[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022254965A1 - Compound, light-emitting material, and light-emitting element - Google Patents

Compound, light-emitting material, and light-emitting element Download PDF

Info

Publication number
WO2022254965A1
WO2022254965A1 PCT/JP2022/017166 JP2022017166W WO2022254965A1 WO 2022254965 A1 WO2022254965 A1 WO 2022254965A1 JP 2022017166 W JP2022017166 W JP 2022017166W WO 2022254965 A1 WO2022254965 A1 WO 2022254965A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
ring
light
condensed
Prior art date
Application number
PCT/JP2022/017166
Other languages
French (fr)
Japanese (ja)
Inventor
善丈 鈴木
正貴 山下
琢哉 比嘉
侑 山根
昇 真田
幸誠 金原
Original Assignee
株式会社Kyulux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kyulux filed Critical 株式会社Kyulux
Priority to KR1020237041637A priority Critical patent/KR20240017808A/en
Priority to CN202280039330.4A priority patent/CN117396486A/en
Priority to JP2023525646A priority patent/JPWO2022254965A1/ja
Publication of WO2022254965A1 publication Critical patent/WO2022254965A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a compound useful as a light-emitting material and a light-emitting device using the same.
  • organic electroluminescence elements organic electroluminescence elements
  • various attempts have been made to improve the luminous efficiency by newly developing and combining electron transporting materials, hole transporting materials, light emitting materials, and the like, which constitute organic electroluminescence elements.
  • research on organic electroluminescence elements using delayed fluorescence materials can also be seen.
  • a delayed fluorescence material is a material that emits fluorescence when returning from the excited singlet state to the ground state after reverse intersystem crossing from the excited triplet state to the excited singlet state occurs in the excited state. Fluorescence by such a pathway is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state directly generated from the ground state (ordinary fluorescence).
  • the probability of occurrence of an excited singlet state and an excited triplet state is statistically 25%:75%.
  • the delayed fluorescence material not only the excited singlet state but also the excited triplet state can be used for fluorescence emission through the reverse intersystem crossing described above, so the emission is higher than that of ordinary fluorescent materials. Efficiency will be obtained.
  • delayed fluorescence materials have been discovered through various studies. However, a material that emits delayed fluorescence is not immediately useful as a light-emitting material. Among delayed fluorescence materials, there are those in which reverse intersystem crossing is relatively difficult to occur, and in which the lifetime of delayed fluorescence is long. In addition, there are some devices that accumulate excitons in a high current density region, resulting in a decrease in luminous efficiency, or rapidly degrade when driven for a long period of time. Therefore, the actual situation is that there are extremely many delayed fluorescence materials that have room for improvement in terms of practicality. Moreover, in recent years, the properties required for fluorescent materials have been increasing. Therefore, even excellent delayed fluorescence materials such as compounds having the following structures are required to further improve their properties (see Patent Document 1).
  • the present inventors conducted extensive research with the aim of providing compounds that are more useful as light-emitting materials for light-emitting devices. Then, intensive studies were carried out with the aim of deriving and generalizing the general formulas of compounds that are more useful as light-emitting materials.
  • the present inventors found that among terephthalonitrile derivatives, compounds having a structure that satisfies specific conditions are useful as light-emitting materials.
  • the present invention has been proposed based on these findings, and specifically has the following configurations.
  • R 1 to R 4 each independently represent a donor group, at least one of which is an indol-1-yl group with condensed rings.
  • the ring-fused indol-1-yl group forms a condensed ring having 4 or more rings by ring condensation with indole, and the condensed ring may be substituted.
  • 1 to 2 of R 1 to R 4 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded via a carbon atom.
  • the remaining R 1 to R 4 represent hydrogen atoms or deuterium atoms.
  • two of R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed; one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded at a carbon atom;
  • two of R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed;
  • R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed; The compound according to [1], wherein one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded at a carbon atom.
  • R 1 and R 4 are each independently a donor group; The compound according to any one of [1] to [4], wherein R 3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group attached at a carbon atom.
  • R 2 and R 4 are each independently a donor group; The compound according to any one of [1] to [4], wherein R 3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group attached at a carbon atom. [7] The compound according to any one of [1] to [6], wherein the condensed ring has 5 or more rings. [8] The compound according to [7], wherein a carbon atom constituting the condensed ring skeleton having 4 or more rings is substituted with a substituted or unsubstituted aryl group.
  • the indol-1-yl group to which the rings are condensed has a structure in which heterocycles are condensed at positions 4 and 5 of the indole ring, according to any one of [1] to [12].
  • Compound. [14] The compound according to any one of [1] to [13], wherein Ar is a substituted or unsubstituted phenyl group or a substituted or unsubstituted pyridyl group.
  • Ar is a substituted or unsubstituted phenyl group or a substituted or unsubstituted pyridyl group.
  • the compound according to any one of [1] to [14] consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
  • a luminescent material comprising the compound according to any one of [1] to [15].
  • a light-emitting device comprising the compound according to any one of [1] to [15].
  • the compound of the present invention is useful as a luminescent material. Further, the compounds of the present invention include compounds having a short delayed fluorescence lifetime. Furthermore, an organic light-emitting device using the compound of the present invention is useful because of its high device durability.
  • Two to three of R 1 to R 4 in general formula (1) each independently represent a donor group. At least one of the donor groups is a substituted or unsubstituted indol-1-yl group, and an indole ring constituting the indol-1-yl group is fused with a ring, thereby It forms a condensed ring with 4 or more rings.
  • a group satisfying this condition is referred to as a "ring-fused indol-1-yl group”.
  • the ring-fused indol-1-yl group may be a polycyclic ring having one ring condensed to the benzene ring or pyrrole ring that constitutes the indol-1-yl group, or may have two or more polycyclic or monocyclic rings.
  • the ring-fused indol-1-yl group may be a polycyclic ring having one ring condensed to the benzene ring or pyrrole ring that constitutes the indol-1-yl group, or may have two or more polycyclic or monocyclic rings.
  • Two condensed rings may be the same or different.
  • a condensed ring having 4 or more, 5 or more, or 6 or more rings may be formed, and a condensed ring having 5 or more rings is preferably formed.
  • a compound having a condensed ring having 4 rings, a compound having a condensed ring having 5 rings, a compound having a condensed ring having 6 rings, and a condensed ring having 8 rings A compound forming a ring may be employed.
  • the ring may be fused only at the 2,3-position (b), only the 4,5-position (e) or only the 5,6-position (f) of the indole ring.
  • any one of 4,5-position (e), 5,6-position (f) and 6,7-position (g) may be condensed at 2,3-position (b) (the following formula see, * indicates binding position).
  • a ring that is directly condensed to a benzene ring or pyrrole ring that constitutes an indol-1-yl group is Any of an aromatic hydrocarbon ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon ring, and an aliphatic heterocyclic ring may be used.
  • an aromatic hydrocarbon ring an aromatic heterocyclic ring, an aliphatic hydrocarbon ring, and an aliphatic heterocyclic ring
  • one or more rings selected from the group consisting of benzene rings and aromatic heterocycles are directly condensed.
  • a heterocycle as used herein is a ring containing a heteroatom.
  • the heteroatoms are preferably selected from oxygen, sulfur, nitrogen and silicon atoms, more preferably from oxygen, sulfur and nitrogen atoms.
  • the heteroatom is an oxygen atom.
  • the heteroatom is a sulfur atom.
  • the heteroatom is a nitrogen atom.
  • the number of hetero atoms contained as ring skeleton-constituting atoms of the hetero ring is 1 or more, preferably 1 to 3, more preferably 1 or 2. In one preferred embodiment, the number of heteroatoms is one. When the number of heteroatoms is two or more, they are preferably heteroatoms of the same type, but may be composed of heteroatoms of different types. For example, two or more heteroatoms may all be nitrogen atoms.
  • Ring skeleton atoms other than heteroatoms are carbon atoms.
  • the number of atoms constituting the ring skeleton constituting the hetero ring directly condensed to the benzene ring constituting the indol-1-yl group is preferably 4 to 8, more preferably 5 to 7, 5 or 6 is more preferred.
  • the heterocyclic ring has 5 ring skeleton-constituting atoms.
  • the hetero ring preferably has two or more conjugated double bonds, and the condensed hetero ring preferably expands the conjugated system of the indole ring (i.e., has aromaticity). is preferred).
  • Preferred examples of heterocycles include furan rings, thiophene rings and pyrrole rings.
  • the ring directly condensed to the benzene ring or pyrrole ring constituting the indol-1-yl group may be further condensed with another ring.
  • the condensed ring may be a monocyclic ring or a condensed ring.
  • condensed rings include aromatic hydrocarbon rings, aromatic heterocycles, aliphatic hydrocarbon rings, and aliphatic heterocycles.
  • at least one hetero ring is directly condensed with the benzene ring or pyrrole ring that constitutes the indol-1-yl group.
  • the condensed rings that make up the condensed indol-1-yl group contain two or more heterocycles.
  • a case containing two heterocycles and a case containing three heterocycles can be exemplified.
  • a benzene ring can be mentioned as an aromatic hydrocarbon ring in the present specification.
  • Aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, pyrrole ring, pyrazole ring and imidazole ring.
  • a cyclopentane ring, a cyclohexane ring, and a cycloheptane ring can be mentioned as the aliphatic hydrocarbon ring.
  • Examples of aliphatic heterocycles include piperidine ring, pyrrolidine ring and imidazoline ring.
  • condensed rings include naphthalene ring, anthracene ring, phenanthrene ring, pyran ring, tetracene ring, indole ring, isoindole ring, benzimidazole ring, benzotriazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, and cinnoline. rings can be mentioned.
  • the ring-fused indol-1-yl group is a benzofuran-fused indol-1-yl group, a benzothiophene-fused indol-1-yl group, an indole-fused indol-1-yl group, or a sylindene-fused indol-1-yl group.
  • the indol-1-yl group is a benzofuran-fused indol-1-yl group, a benzothiophene-fused indol-1-yl group, or an indole-fused indol-1-yl group.
  • a substituted or unsubstituted benzofuro[2,3-e]indol-1-yl group can be employed as the benzofuran-fused indol-1-yl group.
  • a substituted or unsubstituted benzofuro[3,2-e]indol-1-yl group can also be employed.
  • a substituted or unsubstituted benzofuro[2,3-f]indol-1-yl group can also be employed.
  • a substituted or unsubstituted benzofuro[3,2-f]indol-1-yl group can also be employed.
  • a substituted or unsubstituted benzofuro[2,3-g]indol-1-yl group can also be employed.
  • a substituted or unsubstituted benzofuro[3,2-g]indol-1-yl group can also be employed.
  • the condensed rings constituting these groups may or may not be further condensed.
  • a substituted or unsubstituted benzofuro[2,3-a]carbazol-9-yl group can be employed as the benzofuran-fused indol-1-yl group.
  • a substituted or unsubstituted benzofuro[3,2-a]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted benzofuro[2,3-b]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted benzofuro[3,2-b]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted benzofuro[2,3-c]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted benzofuro[3,2-c]carbazol-9-yl group can also be employed.
  • the condensed rings constituting these groups may or may not be further condensed.
  • Preferred benzofuran-fused indol-1-yl groups include groups having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted.
  • those substituted with an aryl group such as a phenyl group, or those substituted at the 3-position of the carbazole ring can be preferably exemplified.
  • the benzene ring in the structure below may or may not be condensed with another ring.
  • a carbazol-9-yl group in which two benzofuran rings are condensed at the 2 and 3 positions can also be employed. Specifically, it is a group having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted. Further, the benzene ring in the structure below may or may not be condensed with another ring.
  • a substituted or unsubstituted benzothieno[2,3-e]indol-1-yl group can be employed as the benzothiophene-fused indol-1-yl group.
  • a substituted or unsubstituted benzothieno[3,2-e]indol-1-yl group can also be employed.
  • a substituted or unsubstituted benzothieno[2,3-f]indol-1-yl group can also be employed.
  • a substituted or unsubstituted benzothieno[3,2-f]indol-1-yl group can also be employed.
  • a substituted or unsubstituted benzothieno[2,3-g]indol-1-yl group can also be employed.
  • a substituted or unsubstituted benzothieno[3,2-g]indol-1-yl group can also be employed.
  • the condensed rings constituting these groups may or may not be further condensed.
  • a substituted or unsubstituted benzothieno[2,3-a]carbazol-9-yl group can be employed as the benzothiophene-fused indol-1-yl group.
  • a substituted or unsubstituted benzothieno[3,2-a]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted benzothieno[2,3-b]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted benzothieno[3,2-b]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted benzothieno[2,3-c]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted benzothieno[3,2-c]carbazol-9-yl group can also be employed.
  • the condensed rings constituting these groups may or may not be further condensed.
  • Preferred benzothiophene-fused indol-1-yl groups include groups having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted.
  • hydrogen atoms in the structures below may or may not be substituted.
  • those substituted with an aryl group such as a phenyl group, or those substituted at the 3-position of the carbazole ring can be preferably exemplified.
  • the benzene ring in the structure below may or may not be condensed with another ring.
  • a carbazol-9-yl group in which two benzothiophene rings are fused at the 2 and 3 positions can also be employed. Specifically, it is a group having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted. Further, the benzene ring in the structure below may or may not be condensed with another ring.
  • a substituted or unsubstituted indolo[2,3-e]indol-1-yl group can be employed as the indole-fused indol-1-yl group.
  • a substituted or unsubstituted indolo[3,2-e]indol-1-yl group can also be employed.
  • a substituted or unsubstituted indolo[2,3-f]indol-1-yl group can also be employed.
  • a substituted or unsubstituted indolo[3,2-f]indol-1-yl group can also be employed.
  • a substituted or unsubstituted indolo[2,3-g]indol-1-yl group can also be employed.
  • a substituted or unsubstituted indolo[3,2-g]indol-1-yl group can also be employed.
  • the condensed rings constituting these groups may or may not be further condensed.
  • a substituted or unsubstituted indolo[2,3-a]carbazol-9-yl group can be employed as the indole-fused indol-1-yl group.
  • a substituted or unsubstituted indolo[3,2-a]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted indolo[2,3-b]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted indolo[3,2-b]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted indolo[2,3-c]carbazol-9-yl group can also be employed.
  • a substituted or unsubstituted indolo[3,2-c]carbazol-9-yl group can also be employed.
  • the condensed rings constituting these groups may or may not be further condensed.
  • Preferred indole-fused indol-1-yl groups include groups having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted.
  • hydrogen atoms in the structures below may or may not be substituted.
  • those substituted with an aryl group such as a phenyl group, or those substituted at the 3-position of the carbazole ring can be preferably exemplified.
  • the benzene ring in the structure below may or may not be condensed with another ring.
  • alkyl group as used herein may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
  • the number of carbon atoms in the alkyl group can be, for example, 1 or more, 2 or more, or 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, n-decanyl group, isodecanyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group.
  • alkyl group as a substituent may be further substituted with a deuterium atom, an aryl group, an alkoxy group, an aryloxy group, or a halogen atom.
  • An "alkenyl group” may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
  • the number of carbon atoms in the alkenyl group can be, for example, 2 or more and 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
  • alkenyl groups include ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, n-pentenyl, isopentenyl, n-hexenyl, isohexenyl, and 2-ethylhexenyl groups. can be mentioned.
  • the alkenyl group as a substituent may be further substituted.
  • the “aryl group” and “heteroaryl group” may be monocyclic or condensed rings in which two or more rings are condensed. In the case of condensed rings, the number of condensed rings is preferably 2 to 6, and can be selected from 2 to 4, for example.
  • rings include benzene ring, pyridine ring, pyrimidine ring, triazine ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, quinoline ring, pyrazine ring, quinoxaline ring, and naphthyridine ring.
  • arylene group or heteroarylene group include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 2-pyridyl group, 3-pyridyl group, 4 - pyridyl group.
  • the ring-fused indol-1-yl group preferably has 16 or more atoms other than hydrogen atoms and deuterium atoms, more preferably 20 or more atoms, and can have, for example, 26 or more atoms. Also, it is preferably 80 or less, more preferably 50 or less, and even more preferably 30 or less.
  • the number of ring-fused indol-1-yl groups selected from R 1 to R 4 may be one, two, or three. .
  • there may be one donor group other than the ring-fused indol-1-yl group hereinafter referred to as "another donor group”
  • another donor group may be two. When there are two, they may be the same or different.
  • there are two ring-fused indol-1-yl groups one or no other donor group may be present.
  • there are three ring-fused indol-1-yl groups there are no other donor groups.
  • Other donor groups are groups with negative Hammett ⁇ p values.
  • k is the rate constant of a benzene derivative without a substituent
  • k0 is the rate constant of a benzene derivative substituted with a substituent
  • K is the equilibrium constant of a benzene derivative without a substituent
  • K0 is a substituent.
  • the equilibrium constant of the benzene derivative substituted with ⁇ represents the reaction constant determined by the type and conditions of the reaction.
  • Hammett's ⁇ p value and the numerical value of each substituent in the present invention, refer to the description of the ⁇ p value in Hansch, C. et al., Chem. Rev., 91, 165-195 (1991). can.
  • a group having a negative Hammett's ⁇ p value tends to exhibit electron-donating properties (donor properties)
  • a group having a positive Hammett's ⁇ p value tends to exhibit electron-withdrawing properties (acceptor properties).
  • Another donor group in the present invention is preferably a group containing a substituted amino group.
  • the substituent bonded to the nitrogen atom of the amino group is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. , a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • the substituted amino group is particularly preferably a substituted or unsubstituted diarylamino group or a substituted or unsubstituted diheteroarylamino group.
  • the other donor group in the present invention may be a group that binds through the nitrogen atom of the substituted amino group, or a group that binds through the group to which the substituted amino group is bound.
  • the group to which the substituted amino group is bonded is preferably a ⁇ -conjugated group. More preferred are groups attached at the nitrogen atom of a substituted amino group.
  • a substituted or unsubstituted carbazol-9-yl group is particularly preferred as another donor group in the present invention.
  • the two benzene rings that make up the carbazol-9-yl group are not condensed.
  • Substituents for the carbazol-9-yl group include alkyl groups, alkenyl groups, aryl groups, heteroaryl groups, alkoxy groups, alkylthio groups, aryloxy groups, arylthio groups, heteroaryloxy groups, heteroarylthio groups, and substituted amino groups.
  • groups, and preferred substituents include alkyl groups, aryl groups, and substituted amino groups. For a description of substituted amino groups, reference can be made to the description in the previous paragraph.
  • the substituted amino group here includes a substituted or unsubstituted carbazolyl group, such as a substituted or unsubstituted carbazol-3-yl group and a substituted or unsubstituted carbazol-9-yl group.
  • Other donor groups in the present invention preferably have 8 or more atoms other than hydrogen atoms and deuterium atoms, more preferably 12 or more atoms, and can also have, for example, 16 or more atoms. Also, it is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less.
  • the ring-fused indol-1-yl group is limited to those containing two or more heterocycles in the condensed rings constituting the group, and other donor groups are defined as “other "donor group”.
  • Other donor groups are defined as “other "donor group”. Examples of condensed rings containing two or more heterocycles include D13 to D152 described later.
  • the ring-fused indol-1-yl group is limited to those in which at least one heterocyclic ring is directly fused to the benzene ring or pyrrole ring of the indole, and other donor properties The group is referred to as "another donor group”.
  • D1 and D2 in formula (1) can take are shown below.
  • D7 to D152 are specific examples of ring-fused indol-1-yl groups
  • D1 to D6 are specific examples of other donor groups.
  • Ph represents a phenyl group and * represents a bonding position.
  • CH 3 is omitted from the methyl group, and for example, D2 represents a 3-methylcarbazol-9-yl group.
  • D1d to D152d Those in which all hydrogen atoms in D1 to D152 are replaced with deuterium atoms are disclosed here as D1d to D152d.
  • D31d1 to D42d1 obtained by substituting the phenyl group represented by "Ph" in D31 to D42 and D61 to D79 with a pentadeuteriophenyl group (a group in which all the hydrogen atoms of the phenyl group are substituted with deuterium atoms) and D61d1-D79d1.
  • R 1 to 2 of R 1 to R 4 in general formula (1) each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded via a carbon atom.
  • R 1 to R 4 those which are not a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group bonded via a carbon atom, or a ring-fused indol-1-yl group are hydrogen atoms or deuterium atoms. represents an atom, which can be, for example, a hydrogen atom.
  • R 1 to R 4 Only one of R 1 to R 4 may be a substituted or unsubstituted aryl group, and only one of R 1 to R 4 is a substituted or unsubstituted hetero group attached at a carbon atom. It may be an aryl group. Two of R 1 to R 4 may be the same substituted or unsubstituted aryl group or different substituted or unsubstituted aryl groups. Two of R 1 to R 4 may be the same substituted or unsubstituted heteroaryl group, or may be different substituted or unsubstituted heteroaryl groups.
  • R 1 to R 4 may be a substituted or unsubstituted aryl group and the other one may be a substituted or unsubstituted heteroaryl group bonded via a carbon atom. In a preferred embodiment of the present invention, only one of R 1 to R 4 is a substituted or unsubstituted aryl group, or two of R 1 to R 4 are each independently substituted or unsubstituted aryl is the base.
  • the ⁇ EST difference between the lowest excited singlet energy and the lowest excited triplet energy of the donor-substituted terephthalonitrile is reduced, and the usefulness as a delayed phosphor (luminous efficiency, etc.) can be improved.
  • a heteroaryl group is a heteroaryl group attached at a carbon atom.
  • the aryl group substituents and the heteroaryl group substituents include alkyl groups, alkenyl groups, aryl groups, heteroaryl groups, alkoxy groups, alkylthio groups, aryloxy groups, arylthio groups, heteroaryloxy groups, and heteroarylthio groups. , cyano groups, and combinations of these groups.
  • Preferred groups of substituents include alkyl groups, aryl groups, alkoxy groups, alkylthio groups, and cyano groups.
  • the aryl and heteroaryl groups are substituted with alkyl groups or unsubstituted. Examples include an unsubstituted phenyl group and a phenyl group substituted with an alkyl group.
  • Ar1d to Ar81d in which all the hydrogen atoms of Ar1 to Ar81 are replaced with deuterium atoms are disclosed here.
  • the compound represented by the general formula (1) preferably does not contain a metal atom, and consists only of atoms selected from the group consisting of a carbon atom, a hydrogen atom, a deuterium atom, a nitrogen atom, an oxygen atom and a sulfur atom. It may be a compound that is In a preferred embodiment of the present invention, the compound represented by general formula (1) is composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and oxygen atoms. Further, the compound represented by general formula (1) may be a compound composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and sulfur atoms.
  • the compound represented by general formula (1) may be a compound composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms and nitrogen atoms.
  • the compound represented by general formula (1) may be a compound composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms and nitrogen atoms.
  • the compound represented by general formula (1) may be a compound containing no hydrogen atom and containing a deuterium atom.
  • the compound represented by general formula (1) may be a compound composed only of atoms selected from the group consisting of carbon atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
  • the compound represented by general formula (1) has a symmetrical structure. For example, it may have a line-symmetrical structure or a rotationally-symmetrical structure.
  • Tables 1 to 6 show the structures of compounds by specifying D 1 , D 2 , D 3 , Ar, Ar 1 and Ar 2 for each compound.
  • D 1 , D 2 , D 3 , Ar, Ar 1 and Ar 2 for each compound.
  • Ar is fixed to Ar1 and D 1 has the same structure as D 2 .
  • Compounds 1 to 125 are those in which D 1 and D 2 are D7 to D20, D22 to D30, D36 to D48, D50 to D60, D67 to D73, and D79 to D149 in this order.
  • Compounds 856 to 2451 where D 1 is D 2 is D21, and Ar is Ar2 to Ar21, Ar25 to Ar52, and Ar54 to Ar81 in that order are compounds 856 to 931, and D 1 is D 2 is D31 wherein Ar is Ar2 to Ar21, Ar25 to Ar52, and Ar54 to Ar81 are numbered in order as compounds 931 to 1006, and finally D1 is D2 is D152, Compounds 2376 to 2451 are those in which Ar is Ar2 to Ar21, Ar25 to Ar52, and Ar54 to Ar81 in order.
  • Tables 1-6 compounds 1-25053 are individually identified in structure and specifically disclosed herein.
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by a vapor deposition method and used. It is preferably 1200 or less, more preferably 1000 or less, and even more preferably 900 or less. The lower limit of the molecular weight is the molecular weight of the smallest compound represented by general formula (1).
  • the compound represented by general formula (1) may be formed into a film by a coating method regardless of its molecular weight. If a coating method is used, it is possible to form a film even with a compound having a relatively large molecular weight.
  • the compound represented by the general formula (1) has the advantage of being easily dissolved in an organic solvent. Therefore, the compound represented by the general formula (1) can be easily applied to the coating method, and can be easily purified to increase its purity. Since the compound represented by the general formula (1) has a short delayed fluorescence lifetime ( ⁇ 2), it can improve the luminous efficiency of the organic light-emitting device and suppress roll-off. Therefore, it is possible to provide an organic light-emitting device that is efficient and excellent in stability (durability).
  • a compound containing a plurality of structures represented by general formula (1) in its molecule as a light-emitting material.
  • a polymerizable group is preliminarily present in the structure represented by the general formula (1), and a polymer obtained by polymerizing the polymerizable group is used as the light-emitting material.
  • a monomer containing a polymerizable functional group in any one of R 1 to R 4 of general formula (1) and polymerizing it alone or copolymerizing it with other monomers, It is conceivable to obtain a polymer having repeating units and use the polymer as a light-emitting material.
  • a dimer or trimer by coupling compounds having a structure represented by general formula (1) and use them as a light-emitting material.
  • polymers having repeating units containing the structure represented by general formula (1) include polymers containing structures represented by the following general formula (2) or (3).
  • Q represents a group containing the structure represented by general formula (1)
  • L 1 and L 2 represent linking groups.
  • the number of carbon atoms in the linking group is preferably 0-20, more preferably 1-15, still more preferably 2-10.
  • the linking group preferably has a structure represented by -X 11 -L 11 -.
  • X 11 represents an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group or a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted A phenylene group is more preferred.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms substituted or unsubstituted alkoxy groups having 1 to 6 carbon atoms, and halogen atoms, more preferably unsubstituted alkyl groups having 1 to 3 carbon atoms.
  • an unsubstituted alkoxy group having 1 to 3 carbon atoms a fluorine atom or a chlorine atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms or an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the linking groups represented by L 1 and L 2 can be bonded to any of R 1 to R 4 constituting Q in general formula (1). Two or more linking groups may be linked to one Q to form a crosslinked structure or network structure.
  • repeating unit examples include structures represented by the following formulas (4) to (7).
  • Polymers having repeating units containing these formulas (4) to (7) are obtained by introducing a hydroxy group into any of R 1 to R 4 in general formula (1), and using it as a linker, the following compounds are prepared. It can be synthesized by reacting to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by general formula (1) in the molecule may be a polymer consisting only of repeating units having the structure represented by general formula (1), or may have other structures. It may be a polymer containing a repeating unit having Moreover, the repeating unit having the structure represented by the general formula (1) contained in the polymer may be of a single type, or may be of two or more types. Examples of repeating units having no structure represented by general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include repeating units derived from monomers having ethylenically unsaturated bonds such as ethylene and styrene.
  • the compound represented by general formula (1) is a luminescent material. In one embodiment, the compound represented by general formula (1) is a compound capable of emitting delayed fluorescence. In certain embodiments of the present disclosure, the compound represented by general formula (1), when excited by thermal or electronic means, is in the UV region, blue, green, yellow, orange, red region of the visible spectrum (eg, about 420 nm to about 500 nm, about 500 nm to about 600 nm, or about 600 nm to about 700 nm) or can emit light in the near-infrared region.
  • the compound represented by general formula (1) when excited by thermal or electronic means, is in the UV region, blue, green, yellow, orange, red region of the visible spectrum (eg, about 420 nm to about 500 nm, about 500 nm to about 600 nm, or about 600 nm to about 700 nm) or can emit light in the near-infrared region.
  • compounds represented by general formula (1) when excited by thermal or electronic means, exhibit a red or orange region of the visible spectrum (e.g., about 620 nm to about 780 nm, about 650 nm). In certain embodiments of the present disclosure, compounds represented by general formula (1), when excited by thermal or electronic means, exhibit an orange or yellow region of the visible spectrum (e.g., about 570 nm to about 620 nm, about 590 nm, about 570 nm). In certain embodiments of the present disclosure, the compound represented by general formula (1) is in the green region of the visible spectrum (eg, about 490 nm to about 575 nm, about 510 nm) when excited by thermal or electronic means. Can emit light.
  • the compound represented by general formula (1) is in the blue region of the visible spectrum (eg, about 400 nm to about 490 nm, about 475 nm) when excited by thermal or electronic means. Can emit light. In certain embodiments of the present disclosure, compounds of general formula (1) are capable of emitting light in the ultraviolet spectral region (eg, 280-400 nm) when excited by thermal or electronic means. In certain embodiments of the present disclosure, compounds of general formula (1) are capable of emitting light in the infrared spectral region (eg, 780 nm-2 ⁇ m) when excited by thermal or electronic means.
  • Electronic properties of small molecule chemical substance libraries can be calculated using known ab initio quantum chemical calculations.
  • the Hartree-Fock equations using time-dependent density functional theory with 6-31G* as the basis and a family of functions known as Becke's three-parameter, Lee-Yang-Parr hybrid functionals (TD-DFT/B3LYP/6-31G*) can be analyzed to screen for molecular fragments (parts) with HOMO above a certain threshold and LUMO below a certain threshold.
  • the donor moiety (“D”) can be selected when there is a HOMO energy (eg, ionization potential) of ⁇ 6.5 eV or higher.
  • acceptor moieties can be selected when there is a LUMO energy (eg, electron affinity) of ⁇ 0.5 eV or less.
  • the bridging moiety (“B”) is, for example, a strongly conjugated system that can tightly constrain the acceptor and donor moieties to specific conformations, thereby allowing overlap between the ⁇ -conjugated systems of the donor and acceptor moieties. to prevent
  • compound libraries are screened using one or more of the following properties. 1. Emission around a specific wavelength2. Calculated triplet states above a particular energy level;3. ⁇ EST values below a specified value;4. quantum yield above a specified value;5. HOMO level6.
  • the difference between the lowest singlet excited state and the lowest triplet excited state at 77 K is less than about 0.5 eV, less than about 0.4 eV, less than about 0.3 eV, less than about 0.2 eV or less than about 0.1 eV.
  • the ⁇ EST value is less than about 0.09 eV, less than about 0.08 eV, less than about 0.07 eV, less than about 0.06 eV, less than about 0.05 eV, less than about 0.04 eV, less than about 0.03 eV. , less than about 0.02 eV or less than about 0.01 eV.
  • the compound represented by general formula (1) comprises more than 25% of , about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% or more.
  • the compound represented by general formula (1) is a novel compound.
  • the compound represented by general formula (1) can be synthesized by combining known reactions. For example, a (hetero)aryldifluoroterephthalonitrile substituted with a fluorine atom at the position where the donor group D 1 or D 2 is to be introduced is treated with D 1 -H or D 2 -H in tetrahydrofuran in the presence of sodium hydride. It is possible to synthesize by reacting. When D 1 and D 2 are different from each other, the reaction with D 1 —H and D 2 —H may be carried out in two steps. Specific reaction conditions and reaction procedures can be referred to Examples described later.
  • a compound represented by general formula (1) is combined with, dispersed with, covalently bonded with, coated with, supported with, or associated with the compound 1 Used with one or more materials (eg, small molecules, polymers, metals, metal complexes, etc.) to form a solid film or layer.
  • a compound represented by general formula (1) can be combined with an electroactive material to form a film.
  • compounds of general formula (1) may be combined with hole-transporting polymers.
  • a compound of general formula (1) may be combined with an electron transport polymer.
  • compounds of general formula (1) may be combined with hole-transporting and electron-transporting polymers.
  • compounds of general formula (1) may be combined with copolymers having both hole-transporting and electron-transporting moieties.
  • electrons and/or holes formed in the solid film or layer can interact with the compound represented by general formula (1).
  • films comprising compounds of the present invention represented by general formula (1) can be formed in a wet process.
  • a solution of a composition containing a compound of the invention is applied to the surface and a film is formed after removal of the solvent.
  • wet processes include spin coating, slit coating, inkjet (spray), gravure printing, offset printing, and flexographic printing, but are not limited to these.
  • suitable organic solvents are selected and used that are capable of dissolving compositions containing the compounds of the present invention.
  • compounds included in the composition can be introduced with substituents (eg, alkyl groups) that increase their solubility in organic solvents.
  • films comprising compounds of the invention can be formed in a dry process.
  • the dry process can be vacuum deposition, but is not limited to this.
  • the compounds forming the film may be co-deposited from separate deposition sources, or may be co-deposited from a single deposition source in which the compounds are mixed.
  • a single vapor deposition source a mixed powder obtained by mixing powders of compounds may be used, a compression molding obtained by compressing the mixed powder may be used, or each compound may be heated, melted, and cooled. Mixtures may also be used.
  • the composition ratio of the plurality of compounds contained in the vapor deposition source is reduced by performing co-deposition under conditions in which the vapor deposition rates (weight reduction rates) of the plurality of compounds contained in the single vapor deposition source match or substantially match.
  • the temperature at which each of the co-deposited compounds has the same weight loss rate can be identified and used as the temperature during co-deposition.
  • Organic Light Emitting Diode One aspect of the present invention relates to use of the compound represented by general formula (1) of the present invention as a light-emitting material for an organic light-emitting device.
  • the compound represented by general formula (1) of the present invention can be effectively used as a light-emitting material in the light-emitting layer of an organic light-emitting device.
  • the compound represented by general formula (1) contains delayed fluorescence that emits delayed fluorescence (delayed phosphor).
  • the present invention provides a delayed phosphor having a structure represented by general formula (1).
  • the present invention relates to the use of compounds represented by general formula (1) as delayed phosphors.
  • the present invention provides that the compound represented by general formula (1) can be used as a host material and can be used with one or more luminescent materials, wherein the luminescent material is a fluorescent material, It can be a phosphorescent material or TADF.
  • the compound represented by general formula (1) can also be used as a hole transport material.
  • the compound represented by general formula (1) can be used as an electron transport material.
  • the present invention relates to a method for producing delayed fluorescence from a compound represented by general formula (1).
  • an organic light-emitting device containing a compound as a light-emitting material emits delayed fluorescence and exhibits high light emission efficiency.
  • the emissive layer comprises a compound represented by general formula (1), and the compound represented by general formula (1) is oriented parallel to the substrate.
  • the substrate is a film-forming surface.
  • the orientation of the compounds of general formula (1) with respect to the film-forming surface affects or dictates the direction of propagation of light emitted by the aligning compounds.
  • aligning the propagation direction of light emitted by compounds represented by general formula (1) improves light extraction efficiency from the emissive layer.
  • One aspect of the present invention relates to an organic light emitting device.
  • the organic light emitting device includes an emissive layer.
  • the light-emitting layer contains a compound represented by general formula (1) as a light-emitting material.
  • the organic light emitting device is an organic photoluminescent device (organic PL device).
  • the organic light-emitting device is an organic electroluminescent device (organic EL device).
  • the compound represented by general formula (1) assists (as a so-called assist dopant) the light emission of other light-emitting materials contained in the light-emitting layer.
  • the compound represented by general formula (1) contained in the light-emitting layer is at its lowest excited singlet energy level and is at the lowest excited singlet energy level of the host material contained in the light-emitting layer.
  • the organic photoluminescent device includes at least one emissive layer.
  • an organic electroluminescent device includes at least an anode, a cathode, and an organic layer between said anode and said cathode.
  • the organic layers include at least the emissive layer.
  • the organic layers include only the emissive layer.
  • the organic layers include one or more organic layers in addition to the emissive layer. Examples of organic layers include hole transport layers, hole injection layers, electron blocking layers, hole blocking layers, electron injection layers, electron transport layers and exciton blocking layers.
  • the hole transport layer may be a hole injection transport layer with hole injection functionality
  • the electron transport layer may be an electron injection transport layer with electron injection functionality.
  • the emissive layer is the layer in which holes and electrons injected from the anode and cathode, respectively, recombine to form excitons. In some embodiments, the layer emits light. In some embodiments, only emissive materials are used as emissive layers. In some embodiments, the emissive layer includes an emissive material and a host material. In some embodiments, the emissive material is one or more compounds of general formula (1). In one embodiment, singlet and triplet excitons generated in the luminescent material are confined within the luminescent material to improve the light emission efficiency of the organic electroluminescent and organic photoluminescent devices.
  • a host material is used in addition to the emissive material in the emissive layer.
  • the host material is an organic compound.
  • the organic compound has excited singlet energies and excited triplet energies, at least one of which is higher than those of the light-emitting materials of the present invention.
  • the singlet and triplet excitons generated in the luminescent material of the invention are confined within the molecules of the luminescent material of the invention. In certain embodiments, singlet and triplet excitons are sufficiently confined to improve light emission efficiency.
  • singlet and triplet excitons are not sufficiently confined, although high light emission efficiency can still be obtained, i.e., host materials that can achieve high light emission efficiency are particularly limited. can be used in the present invention without
  • light emission occurs in the emissive material in the emissive layer of the device of the invention.
  • emitted light includes both fluorescence and delayed fluorescence.
  • the emitted light includes emitted light from the host material.
  • the emitted light consists of emitted light from the host material.
  • the emitted light includes emitted light from the compound represented by general formula (1) and emitted light from the host material.
  • a TADF molecule and a host material are used.
  • TADF is an assisting dopant.
  • the compound represented by formula (1) When the compound represented by formula (1) is used as the assist dopant, various compounds can be employed as the luminescent material (preferably fluorescent material).
  • the luminescent materials include anthracene derivatives, tetracene derivatives, naphthacene derivatives, pyrene derivatives, perylene derivatives, chrysene derivatives, rubrene derivatives, coumarin derivatives, pyran derivatives, stilbene derivatives, fluorene derivatives, anthryl derivatives, pyrromethene derivatives, terphenyl derivatives.
  • terphenylene derivatives fluoranthene derivatives, amine derivatives, quinacridone derivatives, oxadiazole derivatives, malononitrile derivatives, pyran derivatives, carbazole derivatives, julolidine derivatives, thiazole derivatives, derivatives containing metals (Al, Zn), and the like.
  • These exemplified skeletons may or may not have a substituent. Also, these exemplary skeletons may be combined. Examples of light-emitting materials that can be used in combination with the assist dopant represented by the general formula (1) are given below.
  • the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 0.1% by weight or more. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 1% or more by weight. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 50% by weight or less. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 20% by weight or less.
  • the amount of the compound of the invention as the light-emitting material contained in the light-emitting layer is 10% by weight or less.
  • the host material of the emissive layer is an organic compound with hole-transporting and electron-transporting functionality.
  • the host material of the emissive layer is an organic compound that prevents the wavelength of emitted light from increasing.
  • the host material of the emissive layer is an organic compound with a high glass transition temperature.
  • the host material is selected from the group consisting of:
  • the emissive layer comprises two or more structurally different TADF molecules.
  • the light-emitting layer can be made to contain three kinds of materials in which the excited singlet energy level is higher in the order of the host material, the first TADF molecule, and the second TADF molecule.
  • the difference ⁇ EST between the lowest excited singlet energy level and the lowest excited triplet energy level at 77K is preferably 0.3 eV or less, and 0.25 eV or less.
  • the content of the first TADF molecules in the light-emitting layer is preferably higher than the content of the second TADF molecules. Also, the content of the host material in the light-emitting layer is preferably higher than the content of the second TADF molecules. The content of the first TADF molecules in the light-emitting layer may be greater than, less than, or the same as the content of the host material.
  • the composition within the emissive layer may be 10-70% by weight of the host material, 10-80% by weight of the first TADF molecule, and 0.1-30% by weight of the second TADF molecule. In some embodiments, the composition within the emissive layer may be 20-45% by weight of the host material, 50-75% by weight of the first TADF molecule, and 5-20% by weight of the second TADF molecule.
  • the luminescence quantum yield ⁇ PL2(100) due to optical excitation of the film satisfies the relational expression ⁇ PL2(B)> ⁇ PL2(100).
  • the emissive layer can include three structurally different TADF molecules.
  • the compound of the present invention can be any of a plurality of TADF compounds contained in the emissive layer.
  • the emissive layer can be composed of materials selected from the group consisting of host materials, assisting dopants, and emissive materials. In some embodiments, the emissive layer does not contain metallic elements. In some embodiments, the emissive layer can be composed of a material consisting only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms. Alternatively, the light-emitting layer can be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and oxygen atoms.
  • the light-emitting layer can be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
  • the TADF material may be a known delayed fluorescence material.
  • Preferred delayed fluorescence materials include paragraphs 0008 to 0048 and 0095 to 0133 of WO2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013/011954, and paragraphs 0007 to 0033 and 0059 to 0066 of WO2013/011955.
  • the organic electroluminescent device of the present invention is held by a substrate, which is not particularly limited and commonly used in organic electroluminescent devices such as glass, transparent plastic, quartz and silicon. Any material formed by
  • the anode of the organic electroluminescent device is made from metals, alloys, conductive compounds, or combinations thereof.
  • the metal, alloy or conductive compound has a high work function (4 eV or greater).
  • the metal is Au.
  • the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO2 and ZnO. Some embodiments use amorphous materials that can form transparent conductive films, such as IDIXO (In 2 O 3 —ZnO).
  • the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering.
  • the film is patterned by photolithographic methods. In some embodiments, if the pattern does not need to be highly precise (eg, about 100 ⁇ m or greater), the pattern may be formed using a mask with a shape suitable for vapor deposition or sputtering onto the electrode material. In some embodiments, wet film forming methods such as printing and coating methods are used when coating materials such as organic conductive compounds can be applied.
  • the anode has a transmittance of greater than 10% when emitted light passes through the anode, and the anode has a sheet resistance of several hundred ohms per unit area or less. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode varies depending on the material used.
  • the cathode is made of electrode materials such as metals with a low work function (4 eV or less) (referred to as electron-injecting metals), alloys, conductive compounds, or combinations thereof.
  • the electrode material is sodium, sodium-potassium alloys, magnesium, lithium, magnesium-copper mixtures, magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide ( Al2 O 3 ) mixtures, indium, lithium-aluminum mixtures and rare earth elements.
  • a mixture of an electron-injecting metal and a second metal that is a stable metal with a higher work function than the electron-injecting metal is used.
  • the mixture is selected from magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, lithium-aluminum mixtures and aluminum. In some embodiments, the mixture improves electron injection properties and resistance to oxidation.
  • the cathode is manufactured by depositing or sputtering the electrode material as a thin film. In some embodiments, the cathode has a sheet resistance of no more than several hundred ohms per unit area. In some embodiments, the thickness of said cathode is between 10 nm and 5 ⁇ m. In some embodiments, the thickness of the cathode is 50-200 nm.
  • either one of the anode and cathode of the organic electroluminescent device is transparent or translucent to allow transmission of emitted light.
  • transparent or translucent electroluminescent elements enhance light radiance.
  • the cathode is formed of a conductive transparent material as described above for the anode, thereby forming a transparent or translucent cathode.
  • the device includes an anode and a cathode, both transparent or translucent.
  • the injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces drive voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be placed between the anode and the light-emitting layer or hole-transporting layer and between the cathode and the light-emitting layer or electron-transporting layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer. Preferred examples of compounds that can be used as the hole injection material are given below.
  • a barrier layer is a layer that can prevent charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing out of the light-emitting layer.
  • an electron blocking layer is between the light-emitting layer and the hole-transporting layer to block electrons from passing through the light-emitting layer to the hole-transporting layer.
  • a hole blocking layer is between the emissive layer and the electron transport layer and blocks holes from passing through the emissive layer to the electron transport layer.
  • the barrier layer prevents excitons from diffusing out of the emissive layer.
  • the electron blocking layer and the hole blocking layer constitute an exciton blocking layer.
  • the terms "electron blocking layer” or "exciton blocking layer” include layers that have the functionality of both an electron blocking layer and an exciton blocking layer.
  • Hole blocking layer functions as an electron transport layer. In some embodiments, the hole blocking layer blocks holes from reaching the electron transport layer during electron transport. In some embodiments, the hole blocking layer increases the probability of recombination of electrons and holes in the emissive layer.
  • the materials used for the hole blocking layer can be the same materials as described above for the electron transport layer. Preferred examples of compounds that can be used in the hole blocking layer are given below.
  • Electron barrier layer The electron blocking layer transports holes. In some embodiments, the electron blocking layer prevents electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron blocking layer increases the probability of recombination of electrons and holes in the emissive layer.
  • the materials used for the electron blocking layer may be the same materials as described above for the hole transport layer. Specific examples of preferred compounds that can be used as the electron barrier material are given below.
  • Exciton barrier layer The exciton blocking layer prevents diffusion of excitons generated through recombination of holes and electrons in the light emitting layer to the charge transport layer. In some embodiments, the exciton blocking layer allows effective confinement of excitons in the emissive layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, an exciton blocking layer is adjacent to the emissive layer on either the anode side or the cathode side, and on both sides thereof. In some embodiments, when an exciton blocking layer is present on the anode side, it may be present between and adjacent to the hole-transporting layer and the light-emitting layer.
  • an exciton blocking layer when an exciton blocking layer is present on the cathode side, it may be between and adjacent to the emissive layer and the cathode. In some embodiments, a hole-injection layer, electron-blocking layer, or similar layer is present between the anode and an exciton-blocking layer adjacent to the light-emitting layer on the anode side. In some embodiments, a hole injection layer, electron blocking layer, hole blocking layer or similar layer is present between the cathode and an exciton blocking layer adjacent to the emissive layer on the cathode side. In some embodiments, the exciton blocking layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and triplet energy, respectively, of the emissive material.
  • the hole transport layer comprises a hole transport material.
  • the hole transport layer is a single layer.
  • the hole transport layer has multiple layers.
  • the hole transport material has one property of a hole injection or transport property and an electron barrier property.
  • the hole transport material is an organic material.
  • the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones.
  • the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferred compounds that can be used as the hole-transporting material are given below.
  • the electron transport layer includes an electron transport material.
  • the electron transport layer is a single layer.
  • the electron transport layer has multiple layers.
  • the electron-transporting material need only function to transport electrons injected from the cathode to the emissive layer.
  • the electron transport material also functions as a hole blocking material.
  • electron-transporting layers examples include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxazide Azole derivatives, azole derivatives, azine derivatives or combinations thereof, or polymers thereof.
  • the electron transport material is a thiadiazole derivative or a quinoxaline derivative.
  • the electron transport material is a polymeric material. Specific examples of preferred compounds that can be used as the electron-transporting material are given below.
  • examples of preferred compounds as materials that can be added to each organic layer are given.
  • it may be added as a stabilizing material.
  • Preferred materials that can be used in organic electroluminescence elements are specifically exemplified, but materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even compounds exemplified as materials having specific functions can be used as materials having other functions.
  • the emissive layer is incorporated into the device.
  • devices include, but are not limited to, OLED bulbs, OLED lamps, television displays, computer monitors, mobile phones and tablets.
  • an electronic device includes an OLED having at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
  • compositions described herein can be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices.
  • the composition may be useful in facilitating charge or energy transfer within a device and/or as a hole transport material.
  • OLEDs organic light emitting diodes
  • OICs organic integrated circuits
  • O-FETs organic field effect transistors
  • O-TFTs organic thin film transistors
  • O-LETs organic light emitting transistors
  • O-SC organic solar cells.
  • O-SC organic optical detectors
  • O-FQD organic field-quench devices
  • LOC luminescent fuel cells
  • O-lasers organic laser diodes
  • an electronic device includes an OLED including at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
  • the device includes OLEDs of different colors.
  • the device includes an array including combinations of OLEDs.
  • said combination of OLEDs is a combination of three colors (eg RGB).
  • the combination of OLEDs is a combination of colors other than red, green, and blue (eg, orange and yellow-green).
  • said combination of OLEDs is a combination of two, four or more colors.
  • the device a circuit board having a first side with a mounting surface and a second opposite side and defining at least one opening; at least one OLED on the mounting surface, wherein the at least one OLED is configured to emit light, wherein the at least one OLED includes at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode; at least one OLED comprising a housing for the circuit board; at least one connector located at an end of said housing, said housing and said connector defining a package suitable for attachment to a lighting fixture.
  • the OLED light comprises multiple OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize light emitted in the first direction.
  • the emissive layers of the invention can be used in screens or displays.
  • the compounds of the present invention are deposited onto a substrate using processes such as, but not limited to, vacuum evaporation, deposition, evaporation or chemical vapor deposition (CVD).
  • the substrate is a photoplate structure useful in two-sided etching to provide unique aspect ratio pixels.
  • Said screens also called masks
  • the corresponding artwork pattern design allows placement of very steep narrow tie-bars between pixels in the vertical direction as well as large and wide beveled openings in the horizontal direction.
  • the internal patterning of the pixels makes it possible to construct three-dimensional pixel openings with various aspect ratios in the horizontal and vertical directions. Further, the use of imaged "stripes" or halftone circles in pixel areas protects etching in specific areas until these specific patterns are undercut and removed from the substrate. All pixel areas are then treated with a similar etch rate, but their depth varies with the halftone pattern. Varying the size and spacing of the halftone patterns allows etching with varying degrees of protection within the pixel, allowing for the localized deep etching necessary to form steep vertical bevels. . A preferred material for the evaporation mask is Invar.
  • Invar is a metal alloy that is cold rolled into long thin sheets in steel mills. Invar cannot be electrodeposited onto a spin mandrel as a nickel mask.
  • a suitable and low-cost method for forming the open areas in the deposition mask is by wet chemical etching.
  • the screen or display pattern is a matrix of pixels on a substrate.
  • screen or display patterns are fabricated using lithography (eg, photolithography and e-beam lithography).
  • the screen or display pattern is processed using wet chemical etching.
  • the screen or display pattern is fabricated using plasma etching.
  • An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
  • TFT thin film transistor
  • An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
  • TFT thin film transistor
  • an organic light emitting diode (OLED) display comprising: forming a barrier layer on the base substrate of the mother panel; forming a plurality of display units on the barrier layer in cell panel units; forming an encapsulation layer over each of the display units of the cell panel; and applying an organic film to the interfaces between the cell panels.
  • the barrier layer is an inorganic film, eg, made of SiNx, and the edges of the barrier layer are covered with an organic film, made of polyimide or acrylic.
  • the organic film helps the mother panel to be softly cut into cell panels.
  • a thin film transistor (TFT) layer has an emissive layer, a gate electrode, and source/drain electrodes.
  • Each of the plurality of display units may have a thin film transistor (TFT) layer, a planarization film formed on the TFT layer, and a light emitting unit formed on the planarization film, and The applied organic film is made of the same material as that of the planarizing film, and is formed at the same time as the planarizing film is formed.
  • the light-emitting unit is coupled with the TFT layer by a passivation layer, a planarizing film therebetween, and an encapsulation layer that covers and protects the light-emitting unit.
  • the organic film is not connected to the display unit or encapsulation layer.
  • each of the organic film and the planarizing film may include one of polyimide and acrylic.
  • the barrier layer may be an inorganic film.
  • the base substrate may be formed of polyimide.
  • the method further includes attaching a carrier substrate made of a glass material to another surface of a base substrate made of polyimide before forming a barrier layer on the other surface of the base substrate; separating the carrier substrate from the base substrate prior to cutting along the interface.
  • the OLED display is a flexible display.
  • the passivation layer is an organic film placed on the TFT layer to cover the TFT layer.
  • the planarizing film is an organic film formed over a passivation layer.
  • the planarizing film is formed of polyimide or acrylic, as is the organic film formed on the edge of the barrier layer. In some embodiments, the planarizing film and the organic film are formed simultaneously during the manufacture of an OLED display. In some embodiments, the organic film may be formed on the edge of the barrier layer such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is , in contact with the barrier layer while surrounding the edges of the barrier layer.
  • the emissive layer comprises a pixel electrode, a counter electrode, and an organic emissive layer disposed between the pixel electrode and the counter electrode.
  • the pixel electrodes are connected to source/drain electrodes of the TFT layer.
  • a suitable voltage is formed between the pixel electrode and the counter electrode, causing the organic light-emitting layer to emit light, thereby displaying an image. is formed.
  • An image forming unit having a TFT layer and a light emitting unit is hereinafter referred to as a display unit.
  • the encapsulation layer that covers the display unit and prevents the penetration of external moisture may be formed into a thin encapsulation structure in which organic films and inorganic films are alternately laminated.
  • the encapsulation layer has a thin film-like encapsulation structure in which multiple thin films are stacked.
  • the organic film applied to the interface portion is spaced apart from each of the plurality of display units.
  • the organic film is formed such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is in contact with the barrier layer while surrounding the edges of the barrier layer. be done.
  • the OLED display is flexible and uses a flexible base substrate made of polyimide.
  • the base substrate is formed on a carrier substrate made of glass material, and then the carrier substrate is separated.
  • a barrier layer is formed on the surface of the base substrate opposite the carrier substrate.
  • the barrier layer is patterned according to the size of each cell panel. For example, a base substrate is formed on all surfaces of a mother panel, while barrier layers are formed according to the size of each cell panel, thereby forming grooves at the interfaces between the barrier layers of the cell panels. Each cell panel can be cut along the groove.
  • the manufacturing method further comprises cutting along the interface, wherein a groove is formed in the barrier layer, at least a portion of the organic film is formed with the groove, and the groove is Does not penetrate the base substrate.
  • a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are placed on and cover the TFT layer.
  • the planarizing film eg made of polyimide or acrylic
  • the interface grooves are covered with an organic film, eg made of polyimide or acrylic. This prevents cracking by having the organic film absorb the impact that occurs when each cell panel is cut along the groove at the interface.
  • the grooves at the interfaces between the barrier layers are coated with an organic film to absorb shocks that might otherwise be transmitted to the barrier layers, so that each cell panel is softly cut and the barrier layers It may prevent cracks from forming.
  • the organic film covering the groove of the interface and the planarizing film are spaced apart from each other. For example, when the organic film and the planarizing film are connected to each other as a single layer, external moisture may enter the display unit through the planarizing film and the portion where the organic film remains. The organic film and planarizing film are spaced from each other such that the organic film is spaced from the display unit.
  • the display unit is formed by forming a light emitting unit and an encapsulating layer is placed over the display unit to cover the display unit.
  • the carrier substrate carrying the base substrate is separated from the base substrate.
  • the carrier substrate separates from the base substrate due to the difference in coefficient of thermal expansion between the carrier substrate and the base substrate.
  • the mother panel is cut into cell panels.
  • the mother panel is cut along the interfaces between the cell panels using a cutter.
  • the interface groove along which the mother panel is cut is coated with an organic film so that the organic film absorbs impact during cutting.
  • the barrier layer can be prevented from cracking during cutting.
  • the method reduces the reject rate of the product and stabilizes its quality.
  • Another embodiment includes a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic layer applied to the edges of the barrier layer.
  • An OLED display comprising a film.
  • Example 2 Synthesized in the same manner as in Example 1, the yield was 25%.
  • Example 3 Synthesized in the same manner as in Example 1, the yield was 50%.
  • 1 H NMR 400MHz, CDCl3 , d): 8.87-8.83 (m, 4H), 7.66-7.59 (m, 8H), 7.55-7.42 (m, 14H), 7.33-7.28 (m, 2H), 7.17- 7.15 (m, 4H), 7.06-6.96 (m, 6H).
  • Example 4 Synthesized in the same manner as in Example 1, the yield was 34%.
  • Example 7 Synthesized in the same manner as in Example 5, the yield was 82%.
  • 1 H NMR 400MHz, CDCl 3 , d): 8.67 (s, 2H), 8.02-7.99 (m, 4H), 7.77-7.74 (m, 4H), 7.51-7.33 (m, 6H), 7.26-7.21 ( m, 2H).
  • the compounds of Examples 1 to 10 were purified by sublimation and then used for thin film formation and device fabrication.
  • Example 1 (Preparation and evaluation of thin film)
  • the compound of Example 1 and mCBP were vapor-deposited from different vapor deposition sources on a quartz substrate by a vacuum vapor deposition method at a degree of vacuum of less than 1 ⁇ 10 ⁇ 3 Pa, and the concentration of the compound of Example 1 was 20% by weight.
  • a thin film having a thickness of 100 nm was formed as a doped thin film.
  • doped thin films were formed in the same manner using the compounds of Examples 2 to 10 instead of Example 1.
  • a compound of Comparative Example 1 having the following structure was used to form a doped thin film in the same manner.
  • Each thin film is laminated at a degree of vacuum of 1 ⁇ 10 ⁇ 6 Pa by a vacuum evaporation method on a glass substrate on which an anode made of indium tin oxide (ITO) with a thickness of 100 nm is formed.
  • ITO indium tin oxide
  • HATCN is formed on ITO to a thickness of 10 nm
  • NPD is formed thereon to a thickness of 30 nm.
  • TrisPCz is formed thereon to a thickness of 10 nm
  • H1 is further formed thereon to a thickness of 5 nm.
  • the compound of Example 1 and H1 are co-deposited from different deposition sources to form a 30 nm thick emitting layer.
  • the concentration of the compound of Example 1 is 35% by weight.
  • SF3TRZ is formed thereon to a thickness of 10 nm, and SF3TRZ and Liq are co-deposited thereon from different vapor deposition sources to form a thickness of 30 nm.
  • SF3TRZ:Liq (weight ratio) is 7:3.
  • a cathode is formed by forming Liq to a thickness of 2 nm and then depositing aluminum (Al) to a thickness of 100 nm.
  • organic electroluminescence devices are produced in the same manner. All of the produced organic electroluminescence devices have a short lifetime ( ⁇ 2) of delayed fluorescence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This compound represented by the general formula is a light-emitting material having a short lifetime of delayed fluorescence. Two or three among R1-R4 are donor groups, at least one of which is a ring-fused indol-1-yl group, one or two among R1-R4 is/are an aryl group or a heteroaryl group, and the remaining R1-R4 is a hydrogen atom or a deuterium atom.

Description

化合物、発光材料および発光素子Compounds, luminescent materials and light-emitting devices
 本発明は、発光材料として有用な化合物とそれを用いた発光素子に関する。 The present invention relates to a compound useful as a light-emitting material and a light-emitting device using the same.
 有機エレクトロルミネッセンス素子(有機EL素子)などの発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、ホール輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、遅延蛍光材料を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。 Research to increase the luminous efficiency of light-emitting elements such as organic electroluminescence elements (organic EL elements) is being actively carried out. In particular, various attempts have been made to improve the luminous efficiency by newly developing and combining electron transporting materials, hole transporting materials, light emitting materials, and the like, which constitute organic electroluminescence elements. Among them, research on organic electroluminescence elements using delayed fluorescence materials can also be seen.
 遅延蛍光材料は、励起状態において、励起三重項状態から励起一重項状態への逆項間交差を生じた後、その励起一重項状態から基底状態へ戻る際に蛍光を放射する材料である。こうした経路による蛍光は、基底状態から直接生じた励起一重項状態からの蛍光(通常の蛍光)よりも遅れて観測されるため、遅延蛍光と称されている。ここで、例えば、発光性化合物をキャリアの注入により励起した場合、励起一重項状態と励起三重項状態の発生確率は統計的に25%:75%であるため、直接生じた励起一重項状態からの蛍光のみでは、発光効率の向上に限界がある。一方、遅延蛍光材料では、励起一重項状態のみならず、励起三重項状態も上記の逆項間交差を介した経路により蛍光発光に利用することができるため、通常の蛍光材料に比べて高い発光効率が得られることになる。 A delayed fluorescence material is a material that emits fluorescence when returning from the excited singlet state to the ground state after reverse intersystem crossing from the excited triplet state to the excited singlet state occurs in the excited state. Fluorescence by such a pathway is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state directly generated from the ground state (ordinary fluorescence). Here, for example, when a light-emitting compound is excited by carrier injection, the probability of occurrence of an excited singlet state and an excited triplet state is statistically 25%:75%. There is a limit to the improvement in luminous efficiency with only the fluorescence of . On the other hand, in the delayed fluorescence material, not only the excited singlet state but also the excited triplet state can be used for fluorescence emission through the reverse intersystem crossing described above, so the emission is higher than that of ordinary fluorescent materials. Efficiency will be obtained.
 このような原理が明らかにされて以降、様々な研究により種々の遅延蛍光材料が発見されるに至っている。しかしながら、遅延蛍光を放射する材料であれば、直ちに発光材料として有用である訳ではない。遅延蛍光材料の中には、逆項間交差が比較的生じにくいものもあり、遅延蛍光の寿命が長いものもある。また、高電流密度領域で励起子が蓄積して発光効率が低下してしまったり、長時間駆動を続けると急速に劣化してしまったりするものもある。したがって、実用性の点で改善の余地がある遅延蛍光材料が極めて多いのが実情である。また、近年では蛍光材料に要求される特性も高くなりつつある。このため、例えば下記の構造を有する化合物のように優れた遅延蛍光材料であっても、一段と特性を向上させることが必要とされている(特許文献1参照)。 Since this principle was clarified, various delayed fluorescence materials have been discovered through various studies. However, a material that emits delayed fluorescence is not immediately useful as a light-emitting material. Among delayed fluorescence materials, there are those in which reverse intersystem crossing is relatively difficult to occur, and in which the lifetime of delayed fluorescence is long. In addition, there are some devices that accumulate excitons in a high current density region, resulting in a decrease in luminous efficiency, or rapidly degrade when driven for a long period of time. Therefore, the actual situation is that there are extremely many delayed fluorescence materials that have room for improvement in terms of practicality. Moreover, in recent years, the properties required for fluorescent materials have been increasing. Therefore, even excellent delayed fluorescence materials such as compounds having the following structures are required to further improve their properties (see Patent Document 1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
WO2019/004254WO2019/004254
 これまで、遅延蛍光材料の化学構造と特性との関係については十分な解明がなされてきたとは言いがたい。このため、発光材料として有用な化合物の化学構造を一般化するのは現状では困難であり、不明な点が多い。 Until now, it is difficult to say that the relationship between the chemical structure and properties of delayed fluorescence materials has been sufficiently elucidated. Therefore, it is currently difficult to generalize the chemical structure of compounds useful as light-emitting materials, and there are many unclear points.
 このような状況下において本発明者らは、発光素子用の発光材料としてより有用な化合物を提供することを目的として研究を重ねた。そして、発光材料としてより有用な化合物の一般式を導きだして一般化することを目的として鋭意検討を進めた。 Under these circumstances, the present inventors conducted extensive research with the aim of providing compounds that are more useful as light-emitting materials for light-emitting devices. Then, intensive studies were carried out with the aim of deriving and generalizing the general formulas of compounds that are more useful as light-emitting materials.
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、テレフタロニトリル誘導体のうち、特定の条件を満たす構造を持つ化合物が発光材料として有用であることを見いだした。本発明は、こうした知見に基づいて提案されたものであり、具体的に、以下の構成を有する。 As a result of intensive studies to achieve the above objectives, the present inventors found that among terephthalonitrile derivatives, compounds having a structure that satisfies specific conditions are useful as light-emitting materials. The present invention has been proposed based on these findings, and specifically has the following configurations.
[1] 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000005
[一般式(1)において、
 R~Rのうちの2~3個は、各々独立にドナー性基を表すが、そのうちの少なくとも1つは環が縮合しているインドール-1-イル基である。前記環が縮合しているインドール-1-イル基は、インドールへの環縮合により環数が4以上の縮合環を形成しており、前記縮合環は置換されていてもよい。
 R~Rのうちの1~2個は、各々独立に置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基を表す。
 残りのR~Rは水素原子または重水素原子を表す。]
[2] R~Rのうちの2個が各々独立にドナー性基であり、そのうちの少なくとも1つが前記環が縮合しているインドール-1-イル基であり、
 R~Rのうちの1個が置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基であり、
 残りのR~Rが水素原子または重水素原子である、[1]に記載の化合物。
[3] R~Rのうちの2個が各々独立にドナー性基であり、そのうちの少なくとも1つが前記環が縮合しているインドール-1-イル基であり、
 R~Rのうちの2個が置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基である、[1]に記載の化合物。
[4] R~Rのうちの3個が各々独立にドナー性基であり、そのうちの少なくとも1つが前記環が縮合しているインドール-1-イル基であり、
 R~Rのうちの1個が置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基である、[1]に記載の化合物。
[5] RおよびRが各々独立にドナー性基であり、
 Rが置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基である、[1]~[4]のいずれか1つに記載の化合物。
[6] RおよびRが各々独立にドナー性基であり、
 Rが置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基である、[1]~[4]のいずれか1つに記載の化合物。
[7] 前記縮合環の環数が5以上である、[1]~[6]のいずれか1つに記載の化合物。
[8] 前記環数が4以上の縮合環の骨格を構成する炭素原子に置換もしくは無置換のアリール基が置換している、[7]に記載の化合物。
[9] 前記環数が4以上の縮合環の骨格に窒素原子が含まれており、その窒素原子に置換もしくは無置換のアリール基が置換している、[7]に記載の化合物。
[10] 前記インドール-1-イル基を構成するベンゼン環に縮合している環が、置換もしくは無置換のフラン環、置換もしくは無置換のチオフェン環、または置換もしくは無置換のピロール環であって、前記フラン環、前記チオフェン環および前記ピロール環にはさらに他の環が縮合していてもよい、[1]~[9]のいずれか1つに記載の化合物。
[11] 前記前記環が縮合しているインドール-1-イル基が下記のいずれかの縮合環を有する、[1]~[10]のいずれか1つに記載の化合物。
Figure JPOXMLDOC01-appb-C000006
[上記の各構造において、水素原子は置換されていてもよく、またさらに環が縮合していてもよい。]
[12] 前記環が縮合しているインドール-1-イル基が下記のいずれかの縮合環骨格を有する、[1]~[10]のいずれか1つに記載の化合物。
Figure JPOXMLDOC01-appb-C000007
[上記の各構造において、水素原子は置換されていてもよく、またさらに環が縮合していてもよい。]
[13] 前記環が縮合しているインドール-1-イル基が、インドール環の4,5位にヘテロ環が縮合した構造を有する、[1]~[12]のいずれか1つに記載の化合物。
[14] Arが置換もしくは無置換のフェニル基、または置換もしくは無置換のピリジル基である、[1]~[13]のいずれか1つに記載の化合物。
[15] 炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子からなる、[1]~[14]のいずれか1つに記載の化合物。
[16] [1]~[15]のいずれか1つに記載の化合物からなる発光材料。
[17] [1]~[15]のいずれか1つに記載の化合物を含むことを特徴とする発光素子。
[18] 前記発光素子が発光層を有しており、前記発光層が前記化合物とホスト材料を含む、[17]に記載の発光素子。
[19] 前記発光素子が発光層を有しており、前記発光層が前記化合物と発光材料を含み、前記発光材料から主として発光する、[18]に記載の発光素子。
[1] A compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
[In the general formula (1),
Two to three of R 1 to R 4 each independently represent a donor group, at least one of which is an indol-1-yl group with condensed rings. The ring-fused indol-1-yl group forms a condensed ring having 4 or more rings by ring condensation with indole, and the condensed ring may be substituted.
1 to 2 of R 1 to R 4 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded via a carbon atom.
The remaining R 1 to R 4 represent hydrogen atoms or deuterium atoms. ]
[2] two of R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed;
one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded at a carbon atom;
The compound according to [1], wherein the remaining R 1 to R 4 are hydrogen atoms or deuterium atoms.
[3] two of R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed;
The compound according to [1], wherein two of R 1 to R 4 are substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups bonded at a carbon atom.
[4] three of R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed;
The compound according to [1], wherein one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded at a carbon atom.
[5] R 1 and R 4 are each independently a donor group;
The compound according to any one of [1] to [4], wherein R 3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group attached at a carbon atom.
[6] R 2 and R 4 are each independently a donor group;
The compound according to any one of [1] to [4], wherein R 3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group attached at a carbon atom.
[7] The compound according to any one of [1] to [6], wherein the condensed ring has 5 or more rings.
[8] The compound according to [7], wherein a carbon atom constituting the condensed ring skeleton having 4 or more rings is substituted with a substituted or unsubstituted aryl group.
[9] The compound according to [7], wherein the condensed ring skeleton having 4 or more rings contains a nitrogen atom, and the nitrogen atom is substituted with a substituted or unsubstituted aryl group.
[10] the ring condensed to the benzene ring constituting the indol-1-yl group is a substituted or unsubstituted furan ring, a substituted or unsubstituted thiophene ring, or a substituted or unsubstituted pyrrole ring; , The compound according to any one of [1] to [9], wherein the furan ring, the thiophene ring and the pyrrole ring may be further condensed with another ring.
[11] The compound according to any one of [1] to [10], wherein the indol-1-yl group to which the rings are condensed has any one of the following condensed rings.
Figure JPOXMLDOC01-appb-C000006
[In each structure above, hydrogen atoms may be substituted, and rings may be condensed. ]
[12] The compound according to any one of [1] to [10], wherein the indol-1-yl group to which the rings are condensed has any one of the following condensed ring skeletons.
Figure JPOXMLDOC01-appb-C000007
[In each structure above, hydrogen atoms may be substituted, and rings may be condensed. ]
[13] The indol-1-yl group to which the rings are condensed has a structure in which heterocycles are condensed at positions 4 and 5 of the indole ring, according to any one of [1] to [12]. Compound.
[14] The compound according to any one of [1] to [13], wherein Ar is a substituted or unsubstituted phenyl group or a substituted or unsubstituted pyridyl group.
[15] The compound according to any one of [1] to [14], consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
[16] A luminescent material comprising the compound according to any one of [1] to [15].
[17] A light-emitting device comprising the compound according to any one of [1] to [15].
[18] The light-emitting device according to [17], wherein the light-emitting device has a light-emitting layer, and the light-emitting layer contains the compound and a host material.
[19] The light-emitting device according to [18], wherein the light-emitting device has a light-emitting layer, the light-emitting layer contains the compound and a light-emitting material, and emits light mainly from the light-emitting material.
 本発明の化合物は、発光材料として有用である。また、本発明の化合物の中には遅延蛍光寿命が短い化合物が含まれる。さらに、本発明の化合物を用いた有機発光素子は、素子耐久性が高くて有用である。 The compound of the present invention is useful as a luminescent material. Further, the compounds of the present invention include compounds having a short delayed fluorescence lifetime. Furthermore, an organic light-emitting device using the compound of the present invention is useful because of its high device durability.
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。It is a schematic sectional drawing which shows the example of layer structure of an organic electroluminescent element.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の一部または全部は重水素原子(H、デューテリウムD)に置換することができる。本明細書の化学構造式では、水素原子はHと表示しているか、その表示を省略している。例えばベンゼン環の環骨格構成炭素原子に結合する原子の表示が省略されているとき、表示が省略されている箇所ではHが環骨格構成炭素原子に結合しているものとする。本明細書の化学構造式では、重水素原子はDと表示している。 The contents of the present invention will be described in detail below. Although the constituent elements described below may be described based on representative embodiments and specific examples of the present invention, the present invention is not limited to such embodiments and specific examples. In this specification, the numerical range represented by "-" means a range including the numerical values described before and after "-" as lower and upper limits. Also, some or all of the hydrogen atoms present in the molecule of the compound used in the present invention can be replaced with deuterium atoms ( 2 H, deuterium D). In the chemical structural formulas of this specification, hydrogen atoms are indicated as H or omitted. For example, when the atoms bonded to the ring-skeleton-constituting carbon atoms of the benzene ring are omitted, it is assumed that H is bonded to the ring-skeleton-constituting carbon atoms where the display is omitted. Deuterium atoms are denoted as D in chemical structural formulas herein.
[一般式(1)で表される化合物]
Figure JPOXMLDOC01-appb-C000008
[Compound represented by general formula (1)]
Figure JPOXMLDOC01-appb-C000008
 一般式(1)におけるR~Rのうちの2~3個は、各々独立にドナー性基を表す。そのドナー性基のうちの少なくとも1つは、置換もしくは無置換のインドール-1-イル基であって、そのインドール-1-イル基を構成するインドール環には環が縮合しており、それにより環数が4以上の縮合環を形成している。以後、本明細書においては、この条件を満たす基を「環縮合インドール-1-イル基」と称する。 Two to three of R 1 to R 4 in general formula (1) each independently represent a donor group. At least one of the donor groups is a substituted or unsubstituted indol-1-yl group, and an indole ring constituting the indol-1-yl group is fused with a ring, thereby It forms a condensed ring with 4 or more rings. Hereinafter, a group satisfying this condition is referred to as a "ring-fused indol-1-yl group".
 環縮合インドール-1-イル基は、インドール-1-イル基を構成するベンゼン環やピロール環に縮合する環が1個の多環であってもよいし、2個以上の多環または単環であってもよい。例えば2個が縮合する場合は、1個がベンゼン環に縮合し、1個がピロール環に縮合しているものであることが好ましい。縮合している2個の環は同一であっても、異なっていてもよい。インドール環に環が縮合することにより、環数が4以上、5以上、6以上である縮合環を形成していてもよく、環数が5以上である縮合環を形成することが好ましい。例えば、環数が4の縮合環を形成している化合物、環数が5の縮合環を形成している化合物、環数が6の縮合環を形成している化合物、環数が8の縮合環を形成している化合物を採用してもよい。
 環は、インドール環の2,3位(b)だけに縮合していてもよいし、4,5位(e)だけに縮合していてもよいし、5,6位(f)だけに縮合していてもよいし、6,7位(g)にだけ縮合していてもよいし、4,5位(e)と6,7位(g)の両方に縮合していてもよい。また、4,5位(e)と5,6位(f)と6,7位(g)のうちのいずれか1つと、2,3位(b)に縮合していてもよい(下式参照、*は結合位置を表す)。
Figure JPOXMLDOC01-appb-C000009
The ring-fused indol-1-yl group may be a polycyclic ring having one ring condensed to the benzene ring or pyrrole ring that constitutes the indol-1-yl group, or may have two or more polycyclic or monocyclic rings. may be For example, when two are condensed, it is preferable that one is condensed to a benzene ring and one is condensed to a pyrrole ring. Two condensed rings may be the same or different. By condensing a ring with an indole ring, a condensed ring having 4 or more, 5 or more, or 6 or more rings may be formed, and a condensed ring having 5 or more rings is preferably formed. For example, a compound having a condensed ring having 4 rings, a compound having a condensed ring having 5 rings, a compound having a condensed ring having 6 rings, and a condensed ring having 8 rings A compound forming a ring may be employed.
The ring may be fused only at the 2,3-position (b), only the 4,5-position (e) or only the 5,6-position (f) of the indole ring. may be condensed, may be condensed only at the 6,7-position (g), or may be condensed at both the 4,5-position (e) and the 6,7-position (g). In addition, any one of 4,5-position (e), 5,6-position (f) and 6,7-position (g) may be condensed at 2,3-position (b) (the following formula see, * indicates binding position).
Figure JPOXMLDOC01-appb-C000009
 インドール-1-イル基を構成するベンゼン環やピロール環に直接縮合する環(縮合するものが多環である場合は、その多環を構成する環のうち直接縮合する環だけを指す)は、芳香族炭化水素環、芳香族ヘテロ環、脂肪族炭化水素環、脂肪族ヘテロ環のいずれであってもよい。好ましいのは、ベンゼン環および芳香族ヘテロ環からなる群より選択される1個以上の環が直接縮合する場合である。
 ここでいうヘテロ環は、ヘテロ原子を含む環である。ヘテロ原子は、酸素原子、硫黄原子、窒素原子およびケイ素原子から選択されることが好ましく、酸素原子、硫黄原子および窒素原子から選択されることがより好ましい。好ましい一態様では、ヘテロ原子は酸素原子である。別の好ましい一態様では、ヘテロ原子は硫黄原子である。さらに別の好ましい一態様では、ヘテロ原子は窒素原子である。ヘテロ環の環骨格構成原子として含まれているヘテロ原子の数は1つ以上であり、1~3つが好ましく、1または2つがより好ましい。好ましい一態様ではヘテロ原子の数は1つである。ヘテロ原子の数が2つ以上であるとき、それらは同一種のヘテロ原子であることが好ましいが、異種のヘテロ原子で構成されていてもよい。例えば、2つ以上のヘテロ原子がすべて窒素原子であってもよい。ヘテロ原子以外の環骨格構成原子は炭素原子である。インドール-1-イル基を構成するベンゼン環に直接縮合しているヘテロ環を構成する環骨格構成原子数は、4~8であることが好ましく、5~7であることがより好ましく、5または6であることがさらに好ましい。好ましい一態様では、ヘテロ環を構成する環骨格構成原子数は5である。ヘテロ環には共役二重結合が2つ以上存在していることが好ましく、ヘテロ環が縮合することにより、インドール環の共役系が拡張するものであることが好ましい(すなわち芳香族性を有することが好ましい)。ヘテロ環の好ましい例として、フラン環、チオフェン環、ピロール環をあげることができる。
 インドール-1-イル基を構成するベンゼン環やピロ-ル環に直接縮合している環には、さらに他の環が縮合していてもよい。また、縮合する環は単環であっても縮合環であってもよい。縮合する環としては、芳香族炭化水素環、芳香族ヘテロ環、脂肪族炭化水素環、脂肪族ヘテロ環を挙げることができる。
 本発明の好ましい一態様では、インドール-1-イル基を構成するベンゼン環やピロール環には、少なくとも1つのヘテロ環が直接縮合している。本発明の好ましい一態様では、環縮合インドール-1-イル基を構成する縮合環は、2個以上のヘテロ環を含む。例えば2個のヘテロ環を含む場合や、3個のヘテロ環を含む場合を例示することができる。
A ring that is directly condensed to a benzene ring or pyrrole ring that constitutes an indol-1-yl group (when the condensed ring is polycyclic, only the ring that is directly condensed among the rings that constitute the polycyclic ring) is Any of an aromatic hydrocarbon ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon ring, and an aliphatic heterocyclic ring may be used. Preferably, one or more rings selected from the group consisting of benzene rings and aromatic heterocycles are directly condensed.
A heterocycle as used herein is a ring containing a heteroatom. The heteroatoms are preferably selected from oxygen, sulfur, nitrogen and silicon atoms, more preferably from oxygen, sulfur and nitrogen atoms. In one preferred aspect, the heteroatom is an oxygen atom. In another preferred aspect, the heteroatom is a sulfur atom. In yet another preferred aspect, the heteroatom is a nitrogen atom. The number of hetero atoms contained as ring skeleton-constituting atoms of the hetero ring is 1 or more, preferably 1 to 3, more preferably 1 or 2. In one preferred embodiment, the number of heteroatoms is one. When the number of heteroatoms is two or more, they are preferably heteroatoms of the same type, but may be composed of heteroatoms of different types. For example, two or more heteroatoms may all be nitrogen atoms. Ring skeleton atoms other than heteroatoms are carbon atoms. The number of atoms constituting the ring skeleton constituting the hetero ring directly condensed to the benzene ring constituting the indol-1-yl group is preferably 4 to 8, more preferably 5 to 7, 5 or 6 is more preferred. In a preferred embodiment, the heterocyclic ring has 5 ring skeleton-constituting atoms. The hetero ring preferably has two or more conjugated double bonds, and the condensed hetero ring preferably expands the conjugated system of the indole ring (i.e., has aromaticity). is preferred). Preferred examples of heterocycles include furan rings, thiophene rings and pyrrole rings.
The ring directly condensed to the benzene ring or pyrrole ring constituting the indol-1-yl group may be further condensed with another ring. Moreover, the condensed ring may be a monocyclic ring or a condensed ring. Examples of condensed rings include aromatic hydrocarbon rings, aromatic heterocycles, aliphatic hydrocarbon rings, and aliphatic heterocycles.
In a preferred embodiment of the present invention, at least one hetero ring is directly condensed with the benzene ring or pyrrole ring that constitutes the indol-1-yl group. In a preferred embodiment of the present invention, the condensed rings that make up the condensed indol-1-yl group contain two or more heterocycles. For example, a case containing two heterocycles and a case containing three heterocycles can be exemplified.
 本明細書における芳香族炭化水素環としてはベンゼン環を挙げることができる。芳香族ヘテロ環としては、フラン環、チオフェン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環を挙げることができる。脂肪族炭化水素環としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環を挙げることができる。脂肪族ヘテロ環としては、ピペリジン環、ピロリジン環、イミダゾリン環を挙げることができる。縮合環の具体例として、ナフタレン環、アントラセン環、フェナントレン環、ピラン環、テトラセン環、インドール環、イソインドール環、ベンゾイミダゾール環、ベンゾトリアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、シンノリン環を挙げることができる。 A benzene ring can be mentioned as an aromatic hydrocarbon ring in the present specification. Aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, pyrrole ring, pyrazole ring and imidazole ring. A cyclopentane ring, a cyclohexane ring, and a cycloheptane ring can be mentioned as the aliphatic hydrocarbon ring. Examples of aliphatic heterocycles include piperidine ring, pyrrolidine ring and imidazoline ring. Specific examples of condensed rings include naphthalene ring, anthracene ring, phenanthrene ring, pyran ring, tetracene ring, indole ring, isoindole ring, benzimidazole ring, benzotriazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, and cinnoline. rings can be mentioned.
 本発明の好ましい一態様では、環縮合インドール-1-イル基は、ベンゾフラン縮合インドール-1-イル基、ベンゾチオフェン縮合インドール-1-イル基、インドール縮合インドール-1-イル基、またはシラインデン縮合インドール-1-イル基である。本発明のより好ましい一態様では、インドール-1-イル基は、ベンゾフラン縮合インドール-1-イル基、ベンゾチオフェン縮合インドール-1-イル基、またはインドール縮合インドール-1-イル基である。 In a preferred embodiment of the invention, the ring-fused indol-1-yl group is a benzofuran-fused indol-1-yl group, a benzothiophene-fused indol-1-yl group, an indole-fused indol-1-yl group, or a sylindene-fused indol-1-yl group. -1-yl group. In a more preferred aspect of the invention, the indol-1-yl group is a benzofuran-fused indol-1-yl group, a benzothiophene-fused indol-1-yl group, or an indole-fused indol-1-yl group.
 本発明では、ベンゾフラン縮合インドール-1-イル基として、置換もしくは無置換のベンゾフロ[2,3-e]インドール-1-イル基を採用することができる。また、置換もしくは無置換のベンゾフロ[3,2-e]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のベンゾフロ[2,3-f]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のベンゾフロ[3,2-f]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のベンゾフロ[2,3-g]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のベンゾフロ[3,2-g]インドール-1-イル基を採用することもできる。これらの基を構成する縮合環には、さらに環が縮合していても、縮合していなくてもよい。
 本発明では、ベンゾフラン縮合インドール-1-イル基として、置換もしくは無置換のベンゾフロ[2,3-a]カルバゾール-9-イル基を採用することができる。また、置換もしくは無置換のベンゾフロ[3,2-a]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のベンゾフロ[2,3-b]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のベンゾフロ[3,2-b]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のベンゾフロ[2,3-c]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のベンゾフロ[3,2-c]カルバゾール-9-イル基を採用することもできる。これらの基を構成する縮合環には、さらに環が縮合していても、縮合していなくてもよい。
 好ましいベンゾフラン縮合インドール-1-イル基として、下記のいずれかの構造を有する基を挙げることができ、下記構造中の水素原子は置換されていてもよいし、置換されていなくてもよい。例えばフェニル基等のアリール基で置換されていたり、カルバゾール環の3位が置換されていたりするものを好ましく例示することができる。また、下記構造中のベンゼン環には、さらに環が縮合していてもよいし、環が縮合していなくてもよい。
Figure JPOXMLDOC01-appb-C000010
In the present invention, a substituted or unsubstituted benzofuro[2,3-e]indol-1-yl group can be employed as the benzofuran-fused indol-1-yl group. A substituted or unsubstituted benzofuro[3,2-e]indol-1-yl group can also be employed. A substituted or unsubstituted benzofuro[2,3-f]indol-1-yl group can also be employed. A substituted or unsubstituted benzofuro[3,2-f]indol-1-yl group can also be employed. A substituted or unsubstituted benzofuro[2,3-g]indol-1-yl group can also be employed. A substituted or unsubstituted benzofuro[3,2-g]indol-1-yl group can also be employed. The condensed rings constituting these groups may or may not be further condensed.
In the present invention, a substituted or unsubstituted benzofuro[2,3-a]carbazol-9-yl group can be employed as the benzofuran-fused indol-1-yl group. A substituted or unsubstituted benzofuro[3,2-a]carbazol-9-yl group can also be employed. A substituted or unsubstituted benzofuro[2,3-b]carbazol-9-yl group can also be employed. A substituted or unsubstituted benzofuro[3,2-b]carbazol-9-yl group can also be employed. A substituted or unsubstituted benzofuro[2,3-c]carbazol-9-yl group can also be employed. A substituted or unsubstituted benzofuro[3,2-c]carbazol-9-yl group can also be employed. The condensed rings constituting these groups may or may not be further condensed.
Preferred benzofuran-fused indol-1-yl groups include groups having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted. For example, those substituted with an aryl group such as a phenyl group, or those substituted at the 3-position of the carbazole ring can be preferably exemplified. Further, the benzene ring in the structure below may or may not be condensed with another ring.
Figure JPOXMLDOC01-appb-C000010
 ベンゾフラン環が2,3位で2つ縮合しているカルバゾール-9-イル基を採用することもできる。具体的には、下記のいずれかの構造を有する基であり、下記構造中の水素原子は置換されていてもよいし、置換されていなくてもよい。また、下記構造中のベンゼン環には、さらに環が縮合していてもよいし、環が縮合していなくてもよい。
Figure JPOXMLDOC01-appb-C000011
A carbazol-9-yl group in which two benzofuran rings are condensed at the 2 and 3 positions can also be employed. Specifically, it is a group having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted. Further, the benzene ring in the structure below may or may not be condensed with another ring.
Figure JPOXMLDOC01-appb-C000011
 本発明では、ベンゾチオフェン縮合インドール-1-イル基として、置換もしくは無置換のベンゾチエノ[2,3-e]インドール-1-イル基を採用することができる。また、置換もしくは無置換のベンゾチエノ[3,2-e]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のベンゾチエノ[2,3-f]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のベンゾチエノ[3,2-f]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のベンゾチエノ[2,3-g]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のベンゾチエノ[3,2-g]インドール-1-イル基を採用することもできる。これらの基を構成する縮合環には、さらに環が縮合していても、縮合していなくてもよい。
 本発明では、ベンゾチオフェン縮合インドール-1-イル基として、置換もしくは無置換のベンゾチエノ[2,3-a]カルバゾール-9-イル基を採用することができる。また、置換もしくは無置換のベンゾチエノ[3,2-a]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のベンゾチエノ[2,3-b]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のベンゾチエノ[3,2-b]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のベンゾチエノ[2,3-c]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のベンゾチエノ[3,2-c]カルバゾール-9-イル基を採用することもできる。これらの基を構成する縮合環には、さらに環が縮合していても、縮合していなくてもよい。
 好ましいベンゾチオフェン縮合インドール-1-イル基として、下記のいずれかの構造を有する基を挙げることができ、下記構造中の水素原子は置換されていてもよいし、置換されていなくてもよい。例えばフェニル基等のアリール基で置換されていたり、カルバゾール環の3位が置換されていたりするものを好ましく例示することができる。また、下記構造中のベンゼン環には、さらに環が縮合していてもよいし、環が縮合していなくてもよい。
Figure JPOXMLDOC01-appb-C000012
In the present invention, a substituted or unsubstituted benzothieno[2,3-e]indol-1-yl group can be employed as the benzothiophene-fused indol-1-yl group. A substituted or unsubstituted benzothieno[3,2-e]indol-1-yl group can also be employed. A substituted or unsubstituted benzothieno[2,3-f]indol-1-yl group can also be employed. A substituted or unsubstituted benzothieno[3,2-f]indol-1-yl group can also be employed. A substituted or unsubstituted benzothieno[2,3-g]indol-1-yl group can also be employed. A substituted or unsubstituted benzothieno[3,2-g]indol-1-yl group can also be employed. The condensed rings constituting these groups may or may not be further condensed.
In the present invention, a substituted or unsubstituted benzothieno[2,3-a]carbazol-9-yl group can be employed as the benzothiophene-fused indol-1-yl group. A substituted or unsubstituted benzothieno[3,2-a]carbazol-9-yl group can also be employed. A substituted or unsubstituted benzothieno[2,3-b]carbazol-9-yl group can also be employed. A substituted or unsubstituted benzothieno[3,2-b]carbazol-9-yl group can also be employed. A substituted or unsubstituted benzothieno[2,3-c]carbazol-9-yl group can also be employed. A substituted or unsubstituted benzothieno[3,2-c]carbazol-9-yl group can also be employed. The condensed rings constituting these groups may or may not be further condensed.
Preferred benzothiophene-fused indol-1-yl groups include groups having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted. For example, those substituted with an aryl group such as a phenyl group, or those substituted at the 3-position of the carbazole ring can be preferably exemplified. Further, the benzene ring in the structure below may or may not be condensed with another ring.
Figure JPOXMLDOC01-appb-C000012
 ベンゾチオフェン環が2,3位で2つ縮合しているカルバゾール-9-イル基を採用することもできる。具体的には、下記のいずれかの構造を有する基であり、下記構造中の水素原子は置換されていてもよいし、置換されていなくてもよい。また、下記構造中のベンゼン環には、さらに環が縮合していてもよいし、環が縮合していなくてもよい。
Figure JPOXMLDOC01-appb-C000013
A carbazol-9-yl group in which two benzothiophene rings are fused at the 2 and 3 positions can also be employed. Specifically, it is a group having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted. Further, the benzene ring in the structure below may or may not be condensed with another ring.
Figure JPOXMLDOC01-appb-C000013
 本発明では、インドール縮合インドール-1-イル基として、置換もしくは無置換のインドロ[2,3-e]インドール-1-イル基を採用することができる。また、置換もしくは無置換のインドロ[3,2-e]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のインドロ[2,3-f]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のインドロ[3,2-f]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のインドロ[2,3-g]インドール-1-イル基を採用することもできる。また、置換もしくは無置換のインドロ[3,2-g]インドール-1-イル基を採用することもできる。これらの基を構成する縮合環には、さらに環が縮合していても、縮合していなくてもよい。
 本発明では、インドール縮合インドール-1-イル基として、置換もしくは無置換のインドロ[2,3-a]カルバゾール-9-イル基を採用することができる。また、置換もしくは無置換のインドロ[3,2-a]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のインドロ[2,3-b]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のインドロ[3,2-b]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のインドロ[2,3-c]カルバゾール-9-イル基を採用することもできる。また、置換もしくは無置換のインドロ[3,2-c]カルバゾール-9-イル基を採用することもできる。これらの基を構成する縮合環には、さらに環が縮合していても、縮合していなくてもよい。
 好ましいインドール縮合インドール-1-イル基として、下記のいずれかの構造を有する基を挙げることができ、下記構造中の水素原子は置換されていてもよいし、置換されていなくてもよい。例えばフェニル基等のアリール基で置換されていたり、カルバゾール環の3位が置換されていたりするものを好ましく例示することができる。また、下記構造中のベンゼン環には、さらに環が縮合していてもよいし、環が縮合していなくてもよい。
Figure JPOXMLDOC01-appb-C000014
In the present invention, a substituted or unsubstituted indolo[2,3-e]indol-1-yl group can be employed as the indole-fused indol-1-yl group. A substituted or unsubstituted indolo[3,2-e]indol-1-yl group can also be employed. A substituted or unsubstituted indolo[2,3-f]indol-1-yl group can also be employed. A substituted or unsubstituted indolo[3,2-f]indol-1-yl group can also be employed. A substituted or unsubstituted indolo[2,3-g]indol-1-yl group can also be employed. A substituted or unsubstituted indolo[3,2-g]indol-1-yl group can also be employed. The condensed rings constituting these groups may or may not be further condensed.
In the present invention, a substituted or unsubstituted indolo[2,3-a]carbazol-9-yl group can be employed as the indole-fused indol-1-yl group. A substituted or unsubstituted indolo[3,2-a]carbazol-9-yl group can also be employed. A substituted or unsubstituted indolo[2,3-b]carbazol-9-yl group can also be employed. A substituted or unsubstituted indolo[3,2-b]carbazol-9-yl group can also be employed. A substituted or unsubstituted indolo[2,3-c]carbazol-9-yl group can also be employed. A substituted or unsubstituted indolo[3,2-c]carbazol-9-yl group can also be employed. The condensed rings constituting these groups may or may not be further condensed.
Preferred indole-fused indol-1-yl groups include groups having any of the structures below, and hydrogen atoms in the structures below may or may not be substituted. For example, those substituted with an aryl group such as a phenyl group, or those substituted at the 3-position of the carbazole ring can be preferably exemplified. Further, the benzene ring in the structure below may or may not be condensed with another ring.
Figure JPOXMLDOC01-appb-C000014
 本明細書でいう「アルキル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルキル基の炭素数は、例えば1以上、2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルキル基の具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、n-デカニル基、イソデカニル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。置換基たるアルキル基は、さらに重水素原子、アリール基、アルコキシ基、アリールオキシ基、ハロゲン原子で置換されていてもよい。
 「アルケニル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルケニル基の炭素数は、例えば2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルケニル基の具体例として、エテニル基、n-プロペニル基、イソプロペニル基、n-ブテニル基、イソブテニル基、n-ペンテニル基、イソペンテニル基、n-ヘキセニル基、イソヘキセニル基、2-エチルヘキセニル基を挙げることができる。置換基たるアルケニル基は、さらに置換されていてもよい。
 「アリール基」および「ヘテロアリール基」は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。環の具体例として、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、キノリン環、ピラジン環、キノキサリン環、ナフチリジン環を挙げることができる。アリーレン基またはヘテロアリーレン基の具体例として、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基を挙げることができる。
 「アルコキシ基」および「アルキルチオ基」のアルキル部分については、上記のアルキル基の説明と具体例を参照することができる。「アリールオキシ基」および「アリールチオ基」のアリール部分については、上記のアリール基の説明と具体例を参照することができる。「ヘテロアリールオキシ基」および「ヘテロアリールチオ基」のヘテロアリール部分については、上記のヘテロアリール基の説明と具体例を参照することができる。
 環縮合インドール-1-イル基は、水素原子および重水素原子以外の原子数が16以上であることが好ましく、20以上であることがより好ましく、例えば26以上とすることもできる。また、80以下であることが好ましく、50以下であることがより好ましく、30以下であることがさらに好ましい。
The "alkyl group" as used herein may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed. The number of carbon atoms in the alkyl group can be, for example, 1 or more, 2 or more, or 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less. Specific examples of alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, n-decanyl group, isodecanyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group. can. The alkyl group as a substituent may be further substituted with a deuterium atom, an aryl group, an alkoxy group, an aryloxy group, or a halogen atom.
An "alkenyl group" may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed. The number of carbon atoms in the alkenyl group can be, for example, 2 or more and 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less. Specific examples of alkenyl groups include ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, n-pentenyl, isopentenyl, n-hexenyl, isohexenyl, and 2-ethylhexenyl groups. can be mentioned. The alkenyl group as a substituent may be further substituted.
The “aryl group” and “heteroaryl group” may be monocyclic or condensed rings in which two or more rings are condensed. In the case of condensed rings, the number of condensed rings is preferably 2 to 6, and can be selected from 2 to 4, for example. Specific examples of rings include benzene ring, pyridine ring, pyrimidine ring, triazine ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, quinoline ring, pyrazine ring, quinoxaline ring, and naphthyridine ring. Specific examples of arylene group or heteroarylene group include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 2-pyridyl group, 3-pyridyl group, 4 - pyridyl group.
For the alkyl portion of the "alkoxy group" and "alkylthio group", the above description and specific examples of the alkyl group can be referred to. For the aryl moiety of the "aryloxy group" and "arylthio group", the above description and specific examples of the aryl group can be referred to. For the heteroaryl portion of the "heteroaryloxy group" and "heteroarylthio group", the above description and specific examples of the heteroaryl group can be referred to.
The ring-fused indol-1-yl group preferably has 16 or more atoms other than hydrogen atoms and deuterium atoms, more preferably 20 or more atoms, and can have, for example, 26 or more atoms. Also, it is preferably 80 or less, more preferably 50 or less, and even more preferably 30 or less.
 一般式(1)において、環縮合インドール-1-イル基はR~Rのうちの1個だけであってもよいし、2個であってもよいし、3個であってもよい。環縮合インドール-1-イル基が1個だけである場合は、環縮合インドール-1-イル基以外のドナー性基(以下「他のドナー性基」と称する)は1個であってもよいし、2個であってもよい。2個である場合、互いに同一であっても、異なっていてもよい。環縮合インドール-1-イル基が2個である場合は、他のドナー性基は無くてもよいし、1個あってもよい。環縮合インドール-1-イル基が3個である場合は、他のドナー性基は無い。
 他のドナー性基は、ハメットのσp値が負の基である。ここで、「ハメットのσp値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
      log(k/k0) = ρσp
または
      log(K/K0) = ρσp
における置換基に特有な定数(σp)である。上式において、kは置換基を持たないベンゼン誘導体の速度定数、k0は置換基で置換されたベンゼン誘導体の速度定数、Kは置換基を持たないベンゼン誘導体の平衡定数、K0は置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。本発明における「ハメットのσp値」に関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)のσp値に関する記載を参照することができる。ハメットのσp値が負の基は電子供与性(ドナー性)を示し、ハメットのσp値が正の基は電子求引性(アクセプター性)を示す傾向がある。
In general formula (1), the number of ring-fused indol-1-yl groups selected from R 1 to R 4 may be one, two, or three. . When there is only one ring-fused indol-1-yl group, there may be one donor group other than the ring-fused indol-1-yl group (hereinafter referred to as "another donor group"). and may be two. When there are two, they may be the same or different. When there are two ring-fused indol-1-yl groups, one or no other donor group may be present. When there are three ring-fused indol-1-yl groups, there are no other donor groups.
Other donor groups are groups with negative Hammett σp values. Here, "Hammet's σp value" is defined by L.P. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives. Specifically, the following formula holds between the substituents in the para-substituted benzene derivative and the reaction rate constant or equilibrium constant:
log(k/ k0 ) = ρσp
or log(K/ K0 ) = ρσp
is a constant (σp) specific to the substituents in . In the above formula, k is the rate constant of a benzene derivative without a substituent, k0 is the rate constant of a benzene derivative substituted with a substituent, K is the equilibrium constant of a benzene derivative without a substituent, and K0 is a substituent. The equilibrium constant of the benzene derivative substituted with ρ represents the reaction constant determined by the type and conditions of the reaction. For the description of the "Hammett's σp value" and the numerical value of each substituent in the present invention, refer to the description of the σp value in Hansch, C. et al., Chem. Rev., 91, 165-195 (1991). can. A group having a negative Hammett's σp value tends to exhibit electron-donating properties (donor properties), and a group having a positive Hammett's σp value tends to exhibit electron-withdrawing properties (acceptor properties).
 本発明における他のドナー性基は、置換アミノ基を含む基であることが好ましい。アミノ基の窒素原子に結合する置換基は、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることが好ましく、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることがより好ましい。置換アミノ基は、特に、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のジヘテロアリールアミノ基であることが好ましい。ここでいうジアリールアミノ基を構成する2つのアリール基は互いに結合していてもよく、またジヘテロアリールアミノ基を構成する2つのヘテロアリール基は互いに結合していてもよい。本発明における他のドナー性基は、置換アミノ基の窒素原子で結合する基であってもよいし、置換アミノ基が結合した基で結合する基であってもよい。置換アミノ基が結合する基は、π共役基であることが好ましい。より好ましいのは、置換アミノ基の窒素原子で結合する基である。
 本発明における他のドナー性基として特に好ましいのは、置換もしくは無置換のカルバゾール-9-イル基である。カルバゾール-9-イル基を構成する2つのベンゼン環には、環が縮合していることはない。カルバゾール-9-イル基の置換基としては、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ヘテロアリールオキシ基、ヘテロアリールチオ基、置換アミノ基を挙げることができ、好ましい置換基として、アルキル基、アリール基、置換アミノ基を挙げることができる。置換アミノ基の説明については、1つ前の段落の記載を参照することができる。また、ここでいう置換アミノ基には置換もしくは無置換のカルバゾリル基が含まれ、例えば置換もしくは無置換のカルバゾール-3-イル基や置換もしくは無置換のカルバゾール-9-イル基が含まれる。
 本発明における他のドナー性基は、水素原子および重水素原子以外の原子数が8以上であることが好ましく、12以上であることがより好ましく、例えば16以上とすることもできる。また、80以下であることが好ましく、60以下であることがより好ましく、40以下であることがさらに好ましい。
Another donor group in the present invention is preferably a group containing a substituted amino group. The substituent bonded to the nitrogen atom of the amino group is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. , a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. The substituted amino group is particularly preferably a substituted or unsubstituted diarylamino group or a substituted or unsubstituted diheteroarylamino group. Two aryl groups constituting the diarylamino group herein may be bonded to each other, and two heteroaryl groups constituting the diheteroarylamino group may be bonded to each other. The other donor group in the present invention may be a group that binds through the nitrogen atom of the substituted amino group, or a group that binds through the group to which the substituted amino group is bound. The group to which the substituted amino group is bonded is preferably a π-conjugated group. More preferred are groups attached at the nitrogen atom of a substituted amino group.
A substituted or unsubstituted carbazol-9-yl group is particularly preferred as another donor group in the present invention. The two benzene rings that make up the carbazol-9-yl group are not condensed. Substituents for the carbazol-9-yl group include alkyl groups, alkenyl groups, aryl groups, heteroaryl groups, alkoxy groups, alkylthio groups, aryloxy groups, arylthio groups, heteroaryloxy groups, heteroarylthio groups, and substituted amino groups. groups, and preferred substituents include alkyl groups, aryl groups, and substituted amino groups. For a description of substituted amino groups, reference can be made to the description in the previous paragraph. The substituted amino group here includes a substituted or unsubstituted carbazolyl group, such as a substituted or unsubstituted carbazol-3-yl group and a substituted or unsubstituted carbazol-9-yl group.
Other donor groups in the present invention preferably have 8 or more atoms other than hydrogen atoms and deuterium atoms, more preferably 12 or more atoms, and can also have, for example, 16 or more atoms. Also, it is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less.
 本発明の好ましい一態様では、環縮合インドール-1-イル基は、基を構成する縮合環の中に2個以上のヘテロ環を含むものに限定され、それ以外のドナー性基を「他のドナー性基」とする。縮合環の中に2個以上のヘテロ環を含むものとして、例えば後掲のD13~D152を挙げることができる。
 本発明の別の好ましい一態様では、環縮合インドール-1-イル基は、インドールのベンゼン環かピロール環に少なくとも1個のヘテロ環が直接縮合しているものに限定され、それ以外のドナー性基を「他のドナー性基」とする。
In a preferred embodiment of the present invention, the ring-fused indol-1-yl group is limited to those containing two or more heterocycles in the condensed rings constituting the group, and other donor groups are defined as “other "donor group". Examples of condensed rings containing two or more heterocycles include D13 to D152 described later.
In another preferred embodiment of the present invention, the ring-fused indol-1-yl group is limited to those in which at least one heterocyclic ring is directly fused to the benzene ring or pyrrole ring of the indole, and other donor properties The group is referred to as "another donor group".
 以下において、一般式(1)のDとDが採ることができるドナー性基の具体例を示す。D7~D152が環縮合インドール-1-イル基の具体例であり、D1~D6が他のドナー性基の具体例である。以下の構造式において、Phはフェニル基を表し、*は結合位置を表す。また、メチル基はCHの表示を省略しており、例えばD2は3-メチルカルバゾール-9-イル基を表す。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Specific examples of donor groups that D1 and D2 in formula (1) can take are shown below. D7 to D152 are specific examples of ring-fused indol-1-yl groups, and D1 to D6 are specific examples of other donor groups. In the following structural formulas, Ph represents a phenyl group and * represents a bonding position. In addition, CH 3 is omitted from the methyl group, and for example, D2 represents a 3-methylcarbazol-9-yl group.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 D1~D152の水素原子をすべて重水素原子に置換したものを、D1d~D152dとしてここに開示する。
 また、D31~D42およびD61~D79における「Ph」で表わされるフェニル基を、ペンタデューテリオフェニル基(フェニル基の水素原子をすべて重水素原子に置換した基)に置換したものを、D31d1~D42d1およびD61d1~D79d1としてここに開示する。
Those in which all hydrogen atoms in D1 to D152 are replaced with deuterium atoms are disclosed here as D1d to D152d.
Further, D31d1 to D42d1 obtained by substituting the phenyl group represented by "Ph" in D31 to D42 and D61 to D79 with a pentadeuteriophenyl group (a group in which all the hydrogen atoms of the phenyl group are substituted with deuterium atoms) and D61d1-D79d1.
 一般式(1)におけるR~Rのうちの1~2個は、各々独立に置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基を表す。R~Rのうち、置換もしくは無置換のアリール基でも、炭素原子で結合する置換もしくは無置換のヘテロアリール基でも、環縮合インドール-1-イル基でもないものは、水素原子または重水素原子を表し、例えば水素原子とすることができる。
 R~Rのうちの1個だけが、置換もしくは無置換のアリール基であってもよく、R~Rのうちの1個だけが、炭素原子で結合する置換もしくは無置換のヘテロアリール基であってもよい。R~Rのうちの2個が、同一の置換もしくは無置換のアリール基であってもよいし、互いに異なる置換もしくは無置換のアリール基であってもよい。R~Rのうちの2個が、同一の置換もしくは無置換のヘテロアリール基であってもよいし、互いに異なる置換もしくは無置換のヘテロアリール基であってもよい。R~Rのうちの1個が、置換もしくは無置換のアリール基であって、他の1個が炭素原子で結合する置換もしくは無置換のヘテロアリール基であってもよい。本発明の好ましい態様では、R~Rのうちの1個だけが置換もしくは無置換のアリール基であるか、R~Rのうちの2個が各々独立に置換もしくは無置換のアリール基である。本発明にしたがって、置換基としてArを採用することにより、ドナー置換テレフタロニトリルのΔEST(最低励起一重項エネルギーと最低励起三重項エネルギーの差)を小さくして、遅延蛍光体としての有用性(発光効率など)を向上させることができる。
1 to 2 of R 1 to R 4 in general formula (1) each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded via a carbon atom. Among R 1 to R 4 , those which are not a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group bonded via a carbon atom, or a ring-fused indol-1-yl group are hydrogen atoms or deuterium atoms. represents an atom, which can be, for example, a hydrogen atom.
Only one of R 1 to R 4 may be a substituted or unsubstituted aryl group, and only one of R 1 to R 4 is a substituted or unsubstituted hetero group attached at a carbon atom. It may be an aryl group. Two of R 1 to R 4 may be the same substituted or unsubstituted aryl group or different substituted or unsubstituted aryl groups. Two of R 1 to R 4 may be the same substituted or unsubstituted heteroaryl group, or may be different substituted or unsubstituted heteroaryl groups. One of R 1 to R 4 may be a substituted or unsubstituted aryl group and the other one may be a substituted or unsubstituted heteroaryl group bonded via a carbon atom. In a preferred embodiment of the present invention, only one of R 1 to R 4 is a substituted or unsubstituted aryl group, or two of R 1 to R 4 are each independently substituted or unsubstituted aryl is the base. According to the present invention, by adopting Ar as a substituent, the ΔEST (difference between the lowest excited singlet energy and the lowest excited triplet energy) of the donor-substituted terephthalonitrile is reduced, and the usefulness as a delayed phosphor (luminous efficiency, etc.) can be improved.
 RとArが採りうるアリール基とヘテロアリール基の説明と好ましい範囲については、環縮合インドール-1-イル基の置換基におけるアリール基とヘテロアリール基の記載を参照することができる。ただし、ヘテロアリール基は、炭素原子で結合するヘテロアリール基である。アリール基の置換基とヘテロアリール基の置換基としては、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ヘテロアリールオキシ基、ヘテロアリールチオ基、シアノ基、およびこれらの基を組み合わせた基を挙げることができる。好ましい置換基の群として、アルキル基、アリール基、アルコキシ基、アルキルチオ基、シアノ基を挙げることができる。本発明の好ましい一態様では、アリール基とヘテロアリール基はアルキル基で置換されているか、無置換である。例えば無置換のフェニル基や、アルキル基で置換されているフェニル基を例示することができる。 For the description and preferred range of the aryl group and heteroaryl group that R and Ar can take, the description of the aryl group and heteroaryl group in the substituents of the ring-fused indol-1-yl group can be referred to. However, a heteroaryl group is a heteroaryl group attached at a carbon atom. The aryl group substituents and the heteroaryl group substituents include alkyl groups, alkenyl groups, aryl groups, heteroaryl groups, alkoxy groups, alkylthio groups, aryloxy groups, arylthio groups, heteroaryloxy groups, and heteroarylthio groups. , cyano groups, and combinations of these groups. Preferred groups of substituents include alkyl groups, aryl groups, alkoxy groups, alkylthio groups, and cyano groups. In one preferred aspect of the invention, the aryl and heteroaryl groups are substituted with alkyl groups or unsubstituted. Examples include an unsubstituted phenyl group and a phenyl group substituted with an alkyl group.
 以下において、一般式(1)のArが採ることができる置換もしくは無置換のアリール基、および炭素原子で結合する置換もしくは無置換のヘテロアリール基の具体例を示す。以下の構造式において、t-Buはターシャリーブチル基を表し、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Specific examples of the substituted or unsubstituted aryl group and the substituted or unsubstituted heteroaryl group bonded to the carbon atom that Ar in the general formula (1) can take are shown below. In the structural formulas below, t-Bu represents a tertiary butyl group and * represents a bonding position.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 Ar1~Ar81の水素原子をすべて重水素原子に置換したものを、Ar1d~Ar81dとしてここに開示する。 Ar1d to Ar81d in which all the hydrogen atoms of Ar1 to Ar81 are replaced with deuterium atoms are disclosed here.
 一般式(1)で表される化合物は、金属原子を含まないことが好ましく、炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子だけで構成される化合物であってもよい。本発明の好ましい一態様では、一般式(1)で表される化合物は、炭素原子、水素原子、重水素原子、窒素原子および酸素原子からなる群より選択される原子だけで構成される。また、一般式(1)で表される化合物は、炭素原子、水素原子、重水素原子、窒素原子および硫黄原子からなる群より選択される原子だけで構成される化合物であってもよい。一般式(1)で表される化合物は、炭素原子、水素原子、重水素原子および窒素原子からなる群より選択される原子だけで構成される化合物であってもよい。一般式(1)で表される化合物は、炭素原子、水素原子および窒素原子からなる群より選択される原子だけで構成される化合物であってもよい。さらに、一般式(1)で表される化合物は水素原子を含まず、重水素原子を含む化合物であってもよい。例えば、一般式(1)で表される化合物は、炭素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子だけで構成される化合物であってもよい。
 本発明の一態様では、一般式(1)で表される化合物は対称構造を有する。例えば線対称構造を有していてもよいし、回転対称構造を有していてもよい。
The compound represented by the general formula (1) preferably does not contain a metal atom, and consists only of atoms selected from the group consisting of a carbon atom, a hydrogen atom, a deuterium atom, a nitrogen atom, an oxygen atom and a sulfur atom. It may be a compound that is In a preferred embodiment of the present invention, the compound represented by general formula (1) is composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and oxygen atoms. Further, the compound represented by general formula (1) may be a compound composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and sulfur atoms. The compound represented by general formula (1) may be a compound composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms and nitrogen atoms. The compound represented by general formula (1) may be a compound composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms and nitrogen atoms. Furthermore, the compound represented by general formula (1) may be a compound containing no hydrogen atom and containing a deuterium atom. For example, the compound represented by general formula (1) may be a compound composed only of atoms selected from the group consisting of carbon atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
In one aspect of the present invention, the compound represented by general formula (1) has a symmetrical structure. For example, it may have a line-symmetrical structure or a rotationally-symmetrical structure.
 以下の表1~6に、一般式(1)で表される化合物の具体例を示す。表1~6では、D、D、D、Ar、Ar、Arを化合物ごとに特定することにより化合物の構造を示している。例えば、表1の化合物1~125であれば、ArはAr1に固定されていて、DがDが同じである構造を有している。そして、DがDが順にD7~D20、D22~D30、D36~D48、D50~D60、D67~D73、D79~D149であるものを化合物1~125としている。化合物856~2451であれば、DがDがD21であって、Arが順にAr2~Ar21、Ar25~Ar52、Ar54~Ar81であるものを化合物856~931とし、DがDがD31であって、Arが順にAr2~Ar21、Ar25~Ar52、Ar54~Ar81であるものを化合物931~1006とする要領で化合物番号を振ってゆき、最後にDがDがD152であって、Arが順にAr2~Ar21、Ar25~Ar52、Ar54~Ar81であるものを化合物2376~2451としている。表1~6にて、化合物1~25053は個別に構造が特定され、本明細書にて具体的に開示されている。また、化合物1~25053の分子内に存在する水素原子をすべて重水素原子に置換したものを化合物1d~25053dとして開示する。なお、以下の化合物のうち回転異性体が存在する場合は、回転異性体の混合物と、分離した各回転異性体も、本明細書に開示されているものとする。また、以下の表1~6においてAr82は、Ar1dと同じ構造(Ar1のすべての水素原子を重水素原子に置換した構造)を表す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Specific examples of the compounds represented by the general formula (1) are shown in Tables 1 to 6 below. Tables 1 to 6 show the structures of compounds by specifying D 1 , D 2 , D 3 , Ar, Ar 1 and Ar 2 for each compound. For example, in compounds 1-125 of Table 1, Ar is fixed to Ar1 and D 1 has the same structure as D 2 . Compounds 1 to 125 are those in which D 1 and D 2 are D7 to D20, D22 to D30, D36 to D48, D50 to D60, D67 to D73, and D79 to D149 in this order. Compounds 856 to 2451 where D 1 is D 2 is D21, and Ar is Ar2 to Ar21, Ar25 to Ar52, and Ar54 to Ar81 in that order are compounds 856 to 931, and D 1 is D 2 is D31 wherein Ar is Ar2 to Ar21, Ar25 to Ar52, and Ar54 to Ar81 are numbered in order as compounds 931 to 1006, and finally D1 is D2 is D152, Compounds 2376 to 2451 are those in which Ar is Ar2 to Ar21, Ar25 to Ar52, and Ar54 to Ar81 in order. In Tables 1-6, compounds 1-25053 are individually identified in structure and specifically disclosed herein. Compounds 1d to 25053d in which all hydrogen atoms present in the molecules of compounds 1 to 25053 are replaced with deuterium atoms are also disclosed. It should be noted that when rotamers of the following compounds exist, the mixture of rotamers as well as each separate rotamer are also disclosed herein. In Tables 1 to 6 below, Ar82 represents the same structure as Ar1d (a structure in which all hydrogen atoms of Ar1 are replaced with deuterium atoms).
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、900以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。一般式(1)で表される化合物は、シアノベンゼン系化合物の中では有機溶媒に溶解しやすいという利点がある。このため、一般式(1)で表される化合物は塗布法を適用しやすいうえ、精製して純度を高めやすい。
 一般式(1)で表される化合物は遅延蛍光寿命(τ2)が短いため、有機発光素子に用いたときに素子の発光効率を改善したり、ロールオフを抑制したりすることができる。このため、効率が良くて、安定性(耐久性)に優れた有機発光素子を提供できる。
The molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by a vapor deposition method and used. It is preferably 1200 or less, more preferably 1000 or less, and even more preferably 900 or less. The lower limit of the molecular weight is the molecular weight of the smallest compound represented by general formula (1).
The compound represented by general formula (1) may be formed into a film by a coating method regardless of its molecular weight. If a coating method is used, it is possible to form a film even with a compound having a relatively large molecular weight. Among cyanobenzene compounds, the compound represented by the general formula (1) has the advantage of being easily dissolved in an organic solvent. Therefore, the compound represented by the general formula (1) can be easily applied to the coating method, and can be easily purified to increase its purity.
Since the compound represented by the general formula (1) has a short delayed fluorescence lifetime (τ2), it can improve the luminous efficiency of the organic light-emitting device and suppress roll-off. Therefore, it is possible to provide an organic light-emitting device that is efficient and excellent in stability (durability).
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)のR~Rのいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
By applying the present invention, it is also conceivable to use a compound containing a plurality of structures represented by general formula (1) in its molecule as a light-emitting material.
For example, it is conceivable that a polymerizable group is preliminarily present in the structure represented by the general formula (1), and a polymer obtained by polymerizing the polymerizable group is used as the light-emitting material. Specifically, by preparing a monomer containing a polymerizable functional group in any one of R 1 to R 4 of general formula (1) and polymerizing it alone or copolymerizing it with other monomers, It is conceivable to obtain a polymer having repeating units and use the polymer as a light-emitting material. Alternatively, it is conceivable to obtain a dimer or trimer by coupling compounds having a structure represented by general formula (1) and use them as a light-emitting material.
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(2)または(3)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000031
Examples of polymers having repeating units containing the structure represented by general formula (1) include polymers containing structures represented by the following general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000031
 一般式(2)または(3)において、Qは一般式(1)で表される構造を含む基を表し、LおよびLは連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(2)または(3)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 LおよびLで表される連結基は、Qを構成する一般式(1)のR~Rのいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
In general formula (2) or (3), Q represents a group containing the structure represented by general formula (1), and L 1 and L 2 represent linking groups. The number of carbon atoms in the linking group is preferably 0-20, more preferably 1-15, still more preferably 2-10. The linking group preferably has a structure represented by -X 11 -L 11 -. Here, X 11 represents an oxygen atom or a sulfur atom, preferably an oxygen atom. L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group or a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted A phenylene group is more preferred.
In general formula (2) or (3), R 101 , R 102 , R 103 and R 104 each independently represent a substituent. Preferred are substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 6 carbon atoms, and halogen atoms, more preferably unsubstituted alkyl groups having 1 to 3 carbon atoms. , an unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom or a chlorine atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms or an unsubstituted alkoxy group having 1 to 3 carbon atoms.
The linking groups represented by L 1 and L 2 can be bonded to any of R 1 to R 4 constituting Q in general formula (1). Two or more linking groups may be linked to one Q to form a crosslinked structure or network structure.
 繰り返し単位の具体的な構造例として、下記式(4)~(7)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000032
Specific structural examples of the repeating unit include structures represented by the following formulas (4) to (7).
Figure JPOXMLDOC01-appb-C000032
 これらの式(4)~(7)を含む繰り返し単位を有する重合体は、一般式(1)のR~Rのいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000033
Polymers having repeating units containing these formulas (4) to (7) are obtained by introducing a hydroxy group into any of R 1 to R 4 in general formula (1), and using it as a linker, the following compounds are prepared. It can be synthesized by reacting to introduce a polymerizable group and polymerizing the polymerizable group.
Figure JPOXMLDOC01-appb-C000033
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。 The polymer containing the structure represented by general formula (1) in the molecule may be a polymer consisting only of repeating units having the structure represented by general formula (1), or may have other structures. It may be a polymer containing a repeating unit having Moreover, the repeating unit having the structure represented by the general formula (1) contained in the polymer may be of a single type, or may be of two or more types. Examples of repeating units having no structure represented by general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include repeating units derived from monomers having ethylenically unsaturated bonds such as ethylene and styrene.
 ある実施形態では、一般式(1)で表される化合物は発光材料である。
 ある実施形態では、一般式(1)で表される化合物は、遅延蛍光を発することができる化合物である。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、UV領域、可視スペクトルのうち青色、緑色、黄色、オレンジ色、赤色領域(例えば約420nm~約500nm、約500nm~約600nmまたは約600nm~約700nm)または近赤外線領域で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち赤色またはオレンジ色領域(例えば約620nm~約780nm、約650nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうちオレンジ色または黄色領域(例えば約570nm~約620nm、約590nm、約570nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち緑色領域(例えば約490nm~約575nm、約510nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち青色領域(例えば約400nm~約490nm、約475nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、紫外スペクトル領域(例えば280~400nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、赤外スペクトル領域(例えば780nm~2μm)で光を発することができる。
In one embodiment, the compound represented by general formula (1) is a luminescent material.
In one embodiment, the compound represented by general formula (1) is a compound capable of emitting delayed fluorescence.
In certain embodiments of the present disclosure, the compound represented by general formula (1), when excited by thermal or electronic means, is in the UV region, blue, green, yellow, orange, red region of the visible spectrum (eg, about 420 nm to about 500 nm, about 500 nm to about 600 nm, or about 600 nm to about 700 nm) or can emit light in the near-infrared region.
In certain embodiments of the present disclosure, compounds represented by general formula (1), when excited by thermal or electronic means, exhibit a red or orange region of the visible spectrum (e.g., about 620 nm to about 780 nm, about 650 nm).
In certain embodiments of the present disclosure, compounds represented by general formula (1), when excited by thermal or electronic means, exhibit an orange or yellow region of the visible spectrum (e.g., about 570 nm to about 620 nm, about 590 nm, about 570 nm).
In certain embodiments of the present disclosure, the compound represented by general formula (1) is in the green region of the visible spectrum (eg, about 490 nm to about 575 nm, about 510 nm) when excited by thermal or electronic means. Can emit light.
In certain embodiments of the present disclosure, the compound represented by general formula (1) is in the blue region of the visible spectrum (eg, about 400 nm to about 490 nm, about 475 nm) when excited by thermal or electronic means. Can emit light.
In certain embodiments of the present disclosure, compounds of general formula (1) are capable of emitting light in the ultraviolet spectral region (eg, 280-400 nm) when excited by thermal or electronic means.
In certain embodiments of the present disclosure, compounds of general formula (1) are capable of emitting light in the infrared spectral region (eg, 780 nm-2 μm) when excited by thermal or electronic means.
 小分子の化学物質ライブラリの電子的特性は、公知のab initioによる量子化学計算を用いて算出することができる。例えば、基底として、6-31G*、およびベッケの3パラメータ、Lee-Yang-Parrハイブリッド汎関数として知られている関数群を用いた時間依存的な密度汎関数理論を使用してHartree-Fock方程式(TD-DFT/B3LYP/6-31G*)を解析し、特定の閾値以上のHOMOおよび特定の閾値以下のLUMOを有する分子断片(部分)をスクリーニングすることができる。
 それにより、例えば-6.5eV以上のHOMOエネルギー(例えばイオン化ポテンシャル)があるときは、供与体部分(「D」)が選抜できる。また例えば、-0.5eV以下のLUMOエネルギー(例えば電子親和力)があるときは、受容体部分(「A」)が選抜できる。ブリッジ部分(「B」)は、例えば受容体と供与体部分を特異的な立体構成に厳しく制限できる強い共役系であることにより、供与体および受容体部分のπ共役系間の重複が生じるのを防止する。
 ある実施形態では、化合物ライブラリは、以下の特性のうちの1つ以上を用いて選別される。
1.特定の波長付近における発光
2.算出された、特定のエネルギー準位より上の三重項状態
3.特定値より下のΔEST
4.特定値より上の量子収率
5.HOMO準位
6.LUMO準位
 ある実施形態では、77Kにおける最低の一重項励起状態と最低の三重項励起状態との差(ΔEST)は、約0.5eV未満、約0.4eV未満、約0.3eV未満、約0.2eV未満または約0.1eV未満である。ある実施形態ではΔEST値は、約0.09eV未満、約0.08eV未満、約0.07eV未満、約0.06eV未満、約0.05eV未満、約0.04eV未満、約0.03eV未満、約0.02eV未満または約0.01eV未満である。
 ある実施形態では、一般式(1)で表される化合物は、25%超の、例えば約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%またはそれ以上の量子収率を示す。
Electronic properties of small molecule chemical substance libraries can be calculated using known ab initio quantum chemical calculations. For example, the Hartree-Fock equations using time-dependent density functional theory with 6-31G* as the basis and a family of functions known as Becke's three-parameter, Lee-Yang-Parr hybrid functionals (TD-DFT/B3LYP/6-31G*) can be analyzed to screen for molecular fragments (parts) with HOMO above a certain threshold and LUMO below a certain threshold.
Thereby, for example, the donor moiety (“D”) can be selected when there is a HOMO energy (eg, ionization potential) of −6.5 eV or higher. Also for example, acceptor moieties (“A”) can be selected when there is a LUMO energy (eg, electron affinity) of −0.5 eV or less. The bridging moiety (“B”) is, for example, a strongly conjugated system that can tightly constrain the acceptor and donor moieties to specific conformations, thereby allowing overlap between the π-conjugated systems of the donor and acceptor moieties. to prevent
In some embodiments, compound libraries are screened using one or more of the following properties.
1. Emission around a specific wavelength2. Calculated triplet states above a particular energy level;3. ΔEST values below a specified value;4. quantum yield above a specified value;5. HOMO level6. LUMO Level In some embodiments, the difference between the lowest singlet excited state and the lowest triplet excited state at 77 K (ΔE ST ) is less than about 0.5 eV, less than about 0.4 eV, less than about 0.3 eV, less than about 0.2 eV or less than about 0.1 eV. In some embodiments, the ΔEST value is less than about 0.09 eV, less than about 0.08 eV, less than about 0.07 eV, less than about 0.06 eV, less than about 0.05 eV, less than about 0.04 eV, less than about 0.03 eV. , less than about 0.02 eV or less than about 0.01 eV.
In certain embodiments, the compound represented by general formula (1) comprises more than 25% of , about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% or more.
[一般式(1)で表される化合物の合成方法]
 一般式(1)で表される化合物は、新規化合物である。
 一般式(1)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、ドナー性基D、Dを導入したい位置がフッ素原子で置換された(ヘテロ)アリールジフルオロテレフタロニトリルにD-HやD-Hを水素化ナトリウムの存在下でテトラヒドロフラン中で反応させることにより合成することが可能である。DとDが互いに異なる場合は、D-H、D-Hとの反応を2段階で行ってもよい。反応の具体的な条件や反応手順については、後述の実施例を参考にすることができる。
[Method for Synthesizing Compound Represented by Formula (1)]
The compound represented by general formula (1) is a novel compound.
The compound represented by general formula (1) can be synthesized by combining known reactions. For example, a (hetero)aryldifluoroterephthalonitrile substituted with a fluorine atom at the position where the donor group D 1 or D 2 is to be introduced is treated with D 1 -H or D 2 -H in tetrahydrofuran in the presence of sodium hydride. It is possible to synthesize by reacting. When D 1 and D 2 are different from each other, the reaction with D 1 —H and D 2 —H may be carried out in two steps. Specific reaction conditions and reaction procedures can be referred to Examples described later.
[一般式(1)で表される化合物を用いた構成物]
 ある実施形態では、一般式(1)で表される化合物と組み合わせ、同化合物を分散させ、同化合物と共有結合し、同化合物をコーティングし、同化合物を担持し、あるいは同化合物と会合する1つ以上の材料(例えば小分子、ポリマー、金属、金属錯体等)と共に用い、固体状のフィルムまたは層を形成させる。例えば、一般式(1)で表される化合物を電気活性材料と組み合わせてフィルムを形成することができる。いくつかの場合、一般式(1)で表される化合物を正孔輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を電子輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を正孔輸送ポリマーおよび電子輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を、正孔輸送部と電子輸送部との両方を有するコポリマーと組み合わせてもよい。以上のような実施形態により、固体状のフィルムまたは層内に形成される電子および/または正孔を、一般式(1)で表される化合物と相互作用させることができる。
[Construction using compound represented by general formula (1)]
In one embodiment, a compound represented by general formula (1) is combined with, dispersed with, covalently bonded with, coated with, supported with, or associated with the compound 1 Used with one or more materials (eg, small molecules, polymers, metals, metal complexes, etc.) to form a solid film or layer. For example, a compound represented by general formula (1) can be combined with an electroactive material to form a film. In some cases, compounds of general formula (1) may be combined with hole-transporting polymers. In some cases, a compound of general formula (1) may be combined with an electron transport polymer. In some cases, compounds of general formula (1) may be combined with hole-transporting and electron-transporting polymers. In some cases, compounds of general formula (1) may be combined with copolymers having both hole-transporting and electron-transporting moieties. According to the above embodiments, electrons and/or holes formed in the solid film or layer can interact with the compound represented by general formula (1).
[フィルムの形成]
 ある実施形態では、一般式(1)で表される本発明の化合物を含むフィルムは、湿式工程で形成することができる。湿式工程では、本発明の化合物を含む組成物を溶解した溶液を面に塗布し、溶媒の除去後にフィルムを形成する。湿式工程として、スピンコート法、スリットコート法、インクジェット法(スプレー法)、グラビア印刷法、オフセット印刷法、フレキソ印刷法を挙げることができるが、これらに限定されるものではない。湿式工程では、本発明の化合物を含む組成物を溶解することができる適切な有機溶媒を選択して用いる。ある実施形態では、組成物に含まれる化合物に、有機溶媒に対する溶解性を上げる置換基(例えばアルキル基)を導入することができる。
 ある実施形態では、本発明の化合物を含むフィルムは、乾式工程で形成することができる。ある実施形態では、乾式工程として真空蒸着法を採用することができる、これに限定されるものではない。真空蒸着法を採用する場合は、フィルムを構成する化合物を個別の蒸着源から共蒸着させてもよいし、化合物を混合した単一の蒸着源から共蒸着させてもよい。単一の蒸着源を用いる場合は、化合物の粉末を混合した混合粉を用いてもよいし、その混合粉を圧縮した圧縮成形体を用いてもよいし、各化合物を加熱溶融して冷却した混合物を用いてもよい。ある実施形態では、単一の蒸着源に含まれる複数の化合物の蒸着速度(重量減少速度)が一致ないしほぼ一致する条件で共蒸着を行うことにより、蒸着源に含まれる複数の化合物の組成比に対応する組成比のフィルムを形成することができる。形成されるフィルムの組成比と同じ組成比で複数の化合物を混合して蒸着源とすれば、所望の組成比を有するフィルムを簡便に形成することができる。ある実施形態では、共蒸着される各化合物が同じ重量減少率になる温度を特定して、その温度を共蒸着時の温度として採用することができる。
[Film formation]
In some embodiments, films comprising compounds of the present invention represented by general formula (1) can be formed in a wet process. In the wet process, a solution of a composition containing a compound of the invention is applied to the surface and a film is formed after removal of the solvent. Examples of wet processes include spin coating, slit coating, inkjet (spray), gravure printing, offset printing, and flexographic printing, but are not limited to these. In wet processes, suitable organic solvents are selected and used that are capable of dissolving compositions containing the compounds of the present invention. In certain embodiments, compounds included in the composition can be introduced with substituents (eg, alkyl groups) that increase their solubility in organic solvents.
In some embodiments, films comprising compounds of the invention can be formed in a dry process. In some embodiments, the dry process can be vacuum deposition, but is not limited to this. When a vacuum deposition method is employed, the compounds forming the film may be co-deposited from separate deposition sources, or may be co-deposited from a single deposition source in which the compounds are mixed. When a single vapor deposition source is used, a mixed powder obtained by mixing powders of compounds may be used, a compression molding obtained by compressing the mixed powder may be used, or each compound may be heated, melted, and cooled. Mixtures may also be used. In one embodiment, the composition ratio of the plurality of compounds contained in the vapor deposition source is reduced by performing co-deposition under conditions in which the vapor deposition rates (weight reduction rates) of the plurality of compounds contained in the single vapor deposition source match or substantially match. can form a film with a composition ratio corresponding to A film having a desired composition ratio can be easily formed by mixing a plurality of compounds at the same composition ratio as that of the film to be formed and using this as a vapor deposition source. In one embodiment, the temperature at which each of the co-deposited compounds has the same weight loss rate can be identified and used as the temperature during co-deposition.
[一般式(1)で表される化合物の使用の例]
有機発光ダイオード:
 本発明の一態様は、有機発光素子の発光材料としての、本発明の一般式(1)で表される化合物の使用に関する。ある実施形態では、本発明の一般式(1)で表される化合物は、有機発光素子の発光層における発光材料として効果的に使用できる。ある実施形態では、一般式(1)で表される化合物は、遅延蛍光を発する遅延蛍光(遅延蛍光体)を含む。ある実施形態では、本発明は一般式(1)で表される構造を有する遅延蛍光体を提供する。ある実施形態では、本発明は遅延蛍光体としての一般式(1)で表される化合物の使用に関する。ある実施形態では、本発明は一般式(1)で表される化合物は、ホスト材料として使用することができ、かつ、1つ以上の発光材料と共に使用することができ、発光材料は蛍光材料、燐光材料またはTADFでよい。ある実施形態では、一般式(1)で表される化合物は、正孔輸送材料として使用することもできる。ある実施形態では、一般式(1)で表される化合物は、電子輸送材料として使用することができる。ある実施形態では、本発明は一般式(1)で表される化合物から遅延蛍光を生じさせる方法に関する。ある実施形態では、化合物を発光材料として含む有機発光素子は、遅延蛍光を発し、高い光放射効率を示す。
 ある実施形態では、発光層は一般式(1)で表される化合物を含み、一般式(1)で表される化合物は、基材と平行に配向される。ある実施形態では、基材はフィルム形成表面である。ある実施形態では、フィルム形成表面に対する一般式(1)で表される化合物の配向は、整列させる化合物によって発せられる光の伝播方向に影響を与えるか、あるいは、当該方向を決定づける。ある実施形態では、一般式(1)で表される化合物によって発される光の伝播方向を整列させることで、発光層からの光抽出効率が改善される。
 本発明の一態様は、有機発光素子に関する。ある実施形態では、有機発光素子は発光層を含む。ある実施形態では、発光層は発光材料として一般式(1)で表される化合物を含む。ある実施形態では、有機発光素子は有機光ルミネッセンス素子(有機PL素子)である。ある実施形態では、有機発光素子は、有機エレクトロルミネッセンス素子(有機EL素子)である。ある実施形態では、一般式(1)で表される化合物は、発光層に含まれる他の発光材料の光放射を(いわゆるアシストドーパントとして)補助する。ある実施形態では、発光層に含まれる一般式(1)で表される化合物は、その最低の励起一重項エネルギー準位にあり、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位との間に含まれる。
 ある実施形態では、有機光ルミネッセンス素子は、少なくとも1つの発光層を含む。ある実施形態では、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および前記陽極と前記陰極との間の有機層を含む。ある実施形態では、有機層は、少なくとも発光層を含む。ある実施形態では、有機層は、発光層のみを含む。ある実施形態では、有機層は、発光層に加えて1つ以上の有機層を含む。有機層の例としては、正孔輸送層、正孔注入層、電子障壁層、正孔障壁層、電子注入層、電子輸送層および励起子障壁層が挙げられる。ある実施形態では、正孔輸送層は、正孔注入機能を有する正孔注入輸送層であってもよく、電子輸送層は、電子注入機能を有する電子注入輸送層であってもよい。有機エレクトロルミネッセンス素子の例を図1に示す。
[Example of use of compound represented by general formula (1)]
Organic Light Emitting Diode:
One aspect of the present invention relates to use of the compound represented by general formula (1) of the present invention as a light-emitting material for an organic light-emitting device. In one embodiment, the compound represented by general formula (1) of the present invention can be effectively used as a light-emitting material in the light-emitting layer of an organic light-emitting device. In one embodiment, the compound represented by general formula (1) contains delayed fluorescence that emits delayed fluorescence (delayed phosphor). In one embodiment, the present invention provides a delayed phosphor having a structure represented by general formula (1). In one embodiment, the present invention relates to the use of compounds represented by general formula (1) as delayed phosphors. In one embodiment, the present invention provides that the compound represented by general formula (1) can be used as a host material and can be used with one or more luminescent materials, wherein the luminescent material is a fluorescent material, It can be a phosphorescent material or TADF. In one embodiment, the compound represented by general formula (1) can also be used as a hole transport material. In one embodiment, the compound represented by general formula (1) can be used as an electron transport material. In one embodiment, the present invention relates to a method for producing delayed fluorescence from a compound represented by general formula (1). In one embodiment, an organic light-emitting device containing a compound as a light-emitting material emits delayed fluorescence and exhibits high light emission efficiency.
In one embodiment, the emissive layer comprises a compound represented by general formula (1), and the compound represented by general formula (1) is oriented parallel to the substrate. In some embodiments, the substrate is a film-forming surface. In some embodiments, the orientation of the compounds of general formula (1) with respect to the film-forming surface affects or dictates the direction of propagation of light emitted by the aligning compounds. In some embodiments, aligning the propagation direction of light emitted by compounds represented by general formula (1) improves light extraction efficiency from the emissive layer.
One aspect of the present invention relates to an organic light emitting device. In some embodiments, the organic light emitting device includes an emissive layer. In one embodiment, the light-emitting layer contains a compound represented by general formula (1) as a light-emitting material. In one embodiment, the organic light emitting device is an organic photoluminescent device (organic PL device). In one embodiment, the organic light-emitting device is an organic electroluminescent device (organic EL device). In one embodiment, the compound represented by general formula (1) assists (as a so-called assist dopant) the light emission of other light-emitting materials contained in the light-emitting layer. In one embodiment, the compound represented by general formula (1) contained in the light-emitting layer is at its lowest excited singlet energy level and is at the lowest excited singlet energy level of the host material contained in the light-emitting layer. It is contained between the lowest excited singlet energy levels of other light-emitting materials contained in the light-emitting layer.
In some embodiments, the organic photoluminescent device includes at least one emissive layer. In one embodiment, an organic electroluminescent device includes at least an anode, a cathode, and an organic layer between said anode and said cathode. In some embodiments, the organic layers include at least the emissive layer. In some embodiments, the organic layers include only the emissive layer. In some embodiments, the organic layers include one or more organic layers in addition to the emissive layer. Examples of organic layers include hole transport layers, hole injection layers, electron blocking layers, hole blocking layers, electron injection layers, electron transport layers and exciton blocking layers. In some embodiments, the hole transport layer may be a hole injection transport layer with hole injection functionality, and the electron transport layer may be an electron injection transport layer with electron injection functionality. An example of an organic electroluminescence device is shown in FIG.
発光層:
 ある実施形態では、発光層は、陽極および陰極からそれぞれ注入された正孔および電子が再結合して励起子を形成する層である。ある実施形態では、層は光を発する。
 ある実施形態では、発光材料のみが発光層として用いられる。ある実施形態では、発光層は発光材料とホスト材料とを含む。ある実施形態では、発光材料は、一般式(1)の1つ以上の化合物である。ある実施形態では、有機エレクトロルミネッセンス素子および有機光ルミネッセンス素子の光放射効率を向上させるため、発光材料において発生する一重項励起子および三重項励起子を、発光材料内に閉じ込める。ある実施形態では、発光層中に発光材料に加えてホスト材料を用いる。ある実施形態では、ホスト材料は有機化合物である。ある実施形態では、有機化合物は励起一重項エネルギーおよび励起三重項エネルギーを有し、その少なくとも1つは、本発明の発光材料のそれらよりも高い。ある実施形態では、本発明の発光材料中で発生する一重項励起子および三重項励起子は、本発明の発光材料の分子中に閉じ込められる。ある実施形態では、一重項および三重項の励起子は、光放射効率を向上させるために十分に閉じ込められる。ある実施形態では、高い光放射効率が未だ得られるにもかかわらず、一重項励起子および三重項励起子は十分に閉じ込められず、すなわち、高い光放射効率を達成できるホスト材料は、特に限定されることなく本発明で使用されうる。ある実施形態では、本発明の素子の発光層中の発光材料において、光放射が生じる。ある実施形態では、放射光は蛍光および遅延蛍光の両方を含む。ある実施形態では、放射光は、ホスト材料からの放射光を含む。ある実施形態では、放射光は、ホスト材料からの放射光からなる。ある実施形態では、放射光は、一般式(1)で表される化合物からの放射光と、ホスト材料からの放射光とを含む。ある実施形態では、TADF分子とホスト材料とが用いられる。ある実施形態では、TADFはアシストドーパントである。
Luminous layer:
In some embodiments, the emissive layer is the layer in which holes and electrons injected from the anode and cathode, respectively, recombine to form excitons. In some embodiments, the layer emits light.
In some embodiments, only emissive materials are used as emissive layers. In some embodiments, the emissive layer includes an emissive material and a host material. In some embodiments, the emissive material is one or more compounds of general formula (1). In one embodiment, singlet and triplet excitons generated in the luminescent material are confined within the luminescent material to improve the light emission efficiency of the organic electroluminescent and organic photoluminescent devices. In some embodiments, a host material is used in addition to the emissive material in the emissive layer. In some embodiments, the host material is an organic compound. In certain embodiments, the organic compound has excited singlet energies and excited triplet energies, at least one of which is higher than those of the light-emitting materials of the present invention. In certain embodiments, the singlet and triplet excitons generated in the luminescent material of the invention are confined within the molecules of the luminescent material of the invention. In certain embodiments, singlet and triplet excitons are sufficiently confined to improve light emission efficiency. In certain embodiments, singlet and triplet excitons are not sufficiently confined, although high light emission efficiency can still be obtained, i.e., host materials that can achieve high light emission efficiency are particularly limited. can be used in the present invention without In some embodiments, light emission occurs in the emissive material in the emissive layer of the device of the invention. In some embodiments, emitted light includes both fluorescence and delayed fluorescence. In some embodiments, the emitted light includes emitted light from the host material. In some embodiments, the emitted light consists of emitted light from the host material. In one embodiment, the emitted light includes emitted light from the compound represented by general formula (1) and emitted light from the host material. In some embodiments, a TADF molecule and a host material are used. In some embodiments, TADF is an assisting dopant.
 一般式(1)で表される化合物をアシストドーパントとして用いるとき、発光材料(好ましくは蛍光材料)として様々な化合物を採用することが可能である。そのような発光材料としては、アントラセン誘導体、テトラセン誘導体、ナフタセン誘導体、ピレン誘導体、ペリレン誘導体、クリセン誘導体、ルブレン誘導体、クマリン誘導体、ピラン誘導体、スチルベン誘導体、フルオレン誘導体、アントリル誘導体、ピロメテン誘導体、ターフェニル誘導体、ターフェニレン誘導体、フルオランテン誘導体、アミン誘導体、キナクリドン誘導体、オキサジアゾール誘導体、マロノニトリル誘導体、ピラン誘導体、カルバゾール誘導体、ジュロリジン誘導体、チアゾール誘導体、金属(Al,Zn)を有する誘導体等を用いることが可能である。これらの例示骨格には置換基を有してもよいし、置換基を有していなくてもよい。また、これらの例示骨格どうしを組み合わせてもよい。
 以下において、一般式(1)で表されるアシストドーパントと組み合わせて用いることができる発光材料を例示する。
When the compound represented by formula (1) is used as the assist dopant, various compounds can be employed as the luminescent material (preferably fluorescent material). Examples of such luminescent materials include anthracene derivatives, tetracene derivatives, naphthacene derivatives, pyrene derivatives, perylene derivatives, chrysene derivatives, rubrene derivatives, coumarin derivatives, pyran derivatives, stilbene derivatives, fluorene derivatives, anthryl derivatives, pyrromethene derivatives, terphenyl derivatives. , terphenylene derivatives, fluoranthene derivatives, amine derivatives, quinacridone derivatives, oxadiazole derivatives, malononitrile derivatives, pyran derivatives, carbazole derivatives, julolidine derivatives, thiazole derivatives, derivatives containing metals (Al, Zn), and the like. be. These exemplified skeletons may or may not have a substituent. Also, these exemplary skeletons may be combined.
Examples of light-emitting materials that can be used in combination with the assist dopant represented by the general formula (1) are given below.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 また、WO2015/022974号公報の段落0220~0239に記載の化合物も、一般式(1)で表されるアシストドーパントとともに用いる発光材料として、特に好ましく採用することができる。 In addition, the compounds described in paragraphs 0220 to 0239 of WO2015/022974 can also be particularly preferably employed as the luminescent material used together with the assist dopant represented by general formula (1).
 ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、0.1重量%以上である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、1重量%以上である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、50重量%以下である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、20重量%以下である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、10重量%以下である。
 ある実施形態では、発光層のホスト材料は、正孔輸送機能および電子輸送機能を有する有機化合物である。ある実施形態では、発光層のホスト材料は、放射光の波長が増加することを防止する有機化合物である。ある実施形態では、発光層のホスト材料は、高いガラス転移温度を有する有機化合物である。
In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 0.1% by weight or more. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 1% or more by weight. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 50% by weight or less. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 20% by weight or less. In one embodiment, when a host material is used, the amount of the compound of the invention as the light-emitting material contained in the light-emitting layer is 10% by weight or less.
In some embodiments, the host material of the emissive layer is an organic compound with hole-transporting and electron-transporting functionality. In some embodiments, the host material of the emissive layer is an organic compound that prevents the wavelength of emitted light from increasing. In some embodiments, the host material of the emissive layer is an organic compound with a high glass transition temperature.
 いくつかの実施形態では、ホスト材料は以下からなる群から選択される: 
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 ある実施形態では、発光層は2種類以上の構造が異なるTADF分子を含む。例えば、励起一重項エネルギー準位がホスト材料、第1TADF分子、第2TADF分子の順に高い、これら3種の材料を含む発光層とすることができる。このとき、第1TADF分子と第2TADF分子は、ともに最低励起一重項エネルギー準位と77Kの最低励起三重項エネルギー準位の差ΔESTが0.3eV以下であることが好ましく、0.25eV以下であることがより好ましく、0.2eV以下であることがより好ましく、0.15eV以下であることがより好ましく、0.1eV以下であることがさらに好ましく、0.07eV以下であることがさらにより好ましく、0.05eV以下であることがさらにまた好ましく、0.03eV以下であることがさらになお好ましく、0.01eV以下であることが特に好ましい。発光層における第1TADF分子の含有量は、第2TADF分子の含有量よりも多いことが好ましい。また、発光層におけるホスト材料の含有量は、第2TADF分子の含有量よりも多いことが好ましい。発光層における第1TADF分子の含有量は、ホスト材料の含有量よりも多くてもよいし、少なくてもよいし、同じであってもよい。ある実施形態では、発光層内の組成を、ホスト材料を10~70重量%、第1TADF分子を10~80重量%、第2TADF分子を0.1~30重量%としてもよい。ある実施形態では、発光層内の組成を、ホスト材料を20~45重量%、第1TADF分子を50~75重量%、第2TADF分子を5~20重量%としてもよい。ある実施形態では、第1TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第1TADF分子の含有率=A重量%)の光励起による発光量子収率φPL1(A)と、第2TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第2TADF分子の含有率=A重量%)の光励起による発光量子収率φPL2(A)が、φPL1(A)>φPL2(A)の関係式を満たす。ある実施形態では、第2TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第2TADF分子の含有率=B重量%)の光励起による発光量子収率φPL2(B)と、第2TADF分子の単独膜の光励起による発光量子収率φPL2(100)が、φPL2(B)>φPL2(100)の関係式を満たす。ある実施形態では、発光層は3種類の構造が異なるTADF分子を含むことができる。本発明の化合物は、発光層に含まれる複数のTADF化合物のいずれであってもよい。
 ある実施形態では、発光層は、ホスト材料、アシストドーパント、および発光材料からからなる群より選択される材料で構成することができる。ある実施形態では、発光層は金属元素を含まない。ある実施形態では、発光層は炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子のみから構成される材料で構成することができる。あるいは、発光層は、炭素原子、水素原子、重水素原子、窒素原子および酸素原子からなる群より選択される原子のみから構成される材料で構成することもできる。あるいは、発光層は、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子のみから構成される材料で構成することもできる。
 発光層が本発明の化合物以外のTADF材料を含むとき、そのTADF材料は公知の遅延蛍光材料であってよい。好ましい遅延蛍光材料として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076、特開2017-119663号公報の段落0013~0025、特開2017-119664号公報の段落0013~0026、特開2017-222623号公報の段落0012~0025、特開2017-226838号公報の段落0010~0050、特開2018-100411号公報の段落0012~0043、WO2018/047853号公報の段落0016~0044に記載される一般式に包含される化合物、特に例示化合物であって、遅延蛍光を放射しうるものが含まれる。また、ここでは、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報に記載される発光材料であって、遅延蛍光を放射しうるものを好ましく採用することができる。なお、この段落に記載される上記の公報は、本明細書の一部としてここに引用する。
In some embodiments, the host material is selected from the group consisting of:
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
In some embodiments, the emissive layer comprises two or more structurally different TADF molecules. For example, the light-emitting layer can be made to contain three kinds of materials in which the excited singlet energy level is higher in the order of the host material, the first TADF molecule, and the second TADF molecule. At this time, for both the first TADF molecule and the second TADF molecule, the difference ΔEST between the lowest excited singlet energy level and the lowest excited triplet energy level at 77K is preferably 0.3 eV or less, and 0.25 eV or less. more preferably 0.2 eV or less, more preferably 0.15 eV or less, even more preferably 0.1 eV or less, and even more preferably 0.07 eV or less , is more preferably 0.05 eV or less, even more preferably 0.03 eV or less, and particularly preferably 0.01 eV or less. The content of the first TADF molecules in the light-emitting layer is preferably higher than the content of the second TADF molecules. Also, the content of the host material in the light-emitting layer is preferably higher than the content of the second TADF molecules. The content of the first TADF molecules in the light-emitting layer may be greater than, less than, or the same as the content of the host material. In some embodiments, the composition within the emissive layer may be 10-70% by weight of the host material, 10-80% by weight of the first TADF molecule, and 0.1-30% by weight of the second TADF molecule. In some embodiments, the composition within the emissive layer may be 20-45% by weight of the host material, 50-75% by weight of the first TADF molecule, and 5-20% by weight of the second TADF molecule. In one embodiment, the light emission quantum yield φPL1 (A) by photoexcitation of the co-deposited film of the first TADF molecule and the host material (the content of the first TADF molecule in this co-deposited film = A wt%), the second TADF molecule and the host The emission quantum yield φPL2(A) by photoexcitation of the co-evaporated film of the material (the content of the second TADF molecules in this co-evaporated film=A weight %) satisfies the relational expression φPL1(A)>φPL2(A). In one embodiment, the emission quantum yield φPL2(B) by photoexcitation of the co-deposited film of the second TADF molecule and the host material (the content of the second TADF molecule in this co-deposited film=B wt %) and the second TADF molecule alone The luminescence quantum yield φPL2(100) due to optical excitation of the film satisfies the relational expression φPL2(B)>φPL2(100). In some embodiments, the emissive layer can include three structurally different TADF molecules. The compound of the present invention can be any of a plurality of TADF compounds contained in the emissive layer.
In some embodiments, the emissive layer can be composed of materials selected from the group consisting of host materials, assisting dopants, and emissive materials. In some embodiments, the emissive layer does not contain metallic elements. In some embodiments, the emissive layer can be composed of a material consisting only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms. Alternatively, the light-emitting layer can be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and oxygen atoms. Alternatively, the light-emitting layer can be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
When the light-emitting layer contains a TADF material other than the compounds of the present invention, the TADF material may be a known delayed fluorescence material. Preferred delayed fluorescence materials include paragraphs 0008 to 0048 and 0095 to 0133 of WO2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013/011954, and paragraphs 0007 to 0033 and 0059 to 0066 of WO2013/011955. , paragraphs 0008 to 0071 and 0118 to 0133 of WO2013/081088, paragraphs 0009 to 0046 and 0093 to 0134 of JP 2013-256490, paragraphs 0008 to 0020 and 0038 to 0040 of JP 2013-116975, Paragraphs 0007 to 0032 and 0079 to 0084 of WO2013/133359, paragraphs 0008 to 0054 and 0101 to 0121 of WO2013/161437, paragraphs 0007 to 0041 and 0060 to 0069 of JP 2014-9352, JP 2014 -9224 paragraphs 0008 to 0048 and 0067 to 0076, paragraphs 0013 to 0025 of JP-A-2017-119663, paragraphs 0013-0026 of JP-A-2017-119664, paragraph 0012 of JP-A-2017-222623 ~ 0025, paragraphs 0010 to 0050 of JP 2017-226838, paragraphs 0012 to 0043 of JP 2018-100411, compounds included in the general formula described in paragraphs 0016 to 0044 of WO2018/047853 , particularly exemplified compounds, which are capable of emitting delayed fluorescence. Further, here, JP 2013-253121, WO2013/133359, WO2014/034535, WO2014/115743, WO2014/122895, WO2014/126200, WO2014/136758, WO2014 /133121, WO2014/136860, WO2014/196585, WO2014/189122, WO2014/168101, WO2015/008580, WO2014/203840, WO2015/002213, WO020213 Publications, WO2015/019725, WO2015/072470, WO2015/108049, WO2015/080182, WO2015/072537, WO2015/080183, JP 2015-129240, WO2014/12971 Publications, WO2015/129715, WO2015/133501, WO2015/136880, WO2015/137244, WO2015/137202, WO2015/137136, WO2015/146541, WO2015/159 A light-emitting material that can emit delayed fluorescence can be preferably employed. The above publications mentioned in this paragraph are hereby incorporated by reference as part of this specification.
 以下において、有機エレクトロルミネッセンス素子の各部材および発光層以外の各層について説明する。 Each member of the organic electroluminescence element and each layer other than the light-emitting layer will be described below.
基材:
 いくつかの実施形態では、本発明の有機エレクトロルミネッセンス素子は基材により保持され、当該基材は特に限定されず、有機エレクトロルミネッセンス素子で一般的に用いられる、例えばガラス、透明プラスチック、クォーツおよびシリコンにより形成されたいずれかの材料を用いればよい。
Base material:
In some embodiments, the organic electroluminescent device of the present invention is held by a substrate, which is not particularly limited and commonly used in organic electroluminescent devices such as glass, transparent plastic, quartz and silicon. Any material formed by
陽極:
 いくつかの実施形態では、有機エレクトロルミネッセンス装置の陽極は、金属、合金、導電性化合物またはそれらの組み合わせから製造される。いくつかの実施形態では、前記の金属、合金または導電性化合物は高い仕事関数(4eV以上)を有する。いくつかの実施形態では、前記金属はAuである。いくつかの実施形態では、導電性の透明材料は、CuI、酸化インジウムスズ(ITO)、SnOおよびZnOから選択される。いくつかの実施形態では、IDIXO(In-ZnO)などの、透明な導電性フィルムを形成できるアモルファス材料を使用する。いくつかの実施形態では、前記陽極は薄膜である。いくつかの実施形態では、前記薄膜は蒸着またはスパッタリングにより作製される。いくつかの実施形態では、前記フィルムはフォトリソグラフィー方法によりパターン化される。いくつかの実施形態では、パターンが高精度である必要がない(例えば約100μm以上)場合、当該パターンは、電極材料への蒸着またはスパッタリングに好適な形状のマスクを用いて形成してもよい。いくつかの実施形態では、有機導電性化合物などのコーティング材料を塗布しうるとき、プリント法やコーティング法などの湿式フィルム形成方法が用いられる。いくつかの実施形態では、放射光が陽極を通過するとき、陽極は10%超の透過度を有し、当該陽極は、単位面積あたり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、陽極の厚みは10~1,000nmである。いくつかの実施形態では、陽極の厚みは10~200nmである。いくつかの実施形態では、陽極の厚みは用いる材料に応じて変動する。
anode:
In some embodiments, the anode of the organic electroluminescent device is made from metals, alloys, conductive compounds, or combinations thereof. In some embodiments, the metal, alloy or conductive compound has a high work function (4 eV or greater). In some embodiments, the metal is Au. In some embodiments, the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO2 and ZnO. Some embodiments use amorphous materials that can form transparent conductive films, such as IDIXO (In 2 O 3 —ZnO). In some embodiments, the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering. In some embodiments, the film is patterned by photolithographic methods. In some embodiments, if the pattern does not need to be highly precise (eg, about 100 μm or greater), the pattern may be formed using a mask with a shape suitable for vapor deposition or sputtering onto the electrode material. In some embodiments, wet film forming methods such as printing and coating methods are used when coating materials such as organic conductive compounds can be applied. In some embodiments, the anode has a transmittance of greater than 10% when emitted light passes through the anode, and the anode has a sheet resistance of several hundred ohms per unit area or less. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode varies depending on the material used.
陰極:
 いくつかの実施形態では、前記陰極は、低い仕事関数を有する金属(4eV以下)(電子注入金属と称される)、合金、導電性化合物またはその組み合わせなどの電極材料で作製される。いくつかの実施形態では、前記電極材料は、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム-銅混合物、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、インジウム、リチウム-アルミニウム混合物および希土類元素から選択される。いくつかの実施形態では、電子注入金属と、電子注入金属より高い仕事関数を有する安定な金属である第2の金属との混合物が用いられる。いくつかの実施形態では、前記混合物は、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、リチウム-アルミニウム混合物およびアルミニウムから選択される。いくつかの実施形態では、前記混合物は電子注入特性および酸化に対する耐性を向上させる。いくつかの実施形態では、陰極は、蒸着またはスパッタリングにより電極材料を薄膜として形成させることによって製造される。いくつかの実施形態では、前記陰極は単位面積当たり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、前記陰極の厚は10nm~5μmである。いくつかの実施形態では、前記陰極の厚は50~200nmである。いくつかの実施形態では、放射光を透過させるため、有機エレクトロルミネッセンス素子の陽極および陰極のいずれか1つは透明または半透明である。いくつかの実施形態では、透明または半透明のエレクトロルミネッセンス素子は光放射輝度を向上させる。
 いくつかの実施形態では、前記陰極を、前記陽極に関して前述した導電性の透明な材料で形成されることにより、透明または半透明の陰極が形成される。いくつかの実施形態では、素子は陽極と陰極とを含むが、いずれも透明または半透明である。
cathode:
In some embodiments, the cathode is made of electrode materials such as metals with a low work function (4 eV or less) (referred to as electron-injecting metals), alloys, conductive compounds, or combinations thereof. In some embodiments, the electrode material is sodium, sodium-potassium alloys, magnesium, lithium, magnesium-copper mixtures, magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide ( Al2 O 3 ) mixtures, indium, lithium-aluminum mixtures and rare earth elements. In some embodiments, a mixture of an electron-injecting metal and a second metal that is a stable metal with a higher work function than the electron-injecting metal is used. In some embodiments, the mixture is selected from magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, lithium-aluminum mixtures and aluminum. In some embodiments, the mixture improves electron injection properties and resistance to oxidation. In some embodiments, the cathode is manufactured by depositing or sputtering the electrode material as a thin film. In some embodiments, the cathode has a sheet resistance of no more than several hundred ohms per unit area. In some embodiments, the thickness of said cathode is between 10 nm and 5 μm. In some embodiments, the thickness of the cathode is 50-200 nm. In some embodiments, either one of the anode and cathode of the organic electroluminescent device is transparent or translucent to allow transmission of emitted light. In some embodiments, transparent or translucent electroluminescent elements enhance light radiance.
In some embodiments, the cathode is formed of a conductive transparent material as described above for the anode, thereby forming a transparent or translucent cathode. In some embodiments, the device includes an anode and a cathode, both transparent or translucent.
注入層:
 注入層は、電極と有機層との間の層である。いくつかの実施形態では、前記注入層は駆動電圧を減少させ、光放射輝度を増強する。いくつかの実施形態では、前記注入層は、正孔注入層と電子注入層とを含む。前記注入層は、陽極と発光層または正孔輸送層との間、並びに陰極と発光層または電子輸送層との間に配置することがきる。いくつかの実施形態では、注入層が存在する。いくつかの実施形態では、注入層が存在しない。
 以下に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Injection layer:
The injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces drive voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be placed between the anode and the light-emitting layer or hole-transporting layer and between the cathode and the light-emitting layer or electron-transporting layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer.
Preferred examples of compounds that can be used as the hole injection material are given below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000040
Preferred examples of compounds that can be used as the electron injection material are given below.
Figure JPOXMLDOC01-appb-C000040
障壁層:
 障壁層は、発光層に存在する電荷(電子または正孔)および/または励起子が、発光層の外側に拡散することを阻止できる層である。いくつかの実施形態では、電子障壁層は、発光層と正孔輸送層との間に存在し、電子が発光層を通過して正孔輸送層へ至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層と電子輸送層との間に存在し、正孔が発光層を通過して電子輸送層へ至ることを阻止する。いくつかの実施形態では、障壁層は、励起子が発光層の外側に拡散することを阻止する。いくつかの実施形態では、電子障壁層および正孔障壁層は励起子障壁層を構成する。本明細書で用いる用語「電子障壁層」または「励起子障壁層」には、電子障壁層の、および励起子障壁層の機能の両方を有する層が含まれる。
Barrier layer:
A barrier layer is a layer that can prevent charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing out of the light-emitting layer. In some embodiments, an electron blocking layer is between the light-emitting layer and the hole-transporting layer to block electrons from passing through the light-emitting layer to the hole-transporting layer. In some embodiments, a hole blocking layer is between the emissive layer and the electron transport layer and blocks holes from passing through the emissive layer to the electron transport layer. In some embodiments, the barrier layer prevents excitons from diffusing out of the emissive layer. In some embodiments, the electron blocking layer and the hole blocking layer constitute an exciton blocking layer. As used herein, the terms "electron blocking layer" or "exciton blocking layer" include layers that have the functionality of both an electron blocking layer and an exciton blocking layer.
正孔障壁層:
 正孔障壁層は、電子輸送層として機能する。いくつかの実施形態では、電子の輸送の間、正孔障壁層は正孔が電子輸送層に至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層における電子と正孔との再結合の確率を高める。正孔障壁層に用いる材料は、電子輸送層について前述したのと同じ材料であってもよい。
 以下に、正孔障壁層に用いることができる好ましい化合物例を挙げる。
Hole blocking layer:
A hole blocking layer functions as an electron transport layer. In some embodiments, the hole blocking layer blocks holes from reaching the electron transport layer during electron transport. In some embodiments, the hole blocking layer increases the probability of recombination of electrons and holes in the emissive layer. The materials used for the hole blocking layer can be the same materials as described above for the electron transport layer.
Preferred examples of compounds that can be used in the hole blocking layer are given below.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
電子障壁層:
 電子障壁層は、正孔を輸送する。いくつかの実施形態では、正孔の輸送の間、電子障壁層は電子が正孔輸送層に至ることを阻止する。いくつかの実施形態では、電子障壁層は、発光層における電子と正孔との再結合の確率を高める。電子障壁層に用いる材料は、正孔輸送層について前述したのと同じ材料であってもよい。
 以下に電子障壁材料として用いることができる好ましい化合物の具体例を挙げる。
Electron barrier layer:
The electron blocking layer transports holes. In some embodiments, the electron blocking layer prevents electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron blocking layer increases the probability of recombination of electrons and holes in the emissive layer. The materials used for the electron blocking layer may be the same materials as described above for the hole transport layer.
Specific examples of preferred compounds that can be used as the electron barrier material are given below.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
励起子障壁層:
 励起子障壁層は、発光層における正孔と電子との再結合を通じて生じた励起子が電荷輸送層まで拡散することを阻止する。いくつかの実施形態では、励起子障壁層は、発光層における励起子の有効な閉じ込め(confinement)を可能にする。いくつかの実施形態では、装置の光放射効率が向上する。いくつかの実施形態では、励起子障壁層は、陽極の側と陰極の側のいずれかで、およびその両側の発光層に隣接する。いくつかの実施形態では、励起子障壁層が陽極側に存在するとき、当該層は、正孔輸送層と発光層との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、励起子障壁層が陰極側に存在するとき、当該層は、発光層と陰極との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、正孔注入層、電子障壁層または同様の層は、陽極と、陽極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、正孔注入層、電子障壁層、正孔障壁層または同様の層は、陰極と、陰極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、励起子障壁層は、励起一重項エネルギーと励起三重項エネルギーを含み、その少なくとも1つが、それぞれ、発光材料の励起一重項エネルギーと励起三重項エネルギーより高い。
Exciton barrier layer:
The exciton blocking layer prevents diffusion of excitons generated through recombination of holes and electrons in the light emitting layer to the charge transport layer. In some embodiments, the exciton blocking layer allows effective confinement of excitons in the emissive layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, an exciton blocking layer is adjacent to the emissive layer on either the anode side or the cathode side, and on both sides thereof. In some embodiments, when an exciton blocking layer is present on the anode side, it may be present between and adjacent to the hole-transporting layer and the light-emitting layer. In some embodiments, when an exciton blocking layer is present on the cathode side, it may be between and adjacent to the emissive layer and the cathode. In some embodiments, a hole-injection layer, electron-blocking layer, or similar layer is present between the anode and an exciton-blocking layer adjacent to the light-emitting layer on the anode side. In some embodiments, a hole injection layer, electron blocking layer, hole blocking layer or similar layer is present between the cathode and an exciton blocking layer adjacent to the emissive layer on the cathode side. In some embodiments, the exciton blocking layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and triplet energy, respectively, of the emissive material.
正孔輸送層:
 正孔輸送層は、正孔輸送材料を含む。いくつかの実施形態では、正孔輸送層は単層である。いくつかの実施形態では、正孔輸送層は複数の層を有する。
 いくつかの実施形態では、正孔輸送材料は、正孔の注入または輸送特性および電子の障壁特性のうちの1つの特性を有する。いくつかの実施形態では、正孔輸送材料は有機材料である。いくつかの実施形態では、正孔輸送材料は無機材料である。本発明で使用できる公知の正孔輸送材料の例としては、限定されないが、トリアゾール誘導体、オキサジアゾール誘導剤、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導剤、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導剤、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリンコポリマーおよび導電性ポリマーオリゴマー(特にチオフェンオリゴマー)、またはその組合せが挙げられる。いくつかの実施形態では、正孔輸送材料はポルフィリン化合物、芳香族三級アミン化合物およびスチリルアミン化合物から選択される。いくつかの実施形態では、正孔輸送材料は芳香族三級アミン化合物である。以下に正孔輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Hole transport layer:
The hole transport layer comprises a hole transport material. In some embodiments, the hole transport layer is a single layer. In some embodiments, the hole transport layer has multiple layers.
In some embodiments, the hole transport material has one property of a hole injection or transport property and an electron barrier property. In some embodiments, the hole transport material is an organic material. In some embodiments, the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones. derivatives, phenylenediamine derivatives, allylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers and conductive polymer oligomers (especially thiophene oligomers), or combinations thereof. is mentioned. In some embodiments, the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferred compounds that can be used as the hole-transporting material are given below.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
電子輸送層:
 電子輸送層は、電子輸送材料を含む。いくつかの実施形態では、電子輸送層は単層である。いくつかの実施形態では、電子輸送層は複数の層を有する。
 いくつかの実施形態では、電子輸送材料は、陰極から注入された電子を発光層に輸送する機能さえあればよい。いくつかの実施形態では、電子輸送材料はまた、正孔障壁材料としても機能する。本発明で使用できる電子輸送層の例としては、限定されないが、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体、アゾール誘導体、アジン誘導体またはその組合せ、またはそのポリマーが挙げられる。いくつかの実施形態では、電子輸送材料はチアジアゾール誘導剤またはキノキサリン誘導体である。いくつかの実施形態では、電子輸送材料はポリマー材料である。以下に電子輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Electron transport layer:
The electron transport layer includes an electron transport material. In some embodiments, the electron transport layer is a single layer. In some embodiments, the electron transport layer has multiple layers.
In some embodiments, the electron-transporting material need only function to transport electrons injected from the cathode to the emissive layer. In some embodiments, the electron transport material also functions as a hole blocking material. Examples of electron-transporting layers that can be used in the present invention include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxazide Azole derivatives, azole derivatives, azine derivatives or combinations thereof, or polymers thereof. In some embodiments, the electron transport material is a thiadiazole derivative or a quinoxaline derivative. In some embodiments, the electron transport material is a polymeric material. Specific examples of preferred compounds that can be used as the electron-transporting material are given below.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 さらに、各有機層に添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。 Furthermore, examples of preferred compounds as materials that can be added to each organic layer are given. For example, it may be added as a stabilizing material.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示したが、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。 Preferred materials that can be used in organic electroluminescence elements are specifically exemplified, but materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even compounds exemplified as materials having specific functions can be used as materials having other functions.
デバイス:
 いくつかの実施形態では、発光層はデバイス中に組み込まれる。例えば、デバイスには、OLEDバルブ、OLEDランプ、テレビ用ディスプレイ、コンピューター用モニター、携帯電話およびタブレットが含まれるが、これらに限定されない。
 いくつかの実施形態では、電子デバイスは、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を有するOLEDを含む。
 いくつかの実施形態では、本願明細書に記載の構成物は、OLEDまたは光電子デバイスなどの、様々な感光性または光活性化デバイスに組み込まれうる。いくつかの実施形態では、前記構成物はデバイス内の電荷移動またはエネルギー移動の促進に、および/または正孔輸送材料として有用でありうる。前記デバイスとしては、例えば有機発光ダイオード(OLED)、有機集積回線(OIC)、有機電界効果トランジスタ(O-FET)、有機薄膜トランジスタ(O-TFT)、有機発光トランジスタ(O-LET)、有機太陽電池(O-SC)、有機光学検出装置、有機光受容体、有機磁場クエンチ(field-quench)装置(O-FQD)、発光燃料電池(LEC)または有機レーザダイオード(O-レーザー)が挙げられる。
device:
In some embodiments, the emissive layer is incorporated into the device. For example, devices include, but are not limited to, OLED bulbs, OLED lamps, television displays, computer monitors, mobile phones and tablets.
In some embodiments, an electronic device includes an OLED having at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
In some embodiments, compositions described herein can be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices. In some embodiments, the composition may be useful in facilitating charge or energy transfer within a device and/or as a hole transport material. Examples of such devices include organic light emitting diodes (OLEDs), organic integrated circuits (OICs), organic field effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light emitting transistors (O-LETs), and organic solar cells. (O-SC), organic optical detectors, organic photoreceptors, organic field-quench devices (O-FQD), luminescent fuel cells (LEC) or organic laser diodes (O-lasers).
バルブまたはランプ:
 いくつかの実施形態では、電子デバイスは、陽極、陰極、当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含むOLEDを含む。
 いくつかの実施形態では、デバイスは色彩の異なるOLEDを含む。いくつかの実施形態では、デバイスはOLEDの組合せを含むアレイを含む。いくつかの実施形態では、OLEDの前記組合せは、3色の組合せ(例えばRGB)である。いくつかの実施形態では、OLEDの前記組合せは、赤色でも緑色でも青色でもない色(例えばオレンジ色および黄緑色)の組合せである。いくつかの実施形態では、OLEDの前記組合せは、2色、4色またはそれ以上の色の組合せである。
 いくつかの実施形態では、デバイスは、
 取り付け面を有する第1面とそれと反対の第2面とを有し、少なくとも1つの開口部を画定する回路基板と、
 前記取り付け面上の少なくとも1つのOLEDであって、当該少なくとも1つのOLEDが、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含む、発光する構成を有する少なくとも1つのOLEDと、
 回路基板用のハウジングと、
 前記ハウジングの端部に配置された少なくとも1つのコネクターであって、前記ハウジングおよび前記コネクターが照明設備への取付けに適するパッケージを画定する、少なくとも1つのコネクターと、を備えるOLEDライトである。
 いくつかの実施形態では、前記OLEDライトは、複数の方向に光が放射されるように回路基板に取り付けられた複数のOLEDを有する。いくつかの実施形態では、第1方向に発せられた一部の光は偏光されて第2方向に放射される。いくつかの実施形態では、反射器を用いて第1方向に発せられた光を偏光する。
Bulb or Lamp:
In some embodiments, an electronic device includes an OLED including at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
In some embodiments, the device includes OLEDs of different colors. In some embodiments, the device includes an array including combinations of OLEDs. In some embodiments, said combination of OLEDs is a combination of three colors (eg RGB). In some embodiments, the combination of OLEDs is a combination of colors other than red, green, and blue (eg, orange and yellow-green). In some embodiments, said combination of OLEDs is a combination of two, four or more colors.
In some embodiments, the device
a circuit board having a first side with a mounting surface and a second opposite side and defining at least one opening;
at least one OLED on the mounting surface, wherein the at least one OLED is configured to emit light, wherein the at least one OLED includes at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode; at least one OLED comprising
a housing for the circuit board;
at least one connector located at an end of said housing, said housing and said connector defining a package suitable for attachment to a lighting fixture.
In some embodiments, the OLED light comprises multiple OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize light emitted in the first direction.
ディスプレイまたはスクリーン:
 いくつかの実施形態では、本発明の発光層はスクリーンまたはディスプレイにおいて使用できる。いくつかの実施形態では、本発明に係る化合物は、限定されないが真空蒸発、堆積、蒸着または化学蒸着(CVD)などの工程を用いて基材上へ堆積させる。いくつかの実施形態では、前記基材は、独特のアスペクト比のピクセルを提供する2面エッチングにおいて有用なフォトプレート構造である。前記スクリーン(またマスクとも呼ばれる)は、OLEDディスプレイの製造工程で用いられる。対応するアートワークパターンの設計により、垂直方向ではピクセルの間の非常に急な狭いタイバーの、並びに水平方向では大きな広範囲の斜角開口部の配置を可能にする。これにより、TFTバックプレーン上への化学蒸着を最適化しつつ、高解像度ディスプレイに必要とされるピクセルの微細なパターン構成が可能となる。
 ピクセルの内部パターニングにより、水平および垂直方向での様々なアスペクト比の三次元ピクセル開口部を構成することが可能となる。更に、ピクセル領域中の画像化された「ストライプ」またはハーフトーン円の使用は、これらの特定のパターンをアンダーカットし基材から除くまで、特定の領域におけるエッチングが保護される。その時、全てのピクセル領域は同様のエッチング速度で処理されるが、その深さはハーフトーンパターンにより変化する。ハーフトーンパターンのサイズおよび間隔を変更することにより、ピクセル内での保護率が様々異なるエッチングが可能となり、急な垂直斜角を形成するのに必要な局在化された深いエッチングが可能となる。
 蒸着マスク用の好ましい材料はインバーである。インバーは、製鉄所で長い薄型シート状に冷延された金属合金である。インバーは、ニッケルマスクとしてスピンマンドレル上へ電着することができない。蒸着用マスク内に開口領域を形成するための適切かつ低コストの方法は、湿式化学エッチングによる方法である。
 いくつかの実施形態では、スクリーンまたはディスプレイパターンは、基材上のピクセルマトリックスである。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、リソグラフィー(例えばフォトリソグラフィーおよびeビームリソグラフィー)を使用して加工される。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、湿式化学エッチングを使用して加工される。更なる実施形態では、スクリーンまたはディスプレイパターンは、プラズマエッチングを使用して加工される。
Display or screen:
In some embodiments, the emissive layers of the invention can be used in screens or displays. In some embodiments, the compounds of the present invention are deposited onto a substrate using processes such as, but not limited to, vacuum evaporation, deposition, evaporation or chemical vapor deposition (CVD). In some embodiments, the substrate is a photoplate structure useful in two-sided etching to provide unique aspect ratio pixels. Said screens (also called masks) are used in the manufacturing process of OLED displays. The corresponding artwork pattern design allows placement of very steep narrow tie-bars between pixels in the vertical direction as well as large and wide beveled openings in the horizontal direction. This allows for the fine patterning of pixels required for high resolution displays while optimizing chemical vapor deposition on the TFT backplane.
The internal patterning of the pixels makes it possible to construct three-dimensional pixel openings with various aspect ratios in the horizontal and vertical directions. Further, the use of imaged "stripes" or halftone circles in pixel areas protects etching in specific areas until these specific patterns are undercut and removed from the substrate. All pixel areas are then treated with a similar etch rate, but their depth varies with the halftone pattern. Varying the size and spacing of the halftone patterns allows etching with varying degrees of protection within the pixel, allowing for the localized deep etching necessary to form steep vertical bevels. .
A preferred material for the evaporation mask is Invar. Invar is a metal alloy that is cold rolled into long thin sheets in steel mills. Invar cannot be electrodeposited onto a spin mandrel as a nickel mask. A suitable and low-cost method for forming the open areas in the deposition mask is by wet chemical etching.
In some embodiments, the screen or display pattern is a matrix of pixels on a substrate. In some embodiments, screen or display patterns are fabricated using lithography (eg, photolithography and e-beam lithography). In some embodiments, the screen or display pattern is processed using wet chemical etching. In a further embodiment the screen or display pattern is fabricated using plasma etching.
デバイスの製造方法:
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
Device manufacturing method:
An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels. Generally, each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels. Generally, each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
 本発明の他の態様では、有機発光ダイオード(OLED)ディスプレイの製造方法を提供し、当該方法は、
  マザーパネルのベース基材上に障壁層を形成する工程と、
  前記障壁層上に、セルパネル単位で複数のディスプレイユニットを形成する工程と、
  前記セルパネルのディスプレイユニットのそれぞれの上にカプセル化層を形成する工程と、
  前記セルパネル間のインタフェース部に有機フィルムを塗布する工程と、を含む。
 いくつかの実施形態では、障壁層は、例えばSiNxで形成された無機フィルムであり、障壁層の端部はポリイミドまたはアクリルで形成された有機フィルムで被覆される。いくつかの実施形態では、有機フィルムは、マザーパネルがセルパネル単位で軟らかく切断されるように補助する。
 いくつかの実施形態では、薄膜トランジスタ(TFT)層は、発光層と、ゲート電極と、ソース/ドレイン電極と、を有する。複数のディスプレイユニットの各々は、薄膜トランジスタ(TFT)層と、TFT層上に形成された平坦化フィルムと、平坦化フィルム上に形成された発光ユニットと、を有してもよく、前記インタフェース部に塗布された有機フィルムは、前記平坦化フィルムの材料と同じ材料で形成され、前記平坦化フィルムの形成と同時に形成される。いくつかの実施形態では、前記発光ユニットは、不動態化層と、その間の平坦化フィルムと、発光ユニットを被覆し保護するカプセル化層と、によりTFT層と連結される。前記製造方法のいくつかの実施形態では、前記有機フィルムは、ディスプレイユニットにもカプセル化層にも連結されない。
In another aspect of the invention, there is provided a method of manufacturing an organic light emitting diode (OLED) display, the method comprising:
forming a barrier layer on the base substrate of the mother panel;
forming a plurality of display units on the barrier layer in cell panel units;
forming an encapsulation layer over each of the display units of the cell panel;
and applying an organic film to the interfaces between the cell panels.
In some embodiments, the barrier layer is an inorganic film, eg, made of SiNx, and the edges of the barrier layer are covered with an organic film, made of polyimide or acrylic. In some embodiments, the organic film helps the mother panel to be softly cut into cell panels.
In some embodiments, a thin film transistor (TFT) layer has an emissive layer, a gate electrode, and source/drain electrodes. Each of the plurality of display units may have a thin film transistor (TFT) layer, a planarization film formed on the TFT layer, and a light emitting unit formed on the planarization film, and The applied organic film is made of the same material as that of the planarizing film, and is formed at the same time as the planarizing film is formed. In some embodiments, the light-emitting unit is coupled with the TFT layer by a passivation layer, a planarizing film therebetween, and an encapsulation layer that covers and protects the light-emitting unit. In some embodiments of the manufacturing method, the organic film is not connected to the display unit or encapsulation layer.
 前記有機フィルムと平坦化フィルムの各々は、ポリイミドおよびアクリルのいずれか1つを含んでもよい。いくつかの実施形態では、前記障壁層は無機フィルムであってもよい。いくつかの実施形態では、前記ベース基材はポリイミドで形成されてもよい。前記方法は更に、ポリイミドで形成されたベース基材の1つの表面に障壁層を形成する前に、当該ベース基材のもう1つの表面にガラス材料で形成されたキャリア基材を取り付ける工程と、インタフェース部に沿った切断の前に、前記キャリア基材をベース基材から分離する工程と、を含んでもよい。いくつかの実施形態では、前記OLEDディスプレイはフレキシブルなディスプレイである。
 いくつかの実施形態では、前記不動態化層は、TFT層の被覆のためにTFT層上に配置された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、不動態化層上に形成された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、障壁層の端部に形成された有機フィルムと同様、ポリイミドまたはアクリルで形成される。いくつかの実施形態では、OLEDディスプレイの製造の際、前記平坦化フィルムおよび有機フィルムは同時に形成される。いくつかの実施形態では、前記有機フィルムは、障壁層の端部に形成されてもよく、それにより、当該有機フィルムの一部が直接ベース基材と接触し、当該有機フィルムの残りの部分が、障壁層の端部を囲みつつ、障壁層と接触する。
Each of the organic film and the planarizing film may include one of polyimide and acrylic. In some embodiments, the barrier layer may be an inorganic film. In some embodiments, the base substrate may be formed of polyimide. The method further includes attaching a carrier substrate made of a glass material to another surface of a base substrate made of polyimide before forming a barrier layer on the other surface of the base substrate; separating the carrier substrate from the base substrate prior to cutting along the interface. In some embodiments, the OLED display is a flexible display.
In some embodiments, the passivation layer is an organic film placed on the TFT layer to cover the TFT layer. In some embodiments, the planarizing film is an organic film formed over a passivation layer. In some embodiments, the planarizing film is formed of polyimide or acrylic, as is the organic film formed on the edge of the barrier layer. In some embodiments, the planarizing film and the organic film are formed simultaneously during the manufacture of an OLED display. In some embodiments, the organic film may be formed on the edge of the barrier layer such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is , in contact with the barrier layer while surrounding the edges of the barrier layer.
 いくつかの実施形態では、前記発光層は、ピクセル電極と、対電極と、当該ピクセル電極と当該対電極との間に配置された有機発光層と、を有する。いくつかの実施形態では、前記ピクセル電極は、TFT層のソース/ドレイン電極に連結している。
 いくつかの実施形態では、TFT層を通じてピクセル電極に電圧が印加されるとき、ピクセル電極と対電極との間に適切な電圧が形成され、それにより有機発光層が光を放射し、それにより画像が形成される。以下、TFT層と発光ユニットとを有する画像形成ユニットを、ディスプレイユニットと称する。
 いくつかの実施形態では、ディスプレイユニットを被覆し、外部の水分の浸透を防止するカプセル化層は、有機フィルムと無機フィルムとが交互に積層する薄膜状のカプセル化構造に形成されてもよい。いくつかの実施形態では、前記カプセル化層は、複数の薄膜が積層した薄膜状カプセル化構造を有する。いくつかの実施形態では、インタフェース部に塗布される有機フィルムは、複数のディスプレイユニットの各々と間隔を置いて配置される。いくつかの実施形態では、前記有機フィルムは、一部の有機フィルムが直接ベース基材と接触し、有機フィルムの残りの部分が障壁層の端部を囲む一方で障壁層と接触する態様で形成される。
In some embodiments, the emissive layer comprises a pixel electrode, a counter electrode, and an organic emissive layer disposed between the pixel electrode and the counter electrode. In some embodiments, the pixel electrodes are connected to source/drain electrodes of the TFT layer.
In some embodiments, when a voltage is applied to the pixel electrode through the TFT layer, a suitable voltage is formed between the pixel electrode and the counter electrode, causing the organic light-emitting layer to emit light, thereby displaying an image. is formed. An image forming unit having a TFT layer and a light emitting unit is hereinafter referred to as a display unit.
In some embodiments, the encapsulation layer that covers the display unit and prevents the penetration of external moisture may be formed into a thin encapsulation structure in which organic films and inorganic films are alternately laminated. In some embodiments, the encapsulation layer has a thin film-like encapsulation structure in which multiple thin films are stacked. In some embodiments, the organic film applied to the interface portion is spaced apart from each of the plurality of display units. In some embodiments, the organic film is formed such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is in contact with the barrier layer while surrounding the edges of the barrier layer. be done.
 一実施形態では、OLEDディスプレイはフレキシブルであり、ポリイミドで形成された柔軟なベース基材を使用する。いくつかの実施形態では、前記ベース基材はガラス材料で形成されたキャリア基材上に形成され、次に当該キャリア基材が分離される。
 いくつかの実施形態では、障壁層は、キャリア基材の反対側のベース基材の表面に形成される。一実施形態では、前記障壁層は、各セルパネルのサイズに従いパターン化される。例えば、ベース基材がマザーパネルの全ての表面上に形成される一方で、障壁層が各セルパネルのサイズに従い形成され、それにより、セルパネルの障壁層の間のインタフェース部に溝が形成される。各セルパネルは、前記溝に沿って切断できる。
In one embodiment, the OLED display is flexible and uses a flexible base substrate made of polyimide. In some embodiments, the base substrate is formed on a carrier substrate made of glass material, and then the carrier substrate is separated.
In some embodiments, a barrier layer is formed on the surface of the base substrate opposite the carrier substrate. In one embodiment, the barrier layer is patterned according to the size of each cell panel. For example, a base substrate is formed on all surfaces of a mother panel, while barrier layers are formed according to the size of each cell panel, thereby forming grooves at the interfaces between the barrier layers of the cell panels. Each cell panel can be cut along the groove.
 いくつかの実施形態では、前記の製造方法は、更にインタフェース部に沿って切断する工程を含み、そこでは溝が障壁層に形成され、少なくとも一部の有機フィルムが溝で形成され、当該溝がベース基材に浸透しない。いくつかの実施形態では、各セルパネルのTFT層が形成され、無機フィルムである不動態化層と有機フィルムである平坦化フィルムが、TFT層上に配置され、TFT層を被覆する。例えばポリイミドまたはアクリル製の平坦化フィルムが形成されるのと同時に、インタフェース部の溝は、例えばポリイミドまたはアクリル製の有機フィルムで被覆される。これは、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃を有機フィルムに吸収させることによってひびが生じるのを防止する。すなわち、全ての障壁層が有機フィルムなしで完全に露出している場合、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃が障壁層に伝達され、それによりひびが生じるリスクが増加する。しかしながら、一実施形態では、障壁層間のインタフェース部の溝が有機フィルムで被覆されて、有機フィルムがなければ障壁層に伝達されうる衝撃を吸収するため、各セルパネルをソフトに切断し、障壁層でひびが生じるのを防止してもよい。一実施形態では、インタフェース部の溝を被覆する有機フィルムおよび平坦化フィルムは、互いに間隔を置いて配置される。例えば、有機フィルムおよび平坦化フィルムが1つの層として相互に接続している場合には、平坦化フィルムと有機フィルムが残っている部分とを通じてディスプレイユニットに外部の水分が浸入するおそれがあるため、有機フィルムおよび平坦化フィルムは、有機フィルムがディスプレイユニットから間隔を置いて配置されるように、相互に間隔を置いて配置される。 In some embodiments, the manufacturing method further comprises cutting along the interface, wherein a groove is formed in the barrier layer, at least a portion of the organic film is formed with the groove, and the groove is Does not penetrate the base substrate. In some embodiments, a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are placed on and cover the TFT layer. At the same time that the planarizing film, eg made of polyimide or acrylic, is formed, the interface grooves are covered with an organic film, eg made of polyimide or acrylic. This prevents cracking by having the organic film absorb the impact that occurs when each cell panel is cut along the groove at the interface. That is, if all the barrier layers are completely exposed without an organic film, when each cell panel is cut along the groove at the interface, the resulting impact will be transferred to the barrier layers, thereby creating a risk of cracking. increases. However, in one embodiment, the grooves at the interfaces between the barrier layers are coated with an organic film to absorb shocks that might otherwise be transmitted to the barrier layers, so that each cell panel is softly cut and the barrier layers It may prevent cracks from forming. In one embodiment, the organic film covering the groove of the interface and the planarizing film are spaced apart from each other. For example, when the organic film and the planarizing film are connected to each other as a single layer, external moisture may enter the display unit through the planarizing film and the portion where the organic film remains. The organic film and planarizing film are spaced from each other such that the organic film is spaced from the display unit.
 いくつかの実施形態では、ディスプレイユニットは、発光ユニットの形成により形成され、カプセル化層は、ディスプレイユニットを被覆するためディスプレイユニット上に配置される。これにより、マザーパネルが完全に製造された後、ベース基材を担持するキャリア基材がベース基材から分離される。いくつかの実施形態では、レーザー光線がキャリア基材へ放射されると、キャリア基材は、キャリア基材とベース基材との間の熱膨張率の相違により、ベース基材から分離される。
 いくつかの実施形態では、マザーパネルは、セルパネル単位で切断される。いくつかの実施形態では、マザーパネルは、カッターを用いてセルパネル間のインタフェース部に沿って切断される。いくつかの実施形態では、マザーパネルが沿って切断されるインタフェース部の溝が有機フィルムで被覆されているため、切断の間、当該有機フィルムが衝撃を吸収する。いくつかの実施形態では、切断の間、障壁層でひびが生じるのを防止できる。
 いくつかの実施形態では、前記方法は製品の不良率を減少させ、その品質を安定させる。
 他の態様は、ベース基材上に形成された障壁層と、障壁層上に形成されたディスプレイユニットと、ディスプレイユニット上に形成されたカプセル化層と、障壁層の端部に塗布された有機フィルムと、を有するOLEDディスプレイである。
In some embodiments, the display unit is formed by forming a light emitting unit and an encapsulating layer is placed over the display unit to cover the display unit. Thereby, after the mother panel is completely manufactured, the carrier substrate carrying the base substrate is separated from the base substrate. In some embodiments, when the laser beam is directed at the carrier substrate, the carrier substrate separates from the base substrate due to the difference in coefficient of thermal expansion between the carrier substrate and the base substrate.
In some embodiments, the mother panel is cut into cell panels. In some embodiments, the mother panel is cut along the interfaces between the cell panels using a cutter. In some embodiments, the interface groove along which the mother panel is cut is coated with an organic film so that the organic film absorbs impact during cutting. In some embodiments, the barrier layer can be prevented from cracking during cutting.
In some embodiments, the method reduces the reject rate of the product and stabilizes its quality.
Another embodiment includes a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic layer applied to the edges of the barrier layer. An OLED display comprising a film.
 実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。
 以下の実施例において、一般式(1)に含まれる化合物を合成した。
The features of the present invention will be described more specifically with reference to examples. The materials, processing details, processing procedures, etc. described below can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the specific examples shown below. In addition, the evaluation of the light emission characteristics was performed using a source meter (manufactured by Keithley: 2400 series), a semiconductor parameter analyzer (manufactured by Agilent Technologies: E5273A), an optical power meter measuring device (manufactured by Newport: 1930C), and an optical spectrometer. (Ocean Optics: USB2000), a spectroradiometer (Topcon: SR-3) and a streak camera (Hamamatsu Photonics, Model C4334).
In the following examples, compounds included in general formula (1) were synthesized.
(実施例1)
Figure JPOXMLDOC01-appb-C000046
 窒素雰囲気下、2,6-ジフルオロ-3-フェニル-1,4-ベンゼンジカルボニトリル(0.32g,2.0mmol),5,8-ジヒドロ-5-フェニルインドロ[3,2-c]カルバゾール(0.91g,4.3mmol)およびCsCO(1.75g,8.33mmol)のジメチルホルムアミド(15mL)溶液を、150℃で14時間撹拌した。その後、室温に戻し、水とメタノールで反応を停止させた。得られた沈殿物のろ過を行い、ろ物をカラムクロマトグラフィー(トルエン/ヘキサン/CHCl=8/1/1)および再沈殿(CHCl/MeOH)で精製し、橙色固体(0.86g,0.99mmol,49%)を得た。
H NMR (400MHz, CDCl3, d): 8.36-8.29 (m, 2H), 8.24-8.13 (m, 3H), 7.72-7.56 (m, 10H), 7.42-7.38 (m, 10H), 7.46-7.02 (m, 7H), 6.94-6.86 (m, 1H) 6.79-6.73 (m, 1H), 5.94 (d, J=8.0Hz, 1H), 5.79 (d,J=8.0Hz, 1H).
MS (ASAP): 865.47 [M+H]+.計算値 C62H36N6: 864.30
(Example 1)
Figure JPOXMLDOC01-appb-C000046
Under nitrogen atmosphere, 2,6-difluoro-3-phenyl-1,4-benzenedicarbonitrile (0.32 g, 2.0 mmol), 5,8-dihydro-5-phenylindolo[3,2-c] A solution of carbazole (0.91 g, 4.3 mmol) and Cs 2 CO 3 (1.75 g, 8.33 mmol) in dimethylformamide (15 mL) was stirred at 150° C. for 14 hours. Then, the temperature was returned to room temperature, and the reaction was stopped with water and methanol. The resulting precipitate was filtered and purified by column chromatography (toluene/hexane/CHCl 3 =8/1/1) and reprecipitation (CHCl 3 /MeOH) to yield an orange solid (0.86 g, 0.99 mmol, 49%).
1 H NMR (400MHz, CDCl 3 , d): 8.36-8.29 (m, 2H), 8.24-8.13 (m, 3H), 7.72-7.56 (m, 10H), 7.42-7.38 (m, 10H), 7.46- 7.02 (m, 7H), 6.94-6.86 (m, 1H) 6.79-6.73 (m, 1H), 5.94 (d, J=8.0Hz, 1H), 5.79 (d,J=8.0Hz, 1H).
MS (ASAP): 865.47 [M+H] + calculated value C62H36N6: 864.30
(実施例2)
Figure JPOXMLDOC01-appb-C000047
 実施例1と同様の方法で合成し、収率25%で得た。
H NMR (400MHz, CDCl3, d): 8.98 (d, J = 8.0 Hz, 1H), 8.92 (d, J = 7.6 Hz, 1H), 8.82 (t, J = 7.6 Hz, 2H), 8.23 (s, 1H), 7.68-7.40 (m, 25H), 7.21-7.14 (m, 4H), 7.10-7.01 (m, 3H).
MS (ASAP): 865.37 [M+H]+.計算値 C62H36N6: 864.30
(Example 2)
Figure JPOXMLDOC01-appb-C000047
Synthesized in the same manner as in Example 1, the yield was 25%.
1 H NMR (400MHz, CDCl 3 , d): 8.98 (d, J = 8.0 Hz, 1H), 8.92 (d, J = 7.6 Hz, 1H), 8.82 (t, J = 7.6 Hz, 2H), 8.23 ( s, 1H), 7.68-7.40 (m, 25H), 7.21-7.14 (m, 4H), 7.10-7.01 (m, 3H).
MS (ASAP): 865.37 [M+H] + calculated value C62H36N6: 864.30
(実施例3)
Figure JPOXMLDOC01-appb-C000048
 実施例1と同様の方法で合成し、収率50%で得た。
H NMR (400MHz, CDCl3, d): 8.87-8.83 (m, 4H), 7.66-7.59 (m, 8H), 7.55-7.42 (m, 14H), 7.33-7.28 (m, 2H), 7.17-7.15 (m, 4H), 7.06-6.96 (m, 6H).
MS (ASAP): 941.46 [M+H]+.計算値 C68H40N6: 940.33
(Example 3)
Figure JPOXMLDOC01-appb-C000048
Synthesized in the same manner as in Example 1, the yield was 50%.
1 H NMR (400MHz, CDCl3 , d): 8.87-8.83 (m, 4H), 7.66-7.59 (m, 8H), 7.55-7.42 (m, 14H), 7.33-7.28 (m, 2H), 7.17- 7.15 (m, 4H), 7.06-6.96 (m, 6H).
MS (ASAP): 941.46 [M+H] + calculated value C68H40N6: 940.33
(実施例4)
Figure JPOXMLDOC01-appb-C000049
 実施例1と同様の方法で合成し、収率34%で得た。
H NMR (400MHz, CDCl3, d): 8.26-8.21 (m, 2H), 8.18-8.14 (m, 2H), 7.65-7.56 (m, 10H), 7.34-7.22 (m, 8H), 7.19-7.10 (m, 4H), 6.80-6.74 (m, 2H), 5.81 (d, J = 8.0 Hz, 2H).
MS (ASAP): 951.36 [M+H]+.計算値 C68H30D10N6: 950.39
(Example 4)
Figure JPOXMLDOC01-appb-C000049
Synthesized in the same manner as in Example 1, the yield was 34%.
1 H NMR (400MHz, CDCl 3 , d): 8.26-8.21 (m, 2H), 8.18-8.14 (m, 2H), 7.65-7.56 (m, 10H), 7.34-7.22 (m, 8H), 7.19- 7.10 (m, 4H), 6.80-6.74 (m, 2H), 5.81 (d, J = 8.0 Hz, 2H).
MS (ASAP): 951.36 [M+H] + calculated value C68H30D10N6: 950.39
(実施例5)
Figure JPOXMLDOC01-appb-C000050
 窒素雰囲気下、2,5-ジフルオロ-3,6-ジフェニル-1,4-ベンゼンジカルボニトリル(0.60g,1.9mmol),2-フェニル-5H-ベンゾフロ[3,2-c]カルバゾール(1.58g,4.7mmol)およびKCO(0.79g,5.7mmol)のジメチルホルムアミド(30mL)溶液を、130℃で22時間撹拌した。その後、室温に戻し、水とメタノールで反応を停止させた。得られた沈殿物のろ過を行い、ろ物をカラムクロマトグラフィー(トルエン/ヘキサン=2/1)および再沈殿(トルエン/ヘキサン)で精製し、橙色固体(1.07g,1.13mmol,60%)を得た。
H NMR (400MHz, CDCl3, d): 8.69 (s, 2H), 8.03-8.00 (m, 4H), 7.82-7.75 (m, 8H), 7.57-7.35 (m, 12H), 7.59-7.21 (m, 6H), 7.11-7.04 (m, 6H).
MS (ASAP): 943.58 [M+H]+. Calcd for. C68H38N4O2: 942.30
(Example 5)
Figure JPOXMLDOC01-appb-C000050
Under a nitrogen atmosphere, 2,5-difluoro-3,6-diphenyl-1,4-benzenedicarbonitrile (0.60 g, 1.9 mmol), 2-phenyl-5H-benzofuro[3,2-c]carbazole ( 1.58 g, 4.7 mmol) and K 2 CO 3 (0.79 g, 5.7 mmol) in dimethylformamide (30 mL) was stirred at 130° C. for 22 hours. Then, the temperature was returned to room temperature, and the reaction was terminated with water and methanol. The obtained precipitate was filtered, and the filtrate was purified by column chromatography (toluene/hexane = 2/1) and reprecipitation (toluene/hexane) to give an orange solid (1.07 g, 1.13 mmol, 60% ).
1 H NMR (400MHz, CDCl 3 , d): 8.69 (s, 2H), 8.03-8.00 (m, 4H), 7.82-7.75 (m, 8H), 7.57-7.35 (m, 12H), 7.59-7.21 ( m, 6H), 7.11-7.04 (m, 6H).
MS (ASAP): 943.58 [M+H] + Calcd for. C68H38N4O2: 942.30
(実施例6)
Figure JPOXMLDOC01-appb-C000051
 実施例5と同様の方法で合成し、収率80%で得た。
H NMR (400MHz, CDCl3, d): 8.67 (s, 2H), 8.02-7.99 (m, 4H), 7.81-7.74 (m, 8H), 7.55-7.34 (m, 12H), 7.26-7.20 (m, 2H).
MS (ASAP): 953.58 [M+H]+.計算値 C68H28D10N4O2: 952.36
(Example 6)
Figure JPOXMLDOC01-appb-C000051
Synthesized in the same manner as in Example 5, the yield was 80%.
1 H NMR (400MHz, CDCl 3 , d): 8.67 (s, 2H), 8.02-7.99 (m, 4H), 7.81-7.74 (m, 8H), 7.55-7.34 (m, 12H), 7.26-7.20 ( m, 2H).
MS (ASAP): 953.58 [M+H] + calculated value C68H28D10N4O2: 952.36
(実施例7)
Figure JPOXMLDOC01-appb-C000052
 実施例5と同様の方法で合成し、収率82%で得た。
H NMR (400MHz, CDCl3, d): 8.67 (s, 2H), 8.02-7.99 (m, 4H), 7.77-7.74 (m, 4H), 7.51-7.33 (m, 6H), 7.26-7.21 (m, 2H).
MS (ASAP): 963.63 [M+H]+. 計算値 C68H18D20N4O2: 962.43
(Example 7)
Figure JPOXMLDOC01-appb-C000052
Synthesized in the same manner as in Example 5, the yield was 82%.
1 H NMR (400MHz, CDCl 3 , d): 8.67 (s, 2H), 8.02-7.99 (m, 4H), 7.77-7.74 (m, 4H), 7.51-7.33 (m, 6H), 7.26-7.21 ( m, 2H).
MS (ASAP): 963.63 [M+H] + .calculated C68H18D20N4O2: 962.43
(実施例8)
Figure JPOXMLDOC01-appb-C000053
 実施例5と同様の方法で合成し、収率48%で得た。
H NMR (400MHz, CDCl3, d): 8.44 (d, J = 8.0 Hz, 2H), 8.32 (d, J = 8.4 Hz, 2H), 8.26-8.21 (m, 4H), 8.09-7.95 (m, 6H), 7.90-7.86 (m, 4H), 7.77-7.75 (m, 2H), 7.55-7.45 (m, 4H), 7.21-7.12 (m, 4H), 7.02-6.94 (m, 6H).
MS (ASAP): 891.41 [M+H]+. 計算値 C64H34N4O2: 890.27
(Example 8)
Figure JPOXMLDOC01-appb-C000053
Synthesized in the same manner as in Example 5, the yield was 48%.
1 H NMR (400MHz, CDCl 3 , d): 8.44 (d, J = 8.0 Hz, 2H), 8.32 (d, J = 8.4 Hz, 2H), 8.26-8.21 (m, 4H), 8.09-7.95 (m , 6H), 7.90-7.86 (m, 4H), 7.77-7.75 (m, 2H), 7.55-7.45 (m, 4H), 7.21-7.12 (m, 4H), 7.02-6.94 (m, 6H).
MS (ASAP): 891.41 [M+H] + .calculated C64H34N4O2: 890.27
(実施例9)
Figure JPOXMLDOC01-appb-C000054
実施例5と同様の方法で合成し、収率71%で得た。
MS (ASAP): 890.2 [M]+. 計算値 C64H34N4O2: 890.2
(Example 9)
Figure JPOXMLDOC01-appb-C000054
Synthesized in the same manner as in Example 5, the yield was 71%.
MS (ASAP): 890.2 [M] + calculated value C64H34N4O2: 890.2
(実施例10)
Figure JPOXMLDOC01-appb-C000055
実施例5と同様の方法で合成し、収率45%で得た。
H NMR (400MHz, CDCl3, d): 9.85 (d, J = 8,8 Hz, 2H), 8.36 (dd, J = 8.4, 2.4 Hz, 2H), 8.29 (d, J = 7,2 Hz, 2H), 8.26-8.16 (m, 6H), 8.09-8.02 (m, 4H), 7.93 (t, J = 6,8 Hz, 2H), 7.65 (t, J= 7,2 Hz, 2H), 7.59 (t, J = 6,8 Hz, 2H), 7.52 (t, J = 7,2 Hz, 2H), 7.38 (d, J = 8,4 Hz, 4H),7.11-7.03 (m, 6H),
MS (ASAP): 891.33 [M+H]+.計算値 C64H35N4O2: 891.28
(Example 10)
Figure JPOXMLDOC01-appb-C000055
Synthesized in the same manner as in Example 5, the yield was 45%.
1 H NMR (400MHz, CDCl 3 , d): 9.85 (d, J = 8,8 Hz, 2H), 8.36 (dd, J = 8.4, 2.4 Hz, 2H), 8.29 (d, J = 7,2 Hz , 2H), 8.26-8.16 (m, 6H), 8.09-8.02 (m, 4H), 7.93 (t, J = 6,8 Hz, 2H), 7.65 (t, J = 7,2 Hz, 2H), 7.59 (t, J = 6,8 Hz, 2H), 7.52 (t, J = 7,2 Hz, 2H), 7.38 (d, J = 8,4 Hz, 4H), 7.11-7.03 (m, 6H) ,
MS (ASAP): 891.33 [M+H] + calculated C64H35N4O2: 891.28
 実施例1~10の化合物は昇華精製した後に、薄膜の形成や素子の作製に使用した。 The compounds of Examples 1 to 10 were purified by sublimation and then used for thin film formation and device fabrication.
(薄膜の作製と評価)
 石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にて実施例1の化合物とmCBPとを異なる蒸着源から蒸着し、実施例1の化合物の濃度が20重量%である薄膜を100nmの厚さで形成し、ドープ薄膜とした。また、実施例1のかわりに実施例2~10の各化合物を用いて同様にしてドープ薄膜を形成した。さらに、実施例1のかわりに下記の構造を有する比較例1の化合物を用いて同様にしてドープ薄膜を形成した。
 得られた各薄膜に300nm励起光を照射したところ、いずれの薄膜についてもフォトルミネッセンスが認められたため、最大発光波長を測定した。また、発光の過渡減衰曲線から遅延蛍光の寿命(τ)を得た。結果は表8に示す通りであった。表8には、各化合物のHOMOのエネルギーとLUMOのエネルギーを測定した結果も示している。
 表8の結果から、比較例1の化合物に比べて実施例1~10の各化合物の遅延蛍光寿命(τ)が格段に短いことが確認された。
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-C000057
(Preparation and evaluation of thin film)
The compound of Example 1 and mCBP were vapor-deposited from different vapor deposition sources on a quartz substrate by a vacuum vapor deposition method at a degree of vacuum of less than 1×10 −3 Pa, and the concentration of the compound of Example 1 was 20% by weight. A thin film having a thickness of 100 nm was formed as a doped thin film. Further, doped thin films were formed in the same manner using the compounds of Examples 2 to 10 instead of Example 1. Furthermore, instead of Example 1, a compound of Comparative Example 1 having the following structure was used to form a doped thin film in the same manner.
When the obtained thin films were irradiated with excitation light of 300 nm, photoluminescence was observed in all the thin films, so the maximum emission wavelength was measured. Also, the lifetime (τ 2 ) of delayed fluorescence was obtained from the transient decay curve of luminescence. The results were as shown in Table 8. Table 8 also shows the results of measuring the HOMO energy and LUMO energy of each compound.
From the results in Table 8, it was confirmed that the delayed fluorescence lifetime (τ 2 ) of each of the compounds of Examples 1 to 10 was significantly shorter than that of the compound of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-C000057
(有機エレクトロルミネッセンス素子の作製)
 膜厚100nmのインジウムスズ酸化物(ITO)からなる陽極が形成されたガラス基材上に、各薄膜を真空蒸着法にて、真空度1×10-6Paで積層する。まず、ITO上にHATCNを10nmの厚さに形成し、その上にNPDを30nmの厚さに形成する。次いで、その上にTrisPCzを10nmの厚さに形成し、さらにその上にH1を5nmの厚さに形成する。次に、実施例1の化合物およびH1をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さの発光層を形成する。このとき、実施例1の化合物の濃度は35重量%とする。その上に、SF3TRZを10nmの厚さに形成し、さらにその上にSF3TRZとLiqを異なる蒸着源から共蒸着して30nmの厚さに形成する。この時、SF3TRZ:Liq(重量比)は7:3とする。さらに、Liqを2nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成する。
 実施例1の化合物のかわりに実施例2~10の各化合物をそれぞれ用いて、同様にして有機エレクトロルミネッセンス素子を作製する。
 作製した有機エレクトロルミネッセンス素子は、いずれも遅延蛍光の寿命(τ2)が短い。
(Preparation of organic electroluminescence element)
Each thin film is laminated at a degree of vacuum of 1×10 −6 Pa by a vacuum evaporation method on a glass substrate on which an anode made of indium tin oxide (ITO) with a thickness of 100 nm is formed. First, HATCN is formed on ITO to a thickness of 10 nm, and NPD is formed thereon to a thickness of 30 nm. Next, TrisPCz is formed thereon to a thickness of 10 nm, and H1 is further formed thereon to a thickness of 5 nm. Next, the compound of Example 1 and H1 are co-deposited from different deposition sources to form a 30 nm thick emitting layer. At this time, the concentration of the compound of Example 1 is 35% by weight. SF3TRZ is formed thereon to a thickness of 10 nm, and SF3TRZ and Liq are co-deposited thereon from different vapor deposition sources to form a thickness of 30 nm. At this time, SF3TRZ:Liq (weight ratio) is 7:3. Further, a cathode is formed by forming Liq to a thickness of 2 nm and then depositing aluminum (Al) to a thickness of 100 nm.
Using the compounds of Examples 2 to 10 in place of the compound of Example 1, organic electroluminescence devices are produced in the same manner.
All of the produced organic electroluminescence devices have a short lifetime (τ2) of delayed fluorescence.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 1 基材
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極
REFERENCE SIGNS LIST 1 substrate 2 anode 3 hole injection layer 4 hole transport layer 5 light emitting layer 6 electron transport layer 7 cathode

Claims (19)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、
     R~Rのうちの2~3個は、各々独立にドナー性基を表すが、そのうちの少なくとも1つは環が縮合しているインドール-1-イル基である。前記環が縮合しているインドール-1-イル基は、インドールへの環縮合により環数が4以上の縮合環を形成しており、前記縮合環は置換されていてもよい。
     R~Rのうちの1~2個は、各々独立に置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基を表す。
     残りのR~Rは水素原子または重水素原子を表す。]
    A compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1),
    Two to three of R 1 to R 4 each independently represent a donor group, at least one of which is an indol-1-yl group with condensed rings. The ring-fused indol-1-yl group forms a condensed ring having 4 or more rings by ring condensation with indole, and the condensed ring may be substituted.
    1 to 2 of R 1 to R 4 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded via a carbon atom.
    The remaining R 1 to R 4 represent hydrogen atoms or deuterium atoms. ]
  2.  R~Rのうちの2個が各々独立にドナー性基であり、そのうちの少なくとも1つが前記環が縮合しているインドール-1-イル基であり、
     R~Rのうちの1個が置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基であり、
     残りのR~Rが水素原子または重水素原子である、請求項1に記載の化合物。
    two of R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed;
    one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded at a carbon atom;
    The compound according to claim 1, wherein the remaining R 1 -R 4 are hydrogen atoms or deuterium atoms.
  3.  R~Rのうちの2個が各々独立にドナー性基であり、そのうちの少なくとも1つが前記環が縮合しているインドール-1-イル基であり、
     R~Rのうちの2個が置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基である、請求項1に記載の化合物。
    two of R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed;
    2. The compound of claim 1, wherein two of R 1 -R 4 are substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups attached at a carbon atom.
  4.  R~Rのうちの3個が各々独立にドナー性基であり、そのうちの少なくとも1つが前記環が縮合しているインドール-1-イル基であり、
     R~Rのうちの1個が置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基である、請求項1に記載の化合物。
    three of R 1 to R 4 are each independently a donor group, at least one of which is an indol-1-yl group to which the ring is condensed;
    2. The compound of claim 1, wherein one of R 1 -R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group attached at a carbon atom.
  5.  RおよびRが各々独立にドナー性基であり、
     Rが置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基である、請求項1~4のいずれか1項に記載の化合物。
    each of R 1 and R 4 is independently a donor group;
    A compound according to any one of claims 1 to 4, wherein R 3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group attached at a carbon atom.
  6.  RおよびRが各々独立にドナー性基であり、
     Rが置換もしくは無置換のアリール基、または炭素原子で結合する置換もしくは無置換のヘテロアリール基である、請求項1~4のいずれか1項に記載の化合物。
    R 2 and R 4 are each independently a donor group;
    A compound according to any one of claims 1 to 4, wherein R 3 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group attached at a carbon atom.
  7.  前記縮合環の環数が5以上である、請求項1~6のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 6, wherein the condensed ring has 5 or more rings.
  8.  前記環数が4以上の縮合環の骨格を構成する炭素原子に置換もしくは無置換のアリール基が置換している、請求項7に記載の化合物。 The compound according to claim 7, wherein a carbon atom constituting the skeleton of the condensed ring having 4 or more rings is substituted with a substituted or unsubstituted aryl group.
  9.  前記環数が4以上の縮合環の骨格に窒素原子が含まれており、その窒素原子に置換もしくは無置換のアリール基が置換している、請求項7に記載の化合物。 The compound according to claim 7, wherein the condensed ring skeleton having 4 or more rings contains a nitrogen atom, and the nitrogen atom is substituted with a substituted or unsubstituted aryl group.
  10.  前記インドール-1-イル基を構成するベンゼン環に縮合している環が、置換もしくは無置換のフラン環、置換もしくは無置換のチオフェン環、または置換もしくは無置換のピロール環であって、前記フラン環、前記チオフェン環および前記ピロール環にはさらに他の環が縮合していてもよい、請求項1~9のいずれか1項に記載の化合物。 The ring condensed to the benzene ring constituting the indol-1-yl group is a substituted or unsubstituted furan ring, a substituted or unsubstituted thiophene ring, or a substituted or unsubstituted pyrrole ring, wherein the furan The compound according to any one of claims 1 to 9, wherein the ring, said thiophene ring and said pyrrole ring may be further condensed with another ring.
  11.  前記前記環が縮合しているインドール-1-イル基が下記のいずれかの縮合環を有する、請求項1~10のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    [上記の各構造において、水素原子は置換されていてもよく、またさらに環が縮合していてもよい。]
    The compound according to any one of claims 1 to 10, wherein the indol-1-yl group to which said ring is fused has any of the following fused rings.
    Figure JPOXMLDOC01-appb-C000002
    [In each structure above, hydrogen atoms may be substituted, and rings may be condensed. ]
  12.  前記環が縮合しているインドール-1-イル基が下記のいずれかの縮合環骨格を有する、請求項1~10のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    [上記の各構造において、水素原子は置換されていてもよく、またさらに環が縮合していてもよい。]
    The compound according to any one of claims 1 to 10, wherein the ring-fused indol-1-yl group has any of the following condensed ring skeletons.
    Figure JPOXMLDOC01-appb-C000003
    [In each structure above, hydrogen atoms may be substituted, and rings may be condensed. ]
  13.  前記環が縮合しているインドール-1-イル基が、インドール環の4,5位にヘテロ環が縮合した構造を有する、請求項1~12のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 12, wherein the indol-1-yl group to which the ring is condensed has a structure in which heterocycles are condensed at positions 4 and 5 of the indole ring.
  14.  Arが置換もしくは無置換のフェニル基、または置換もしくは無置換のピリジル基である、請求項1~13のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 13, wherein Ar is a substituted or unsubstituted phenyl group or a substituted or unsubstituted pyridyl group.
  15.  炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子からなる、請求項1~14のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 14, consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
  16.  請求項1~15のいずれか1項に記載の化合物からなる発光材料。 A luminescent material comprising the compound according to any one of claims 1 to 15.
  17.  請求項1~15のいずれか1項に記載の化合物を含むことを特徴とする発光素子。 A light emitting device comprising the compound according to any one of claims 1 to 15.
  18.  前記発光素子が発光層を有しており、前記発光層が前記化合物とホスト材料を含む、請求項17に記載の発光素子。 The light-emitting device according to claim 17, wherein the light-emitting device has a light-emitting layer, and the light-emitting layer contains the compound and a host material.
  19.  前記発光素子が発光層を有しており、前記発光層が前記化合物と発光材料を含み、前記発光材料から主として発光する、請求項18に記載の発光素子。 The light-emitting device according to claim 18, wherein the light-emitting device has a light-emitting layer, the light-emitting layer contains the compound and a light-emitting material, and emits light mainly from the light-emitting material.
PCT/JP2022/017166 2021-06-03 2022-04-06 Compound, light-emitting material, and light-emitting element WO2022254965A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237041637A KR20240017808A (en) 2021-06-03 2022-04-06 Compounds, light-emitting materials and light-emitting devices
CN202280039330.4A CN117396486A (en) 2021-06-03 2022-04-06 Compound, light-emitting material, and light-emitting element
JP2023525646A JPWO2022254965A1 (en) 2021-06-03 2022-04-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-093318 2021-06-03
JP2021093318 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022254965A1 true WO2022254965A1 (en) 2022-12-08

Family

ID=84323161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017166 WO2022254965A1 (en) 2021-06-03 2022-04-06 Compound, light-emitting material, and light-emitting element

Country Status (4)

Country Link
JP (1) JPWO2022254965A1 (en)
KR (1) KR20240017808A (en)
CN (1) CN117396486A (en)
WO (1) WO2022254965A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155309A4 (en) * 2020-05-22 2023-10-25 Kyulux, Inc. Compound, light-emitting material, and light-emitting element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107932A1 (en) * 2017-11-28 2019-06-06 주식회사 엘지화학 Compound and organic light emitting device comprising same
JP2020096178A (en) * 2018-11-30 2020-06-18 株式会社Kyulux Organic light-emitting element
WO2021066059A1 (en) * 2019-10-01 2021-04-08 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
WO2021157599A1 (en) * 2020-02-05 2021-08-12 株式会社Kyulux Compound, light-emitting material, delayed fluorescence material, and organic optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240042217A (en) 2017-06-27 2024-04-01 가부시키가이샤 큐럭스 Light-emitting material, compound, long-persistent phosphor and light-emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107932A1 (en) * 2017-11-28 2019-06-06 주식회사 엘지화학 Compound and organic light emitting device comprising same
JP2020096178A (en) * 2018-11-30 2020-06-18 株式会社Kyulux Organic light-emitting element
WO2021066059A1 (en) * 2019-10-01 2021-04-08 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
WO2021157599A1 (en) * 2020-02-05 2021-08-12 株式会社Kyulux Compound, light-emitting material, delayed fluorescence material, and organic optical device

Also Published As

Publication number Publication date
CN117396486A (en) 2024-01-12
JPWO2022254965A1 (en) 2022-12-08
KR20240017808A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2022249505A1 (en) Compound, light-emitting material, and light-emitting element
JP7406260B2 (en) Compounds, light-emitting materials and light-emitting devices
JP2022027733A (en) Compound, light-emitting material, and light-emitting element
WO2022254965A1 (en) Compound, light-emitting material, and light-emitting element
WO2023090288A1 (en) Compound, light-emitting material and light-emitting element
WO2023090154A1 (en) Compound, light-emitting material, and light-emitting element
JP2023002882A (en) Compound, light-emitting material, and organic light-emitting element
JP2023097788A (en) Compound, light-emitting material and light-emitting device
JP2023036162A (en) Compound, luminescent material, and organic light-emitting element
WO2020090843A1 (en) Charge transport material, compound and organic light emitting element
WO2022168956A1 (en) Compound, light-emitting material, and organic light-emitting element
WO2023042814A1 (en) Compound, light-emitting material and light-emitting element
JP2023032402A (en) Compound, luminescent material, and organic light-emitting element
WO2023053835A1 (en) Compound, composition, host material, electron barrier material and organic light emitting element
WO2022009651A1 (en) Compound, light-emitting material, and light-emitting device
JP2023002879A (en) Compound, light-emitting material, and organic light-emitting element
JP2023046437A (en) Compound, luminescent material, and organic light-emitting element
JP2023002880A (en) Compound, light-emitting material, and organic light-emitting element
JP2023056804A (en) Compound, light-emitting material and organic light-emitting device
WO2023166883A1 (en) Compound, light-emitting material and light-emitting element
JP2023002881A (en) Compound, light-emitting material, and organic light-emitting element
JP2023036163A (en) Compound, luminescent material, and organic light-emitting element
JP2023056802A (en) Compound, light-emitting material and organic light-emitting device
JP2023092715A (en) Compounds, luminous materials, and luminous elements
WO2023140374A1 (en) Compound, light-emitting material and light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525646

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280039330.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815721

Country of ref document: EP

Kind code of ref document: A1