[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022249568A1 - 電動駆動システム - Google Patents

電動駆動システム Download PDF

Info

Publication number
WO2022249568A1
WO2022249568A1 PCT/JP2022/004889 JP2022004889W WO2022249568A1 WO 2022249568 A1 WO2022249568 A1 WO 2022249568A1 JP 2022004889 W JP2022004889 W JP 2022004889W WO 2022249568 A1 WO2022249568 A1 WO 2022249568A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
circuit
electric drive
drive system
coil
Prior art date
Application number
PCT/JP2022/004889
Other languages
English (en)
French (fr)
Inventor
雅寛 堀
健 徳山
公則 澤畠
英明 後藤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022249568A1 publication Critical patent/WO2022249568A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases

Definitions

  • the present invention relates to an electric drive system.
  • Patent Literature 1 discloses a stator coil for a three-phase rotating electrical machine in which a plurality of helically wound sheet-like coils are laminated in the sheet thickness direction and electrically connected. The helically-wound sheet-like coil is wound around the stator core so that the coil conductor is helically connected to form a wave-wound structure.
  • the plurality of helical-wound sheet-like coils includes a series connection portion in which in-phase phase coils are connected in series between the helical-wound sheet-like coils, and a parallel connection portion in which in-phase phase coils are connected in parallel between the helical-wound sheet-like coils.
  • a connector In the rotating electrical machine described in Patent Document 1, in order to improve the efficiency of the rotating electrical machine by reducing the AC copper loss generated in the coil conductor near the rotor, the conductor of the coil conductor in the parallel connection portion close to the rotor is reduced.
  • the cross-sectional area is set to 1/the parallel number of the conductor cross-sectional area of the coil conductor of the series connection portion.
  • An object of the present invention is to provide a highly efficient electric drive system by reducing AC copper loss and preventing the generation of circulating current.
  • An electric drive system includes a rotating electric machine having a stator and a rotor rotatably arranged on the inner peripheral side of the stator, and a driving device that supplies electric power to the rotating electric machine.
  • the stator has a stator coil made of a rectangular wire and a stator core having a plurality of slots in which the stator coil is arranged.
  • the stator coil has a plurality of system windings that are wave-wound on the stator core.
  • the plurality of system windings include a first system winding mounted on the stator core with a spatial phase difference of 0° from a reference phase, and a first system winding mounted on the stator core with a spatial phase difference of n° from the reference phase.
  • the first winding system and the second winding system are respectively a first circuit formed by a coil conductor on the outer diameter side of the stator core and a parallel circuit formed by a coil conductor on the inner diameter side of the stator core. A certain second circuit is connected in series. The coil conductor on the inner diameter side is thinner than the coil conductor on the outer diameter side.
  • the drive device has a first inverter connected to the first winding system and a second inverter connected to the second winding system. The drive device applies voltages to the first winding system and the second winding system with the n° phase difference in terms of time.
  • a highly efficient electric drive system can be provided by reducing AC copper loss and preventing the generation of circulating current.
  • FIG. 1 is a diagram showing the configuration of an electric drive system.
  • FIG. 2 is a schematic side cross-sectional view of the electric drive system.
  • FIG. 3 is a schematic cross-sectional plan view showing a part of the rotary electric machine.
  • FIG. 4 is a perspective view of the stator, showing one end side of the stator.
  • FIG. 5 is a connection diagram of the stator coil.
  • FIG. 6 is a schematic diagram for explaining the positions of the phase windings arranged in the slots of the stator core.
  • FIG. 7 is a diagram for explaining the connection structure between the first circuit and the second circuit.
  • FIG. 8 is a diagram for explaining the induced voltages generated in the U1-phase winding and the U2-phase winding.
  • FIG. 9 is a diagram for explaining differences in configuration and effect between a circuit having in-slot conductors of the same thickness and a circuit having in-slot conductors of different thicknesses.
  • FIG. 10 is a diagram illustrating a parallel circuit Cp3 in which a circulating current is generated and a parallel circuit Cp4 in which the generation of circulating current is prevented.
  • FIG. 11 shows a circuit in which a circulating current is generated between the first system winding and the second system winding, and a circuit in which the generation of circulating current is prevented between the first system winding and the second system winding. It is a figure explaining a circuit.
  • FIG. 12 is a diagram showing an arrangement configuration of stator coils according to modification 1-1 of the present embodiment.
  • FIG. 12 is a diagram showing an arrangement configuration of stator coils according to modification 1-1 of the present embodiment.
  • FIG. 13 is a diagram showing the arrangement configuration of stator coils according to modification 1-2 of the present embodiment.
  • FIG. 14 is a torque waveform diagram of the rotary electric machines according to Modifications 1-1 and 1-2 of the present embodiment.
  • FIG. 15 is a schematic side cross-sectional view of an electric drive system according to Modification 2 of the present embodiment.
  • the electric drive system according to the present embodiment is an electric drive system suitable for use as a drive source for running an automobile.
  • the electric drive system according to this embodiment can be applied to, for example, a hybrid electric vehicle driven by both an engine and a rotating electric machine, and a pure electric vehicle running only by a rotating electric machine.
  • FIG. 1 is a diagram showing the configuration of the electric drive system 10
  • FIG. 2 is a schematic side sectional view of the electric drive system 10.
  • the electric drive system 10 includes a rotating electrical machine 110 and a drive device 170 that supplies electric power to the rotating electrical machine 110 .
  • drive device 170 detects electric currents of power storage device 179 , first inverter 171 A, second inverter 171 B, control circuit board 175 , drive circuit boards 173 A and 173 B, and rotating electric machine 110 . and current sensors 172A and 172B.
  • the power storage device 179 is a power supply device that is composed of a capacitor or a secondary battery such as a lithium-ion battery or a nickel-metal hydride battery, and outputs high-voltage DC power of 250 V to 600 V or more. Power storage device 179 supplies electric power to rotating electric machine 110 during power running, and receives electric power from rotating electric machine 110 during regenerative running. Electric power is exchanged between power storage device 179 and rotary electric machine 110 via first inverter 171A and second inverter 171B, which are power conversion devices.
  • the rotational torque generated by the rotating electric machine 110 is transmitted to the wheels via the transmission 180 (see FIG. 2) and the differential gear (not shown), and the electric vehicle (also referred to as vehicle) runs.
  • Drive device 170 controls rotating electric machine 110 based on a torque command from an integrated control device (not shown) so that torque output or power generation according to the command is generated.
  • the first inverter 171A and the second inverter 171B have a plurality of power semiconductor elements.
  • the driving device 170 controls the switching operation of the power semiconductor elements based on commands from an integrated control device (not shown).
  • the switching operation of the power semiconductor elements causes rotating electric machine 110 to operate as a motor or as a generator.
  • the first inverter 171A and the second inverter 171B generate a rectangular wave from the DC voltage by switching operation (ON/OFF) of the power semiconductor element, and generate a simulated AC voltage.
  • the driving device 170 controls the magnitude and frequency of the AC voltage by controlling the period and timing of the switching operation of the power semiconductor element.
  • the first inverter 171A and the second inverter 171B are connected to the same power storage device (power supply device) 179 . That is, the DC link voltage is shared between the first inverter 171A and the second inverter 171B. In this configuration, two voltages can be output from the DC link voltage of one power storage device 179 by two inverters 171A and 171B. Also, by sharing the DC link voltage, the cost of the electric drive system 10 can be reduced.
  • the DC power from the power storage device 179 is supplied to the DC terminals of the first inverter 171A and the second inverter 171B.
  • Drive device 170 controls the switching operation of the power semiconductor element, converts the supplied DC power into three-phase AC power, and supplies the three-phase AC power to rotary electric machine 110 .
  • the rotor of rotating electrical machine 110 is rotationally driven by a rotational torque applied from the outside, and three-phase AC power is generated in the stator coils.
  • the generated three-phase AC power is converted into DC power by drive device 170, and the DC power is supplied to power storage device 179, whereby power storage device 179 is charged.
  • the drive circuit board 173A is provided with a drive circuit 174A that controls the switching operation of the power semiconductor elements of the first inverter 171A.
  • the drive circuit board 173B is provided with a drive circuit 174B that controls the switching operation of the power semiconductor elements of the second inverter 171B.
  • the control circuit board 175 is provided with a control circuit 176 that outputs control signals to the drive circuits 174A and 174B.
  • Drive circuits 174A and 174B generate drive signals for driving the power semiconductor elements based on control signals output from control circuit 176 .
  • the control circuit 176 constitutes a control device that controls the inverters 171A and 171B.
  • the control circuit 176 is composed of a microcomputer that calculates control signals (control values) for operating (turning on/off) a plurality of power semiconductor devices.
  • the control circuit 176 receives a torque command signal (torque command value) from an integrated control device (not shown), sensor outputs of the current sensors 172A and 172B, and sensor outputs of a rotation sensor (not shown) mounted on the rotary electric machine 110. is entered.
  • the control circuit 176 calculates control values based on those input signals, and outputs control signals (instructions) for controlling switching operations of the power semiconductor elements to the drive circuits 174A and 174B.
  • control circuit 176 It is commonly used by the control circuit 176, the first inverter 171A and the second inverter 171B. That is, commands from the same control circuit (control device) 176 are input to the first inverter 171A and the second inverter 172 . By sharing the control circuit 176, the cost of the electric drive system 10 can be reduced.
  • the electric drive system 10 includes a rotating electrical machine 110, a drive device 170, a transmission 180, and a housing 190 that accommodates them.
  • the housing 190 has a motor housing 191 that houses the rotating electric machine 110 , an inverter housing 197 that houses the driving device 170 , and a gear housing 198 that houses the transmission 180 .
  • the motor housing 191 and the inverter housing 197 are integrated by being fastened by fastening members 17 such as bolts and nuts. Since the rotating electric machine 110 and the drive device 170 are packaged into one package, the mounting work to the vehicle can be improved compared to the case where the rotating electric machine 110 and the drive device 170 are individually mounted to the vehicle. In addition, cables can be omitted compared to the case where rotating electric machine 110 and drive device 170 are separately arranged. As a result, the weight of the electric drive system 10 can be reduced, and noise can be reduced.
  • the gear housing 198 is fastened to the motor housing 191 by fastening members (not shown).
  • the rotating electrical machine 110 is, for example, a permanent magnet embedded three-phase synchronous motor generator.
  • the rotating electric machine 110 has a cylindrical stator 130 fixed to a motor housing 191 and a cylindrical rotor 150 rotatably arranged on the inner peripheral side of the stator 130 with a gap therebetween.
  • axial direction is a direction along the rotation center axis Ca of the rotary electric machine 110 (rotor 150). Note that the rotation center axis Ca coincides with the center axis of the stator 130 .
  • the “circumferential direction” is a direction along the direction of rotation of rotating electric machine 110 (the direction of rotation of rotor 150), that is, a circumferential direction orthogonal to the axial direction and centered on rotation center axis Ca.
  • a “radial direction” is a direction orthogonal to the rotation center axis Ca of the rotating electric machine 110 and the circumferential direction, that is, the radial direction.
  • the “inner peripheral side” refers to the radially inner side (inner diameter side), and the “outer peripheral side” refers to the opposite direction, that is, the radial outer side (outer diameter side).
  • FIG. 3 is a schematic cross-sectional plan view showing a portion of rotating electric machine 110
  • FIG. 4 is a perspective view of stator 130 showing one end side of stator 130.
  • stator 130 has a cylindrical stator core 131 and stator coils 160 mounted on stator core 131 .
  • the stator core 131 is formed, for example, by laminating a plurality of annular magnetic steel sheets.
  • the stator core 131 is fitted and fixed inside the motor housing 191 (see FIG. 2).
  • a plurality of (48 slots in this embodiment) slots 133 are formed in the inner peripheral portion of the stator core 131 parallel to the central axis direction of the stator core 131 .
  • the slots 133 are semi-closed parallel slots having side surfaces parallel to each other along the radial direction of the stator core 131 . That is, the slot 133 has a constant circumferential width from the outer peripheral end to the flange of the tooth 134 .
  • a plurality of phase windings of U-phase, V-phase, and W-phase that constitute stator coil 160 are arranged in slots 133 .
  • a plurality of slots 133 are formed at regular intervals in the circumferential direction of stator core 131 .
  • Teeth 134 are formed between the slots 133 .
  • a plurality of teeth 134 are formed to protrude from an annular core back 135 toward the rotation center axis Ca.
  • the teeth 134 form radial magnetic paths, and the core backs 135 form circumferential magnetic paths.
  • the teeth 134 guide the rotating magnetic field generated by the stator coil 160 to the rotor 150 and cause the rotor 150 to generate rotating torque.
  • rotor 150 includes rotor core 151 , multiple permanent magnets 152 fixed to rotor core 151 , and shaft 159 fixed to a through hole of rotor core 151 .
  • the rotor 150 is rotatably held inside the stator core 131 by supporting the shaft 159 with a plurality of bearings provided in the housing 190 .
  • the rotor core 151 is formed, for example, by laminating a plurality of annular electromagnetic steel sheets.
  • Permanent magnets 152 form the field poles of rotor 150 .
  • a neodymium-based or samarium-based sintered magnet, a ferrite magnet, a neodymium-based bond magnet, or the like can be used.
  • rectangular parallelepiped magnet insertion holes 153 are formed in the vicinity of the outer peripheral portion at regular intervals in the circumferential direction. It is fixed with an agent.
  • the circumferential width of the magnet insertion hole 153 is larger than the circumferential width of the permanent magnet 152 .
  • a magnetic gap is formed between the circumferential ends of the permanent magnet 152 and the circumferential ends of the magnet insertion hole 153 .
  • An adhesive may be embedded in this magnetic gap, or it may be integrally fixed with the permanent magnet 152 with resin.
  • the magnetization direction of the permanent magnet 152 is radial, and the magnetization direction is reversed for each field pole.
  • the permanent magnet 152 that forms the next magnetic pole is magnetized on the side of the stator 130 . is magnetized to the S pole, and the surface on the shaft 159 side is magnetized to the N pole.
  • FIG. 4 a stator coil 160 is wound around the stator core 131 by distributed winding (wave winding).
  • Distributed winding is a winding method in which a phase winding is wound around the stator core 131 so that the phase winding is accommodated in two slots 133 that are spaced across a plurality of slots 133 .
  • the stator coil 160 is formed by connecting a plurality of U-shaped segment conductors 165 in a wave shape.
  • the central portion of the segment conductor 165 constitutes one coil end 162A of the stator 130 in the axial direction. Both ends of the segment conductor 165 are welded to constitute the other axial coil end 162B of the stator 130 .
  • the stator coil 160 includes coil conductors (hereinafter referred to as in-slot conductors) 161 arranged in the slots 133 of the stator core 131 and protruding outside the slots 133 from both ends of the stator core 131 . It has coil ends 162A and 162B which are arranged coil conductors.
  • the stator coil 160 has a rectangular cross section and is formed of, for example, a rectangular wire in which a conductor (conductor wire) mainly composed of copper is covered with an insulating film such as an enamel film.
  • the in-slot conductor 161 arranged in the slot 133 has a radial length (hereinafter also referred to as coil height) Hi and Ho compared to a circumferential length (hereinafter also referred to as coil width) B. small.
  • in-slot conductors 161 having a rectangular cross section are arranged in a row in the radial direction in one slot 133 . That is, in the slot 133, a plurality of in-slot conductors (coil conductors) 161 are arranged in layers in the radial direction.
  • the accommodating portions for the coil conductors in the slots 133 in which the in-slot conductors 161 are arranged are arranged in order from the inner peripheral side (slot opening side) of the slot 133 toward the outer peripheral side as the first layer L1, the second layer L2, They are called the third layer L3, the fourth layer L4, the fifth layer L5, and the sixth layer L6.
  • the coil conductors arranged on the first layer L1 and the second layer L2 of the slot 133 are referred to as a first inner diameter side coil 160ia, and the coil conductors arranged on the third layer L3 and the fourth layer L4 of the slot 133 are referred to as the second inner diameter coil 160ia.
  • the coil conductors arranged in the fifth layer L5 and the sixth layer L6 of the slot 133 are referred to as outer diameter side coils 160o. That is, the outer coil 160o is formed by a coil conductor arranged on the outer diameter side of the stator core 131, and the inner coils 160ia and 160ib are formed by coil conductors arranged on the inner diameter side of the stator core 131.
  • the coil height (thickness) Hi of the in-slot conductor 161 of the first inner diameter side coil 160ia and the second inner diameter side coil 160ib is smaller than the coil height (thickness) Ho of the in-slot conductor 161 of the outer diameter side coil 160o ( Hi ⁇ Ho).
  • An insulating material 169 is provided between the inner peripheral surface of the slot 133 and the in-slot conductor (coil conductor) 161 and between the plurality of in-slot conductors (coil conductors) 161 in the slot 133 .
  • the insulating material 169 is, for example, varnish, and is filled between the inner peripheral surface of the slot 133 and the coil conductors and between adjacent coil conductors. Note that the insulating material 169 is not limited to varnish as long as it is a non-conductive material.
  • insulating paper may be used as the insulating material 169 .
  • the slot 133 may be filled with insulating paper and then filled with varnish. Thereby, the insulation reliability of rotating electric machine 110 can be improved.
  • FIG. 5 is a connection diagram of the stator coil 160.
  • the stator coil 160 has a plurality of system windings mounted on the stator core 131 by wave winding.
  • the stator coil 160 has a first winding system 160A connected to the first inverter 171A and a second winding system 160B connected to the second inverter 171B.
  • the first system winding 160A is composed of U1, V1 and W1 phase windings
  • the second system winding 160B is composed of U2, V2 and W2 phase windings.
  • the phase windings (U1, U2, V1, V2, W1, W2 phase windings) are arranged with proper spacing from each other by the slots 133 .
  • the U1-phase winding, V1-phase winding, and W1-phase winding are connected by star connection (Y connection).
  • the U1-phase winding, the V1-phase winding, and the W1-phase winding are connected at one end to a neutral point, and connected at the other end to the first inverter 171A.
  • the U2-phase winding, the V2-phase winding, and the W2-phase winding are connected by a star connection (Y connection).
  • the U2-phase winding, the V2-phase winding, and the W2-phase winding are connected to a neutral point at one end and connected to the second inverter 171B at the other end.
  • the U1, V1, W1 phase windings and the U2, V2, W2 phase windings each consist of six winding windings.
  • the loop winding is a winding that mechanically makes one turn around stator core 131 by connecting a plurality of segment conductors 165 .
  • eight segment conductors 165 form one winding.
  • the U1-phase winding of the first winding system 160A has a plurality of winding windings u12A0, u12B0, u34A0, u34B0, u56A0, and u56B0
  • the U2-phase winding of the second winding system 160B has a winding u12A30.
  • u12B30, u34A30, u34B30, u56A30, u56B30 has a winding u12A30.
  • FIG. 6 is a schematic diagram for explaining the positions of the phase windings arranged in the slots 133 of the stator core 131.
  • 12 slots 133 are arranged at an electrical angle of 360 degrees.
  • slot number "1" to slot number "12" in FIG. 6 correspond to two poles (one magnetic pole pair).
  • the number of slots 133 for one period of electrical angle is obtained by dividing the total number of slots (48 slots) by the number of pole pairs (4 pole pairs).
  • the number of pole pairs is the number of pairs of N poles and S poles, and corresponds to the number of poles of rotating electric machine 110/2.
  • Six in-slot conductors 161 are inserted into each slot 133 .
  • a cross mark "x" indicates the direction from one side of the stator core 131 to the opposite side, and a black circle mark " ⁇ " indicates the opposite direction.
  • the circuit windings u12A0, u12B0, u34A0, u34B0, u56A0, and u56B0 that constitute the U1 phase winding and the circuit windings u12A30, u12B30, u34A30, u34B30, u56A30, and u56B30 that constitute the U2 phase winding are shown.
  • the positions of the coil conductors forming the V1-phase winding, the V2-phase winding, the W1-phase winding, and the W2-phase winding are indicated by symbols V and W representing phases.
  • the slot pitch which is the distance between adjacent slots 133, is 7.5 degrees in mechanical angle. This spatially corresponds to a phase difference of 30 electrical degrees.
  • the phase difference between adjacent slots 133 is obtained by dividing 360° by 12, which is the number of slots 133 for one electrical angle cycle.
  • the winding winding u12A0 and the winding winding u12A30 arranged in the first layer L1 and the second layer L2 have a spatial phase difference of 30 degrees in electrical angle
  • the winding winding u12B0 and the winding winding u12B30 are: It has a spatial phase difference of 30 degrees in electrical angle
  • the winding winding u34A0 and the winding winding u34A30 arranged in the third layer L3 and the fourth layer L4 have a spatial phase difference of 30 degrees in electrical angle
  • the winding winding u34B0 and the winding winding u34B30 are: It has a spatial phase difference of 30 degrees in electrical angle.
  • the winding winding u56A0 and the winding winding u56A30 arranged in the fifth layer L5 and the sixth layer L6 have a spatial phase difference of 30 degrees in electrical angle, and the winding winding u56B0 and the winding winding u56B30 are It has a spatial phase difference of 30 degrees in electrical angle.
  • the U1-phase winding and the U2-phase winding are arranged so as to have a spatial phase difference of 30 degrees in electrical angle.
  • the V1-phase winding and the V2-phase winding are arranged so as to have a spatial phase difference of 30° in electrical angle
  • the W1-phase winding and the W2-phase winding are arranged to have a spatial phase difference of 30° in electrical angle. are arranged to have
  • the first system winding 160A and the second system winding 160B are attached to the stator core 131 so as to have a spatial phase difference of 30 degrees in electrical angle.
  • the first winding system 160A is attached to the stator core 131 with a spatial phase difference of 0° from the reference phase
  • the second winding system 160B has a spatial phase difference of 30° from the reference phase. is attached to the stator core 131 at .
  • the reference phase refers to the phase of slot 133 in which first system winding 160A is mounted.
  • the spatial phase difference n° between the first system winding 160A and the second system winding 160B corresponds to 360°/(number of slots 133/number of pole pairs).
  • a first circuit C11 formed by the outer diameter side coil 160o and a second circuit C12 formed by the inner diameter side coils 160ia and 160ib. are connected in series.
  • the first circuit C11 is a series circuit in which the encircling winding u56A0 and the encircling winding u56B0 arranged in the fifth layer L5 and the sixth layer L6 of the slot 133 are connected in series.
  • the second circuit C12 is a parallel circuit in which the first series circuit Cs11 and the second series circuit Cs12 are connected in parallel.
  • the first series circuit Cs11 includes the circulating winding u12A0 arranged on the first layer L1 and the second layer L2 of the slot 133, and the circulating winding u34A0 arranged on the third layer L3 and the fourth layer L4 of the slot 133. is a series circuit in which and are connected in series.
  • the second series circuit Cs12 includes the circulating winding u12B0 arranged in the first layer L1 and the second layer L2 of the slot 133, and the circulating winding u34B0 arranged in the third layer L3 and the fourth layer L4 of the slot 133. is a series circuit in which and are connected in series.
  • the first circuit C21 formed by the outer coil 160o and the second circuit C22 formed by the inner coils 160ia and 160ib are connected in series.
  • the first circuit C21 is a series circuit in which the encircling winding u56A30 and the encircling winding u56B30 arranged in the fifth layer L5 and the sixth layer L6 of the slot 133 are connected in series.
  • the second circuit C22 is a parallel circuit in which the first series circuit Cs21 and the second series circuit Cs22 are connected in parallel.
  • the first series circuit Cs21 includes the circulating winding u12A30 arranged on the first layer L1 and the second layer L2 of the slot 133, and the circulating winding u34A30 arranged on the third layer L3 and the fourth layer L4 of the slot 133. is a series circuit in which and are connected in series.
  • the second series circuit Cs22 includes the circulating winding u12B30 arranged on the first layer L1 and the second layer L2 of the slot 133, and the circulating winding u34B30 arranged on the third layer L3 and the fourth layer L4 of the slot 133. is a series circuit in which and are connected in series.
  • the circuit configurations of the V-phase winding and the W-phase winding are the same as the circuit configuration of the U-phase winding, so description thereof will be omitted.
  • the number of winding windings arranged in the first layer L1 and the second layer L2 that constitute the first series circuit Cs11 of the U1-phase winding, and the first layer L1 and the second layer that constitute the second series circuit Cs12 The number of winding windings arranged in the eye L2 is the same. Also, the number of winding windings arranged in the third layer L3 and the fourth layer L4 that constitute the first series circuit Cs11 of the U1-phase winding, and the third layer L3 and L3 that constitute the second series circuit Cs12 The number of winding windings arranged in the fourth layer L4 is the same.
  • the number of circling windings arranged in the first layer L1 and the second layer L2 forming the first series circuit Cs21 of the U2-phase winding and the number of the first layer L1 forming the second series circuit Cs22 and the number of winding windings arranged in the second layer L2 are the same.
  • the number of winding windings arranged in the third layer L3 and the fourth layer L4 that constitute the first series circuit Cs21 of the U2-phase winding, the third layer L3 that constitutes the second series circuit Cs22 and The number of winding windings arranged in the fourth layer L4 is the same.
  • the second layer when the first layer, the second layer, .
  • the number of windings is the same.
  • the round winding that constitutes the U1-phase winding is formed by connecting four wavy coils that are formed by connecting two U-shaped segment conductors 165 .
  • the number of wavy coils arranged on the s, s+1-th layers constituting the first series circuit Cs11 and the number of wavy coils arranged on the s, s+1-th layers constituting the second series circuit Cs12 are can be said to match. Thereby, it is possible to prevent a circulating current from being generated in the second circuit C12, which is a parallel circuit.
  • the number of winding windings arranged in the s, s+1-th layer (s is an odd number from 1 to m) constituting the first series circuit Cs21, and the number of windings s, constituting the second series circuit Cs22
  • the number of winding windings arranged on the s+1-th layer is the same.
  • the round winding that constitutes the U2-phase winding is formed by connecting four wavy coils formed by connecting two U-shaped segment conductors 165 .
  • the number of wavy coils arranged on the s, s+1-th layers constituting the first series circuit Cs21 and the number of wavy coils arranged on the s, s+1-th layers constituting the second series circuit Cs22 are can be said to match.
  • a parallel circuit (second circuit) of the V1, V2, W1 and W2 phases which have the same circuit configuration as the U1 and U2 phases, the occurrence of circulating current can be prevented.
  • connection structure between the first circuits C11, C21 and the second circuits C12, C22 will be described with reference to FIG. Since the connection structure between the first circuit C11 and the second circuit C12 of the U1 phase winding and the connection structure of the first circuit C21 and the second circuit C22 of the U2 phase winding are the same, the first circuit of the U1 phase winding
  • the connection structure between C11 and the second circuit C12 will be described as a representative.
  • connection conductor 168 is formed of, for example, a rectangular copper plate, and is connected to the lead wire of the first circuit C11 and the lead wire of the second circuit C12 by welding or the like.
  • the thickness of the coil conductor of the first circuit C11 is different from the thickness of the coil conductor of the second circuit C12 (coil height Hi) (see FIG. 3). It is difficult to weld coil conductors of different thicknesses directly by butt welding.
  • connection conductor 168 is welded to each of the side surface of the lead wire of the first circuit C11 and the side surface of the lead wire of the second circuit C12. That is, the connection conductor 168 and the first circuit C11 are connected via the weld, and the connection conductor 168 and the second circuit C12 are connected via the weld.
  • the first circuit C11 and the second circuit C12 can be easily connected by connecting the first circuit C11 and the second circuit C12 through the connection conductor 168 instead of connecting them directly. Therefore, the manufacturing cost of rotating electric machine 110 can be reduced.
  • the connection conductor 168 is not limited to a copper plate, and may be a conductive member such as a lead wire.
  • the induced voltages generated in the U1-phase winding and the U2-phase winding will be described with reference to FIG.
  • the induced voltage is generated due to the magnetic flux interlinking the coil.
  • induced voltages Vu12 ⁇ 0° spatially in phase with the reference phase are generated in the loop windings u12A0 and u12B0, and in the loop windings u34A0 and u34B0, the reference phase
  • An induced voltage Vu34 ⁇ 0° whose phase matches the reference phase is generated in the winding windings u56A0 and u56B0.
  • An induced voltage Vu56 ⁇ 30° having a phase difference is generated.
  • a similar induced voltage is also generated in the winding windings that constitute the V1-phase winding, the V2-phase winding, the W1-phase winding, and the W2-phase winding.
  • the drive device 170 applies a voltage with a temporal phase difference of 0° to the first system winding 160A with a spatial phase difference of 0°, and applies a voltage with a temporal phase difference of 0° to the second system winding with a spatial phase difference of n°.
  • a voltage with a temporal phase difference of n° is applied to the line 160B. Therefore, the circuit formed by the first system winding 160A and the circuit formed by the second system winding 160B are balanced in voltage, so that the generation of circulating current can be prevented.
  • the circuit connected to the second inverter 171B is spatially 30° and temporally 30° ahead of the circuit connected to the first inverter 171A.
  • FIG. 9 is a diagram for explaining the difference in configuration and effect between a circuit having in-slot conductors 161 with the same thickness and a circuit having in-slot conductors 161 with different thicknesses.
  • the circuit shown on the upper side of FIG. 9 (hereinafter referred to as a first reference circuit Cr1) has a configuration in which two system windings are connected in parallel, and four in-slot conductors 161 having a thickness t are arranged in a stator core 131. ing.
  • a large AC copper loss occurs in the first layer L1 and the second layer L2.
  • the AC copper loss increases as the coil conductor is arranged on the inner diameter side.
  • the circuit shown on the lower side of FIG. and four in-slot conductors 161 having a thickness of t/2 are arranged.
  • the total cross-sectional area of the insulating coating of the coil conductors in the slot 133 increases as the number of the in-slot conductors 161 increases. Therefore, in the second reference circuit Cr2, the cross-sectional area of the conductor decreases by the increase in the cross-sectional area of the insulating coating. As a result, the electrical resistance of the coil conductor increases, which increases DC copper loss. However, the amount of increase in DC copper loss is smaller than the amount of reduction in AC copper loss. Therefore, the total copper loss can be reduced in the second reference circuit Cr2 as compared with the first reference circuit Cr1. Moreover, the copper loss of each coil conductor can be leveled.
  • the thickness of the in-slot conductors 161 of the inner coils 160ia and 160ib is half the thickness of the in-slot conductors 161 of the outer coil 160o (see FIG. 3). can get.
  • the first reference circuit Cr1 has a 2Y connection, and the current supplied to each phase winding is 200A, which is half of the current 400A of the power supply.
  • the thickness of the in-slot conductor 161 on the inner diameter side is t/2. Therefore, in order to make the current density of the winding formed by the inner diameter side coils 160ia and 160ib equivalent to that of the outer diameter side coil 160o, the current flowing through the inner diameter side coils 160ia and 160ib is reduced to 100 A, which is 1/4. There is a need. Therefore, in the second reference circuit Cr2, the parallel circuit Cp is formed by connecting the circuits Ci formed by the inner diameter side coils 160ia and 160ib in parallel.
  • the third reference circuit Cr3 includes a series circuit in which a plurality of circular windings Cw12 arranged on the first layer L1 and the second layer L2 are connected in series, and a plurality of windings arranged on the third layer L3 and the fourth layer L4.
  • a parallel circuit Cp3 is connected in parallel with a series circuit in which the winding windings Cw34 of are connected in series.
  • the teeth 134 When the slots 133 are parallel slots, the teeth 134 have a tapered shape in which the width in the circumferential direction decreases from the core back 135 toward the rotation center axis Ca.
  • the magnetic saturation is different because the teeth 134 have different widths in the circumferential direction.
  • the magnetic flux is easier to pass through and the induced voltage increases.
  • the induced voltage Vu12 generated in the windings arranged in the first layer L1 and the second layer L2 the induced voltage Vu34 generated in the windings arranged in the third layer L3 and the fourth layer L4, and
  • the magnitude relationship of the induced voltage Vu56 generated in the loop windings arranged in the fifth layer L5 and the sixth layer L6 is Vu56>Vu34>Vu12. Therefore, in the third reference circuit Cr3, a voltage imbalance occurs in the parallel circuit Cp3, and a circulating current is generated.
  • the circuit shown on the lower side of FIG. 10 (hereinafter referred to as the fourth reference circuit Cr4) has the same configuration as the second reference circuit Cr2.
  • the fourth reference circuit Cr4 is a series circuit in which the circular windings Cw12 arranged on the first layer L1 and the second layer L2 and the circular windings Cw34 arranged on the third layer L3 and the fourth layer L4 are connected in series. have a parallel circuit Cp4 connected in parallel.
  • the configuration of the parallel circuit Cp4 formed by the U1-phase winding will be described below as a representative.
  • the number of winding windings Cw12 arranged in the first layer L1 and the second layer L2 of one of the series circuits constituting the parallel circuit Cp4 and the number of the other series circuit constituting the parallel circuit Cp4 are The number of winding windings Cw12 arranged in the first layer L1 and the second layer L2 is the same.
  • the number of winding windings Cw34 arranged in the third layer L3 and the fourth layer L4 of one of the series circuits constituting the parallel circuit Cp4 and the number of the winding windings Cw34 arranged in the other series circuit constituting the parallel circuit Cp4 is the same.
  • the circuit configurations of the U2-phase winding, the V1-phase winding, the V2-phase winding, the W1-phase winding, and the W2-phase winding are similar to that of the U1-phase winding.
  • the fourth reference circuit Cr4 the voltage in the parallel circuit Cp4 formed by the inner diameter side coils 160ia and 160ib is balanced, thereby preventing the generation of circulating current. Since the second circuits C12 and C22 (see FIG. 5) according to the present embodiment have the same configuration as the parallel circuit Cp4 of the fourth reference circuit Cr4, similar effects can be obtained.
  • FIG. 11 a circuit in which a circulating current is generated between the first system winding and the second system winding, and a circuit in which a circulating current is generated between the first system winding and the second system winding.
  • Prevented circuits are described.
  • a parallel circuit in which a circuit of the first system winding 160Ac with a spatial phase of 0° and a circuit of the second system winding 160Bc with a spatial phase of 30° are connected in parallel. is formed. Therefore, a voltage imbalance occurs between the circuit formed by the first system winding 160Ac and the circuit formed by the second system winding 160Bc, and a circulating current is generated.
  • the circuit by the first system winding 160A with a spatial phase of 0° and the circuit by the second system winding 160B with a spatial phase of 30° are provided. Independent and each connected to a different inverter.
  • a temporal phase difference of 30° is given to the power supply voltage applied to the second system winding 160B having a spatial phase of 30°.
  • the voltages of the circuit formed by the first system winding 160A and the voltage of the circuit formed by the second system winding 160B are balanced, so that the occurrence of circulating current can be prevented. That is, it is possible to prevent a current difference from occurring between the circuit formed by the first system winding 160A and the circuit formed by the second system winding 160B.
  • the electric drive system 10 includes a rotating electrical machine 110 and a driving device 170 that supplies electric power to the rotating electrical machine 110 .
  • Rotating electric machine 110 has a stator 130 and a rotor 150 rotatably arranged on the inner peripheral side of stator 130 .
  • the stator 130 has a stator coil 160 made of a rectangular wire and a stator core 131 having a plurality of slots 133 in which the stator coils 160 are arranged.
  • the stator coil 160 has a plurality of system windings mounted on the stator core 131 by wave winding.
  • the plurality of system windings include a first system winding 160A attached to stator core 131 with a spatial phase difference of 0° from the reference phase, and a second system winding 160A attached to stator core 131 with a spatial phase difference of n° from the reference phase.
  • the first winding system 160A and the second winding system 160B are respectively formed by the first circuits C11 and C21 formed by the coil conductors on the outer diameter side of the stator core 131 and by the coil conductors on the inner diameter side of the stator core 131.
  • the second circuits C12 and C22 which are parallel circuits, are connected in series.
  • the coil conductors on the inner diameter side are thinner (coil height) than the coil conductors on the outer diameter side (in-slot conductors 161 of outer diameter side coil 160o).
  • the driving device 170 has a first inverter 171A connected to the first system winding 160A and a second inverter 172 connected to the second system winding 160B.
  • the driving device 170 applies voltages to the first system winding 160A and the second system winding 160B with a temporal phase difference of n°.
  • System windings 160A and 160B have a plurality of winding windings.
  • a plurality of coil conductors are radially arranged in layers in the slot 133 .
  • the second circuits C12 and C22 include first series circuits Cs11 and Cs21 in which a plurality of winding windings are connected in series and second series circuits Cs12 and Cs22 in which a plurality of winding windings are connected in series. connected in parallel.
  • the number of winding windings arranged in the s, s+1-th layers (s is an odd number from 1 to m) constituting the circuits Cs11, Cs21, and the s, s+1-th layers constituting the second series circuits Cs12, Cs22 The number of round windings arranged in .
  • ⁇ Modification 1-1> For example, as shown in FIG. 12, six coil conductors of the U1 phase winding are arranged in one of the adjacent slots 133 (slot number "1"), and the other of the adjacent slots 133 (slot number "2") is arranged. ), six coil conductors of U2 phase winding may be arranged. In this case, six in-phase coil conductors are arranged in the same slot 133 in the V-phase winding and the W-phase winding as well.
  • the magnetic flux center axis of the stator coil 160 (outer diameter side coil 160o) forming the first circuits C11 and C21 and the magnetic flux center axis of the stator coil 160 forming the second circuits C12 and C22 are aligned. Match.
  • the coil conductors of the fifth and sixth layers may be shifted by one slot with respect to the arrangement configuration shown in FIG. .
  • the magnetic flux center axis Cm1 of the stator coil 160 (outer diameter side coil 160o) that constitutes the first circuits C11 and C21 and the magnetic flux center axis Cm2 of the stator coil 160 that constitutes the second circuits C12 and C22 are It electrically has a phase difference of 30°.
  • the torque waveform diagram on the left side of FIG. 14 is a torque waveform diagram of the rotating electrical machine 110 according to the modification 1-1
  • the torque waveform diagram on the right side of FIG. 14 is the torque waveform of the rotating electrical machine 110 according to the modification 1-2. It is a diagram.
  • motor housing 191 that houses the rotating electric machine 110 and the inverter housing 197 that houses the drive device 170 are integrated by being fastened by the fastening member 17 .
  • the motor housing 191 that accommodates the rotary electric machine 110 and the inverter housing 197 that accommodates the driving device 170 may be integrally formed.
  • motor housing 191 and inverter housing 197 can be formed as one structure by casting or die casting. According to this configuration, the work of fastening the motor housing 191 and the inverter housing 197 with the fastening member 17 is not required, so the number of assembly man-hours of the electric drive system 10 can be reduced.
  • the electric drive system 10 may be configured to include three or more system windings and three or more inverters individually connected to each system winding.
  • the number of slots NSPP per phase per pole of rotating electric machine 110 matches the number of inverters. In the rotating electric machine 110 having the number of slots per pole per phase NSPP of 2, a highly efficient electric drive system 10 including two inverters and two system windings can be obtained.
  • an electric drive system having three inverters and three system windings can be obtained.
  • a rotating electrical machine of an electric drive system including three inverters and three system windings individually connected to each inverter can employ, for example, a configuration with 72 slots and 8 magnetic poles.
  • the electric drive system 10 mounted on an automobile has been described as an example, but the present invention is not limited to this.
  • the present invention can be applied to various moving bodies such as elevators, railway vehicles, and the like, which generate driving force by rotating electric machines. It should be noted that the electric drive system is not limited to being mounted on a moving body.
  • Control circuit (control device) , 179... Power storage device (power supply device) 190... Case 191... Motor housing 197... Inverter housing 198... Gear housing C11... First circuit C12... Second circuit C21... First circuit C22... Second circuit, Ca... rotation center axis, Cm1, Cm2... magnetic flux center axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電動駆動システムは、回転電機と駆動装置を備える。回転電機のステータコイルは、基準位相と空間的に位相差0°でステータコアに装着される第1系統巻線(160A)と、基準位相と空間的に位相差n°でステータコアに装着される第2系統巻線(160B)とを有する。第1、第2系統巻線(160A,160B)は、それぞれ、外径側コイルにより形成される第1回路(C11,C21)と、外径側コイルよりも厚みが小さい内径側コイルにより形成される並列回路である第2回路(C12,C22)とが直列に接続される。駆動装置は、第1、第2系統巻線(160A,160B)に接続される第1、第2インバータ(171A,171B)を有し、第1、第2系統巻線(160A,160B)に対し、時間的にn°の位相差で電圧を印加する。

Description

電動駆動システム
 本発明は、電動駆動システムに関する。
 ステータとロータを備え、ステータコイルに電力を供給することで回転磁界を発生させ、この回転磁界によってロータを回転させる回転電機が知られている(特許文献1参照)。特許文献1には、ヘリカル巻シート状コイルが、シート厚さ方向に複数枚積層されて電気的に接続された3相回転電機のステータコイルが開示されている。ヘリカル巻シート状コイルは、コイル導体が、ヘリカル状につながり波巻き構成となるようにステータコアに巻装されている。
 複数枚のヘリカル巻シート状コイルは、ヘリカル巻シート状コイル間において同相の相コイルが直列接続されている直列接続部と、ヘリカル巻シート状コイル間において同相の相コイルが並列接続されている並列接続部と、を有する。特許文献1に記載の回転電機では、ロータ近辺のコイル導体に発生する交流銅損を低減することにより、回転電機の高効率化を図るために、ロータに近接する並列接続部のコイル導体の導体断面積が、直列接続部のコイル導体の導体断面積の並列数分の1とされている。
特開2014-090615号公報
 回転電機を駆動する電動駆動システムでは、ステータコイルによって並列回路が形成される場合に、循環電流に起因した損失が発生することがある。このため、並列回路が形成される場合には、循環電流の発生を防止することが重要である。
 本発明は、交流銅損を低減し、かつ循環電流の発生を防止することにより、高効率の電動駆動システムを提供することを目的とする。
 本発明の一態様による電動駆動システムは、ステータと前記ステータの内周側に回転可能に配置されるロータとを有する回転電機と、前記回転電機に電力を供給する駆動装置と、を備える。前記ステータは、平角線からなるステータコイルと、前記ステータコイルが配置される複数のスロットを有するステータコアと、を有する。前記ステータコイルは、前記ステータコアに波巻きで装着される複数の系統巻線を有する。前記複数の系統巻線は、基準位相と空間的に位相差0°で前記ステータコアに装着される第1系統巻線と、前記基準位相と空間的に位相差n°で前記ステータコアに装着される第2系統巻線と、を有する。前記n°は、360°/(前記スロットの数/極対数)である。前記第1系統巻線及び前記第2系統巻線は、それぞれ、前記ステータコアの外径側のコイル導体により形成される第1回路と、前記ステータコアの内径側のコイル導体により形成される並列回路である第2回路と、が直列に接続される。前記内径側のコイル導体は、前記外径側のコイル導体よりも厚みが小さい。前記駆動装置は、前記第1系統巻線に接続される第1インバータと、前記第2系統巻線に接続される第2インバータと、を有する。前記駆動装置は、前記第1系統巻線及び前記第2系統巻線に対し、時間的に前記n°の位相差で電圧を印加する。
 本発明によれば、交流銅損を低減し、かつ循環電流の発生を防止することにより、高効率の電動駆動システムを提供することができる。
図1は電動駆動システムの構成を示す図である 図2は電動駆動システムの側面断面模式図である。 図3は回転電機の一部を示す平面断面模式図である 図4はステータの斜視図であり、ステータの一端側を示す。 図5はステータコイルの結線図である。 図6はステータコアのスロット内に配置される相巻線の位置を説明するための模式図である。 図7は第1回路と第2回路の接続構造について説明する図である。 図8はU1相巻線及びU2相巻線に発生する誘起電圧について説明する図である。 図9は、同じ厚みのスロット内導体を有する回路と、異なる厚みのスロット内導体を有する回路との構成及び効果の違いについて説明する図である。 図10は、循環電流が発生する並列回路Cp3と、循環電流の発生が防止された並列回路Cp4について説明する図である。 図11は、第1系統巻線と第2系統巻線との間で循環電流が発生する回路と、第1系統巻線と第2系統巻線との間で循環電流の発生が防止された回路について説明する図である。 図12は、本実施形態の変形例1-1に係るステータコイルの配置構成について示す図である。 図13は、本実施形態の変形例1-2に係るステータコイルの配置構成について示す図である。 図14は、本実施形態の変形例1-1及び変形例1-2に係る回転電機のトルク波形図である。 図15は、本実施形態の変形例2に係る電動駆動システムの側面断面模式図である。
 図面を参照して、本発明の実施形態に係る電動駆動システムについて説明する。本実施形態に係る電動駆動システムは、自動車の走行の駆動源として用いることが好適な電動駆動システムである。本実施形態に係る電動駆動システムは、例えば、エンジンと回転電機の双方によって駆動されるハイブリッド型の電気自動車、回転電機のみによって走行する純粋な電気自動車に適用できる。
 図1は電動駆動システム10の構成を示す図であり、図2は電動駆動システム10の側面断面模式図である。図1及び図2に示すように、電動駆動システム10は、回転電機110と、回転電機110に電力を供給する駆動装置170と、を備える。図1に示すように、駆動装置170は、蓄電装置179と、第1インバータ171Aと、第2インバータ171Bと、制御回路基板175と、駆動回路基板173A,173Bと、回転電機110の電流を検出する電流センサ172A,172Bとを備えている。
 蓄電装置179は、キャパシタ、あるいはリチウムイオン電池、ニッケル水素電池などの二次電池で構成され、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力を出力する電源装置である。蓄電装置179は、力行走行時には回転電機110に電力を供給し、回生走行時には回転電機110から電力を受ける。蓄電装置179と回転電機110との間の電力の授受は、電力変換装置である第1インバータ171A及び第2インバータ171Bを介して行われる。
 回転電機110による回転トルクは、変速機180(図2参照)とデファレンシャルギア(不図示)を介して車輪に伝達され、電気自動車(車両とも記す)が走行する。駆動装置170は、統合制御装置(不図示)からのトルク指令に基づき、指令通りのトルク出力あるいは発電電力が発生するように回転電機110を制御する。
 第1インバータ171A及び第2インバータ171Bは、複数のパワー半導体素子を有する。駆動装置170は、統合制御装置(不図示)からの指令に基づきパワー半導体素子のスイッチング動作を制御する。パワー半導体素子のスイッチング動作により、回転電機110は電動機としてあるいは発電機として運転される。第1インバータ171A及び第2インバータ171Bは、DC電圧からパワー半導体素子のスイッチング動作(オン・オフ)により矩形波を生成し、模擬的に交流電圧を生成する。駆動装置170は、パワー半導体素子のスイッチング動作の周期やタイミングを制御することにより、交流電圧の大きさや周波数を制御する。
 第1インバータ171Aと第2インバータ171Bとは同一の蓄電装置(電源装置)179に接続されている。つまり、第1インバータ171Aと第2インバータ171BのDCリンク電圧が共有化されている。この構成では、1つの蓄電装置179のDCリンク電圧から、2つのインバータ171A,171Bによって2つの電圧を出力することができる。また、DCリンク電圧を共有化することにより、電動駆動システム10を低コスト化できる。
 回転電機110を電動機として運転する場合は、蓄電装置179からの直流電力が第1インバータ171A及び第2インバータ171Bの直流端子に供給される。駆動装置170は、パワー半導体素子のスイッチング動作を制御して供給された直流電力を3相交流電力に変換し、回転電機110に供給する。一方、回転電機110を発電機として運転する場合には、回転電機110のロータが外部から加えられる回転トルクで回転駆動され、ステータコイルに3相交流電力が発生する。発生した3相交流電力は駆動装置170で直流電力に変換され、その直流電力が蓄電装置179に供給されることにより、蓄電装置179が充電される。
 駆動回路基板173Aには、第1インバータ171Aのパワー半導体素子のスイッチング動作を制御する駆動回路174Aが設けられている。駆動回路基板173Bには、第2インバータ171Bのパワー半導体素子のスイッチング動作を制御する駆動回路174Bが設けられている。
 制御回路基板175には、駆動回路174A,174Bに制御信号を出力する制御回路176が設けられている。駆動回路174A,174Bは、制御回路176から出力された制御信号に基づいて、パワー半導体素子を駆動させるための駆動信号を発生する。
 制御回路176は各インバータ171A,171Bを制御する制御装置を構成している。制御回路176は、複数のパワー半導体素子を動作(オン・オフ)させるための制御信号(制御値)を演算するマイクロコンピュータによって構成される。制御回路176には、統合制御装置(不図示)からのトルク指令信号(トルク指令値)、電流センサ172A,172Bのセンサ出力、回転電機110に搭載された回転センサ(不図示)のセンサ出力が入力される。制御回路176は、それらの入力信号に基づいて制御値を演算し、駆動回路174A,174Bにパワー半導体素子のスイッチング動作を制御するための制御信号(指令)を出力する。
 制御回路176、第1インバータ171Aと第2インバータ171Bとで共通に使用される。つまり、第1インバータ171Aと第2インバータ172には同一の制御回路(制御装置)176からの指令が入力される。制御回路176を共通化することにより、電動駆動システム10を低コスト化できる。
 図2を参照して、電動駆動システム10の構造について説明する。図2に示すように、電動駆動システム10は、回転電機110と、駆動装置170と、変速機180と、それらを収容する筐体190と、を備える。
 筐体190は、回転電機110を収容するモータハウジング191と、駆動装置170を収容するインバータハウジング197と、変速機180を収容するギヤハウジング198と、を有する。モータハウジング191とインバータハウジング197とは、ボルト、ナット等の締結部材17によって締結されることにより一体化されている。回転電機110と駆動装置170が1パッケージ化されているため、回転電機110と駆動装置170を個別に車両へ取り付ける場合に比べて、車両への取付作業を向上できる。また、回転電機110と駆動装置170とを別々に配置させる場合に比べてケーブルを省略することができる。これにより、電動駆動システム10の軽量化を図ることができ、さらにノイズを低減することもできる。
 ギヤハウジング198は、図示しない締結部材によりモータハウジング191に締結される。
 回転電機110は、例えば、永久磁石埋込型の三相同期電動発電機である。回転電機110は、モータハウジング191に固定された円筒状のステータ130と、ステータ130の内周側に隙間をあけて回転可能に配置される円筒状のロータ150とを有する。なお、以下の説明において、「軸方向」、「周方向」、「径方向」とは、次のとおりである。「軸方向」とは、回転電機110(ロータ150)の回転中心軸Caに沿う方向である。なお、回転中心軸Caは、ステータ130の中心軸と一致する。「周方向」とは、回転電機110の回転方向(ロータ150の回転方向)に沿う方向、すなわち軸方向に直交しかつ回転中心軸Caを中心とする円周方向である。「径方向」とは、回転電機110の回転中心軸Ca及び周方向に直交する方向、すなわち半径方向である。また、「内周側」は径方向内側(内径側)を指し、「外周側」はその逆方向、すなわち径方向外側(外径側)のことを指す。
 図3及び図4を参照して、ステータ130について説明する。図3は回転電機110の一部を示す平面断面模式図であり、図4はステータ130の斜視図であり、ステータ130の一端側を示す。図3及び図4に示すように、ステータ130は、円筒状のステータコア131と、ステータコア131に装着されるステータコイル160とを有する。ステータコア131は、例えば、円環形状の電磁鋼板を複数枚積層することにより形成される。ステータコア131は、モータハウジング191(図2参照)の内側に嵌合固定される。
 ステータコア131の内周部には、ステータコア131の中心軸方向に平行な複数(本実施形態では48個)のスロット133が形成される。スロット133は、ステータコア131の径方向に沿って互いに平行な側面を有する半閉平行スロットである。つまり、スロット133は、外周端からティース134の鍔部まで一定の周方向幅を有する。スロット133には、ステータコイル160を構成するU相、V相、W相の複数の相巻線が配置される。複数のスロット133は、ステータコア131の円周方向に等間隔で形成される。
 スロット133間にはティース134が形成される。複数のティース134は環状のコアバック135から回転中心軸Caに向かって突出するように形成されている。ティース134は径方向の磁路を形成し、コアバック135は周方向の磁路を形成する。ティース134は、ステータコイル160によって発生した回転磁界をロータ150に導き、ロータ150に回転トルクを発生させる。
 図2及び図3を参照して、ロータ150について説明する。図2及び図3に示すように、ロータ150は、ロータコア151と、ロータコア151に固定される複数の永久磁石152と、ロータコア151の貫通孔に固定されるシャフト159とを備える。図2に示すように、シャフト159が筐体190に設けられた複数の軸受によって支承されることにより、ロータ150がステータコア131の内側で回転可能に保持される。
 ロータコア151は、例えば、円環形状の電磁鋼板を複数枚積層することにより形成される。永久磁石152は、ロータ150の界磁極を形成する。永久磁石152には、ネオジウム系、サマリウム系の焼結磁石、フェライト磁石、ネオジウム系のボンド磁石などを用いることができる。
 図3に示すように、ロータコア151には、直方体形状の磁石挿入孔153が外周部近傍において周方向に等間隔で形成されており、各磁石挿入孔153には永久磁石152が埋め込まれ、接着剤などで固定されている。磁石挿入孔153の周方向の幅は、永久磁石152の周方向の幅よりも大きい。永久磁石152の周方向両端と磁石挿入孔153の周方向両端との間には磁気的空隙が形成される。この磁気的空隙には接着剤を埋め込んでもよいし、樹脂で永久磁石152と一体に固めてもよい。
 永久磁石152の磁化方向は径方向を向いており、界磁極毎に磁化方向の向きが反転している。つまり、ある磁極を形成するための永久磁石152のステータ130側の面がN極、シャフト159側の面がS極に磁化されていたとすると、隣の磁極を形成する永久磁石152のステータ130側の面はS極、シャフト159側の面はN極に磁化されている。
 図3~図7を参照してステータコイル160について説明する。図4に示すように、ステータコア131には、ステータコイル160が分布巻き(波巻き)で巻き回されている。分布巻きとは、複数のスロット133を跨いで離間した二つのスロット133に相巻線が収納されるように、相巻線がステータコア131に巻かれる巻線方式である。
 ステータコイル160は、U字形状の複数のセグメント導体165が波状に接続されることで形成される。セグメント導体165は、中央部がステータ130の軸方向一方のコイルエンド162Aを構成する。セグメント導体165の両側の端部は、溶接されてステータ130の軸方向他方のコイルエンド162Bを構成する。
 図3及び図4に示すように、ステータコイル160は、ステータコア131のスロット133内に配置されるコイル導体(以下、スロット内導体と記す)161と、ステータコア131の両端からスロット133外に突出して配置されるコイル導体であるコイルエンド162A,162Bとを有する。ステータコイル160は、断面が矩形状であり、例えば、銅を主成分とした導体(導線)にエナメル被膜等の絶縁被膜が覆われた平角線により形成される。スロット133内に配置されるスロット内導体161は、その径方向の長さ(以下、コイル高さとも記す)Hi,Hoが、その周方向の長さ(以下、コイル幅とも記す)Bに比べて小さい。
 図3のスロット拡大図に示すように、1つのスロット133内に、矩形断面を有する6本のスロット内導体161が径方向に1列に並んで配置されている。つまり、スロット133には、複数のスロット内導体(コイル導体)161が、径方向に層状に配置されている。以下、各スロット内導体161が配置されるスロット133内のコイル導体の収容部を、スロット133の内周側(スロット開口側)から外周側に向かって順に1層目L1、2層目L2、3層目L3、4層目L4、5層目L5、6層目L6と称する。
 スロット133の1層目L1及び2層目L2に配置されるコイル導体を第1内径側コイル160iaと記し、スロット133の3層目L3及び4層目L4に配置されるコイル導体を第2内径側コイル160ibと記し、スロット133の5層目L5及び6層目L6に配置されるコイル導体を外径側コイル160oと記す。つまり、外径側コイル160oは、ステータコア131の外径側に配置されるコイル導体により形成され、内径側コイル160ia,160ibは、ステータコア131の内径側に配置されるコイル導体により形成される。
 第1内径側コイル160ia及び第2内径側コイル160ibのスロット内導体161のコイル高さ(厚み)Hiは、外径側コイル160oのスロット内導体161のコイル高さ(厚み)Hoよりも小さい(Hi<Ho)。本実施形態では、第1内径側コイル160ia及び第2内径側コイル160ibのスロット内導体161のコイル高さ(厚み)Hiは、外径側コイル160oのスロット内導体161のコイル高さ(厚み)Hoの半分である(Hi=(1/2)Ho)。
 スロット133の内周面とスロット内導体(コイル導体)161との間、及び、スロット133内の複数のスロット内導体(コイル導体)161同士の間には、絶縁材169が設けられている。絶縁材169は、例えば、ワニスであり、スロット133の内周面とコイル導体との間及び隣接するコイル導体間に充填される。なお、絶縁材169は、非導電性の物質であればよく、ワニスに限定されない。例えば、絶縁材169には、絶縁紙を採用してもよい。スロット133内に絶縁紙を設けた上でワニスを充填してもよい。これにより、回転電機110の絶縁信頼性を向上することができる。
 図5はステータコイル160の結線図である。ステータコイル160は、ステータコア131に波巻きで装着される複数の系統巻線を有している。本実施形態では、ステータコイル160は、第1インバータ171Aに接続される第1系統巻線160Aと、第2インバータ171Bに接続される第2系統巻線160Bとを有している。第1系統巻線160Aは、U1,V1,W1の相巻線で構成され、第2系統巻線160Bは、U2,V2,W2の相巻線で構成される。各相巻線(U1,U2,V1,V2,W1,W2相巻線)は、スロット133によって相互に適正な間隔をもって配列される。
 U1相巻線、V1相巻線、W1相巻線は、スター結線(Y結線)により接続される。U1相巻線、V1相巻線及びW1相巻線は、一端側が中性点で接続され、他端側が第1インバータ171Aに接続される。U2相巻線、V2相巻線、W2相巻線は、スター結線(Y結線)により接続される。U2相巻線、V2相巻線及びW2相巻線は、一端側が中性点で接続され、他端側が第2インバータ171Bに接続される。
 U1,V1,W1相巻線及びU2,V2,W2相巻線はそれぞれ6つの周回巻線で構成されている。周回巻線は、複数のセグメント導体165が接続されることにより、ステータコア131を機械的に1周する巻線である。本実施形態では、8つのセグメント導体165によって1つの周回巻線が形成される。例えば、第1系統巻線160AのU1相巻線は複数の周回巻線u12A0,u12B0,u34A0,u34B0,u56A0,u56B0を有し、第2系統巻線160BのU2相巻線は周回巻線u12A30,u12B30,u34A30,u34B30,u56A30,u56B30を有している。
 図6はステータコア131のスロット133内に配置される相巻線の位置を説明するための模式図である。本実施形態では、電気角360度にスロット133が12個配置されており、例えば、図6のスロット番号「1」からスロット番号「12」までが2極分(1磁極対分)に相当する。電気角1周期分のスロット133の数は、全スロット数(48スロット)を極対数(4極対)で割ることにより求められる。なお、極対数とは、N極とS極のペアの個数であり、回転電機110の極数/2に相当する。
 回転電機110の毎極スロット数は6であり、毎極毎相スロット数NSPPは2(NSPP=スロット数/極数/相数=48スロット/8極/3相=6/3)である。各スロット133には、スロット内導体161が6本ずつ挿通されている。図中、ステータコア131の一方側から反対側への方向を示すクロス印「×」、その逆の方向を示す黒丸印「●」をそれぞれ記した。なお、図6では、U1相巻線を構成する周回巻線u12A0,u12B0,u34A0,u34B0,u56A0,u56B0及びU2相巻線を構成する周回巻線u12A30,u12B30,u34A30,u34B30,u56A30,u56B30について示し、V1相巻線、V2相巻線、W1相巻線及びW2相巻線を構成するコイル導体の位置については、相を表す符号V,Wを示す。
 回転電機110はスロット133の数が48であるため、隣接するスロット133間の距離であるスロットピッチは、機械角で7.5°である。これは、空間的に電気角30°の位相差に相当する。隣接するスロット133間の位相差は、360°を電気角1周期分のスロット133の数である12で割ることで求められる。
 1層目L1及び2層目L2に配置される周回巻線u12A0と周回巻線u12A30とは、空間的に電気角30°の位相差を持ち、周回巻線u12B0と周回巻線u12B30とは、空間的に電気角30°の位相差を持つ。3層目L3及び4層目L4に配置される周回巻線u34A0と周回巻線u34A30とは、空間的に電気角30°の位相差を持ち、周回巻線u34B0と周回巻線u34B30とは、空間的に電気角30°の位相差を持つ。5層目L5及び6層目L6に配置される周回巻線u56A0と周回巻線u56A30とは、空間的に電気角30°の位相差を持ち、周回巻線u56B0と周回巻線u56B30とは、空間的に電気角30°の位相差を持つ。
 このように、U1相巻線とU2相巻線は空間的に電気角30°の位相差を持つように配置される。同様に、V1相巻線とV2相巻線は空間的に電気角30°の位相差を持つように配置され、W1相巻線とW2相巻線は空間的に電気角30°の位相差を持つように配置される。
 本実施形態では、第1系統巻線160Aと第2系統巻線160Bが、空間的に電気角30°の位相差を持つように、ステータコア131に装着されている。別の言い方をすれば、第1系統巻線160Aは、基準位相と空間的に位相差0°でステータコア131に装着され、第2系統巻線160Bは、基準位相と空間的に位相差30°でステータコア131に装着されている。ここで、基準位相とは、第1系統巻線160Aが装着されるスロット133の位相のことを指す。第1系統巻線160Aと第2系統巻線160Bの空間的な位相差n°は、360°/(スロット133の数/極対数)に相当する。
 図5に示すように、第1系統巻線160AのU1相巻線において、外径側コイル160oによって形成される第1回路C11と、内径側コイル160ia,160ibによって形成される第2回路C12とは直列に接続されている。第1回路C11は、スロット133の5層目L5及び6層目L6に配置される周回巻線u56A0と周回巻線u56B0とが直列に接続された直列回路である。第2回路C12は、第1の直列回路Cs11と第2の直列回路Cs12とが並列に接続された並列回路である。第1の直列回路Cs11は、スロット133の1層目L1及び2層目L2に配置される周回巻線u12A0と、スロット133の3層目L3及び4層目L4に配置される周回巻線u34A0とが直列に接続された直列回路である。第2の直列回路Cs12は、スロット133の1層目L1及び2層目L2に配置される周回巻線u12B0と、スロット133の3層目L3及び4層目L4に配置される周回巻線u34B0とが直列に接続された直列回路である。
 第2系統巻線160BのU2相巻線において、外径側コイル160oによって形成される第1回路C21と、内径側コイル160ia,160ibによって形成される第2回路C22とは直列に接続されている。第1回路C21は、スロット133の5層目L5及び6層目L6に配置される周回巻線u56A30と周回巻線u56B30とが直列に接続された直列回路である。第2回路C22は、第1の直列回路Cs21と第2の直列回路Cs22とが並列に接続された並列回路である。第1の直列回路Cs21は、スロット133の1層目L1及び2層目L2に配置される周回巻線u12A30と、スロット133の3層目L3及び4層目L4に配置される周回巻線u34A30とが直列に接続された直列回路である。第2の直列回路Cs22は、スロット133の1層目L1及び2層目L2に配置される周回巻線u12B30と、スロット133の3層目L3及び4層目L4に配置される周回巻線u34B30とが直列に接続された直列回路である。なお、V相巻線及びW相巻線における回路構成は、U相巻線の回路構成と同様であるので、説明を省略する。
 U1相巻線の第1の直列回路Cs11を構成する1層目L1及び2層目L2に配置される周回巻線の数と、第2の直列回路Cs12を構成する1層目L1及び2層目L2に配置される周回巻線の数は一致する。また、U1相巻線の第1の直列回路Cs11を構成する3層目L3及び4層目L4に配置される周回巻線の数と、第2の直列回路Cs12を構成する3層目L3及び4層目L4に配置される周回巻線の数は一致する。
 同様に、U2相巻線の第1の直列回路Cs21を構成する1層目L1及び2層目L2に配置される周回巻線の数と、第2の直列回路Cs22を構成する1層目L1及び2層目L2に配置される周回巻線の数は一致する。また、U2相巻線の第1の直列回路Cs21を構成する3層目L3及び4層目L4に配置される周回巻線の数と、第2の直列回路Cs22を構成する3層目L3及び4層目L4に配置される周回巻線の数は一致する。
 このように、本実施形態では、スロット133の内周側から外周側に向かって順に1層目、2層目、・・・、m層目、m+1層目とした場合、第1の直列回路Cs11を構成するs,s+1層目(sは、1~mまでの奇数)に配置される周回巻線の数と、第2の直列回路Cs12を構成するs,s+1層目に配置される周回巻線の数が同じである。なお、U1相巻線を構成する周回巻線は、U字状のセグメント導体165が2つ接続されることにより形成される波状コイルが、4つ接続されることにより形成される。このため、第1の直列回路Cs11を構成するs,s+1層目に配置される波状コイルの数と、第2の直列回路Cs12を構成するs,s+1層目に配置される波状コイルの数とが一致しているともいえる。これにより、並列回路である第2回路C12に循環電流が発生することを防止できる。
 同様に、第1の直列回路Cs21を構成するs,s+1層目(sは、1~mまでの奇数)に配置される周回巻線の数と、第2の直列回路Cs22を構成するs,s+1層目に配置される周回巻線の数が同じである。なお、U2相巻線を構成する周回巻線は、U字状のセグメント導体165が2つ接続されることにより形成される波状コイルが、4つ接続されることにより形成される。このため、第1の直列回路Cs21を構成するs,s+1層目に配置される波状コイルの数と、第2の直列回路Cs22を構成するs,s+1層目に配置される波状コイルの数とが一致しているともいえる。これにより、並列回路である第2回路C22に循環電流が発生することを防止できる。さらに、U1相及びU2相と同様の回路構成であるV1相、V2相、W1相及びW2相における並列回路(第2回路)においても、循環電流が発生することを防止できる。
 図7を参照して、第1回路C11,C21と第2回路C12,C22の接続構造について説明する。U1相巻線の第1回路C11と第2回路C12の接続構造と、U2相巻線の第1回路C21と第2回路C22の接続構造は同様であるので、U1相巻線の第1回路C11と第2回路C12の接続構造を代表して説明する。
 図7に示すように、第1回路C11と第2回路C12とは、スロット133の外側において、接続用導体168によって接続される。接続用導体168は、例えば、矩形平板状の銅板により形成され、溶接等により第1回路C11の引出し線と第2回路C12の引出し線とに接続される。
 上述したように、第1回路C11のコイル導体の厚み(コイル高さHo)と、第2回路C12のコイル導体の厚み(コイル高さHi)とは異なる(図3参照)。厚みの異なるコイル導体を突き合わせ等で直接溶接する場合、溶接作業が難しい。
 これに対して、本実施形態では、接続用導体168を第1回路C11の引出し線の側面と第2回路C12の引出し線の側面のそれぞれに溶接する。つまり、接続用導体168と第1回路C11とが溶接部を介して接続されるとともに、接続用導体168と第2回路C12とが溶接部を介して接続される。第1回路C11と第2回路C12を直接接続するのではなく接続用導体168を介して接続することにより、第1回路C11と第2回路C12とを容易に接続することができる。このため、回転電機110の製造コストを低減することができる。なお、接続用導体168は、銅板に限らず、リード線などの導電部材であってもよい。
 図8を参照して、U1相巻線及びU2相巻線に発生する誘起電圧について説明する。誘起電圧は、コイルに鎖交する磁束に起因して発生する。上述したように、第1系統巻線160Aと第2系統巻線160Bとが、空間的な位相差n°(=30°)を有している。このため、駆動装置170は、第1系統巻線160A及び第2系統巻線160Bに対し、時間的にn°(=30°)の位相差で電圧を印加する。
 図8に示すように、周回巻線u12A0,u12B0には、基準位相と空間的に位相が一致する誘起電圧Vu12∠0°が発生し、周回巻線u34A0,u34B0には、基準位相と空間的に位相が一致する誘起電圧Vu34∠0°が発生し、周回巻線u56A0,u56B0には、基準位相と空間的に位相が一致する誘起電圧Vu56∠0°が発生する。また、周回巻線u12A30,u12B30には、基準位相と空間的にn°(=30°)の位相差を持つ誘起電圧Vu12∠30°が発生し、周回巻線u34A0,u34B0には、基準位相と空間的にn°(=30°)の位相差を持つ誘起電圧Vu34∠30°が発生し、周回巻線u56A0,u56B0には、基準位相と空間的にn°(=30°)の位相差を持つ誘起電圧Vu56∠30°が発生する。なお、V1相巻線、V2相巻線、W1相巻線及びW2相巻線を構成する周回巻線にも同様の誘起電圧が発生する。
 上述したように、駆動装置170は、空間的に位相差0°の第1系統巻線160Aに時間的に位相差0°の電圧を印可し、空間的に位相差n°の第2系統巻線160Bに時間的に位相差n°の電圧を印可する。このため、第1系統巻線160Aにより形成される回路と、第2系統巻線160Bにより形成される回路とは、電圧がバランスすることになるので、循環電流の発生を防ぐことができる。
 本実施形態では、第1インバータ171Aに接続された回路に対して、第2インバータ171Bに接続された回路は、空間的に30°進み、時間的に30°進んでいる。時間的な30°の進みは、空間的には30°遅れることに等価となるため、30°-30°=0°となる。よって、第1インバータ171Aに接続された回路と第2インバータ171Bに接続された回路の電圧がバランスする。
 以上のように構成される本実施形態に係る電動駆動システム10によって得られる効果について、以下で説明する参考例と比較しながら説明する。本実施形態では、ステータコア131の外周側に配置された外径側コイル160oのコイル高さHo(厚み)に比べて、ステータコア131の内周側に配置された内径側コイル160ia,160ibのコイル高さHi(厚み)が小さい。この構成により、交流銅損を低減することができる。
 図9は、同じ厚みのスロット内導体161を有する回路と、異なる厚みのスロット内導体161を有する回路との構成及び効果の違いについて説明する図である。図9の上側に示す回路(以下、第1参考回路Cr1と記す)は、2つの系統巻線が並列に接続された構成であり、ステータコア131に厚みtのスロット内導体161が4つ配置されている。この構成では、1層目L1及び2層目L2において大きな交流銅損が発生する。交流銅損は、内径側に配置されるコイル導体ほど大きくなる。
 これに対して、図9の下側に示す回路(以下、第2参考回路Cr2と記す)は、2つの系統巻線が並列に接続された構成であり、厚みtのスロット内導体161が2つ、厚みt/2のスロット内導体161が4つ配置されている。スロット内導体161の厚みを半分にする場合、交流銅損は、(1/2)=1/16となる。内径側に配置されるスロット内導体161の厚みを半分にすることで、第1参考回路Cr1に比べて、交流銅損を大きく低減することができる。
 なお、第2参考回路Cr2では、スロット内導体161の本数の増加により、スロット133内におけるコイル導体の絶縁被膜の総断面積が増加する。したがって、第2参考回路Cr2では、絶縁被膜の断面積の増加分だけ、導体の断面積が減少する。その結果、コイル導体の電気抵抗が増加するため、直流銅損が増加する。しかしながら、交流銅損の低減量に比べて直流銅損の増加量は小さい。このため、第2参考回路Cr2では、第1参考回路Cr1に比べて、全銅損を低減することができる。また、各コイル導体の銅損を平準化することができる。スロット内導体161の温度も平準化されるため、ステータコイル160のピーク温度も低減することができる。本実施形態においても、内径側コイル160ia,160ibのスロット内導体161の厚みが、外径側コイル160oのスロット内導体161の厚みの半分とされているため(図3参照)、同様の効果が得られる。
 第1参考回路Cr1は、2Y結線とされ、電源の電流400Aに対して各相巻線に通電される電流は1/2の200Aとなる。一方、第2参考回路Cr2では、内径側のスロット内導体161の厚みがt/2である。したがって、内径側コイル160ia,160ibにより形成される周回巻線の電流密度を、外径側コイル160oと同等とするためには、内径側コイル160ia,160ibに流れる電流を1/4の100Aにする必要がある。このため、第2参考回路Cr2では、内径側コイル160ia,160ibにより形成される回路Ciが、並列に接続されることで並列回路Cpが形成されている。
 第2参考回路Cr2では、各並列回路Cpにおいてコイル導体の誘起電圧がバランスしない場合に循環電流が発生する。図10を参照して、循環電流が発生する並列回路Cp3と、循環電流の発生が防止された並列回路Cp4について説明する。図10の上側に示す回路(以下、第3参考回路Cr3と記す)は、第2参考回路Cr2と同様の構成を有する。第3参考回路Cr3は、1層目L1及び2層目L2に配置される複数の周回巻線Cw12が直列に接続された直列回路と、3層目L3及び4層目L4に配置される複数の周回巻線Cw34が直列に接続された直列回路とが並列に接続された並列回路Cp3を有する。
 スロット133が平行スロットである場合、ティース134はコアバック135から回転中心軸Caに向かうにつれて周方向の幅が短くなる先細り形状となっている。ティース134の周方向の幅が異なることで磁気飽和が異なる。ティース134の周方向の幅が大きいほど、磁束が通りやすくなるため誘起電圧が大きくなる。つまり、1層目L1及び2層目L2に配置される周回巻線に発生する誘起電圧Vu12、3層目L3及び4層目L4に配置される周回巻線に発生する誘起電圧Vu34、並びに、5層目L5及び6層目L6に配置される周回巻線に発生する誘起電圧Vu56の大小関係は、Vu56>Vu34>Vu12となる。このため、第3参考回路Cr3では、並列回路Cp3において、電圧のアンバランスが生じ、循環電流が発生する。
 図10の下側に示す回路(以下、第4参考回路Cr4と記す)は、第2参考回路Cr2と同様の構成を有する。第4参考回路Cr4は、1層目L1及び2層目L2に配置される周回巻線Cw12と3層目L3及び4層目L4に配置される周回巻線Cw34が直列に接続された直列回路同士が、並列に接続された並列回路Cp4を有する。
 以下、U1相巻線により形成される並列回路Cp4の構成を代表して説明する。第4参考回路Cr4では、並列回路Cp4を構成する一方の直列回路の1層目L1及び2層目L2に配置される周回巻線Cw12の数と、並列回路Cp4を構成する他方の直列回路の1層目L1及び2層目L2に配置される周回巻線Cw12の数とが同じである。また、第4参考回路Cr4では、並列回路Cp4を構成する一方の直列回路の3層目L3及び4層目L4に配置される周回巻線Cw34の数と、並列回路Cp4を構成する他方の直列回路の3層目L3及び4層目L4に配置される周回巻線Cw34の数とが同じである。なお、U2相巻線、V1相巻線、V2相巻線、W1相巻線及びW2相巻線の回路構成は、U1相巻線と同様の回路構成である。したがって、第4参考回路Cr4では、内径側コイル160ia,160ibにより形成された並列回路Cp4での電圧がバランスするため、循環電流の発生が防止される。本実施形態に係る第2回路C12,C22(図5参照)は、第4参考回路Cr4の並列回路Cp4と同様の構成であるため、同様の効果が得られる。
 図11を参照して、第1系統巻線と第2系統巻線との間で循環電流が発生する回路と、第1系統巻線と第2系統巻線との間で循環電流の発生が防止された回路について説明する。図11の上側に示す第4参考回路Cr4では、空間位相0°の第1系統巻線160Acによる回路と、空間位相30°の第2系統巻線160Bcによる回路とが並列に接続された並列回路が形成されている。このため、第1系統巻線160Acによる回路と第2系統巻線160Bcによる回路との間に電圧のアンバランスが発生し、循環電流が発生する。
 これに対して、図11の下側に示す本実施形態に係る回路では、空間位相0°の第1系統巻線160Aによる回路と、空間位相30°の第2系統巻線160Bによる回路とが独立しており、それぞれが異なるインバータに接続されている。また、空間位相30°の第2系統巻線160Bに通電する電源電圧に時間的に30°の位相差が与えられる。これにより、本実施形態では、第1系統巻線160Aによる回路と第2系統巻線160Bによる回路の電圧がバランスするため、循環電流の発生を防止することができる。つまり、第1系統巻線160Aによる回路と第2系統巻線160Bによる回路との間に電流差が生じることを防止できる。
 上述した実施形態によれば、次の作用効果を奏する。
 (1)電動駆動システム10は、回転電機110と、回転電機110に電力を供給する駆動装置170とを備える。回転電機110は、ステータ130と、ステータ130の内周側に回転可能に配置されるロータ150とを有する。ステータ130は、平角線からなるステータコイル160と、ステータコイル160が配置される複数のスロット133を有するステータコア131と、を有している。ステータコイル160は、ステータコア131に波巻きで装着される複数の系統巻線を有している。複数の系統巻線は、基準位相と空間的に位相差0°でステータコア131に装着される第1系統巻線160Aと、基準位相と空間的に位相差n°でステータコア131に装着される第2系統巻線160Bとを有している。n°は、360°/(スロット133の数/極対数)である。第1系統巻線160A及び第2系統巻線160Bは、それぞれ、ステータコア131の外径側のコイル導体により形成される第1回路C11,C21と、ステータコア131の内径側のコイル導体により形成される並列回路である第2回路C12,C22とが直列に接続されている。内径側のコイル導体(内径側コイル160ia,160ibのスロット内導体161)は、外径側のコイル導体(外径側コイル160oのスロット内導体161)よりも厚み(コイル高さ)が小さい。駆動装置170は、第1系統巻線160Aに接続される第1インバータ171Aと、第2系統巻線160Bに接続される第2インバータ172とを有している。駆動装置170は、第1系統巻線160A及び第2系統巻線160Bに対し、時間的にn°の位相差で電圧を印加する。
 この構成によれば、交流銅損を低減し、かつ循環電流の発生を防止することにより、高効率の電動駆動システム10を提供することができる。
 (2)系統巻線160A,160Bは、複数の周回巻線を有している。スロット133には、複数のコイル導体が径方向に層状に配置されている。第2回路C12,C22は、複数の周回巻線が直列に接続された第1の直列回路Cs11,Cs21と、複数の周回巻線が直列に接続された第2の直列回路Cs12,Cs22とが並列に接続されている。スロット133の内周側から外周側に向かって順に1層目、2層目、・・・、m層目、m+1層目とした場合(本実施形態において、m=5)、第1の直列回路Cs11,Cs21を構成するs,s+1層目(sは、1~mまでの奇数)に配置される周回巻線の数と、第2の直列回路Cs12,Cs22を構成するs,s+1層目に配置される周回巻線の数は一致する。
 この構成によれば、第1の直列回路Cs11,Cs21と第2の直列回路Cs12,Cs22とにより形成される並列回路である第2回路C12,C22において、循環電流が発生することを防止することができる。
 次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。
 <変形例1>
 ステータコア131のスロット133へのステータコイル160の配置構成は、上記実施形態に限定されない。
 <変形例1-1>
 例えば、図12に示すように、隣接するスロット133の一方(スロット番号「1」のスロット)にU1相巻線のコイル導体を6本配置し、隣接するスロット133の他方(スロット番号「2」のスロット)にU2相巻線のコイル導体を6本配置してもよい。この場合、V相巻線及びW相巻線においても同様に、同じスロット133に同相のコイル導体が6本配置される。つまり、本変形例では、第1回路C11,C21を構成するステータコイル160(外径側コイル160o)の磁束中心軸と、第2回路C12,C22を構成するステータコイル160の磁束中心軸とが一致している。
 <変形例1-2>
 さらに、トルク脈動を低減することを目的として、図13に示すように、5層目及び6層目のコイル導体を図12に示す配置構成に対して、1スロットだけずらして配置してもよい。本変形例では、第1回路C11,C21を構成するステータコイル160(外径側コイル160o)の磁束中心軸Cm1と、第2回路C12,C22を構成するステータコイル160の磁束中心軸Cm2が、電気的に30°の位相差を持っている。
 図14の左側のトルク波形図は、変形例1-1に係る回転電機110のトルク波形図であり、図14の右側のトルク波形図は、変形例1-2に係る回転電機110のトルク波形図である。変形例1-2では、第1回路C11,C21と第2回路C12,C22に空間的な位相差30°を持たせているため、トルク脈動の6次成分が180°(=6×30°)の位相差を持っている。つまり、第1回路C11,C21の磁束によるトルク波形と第2回路C12,C22の磁束によるトルク波形とが反転する。これにより、第1回路C11,C21の磁束によるトルク脈動と、第2回路C12,C22の磁束によるトルク脈動とが相殺される。したがって、本変形例1-2(図13参照)では、変形例1-1(図12参照)に比べて、回転電機110の合計トルクのトルク脈動を低減することができる。その結果、回転電機110で発生する音、振動を低減することができる。
 <変形例2>
 上記実施形態では、回転電機110を収容するモータハウジング191と駆動装置170を収容するインバータハウジング197とが締結部材17によって締結されることにより一体化されている例について説明したが、本発明はこれに限定されない。図15に示すように、回転電機110を収容するモータハウジング191と駆動装置170を収容するインバータハウジング197とは一体成形により形成されていてもよい。例えば、モータハウジング191とインバータハウジング197は、鋳造やダイキャストにより1つの構造物として成形することができる。この構成によれば、締結部材17によってモータハウジング191とインバータハウジング197とを締結する作業が不要になるため、電動駆動システム10の組立工数を低減できる。
 <変形例3>
 上記実施形態では、スロット133に6つのコイル導体が層状に配置される例について説明したが、本発明はこれに限定されない。8つ以上のコイル導体がスロット133に層状に配置されていてもよい。また、スロット133の数、磁極数についても、上記実施形態に限定されない。
 <変形例4>
 上記実施形態では、複数の系統巻線として第1系統巻線160Aと第2系統巻線160Bが設けられる例について説明したが、本発明はこれに限定されない。電動駆動システム10は、3つ以上の系統巻線と、各系統巻線に個別に接続された3つ以上のインバータとを備える構成であってもよい。回転電機110の毎極毎相スロット数NSPPは、インバータの数に一致する。毎極毎相スロット数NSPPが2の回転電機110では、2つのインバータと2つの系統巻線とを備えた高効率の電動駆動システム10を得ることができる。毎極毎相スロット数NSPPが3の回転電機110では、3つのインバータと3つの系統巻線とを備えた電動駆動システムを得ることができる。3つのインバータと、各インバータに個別に接続された3つの系統巻線とを備えた電動駆動システムの回転電機は、例えば、スロット数が72、磁極数が8の構成を採用することができる。
 <変形例5>
 上記実施形態では、自動車に搭載される電動駆動システム10を例に説明したが、本発明はこれに限定されない。エレベータ、鉄道車両等、回転電機によって駆動力を発生させる種々の移動体に本発明を適用することができる。なお、電動駆動システムは、移動体に搭載される場合に限定されることもない。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 10…電動駆動システム、17…締結部材、110…回転電機、130…ステータ、131…ステータコア、133…スロット、134…ティース、135…コアバック、150…ロータ、151…ロータコア、152…永久磁石、153…磁石挿入孔、159…シャフト、160…ステータコイル、160A…第1系統巻線、160B…第2系統巻線、160ia…第1内径側コイル、160ib…第2内径側コイル、160o…外径側コイル、161…スロット内導体(コイル導体)、168…接続用導体、169…絶縁材、170…駆動装置、171A…第1インバータ、171B…第2インバータ、176…制御回路(制御装置)、179…蓄電装置(電源装置)、190…筐体、191…モータハウジング、197…インバータハウジング、198…ギヤハウジング、C11…第1回路、C12…第2回路、C21…第1回路、C22…第2回路、Ca…回転中心軸、Cm1,Cm2…磁束中心軸

Claims (10)

  1.  ステータと前記ステータの内周側に回転可能に配置されるロータとを有する回転電機と、前記回転電機に電力を供給する駆動装置と、を備える電動駆動システムであって、
     前記ステータは、平角線からなるステータコイルと、前記ステータコイルが配置される複数のスロットを有するステータコアと、を有し、
     前記ステータコイルは、前記ステータコアに波巻きで装着される複数の系統巻線を有し、
     前記複数の系統巻線は、基準位相と空間的に位相差0°で前記ステータコアに装着される第1系統巻線と、前記基準位相と空間的に位相差n°で前記ステータコアに装着される第2系統巻線と、を有し、
     前記n°は、360°/(前記スロットの数/極対数)であり、
     前記第1系統巻線及び前記第2系統巻線は、それぞれ、前記ステータコアの外径側のコイル導体により形成される第1回路と、前記ステータコアの内径側のコイル導体により形成される並列回路である第2回路と、が直列に接続され、
     前記内径側のコイル導体は、前記外径側のコイル導体よりも厚みが小さく、
     前記駆動装置は、前記第1系統巻線に接続される第1インバータと、前記第2系統巻線に接続される第2インバータと、を有し、
     前記駆動装置は、前記第1系統巻線及び前記第2系統巻線に対し、時間的に前記n°の位相差で電圧を印加する、
     電動駆動システム。
  2.  請求項1に記載の電動駆動システムにおいて、
     前記回転電機の毎極毎相スロット数は2である、
     電動駆動システム。
  3.  請求項1に記載の電動駆動システムにおいて、
     前記系統巻線は、複数の周回巻線を有し、
     前記スロットには、複数の前記コイル導体が径方向に層状に配置され、
     前記第2回路は、前記複数の周回巻線が直列に接続された第1の直列回路と、前記複数の周回巻線が直列に接続された第2の直列回路と、が並列に接続され、
     前記スロットの内周側から外周側に向かって順に1層目、2層目、・・・、m層目、m+1層目とした場合、前記第1の直列回路を構成するs,s+1層目(sは、1~mまでの奇数)に配置される周回巻線の数と、前記第2の直列回路を構成する前記s,s+1層目に配置される周回巻線の数は一致する、
     電動駆動システム。
  4.  請求項1に記載の電動駆動システムにおいて、
     前記第1回路を構成する前記ステータコイルの磁束中心軸と前記第2回路を構成する前記ステータコイルの磁束中心軸が電気的に30°の位相差を持つ、
     電動駆動システム。
  5.  請求項1に記載の電動駆動システムにおいて、
     前記第1回路と前記第2回路とが接続用導体によって接続される、
     電動駆動システム。
  6.  請求項1に記載の電動駆動システムにおいて、
     前記スロットの内周面と前記コイル導体との間、及び、前記スロット内の複数の前記コイル導体同士の間には、絶縁材が設けられている、
     電動駆動システム。
  7.  請求項1に記載の電動駆動システムにおいて、
     前記第1インバータと前記第2インバータとが同一の電源装置に接続されている、
     電動駆動システム。
  8.  請求項1に記載の電動駆動システムにおいて、
     前記第1インバータと前記第2インバータには同一の制御装置からの指令が入力される、
     電動駆動システム。
  9.  請求項1に記載の電動駆動システムにおいて、
     前記回転電機を収容するハウジングと前記駆動装置を収容するハウジングとが締結部材によって締結されることにより一体化されている、
     電動駆動システム。
  10.  請求項1に記載の電動駆動システムにおいて、
     前記回転電機を収容するハウジングと前記駆動装置を収容するハウジングとは一体成形により形成されている、
     電動駆動システム。
PCT/JP2022/004889 2021-05-25 2022-02-08 電動駆動システム WO2022249568A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-087677 2021-05-25
JP2021087677A JP2022180915A (ja) 2021-05-25 2021-05-25 電動駆動システム

Publications (1)

Publication Number Publication Date
WO2022249568A1 true WO2022249568A1 (ja) 2022-12-01

Family

ID=84229760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004889 WO2022249568A1 (ja) 2021-05-25 2022-02-08 電動駆動システム

Country Status (2)

Country Link
JP (1) JP2022180915A (ja)
WO (1) WO2022249568A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157236A (ja) * 2011-01-04 2012-08-16 Asmo Co Ltd ブラシレスモータ及びブラシレスモータの駆動方法
JP2014090615A (ja) * 2012-10-31 2014-05-15 Aisin Seiki Co Ltd 3相回転電機の波巻き巻線
JP2016154445A (ja) * 2016-06-02 2016-08-25 日立オートモティブシステムズ株式会社 回転電機、およびその回転電機を備えた車両
JP2016167963A (ja) * 2014-11-10 2016-09-15 デンソートリム株式会社 内燃機関用回転電機
WO2019159579A1 (ja) * 2018-02-15 2019-08-22 日立オートモティブシステムズ株式会社 モータおよびモータ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157236A (ja) * 2011-01-04 2012-08-16 Asmo Co Ltd ブラシレスモータ及びブラシレスモータの駆動方法
JP2014090615A (ja) * 2012-10-31 2014-05-15 Aisin Seiki Co Ltd 3相回転電機の波巻き巻線
JP2016167963A (ja) * 2014-11-10 2016-09-15 デンソートリム株式会社 内燃機関用回転電機
JP2016154445A (ja) * 2016-06-02 2016-08-25 日立オートモティブシステムズ株式会社 回転電機、およびその回転電機を備えた車両
WO2019159579A1 (ja) * 2018-02-15 2019-08-22 日立オートモティブシステムズ株式会社 モータおよびモータ装置

Also Published As

Publication number Publication date
JP2022180915A (ja) 2022-12-07

Similar Documents

Publication Publication Date Title
JP6977556B2 (ja) 回転電機
US10797550B2 (en) Rotary electric machine and vehicle provided with the same
JP5587693B2 (ja) 回転電機、およびその回転電機を備えた車両
JP6513831B2 (ja) 回転電機および車両
US20140361646A1 (en) Rotating Electric Machine and Vehicle Equipped with Rotating Electric Machine
JP5742850B2 (ja) 回転電機システム
US20210234415A1 (en) Rotating electric machine
JP5681026B2 (ja) 固定子および回転電機
JP2021177695A (ja) 回転電機の固定子の製造方法
US10886869B2 (en) Control apparatus and vehicle drive system
JP2006101654A (ja) 回転電機及び電機巻線
JP5792363B2 (ja) 回転電機の固定子巻線、および回転電機の固定子
JP7113003B2 (ja) 回転電機の回転子及びこれを備えた回転電機
WO2020175334A1 (ja) 電機子
US11735968B2 (en) Rotary electric machine and vehicle provided with the same
WO2022249568A1 (ja) 電動駆動システム
WO2022208929A1 (ja) 回転電機の固定子、回転電機
JP6626768B2 (ja) 回転電機の固定子、及びこれを備えた回転電機
JP2015223076A (ja) 回転電機の固定子巻線、回転電機の固定子、回転電機および車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810852

Country of ref document: EP

Kind code of ref document: A1