WO2022250030A1 - (メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造方法 - Google Patents
(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造方法 Download PDFInfo
- Publication number
- WO2022250030A1 WO2022250030A1 PCT/JP2022/021177 JP2022021177W WO2022250030A1 WO 2022250030 A1 WO2022250030 A1 WO 2022250030A1 JP 2022021177 W JP2022021177 W JP 2022021177W WO 2022250030 A1 WO2022250030 A1 WO 2022250030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction tube
- meth
- catalyst
- raw material
- reaction
- Prior art date
Links
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 title claims abstract description 90
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 187
- 239000003054 catalyst Substances 0.000 claims abstract description 168
- 239000002994 raw material Substances 0.000 claims abstract description 88
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 claims description 66
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 11
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims description 10
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 6
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 6
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 6
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052792 caesium Inorganic materials 0.000 claims description 6
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 239000011591 potassium Substances 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- 229910052701 rubidium Inorganic materials 0.000 claims description 6
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052711 selenium Inorganic materials 0.000 claims description 6
- 239000011669 selenium Substances 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052714 tellurium Inorganic materials 0.000 claims description 6
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052716 thallium Inorganic materials 0.000 claims description 6
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- 239000011133 lead Substances 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- VKEQBMCRQDSRET-UHFFFAOYSA-N Methylone Chemical compound CNC(C)C(=O)C1=CC=C2OCOC2=C1 VKEQBMCRQDSRET-UHFFFAOYSA-N 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 17
- 239000007789 gas Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000005192 partition Methods 0.000 description 12
- 239000003085 diluting agent Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001253 acrylic acids Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/28—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
- C07C45/34—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
- C07C45/35—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
Definitions
- the present invention relates to a method for producing one or both of (meth)acrolein and (meth)acrylic acid.
- reaction runaway may occur due to the generation of reaction heat exceeding the heat removal capacity of the reactor.
- Patent Document 1 discloses a shell and tube heat exchanger type provided with a plurality of reaction tubes having a catalyst layer filled with at least a catalyst.
- a method of setting the conditions for the source gas flow rate and the heat removal capacity of the reactor in consideration of the calorie balance of the heat medium is shown.
- the necessary amount of catalyst cannot be filled in the reaction tube, and the target production volume cannot be achieved, or the continuous operation period of the reactor may be shortened. have a nature.
- the reactor may become an excessively large facility for the production volume of the target product, increasing the production cost.
- the present invention prevents reaction runaway in a heat exchange reactor and suppresses excessive progress of the reaction and local catalyst deterioration, thereby producing (meth)acrolein and (meth)acrylic acid with high selectivity.
- One challenge is to manufacture one or both.
- “(Meth)acrolein” is a generic term for acrolein and methacrolein
- (meth)acrylic acid” is a generic term for acrylic acid and methacrylic acid.
- the oxidation reaction of the raw material supplied to the reaction tube causes (meth)acrolein and ( A method for producing one or both of meth)acrylic acid
- the reaction tube has a plurality of catalyst layers with different catalyst filling amounts per unit volume, i layers in the longitudinal direction of the reaction tube, where i is an integer of 2 or more, A method for producing one or both of (meth)acrolein and (meth)acrylic acid, wherein the oxidation reaction satisfies formula (1).
- m1 is the catalyst filling amount (kg) in the first catalyst layer from the raw material inlet side of the reaction tube
- mj is the j-th catalyst layer from the raw material inlet side of the reaction tube.
- j is an integer of 1 or more and i or less
- F is the supply amount (mol/h) of the raw material to the reaction tube
- A is the raw material inlet of the reaction tube.
- the inner surface area (m 2 ) of the reaction tube in contact with the first catalyst layer from the side, and U is based on the inner surface area of the portion of the reaction tube in which both the first catalyst layer and the heating medium are in contact.
- m1 is the catalyst filling amount (kg) in the first catalyst layer from the raw material inlet side of the reaction tube
- mk is the k-th layer from the raw material inlet side of the reaction tube. It is the catalyst filling amount (kg) in the catalyst layer
- k is an integer of 1 or more and i or less.
- [7] The production method according to any one of [1] to [6], wherein U is 40 to 400 (W/m 2 /K).
- [8] The production method according to any one of [1] to [7], wherein U is 50 to 300 (W/m 2 /K).
- [9] The production method according to any one of [1] to [8], wherein F is 1 to 20 (mol/h).
- [10] The production method according to any one of [1] to [9], wherein F is 2.5 to 15 (mol/h).
- [11] The production method according to any one of [1] to [10], wherein A is 0.03 to 0.6 (m 2 ).
- the raw material is at least one selected from propylene, isobutylene, tert-butanol, and methyl tert-butyl ether, and one or both of the (meth)acrolein and (meth)acrylic acid is (meth)acrolein and (meth)acrylic acid, the production method according to any one of [1] to [11].
- Y represents at least one element selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium.
- Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
- P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen respectively.
- X represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron.
- Y represents at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum.
- Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium.
- (meth)acrolein and (meth)acrolein are produced with high selectivity by preventing runaway reaction in the heat exchange reactor and suppressing excessive progress of the reaction and local catalyst deterioration.
- One or both of the acrylic acids can be produced.
- the method for producing one or both of (meth)acrolein and (meth)acrylic acid of the present invention is a method in which a heat exchange type reactor having a reaction tube inside is used, and a raw material supplied to the reaction tube is oxidized while a heat medium is circulated outside the reaction tube.
- the reaction tube is provided with a plurality of i layers of catalyst layers having different catalyst filling amounts per unit volume in the longitudinal direction of the reaction tube.
- i is an integer of 2 or more.
- the production method of the present invention satisfies formula (1) in the oxidation reaction.
- m1 is the catalyst filling amount (kg) in the first catalyst layer from the raw material inlet side of the reaction tube
- mj is the ith catalyst layer from the raw material inlet side of the reaction tube.
- j is an integer of 1 or more and i or less
- F is the supply amount (mol/h) of the raw material to the reaction tube
- A is the raw material inlet of the reaction tube.
- the inner surface area (m 2 ) of the reaction tube in contact with the first catalyst layer from the side, and U is based on the inner surface area of the portion of the reaction tube in which both the first catalyst layer and the heating medium are in contact.
- the production method of the present invention prevents runaway reaction in the heat exchange reactor and suppresses excessive progress of the reaction and local catalyst deterioration, resulting in high selectivity (meta ) one or both of acrolein and (meth)acrylic acid can be produced.
- the present invention focuses on the first catalyst layer having the highest raw material concentration, and controls the ratio between the heat generation rate and the heat removal rate in the catalyst layer. Then, the ratio of the heat release rate to the heat removal rate in the first catalyst layer becomes a value suitable for the production of one or both of (meth)acrolein and (meth)acrylic acid, so that each catalyst provided in the reaction tube.
- the ratio of heat generation rate and heat removal rate of the layer becomes appropriate, and an increase in reaction temperature can be suppressed. As a result, runaway reaction can be suppressed, and one or both of (meth)acrolein and (meth)acrylic acid can be produced with high selectivity.
- the production method of the present invention is a method of producing (meth)acrolein and (meth)acrylic acid using at least one selected from propylene, isobutylene, tert-butanol, and methyl tert-butyl ether as a raw material, or (meth)acrolein can be suitably applied in a method for producing (meth)acrylic acid as a raw material.
- it is preferably applied to a method of producing (meth)acrylic acid using (meth)acrolein as a raw material, and more preferably applied to a method of producing methacrylic acid from methacrolein.
- the production method of the present invention uses a heat exchange reactor having a reaction tube inside.
- a heat exchange reactor for example, a double tube heat exchanger reactor, industrially a multi-tube heat exchanger reactor can be used.
- An example of a shell and tube heat exchanger type reactor is shown in FIG.
- a reactor 1 is equipped with a reaction tube 2 and baffle plates 3 inside.
- a raw material inlet 4 is provided at the bottom of the reactor 1, and a product outlet 5 is provided at the top.
- the interior of the reactor 1 is vertically partitioned into three regions by a first partition plate 9 on the raw material inlet 4 side and a second partition plate 10 on the product outlet 5 side.
- the reaction tubes 2 are provided so as to extend from the first partition plate 9 to the second partition plate 10, and both end surfaces of the reaction tubes 2 are opened to the raw material inlet portion 4 side and the product outlet portion 5 side, respectively.
- a heating medium bath 8 through which a heating medium flows is provided outside the reaction tube 2 in a region between the first partition plate 9 and the second partition plate 10 in the reactor 1 .
- a heat medium inlet portion 6 is provided on the side wall of the reactor 1 near the first partition plate 9
- a heat medium outlet portion 7 is provided on the side wall of the reactor 1 near the second partition plate 10 .
- the baffle plate 3 is provided in a region between the first partition plate 9 and the second partition plate 10 so as to be perpendicular to the longitudinal direction of the reaction tube 2 .
- the raw material flows into the reactor 1 from the raw material inlet 4 , flows through the reaction tube 2 from the raw material inlet side of the reaction tube 2 , and flows out from the product outlet 5 .
- the raw material inlet side of the reaction tube 2 means the end surface of the raw material inlet portion 4 side.
- the heat medium flows in from the heat medium inlet 6, flows meanderingly along the outside of the reaction tube 2 from the raw material inlet 4 side to the product outlet 5 side by the baffle plate 3, and flows out from the heat medium outlet 7.
- the reaction tube is provided with a plurality of i layers of catalyst layers having different catalyst filling amounts per unit volume in the longitudinal direction of the reaction tube.
- i is an integer of 2 or more.
- the reaction tube is provided with two or more catalyst layers in its longitudinal direction, and adjacent catalyst layers have different catalyst filling amounts per unit volume.
- the catalyst loading amount per unit volume differs means that the catalyst loading amount per unit volume differs by 1% or more.
- the case where the catalyst layer contains a diluent includes a case where the mixed ratio of the filled catalyst and diluent differs by 1% or more, or a case where the density of the catalyst or diluent differs by 1% or more.
- the "catalyst layer” is defined as having a thickness of 100 mm or more in the longitudinal direction of the reaction tube.
- a diluent and a catalyst are mixed and filled so that the catalyst filling amount per unit volume is a desired value, or A method of packing catalysts of different shapes can be mentioned. From the viewpoint of catalyst production cost, a method of mixing and filling the diluent and the catalyst is preferable.
- the diluent there are no particular restrictions on the diluent as long as it is an inert substance that does not show activity in the oxidation reaction that produces one or both of (meth)acrolein and (meth)acrylic acid.
- inert substances include silica, alumina, silica-alumina, silicon carbide, titania, magnesia, ceramic balls, and stainless steel.
- i the number of catalyst layers, as long as it is an integer of 2 or more. From the viewpoint of reducing the load of the catalyst filling operation, i is preferably an integer of 4 or less, more preferably 2.
- i 2 or more.
- the catalyst filling amount per unit volume in the first catalyst layer from the raw material inlet side of the reaction tube is equal to that of the second catalyst layer. It is preferably smaller than the catalyst filling amount per unit volume in .
- the length of the catalyst layer is not particularly limited, but from the viewpoint of the production amount of one or both of (meth)acrolein and (meth)acrylic acid, the length of the first catalyst layer from the raw material inlet of the reaction tube is preferably 0.5 m or more, more preferably 1.5 m or more. From the viewpoint of production cost, the length of the first catalyst layer from the raw material inlet of the reaction tube is preferably 6 m or less, more preferably 4 m or less.
- the reaction tube may have an inert material layer between the end on the raw material inlet side and the catalyst layer for the purpose of supporting the catalyst layer and preheating the raw material.
- the inert material layer preferably consists of only the above-described inert material.
- the catalysts filled in each catalyst layer are composed of common elements, and that the difference in the composition ratio of each elemental component is 10% or less.
- the catalyst layer When the production method of the present invention is a method for producing (meth)acrolein and (meth)acrylic acid using one or more selected from propylene, isobutylene, tert-butanol, and methyl tert-butyl ether as raw materials, the catalyst layer In, it is preferable to use a catalyst having a composition represented by formula (I). Mo a1 Bi b1 Fe c1 M d1 X e1 Y f1 Z g1 Si h1 O i1 (I) In formula (I), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen respectively. M represents at least one element selected from the group consisting of cobalt and nickel.
- X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc.
- Y represents at least one element selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium.
- Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
- a catalyst having a composition represented by formula (II) can be used in the catalyst layer.
- P a2 Mo b2 V c2 Cu d2 X e2 Y f2 Z g2 O h2 (II)
- P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen respectively.
- X represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron.
- Y represents at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum.
- Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium.
- the shape, size, etc. of the catalyst there are no particular restrictions on the shape, size, etc. of the catalyst, and it may be spherical, cylindrical, ring-shaped, star-shaped, etc., and may be molded by a conventional tableting machine, extruder, granulator, or the like. can. Also, a supported catalyst in which a catalyst having the above composition is supported on a carrier may be used. As the catalyst, a catalyst having a plurality of shapes may be used, but from the viewpoint of the production cost of the catalyst, it is preferable that the catalysts have the same shape.
- the method for producing one or both of (meth)acrolein and (meth)acrylic acid of the present invention satisfies formula (1) in the oxidation reaction of the raw materials.
- the value of ⁇ represents the easiness of temperature change in the first catalyst layer from the raw material inlet side of the reaction tube.
- the amount of catalyst distributed to the first catalyst layer is appropriate, and the exotherm rate and removal rate are suitable for the production of one or both of (meth)acrolein and (meth)acrylic acid. It is the ratio of the thermal velocities.
- the upper limit of the value of ⁇ is preferably 0.24 (mol K/h/W) or less, more preferably 0.12 (mol K/h/W) or less. , 0.06 (mol ⁇ K/h/W) or less.
- the lower limit of the value of ⁇ is preferably 0.002 (mol ⁇ K/h/W) or more. As a result, production costs can be reduced relative to the amount of production of one or both of (meth)acrolein and (meth)acrylic acid.
- the lower limit of the value of ⁇ is more preferably 0.004 (mol ⁇ K/h/W) or more, more preferably 0.006 (mol ⁇ K/h/W) or more.
- the formula (1) is preferably satisfied in 50% or more of the total number of the plurality of reaction tubes, and in 80% or more of the total number of the reaction tubes. It is more preferable to fill 90% or more of the total number of the plurality of reaction tubes.
- the ratio ⁇ of the catalyst filling amount of the first catalyst layer from the raw material inlet side of the reaction tube to the total catalyst filling amount of the reaction tube is represented by the formula (**).
- m1 is the catalyst filling amount (kg) in the first catalyst layer from the raw material inlet side of the reaction tube
- mk is the k-th catalyst layer from the raw material inlet side of the reaction tube.
- k is an integer of 1 or more and i or less.
- the value of ⁇ is 0.25 or more, the amount of heat generated in the second and subsequent catalyst layers from the raw material inlet side of the reaction tube is more preferably suppressed. Moreover, when the value of ⁇ is 0.5 or less, the productivity of one or both of (meth)acrolein and (meth)acrylic acid is improved.
- the lower limit of the value of ⁇ is more preferably 0.26 or more, still more preferably 0.27 or more, and particularly preferably 0.28 or more. Also, the lower limit of the value of ⁇ is more preferably 0.48 or less, even more preferably 0.46 or less, and particularly preferably 0.45 or less.
- the heat exchange reactor has a plurality of reaction tubes
- the formula (2) is satisfied in 50% or more of the total number of the plurality of reaction tubes, and 80% of the total number of the plurality of reaction tubes It is more preferable to satisfy the above conditions, and more preferably to satisfy 90% or more of the total number of the plurality of reaction tubes.
- U in the formula (*) is the overall heat transfer coefficient (W/m 2 /K) based on the inner surface area of the portion of the reaction tube where both the first catalyst layer and the heat medium are in contact. .
- an inert gas composed of 21% by volume of oxygen and 79% by volume of nitrogen is supplied to the reaction tube at a temperature 50 ° C. lower than the heat medium flowing outside the reaction tube to form the first layer of catalyst. It can be calculated from the result of measuring the temperature distribution in a minute area of the layer (hereinafter, the "minute area of the first catalyst layer” may be simply referred to as the "minute area”).
- the minute area means an area obtained by dividing the reaction tube into 20 mm pieces in the longitudinal direction.
- the temperature change dT1(K) in the longitudinal direction of the reaction tube in the minute region is expressed by the formula (* **).
- dT1 U ⁇ inner surface area (m 2 ) of reaction tube in contact with minute region ⁇ dT2/[mass flow rate of inert gas (g/s) ⁇ specific heat of inert gas (J/g/K)] ( ***)
- U can be calculated by using the method of least squares to find the value of U such that dT1 calculated by the formula (***) and the measured value of dT1 match.
- U be the arithmetic mean value obtained for 20 adjacent minute regions. Further, the minute area is set so that dT2 is 3° C. or more at at least one point among the 20 points of the minute area.
- the inert gas is supplied at a temperature 50° C. lower than that of the heat medium flowing outside the reaction tube.
- U is not particularly limited as long as ⁇ satisfies the formula (1). /m 2 /K) or more, and more preferably 70 (W/m 2 /K) or more.
- U is preferably 400 (W/m 2 /K) or less, more preferably 300 (W/m 2 /K) or less. , 150 (W/m 2 /K) or less.
- U is defined as above. It is preferable to satisfy 50% or more of the total number of the plurality of reaction tubes, more preferably 80% or more of the total number of the plurality of reaction tubes, and 90% or more of the total number of the plurality of reaction tubes. More preferred.
- Methods for adjusting U include, for example, changing the flow conditions of the heat medium, changing the flow rate of the nitrogen gas, changing the ratio and shape of the catalyst in the first medium layer, and changing the material and shape of the diluent in the first catalyst layer. A change, a change of the material of a reaction tube, a diameter, or thickness is mentioned.
- F in the formula (*) is the supply amount (mol/h) of the raw material to the reaction tube.
- F is the supply amount (mol/h) of the raw material per one of the plurality of reaction tubes.
- F is not particularly limited as long as ⁇ satisfies the formula (1), but from the viewpoint of maintaining the productivity of one or both of (meth)acrolein and (meth)acrylic acid, 1 (mol / h) or more is preferably 2.5 (mol/h) or more, and more preferably 6.5 (mol/h) or more.
- F is preferably 20 (mol/h) or less, more preferably 15 (mol/h) or less, and 10.5 (mol/h). ) or less.
- F preferably satisfies the above regulation in 50% or more of the total number of the plurality of reaction tubes, and 80% of the total number of the plurality of reaction tubes. It is more preferable to satisfy the above conditions, and more preferably to satisfy 90% or more of the total number of the plurality of reaction tubes.
- a in the formula (*) is the inner surface area (m 2 ) of the reaction tube in contact with the first catalyst layer from the raw material inlet side of the reaction tube.
- A is not particularly limited as long as ⁇ satisfies the formula ( 1 ). 2 ) or more, more preferably 0.09 (m 2 ) or more.
- A is preferably 0.6 (m 2 ) or less, more preferably 0.4 (m 2 ) or less, and 0.4 (m 2 ) or less. It is more preferably 25 (m 2 ) or less.
- A is defined above. It is preferable to satisfy 50% or more of the total number of the plurality of reaction tubes, more preferably 80% or more of the total number of the plurality of reaction tubes, and 90% or more of the total number of the plurality of reaction tubes. More preferred.
- the raw material can be supplied to the reaction tube as a raw material gas containing the raw material.
- the raw material concentration in the raw material gas is preferably 1 to 20% by volume, more preferably 3 to 10% by volume.
- the raw material is at least one selected from propylene, isobutylene, tert-butanol, and methyl tert-butyl ether.
- (meth)acrolein is the raw material in the case of the method for producing (meth)acrylic acid.
- the raw material gas preferably contains 5 to 15% by volume of oxygen. Air is preferable as the oxygen source from the viewpoint of economy. If necessary, oxygen-enriched gas or the like obtained by adding pure oxygen to air may be used. Further, the raw material gas preferably contains 5 to 50% by volume of water vapor. The raw material gas may be obtained by diluting the raw material, oxygen and water vapor with an inert gas such as nitrogen or carbon dioxide. Further, the raw material gas may contain a small amount of impurities such as lower saturated aldehydes, but the amount is preferably as small as possible.
- the space velocity of the raw material in the catalyst layer is preferably 200 to 5000 h ⁇ 1 .
- the reaction pressure is preferably atmospheric pressure to several atmospheres.
- the temperature of the heat medium flowing outside the reaction tube is preferably 230 to 450.degree.
- the lower limit of the temperature of the heat medium is more preferably 250°C or higher, and the upper limit is more preferably 400°C or lower.
- the method of the present embodiment can improve the selectivity of (meth)acrylic acid in the synthesis of (meth)acrolein and/or (meth)acrylic acid.
- ⁇ and ⁇ are as follows.
- m1 is the catalyst loading amount (kg) in the first catalyst layer from the raw material inlet side of the reaction tube
- mj is the catalyst loading amount in the j-th catalyst layer from the raw material inlet side of the reaction tube.
- (kg) is an integer of 1 or more and i or less
- F is the supply amount (mol/h) of the raw material to the reaction tube
- A is the first catalyst layer from the raw material inlet side of the reaction tube.
- the inner surface area (m 2 ) of the reaction tube with which the layers are in contact, and U is the overall heat transfer coefficient (W/m 2 /K).
- m1 is the catalyst filling amount (kg) in the first catalyst layer from the raw material inlet side of the reaction tube
- mk is the catalyst filling amount in the k-th catalyst layer from the raw material inlet side of the reaction tube. is the amount (kg)
- k is an integer of 1 or more and i or less.
- composition ratio of catalyst The atomic ratio of each element was obtained by analyzing a component obtained by dissolving the catalyst in ammonia water by ICP (high frequency inductively coupled plasma) emission spectrometry.
- ICP high frequency inductively coupled plasma
- the overall heat transfer coefficient U is obtained by supplying an inert gas consisting of 21% by volume of oxygen and 79% by volume of nitrogen to the reaction tube at a temperature 50 ° C. lower than the heat medium flowing outside the reaction tube, and forming the first layer of catalyst. It was calculated from the results of measuring the temperature distribution in minute regions of the layer.
- ⁇ is the substance amount (mol) of supplied methacrolein
- ⁇ is the substance amount (mol) of reacted methacrolein
- ⁇ is the substance amount (mol) of produced methacrylic acid.
- ⁇ Tmax the temperature difference between the temperature of the portion exhibiting the highest temperature in the catalyst layer and the heat medium flowing outside the reaction tube was used.
- ⁇ Tmax was measured as follows. The temperature of the catalyst layer was measured by a thermocouple inserted in a protective tube placed in the center of the cross section perpendicular to the longitudinal direction of the reaction tube. The protection tube is isolated from the reaction system, and the position where the temperature is measured can be changed by adjusting the length of the thermocouple to be inserted. The difference between the temperature of the catalyst layer and the temperature of the heat medium measured at this time was defined as ⁇ T, and the ⁇ T distribution was calculated. The maximum ⁇ T in the obtained ⁇ T distribution was defined as ⁇ Tmax.
- Methacrylic acid was produced by the following oxidation reaction of methacrolein using a shell-and-tube heat exchanger type reactor equipped with a heating medium bath shown in FIG.
- the reactor has a reaction tube made of SUS304 with an inner diameter of 27.2 mm and a length of 6 m.
- a catalyst having a composition ratio of P 1.1 Mo 12 V 0.6 Cu 0.1 Fe 0.05 Cs 1.3 excluding oxygen and having a cylindrical shape with a diameter of 6 mm and a height of 5 mm was placed. was used to form two catalyst layers.
- the first catalyst layer from the raw material inlet side of the reaction tube was filled with a mixture of 1000 g of catalyst and 250 g of alumina spheres with a diameter of 5 mm as a diluent.
- the second catalyst layer was filled with 2500 g of catalyst.
- Table 1 shows the length of each catalyst layer and the value of ⁇ .
- An inert material layer made of alumina spheres with a diameter of 5 mm was formed between the end of the reaction tube on the raw material inlet side and the catalyst layer.
- a raw material gas composed of 6.0% by volume of methacrolein, 10% by volume of oxygen, 10% by volume of water vapor and 74.0% by volume of nitrogen is supplied.
- Table 1 shows the methacrolein supply amount F, the overall heat transfer coefficient U, the value of ⁇ , and the methacrolein reaction rate at this time.
- Table 1 shows the amount F of methacrolein supplied, the overall heat transfer coefficient U, the value of ⁇ , and the methacrolein reaction rate. After that, continuous operation was carried out while maintaining the reaction rate by adjusting the temperature of the heat transfer medium. Moreover, the methacrylic acid selectivity before shutdown was 77%.
- the temperature change dT1′ (K) in the longitudinal direction of the reaction tube in the minute area is defined as the difference between the temperature of the heat medium flowing outside the reaction tube and the average temperature in the minute area as dT2′ (K), and the reaction rate per volume (mol/m 3 /s), the reaction heat (J/mol), and the volume (m 3 ) of the minute region is M2(W), which is obtained by the formula (***)'.
- dT1′ [U ⁇ inner surface area (m 2 ) of reaction tube in contact with minute region ⁇ dT2′+sum of M2 for all reactions occurring in reaction tube]/[mass flow rate of source gas (g/s) ⁇ source gas specific heat (J/g/K)] (***)'
- Example 1 Using the prepared simulation, it was confirmed that the same ⁇ Tmax, methacrolein reaction rate, and methacrylic acid selectivity as in Example 1 were obtained under the same heat medium flow conditions as in Example 1.
- Table 1 shows the length of the catalyst layer, the filling amount of the catalyst, the value of ⁇ , the value of U and the value of ⁇ in each example and comparative example. Note that the heat medium flow conditions and the raw material gas supply conditions were the same as those in the first embodiment. Table 1 shows ⁇ Tmax, methacrolein conversion and methacrylic acid selectivity obtained by simulation.
- Example 1 in which the oxidation reaction of methacrolein was performed under the conditions satisfying formula (1), was able to perform continuous operation for 40 days with higher methacrylic acid selectivity than Comparative Example.
- Examples 2-4 also showed stable ⁇ Tmax and good methacrylic acid selectivity.
- Comparative Example 1 the calorific value of the catalyst layer increased rapidly, and the operation was stopped after two days, resulting in a low methacrylic acid selectivity.
- Comparative Examples 2 and 3 had a higher ⁇ Tmax than those of Examples, indicating that the amount of heat generated in the first catalyst layer was large relative to the heat removal capacity of the reactor.
- (meth)acrolein and (meth)acrylic acid are produced with high selectivity by preventing runaway reaction in the heat exchange reactor and suppressing excessive progress of the reaction and local catalyst deterioration. It is industrially useful because one or both can be produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本願は、2021年5月25日に、日本に出願された特願2021-087587号に基づき優先権を主張し、その内容をここに援用する。
前記反応管は、単位体積当たりの触媒充填量が異なる複数の触媒層を、反応管の長手方向にi層具備し、ここで、iは2以上の整数であり、
前記酸化反応において式(1)を満たす、(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造方法。
ξ≦0.275(mol・K/h/W) …(1)
ただし、
[2]:前記酸化反応においてさらに式(1’)を満たす、[1]に記載の製造方法。
0.002≦ξ≦0.275(mol・K/h/W) …(1’)
[3]:前記酸化反応においてさらに式(1”)を満たす、[1]又は[2]に記載の製造方法。
ξ≦0.24(mol・K/h/W) …(1”)
[4]:前記酸化反応においてさらに式(2)を満たす、[1]~[3]のいずれかに記載の製造方法。
0.25≦τ≦0.5 …(2)
ただし、
[5]:前記酸化反応においてさらに式(2’)を満たす、[4]に記載の製造方法。
0.26≦τ≦0.5 …(2’)
[6]:前記反応管が具備する触媒層の数iが2~4である、[1]~[5]のいずれかに記載の製造方法。
[7]:前記Uが40~400(W/m2/K)である、[1]~[6]のいずれかに記載の製造方法。
[8]:前記Uが50~300(W/m2/K)である、[1]~[7]のいずれかに記載の製造方法。
[9]:前記Fが1~20(mol/h)である、[1]~[8]のいずれかに記載の製造方法。
[10]:前記Fが2.5~15(mol/h)である、[1]~[9]のいずれかに記載の製造方法。
[11]:前記Aが0.03~0.6(m2)である、[1]~[10]のいずれかに記載の製造方法。
[12]:前記原料が、プロピレン、イソブチレン、tert-ブタノール、及びメチルtert-ブチルエーテルより選ばれる少なくとも1種であり、前記(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方が(メタ)アクロレイン及び(メタ)アクリル酸である、[1]~[11]のいずれかに記載の製造方法。
[13]:前記原料が(メタ)アクロレインであり、前記(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方が(メタ)アクリル酸である、[1]~[11]のいずれかに記載の製造方法。
[14]:前記触媒層において、式(I)で表される組成を有する触媒を用いる、[12]に記載の製造方法。
Moa1Bib1Fec1Md1Xe1Yf1Zg1Sih1Oi1・・・(I)
式(I)において、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルからなる群より選ばれる少なくとも1種類の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群より選ばれる少なくとも1種類の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれる少なくとも1種類の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種類の元素を示す。a1、b1、c1、d1、e1、f1、g1、h1及びi1は各元素の原子比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=1~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20であり、i1は前記元素の原子価を満足するのに必要な酸素の原子比率である。
[15]前記触媒層において、式(II)で表される組成を有する触媒を用いる、[13]に記載の製造方法。
Pa2Mob2Vc2Cud2Xe2Yf2Zg2Oh2・・・(II)
式(II)中、P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を示す。Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を示す。Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を示す。Zはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a2、b2、c2、d2、e2、f2、g2及びh2は各元素の原子比率を表し、b2=12のときa2=0.5~3、c2=0.01~3、d2=0.01~2、e2=0~3、f2=0~3、g2=0.01~3であり、h2は前記元素の原子価を満足するのに必要な酸素の原子比率である。
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
なお、以下の説明において例示される図の寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
ξ≦0.275(mol・K/h/W)・・・(1)
ただし、
本発明の製造方法は、上述した条件を満たすことにより、熱交換型反応器における反応暴走を防ぎ、かつ反応の過度な進行や局部的な触媒劣化が抑制されるため、高選択率で(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方を製造することができる。
熱交換型反応器を用いた(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造において、反応温度が高くなるに従い、反応器内の発熱速度は指数的に増加するのに対して、除熱速度は線形的にしか増加しない。そのため反応の進行とともに反応器の除熱能力不足となり、反応温度が高くなることで、反応の過度な進行や局部的な触媒劣化が起こる。さらに反応器の除熱能力不足が過剰となることで、反応暴走が発生する場合もある。
これに対して、触媒充填量が異なる複数の触媒層を具備した反応管を用い、各触媒層に対して適切に触媒を分配することで、必要な触媒充填量を確保しながら、反応器が具備する各触媒層の発熱速度と除熱速度の比を制御することができる。本発明は特に、原料濃度が最も高い1層目の触媒層に着目し、前記触媒層における発熱速度と除熱速度の比を制御するものである。そして1層目の触媒層における発熱速度と除熱速度の比が、(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造に適した値となることで、反応管が具備する各触媒層の発熱速度と除熱速度の比が適切となり、反応温度の上昇を抑えることができる。これにより反応暴走を抑制し、高選択で(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方を製造できる。
本発明の製造方法は、プロピレン、イソブチレン、tert-ブタノール、及びメチルtert-ブチルエーテルより選ばれる少なくとも1種を原料として(メタ)アクロレイン及び(メタ)アクリル酸を製造する方法、又は、(メタ)アクロレインを原料として(メタ)アクリル酸を製造する方法において好適に適用できる。特に、(メタ)アクロレインを原料として(メタ)アクリル酸を製造する方法に適用することが好ましく、メタクロレインからメタクリル酸を製造する方法に適用することがより好ましい。
本発明の製造方法は、内部に反応管を備えた熱交換型反応器を用いる。熱交換型反応器としては、例えば二重管式熱交換器型反応器、工業的には多管式熱交換器型反応器を用いることができる。多管式熱交換器型反応器の一例を図1に示す。
本発明の製造方法で用いる反応器において、反応管は、単位体積当たりの触媒充填量が異なる複数の触媒層を、反応管の長手方向にi層具備する。ここで、iは2以上の整数である。これは、反応管がその長手方向に2層以上の触媒層を具備しており、隣接する触媒層は互いに単位体積あたりの触媒充填量が異なることを意味する。また、「単位体積当たりの触媒充填量が異なる」とは、単位体積当たりの触媒充填量が1%以上異なることを意味する。触媒層が後述する希釈材を含む場合は、充填されている触媒と希釈材の混合割合が1%以上異なるとき、又は触媒若しくは希釈材の密度が1%以上異なるとき、を含む。なお、反応管の長手方向に100mm以上の厚みを持つ場合に「触媒層」と見なすものとする。
各触媒層に充填されている触媒は、共通の元素から構成され、各元素成分の組成比の差が10%以下であることが好ましい。
Moa1Bib1Fec1Md1Xe1Yf1Zg1Sih1Oi1・・・(I)
式(I)において、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルからなる群より選ばれる少なくとも1種類の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群より選ばれる少なくとも1種類の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれる少なくとも1種類の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種類の元素を示す。a1、b1、c1、d1、e1、f1、g1、h1及びi1は各元素の原子比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=1~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20であり、i1は前記した各元素の原子価を満足するのに必要な酸素の原子比率である。
Pa2Mob2Vc2Cud2Xe2Yf2Zg2Oh2・・・(II)
式(II)中、P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を示す。Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を示す。Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を示す。Zはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a2、b2、c2、d2、e2、f2、g2及びh2は各元素の原子比率を表し、b2=12のときa2=0.5~3、c2=0.01~3、d2=0.01~2、e2=0~3、f2=0~3、g2=0.01~3であり、h2は前記した各元素の原子価を満足するのに必要な酸素の原子比率である。
触媒としては、複数の形状の触媒を用いてもよいが、触媒の製造コストの観点から、同一形状であることが好ましい。
本発明において、原料の酸化反応により(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方を製造する方法を、図1を用いて説明する。原料は原料入口部4から流入し、反応管2の原料入口側から供給される。そして反応管2の外側に設けられた熱媒浴8に熱媒を流通させることにより反応熱を除去しながら、反応管2が具備する触媒層に原料を接触させることにより、(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方を製造することができる。
本発明の(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造方法は、原料の酸化反応において式(1)を満たす。式(1)において、ξの値は、反応管の原料入口側から1層目の触媒層における温度変化のしやすさを表す。ξが式(1)を満たす場合、1層目の触媒層への触媒の分配量が適切であり、(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造に適した発熱速度と除熱速度の比となる。式(1)において、ξの値の上限は0.24(mol・K/h/W)以下であることが好ましく、0.12(mol・K/h/W)以下であることがより好ましく、0.06(mol・K/h/W)以下であることがさらに好ましい。またξの値の下限は、0.002(mol・K/h/W)以上であることが好ましい。これにより、(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の生産量に対する製造コストを抑えられる。ξの値の下限は0.004(mol・K/h/W)以上であることがより好ましく、0.006(mol・K/h/W)以上であることがさらに好ましい。
なお、前記熱交換型反応器が複数の反応管を有する場合、式(1)を、前記複数の反応管の総数の50%以上において満たすことが好ましく、前記反応管の総数の80%以上において満たすことがより好ましく、前記複数の反応管の総数の90%以上において満たすことがさらに好ましい。
0.25≦τ≦0.5・・・(2)
なお、前記熱交換型反応器が複数の反応管を有する場合、式(2)を、前記複数の反応管の総数の50%以上において満たすことが好ましく、前記複数の反応管の総数の80%以上において満たすことがより好ましく、前記複数の反応管の総数の90%以上において満たすことがさらに好ましい。
Uの調整方法としては、例えば、熱媒の流通条件の変更、窒素ガスの流速の変更、1媒層における触媒の割合や形状の変更、1層目の触媒層における希釈材の材質や形状の変更、反応管の材質、径又は厚みの変更が挙げられる。
なお、前記熱交換型反応器が複数の反応管を有する場合、Fが前記規定を、前記複数の反応管の総数の50%以上において満たすことが好ましく、前記複数の反応管の総数の80%以上において満たすことがより好ましく、前記複数の反応管の総数の90%以上において満たすことがさらに好ましい。
なお、前記熱交換型反応器が複数の反応管を有する場合、Aが前記規定を。前記複数の反応管の総数の50%以上において満たすことが好ましく、前記複数の反応管の総数の80%以上において満たすことがより好ましく、前記複数の反応管の総数の90%以上において満たすことがさらに好ましい。
なお、前記原料ガスは、前記原料、酸素及び水蒸気を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。また、前記原料ガスは、低級飽和アルデヒド等の不純物を少量含んでいてもよいが、その量はできるだけ少ないことが好ましい。
前記原料の酸化反応において、反応圧力は大気圧~数気圧が好ましい。また前記反応管の外側を流通する熱媒の温度は230~450℃が好ましい。前記熱媒の温度の下限は250℃以上がより好ましく、上限は400℃以下がより好ましい。
各元素の原子比率は、触媒をアンモニア水に溶解した成分をICP(高周波誘導結合プラズマ)発光分析法で分析することによって求めた。
使用装置:誘導結合プラズマ(ICP)発光分光分析装置(Perkin Elmer社製Optima 8300 ICP-OES Spectrometer)
総括伝熱係数Uは、酸素21容量%及び窒素79容量%からなる不活性ガスを、反応管の外側を流通する熱媒より50℃低い温度で反応管に供給して、1層目の触媒層の微小領域における温度分布を測定した結果から算出した。
原料及び生成物の分析は、ガスクロマトグラフィー(装置:島津製作所製GC-2014、カラム:J&W社製DB-FFAP、30m×0.32mm、膜厚1.0μm)により行った。
また、メタクロレインの反応率、生成したメタクリル酸の選択率、メタクリル酸の収率はそれぞれ以下のように定義される。
メタクロレイン反応率(%)=(β/α)×100
メタクリル酸選択率(%)=(γ/β)×100
メタクリル酸収率(%)=(γ/α)×100
ここで、αは供給したメタクロレインの物質量(mol)、βは反応したメタクロレインの物質量(mol)、γは生成したメタクリル酸の物質量(mol)である。
触媒層における発熱量を評価する指標として、触媒層において最も高温を示す部分の温度と、反応管の外側を流通する熱媒との温度の差(ΔTmax)を用いた。ΔTmaxは、以下のように測定した。触媒層の温度は、反応管の長手方向に対して垂直な断面の中心に設置した保護管に挿入した熱電対により測定した。なお、保護管は反応系から隔離されており、温度を測定する位置は挿入する熱電対の長さを調節して変えることができる。このとき測定した触媒層の温度と熱媒の温度との差をΔTとして、ΔT分布を算出した。得られたΔT分布の中で最大のΔTを、ΔTmaxとした。
図1に示す、熱媒浴を備えた多管式熱交換器型反応器を用い、下記の通りメタクロレインの酸化反応によりメタクリル酸を製造した。なお、前記反応器は、内部に内径27.2mm、長さ6mのSUS304製の反応管を備える。
その後、熱媒の温度を調整することで反応率を維持しながら、40日間の連続運転を実施した。連続運転中は定期的に触媒層の温度を測定し、ΔT分布を算出した。連続運転期間中のΔTmaxは、1層目の触媒層において31℃、2層目の触媒層において22℃であった。また、連続運転期間中のメタクリル酸の平均選択率は82%であった。
実施例1と同様の多管式熱交換器型反応器を用い、下記の通りメタクロレインの酸化反応によりメタクリル酸を製造した。
各反応管に、実施例1と同様の触媒を用いて、1層の触媒層を形成した。触媒層は、触媒3500gのみを充填した。触媒層の長さ、及びτの値を表1に示す。なお、反応管の原料入口側の端部と触媒層との間には、実施例1と同様の不活性物質層を形成した。
次いで、実施例1と同様の方法で熱媒を流通しながら、実施例1と同様の方法で原料ガスを供給して、酸化反応を行った。メタクロレインの供給量F、総括伝熱係数U、ξの値、及びメタクロレイン反応率を表1に示す。
その後、熱媒の温度を調整することで反応率を維持しながら連続運転を実施したが、運転開始2日後に触媒層のΔTmaxが200℃となり、運転を停止せざるを得なくなった。また、運転停止前のメタクリル酸選択率は77%であった。
下記の通り、実施例1の反応結果を再現するシミュレーションを作製した。
触媒層の形成、反応ガスの供給について、実施例1と同様の条件を与え、反応管入口から反応管の長手方向に分割した微小領域について、各微小領域の温度及び濃度に対する反応速度を算出した。得られた反応速度から、反応管の長手方向に物質収支式及び熱収支式を作成し、生成物出口側に隣接する領域における温度、及び反応管内に存在する各化合物の濃度を算出した。これを、最も生成物出口側の領域まで繰り返し行い、実施例1と同様のΔTmax、メタクロレイン反応率及びメタクリル酸選択率が得られるよう、反応速度パラメータのフィッティングを行った。なお、微小領域における反応管の長手方向の物質量変化は、反応管内で起こる各反応の反応式に基づく化合物の化学量論係数と、体積当たりの反応速度(mol/m3/s)と、微小領域の体積(m3)の積をM1としたとき、反応管内で起こる全ての反応についてのM1(mol/s)の総和を求めることで得られる。また微小領域における反応管の長手方向の温度変化dT1’(K)は、反応管の外側を流通する熱媒温度と微小領域における平均温度の差をdT2’(K)とし、体積当たりの反応速度(mol/m3/s)と、反応熱量(J/mol)と、微小領域の体積(m3)との積をM2(W)としたとき、式(***)’により得られる。
dT1’=[U×微小領域が接する反応管の内表面積(m2)×dT2’+反応管内で起こる全ての反応についてM2の総和]/[原料ガスの質量流量(g/s)×原料ガスの比熱(J/g/K)]・・・(***)’
一方比較例1は、触媒層の発熱量が急激に増加したため2日で運転停止となり、メタクリル酸選択率も低い結果となった。また比較例2~3は、実施例と比較して高いΔTmaxとなり、反応器の除熱能力に対して1層目の触媒層における発熱量が大きいことが示された。
2・・・反応管
3・・・邪魔板
4・・・原料入口部
5・・・生成物出口部
6・・・熱媒入口部
7・・・熱媒出口部
8・・・熱媒浴
9・・・第1仕切板
10・・・第2仕切板
Claims (15)
- 内部に反応管を備えた熱交換型反応器を用い、前記反応管の外側に熱媒を流通させながら、前記反応管に供給した原料の酸化反応により、(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方を製造する方法であって、
前記反応管は、単位体積当たりの触媒充填量が異なる複数の触媒層を、反応管の長手方向にi層具備し、ここで、iは2以上の整数であり、
前記酸化反応において式(1)を満たす、(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造方法。
ξ≦0.275(mol・K/h/W) …(1)
ただし、
- 前記酸化反応においてさらに式(1’)を満たす、請求項1に記載の製造方法。
0.002≦ξ≦0.275(mol・K/h/W) …(1’) - 前記酸化反応においてさらに式(1”)を満たす、請求項1に記載の製造方法。
ξ≦0.24(mol・K/h/W) …(1”) - 前記酸化反応においてさらに式(2’)を満たす、請求項4に記載の製造方法。
0.26≦τ≦0.5 …(2’) - 前記反応管が具備する触媒層の数iが2~4である、請求項1に記載の製造方法。
- 前記Uが40~400(W/m2/K)である、請求項1に記載の製造方法。
- 前記Uが50~300(W/m2/K)である、請求項1に記載の製造方法。
- 前記Fが1~20(mol/h)である、請求項1に記載の製造方法。
- 前記Fが2.5~15(mol・h-1)である、請求項1に記載の製造方法。
- 前記Aが0.03~0.6(m2)である、請求項1に記載の製造方法。
- 前記原料が、プロピレン、イソブチレン、tert-ブタノール、及びメチルtert-ブチルエーテルより選ばれる少なくとも1種であり、前記(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方が(メタ)アクロレイン及び(メタ)アクリル酸である、請求項1~11のいずれか1項に記載の製造方法。
- 前記原料が(メタ)アクロレインであり、前記(メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方が(メタ)アクリル酸である、請求項1~11のいずれか1項に記載の製造方法。
- 前記触媒層において、式(I)で表される組成を有する触媒を用いる、請求項12に記載の製造方法。
Moa1Bib1Fec1Md1Xe1Yf1Zg1Sih1Oi1・・・(I)
式(I)において、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルからなる群より選ばれる少なくとも1種類の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群より選ばれる少なくとも1種類の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれる少なくとも1種類の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種類の元素を示す。a1、b1、c1、d1、e1、f1、g1、h1及びi1は各元素の原子比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=1~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20であり、i1は前記元素の原子価を満足するのに必要な酸素の原子比率である。 - 前記触媒層において、式(II)で表される組成を有する触媒を用いる、請求項13に記載の製造方法。
Pa2Mob2Vc2Cud2Xe2Yf2Zg2Oh2・・・(II)
式(II)中、P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を示す。Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を示す。Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を示す。Zはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a2、b2、c2、d2、e2、f2、g2及びh2は各元素の原子比率を表し、b2=12のときa2=0.5~3、c2=0.01~3、d2=0.01~2、e2=0~3、f2=0~3、g2=0.01~3であり、h2は前記元素の原子価を満足するのに必要な酸素の原子比率である。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280036474.4A CN117396457A (zh) | 2021-05-25 | 2022-05-24 | (甲基)丙烯醛和(甲基)丙烯酸中的一者或两者的制造方法 |
JP2023523473A JPWO2022250030A1 (ja) | 2021-05-25 | 2022-05-24 | |
KR1020237039487A KR20230170962A (ko) | 2021-05-25 | 2022-05-24 | (메트)아크롤레인 및 (메트)아크릴산의 일방 또는 양방의 제조 방법 |
US18/516,423 US20240101502A1 (en) | 2021-05-25 | 2023-11-21 | Method for producing (meth)acrolein and/or (meth)acrylic acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021087587 | 2021-05-25 | ||
JP2021-087587 | 2021-05-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/516,423 Continuation US20240101502A1 (en) | 2021-05-25 | 2023-11-21 | Method for producing (meth)acrolein and/or (meth)acrylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022250030A1 true WO2022250030A1 (ja) | 2022-12-01 |
Family
ID=84228854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021177 WO2022250030A1 (ja) | 2021-05-25 | 2022-05-24 | (メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240101502A1 (ja) |
JP (1) | JPWO2022250030A1 (ja) |
KR (1) | KR20230170962A (ja) |
CN (1) | CN117396457A (ja) |
WO (1) | WO2022250030A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04210937A (ja) * | 1990-02-08 | 1992-08-03 | Nippon Shokubai Co Ltd | メタクリル酸の製造方法 |
JP2005170909A (ja) * | 2003-12-15 | 2005-06-30 | Mitsubishi Chemicals Corp | (メタ)アクリル酸または(メタ)アクロレインの製造方法 |
JP2010132584A (ja) * | 2008-12-03 | 2010-06-17 | Mitsubishi Rayon Co Ltd | 多管式熱交換器型反応器を用いた気相酸化反応の運転方法 |
JP2014019675A (ja) * | 2012-07-20 | 2014-02-03 | Nippon Kayaku Co Ltd | 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 |
-
2022
- 2022-05-24 CN CN202280036474.4A patent/CN117396457A/zh active Pending
- 2022-05-24 JP JP2023523473A patent/JPWO2022250030A1/ja active Pending
- 2022-05-24 KR KR1020237039487A patent/KR20230170962A/ko unknown
- 2022-05-24 WO PCT/JP2022/021177 patent/WO2022250030A1/ja active Application Filing
-
2023
- 2023-11-21 US US18/516,423 patent/US20240101502A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04210937A (ja) * | 1990-02-08 | 1992-08-03 | Nippon Shokubai Co Ltd | メタクリル酸の製造方法 |
JP2005170909A (ja) * | 2003-12-15 | 2005-06-30 | Mitsubishi Chemicals Corp | (メタ)アクリル酸または(メタ)アクロレインの製造方法 |
JP2010132584A (ja) * | 2008-12-03 | 2010-06-17 | Mitsubishi Rayon Co Ltd | 多管式熱交換器型反応器を用いた気相酸化反応の運転方法 |
JP2014019675A (ja) * | 2012-07-20 | 2014-02-03 | Nippon Kayaku Co Ltd | 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022250030A1 (ja) | 2022-12-01 |
CN117396457A (zh) | 2024-01-12 |
US20240101502A1 (en) | 2024-03-28 |
KR20230170962A (ko) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101011065B1 (ko) | 프로펜을 아크릴산으로 불균질 촉매화 부분 기체상산화시키기 위한 방법 | |
KR101378251B1 (ko) | 유기 출발 화합물의 불균일 촉매작용 부분적 기체 상 산화의 장시간 작업을 위한 방법 | |
US6888024B2 (en) | Heterogeneously catalyzed partial gas phase oxidation of propene to acrylic acid | |
RU2479569C2 (ru) | Способ введения в эксплуатацию парциального газофазного окисления акролеина в акриловую кислоту или метакролеина в метакриловую кислоту на гетерогенном катализаторе | |
EP1097745B1 (en) | Reactor for catalytic gas phase oxidation | |
EP1925606B1 (en) | Method for vapor phase catalytic oxidation | |
KR101393797B1 (ko) | 적어도 1종의 유기 출발 화합물의 불균일 촉매작용 기체 상부분적 산화 방법 | |
US7164039B2 (en) | Heterogeneously catalyzed partial gas phase oxidation of propene to acrylic acid | |
US20070021631A1 (en) | Gas-phase catalytic oxidation process and process for producing (meth) acrolein or (meth) acrylic acid | |
KR100661727B1 (ko) | 불포화 알데히드 및/또는 불포화 지방산의 제조방법 | |
JPH11130722A (ja) | アクリル酸の製造方法 | |
JPH0892147A (ja) | アクロレインへのプロペンの接触気相酸化方法 | |
US6982347B2 (en) | Heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid | |
EP1880757A1 (en) | A reactor for gas-phase catalytic oxidation and a process for producing acrylic acid using it | |
RU2486009C2 (ru) | Способ засыпки продольного участка контактной трубы | |
RU2349573C2 (ru) | Способ получения (мет)акриловой кислоты или (мет)акролеина | |
WO2001042184A1 (fr) | Methode de preparation d'acide methacrylique | |
JP4497442B2 (ja) | メタクロレインおよびメタクリル酸の製造方法 | |
WO2022250030A1 (ja) | (メタ)アクロレイン及び(メタ)アクリル酸の一方又は両方の製造方法 | |
JP4295462B2 (ja) | 気相接触酸化方法 | |
JP5691151B2 (ja) | 熱交換型反応器を用いた反応方法 | |
JP5691152B2 (ja) | プレート式反応器を用いた反応生成物の製造方法 | |
JP4194359B2 (ja) | 気相接触酸化方法 | |
JP5112849B2 (ja) | 固定床反応器および不飽和カルボン酸の製造方法 | |
JP2003261501A (ja) | 気相接触酸化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22811300 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023523473 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20237039487 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237039487 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280036474.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2301007681 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202347081664 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11202308841X Country of ref document: SG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 523451600 Country of ref document: SA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 523451600 Country of ref document: SA |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22811300 Country of ref document: EP Kind code of ref document: A1 |