[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022252462A1 - 一种大型叶片超低热输入快频焊接修复方法 - Google Patents

一种大型叶片超低热输入快频焊接修复方法 Download PDF

Info

Publication number
WO2022252462A1
WO2022252462A1 PCT/CN2021/122570 CN2021122570W WO2022252462A1 WO 2022252462 A1 WO2022252462 A1 WO 2022252462A1 CN 2021122570 W CN2021122570 W CN 2021122570W WO 2022252462 A1 WO2022252462 A1 WO 2022252462A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
defect
fast
frequency
repair
Prior art date
Application number
PCT/CN2021/122570
Other languages
English (en)
French (fr)
Inventor
王振民
江东航
吴健文
徐孟嘉
张芩
吴祥淼
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to DE212021000563.2U priority Critical patent/DE212021000563U1/de
Publication of WO2022252462A1 publication Critical patent/WO2022252462A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/325Devices for supplying or evacuating shielding gas

Definitions

  • the invention relates to the technical field of welding repair, and more specifically relates to a method for repairing large-scale blades by ultra-low heat input and rapid frequency welding.
  • welding is the preferred manufacturing process for superalloy components. More than 50% of superalloy components such as engine blades are manufactured by welding, but they are extremely sensitive to the heat input of the welding process, and it is easy to cause coarse grains in welds due to excessive heat input. Defects such as melting, joint softening, strength reduction, and cracks. On the other hand, such large blades often work in complex environments such as high temperature and high pressure, and various wear defects are unavoidable, and their manufacturing costs are extremely high. Therefore, there is an urgent need for welding repair technology that can achieve ultra-low heat input.
  • the Chinese invention patent "Aero-engine Blade Welding and Repairing Flexible Runner Heat Dissipation System" (publication number: CN109514146A) adopts an additional clamp mechanism and an automatic cooling control system to form a cooling fluid circulation heat dissipation system, which is bulky, complicated to use, and requires Real-time dynamic control of cooling system parameters to match the welding repair process does not fundamentally solve the problem of heat input affecting welding quality, and the efficiency is low.
  • the object of the present invention is to provide a method for repairing large-scale blades with ultra-low heat input and rapid frequency welding; Real-time welding status is used to adjust welding parameters, realize refined closed-loop adjustment of heat input in the welding process, and improve the process quality of welding repair.
  • a large-scale blade ultra-low heat input fast-frequency welding repair method which is characterized in that: it is realized by a large-scale blade ultra-low heat input fast-frequency welding repair system; including the following steps:
  • Step S1 putting the large blade repair parts into the shielding gas uniform distribution device and fixing them;
  • Step S2 the manipulator carries the welding torch into the shielding gas uniform distribution device, and closes the shielding gas uniform distribution device;
  • Step S3 adjust the position and posture of the manipulator and welding torch according to the area to be repaired for the large blade repair, set the starting point, end point and movement path of the movement; set the movement speed of the manipulator and the wire feeding speed of the wire feeding device according to the type of repair defect , The air supply pressure of the protective gas uniform distribution device, and the electrical parameters of the fast-frequency pulse power supply;
  • Step S4 start the water cooling device to deliver cooling water, start the shielding gas uniform distribution device to deliver shielding gas;
  • the fast-frequency pulse welding power supply is output without load until the arc is successfully started, so as to formally enter the welding repair process;
  • the fast-frequency pulse welding power supply outputs fast-frequency pulse Waveform current, the wire feeding device feeds the wire, and the manipulator carries the welding torch to perform welding repair according to the movement path;
  • the welding image defect recognition system collects welding images, analyzes whether there are welding defects in real time, and obtains the welding defect type and defect severity level when there are welding defects; according to the welding defect type and defect severity level, Adjust the welding parameters; the welding parameters include any one or more of the output current of the fast-frequency pulse welding power supply, the movement speed of the manipulator and the wire feeding speed of the wire feeding device;
  • Step S5 after the welding repair is completed, the fast-frequency pulse welding power supply and the wire feeding device stop output; after delaying the set time, turn off the water cooling device and the shielding gas uniform distribution device, so that the large blade repair parts can be adequately protected; after successful completion, Waiting for the next welding repair task.
  • the welding repair method of the present invention uses a manipulator to realize welding repair at complex positions, which can ensure reliable clamping of large blade repair parts and sufficient protective gas atmosphere, adapt to the changing needs of welding repair of components and can work at complex positions; in real time in the welding image defect recognition system Monitor the welding situation, judge whether there is a defect in the welding, and adjust the welding parameters according to the defect type and defect severity level when there is a defect, realize the refined closed-loop adjustment of the heat input in the welding process, and improve the process quality of repair welding.
  • adjusting the output current of the fast-frequency pulse welding power supply, the movement speed of the manipulator, and the wire feeding speed of the wire feeding device refers to: judging whether the severity level of the defect is greater than or equal to the set threshold, and if so, then Adjustments are made according to the type of welding defect until the detected defect severity level is less than the set threshold.
  • said adjusting according to the type of welding defect refers to:
  • the type of welding defect is a weld-through defect, then reduce the average output current of the fast-frequency pulse welding power supply;
  • the average output current of the fast-frequency pulse welding power supply is increased and the movement speed of the manipulator is reduced to a greater extent than that of the non-penetration defect;
  • If the type of welding defect is wire sticking defect, increase the average output current of the fast-frequency pulse welding power supply, reduce the movement speed of the manipulator and the wire feeding speed of the wire feeding device;
  • the type of welding defect is a crack or misalignment defect, reduce the movement speed of the manipulator and control the micro-motion of the manipulator toward the defect; if the detected defect severity level is further increased and reaches the set upper threshold, the welding repair task is stopped .
  • the welding image defect recognition system includes a defect recognition model; the working method of the welding image defect recognition system is: input the welding image into the defect recognition model, and the defect recognition model outputs the welding defect type and defect severity level;
  • the defect recognition model mentioned above refers to the defect recognition model obtained after training and testing the initial defect recognition model.
  • the training and testing method for the initial defect recognition model is: collecting welding image samples of various types of welding defects, and dividing the welding image samples into three categories, namely training set, verification set and test set; Firstly, the convolution base of the defect recognition model is loaded.
  • the input of the convolution base is the welding image sample, and the output is the high-level abstract features extracted by the convolution base; a fully connected classifier is built on the convolution base, and the input of the fully connected classifier is connected with the convolution
  • the output connection of the product base, the output of the fully connected classifier is the probability distribution of the input welding image samples in different welding defect types; then freeze the convolution base, train the fully connected classifier, and fine-tune the trained defect recognition model; then use
  • the verification set verifies the performance of the trained defect recognition model, and adjusts the hyperparameters of the defect recognition model according to the verification results; finally, the test set is used to verify whether the final performance of the defect recognition model meets the expected index until it reaches the expected index.
  • the welding process online detection device is always detecting whether there is an error signal feedback of overcurrent, overvoltage, overheating, and collision, and immediately stops the output of the fast-frequency pulse welding power supply when there is an error signal feedback, And make the wire feeding device stop wire feeding.
  • the large-scale blade ultra-low heat input fast-frequency welding repair system includes: shielding gas uniform distribution device, manipulator, fast-frequency pulse welding power supply, main control system, human-computer interaction system, welding process online monitoring device, welding image defect recognition systems, wire feeders, torches and water cooling;
  • the shielding gas uniform distribution device, manipulator, fast-frequency pulse welding power supply, human-computer interaction system, welding process online monitoring device, wire feeding device and water cooling device are respectively connected with the main control system signal;
  • the welding torch is arranged on the manipulator, and the welding torch They are respectively connected with the fast-frequency pulse welding power supply and the water-cooling device.
  • the protective gas uniform distribution device includes a box body provided with an air chamber, a base arranged under the box body, a support platform arranged in the air chamber and used for placing large blade repair parts, connected with the support platform and used Fixtures for fixing large blade repairs;
  • the box body is provided with an opening for the manipulator and welding torch to enter and exit, and the opening is provided with a flange; by setting a flexible pipe body on the manipulator, the flexible pipe body is fixed on the flange of the opening to realize the sealing of the air chamber;
  • the base is provided with an air intake channel communicating with the air chamber, and the air intake channel is connected with a protective gas supply device; the input port of the air intake channel is provided with an input control device; the box body is provided with an exhaust port and an output port. control device.
  • the shielding gas can be an existing gas, such as argon.
  • the fast-frequency pulse welding power supply includes a pulse current main circuit, a base current main circuit and a high-frequency current switching circuit; the pulse current main circuit is connected to the high-frequency current switching circuit; the base current main circuit is connected in parallel At the output end of the high-frequency current switching circuit; the high-frequency current switching circuit includes a high-frequency switching module and an anti-backfeed module connected in sequence.
  • the main control system includes a central control module, and a power drive module, a welding repair feature quantity sampling module, and a switch control module that are signal-connected to the central control module.
  • the present invention has the following advantages and beneficial effects:
  • the welding repair method of the present invention uses manipulators to realize welding repair in complex positions, which can ensure reliable clamping of large blade repair parts and sufficient protective gas atmosphere, adapt to the changing needs of welding repair of components and can work at complex positions; in the identification of welding image defects
  • the system monitors the welding situation in real time, judges whether there is a defect in the welding, and adjusts the welding parameters according to the defect type and defect severity level when there is a defect, realizes the refined closed-loop adjustment of the heat input in the welding process, and improves the process quality of welding repair;
  • the invention adopts the protective gas uniform distribution device and the manipulator to work together.
  • the air chamber has a certain degree of airtightness to provide sufficient protective gas protection atmosphere and can allow the manipulator to carry the welding torch into the box to work, and at the same time ensure the large blade clamp to be welded and repaired.
  • Reliable and sufficient protective gas atmosphere it provides effective protection for the front and back of the weld during welding, avoiding root oxidation; the manipulator can adapt to the changing needs of component welding and repair, and realize the work of reaching complex positions, with high movement accuracy and flexibility ;
  • the fast-frequency pulse welding power supply realizes precise control of welding heat input at a small average current through high-low frequency pulse modulation, which can ensure good efficiency and quality when welding and repairing large-scale blade superalloy components ;
  • the fast-frequency pulse welding power supply adopts a double-channel parallel structure, high-performance, high-power fast-frequency pulse welding power supply, which can reduce the power requirement of a single channel and increase the switching frequency of a single channel while satisfying the total output power.
  • the small size of the magnetic element improves the dynamic adjustment performance of the power supply;
  • the electromagnetic field generated by the output high-frequency pulse current compresses the arc, reduces the heat-affected zone, and has a strong electromagnetic oscillation and stirring effect on the metal in the molten pool to achieve the effect of refining the grain , to ensure efficient welding repair of large blades to be repaired without affecting other areas;
  • the present invention can realize digital coordination of the entire welding repair system, integrates the precise control function of welding heat input, and adjusts and controls the angle and position of the manipulator carrying the welding torch, the shielding gas flow rate of the shielding gas uniform distribution device, and the welding current parameters. It can ensure different welding repair requirements for different large blades, and realize stable welding repair of large blades with ultra-low heat input under non-ideal conditions such as molten pool fluctuations, uneven workpieces, and welding torch vibration.
  • Fig. 1 is a flow chart of the ultra-low heat input fast-frequency welding repair method for large blades of the present invention
  • Fig. 2 is a flow chart of the training and testing process of the welding image defect recognition system in the ultra-low heat input fast-frequency welding repair method for large blades of the present invention
  • Fig. 3 is a structural schematic diagram of the ultra-low heat input fast-frequency welding repair system for large blades of the present invention
  • Fig. 4 is a structural schematic diagram of the fast-frequency pulse welding power supply in the ultra-low heat input fast-frequency welding repair system for large blades of the present invention
  • Fig. 5 is a structural schematic diagram of the main control system in the ultra-low heat input fast-frequency welding repair system for large blades of the present invention
  • Fig. 6 is a structural diagram of the shielding gas uniform distribution device in the ultra-low heat input fast-frequency welding repair system for large blades of the present invention.
  • a large-scale blade ultra-low heat input fast-frequency welding repair method includes the following steps:
  • step S1 the large-scale repaired blade is placed in the protective gas uniform distribution device and fixed.
  • step S2 the manipulator carries the welding torch into the shielding gas uniform distribution device, and closes the shielding gas uniform distribution device.
  • Step S3 adjust the position and posture of the manipulator and welding torch according to the area to be repaired for the large blade repair, set the starting point, end point and movement path of the movement; set the movement speed of the manipulator and the wire feeding speed of the wire feeding device according to the type of repair defect , the air supply pressure of the protective gas uniform distribution device, and the electrical parameters of the fast-frequency pulse power supply.
  • Step S4 start the water cooling device to deliver cooling water, start the shielding gas uniform distribution device to deliver shielding gas;
  • the fast-frequency pulse welding power supply is output without load until the arc is successfully started, so as to formally enter the welding repair process;
  • the fast-frequency pulse welding power supply outputs fast-frequency pulse Waveform current, the wire feeding device feeds the wire, and the manipulator carries the welding torch to perform welding repair according to the movement path;
  • the welding image defect recognition system collects welding images, analyzes whether there are welding defects in real time, and obtains the type and severity level of welding defects when there are welding defects.
  • the welding image defect recognition system includes a defect recognition model; the working method of the welding image defect recognition system is: input the welding image into the defect recognition model, and the defect recognition model outputs the welding defect type and defect severity level; the defect recognition model is Refers to the defect recognition model obtained after training and testing the initial defect recognition model.
  • the training and testing processing method of the initial defect recognition model is as follows: as shown in Figure 2, collecting welding image samples of various welding defect types, and dividing the welding image samples into three categories, which are respectively training set, verification set and Test set; first load the convolutional base of the defect recognition model, the input of the convolutional base is the welding image sample, and the output is the high-level abstract features extracted by the convolutional base; build a fully connected classifier on the convolutional base, and the fully connected classifier The input is connected to the output of the convolutional base, and the output of the fully connected classifier is the probability distribution of the input welding image samples in different welding defect types; then the convolutional base is frozen, the fully connected classifier is trained, and the trained defect recognition model is fine-tuned ; Then use the verification set to verify the performance of the trained defect recognition model, adjust the hyperparameters of the defect recognition model according to the verification results; finally use the test set to verify whether the final performance of the defect recognition model meets the expected indicators until the expected indicators are reached.
  • the welding parameters include any one or more of the output current of the fast-frequency pulse welding power supply, the movement speed of the manipulator and the wire feeding speed of the wire feeding device.
  • the defect severity level is greater than or equal to the set threshold, and if so, adjustments are made according to the type of welding defect until the detected defect severity level is less than the set threshold;
  • the type of welding defect is a weld-through defect, then reduce the average output current of the fast-frequency pulse welding power supply;
  • the average output current of the fast-frequency pulse welding power supply is increased and the movement speed of the manipulator is reduced to a greater extent than that of the non-penetration defect;
  • If the type of welding defect is wire sticking defect, increase the average output current of the fast-frequency pulse welding power supply, reduce the movement speed of the manipulator and the wire feeding speed of the wire feeding device;
  • the type of welding defect is a crack or misalignment defect, reduce the movement speed of the manipulator and control the micro-motion of the manipulator toward the defect; if the detected defect severity level is further increased and reaches the set upper threshold, the welding repair task is stopped .
  • the welding process online detection device is always detecting whether there are error signal feedbacks such as overcurrent, overvoltage, overheating, and collision.
  • the wire device stops feeding the wire.
  • Step S5 after the welding repair is completed, the fast-frequency pulse welding power supply and the wire feeding device stop output; after delaying the set time, turn off the water cooling device and the shielding gas uniform distribution device, so that the large blade repair parts can be adequately protected; after successful completion, Waiting for the next welding repair task.
  • the ultra-low heat input fast-frequency welding repair method for large blades of the present invention is realized by the ultra-low heat input fast-frequency welding repair system for large blades.
  • the structure of the ultra-low heat input fast-frequency welding repair system for large blades is shown in Figure 3, including: uniform distribution device for shielding gas, manipulator, fast-frequency pulse welding power supply, main control system, human-computer interaction system, online monitoring device for welding process, and welding image Defect recognition systems, wire feeders, welding torches and water cooling.
  • the shielding gas uniform distribution device, manipulator, fast-frequency pulse welding power supply, human-computer interaction system, online monitoring device for welding process, wire feeding device and water cooling device are respectively connected to the main control system signal; the welding torch is arranged on the manipulator, and the welding torch is connected to The fast frequency pulse welding power supply is connected to the water cooling device.
  • the manipulator includes finger base, driving parts and flexible fingers. According to different welding and repairing requirements of large blades before work, it carries the welding torch to the position to be repaired in a complicated position, with high motion precision and flexibility; it passes through the field bus and the main control system during the whole process of welding repair. Interact, send and receive relevant start and stop signals, and move at a given speed and path;
  • the fast-frequency pulse welding power supply is controlled by the main control system for power conversion, which is used to provide the energy required for the ultra-low heat input fast-frequency welding repair process of large blades;
  • the main control system is responsible for process control, process parameter reception, characteristic quantity sampling, PWM output, welding repair stability adjustment and related interface control functions; during the welding process, it controls the fast frequency pulse welding power supply, wire feeding device, shielding gas uniform distribution device, Manipulator and water cooling device for real-time control;
  • the human-computer interaction system is used to set the basic process parameters of the fast-frequency pulse welding repair process, and display the real-time status of the wire feeding device, shielding gas uniform distribution device and manipulator during the process;
  • the whole process of welding repair adopts the welding process online monitoring device to ensure the reliable progress of the welding repair process
  • the welding image defect recognition system includes not only a defect recognition model, but also a data input module such as a high dynamic camera and an industrial computer to obtain the welding image to be recognized; the defect recognition model is based on the combination of deep learning and transfer learning technology, which can The image is input to the defect recognition model to determine whether there is a defect, the type of defect and the severity level of the defect;
  • the wire feeding device is used to fill the wire according to the given wire feeding speed
  • the welding torch is used to complete energy conversion, providing energy and power for metal matrix melting and wire feeding filling repair;
  • the welding torch can be a general-purpose TIG welding torch;
  • the water cooling device is used to provide cooling for the welding torch.
  • the fast-frequency pulse welding power supply is shown in Figure 4, including the pulse current main circuit, the base value current main circuit and the high-frequency current switching circuit; in the case of small current output, the control accuracy can also be guaranteed; the pulse current main circuit and high The high-frequency current switching circuit is connected; the base value current main circuit is connected in parallel to the output end of the high-frequency current switching circuit; the high-frequency current switching circuit includes a high-frequency switching module and an anti-backfeed module connected in sequence.
  • the pulse current main circuit includes an input rectification and filter circuit, a high-frequency inverter circuit, a high-frequency transformer and an output rectification and filter circuit connected in sequence; among them, the input rectification and filter circuit is connected to the three-phase electricity; the output rectification and filter circuit and the high-frequency current switching circuit connect.
  • the input rectification and filtering circuit includes rectification and filtering module BR1 and capacitor C11; the high-frequency inverter circuit includes SiC-based MOSFET power switch tubes M1 ⁇ M4, resistors R1 ⁇ R4, capacitors C1 ⁇ C4 and capacitor C9; the high-frequency transformer is a high-frequency transformer T1 ;
  • the output rectification filter circuit includes rectifier diodes VD1, VD2 and filter reactance L1.
  • the input rectification filter circuit converts the 380V three-phase power into bus DC;
  • the high-frequency inverter circuit converts the bus DC into AC square wave on the primary side of the high-frequency transformer; the frequency of the AC square wave can reach 200kHz, through Controlling the conduction duty cycle of the SiC-based MOSFET power switch can realize the adjustment of constant current characteristics, and the high-frequency transformer couples the square wave energy to the secondary;
  • the output rectification filter circuit will convert the AC power into a smooth DC power through the rectifier diode and filter reactance.
  • the base value current main circuit is identical to the pulse current main circuit in topology.
  • each of the parallel dual circuits can output a maximum of 650A DC current
  • the pulse current main circuit outputs low-frequency pulse current, which is the object of high-frequency current switching and the energy source for the balance and oscillation of the molten pool
  • the base value current main circuit outputs base value current , is the source of energy to maintain the combustion of the welding wire and the melting of the metal matrix.
  • the high-frequency current switching circuit includes a parallel power switch tube Q1, a series power switch tube Q2 and an anti-backfeed diode VD5;
  • the parallel power switch tube Q1 is connected in parallel between the positive pole and the negative pole of the output terminal of the pulse current main circuit;
  • the positive pole of the output terminal of the pulse current main circuit It is connected in series with the series power switch tube Q2 and the anti-backfeed diode VD5 in turn; when working, the parallel power switch tube Q1 and the series power switch tube Q2 are alternately turned on, and the direct current output by the pulse current main circuit is chopped and modulated to convert it into a high frequency Pulse, and superimposed with the DC output of the base current main circuit.
  • the high-frequency current switching circuit transmits the energy output by the pulse current main circuit to the output terminal; when the series power switch Q2 is turned off and the parallel When the power switch tube Q1 is turned on, the high-frequency current switching circuit will block the energy output by the pulse current main circuit.
  • the parallel power switch tube Q1 and the series power switch tube Q2 are alternately turned on at a certain frequency (which can be higher than 20kHz), so as to realize the high-frequency current switching function, and output high-frequency pulses that can be higher than 20kHz or even 100kHz.
  • the anti-backfeed diode VD5 is used to prevent the current output by the base value current main circuit from back-feeding into the loop.
  • the parallel power switch tube Q1 and the series power switch tube Q2 are both Si-based MOSFET power switch tubes, Si-based IGBT power switch tubes, SiC-type MOSFET power switch tubes, SiC-type IGBT power switch tubes and GaN-type power switch tubes. kind.
  • the high-frequency current switching circuit is used to chop and modulate the low-frequency pulse current provided by the pulse current main circuit, and complete the superposition of high-frequency pulse current with adjustable amplitude, frequency and duty cycle, so as to realize the ultra-low heat input welding repair process.
  • the molten pool is balanced and oscillated;
  • the power part of the fast-frequency pulse welding power supply in the present invention adopts a dual-channel parallel structure, which can reduce the power requirement of a single channel when the total output power reaches the standard, thereby reducing the volume of magnetic components such as inductors and transformers, and improving dynamic regulation. performance, to meet the larger control bandwidth, so that the high-frequency pulse modulated by the chopper in the subsequent stage does not appear disorderly and distorted, and ensures the effectiveness of the balance and oscillation of the molten pool during the ultra-low heat input welding repair process.
  • the main control system is shown in Figure 5, including a central control module, and a power drive module, a welding repair characteristic quantity sampling module and a switch control module respectively connected to the central control module.
  • the central control module includes a DSC control chip, which can be an ARM control chip, a DSP control chip, or an MCU control chip; a preferred solution is to use an ARM control chip; the ARM on-chip peripherals used include: general input Output port GPIO, pulse width modulation signal channel PWM, controller area network transceiver CAN, universal asynchronous transceiver UART and analog-to-digital converter ADC.
  • the central control module receives the process parameters sent by the human-computer interaction system through UART; sends information such as the position, attitude, and movement amount of the manipulator and the air flow adjustment of the protective gas uniform distribution device through CAN, and sends start-stop and wire-feeding speed to the wire feeding device Wait for the signal.
  • the central control module is used to control the welding process, receive process parameters, generate PWM signals and generate welding repair stability control signals; the welding repair stability control signals generated by the central control module include current waveform adjustment signals, manipulator position, attitude, and movement adjustment signal and the air flow adjustment signal of the shielding gas uniform distribution device.
  • the power drive module includes a high-frequency inverter drive sub-module and a high-frequency chopper drive sub-module; the front stage of the high-frequency inverter drive sub-module is connected to the PWM interface, and the rear stage is connected to and drives the pulse current main circuit and base of the fast-frequency pulse welding power supply.
  • the high-value current main circuit can finely adjust the output power at a very high frequency (up to 200kHz); the front stage of the high-frequency chopper driving sub-module is connected to the PWM interface, and the rear stage is connected to and drives the high-frequency current switching circuit of the fast-frequency pulse welding power supply.
  • Output a chopping modulation signal in a certain frequency range, and the frequency of the modulation signal can reach above 100kHz.
  • the power drive module is used to isolate and amplify the PWM drive signal generated by the central control module, so as to control the energy output of the welding power source.
  • the high-frequency inverter drive sub-module can use existing modules, for example, the ultra-high-frequency drive module recorded in the Chinese invention patent "Ultra-high frequency inverter manual welding power supply based on SiC" (publication number: CN106392263B).
  • the high-frequency chopper driving sub-module can use existing modules, for example, the modulation switch tube drive circuit recorded in the Chinese invention patent application "SiC-based fast-frequency pulse TIG welding power supply digital control circuit" (publication number: CN110076421A).
  • the welding repair feature quantity sampling module includes a current acquisition sub-module and a voltage acquisition sub-module; the front stage of the current acquisition sub-module is connected to the pulse current main circuit output circuit and the base value current main circuit output circuit, and the latter stage is connected to the ADC interface to form two current feedbacks Ring; the front stage of the voltage acquisition sub-module is connected to both ends of the output of the fast-frequency pulse welding power supply, and the rear stage is connected to the ADC interface to form a voltage feedback loop.
  • the welding repair feature quantity sampling module is used to collect pulse current main circuit current signal, base value current main circuit current signal and arc voltage signal synchronously and in real time. The signal is used for output current feedback adjustment and as the basis for welding repair stability control signal generation.
  • the current acquisition sub-module and the voltage acquisition sub-module can use existing modules, and only need to realize the acquisition of current signals and voltage signals.
  • the front stage of the switch control module is connected to the GPIO interface, and the rear stage is connected to and controls the water cooling device, and the on-off control of the cooling water circuit is performed during the welding process.
  • the switch control module is used to generate logic switch signals to control the working state of the water cooling device.
  • the switch control module can adopt the existing module, and only needs to realize the switch of the water cooling device.
  • the system adopts all-digital control technology, uses fast-frequency pulse current to repair large blades with ultra-low heat input welding, realizes precise control of welding heat input at a small average current through high-low frequency pulse modulation, and uses high-frequency pulse current to generate
  • the electromagnetic field compresses the arc, reduces the heat-affected zone, and has a strong electromagnetic oscillation and stirring effect on the molten pool metal to achieve the effect of refining grains and reducing weld defects, ensuring the efficiency and efficiency of welding repairs for large blade superalloy components quality.
  • the protective gas uniform distribution device is shown in Figure 6, which includes a box body 2 with an air chamber, a base 8 arranged under the box body 2, a support table 7 arranged in the air chamber for placing large blade repair parts, and The support table 7 is connected and used to fix the clamp 6 of the large-scale blade repair piece;
  • the base 8 is provided with an air intake channel 10 communicating with the air chamber, and the air intake channel 10 is connected with a protective gas supply device; the input port of the air intake channel 10 is provided with an input control device 9; the box body 2 is provided with an exhaust port 4, and An output control device 3 is provided.
  • the input control device 9 and the output control device 3 can adopt existing devices, such as solenoid valves.
  • the box body 2 is provided with an opening 1 for the manipulator and welding torch to enter and exit, and the opening 1 is provided with a flange; by setting a flexible pipe body on the manipulator, such as a silicone vulcanized pipe, the flexible pipe body is fixed on the flange of the opening 1, When working, it can not only ensure that the manipulator carries the welding torch to reach the inside of the gas chamber, but also realize a certain gas tightness at the opening 1. Ensure that the large blades to be repaired by welding are clamped reliably and the protective gas atmosphere is sufficient, and provide effective protection for the front and back of the weld during welding to avoid root oxidation.
  • a flexible pipe body on the manipulator such as a silicone vulcanized pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Arc Welding In General (AREA)

Abstract

一种大型叶片超低热输入快频焊接修复方法,包括如下步骤:将大型叶片修复件放入保护气均匀配送装置中固定;机械手携带焊枪进入保护气均匀配送装置;调整机械手和焊枪的位置和姿态等,设定焊接参数;快频脉冲焊接电源空载输出;开始焊接修复;在焊接修复的过程中,焊接图像缺陷识别系统进行焊接图像采集实时分析是否存在焊接缺陷,并根据焊接缺陷类型和缺陷严重程度等级对焊接参数进行调整;焊接修复结束后,快频脉冲焊接电源和送丝装置停止输出。

Description

一种大型叶片超低热输入快频焊接修复方法 技术领域
本发明涉及焊接修复技术领域,更具体地说,涉及一种大型叶片超低热输入快频焊接修复方法。
背景技术
先进材料技术进步以及现代工业发展推动了以镍基合金、钛合金为代表的高温合金在我国航空航天、大型船舶、核电、石油化工等领域的广泛应用。焊接是高温合金构件优选的制造工艺,超过50%的发动机叶片等高温合金构件采用焊接方法制造,但它们对焊接过程的热输入极其敏感,极易因热输入量过大导致焊缝晶粒粗化、接头软化、强度降低以及裂纹等缺陷。另一方面,此类大型叶片常工作于高温高压等复杂环境中,难以避免会出现各种磨损缺陷,其制造成本又异常高昂,因此迫切需要能够实现超低热输入的焊接修复技术。
针对高温大型叶片焊接修复的热输入量过大且难以控制的难点,例如,中国发明专利《一种钛合金压气机叶片焊接修复方法》(公开号:CN112453824A)采用脉冲送丝的方式降低热输入量,作用微小,且在焊接修复之后仍需要进行数小时的热处理工艺来去除残余热应力。再例如,中国发明专利《航空发动机叶片焊接修复柔性流道散热系统》(公开号:CN109514146A)采用附加的夹具机构和自动冷却控制系统来组成冷却液循环散热系统,体积大,使用复杂,且需要实时动态控制冷却系统参数来匹配焊接修复过程,并未从根本上解决热输入对焊接质量影响的问题,效率较低。
为此,亟需开发一套大型叶片超低热输入快频焊接修复系统。
发明内容
为克服现有技术中的缺点与不足,本发明的目的在于提供一种大型叶片超低热输入快频焊接修复方法;该方法可在保护气氛围充足情况下对大型叶片进行灵活修复,并可根据实时焊接状况来调节焊接参数,实现焊接过程热输入精 细化闭环调节,提高焊接修复的工艺质量。
为了达到上述目的,本发明通过下述技术方案予以实现:一种大型叶片超低热输入快频焊接修复方法,其特征在于:通过大型叶片超低热输入快频焊接修复系统实现;包括如下步骤:
S1步,将大型叶片修复件放入保护气均匀配送装置中固定;
S2步,机械手携带焊枪进入保护气均匀配送装置,对保护气均匀配送装置进行封闭;
S3步,根据大型叶片修复件需要修复的区域,调整机械手和焊枪的位置和姿态,设定运动的起点、终点和运动路径;根据修复缺陷类型,设定机械手运动速度、送丝装置送丝速度、保护气均匀配送装置送气气压,以及快频脉冲电源的电参数;
S4步,启动水冷装置输送冷却水,启动保护气均匀配送装置输送保护气;快频脉冲焊接电源空载输出,直到成功起弧,以正式进入焊接修复过程;快频脉冲焊接电源输出快频脉冲波形电流,送丝装置送丝,机械手携带焊枪根据运动路径进行焊接修复;
在焊接修复的过程中,焊接图像缺陷识别系统进行焊接图像采集,实时分析是否存在焊接缺陷,并在存在焊接缺陷时获取焊接缺陷类型和缺陷严重程度等级;根据焊接缺陷类型和缺陷严重程度等级,对焊接参数进行调整;焊接参数包括快频脉冲焊接电源输出电流、机械手运动速度和送丝装置送丝速度中任一项或两项以上;
S5步,焊接修复结束后,快频脉冲焊接电源和送丝装置停止输出;延时设定时间后关闭水冷装置和保护气均匀配送装置,使大型叶片修复件得到充足的保护;顺利完成后,等待下一步焊接修复任务。
本发明焊接修复方法采用机械手实现复杂位置焊接修复,可保证大型叶片修复件夹持可靠且保护气氛围充足,适应多变的构件焊接修复需求并能抵达复杂位置工作;在焊接图像缺陷识别系统实时监测焊接情况,判断焊接是否存在缺陷,并在存在缺陷时根据缺陷类型和缺陷严重程度等级进行焊接参数调整,实现焊接过程热输入精细化闭环调节,提高修复焊接的工艺质量。
优选地,在焊接修复的过程中,对快频脉冲焊接电源输出电流、机械手运动速度、送丝装置送丝速度进行调整,是指:判断缺陷严重程度等级是否大于 等于设定阈值,若是,则根据焊接缺陷类型进行调整,直到检测到的缺陷严重程度等级小于设定阈值。
优选地,所述根据焊接缺陷类型进行调整是指:
若焊接缺陷类型为焊穿缺陷,则减小快频脉冲焊接电源平均输出电流;
若焊接缺陷类型为未熔透缺陷,则增大快频脉冲焊接电源平均输出电流并减小机械手运动速度;
若焊接缺陷类型为未熔合缺陷,则较未熔透缺陷更大程度地增大快频脉冲焊接电源平均输出电流并减小机械手运动速度;
若焊接缺陷类型为粘丝缺陷,则增大快频脉冲焊接电源平均输出电流,减小机械手运动速度和送丝装置送丝速度;
若焊接缺陷类型为裂纹或者错边缺陷,则减小机械手运动速度并控制机械手朝缺陷反向微运动;若检测到的缺陷严重程度等级进一步加大并到达设定上限阈值,则停止焊接修复任务。
优选地,所述焊接图像缺陷识别系统包括缺陷识别模型;所述焊接图像缺陷识别系统的工作方式是:将焊接图像进行输入缺陷识别模型,缺陷识别模型输出焊接缺陷类型和缺陷严重程度等级;所述缺陷识别模型是指对初始缺陷识别模型进行训练和测试处理后得到的缺陷识别模型。
优选地,所述对初始缺陷识别模型的训练和测试处理方法是:采集各种焊接缺陷类型的焊接图像样本,并将焊接图像样本划分为三类,分别是训练集、验证集和测试集;首先加载缺陷识别模型的卷积基,卷积基的输入为焊接图像样本,输出为卷积基提取的高级抽象特征;在卷积基上搭建全连接分类器,全连接分类器的输入与卷积基的输出连接,全连接分类器输出为输入焊接图像样本在不同焊接缺陷类型的概率分布;然后冻结卷积基,训练全连接分类器,并对训练后的缺陷识别模型进行微调;之后使用验证集对训练后的缺陷识别模型性能进行验证,根据验证结果调整缺陷识别模型的超参数;最后使用测试集验证缺陷识别模型的最终性能是否符合预期指标,直到达到预期指标为止。
优选地,在焊接修复的过程中,焊接过程在线检测装置始终在检测是否有过流、过压、过热、碰撞的错误信号反馈,当有错误信号反馈时立即使快频脉冲焊接电源停止输出,并使送丝装置停止送丝。
优选地,所述大型叶片超低热输入快频焊接修复系统包括:保护气均匀配 送装置、机械手、快频脉冲焊接电源、主控制系统、人机交互系统、焊接过程在线监测装置、焊接图像缺陷识别系统、送丝装置、焊枪和水冷装置;
所述保护气均匀配送装置、机械手、快频脉冲焊接电源、人机交互系统、焊接过程在线监测装置、送丝装置和水冷装置分别与主控制系统信号连接;所述焊枪设置在机械手上,焊枪分别与快频脉冲焊接电源和水冷装置连接。
优选地,所述保护气均匀配送装置包括设有气室的箱体、设置在箱体下方的底座、设置在气室中且用于放置大型叶片修复件的支撑台、与支撑台连接且用于固定大型叶片修复件的夹具;
所述箱体设有用于供机械手和焊枪进出的开口,开口设有凸缘;通过在机械手上套设柔性管体,使柔性管体固定在开口的凸缘上,实现气室封闭;
所述底座开设有与气室连通的进气通道,进气通道连接有保护气供应装置;进气通道的输入口设置有输入控制器件;所述箱体设有排气口,并设有输出控制器件。保护气可采用现有气体,例如氩气。
优选地,所述快频脉冲焊接电源包括脉冲电流主电路、基值电流主电路和高频电流切换电路;所述脉冲电流主电路与高频电流切换电路连接;所述基值电流主电路并联在高频电流切换电路的输出端;所述高频电流切换电路包括依次连接的高频切换模块、防反灌模块。
优选地,所述主控制系统包括中央控制模块,以及分别与中央控制模块信号连接的电源驱动模块、焊接修复特征量采样模块和开关控制模块。
与现有技术相比,本发明具有如下优点与有益效果:
1、本发明焊接修复方法采用机械手实现复杂位置焊接修复,可保证大型叶片修复件夹持可靠且保护气氛围充足,适应多变的构件焊接修复需求并能抵达复杂位置工作;在焊接图像缺陷识别系统实时监测焊接情况,判断焊接是否存在缺陷,并在存在缺陷时根据缺陷类型和缺陷严重程度等级进行焊接参数调整,实现焊接过程热输入精细化闭环调节,提高焊接修复的工艺质量;
2、本发明采用保护气均匀配送装置和机械手配合工作,气室具有一定的密闭性以提供充足的保护气保护氛围且能够允许机械手携带焊枪进入箱体工作,同时保证待焊接修复的大型叶片夹持可靠且保护气氛围充足,在焊接时对焊缝正面和背面都提供有效的保护,避免根部氧化;机械手可适应多变的构件焊接修复需求,实现复杂位置抵达工作,运动精度和灵活度高;
3、本发明中,快频脉冲焊接电源通过高低频脉冲调制在较小的平均电流下实现对焊接热输入的精确控制,可保证对大型叶片高温合金构件进行焊接修复时具有良好的效率和质量;快频脉冲焊接电源采用双路并联式结构、高性能、大功率的快频脉冲焊接电源,可在满足总输出功率的情况下,降低单路的功率要求,提高单路的开关频率,减小磁性元件体积,提高电源的动态调节性能;利用输出高频脉冲电流产生的电磁场压缩电弧,减少热影响区,并且对熔池金属有强烈的电磁振荡和搅拌作用,实现细化晶粒的效果,保证对大型叶片待修复区域的高效焊接修复,而不影响其他区域;
4、本发明可实现整个焊接修复系统的数字化协同,集成了焊接热输入精确控制功能,通过对携带焊枪的机械手的角度和位置、保护气均匀配送装置保护气流量以及焊接电流参数进行调节控制,可确保对于不同大型叶片各异的焊接修复需求,在熔池波动、工件不平整、焊枪抖动等非理想情况下实现大型叶片超低热输入的稳定焊接修复。
附图说明
图1是本发明大型叶片超低热输入快频焊接修复方法的流程图;
图2是本发明大型叶片超低热输入快频焊接修复方法中焊接图像缺陷识别系统训练和测试处理的流程图;
图3是本发明大型叶片超低热输入快频焊接修复系统的结构示意图;
图4是本发明大型叶片超低热输入快频焊接修复系统中快频脉冲焊接电源的结构示意图;
图5是本发明大型叶片超低热输入快频焊接修复系统中主控制系统的结构示意图;
图6是本发明大型叶片超低热输入快频焊接修复系统中保护气均匀配送装置结构图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细的描述。
实施例
如图1所示,一种大型叶片超低热输入快频焊接修复方法,包括如下步骤:
S1步,将大型叶片修复件放入保护气均匀配送装置中固定。
S2步,机械手携带焊枪进入保护气均匀配送装置,对保护气均匀配送装置进行封闭。
S3步,根据大型叶片修复件需要修复的区域,调整机械手和焊枪的位置和姿态,设定运动的起点、终点和运动路径;根据修复缺陷类型,设定机械手运动速度、送丝装置送丝速度、保护气均匀配送装置送气气压,以及快频脉冲电源的电参数。
S4步,启动水冷装置输送冷却水,启动保护气均匀配送装置输送保护气;快频脉冲焊接电源空载输出,直到成功起弧,以正式进入焊接修复过程;快频脉冲焊接电源输出快频脉冲波形电流,送丝装置送丝,机械手携带焊枪根据运动路径进行焊接修复;
在焊接修复的过程中,焊接图像缺陷识别系统进行焊接图像采集,实时分析是否存在焊接缺陷,并在存在焊接缺陷时获取焊接缺陷类型和缺陷严重程度等级。
焊接图像缺陷识别系统包括缺陷识别模型;所述焊接图像缺陷识别系统的工作方式是:将焊接图像进行输入缺陷识别模型,缺陷识别模型输出焊接缺陷类型和缺陷严重程度等级;所述缺陷识别模型是指对初始缺陷识别模型进行训练和测试处理后得到的缺陷识别模型。
所述对初始缺陷识别模型的训练和测试处理方法是:如图2所示,采集各种焊接缺陷类型的焊接图像样本,并将焊接图像样本划分为三类,分别是训练集、验证集和测试集;首先加载缺陷识别模型的卷积基,卷积基的输入为焊接图像样本,输出为卷积基提取的高级抽象特征;在卷积基上搭建全连接分类器,全连接分类器的输入与卷积基的输出连接,全连接分类器输出为输入焊接图像样本在不同焊接缺陷类型的概率分布;然后冻结卷积基,训练全连接分类器,并对训练后的缺陷识别模型进行微调;之后使用验证集对训练后的缺陷识别模型性能进行验证,根据验证结果调整缺陷识别模型的超参数;最后使用测试集验证缺陷识别模型的最终性能是否符合预期指标,直到达到预期指标为止。
根据焊接缺陷类型和缺陷严重程度等级,对焊接参数进行调整;焊接参数包括快频脉冲焊接电源输出电流、机械手运动速度和送丝装置送丝速度中任一项或两项以上。
具体地说,判断缺陷严重程度等级是否大于等于设定阈值,若是,则根据焊接缺陷类型进行调整,直到检测到的缺陷严重程度等级小于设定阈值;
根据焊接缺陷类型进行调整是指:
若焊接缺陷类型为焊穿缺陷,则减小快频脉冲焊接电源平均输出电流;
若焊接缺陷类型为未熔透缺陷,则增大快频脉冲焊接电源平均输出电流并减小机械手运动速度;
若焊接缺陷类型为未熔合缺陷,则较未熔透缺陷更大程度地增大快频脉冲焊接电源平均输出电流并减小机械手运动速度;
若焊接缺陷类型为粘丝缺陷,则增大快频脉冲焊接电源平均输出电流,减小机械手运动速度和送丝装置送丝速度;
若焊接缺陷类型为裂纹或者错边缺陷,则减小机械手运动速度并控制机械手朝缺陷反向微运动;若检测到的缺陷严重程度等级进一步加大并到达设定上限阈值,则停止焊接修复任务。
在焊接修复的过程中,焊接过程在线检测装置始终在检测是否有过流、过压、过热、碰撞的错误信号反馈,当有错误信号反馈时立即使快频脉冲焊接电源停止输出,并使送丝装置停止送丝。
S5步,焊接修复结束后,快频脉冲焊接电源和送丝装置停止输出;延时设定时间后关闭水冷装置和保护气均匀配送装置,使大型叶片修复件得到充足的保护;顺利完成后,等待下一步焊接修复任务。
本发明大型叶片超低热输入快频焊接修复方法,通过大型叶片超低热输入快频焊接修复系统实现。大型叶片超低热输入快频焊接修复系统结构如图3所示,包括:保护气均匀配送装置、机械手、快频脉冲焊接电源、主控制系统、人机交互系统、焊接过程在线监测装置、焊接图像缺陷识别系统、送丝装置、焊枪和水冷装置。
保护气均匀配送装置、机械手、快频脉冲焊接电源、人机交互系统、焊接过程在线监测装置、送丝装置和水冷装置分别与主控制系统信号连接;所述焊枪设置在机械手上,焊枪分别与快频脉冲焊接电源和水冷装置连接。
机械手包括手指基部、驱动部件和柔性手指,在工作前根据不同的大型叶片焊接修复需求,携带焊枪复杂位置抵达待修复位置,运动精度和灵活度高;在焊接修复全程通过现场总线和主控制系统进行交互,发送和接收相关起止信 号,并按给定速度和路径移动;
快频脉冲焊接电源受主控制系统控制进行功率变换,用于提供大型叶片超低热输入快频焊接修复过程所需的能量;
主控制系统负责流程控制、工艺参数接收、特征量采样、PWM输出、焊接修复稳定性调节以及相关接口控制功能;在焊接过程中对快频脉冲焊接电源、送丝装置、保护气均匀配送装置、机械手和水冷装置进行实时控制;
人机交互系统用于设定快频脉冲焊接修复过程的基本工艺参数,并在过程中显示送丝装置、保护气均匀配送装置和机械手的实时状态;
焊接修复全过程采用焊接过程在线监测装置,保证焊接修复过程的可靠进行;
焊接图像缺陷识别系统除了包括缺陷识别模型,还包括高动态相机、工控机等用于获取待识别焊接图像的数据输入模块;缺陷识别模型基于深度学习和迁移学习技术结合,可以将待识别的焊接图像输入至缺陷识别模型,从而判定是否存在缺陷以及缺陷类型和缺陷严重程度等级;
送丝装置用于按照给定送丝速度填充丝材;
焊枪用于完成能量转换,为金属基体熔化及送丝填充修复提供能源和动力;焊枪可采用通用的TIG焊枪;
水冷装置用于为焊枪提供冷却作用。
快频脉冲焊接电源如图4所示,包括脉冲电流主电路、基值电流主电路和高频电流切换电路;在小电流输出的情况下也可以保证控制的精确度;脉冲电流主电路与高频电流切换电路连接;所述基值电流主电路并联在高频电流切换电路的输出端;所述高频电流切换电路包括依次连接的高频切换模块、防反灌模块。
脉冲电流主电路包括依次连接的输入整流滤波电路、高频逆变电路、高频变压器以及输出整流滤波电路;其中,输入整流滤波电路与三相电连接;输出整流滤波电路与高频电流切换电路连接。
输入整流滤波电路包括整流滤波模块BR1和电容C11;高频逆变电路包括SiC基MOSFET功率开关管M1~M4、电阻R1~R4、电容C1~C4和电容C9;高频变压器为高频变压器T1;输出整流滤波电路包括整流二极管VD1、VD2和滤波电抗L1。其工作原理是:输入整流滤波电路将380V三相电转换为母线直流电;高 频逆变电路将母线直流电转换为高频变压器初级上的交流方波;该交流方波的频率可达200kHz,通过控制SiC基MOSFET功率开关管导通占空比可以实现恒流特性调节,高频变压器将方波能量耦合到次级;输出整流滤波电路将通过整流二极管和滤波电抗将交流电转换为平滑的直流电。
基值电流主电路与脉冲电流主电路在拓扑结构上完全相同。
其中,并联双路中的每一路最大可输出650A直流电流,脉冲电流主电路输出低频脉冲电流,是高频电流切换的对象以及熔池平衡震荡的能量来源;基值电流主电路输出基值电流,是维持焊丝燃烧和金属基体熔化的能量来源。
高频电流切换电路包括并联功率开关管Q1、串联功率开关管Q2以及防反灌二极管VD5;并联功率开关管Q1并联在脉冲电流主电路输出端正极与负极之间;脉冲电流主电路输出端正极依次与串联功率开关管Q2和防反灌二极管VD5串联;工作时,并联功率开关管Q1和串联功率开关管Q2交替导通,将脉冲电流主电路输出的直流电进行斩波调制,转换为高频脉冲,并和基值电流主电路的直流输出进行叠加。具体地说,当串联功率开关管Q2导通且并联功率开关管Q1关断时,高频电流切换电路将脉冲电流主电路输出的能量传输至输出端;当串联功率开关管Q2关断且并联功率开关管Q1导通时,高频电流切换电路将阻断脉冲电流主电路输出的能量。并联功率开关管Q1和串联功率开关管Q2以一定的频率(可高于20kHz)交替导通,即可实现高频电流切换功能,输出可高于20kHz甚至100kHz以上的高频脉冲。其中防反灌二极管VD5用于防止基值电流主电路输出的电流反灌到回路内。
并联功率开关管Q1和串联功率开关管Q2均采用Si基MOSFET功率开关管、Si基IGBT功率开关管、SiC型MOSFET功率开关管、SiC型IGBT功率开关管和GaN型功率开关管中的任一种。
高频电流切换电路用于对脉冲电流主电路提供的低频脉冲电流进行斩波调制,完成幅值、频率及占空比均可调的高频脉冲电流叠加,实现超低热输入焊接修复过程中的熔池平衡震荡;
本发明中的快频脉冲焊接电源功率部分采用双路并联式结构,可在总输出功率达标的情况下,降低单路的功率要求,从而减小电感、变压器等磁性元件的体积,提高动态调节性能,满足更大的控制带宽,使得后级经斩波调制的高频脉冲不出现紊乱失真的现象,保证超低热输入焊接修复过程中熔池平衡震荡 的有效性。
主控制系统如图5所示,包括中央控制模块,以及分别与中央控制模块信号连接的电源驱动模块、焊接修复特征量采样模块和开关控制模块。
中央控制模块包括DSC控制芯片,既可以是ARM控制芯片,也可以是DSP控制芯片,或者MCU控制芯片;一种优选的方案是采用ARM控制芯片;其中使用到的ARM片上外设包括:通用输入输出口GPIO,脉宽调制信号通道PWM,控制器局域网络收发器CAN,通用异步收发器UART以及模数转换器ADC。中央控制模块通过UART接收人机交互系统发送的工艺参数;通过CAN发送机械手的位置、姿态、移动量等信息和保护气均匀配送装置气流量调节量以及向送丝装置发送启停和送丝速度等信号。
中央控制模块用于控制焊接流程、接收工艺参数、产生PWM信号以及产生焊接修复稳定性控制信号;中央控制模块产生的焊接修复稳定性控制信号包括电流波形调节信号、机械手位置、姿态、移动量调节信号以及保护气均匀配送装置气流量调节信号。
电源驱动模块包括高频逆变驱动子模块和高频斩波驱动子模块;高频逆变驱动子模块前级连接PWM接口,后级连接并驱动快频脉冲焊接电源的脉冲电流主电路和基值电流主电路,以极高的频率(可高达200kHz)精细调节输出功率;高频斩波驱动子模块前级连接PWM接口,后级连接并驱动快频脉冲焊接电源的高频电流切换电路,输出一定频率范围的斩波调制信号,该调制信号的频率最高可达100kHz以上。电源驱动模块用于将中央控制模块产生的PWM驱动信号隔离放大,从而控制焊接电源的能量输出。
高频逆变驱动子模块可采用现有模块,例如,中国发明专利《基于SiC的超高频逆变式手工焊接电源》(公开号:CN106392263B)中记载的超高频驱动模块。
高频斩波驱动子模块可采用现有模块,例如,中国发明专利申请《基于SiC的快频脉冲TIG焊接电源数字化控制电路》(公开号:CN110076421A)中记载的调制开关管驱动电路。
焊接修复特征量采样模块包括电流采集子模块和电压采集子模块;电流采集子模块前级连接脉冲电流主电路输出回路和基值电流主电路输出回路,后级连接ADC接口,组成两个电流反馈环;电压采集子模块前级连接快频脉冲焊接 电源的输出两端,后级连接ADC接口,组成电压反馈环。焊接修复特征量采样模块用于同步实时采集脉冲电流主电路电流信号、基值电流主电路电流信号和电弧电压信号,该信号用于输出电流反馈调节以及作为焊接修复稳定性控制信号产生的依据。
电流采集子模块和电压采集子模块可采用现有模块,只需要实现电流信号和电压信号采集即可。
开关控制模块前级连接GPIO接口,后级连接并控制水冷装置,在焊接过程中进行冷却水路通断控制。开关控制模块用于产生逻辑开关信号,控制水冷装置的工作状态。
开关控制模块可采用现有模块,只需要实现水冷装置的开关即可。
该系统采用全数字化控制技术,采用快频脉冲电流进行大型叶片超低热输入焊接修复,通过高低频脉冲调制在较小的平均电流下实现对焊接热输入的精确控制,同时利用高频脉冲电流产生的电磁场压缩电弧,减少热影响区,并且对熔池金属有强烈的电磁振荡和搅拌作用,实现细化晶粒、减少焊缝缺陷的效果,保证对大型叶片高温合金构件的焊接修复的效率和质量。
保护气均匀配送装置如图6所示,包括设有气室的箱体2、设置在箱体2下方的底座8、设置在气室中且用于放置大型叶片修复件的支撑台7、与支撑台7连接且用于固定大型叶片修复件的夹具6;
底座8开设有与气室连通的进气通道10,进气通道10连接有保护气供应装置;进气通道10的输入口设置有输入控制器件9;箱体2设有排气口4,并设有输出控制器件3。输入控制器件9和输出控制器件3可采用现有器件,例如电磁阀。
箱体2设有用于供机械手和焊枪进出的开口1,开口1设有凸缘;通过在机械手上套设柔性管体,例如硅胶硫化管,使柔性管体固定在开口1的凸缘上,在工作时既能保证机械手携带焊枪抵达气室内部,又能在开口1处实现一定的气体密封性。保证待焊接修复的大型叶片夹持可靠且保护气氛围充足,在焊接时对焊缝正面和背面都提供有效的保护,避免根部氧化。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种大型叶片超低热输入快频焊接修复方法,其特征在于:通过大型叶片超低热输入快频焊接修复系统实现;包括如下步骤:
    S1步,将大型叶片修复件放入保护气均匀配送装置中固定;
    S2步,机械手携带焊枪进入保护气均匀配送装置,对保护气均匀配送装置进行封闭;
    S3步,根据大型叶片修复件需要修复的区域,调整机械手和焊枪的位置和姿态,设定运动的起点、终点和运动路径;根据修复缺陷类型,设定机械手运动速度、送丝装置送丝速度、保护气均匀配送装置送气气压,以及快频脉冲电源的电参数;
    S4步,启动水冷装置输送冷却水,启动保护气均匀配送装置输送保护气;快频脉冲焊接电源空载输出,直到成功起弧;快频脉冲焊接电源输出快频脉冲波形电流,送丝装置送丝,机械手携带焊枪根据运动路径进行焊接修复;
    在焊接修复的过程中,焊接图像缺陷识别系统进行焊接图像采集,实时分析是否存在焊接缺陷,并在存在焊接缺陷时获取焊接缺陷类型和缺陷严重程度等级;根据焊接缺陷类型和缺陷严重程度等级,对焊接参数进行调整;焊接参数包括快频脉冲焊接电源输出电流、机械手运动速度和送丝装置送丝速度中任一项或两项以上;
    S5步,焊接修复结束后,快频脉冲焊接电源和送丝装置停止输出;延时设定时间后关闭水冷装置和保护气均匀配送装置。
  2. 根据权利要求1所述的大型叶片超低热输入快频焊接修复方法,其特征在于:在焊接修复的过程中,对快频脉冲焊接电源输出电流、机械手运动速度、送丝装置送丝速度进行调整,是指:判断缺陷严重程度等级是否大于等于设定阈值,若是,则根据焊接缺陷类型进行调整,直到检测到的缺陷严重程度等级小于设定阈值。
  3. 根据权利要求2所述的大型叶片超低热输入快频焊接修复方法,其特征在于:所述根据焊接缺陷类型进行调整是指:
    若焊接缺陷类型为焊穿缺陷,则减小快频脉冲焊接电源平均输出电流;
    若焊接缺陷类型为未熔透缺陷,则增大快频脉冲焊接电源平均输出电流并 减小机械手运动速度;
    若焊接缺陷类型为未熔合缺陷,则较未熔透缺陷更大程度地增大快频脉冲焊接电源平均输出电流并减小机械手运动速度;
    若焊接缺陷类型为粘丝缺陷,则增大快频脉冲焊接电源平均输出电流,减小机械手运动速度和送丝装置送丝速度;
    若焊接缺陷类型为裂纹或者错边缺陷,则减小机械手运动速度并控制机械手朝缺陷反向微运动;若检测到的缺陷严重程度等级进一步加大并到达设定上限阈值,则停止焊接修复任务。
  4. 根据权利要求1所述的大型叶片超低热输入快频焊接修复方法,其特征在于:所述焊接图像缺陷识别系统包括缺陷识别模型;所述焊接图像缺陷识别系统的工作方式是:将焊接图像进行输入缺陷识别模型,缺陷识别模型输出焊接缺陷类型和缺陷严重程度等级;所述缺陷识别模型是指对初始缺陷识别模型进行训练和测试处理后得到的缺陷识别模型。
  5. 根据权利要求4所述的大型叶片超低热输入快频焊接修复方法,其特征在于:所述对初始缺陷识别模型的训练和测试处理方法是:采集各种焊接缺陷类型的焊接图像样本,并将焊接图像样本划分为三类,分别是训练集、验证集和测试集;首先加载缺陷识别模型的卷积基,卷积基的输入为焊接图像样本,输出为卷积基提取的高级抽象特征;在卷积基上搭建全连接分类器,全连接分类器的输入与卷积基的输出连接,全连接分类器输出为输入焊接图像样本在不同焊接缺陷类型的概率分布;然后冻结卷积基,训练全连接分类器,并对训练后的缺陷识别模型进行微调;之后使用验证集对训练后的缺陷识别模型性能进行验证,根据验证结果调整缺陷识别模型的超参数;最后使用测试集验证缺陷识别模型的最终性能是否符合预期指标,直到达到预期指标为止。
  6. 根据权利要求1所述的大型叶片超低热输入快频焊接修复方法,其特征在于:在焊接修复的过程中,焊接过程在线检测装置始终在检测是否有过流、过压、过热、碰撞的错误信号反馈,当有错误信号反馈时立即使快频脉冲焊接电源停止输出,并使送丝装置停止送丝。
  7. 根据权利要求1所述的大型叶片超低热输入快频焊接修复方法,其特征在于:所述大型叶片超低热输入快频焊接修复系统包括:保护气均匀配送装置、机械手、快频脉冲焊接电源、主控制系统、人机交互系统、焊接过程在线监测 装置、焊接图像缺陷识别系统、送丝装置、焊枪和水冷装置;
    所述保护气均匀配送装置、机械手、快频脉冲焊接电源、人机交互系统、焊接过程在线监测装置、送丝装置和水冷装置分别与主控制系统信号连接;所述焊枪设置在机械手上,焊枪分别与快频脉冲焊接电源和水冷装置连接。
  8. 根据权利要求7所述的大型叶片超低热输入快频焊接修复方法,其特征在于:所述保护气均匀配送装置包括设有气室的箱体、设置在箱体下方的底座、设置在气室中且用于放置大型叶片修复件的支撑台、与支撑台连接且用于固定大型叶片修复件的夹具;
    所述箱体设有用于供机械手和焊枪进出的开口,开口设有凸缘;通过在机械手上套设柔性管体,使柔性管体固定在开口的凸缘上,实现气室封闭;
    所述底座开设有与气室连通的进气通道,进气通道连接有保护气供应装置;进气通道的输入口设置有输入控制器件;所述箱体设有排气口,并设有输出控制器件。
  9. 根据权利要求1所述的大型叶片超低热输入快频焊接修复方法,其特征在于:所述快频脉冲焊接电源包括脉冲电流主电路、基值电流主电路和高频电流切换电路;所述脉冲电流主电路与高频电流切换电路连接;所述基值电流主电路并联在高频电流切换电路的输出端;所述高频电流切换电路包括依次连接的高频切换模块、防反灌模块。
  10. 根据权利要求1所述的大型叶片超低热输入快频焊接修复方法,其特征在于:所述主控制系统包括中央控制模块,以及分别与中央控制模块信号连接的电源驱动模块、焊接修复特征量采样模块和开关控制模块。
PCT/CN2021/122570 2021-05-31 2021-10-08 一种大型叶片超低热输入快频焊接修复方法 WO2022252462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212021000563.2U DE212021000563U1 (de) 2021-05-31 2021-10-08 System zur Schweißreparatur einer großen Schaufel mit Hochfrequenz und extrem geringem Wärmeeintrag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110597032.4A CN113231715A (zh) 2021-05-31 2021-05-31 一种大型叶片超低热输入快频焊接修复方法
CN202110597032.4 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022252462A1 true WO2022252462A1 (zh) 2022-12-08

Family

ID=77135746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122570 WO2022252462A1 (zh) 2021-05-31 2021-10-08 一种大型叶片超低热输入快频焊接修复方法

Country Status (3)

Country Link
CN (1) CN113231715A (zh)
DE (1) DE212021000563U1 (zh)
WO (1) WO2022252462A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117697079A (zh) * 2024-02-05 2024-03-15 广东福维德焊接股份有限公司 一种适用于超长焊缝连续不间断焊接的焊接电源

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231715A (zh) * 2021-05-31 2021-08-10 华南理工大学 一种大型叶片超低热输入快频焊接修复方法
CN114782362B (zh) * 2022-04-20 2023-07-18 广州东焊智能装备有限公司 一种基于深度迁移学习的焊接智能检测系统
CN118268682B (zh) * 2024-05-29 2024-07-26 广东锐气科技有限公司 一种用于焊接生产的集成管理控制系统及焊接方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070023403A1 (en) * 2003-09-24 2007-02-01 Mtu Aero Engines Gmbh Method and device for welding structural parts
CN102424971A (zh) * 2011-12-21 2012-04-25 西安铂力特激光成形技术有限公司 一种铝合金导向叶片缺陷的激光快速修复方法和设备
CN109108430A (zh) * 2017-06-23 2019-01-01 通用电气公司 用于自动焊接的系统和方法
CN109108529A (zh) * 2017-06-23 2019-01-01 通用电气公司 用于自动焊接的系统和方法
CN110675370A (zh) * 2019-09-04 2020-01-10 武汉理工大学 一种基于深度学习的焊接模拟器虚拟焊缝缺陷检测方法
CN210080919U (zh) * 2019-05-29 2020-02-18 华南理工大学 快频脉冲tig焊接电源高低频能量变换与复合电路
CN111283342A (zh) * 2020-02-25 2020-06-16 中国神华能源股份有限公司国华电力分公司 工件缺陷修复方法及工件缺陷修复机器人
CN111975178A (zh) * 2020-07-17 2020-11-24 华南理工大学 熔池平衡震荡脉冲深熔锁孔tig焊接系统及其焊接方法
CN112083017A (zh) * 2020-09-10 2020-12-15 上海航天精密机械研究所 焊缝内部缺陷智能检测装置、方法及介质
CN112116560A (zh) * 2020-08-20 2020-12-22 华南理工大学 一种焊接图像缺陷识别方法、装置、存储介质及设备
CN113231715A (zh) * 2021-05-31 2021-08-10 华南理工大学 一种大型叶片超低热输入快频焊接修复方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392263B (zh) 2016-08-15 2018-06-29 华南理工大学 基于SiC的超高频逆变式手工焊接电源
CN109514146A (zh) 2019-01-11 2019-03-26 中国民航大学 航空发动机叶片焊接修复柔性流道散热系统
CN110076421B (zh) 2019-05-29 2024-07-23 华南理工大学 基于SiC的快频脉冲TIG焊接电源数字化控制电路
CN112453824B (zh) 2020-11-18 2022-09-06 杨媛媛 一种钛合金压气机叶片焊接修复方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070023403A1 (en) * 2003-09-24 2007-02-01 Mtu Aero Engines Gmbh Method and device for welding structural parts
CN102424971A (zh) * 2011-12-21 2012-04-25 西安铂力特激光成形技术有限公司 一种铝合金导向叶片缺陷的激光快速修复方法和设备
CN109108430A (zh) * 2017-06-23 2019-01-01 通用电气公司 用于自动焊接的系统和方法
CN109108529A (zh) * 2017-06-23 2019-01-01 通用电气公司 用于自动焊接的系统和方法
CN210080919U (zh) * 2019-05-29 2020-02-18 华南理工大学 快频脉冲tig焊接电源高低频能量变换与复合电路
CN110675370A (zh) * 2019-09-04 2020-01-10 武汉理工大学 一种基于深度学习的焊接模拟器虚拟焊缝缺陷检测方法
CN111283342A (zh) * 2020-02-25 2020-06-16 中国神华能源股份有限公司国华电力分公司 工件缺陷修复方法及工件缺陷修复机器人
CN111975178A (zh) * 2020-07-17 2020-11-24 华南理工大学 熔池平衡震荡脉冲深熔锁孔tig焊接系统及其焊接方法
CN112116560A (zh) * 2020-08-20 2020-12-22 华南理工大学 一种焊接图像缺陷识别方法、装置、存储介质及设备
CN112083017A (zh) * 2020-09-10 2020-12-15 上海航天精密机械研究所 焊缝内部缺陷智能检测装置、方法及介质
CN113231715A (zh) * 2021-05-31 2021-08-10 华南理工大学 一种大型叶片超低热输入快频焊接修复方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117697079A (zh) * 2024-02-05 2024-03-15 广东福维德焊接股份有限公司 一种适用于超长焊缝连续不间断焊接的焊接电源
CN117697079B (zh) * 2024-02-05 2024-04-09 广东福维德焊接股份有限公司 一种适用于超长焊缝连续不间断焊接的焊接电源

Also Published As

Publication number Publication date
CN113231715A (zh) 2021-08-10
DE212021000563U1 (de) 2024-04-17

Similar Documents

Publication Publication Date Title
WO2022252462A1 (zh) 一种大型叶片超低热输入快频焊接修复方法
CN103692056B (zh) 多功能数字波控弧焊逆变电源
CN102218581B (zh) 复合型高频脉冲焊接系统及工艺
CN101524781B (zh) 一种交流电弧焊接系统及方法
CN105478966B (zh) 一种220v和380v双电源igbt逆变多功能焊机
CN101249582A (zh) 一种全数字pwm控制的交流脉冲mig焊接系统
WO2018032755A1 (zh) 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN103008865B (zh) 脉宽可调式交直流逆变电阻焊接的工艺方法
CN201552368U (zh) 一种铝合金双丝双脉冲数字化软开关逆变焊接电源
CN110729914B (zh) 一种闭环调控的高精度超音频脉冲电源
CN101791733A (zh) 一种铝合金双丝双脉冲焊接方法及其焊接电源
CN108465890A (zh) 一种铝件单工位自动高频焊接装置
CN108422065B (zh) 基于can现场总线和llc谐振变换器的脉冲mig焊电源系统及其控制方法
CN201493592U (zh) 一种交流电弧焊接系统
CN106914683B (zh) 超音频复合脉冲gmaw电源装置
CN102510228A (zh) 电子束焊机数字化高频高压电源装置及其控制方法
CN210789615U (zh) 一种基于llc的双丝脉冲mig焊电源系统
CN101428368A (zh) 一种短路过渡焊接系统的控制方法
CN107150160B (zh) 宽适应多功能近零飞溅焊接机器人系统
CN201172144Y (zh) 一种全数字pwm控制的交流脉冲mig焊接系统
CN105618888A (zh) 制冷管路高频感应自动化焊接系统
CN205496752U (zh) 一种多功能三相380v单管igbt逆变焊机的结构
CN208628606U (zh) 一种铝件自动高频焊接装置
CN205437435U (zh) 一种220v和380v双电源igbt逆变多功能焊机
CN209664510U (zh) 一种自动转台感应钎焊设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943815

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21943815

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/07/2024)