御部43は、油温度測定部44が測定した油温度と、第1油温閾値、及び第2油温閾値との比較結果に基づいて、第2膨張弁11の開度を制御する。
 第1油温閾値は、第2閾値よりも5℃~10℃低い温度である。ここでは、第1油温閾値を70℃に設定した場合を例にして説明する。第2油温閾値は、第1油温閾値よりも低い温度である。ここでは、第2油温閾値を35℃に設定した場合を例にして説明する油温。
 制御部43は、油温度が第1油温閾値以上であるか否かを判定する。制御部43は、油温度が第1油温閾値以上であった場合、第2膨張弁11の開度を大きくし、油温度を低下させる。
 制御部43は、油温度が第2油温閾値以下であるか否かを判定する。制御部43は、油温度が第2油温閾値以下であった場合、第2膨張弁11の開度を小さくし、油温度を上昇させる。
 制御部43は、油温度が第1油温閾値未満であり、且つ第2油温閾値を超える場合、第2膨張弁11の開度を維持する。このように、制御部43は、油温度と、第1油温閾値及び第2油温閾値との比較結果とに基づいて、第2膨張弁11の開度を制御することで、油温度を第1油温閾値と、第2油温閾値との間、即ちここでは35℃~70℃の間に制御することができる。
 なお、油温度に基づく第2膨張弁11の開度の制御を行う際には、吐出温度に基づく第2膨張弁11の開度の制御を行う場合よりも、開度の調整単位を変更してもよい。つまり、例えば、油温度に基づく第2膨張弁11の開度の制御を行う際には、吐出温度に基づく第2膨張弁11の開度の制御を行う場合よりも、開度を細かく拡大又は縮小するようにしてもよい。
 記憶部45には、実施の形態1で説明した情報に加えて、油温度の測定結果が一時的又は継続的に記憶される。
 図10は、実施の形態3に係る吐出温度及び油温度に基づく第2膨張弁11の制御方法を示すフローチャートである。図10に示す処理が周期的に行われる。S1~S3、及びS5~S7の処理は、実施の形態1と同様であるため、省略する。実施の形態3では、吐出温度が第2閾値未満であった場合(S2:NO)、制御部43は、油温度が第1油温閾値以上であるか否かを判定する(S11)。油温度が第1油温閾値以上であった場合(S11:YES)、制御部43は、第2膨張弁11の開度を拡大する(S12)。これにより、油温度が低下する。S11及びS12の処理は、油温度が第1油温閾値未満になるまで繰り返される。
 油温度が第1油温閾値未満の場合(S11:NO)、制御部43は、油温度が第2油温閾値以下であるか否かを判定する(S13)。油温度が第2油温閾値以下であった場合(S13:YES)、制御部43は、第2膨張弁11の開度を縮小する(S14)。S11~S14までの処理は、油温度が第1油温閾値未満、且つ油第2閾値を超えるまで繰り返される。油温度が第1油温閾値未満、且つ油第2閾値を超えた場合(S13:NO)、制御部43は、油温度が許容できる最低温度を保った上で十分に低下していると判断して、第2膨張弁11の開度を縮小し(S15)、再び、吐出温度が第1閾値以下であるか否かを判定する(S1)。そして、吐出温度が第1閾値以下、且つ第2閾値以上になり、第2膨張弁11の開度が維持される(S3)まで、以上の処理が繰り返される。
 以上のように、実施の形態3の冷凍サイクル装置1Bでも、実施の形態1と同様に圧縮機6の吐出温度を制御する上で、圧縮機6の内部に潤滑油を冷却する機構を設ける必要がないため、圧縮機6の構造を簡素化することができる。
 また、概して、外気温度が低い場合には、吐出温度が第2閾値を下回るものの、油温度が高く、低段圧縮部21に高温の油が給油されることがある。これにより、圧縮機6の軸受の劣化、及び低段圧縮部21のスクリュー(図示せず)の焼き付き等が助長されることがある。これに対して、実施の形態3では、第1油温閾値、及び第2油温閾値と、油温度との比較結果に基づいて、第2膨張弁11の開度を制御している。これにより、油温度が第1油温閾値と、第2油温閾値との間の温度に調整され、圧縮機6の軸受の劣化、及び低段圧縮部21のスクリュー(図示せず)の焼き付き等を抑制することができる。
 以上が本開示の実施の形態の説明であるが、上記の実施の形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形又は組み合わせが可能である。例えば、圧縮機6は、インバータの制御によって、運転周波数が調整される形態ではなく、一定速機でもよい。圧縮機6を一定速機とした場合、例えば、圧縮機6の吸入側に開度が制御可能なスライドバルブ等を設けて、圧縮開始のタイミングを変更することで機械式の容量制御を行うようにしてもよい。機械式の容量制御によっても、吐出温度が第3閾値以上である場合に、実施の形態1と同様に吐出温度を低下させることができる。
 各実施の形態では、吐出温度が第3閾値以上である場合に、インバータ式の容量制御を行うようにしていた。しかしながら、吐出温度が第3閾値以上である場合に、第2膨張弁11の開度を大きくし、第2膨張弁11の開度を全開としても、吐出温度が第3閾値を下回らない際に、インバータによって圧縮機6の運転周波数を徐々に下げるようにしてもよい。更に、インバータ式の容量制御によっても、吐出温度が第3閾値を下回らない場合に、機械式の容量制御を行うようにしてもよい。具体的には例えば、第2膨張弁11の開度を全開としても、吐出温度が第3閾値を下回らない場合に、インバータによって運転周波数を10%ダウンさせる。それによってもなお吐出温度が第3閾値を下回らない場合に、更に運転周波数を10%ダウンさせる。そして、運転周波数を最低運転周波数又は予め設定された周波数まで下げても吐出温度が第3閾値を下回らない場合に、第2膨張弁の制御、及びインバータ式の容量制御に加え、更に機械式の容量制御を行う。
 上記の制御は、次のように、冷凍サイクル装置1の運転効率を考慮したものである。インバータ式の容量制御は、通常運転の範囲内で圧縮機6を減速させて安定運転を行うためのものである。一方、機械式の容量制御は、圧縮機6の保護を目的としたものであり、吐出温度を一気に低下させるものである。よって、インバータ式の容量制御により吐出温度を低下させた場合、機械式の容量制御により吐出温度を低下させた場合よりも、圧縮機6の運転が復帰するまでの時間を短縮することができる。そして、機械式の容量制御は、低圧を一気に低下させるため、吐出温度を効果的に低下させるが、圧縮機6の復帰に時間を要するため、他の制御によっても第3閾値を下回らない場合に実行される。
 また、各実施の形態においては、二段スクリュー圧縮機を例に挙げているが、圧縮機6内部に油を冷却する機構を備えるものでなければよい。圧縮機6が例えば、単段圧縮機、スクロール圧縮機、ロータリ圧縮機、又はレシプロ圧縮機等の何れであっても、本開示の内容を適用することができる。
 また、各吐出温度の制御、モータの温度、又は油温度に基づく第2膨張弁11又は第3膨張弁13の制御方法については、各実施の形態で説明したものに限定されない。例えば、実施の形態3で説明した油温度に基づく第2膨張弁11の制御は、吐出温度に基づく第3膨張弁13の制御から独立して行うようにしてもよい。
 1 冷凍サイクル装置、1A 冷凍サイクル装置、1B 冷凍サイクル装置、2 第1冷媒配管、3 第2冷媒配管、4 第3冷媒配管、5 油配管、6 圧縮機、7 油分離器、8 凝縮器、9 第1膨張弁、10 蒸発器、11 第2膨張弁、12 油冷却器、13 第3膨張弁、21 低段圧縮部、22 高段圧縮部、23 モータ、23a モータフレーム、24 モータ室、25 中間圧室、31 吐出温度センサ、32 モータ温度センサ、33 油温度センサ、34 ヒータ、40 制御装置、41 吐出温度測定部、42 モータ温度測定部、43 制御部、44 油温度測定部、45 記憶部。

Claims (12)

  1.  圧縮機、油分離器、凝縮器、第1膨張弁、及び蒸発器が第1冷媒配管によって環状に接続され、冷媒が循環する冷凍サイクル装置であって、
     前記第1冷媒配管における前記凝縮器と前記第1膨張弁との間から分岐し、前記圧縮機に接続された第2冷媒配管と、
     前記油分離器と前記圧縮機とに接続され、前記油分離器によって分離された油が流れる油配管と、
     前記第2冷媒配管に設けられ、前記第2冷媒配管を流れる冷媒によって、前記油配管を流れる油を冷却し、前記圧縮機に送出する油冷却器と、
     前記第2冷媒配管における前記凝縮器と前記油冷却器との間に設けられた第2膨張弁と、
     前記第1冷媒配管における前記圧縮機の吐出側に設けられた吐出温度センサと、
     前記第2膨張弁を制御する制御装置と、を備え、
     前記制御装置は、
     前記吐出温度センサの検知結果に基づく前記圧縮機の吐出温度が予め定められた温度範囲内の温度になるように、前記第2膨張弁の開度を制御し、
     前記温度範囲は、第1閾値を上限値とし、第2閾値を下限値とし、
     前記第1閾値は、前記吐出温度が到達した場合に前記圧縮機を停止させる基準となる保護閾値よりも予め定められた第1設定温度低い温度である
     冷凍サイクル装置。
  2.  前記第2閾値は、前記第1閾値よりも予め定められた第2設定温度低い温度である
     請求項1に記載の冷凍サイクル装置。
  3.  前記制御装置は、
     前記吐出温度が前記第1閾値を超える場合、前記第2膨張弁の開度を大きくし、
     前記吐出温度が前記第2閾値未満の場合、前記第2膨張弁の開度を小さくする
     請求項1又は2に記載の冷凍サイクル装置。
  4.  前記制御装置は、
     前記吐出温度が前記保護閾値よりも予め定められた第3設定温度低い第3閾値を超える場合、前記圧縮機の冷媒流量を減らすように容量制御を行う
     請求項1~3の何れか1項に記載の冷凍サイクル装置。
  5.  前記制御装置は、
     前記吐出温度が前記第3閾値を超える場合、前記第2膨張弁の開度を大きくし、
     前記第2膨張弁の開度が最大となった際に、前記吐出温度が前記第3閾値を超える場合、前記圧縮機の運転周波数を調整することで、前記圧縮機の冷媒流量を減らすように容量制御を行う
     請求項4に記載の冷凍サイクル装置。
  6.  前記制御装置は、
     前記圧縮機の運転周波数を最低運転周波数又は予め設定された周波数まで低下させた際に、前記吐出温度が前記第3閾値を超える場合、機械式の容量制御を行う
     請求項5に記載の冷凍サイクル装置。
  7.  冷媒としてHFC冷媒が用いられ、
     油としてポリオールエステル油が用いられ、
     前記圧縮機は、
     PPS樹脂、ポリアミド樹脂、エポキシ樹脂、アラミド樹脂、フッ素樹脂、ポリエチレンテレフタレート樹脂、又はポリエステル樹脂の全て若しくは一部からなる樹脂部材を有し、
     前記第3閾値は、前記樹脂部材の耐熱温度よりも低い
     請求項4~6の何れか1項に記載の冷凍サイクル装置。
  8.  冷媒としてHFO混合冷媒が用いられ、
     油としてポリオールエステル油又はポリビニルエーテル油が用いられ、
     前記圧縮機は、
     PPS樹脂、ポリアミド樹脂、エポキシ樹脂、アラミド樹脂、フッ素樹脂、ポリエチレンテレフタレート樹脂、又はポリエステル樹脂の全て若しくは一部からなる樹脂部材を有し、
     前記第3閾値は、前記樹脂部材の耐熱温度よりも低い
     請求項4~6の何れか1項に記載の冷凍サイクル装置。
  9.  前記油分離器に設けられたヒータを更に備え、
     前記制御装置は、
     前記吐出温度が第4閾値以下の場合、前記ヒータを起動させる
     請求項1~8の何れか1項に記載の冷凍サイクル装置。
  10.  前記第1冷媒配管における前記凝縮器と前記第1膨張弁との間から分岐し、前記圧縮機に接続された第3冷媒配管と、
     前記第3冷媒配管に設けられた第3膨張弁と、
     前記圧縮機を駆動させるモータに設けられたモータ温度センサと、を更に備え、
     前記制御装置は、
     前記モータ温度センサの検知結果に基づく前記モータの温度が第1モータ閾値から第2モータ閾値までの温度になるように前記第3膨張弁の開度を制御する
     請求項1~9の何れか1項に記載の冷凍サイクル装置。
  11.  前記圧縮機は、二段スクリュー圧縮機であり、
     吸入した冷媒を圧縮する低段圧縮部と、
     前記低段圧縮部によって圧縮された冷媒を更に圧縮する高段圧縮部と、
     前記低段圧縮部と前記高段圧縮部との間に設けられ、圧縮途中の冷媒が流通する中間圧室と、
     前記モータを格納するモータ室と、を有し、
     前記第2冷媒配管は、前記中間圧室に接続され、
     前記第3冷媒配管は、前記モータ室に接続され、
     前記油配管は、前記低段圧縮部及び前記高段圧縮部に接続されている
     請求項10に記載の冷凍サイクル装置。
  12.  前記油分離器に設けられた油温度センサを更に備え、
     前記制御装置は、
     前記油温度センサの検知結果に基づく油温度が第1油温閾値を超える場合、前記第2膨張弁の開度を大きくする
     請求項1~11の何れか1項に記載の冷凍サイクル装置。
PCT/JP2021/022981 2021-06-17 2021-06-17 冷凍サイクル装置 WO2022264345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022981 WO2022264345A1 (ja) 2021-06-17 2021-06-17 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022981 WO2022264345A1 (ja) 2021-06-17 2021-06-17 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022264345A1 true WO2022264345A1 (ja) 2022-12-22

Family

ID=84527323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022981 WO2022264345A1 (ja) 2021-06-17 2021-06-17 冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2022264345A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183247A (ja) * 1997-09-12 1999-03-26 Daikin Ind Ltd 冷凍装置の配管洗浄装置および配管洗浄方法
JP2002286302A (ja) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp 冷媒回路設備
JP2009300008A (ja) * 2008-06-13 2009-12-24 Mitsubishi Heavy Ind Ltd 冷凍機
JP2010133401A (ja) * 2008-10-27 2010-06-17 Toyota Industries Corp 冷媒圧縮機
JP2013253734A (ja) * 2012-06-07 2013-12-19 Hitachi Appliances Inc 冷凍サイクル装置
WO2016117037A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 冷凍装置
JP2020076108A (ja) * 2014-01-31 2020-05-21 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183247A (ja) * 1997-09-12 1999-03-26 Daikin Ind Ltd 冷凍装置の配管洗浄装置および配管洗浄方法
JP2002286302A (ja) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp 冷媒回路設備
JP2009300008A (ja) * 2008-06-13 2009-12-24 Mitsubishi Heavy Ind Ltd 冷凍機
JP2010133401A (ja) * 2008-10-27 2010-06-17 Toyota Industries Corp 冷媒圧縮機
JP2013253734A (ja) * 2012-06-07 2013-12-19 Hitachi Appliances Inc 冷凍サイクル装置
JP2020076108A (ja) * 2014-01-31 2020-05-21 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2016117037A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 冷凍装置

Similar Documents

Publication Publication Date Title
EP2326841B1 (en) Compressor discharge control on a transport refrigeration system
JP5313093B2 (ja) 冷凍装置
JP4179927B2 (ja) 冷却装置の冷媒封入量設定方法
JP5707621B2 (ja) 恒温液循環装置及びその運転方法
JP2012072920A (ja) 冷凍装置
CN109282425A (zh) 一种空调系统及其压力异常的自检测方法
KR101802107B1 (ko) 냉동시스템
JP4311983B2 (ja) 冷却装置
JP6412325B2 (ja) 冷却装置
JP4767133B2 (ja) 冷凍サイクル装置
JP5735441B2 (ja) 冷凍装置
JP2009138973A (ja) ヒートポンプ及びその運転方法
US20100307177A1 (en) Rapid compressor cycling
WO2022264345A1 (ja) 冷凍サイクル装置
US8109102B2 (en) Adjustment of compressor operating limits
JP6191490B2 (ja) 空気調和装置
CN113418329A (zh) 一种冷藏冷冻机组的控制方法及冷藏冷冻机组
JP6373034B2 (ja) 冷凍機
US10473377B2 (en) High outdoor ambient and high suction pressure oil pump out mitigation for air conditioners
CN113418328B (zh) 用于冷藏冷冻机组的控制方法及冷藏冷冻机组
US20220186988A1 (en) Refrigeration apparatus
CN108027176B (zh) 多级压缩式制冷循环装置
WO2018100712A1 (ja) 冷凍サイクル装置
JP4286064B2 (ja) 冷却装置
CN115597196A (zh) 一种控制方法、空调和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP