[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022249116A2 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
WO2022249116A2
WO2022249116A2 PCT/IB2022/054938 IB2022054938W WO2022249116A2 WO 2022249116 A2 WO2022249116 A2 WO 2022249116A2 IB 2022054938 W IB2022054938 W IB 2022054938W WO 2022249116 A2 WO2022249116 A2 WO 2022249116A2
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
designed
handle
view
prism
Prior art date
Application number
PCT/IB2022/054938
Other languages
French (fr)
Other versions
WO2022249116A3 (en
Inventor
Wayne Poll
Original Assignee
Psip2 Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psip2 Llc filed Critical Psip2 Llc
Publication of WO2022249116A2 publication Critical patent/WO2022249116A2/en
Publication of WO2022249116A3 publication Critical patent/WO2022249116A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00142Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with means for preventing contamination, e.g. by using a sanitary sheath
    • A61B1/00144Hygienic packaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00101Insertion part of the endoscope body characterised by distal tip features the distal tip features being detachable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00137End pieces at either end of the endoscope, e.g. caps, seals or forceps plugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00179Optical arrangements characterised by the viewing angles for off-axis viewing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00181Optical arrangements characterised by the viewing angles for multiple fixed viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00183Optical arrangements characterised by the viewing angles for variable viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0607Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for annular illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B50/33Trays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B2050/3005Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments containing a preservative liquid, e.g. an antiseptic liquid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • This application relates to endoscopes, laparoscopes, arthroscopes, colonoscopes, and similar surgical devices or appliances specially adapted or intended to be used for evaluating, examining, measuring, monitoring, studying, or testing living or dead human and animal bodies for medical purposes, or for use in operative surgery upon the body or in preparation for operative surgery, together with devices designed to assist in operative surgery.
  • the invention features an apparatus.
  • An optical prism is designed to displace a field of view offset angle of an endoscope.
  • a connector is designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off- axis of the endoscope, and to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity.
  • the optical prism and connector are designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset when the prism and connector are affixed to an optical tip of the endoscope.
  • the invention features delivery packaging for an endoscope.
  • the packaging has mechanical features designed to retain components of an endoscope, and to protect the endoscope for shipping and/or delivery.
  • the packaging has a vial, well, or cavity designed to retain anti-adhesive lubricant in contact with a lens or window of the endoscope.
  • the invention features a method.
  • An endoscope is inserted into a body cavity.
  • the endoscope has a field of view at an initial offset angle displaced off- axis of the endoscope.
  • the endoscope has affixed to its distal end an optical prism designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset.
  • the prism is affixed to the distal end of the endoscope by a connector designed to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity.
  • the endoscope is withdrawn from the body with the prism affixed.
  • the prism is removed from the endoscope.
  • the endoscope is reinserted back into the body cavity with its field of view at the initial offset angle.
  • Embodiments of the invention may feature one or more of the following.
  • the optical prism may be designed to reduce the offset angle of the endoscope’s field of view to no more than 10°, or to no more than 5°, or to no more than 3°.
  • the optical prism may be optically convex to magnify an image.
  • the optical prism may be optically concave to enlarge the endoscope’s field of view.
  • the connector may be designed to affix to the endoscope by mechanical forces.
  • An optical filter may be coupled with the prism.
  • the endoscope may have a wetting surface designed to entrain an anti-adhesive lubricant in a layer over a lens or window of the endoscope.
  • the wetting surface may be a porous solid.
  • the porous solid may be formed by sintering or other heating of particles.
  • the optical prism and connector may be affixed to the endoscope for shipment, and designed to retain an anti-adhesive lubricant in contact with a lens or window of the endoscope during shipment.
  • the vial, well, or cavity may have a cap with a seal to seal around a shaft of the endoscope.
  • the anti adhesive lubricant may comprise silicone oil, or mixtures thereof.
  • the anti-adhesive lubricant may comprise a mixture of silicone oils of different viscosities.
  • the vial or cavity may include an optical prism designed to displace a field of view of an endoscope.
  • FIGS. 1A to 1H, 2A to 2Q, and 3A to 3G, 4C, 4E to 4H, 4N to 4W, 5B, 7A, 7G to 7J, and 7N to 7Z, 9B, 9C, 9G, and 9J are perspective views of endoscopes and/or endoscope related apparatus.
  • FIGS. 4A, 5C, 5G to 5J, 6D, 7B, 7D, 8A to 8E, 9C, 9E to 91 are plan section views of endoscopes and/or endoscope related apparatus.
  • FIGS. 4B, 41, 4M, 6E, 7M are exploded views of endoscopes and/or endoscope related apparatus.
  • FIGS. 4D, 4J, 4K, 4L, 5D to 5F, 7C, 7E, 7F, 7K, 7L, 8F, 9A, 9D are perspective section or cutaway views of endoscopes and/or endoscope related apparatus.
  • FIGS. 5A, 6A to 6C, 9K and 9L are plan views of endoscopes and/or endoscope related apparatus.
  • endoscope 100 such as an arthroscope, laparoscope, or other
  • trocar 102 may be used for joint surgery, joint access, or other minimally-invasive surgery.
  • a minimally-invasive surgery generally begins with penetration to the surgical site using a pointed instrument such as trocar 102 or obturator 104.
  • Trocar 102 is a hollow tube used to pierce
  • trocar 102 will remain in place during the surgery to maintain an access port.
  • trocar 102 may have obturator 104 inserted through the lumen.
  • Obturator 104 and/or trocar 102 may have sharp points for piercing into the tissue of a joint, abdominal cavity, or other surgical site to create an access portal.
  • Obturator 104 may be inserted into trocar 102, used as a unit to pierce skin and other tissues, and once the space of interest is accessed, obturator 104 may be pulled out, leaving the “trocar cannula.” The scope may be placed through the cannula for visualization of the surgical site.
  • the endoscope may be a “chip on a tip” scope, having an illumination source and a camera. After an access portal is cut via obturator 104 and trocar 102, the endoscope may be inserted through trocar 102 to the surgical site, to provide the visual access to a surgeon who performs the surgery with other instruments. Other trocars may placed for access by other instruments, such as laparoscopic scalpels, shavers, staplers, suture machines, and the like.
  • endoscope 100 may be inserted down the inner lumen of obturator 104, and the point of obturator 104 may be transparent.
  • the endoscope-within-obturator configuration may provide visual guidance to guide obturator 104 or trocar 102 to the correct surgical site.
  • trocar 102 may have a sharp point, and the endoscope may be inserted down the inner lumen of trocar 102, to guide trocar 102.
  • endoscope 100 may have a number of features that ensure reliability, reduce manufacturing costs to the point that the entire endoscope, or portions thereof, may be disposable. Resterilization of endoscopes is costly, and always imperfect, which increases risk of cross-infection. Also, as endoscope 100 is reused, the optics become scratched and clouded, reducing the precision of the view available to the surgeon. Sections II to XI will discuss multiple features of the endoscope that provide such cost reduction and disposability.
  • obturator 104 may be locked into the outer sheath or trocar 102 via a twist lock 940, 942.
  • obturator 104 and trocar 102 may be used to pierce into the surgical site, for example, a region of a knee behind the patella.
  • obturator 104 may be unlocked from outer sheath/trocar 102. Obturator 104 and endoscope may be withdrawn, leaving hollow trocar 102 as a port to the site.
  • instruments such as endoscope 100, etc. may be inserted through the outer sheath/trocar 102 to perform the surgery.
  • trocar/sheath 102 may be locked to the endoscope via the same twist lock motion as was used to hold the outer sheath/trocar 102 to obturator 104.
  • a surgical endoscope 100 may be structured to permit detachment of a shaft 110 portion from the endoscope’s handle 112, 114.
  • a camera or image sensor at tip 116 of the shaft, any panning mechanism, illumination, power and signal connectors, and fluid flow channels may be in the disposable shaft 110.
  • Handle 112, 114 may be designed to be reusable (which implies that handle 112, 114 may be sterilizeable, for example in an autoclave or other sterilization device, or protectable by a disposable sterility sleeve).
  • Joint 130 between the detachable shaft and the reusable parts of handle 112, 114 may be generally distal in the handle (but not necessarily at the distal-most end).
  • the replaceable shaft portion 110 may be disposable, along with a disposable portion 120 of the handle that is disposable with shaft 110.
  • the handle of the endoscope 100 may include three principal components:
  • the disposable cap 120 This distal-most portion of the handle may serve as a mounting base for shaft 110, and may disconnect from the remainder 112, 114 of the handle.
  • This disposable cap portion 120 (along with shaft 110 and componentry inside) may be disposable.
  • Rotation collar 112 may have surface features 302, 304 to allow a surgeon to rotate the rotation collar 120 about the central axis of the handle, that is, about the roll axis 126 of the shaft. During surgery, insertion shaft 110, disposable cap 120 and rotation collar 112 may be locked to rotate with each other, so that rotating the rotation collar effects rotation 126 of the disposable cap 120 and shaft 110.
  • Proximal stationary handle 114 has a shell surrounding componentry within the handle.
  • the outer diameter and outer surface of handle 114 may be designed to provide an easy and low- slip grip for a surgeon’s hand.
  • Joint 128 between the proximal handle and rotation collar may allow these two components to rotate relative to each other.
  • a circuit board and similar componentry inside proximal handle 114 may rotate with disposable cap 120 and rotation collar 112, inside proximal handle 114.
  • Disposable cap 120 and rotation collar 112 may be separable from each other at joint 130, so that disposable cap 120 and shaft 110 may be disposable, while handle 114 and rotation collar 112 (and componentry inside them) are reusable.
  • a rotation-locking coupling 140, 142 to hold the disposable portion 120 to the reusable handle 112, 114.
  • Coupling 140, 142 may have sufficient strength to transmit insertion and withdrawal forces, roll, pitch, and yaw torques, lateral forces, and similar forces from the proximal reusable handle 112, 114 to the distal disposable portion 120 and shaft 100, thereby to allow a physician to aim the illumination and/or camera as needed.
  • Joint 130 between disposable cap 120 and rotation collar 112 may lie generally toward the distal end of the
  • the disposable cap and rotation collar 112 may engage through flat force -transmittal surfaces 144 at the center of joint 130 and around the circumferences, so that these forces are supported around the circumference of separable joint 130.
  • One or more release buttons 146 may be pressed or squeezed to cause one or more locking snaps 148 to disengage.
  • the mechanical connection may include a rotatable locking ring or other release/fixation mechanisms.
  • connection 130 • An electrical connection to supply power to the illumination source and camera, and to carry optical signals back from camera 410 to the processing board in handle 112, 114 and display system outside the endoscope.
  • the disconnectable electrical connections for power and signal may be effected by a USB-C connector 150, 152, mini HDMI connector, or similar connector that can maintain signal integrity for high speed signals.
  • joint 130 may include an optical connector.
  • a disconnectable connection to any panning mechanism for camera 410 may be effected by a physical connector, such as a linkage.
  • the camera/image sensor 410, LED, and electronic connections may be removable from insertion shaft 110.
  • Shaft 110 and cap 120 may be smooth and simple enough in shape to allow easy sterilization.
  • the electronics once the electronics are removed from interior of shaft 110, they may be sterilizeable as well it may be cost-effective, especially in lower-labor-cost markets, to disassemble, sterilize, and reassemble the shaft and its interior components for reuse.
  • One or more fluid hoses 160 for irrigation liquid or inflation gas may enter through disposable cap 120, so that the entire set of fluid tubing for the irrigation/inflation channel may be disposable with the disposable shaft portion.
  • a fluid hose 162 may enter the proximal end of the scope, and disconnectable fluid connections within joint 130 for fluid inflow and outflow may be effected by gaskets, O rings, and the like.
  • connectors for the hoses may be outboard of the endoscope itself, either near the endoscope (for applications where it may be desirable to allow “quick change” replacement of the insertion shaft in the course of a single procedure), or far from the endoscope, typically at the receptacle for waste fluid, to ease disposal of all hoses that are potentially contaminated by contact with the patient.
  • Disposable shaft 110, 120 may be designed to facilitate disposability of components that come into contact with bodily fluids. Because sterilization is often imperfect, patient safety may be improved by disposing of components that have come into contact with patient bodily fluids. To improve sterilizability, it may desirable to reduce componentry in the disposable component 110, 120 so that cost of the disposable component may be reduced, and to reduce surface features and crevices that may be difficult to sterilize.
  • the lens, image sensor, LED, panning mechanism, and shaft may be designed to facilitate disposability of components that come into contact with bodily fluids.
  • A may be disposable.
  • shaft 110 is used for fluid inflow and outflow, and is disposable, sealing against bodily fluids may be unnecessary.
  • the replaceable/disposable shaft and its mounting componentry may be specialized to different types of surgery.
  • a purely diagnostic scope 172 may have an outer diameter of 1 to 3mm.
  • a replaceable disposable cap / shaft unit 110, 120, 178 for laparoscopic thoracic surgery may have a shaft of 400 mm length and diameter of 10 mm.
  • Replaceable components 176 for arthroscopic surgery of knees and hips may be 155 mm in length, and 5.5 mm or 4 mm in diameter.
  • a replaceable shaft 174 of 2.9 mm diameter or less may be preferred.
  • a replaceable shaft/scope unit with an bendable end 200 may be dimensioned for laparoscopic surgery. Typical dimensions for various surgical specialties may be as follows (measured in millimeters):
  • Various replaceable components 110 may have different instruments at tip 116.
  • various replaceable shafts may have cameras oriented at 0° (directly on-axis), 30°, 45°, 70°, and 90°.
  • disposable shaft portion 110, 120 may in turn be separable into an outer cannula 132 for protection and strength, and an inner shaft portion 134 carrying various illumination, optical, and fluid-carrying componentry.
  • the scope may be sold as a handle unit 112, 114 with a set of ten or twelve or twenty replaceable shaft/cap unit 110, 120.
  • the camera tip 202 may be slideable within cannua1a shaft 132, to be extendable and retractable. When extended, the distal portion of camera stalk 202 may be bendable, for example, via articulation joints between segments 210.
  • cone 204 shows the field of view of camera 410.
  • the extendable/bendable portion of shaft 202 may be formed of a series of elements that are each essentially rigid in the longitudinal dimension, but articulated at each joint to permit bending or flexure. The articulation may all be in the same
  • articulation pivots 212 may be at alternating 90° angles, so that the bending may be in two dimensions, which in combination, may yield 360° of bending angles.
  • the bendable portion 202 may be formed of elastic material, with an internal stiffener that is relatively stiff and incompressible against longitudinal compression dimension, and flexible in lateral and/or inclination bending. Bendable portion 202 may include two or four cable channels spaced around an outer surface, so that tension cables may cause bending in a desired direction.
  • camera 410 may be pannable within endoscope tip 400.
  • camera 410 and its illumination LED may be mounted on one side of a substrate 220 formed as three rigid segments with two hinges 222, so that the two outer segments 224 may be moved relative to each other 226, and the center segment rotates in place, in the manner of a flexing parallelogram.
  • the two outer segments 224 may be mounted in slide channels, and connected by cables 228 to controls at the handle.
  • substrate 220 may be molded onto a flat flexible backing.
  • the backing may contain folds 222 to create hinge points that allow the backing to fold into its parallelogram configuration (FIGS.
  • Pivot points 230 may be molded into substrate 220.
  • a flex circuit 232 may be laminated onto the substrate, and control tension cables 228 attached to the two ends.
  • a camera, illumination LED, pressure sensor, temperature sensor, or other sensors may be affixed to substrate 220.
  • substrate 220 may be folded into three sides of a parallelogram, and a fourth side may be formed by a linkage connected to hinge points. Further details are described in U.S. Pat. No. 9,375,139, incorporated herein by reference.
  • Passages and apertures for ingress and egress of irrigation, inflation, or other fluids may be provided in the tip.
  • An aperture for irrigation fluid may be aimed to clear fouling from a window or lens over camera 410.
  • At least one of surfaces 224 may contain a metal strip bonded onto or into segment 224.
  • the metal strip may be a spring steel or nickel-titanium alloy with a preformed radius of curvature.
  • the metal alloy may alternatively be a malleable metal such as aluminum or may be a nickel-titanium (nitinol) alloy with a shape memory feature.
  • the metal strip allows the elongated core to reliably bend in one plane of curvature. Where the memory substrate is spring-steel or nitinol, it may bend to a shape if malleable, or may be made steerable with a nitinol shape-memory component.
  • lever 240 may be moved to advance/project or retract/withdraw camera 410 within insertion shaft (FIGS. 2F and 2G).
  • Another switch/lever 242 (for example a paddle-shaped switch) may control cables or levers that flex the articulable tip by exerting tension on cables 228 that extend to the tip, to cause rotational articulation at joints 212 along the extendable portion 202 of shaft 110, thereby to control articulation of the camera tip to move in positive-y and negative-y directions.
  • Another lever may be used to control camera panning (FIGS. 2H, 21, 2J, 2K, 2L, and 2M).
  • a four-point control 244 may control four control cables 228 or rods or other load bearing components to the articulated or bendable portion of the extendable/retractable and/or articulated camera shaft 202, so that the camera tip may be articulated in positive-x, negative -x, positive-y, and negative-y directions.
  • the extendable/retractable and/or articulated camera shaft 110, 200 may be used with a reusable handle, disposable tip configuration.
  • the extendable/retractable and/or articulated camera shaft may be used with a reusable or single -use unibody scope configuration.
  • the articulated camera tip 200 may be especially useful in abdominal thoracic laparoscopy.
  • abdominal cavity is inflated with carbon dioxide, to give the surgeon a large open field of view.
  • the extendable/retractable and/or articulated tip may be useful to provide a view behind an organ, such as the stomach or liver. If the surgeon only has a fixed view endoscope/laparoscope, the only way to obtain a view behind an organ would be to open another port from the opposite side of the body.
  • disposable shaft portion 110, 120 may in turn be separable into an outer cannula 132 for protection and strength, and an inner shaft portion 134 carrying various illumination, optical, and fluid-carrying componentry. Illumination may be provided by an LED at or near the distal tip, or via fiber optics from an illumination source in the handle, or illumination at an external controller.
  • the endoscope may have a handle 112, 114, 120, and a shaft 110 for insertion into a body.
  • a camera electronic image sensor, or other optical component.
  • the camera’s orientation may be fixed in the scope, or may be pannable.
  • Camera 410 may be at tip 116, looking out from the shaft, or may be recessed a short distance behind the structural tip of the shaft.
  • an illumination source such as an LED.
  • Tip 116 may have a rigid pointed tocar tip, or may have a spoon-shaped portion that reaches past the image sensor, or may be flexible (in the manner of the tip
  • a of a colonoscope in each case extending a little beyond imaging camera to provide physical protection to the camera/image sensor 410 during insertion or to protect camera/image sensor 410 from a surgical cutting device.
  • Illumination may be in visible light, infrared, and/or ultraviolet.
  • an illumination LED (light emitting diode) or other illumination source may be placed in reusable handle 112, 114 or in a docking station/controller, and the disposable shaft may have fiber optics to transmit light to the tip, and joint 130 may have an optical coupler.
  • the illumination LED may be placed in tip 116 to illuminate the surgical cavity directly; in such cases, joint 130 may have a power connector.
  • the LED may be recessed from the tip, or placed somewhere in the shaft, or may be in an external controller, and optical fiber may carry illumination light to the tip.
  • the optical fiber may be configured, for example, with a split, so that light will be arrayed in a desired pattern around the image sensor to better distribute the light into the surgical cavity around the image sensor.
  • the shaft 110 itself may be rigid, made of a nonbioreactive metal such as stainless steel or coated aluminum.
  • a surgical cavity around endoscope tip 400 may be insufflated by gas (typically carbon dioxide), or irrigated by saline solution. In either case, fluid inflow and outflow may be effected by channels through the shaft.
  • Shaft 110 may also carry power wires to the illumination LED and camera 410, and carry signal wires that carry an optical signal back from camera 410 to electronics in the reusable portion 112, 114 of the handle.
  • Electrical power to camera 410 may be supplied over conductors in a flexible cable or on a printed circuit board (flexible or rigid), and insulated with a conformal and insulating coating such as parylene.
  • This same flexible circuit board 416 may have signal conductors for the video signal from camera 410.
  • the video signal may be transmitted from camera 410 to the handle using any video signal protocol, for example, MIPI (Mobile Industry Processor Interface) or HDMI. Parylene may also improve biocompatibility.
  • Shaft 110 may also carry cables or other mechanical elements to control panning of camera 410.
  • rotation collar may have various features that make rotation easy. For example, depressions 302 may provide a good grip for fingers for light roll torque. Fin 304 may provide greater leverage for greater roll torque, and may also provide a fixed rotational point of reference.
  • a button 310 may perform various functions, such as turning illumination LED on or off, taking pictures, starting and stopping video, and the like.
  • a single button may perform all these functions based on the nature of the press. For example, press-and-hold for 3 seconds may turn the illumination LED on and off.
  • a quick press may capture a single -frame still picture.
  • a double-click may start and stop video recording.
  • a control for example, a lever, or a touch-slide panel, etc.
  • One or more ultraviolet LEDs or other illumination source may be placed inside handle 112,114, inside shaft 110, or near tip 116 to assist with insuring sterility of the internal components of the device or of the water as it passes thru the device
  • Irrigation/insufflation hose(s) 160, 162 may enter at various points through the handle. For example (FIG. 3B), irrigation/insufflation hose(s) 160, 162 may enter through fin 304.
  • irrigation/insufflation fluid/gas hose(s) 160, 162 may enter through the proximal end of handle 114. This hose may then be disconnectable via a fluid disconnect joint 320 within joint 130.
  • hose(s) 160 for insufflation fluid/gas enters through disposable cap 120 various joints and strain relief features 340 may be used to hold hose(s) 160 in place.
  • electrical connectors 150, 152 such as USB-C or mini-HDMI connectors may be used to connect camera 410 to a circuit board interior to handle 114.
  • rotation-locking coupling 140, 142 may lock disposable cap 120 in rotational relationship to rotation collar 112.
  • Various rigid and resilient features 144, 148 may lock them together for other forces and torques, and release buttons 146 may permit them to disengage to allow replacement of disposable cap 120.
  • the coupling between cap portion 120 and rotation-locking coupling 140, 142 may place much of the stress at the periphery of the joint, so that joint 130 may carry and transmit forces (especially torques) well.
  • rotation between the handle’s stationary portion 114 and rotation collar 112 may be provided via a rotational bearing at joint 128.
  • proximal handle 114 may contain a number of components, typically components that have only incidental patient contact (and therefore present less risk of cross-infection), are higher in cost (and therefore desirably reusable), and either sterilizeable or may be covered by a sterility sleeve.
  • proximal handle 114 may hold power transformers, signal amplifiers, controls for the illumination LED and camera, a mechanical control for panning camera 410, rotation sensors for righting of an image from camera 410, and the like.
  • the handle may also include connections to external sources and destinations of power, signal, fluid, and the like.
  • Proximal handle 114 may include rotational sensors so that an angular orientation of camera 410 may be ascertained.
  • the inner surface of proximal handle 114 may mount one or more magnets 320, and printed circuit board 322 (which rotates with rotation collar 112 and disposable cap 120) may have Hall effect sensors 324 that detect the magnets. This may be used to compute a rotational orientation, which may in turn be used to “right” the image from camera 410 on a video display screen.
  • the distal tip of the shaft, camera 410 mounted therein, and the mounting of componentry within the shaft may be designed to be robust. Occasionally, during surgery, the tip of the endoscope may come into contact with a shaver, ablation probe, or cauterization probe, and it may be desirable to have the tip be robust to such contacts. To reduce risk that componentry may be dislodged and left in the patient, the disposable shaft and its componentry may be designed to avoid joints that are at high risk of mechanical failure. A disposable optical system may prevent the image degradation that occurs when nondisposable optics are reused in multiple surgical procedures.
  • Endoscopes as a genus include arthroscopes, laparoscopes, colonoscopes, and other specialized scopes for various body cavities.
  • the shaft may be as small as 5mm, 5.5mm, or 6mm, and highly rigid.
  • the diameter may be larger, and the shaft may be flexible.
  • the endoscope may be delivered as a handle and multiple tips, each tip individually sealed for sterility.
  • hoses 160, 162 for irrigation/insufflation fluid/gas in, irrigation/insufflation fluid/gas out, and electrical connection cord 164 may be permanently affixed 340, 342 to disposable cap 120. This arrangement may allow that hose 162 that carries water out of the surgical cavity, and which is therefore contaminated, may be disposable, and no fluid will come into contact with the reusable part 114 of the handle. Hoses and cord 160, 162 may be routed through channel 354 running the length of reusable handle 112, 114.
  • Channel 344 may be of inner diameter large enough to permit easy passage of hoses and cord 160, 162, 164, and connectors 350, 352, and have a continuous smooth wall that permits easy sterilization, to permit ready replacement of the replaceable components.
  • Channel 354 may be off the central axis, to allow printed circuit board 322 to lie on the central axis.
  • Connectors 350, 352 at the end of hoses and cords 160, 162 may be small enough to pass through channel 354.
  • replacement of shaft 110, cap 120, hoses and cords 160, 162 may be effected by threading connectors 350, 352 and hoses and cord 160, 162 through channel 344.
  • Electrical cord 164 may have a connector 354 at or near joint 130, and hose(s) 160 for irrigation/insufflation fluid/gas flowing into the surgical cavity may likewise have a connector at joint 130 to allow this hose(s) to be reusable, or may be permanently affixed 340 to reduce possibility of leaking.
  • hoses and cable 160, 162 roughly on-axis reduces undesirable cable flop as the scope is in use, and reduces undesirable torque on cap 120.
  • Forming shaft 120, cap 120, and hoses 160, 162 as an integral unit for replacement reduces possibility of leaking, and improves sterility of the replacement operation.
  • reusable handles 112, 114 may be sterilized in a sterilizer 600.
  • hose(s) 160, 162 and all other portions of endoscope 100 that come into contact with the patient, or with fluids that have come into contact with the patient, are disposable, and the design for reusable portions 112, 114 ensures that contamination is minimized through avoiding contact with the
  • Sterilizer 360 may be arranged to accept one or more reusable handles 112,
  • Rods 364 that pass through handle channel 344 may have ultraviolet LEDs 366 arranged along their lengths, to sterilize internal channels 344.
  • Components of endoscope tip 400 may be designed to permit a camera or vision sensor 410, a light source, an objective lens or window, and fluid management to be mounted within a confined space, such as an endoscope of 5 mm diameter.
  • endoscope tip 400 may be formed of top brace 412, bottom brace 414, and flexible circuit board 416.
  • Camera 410 may be mounted on one side of flexible circuit board 416, and an illumination LED on the other side.
  • Clear window 420 may protect camera 410 from the outside environment, such as the tissues and bodily fluids of an endoscopic procedure. The entire assembly may be locked together via overmolding.
  • one end of flexible circuit board 416 may be slotted into a slot or channel in top brace part 412, which holds the LED into place.
  • board 416 may be folded around a bend in top brace 412, so that camera 410 comes into place through its hole in top brace 412. The folding and rotation brings the LED close to the sensor, which permits the assembly to fit within the 5mm diameter of tip 400.
  • bottom brace 414 may be brought into place, which holds top brace 412, bottom brace 414, circuit board 416, LED, and camera 410 in their positions of mutual alignment.
  • a locking notch and clip, or ultrasonic welding may hold this assembly together for a time.
  • an overmolding step may lock everything together.
  • transparent window 420 may cover camera 410 to protect it.
  • Window 420 may be two thicknesses, a thicker region over camera 410, and a thinner region for the portions used for mounting and for the LED to shine through.
  • a peripheral ridge of endoscope tip 400 may extend beyond window 420 by a small amount.
  • Top brace 412 may include a wall that surrounds the LED.
  • the thickness of the window 420 on the lens side may reduce vignetting artifacts, when the edge of the field of view of a camera image is occluded or the lens gathers less light toward its edge.
  • the shape of the lens may be used to reduce distortions such as fisheye distortions.
  • the ridge may tend to keep tissues away from the lens, reducing obscuring and improving view.
  • Window 420 of FIGS. 4E and 4F may be placed over the surface of the assembly of circuit board 416 with LED and camera 410, top brace 412, bottom brace 414, and window 420 (FIGS. 4B, 4C). Then the assembly with window 420 may be locked together via overmolding of a covering sheath (FIGS. 4C, 4D, 4G). This overmolding may provide watertightness to the entire tip assembly. The overmolded assembly may then be fitted onto the tip of the endoscope’s insertion shift.
  • clear window 422 may be overmolded onto top brace 412, before circuit board 416, LED, camera 410, and bottom brace 414 are assembled.
  • a flat platen may be placed to project through camera 410 hole to provide a mold surface, to provide an optically smooth back surface of window 422.
  • the mold may be flat (planar), or may have a desired curvature to form a convex or concave lens in overmolded window 422.
  • the circumferential edges of top brace 412 may be shaped to provide a secure lock that engages overmolded window 422.
  • circuit board 416 with LED may be inserted into the slot, and folded around top brace 412, and then bottom brace 414 may be snapped into place and ultrasonically welded.
  • top brace 412 and bottom brace 414 may improve ultrasonic welding.
  • Ultrasonic welding may improve adhesion and watertightness among top brace 412, bottom brace 414, and flow director components.
  • the energy directors may be molded as triangular-profile ridges on the inside surface of the top-brace -bottom-brace assembly.
  • the inner diameter of the energy directors may be slightly smaller than the outer diameter of the flow director, so that ultrasonic welding causes the energy directors to melt and to form a seal.
  • an endoscope tip 400 of very small diameter such as 4mm or less, 5mm or less, 4.5mm or less, or 4mm or less, or a tip 400 slightly larger than an endoscope shaft, with ah components fitting inside that tip diameter.
  • Mounting the LED and camera 410 on opposite sides of a flexible circuit board may assist in making the entire assembly more easily manufacturable. That manufacturing may involve inserting the end of a flexible circuit board 416 into a slot, and wrapping board 416 around a molded part or wrapping the board into a channel between molded parts to place various components in their preferred operating orientations. Components may be ultrasonically welded together. Overmolding may be used to structurally hold components together and to provide a watertight seal. Clear window 420, 422 may be overmolded onto a structural component, or the structural components may be overmolded over a clear window.
  • a single use endoscope 100 or single -use tip for a reusable handle may have camera 410 on the tip, and may use fiber optical fibers 430 to deliver
  • Plastic optical fibers 430 may offer an attractive combination of attributes for disposable or single-use endoscopy applications, including cost, flexibility to bend around curves and for motion during a surgical procedure, numerical aperture (the cone of angles over which the fiber radiates light, and the cone within which it accepts), low heat radiation at the surgical site, and manufacturing resilience.
  • Fiber optic illumination may deliver illumination adequate for applications such as laparoscopy, where the objective surface may be 200 or 300 mm from camera 410, while avoiding problems of heat dissipation that may arise by placing an LED at the tip.
  • Fiber optic illumination may reduce complexity of chip on tip circuitry in the confined space of endoscope tip 400.
  • Fiber optic illumination may permit use of multiple illumination sources of varying wavelength to be coupled at the collection end of the fiber, to change the illumination at endoscope tip 400.
  • Illumination source 432 may be located either in the reusable endoscope handle or base station/IPU/Master Controller.
  • Illumination source 432 may be one or more of single color LED, a white light source, a tricolor white LED, infrared or ultraviolet light, etc.
  • Illumination source 432 may be an LED, combination of LEDs, flash lamp, incandescent lamp, or other illuminator.
  • Fiber 430 may be coupled to illumination source 432 at the collector end by butt adjacency or other collection mechanisms.
  • multiple illumination sources 432 may be on a rotating carousel, sliding multiplexer, or other switch that brings successive ones of the multiple illumination sources into butt adjacent coupling with the coupling end of the light fibers 430.
  • Light source devices 432 that are the same size or slightly larger than the collector end of optical fiber 430 offer the most efficient butt adjacency coupling.
  • Plastic light fibers 430 are available as fluoridated polymer optical fibers tradenamed RaytelaTM from Toray Industries, Inc. of Japan. Plastic light fibers 430 may reduce cost relative to glass fibers 430 , which may be an especially important consideration in a single -use or disposable endoscope design. Plastic optical fibers 430 may be formed of two different plastic resins that have two different indices of refraction, the higher index resin used as a core, and the lower index resin used as a cladding layer. The boundary between the layers may provide total internal reflection to conduct light down the fiber. The diameter of fibers 430 may be chosen to optimize several simultaneous characteristics. The amount of light that can be carried per fiber is roughly proportional to cross-section area.
  • optical fiber The cost of optical fiber is primarily proportional to length, with a smaller cost growth with diameter. Likewise, manufacturing cost generally grows with the number of fibers, and grows with the number of fibers that break or are damaged during manufacture, so fewer larger- diameter fibers tends to be lower cost. On the other hand, mounting camera 410 and any working channel apparatus is generally more difficult, and the optical fibers are easier to fit into a small space if they are smaller diameter, which tends to favor a larger number of smaher-diameter fibers. To optimize among these tradeoffs, in some cases, twelve fibers of 0.5mm diameter may be used. They may be placed around the periphery of the working tip 400 of scope 100.
  • fibers 430 may be relatively uniformly spaced around the 360° periphery of tip 400. Greater uniformity of the placement of the illumination fibers 430, and centering on the camera lens, may reduce variability of illumination across the imaging field, shadows, and other undesirable artifacts. In other cases, fibers 430 may be distributed over some arc less than 360° and greater than 180°, and may approach 270°. In some cases, larger fibers 430 may be used for part of the periphery, and smaller fibers 430 may be used for a part of the end of the endoscope that is crowded with other mechanical components.
  • Non-circular fibers 430 may be used to allow greater surface area of the illumination end of the fibers, and thereby provide better illumination.
  • camera 410 may be mounted on a flex circuit board 416.
  • Lens 434 may be held n place by an inner tip part 436, and these parts may be assembled into a subassembly.
  • two jigs 440 may have a cap form, with inner diameter matching the outer diameter of outer tip part 438, and with throughholes conforming to the position of channels on the outer surface of outer tip part 438, the channels providing circumferential positions for the optical fibers 430.
  • the holes in the two jigs are typically in pair-wise opposition to each other.
  • optical fibers 430 may be routed through the holes in the jig parts, from matching hole to matching hole. Referring to FIGS.
  • outer tip part 438 may have grooves along its periphery to capture fibers 430, and a set of inner channels and features to hold the camera/inner tip part assembly.
  • outer tip part 438 may be placed into the nest of fibers held in place by jigs 440.
  • the camera/lens/inner tip part assembly may be placed into the outer tip part 438, and the flex board 416 laid into a channel formed by the optical fibers. Then rear jig 440 may be slid off the end of the flex board 416 and fibers 430.
  • fibers 430 may be cut to match the surface of outer tip part 438, and the ends of the fibers may be polished and covered with window 420, typically glass or sapphire.
  • the outer/distal surface of window 420 may be coated to accept a coating, such as that described in U.S. App. Ser. No. 16/069,220 and U.S. Provisional App. Ser. No 63/193,387, incorporated by reference.
  • Window 420, 422 may be held in place by an adhesive. This adhesive may fill any air gap between the end of optical fibers 430 and window 420. Removing the air gap may improve light emission from fibers 430 through the window 420. Referring to FIGS.
  • the assembly of the fibers 430, outer tip part 438, inner tip part 436, camera 410, and flex board 416 may be threaded through the stainless steel tube of the scope’s insertion shaft, and slid into place for either friction fit, or to be held in place by an adhesive, such as epoxy or an optical grade UV- curing adhesive (available form Norland Products Inc. of Cranbury NJ, from the Henkel Adhesives
  • the surface of camera 410 may be recessed into the stainless steel tube.
  • the surface of window 420 may be flush with the end of the tube, or may be recessed slightly, to provide protection against scratching or dislodgement of the window.
  • Light fibers 430 may be extruded in shapes that improve light delivery, such as rectangular, or a U-shaped light guide that would extend the length of the endoscope from the illumination source to the U-shaped emission surface at the distal end of the endoscope.
  • individual fibers 430 may be replaced, for at least some portion of their length, by a shaped light guide, such as a circular or U-shaped ring of clear light guide around the periphery of the outer tip part.
  • the light guide may be a two-component structure, with two different indices of refraction for internal reflection analogous to optical fiber.
  • the light guide may be formed of a clear light transmission medium coated by a reflective coating, such as aluminum, gold, or silver.
  • the shaped light guide may extend only a short distance, for example, the length of the inner tip part, and traditional circular fibers may be used to bring light from the illumination source to the proximal end of the light guide at the outer tip part.
  • the distal surface of the fibers or light guide may be roughened or coated with a diffusive coating, analogous to the coating used to coat the inside of soft white light bulbs.
  • a diffusive coating analogous to the coating used to coat the inside of soft white light bulbs.
  • Lenses may also be fogged by condensation of water vapor from the body cavity that is being operated on.
  • Endoscope tip 400 may be the coolest point in the bodily cavity because it is nonliving tissue with no metabolism, and because operating rooms are typically kept quite cool and the stainless steel insertion shaft conducts that cold from the ambient room air to the tip.
  • the tip of the endoscope may be heated. The heating need only be by a few degrees, enough to ensure that the endoscope is not the coolest point in the cavity.
  • apertures for insufflation fluid may be oriented to direct the fluid flow over the window surface to provide additional cleaning.
  • optical lenses/windows of obturator 104 and/or endoscope may be coated with an anti-adhesive coating.
  • a endoscope 100 and/or obturator 104 may incorporate a well, vial, or other containment structure 510 to hold an anti-adhesive lubricant in contact with the coating on the objective lens or window 420 of the endoscope between the time of manufacture or refurbishing up to the moment of use, to improve the coating.
  • Well/vial 510 may have a cap that retains the lubricant in contact with the lens/window matrix surface, to preserve the coating.
  • the cap may have a seal against the outside environment, and a seal that seals around a shaft of the endoscope.
  • the lubricant may be held in place over the endoscope lens/window by a rigid cap, or a flexible condom.
  • a lens/window 430 of endoscope 100 may have a coating to enhance optical or mechanical properties of the endoscope, and packaging for the endoscope may incorporate a vial or well or cap 510 of lubricant to maintain infusion into the retention matrix.
  • the coating may be an anti-adhesive coating to reduce accumulation of contaminants on the surface of the lens/window, so that forward view of the endoscope remains clear.
  • the anti-adhesive coating may be applied in two steps, first to build a porous matrix or network for retention of a lubricant on the surface of the lens/window, and then the lubricant.
  • the lubricant may be an oil, or other liquid or gel, so that the lubricant acts as a liquid-on-liquid surface.
  • the infused liquid may be a silicone oil (Momentive or Gelest polydimethylsiloxanes, such as 10 cSt, 350 cSt, 500 cSt), perfluorinated fluid (perfluoroperhydrophenanthrene, or Vitreon, and perfluoropolyethers or (PFPEs) of 80 cSt to 550 cSt: DuPont Krytox series), or other liquid or gel with appropriate combinations of high transparency, low surface energy, appropriate viscosity and volatility so it will be retained on the surface, chemical inertness, and prior US Food and Drug Administration (FDA)-approval.
  • FDA US Food and Drug Administration
  • Suitable anti-adhesive coatings are described in Thin Layer Perfluorocarbon (TLP) coating developed by the Hansjdrg Wyss Institute for Biologically Inspired Engineering at Harvard University, described at https://wyss.harvard.edu/technology/tlp-a-non-stick-coating-for-medical-devices (incorporated by reference), and in U.S. Pat. App. Ser. No. 16/096,220, Anti-Fouling Endoscopes and Uses Thereof, filed Oct. 24, 2018 (incorporated by reference), and commercially developed as Slippery Liquid- Infused Porous Surfaces (SLIPS) coatings and other repellent coatings and additives by Adaptive Surface Technologies, Inc.
  • SLIPS Slippery Liquid- Infused Porous Surfaces
  • the well or vial may be formed so that the cover includes appropriate seals 512 to retain the protective oil or gel.
  • edges around a cover may have a labyrinth seal.
  • Two components of an end wall may each embrace slightly more than 180 degrees of the endoscope shaft so as to form a seal.
  • Two components of an end way may have labyrinth seals against each other.
  • seal 512 may vary depending on the viscosity of the lubricant, and the surface energy of the lubricant vis-a-vis the material of the cap.
  • any excess of the lubricant may be wiped off. If the lubricant is bio-inert and nontoxic, it may be left in place to protect the lens during some phase of penetration.
  • the shipping, delivery, or storage case for the endoscope may have compartments for one or more scope insertion shafts, for a handle, for various hoses and cords, obturator 104, in addition to the well or vial or other retention for anti-adhesive lubricant.
  • end cap 520 may be affixed to the end of the endoscope to alter a field-of-view angle so that a single endoscope may be used at two different phases of the surgical procedure.
  • the endoscope may be fitted with a refractive cap or a prism, that bends light to reduce the offset angle.
  • Refraction by refractive cap 520 may yield a 0° on-axis view, or a near-zero angel such as 3°, 5°, or 10°.
  • a scope with refractive cap 520 may be used during initial penetration by trocar 102 and obturator 104, to give a straight-ahead view, or a near-straight-ahead view to within 3°, 5°, or 10° .
  • refractive cap 520 may be removed from endoscope 100 to yield a 30° offset scope. Removal may require withdrawal of endoscope 100, and then reinsertion. Then, referring to FIG. 5F, endoscope 100 may be returned down trocar 102 for use in a surgical procedure with a 30° offset field of view. Typically, obturator 104 is discarded once the penetration pierce is completed.
  • Refractive cap 520 may be molded of clear plastic, such as polycarbonate, acrylic, styrene, polyolefin, silicone, or inorganic transparent materials such as silica (silicon dioxide).
  • the refractive cap may be formed of multiple materials, such as glass and plastic, or two different plastic resins, to marry light refraction and various mechanical functions, such as to provide a sharp piercing point for cases where the endoscope is used without an obturator. Referring to FIGS. 51 and 5J, refractive cap 520 may be formed of different materials that provide different properties.
  • a high-index-of-refraction prism 524 may be embedded in a plastic of lower index of refraction, so that the plastic may be shaped in a desired manner.
  • Refractive cap 520 may be shaped to provide an atraumatic rounded nose 526, to avoid tissue injury.
  • the low-refraction plastic may be shaped with a piercing point 528. The point may be reinforced by a steel piercing tip.
  • One surface or the other may be convex or concave 530 to widen or narrow the field of view, or to magnify or reduce the forward-looking view.
  • Refractive cap 520 may permit a single endoscope to be used in two different phases of the surgery, where two different views are desired.
  • the degree of refraction may be enough to reduce the offset angle by 5°, 10°, 15° 20°, 25°, or 30°. In some cases, obtaining partial correction less than 0° on-axis may be sufficient to improve the view during piercing. In some cases, the apex point of obturator 104 may create optical distortion, so it may be desirable to maintain some optical offset to keep that distortion away from the center of view.
  • Refractive cap 520 may be attached to the tip of endoscope 100 by friction fit or interference fit (the inner diameter of refractive cap 520 equal to or slightly smaller than the outer diameter of endoscope tip 400), by means of a weak or snap-frangible adhesive, via a small bump on the inner diameter of refractive cap 520 that engages with a depression or dimple in the tip of endoscope 100, a threading or channel on the inner diameter of refractive cap 520 to engage with a small raised stud on endoscope 100, or by other connector.
  • the sleeve portion of refractive cap 520 may be formed of a heat-shrink plastic or other material that can be shrunk to secure the connection.
  • Refractive cap 520 may be held in place by a sleeve of elastic plastic, like a condom. While it is not desirable that refractive cap 520 fall off during use, that is a low severity event, because the endoscope with refractive cap 520 is inside obturator 104, and the refractive cap will be captured and removed when obturator 104 is withdrawn.
  • Refractive cap 520 may have holes through the attachment sleeve to permit fluid flow and/or suction to flow through from passages in the endoscope shaft.
  • a surface of refractive cap 520 may be etched with a reticule or measuring scale.
  • the reticule may be marked with a scale with which the surgeon can measure the size of objects seen through the endoscope. The surgeon may also use the reticule to align the endoscope within the surgical field.
  • Refractive cap 520 may have optical filters, for example, to reduce light reflected into the endoscope, to block certain wavelengths of light.
  • the filter may include a polarizing filter, a bandpass filter, a color filter, or an interference filter. These filters can be used in conjunction with specialized light sources (e.g., ultraviolet, infrared, or polarized) and video processing for therapeutic and diagnostic purposes.
  • refractive cap 520 may be part of a complete system to diagnose pathology using different wavelengths of light and/or colors of light and filtering the light. Further, refractive cap 520 may also be provided as part of system that delivers photonic energy to a surgical site to control and visualize photodynamic therapy.
  • objective lens/window of the endoscope may be treated with a coating, for example an anti-adhesive coating, and the endoscope may be delivered with anti-adhesive lubricant in a space between the lens/window and the proximal surface of the refractive cap’s prism.
  • the endoscope may be used as shown in FIGS. 5D, 5E, and 5F, first with refractive cap 520 attached to provide a close-to-0 0 view offset. Then refractive cap 520 may be removed, leaving endoscope with its 30° offset, with the anti-adhesive -coated lens/window exposed into the surgical cavity.
  • an endoscope tip 640 may provide a 360° view.
  • Two cameras 410 may be mounted opposed to each other, with hemispherical lenses 642 over them.
  • Hemispherical lenses 642 may be optically concave (as shown in FIG. 6D), to widen the field of view 644.
  • LEDs or the emitting ends 644 of optical fibers 430 may be arrayed around the tip 640 to provide 360° illumination.
  • Electronic image processing may be used to combine the two hemispherical views into a full 360° view that
  • Moving parts and structural components of endoscope 100 may be joined and affixed in place using techniques that avoid small components such as fasteners and springs. These manufacturing techniques may reduce costs of molding, reduce costs of assembly, reduce manufacturing steps, and reduce the likelihood that a separate component, for example, a steel spring or screw, may come loose and endanger patient safety. Likewise, assembly may be accomplished without adhesives or solvents that may be toxic.
  • a control button 710 for the endoscope may be formed as a single component with the button, its guide track, and its springs 712 molded as a single component.
  • This single component may be manufactured to simultaneously provide adequate stiffness so that a button press is transmitted from the top of the button to the bottom, and adequate resilience in beam structures 712 to provide restoring force to return the button to its undepressed state.
  • the loop beam structures 712 may be molded with flexible projections extending out from a united molded component. These extended flexible projections 712 may act in a combination of bending and torsion so that when button 710 is released, elastic memory of the materials will spring the button back into its initial position.
  • FIGS. 7B and 7C show the button in its normahy-up position, with the spring loops 712 in their originally-molded planar configuration.
  • FIGS. 7D and 7E show the button depressed, and the spring loop 712 deformed in torsion.
  • the button with its springs may be molded of ABS plastic.
  • the handle may have metal fasteners and other small metal parts, or assembly may use chemical adhesives and the like, but they may be encapsulated fully or partially within overmolding sufficiently to ensure no loosening , escape, or contact with fluids that flow into a patient.
  • a circuit board 722 to be mounted within the handle, with its connecting cables that will feed forward into the insertion shaft, and its connecting cables that will feed backwards to the supporting power supply and computer driver, may be overmolded 720
  • Overmolding 720 may include through-holes that provide secure mechanical mounting points for mounting within the handle. Overmolding 720 may provide a covering that protects all sides and is resilient to protect circuit board 722 from mechanical insult during manufacturing and use. Overmolded case 720 may provide strain relief for the cables 724 at the two ends of circuit board 722, to reduce damage that might be caused by pulling on the cables 724. The overmolding 720 may provide a unified, no-seams covering to protect he circuit board 722 from water intrusion. Overmolding 720 may protect against fluid ingress to a level of IP65 under international standard EN 60529.
  • Liquid-tight protection of overmolded case 720 over circuit board 722 may allow the sterilization of the interior of the handle via flowing a sterilizing liquid or gas through the interior of the handle, and may provide dielectric protection to prevent electrical shock to the patient.
  • the overmolded circuit board structure may be mounted within the handle via molded clips, heat staking, and similar techniques that result in a unitary structure, without separate small-part fasteners.
  • handle may be molded in two parts 732, 734.
  • Top half 732 shown turned upside-down, may be molded with several molded bosses 736.
  • the button has been turned upside-down and set in place; the looping resilient projections are visible.
  • the overmolded 720 PC board may be placed over bosses 736, so that bosses 736 project through the through-holes in the board casing.
  • heat and/or ultrasonic vibration may be used to melt the tips of bosses 736 into domes or heads 738 that hold the button and PC board in place.
  • endoscope 100 may be assembled into a structure that is strong, without small parts that require separate assembly steps or that can become dislodged, and without toxic adhesives or solvents.
  • the inner shell 742 and outer handle shells 732, 734 rotate relative to each other, so that the surgeon may adjust field of view, using the magnetic Hall effect sensors 324 discussed above.
  • the inner handle 742 rotates in unison with rotation collar 112.
  • Inner handle 742 and rotation collar rotate relative to outer handle 114.
  • the inner handle 742 and outer handle shells 732, 734 may be coupled via two silicone O-rings 740 that provide some friction to maintain their relative position, while allowing the surgeon to rotate the two handle components to adjust the arthroscope’s field of view.
  • the cylindrical inner handle may be fully assembled, and the O-rings 740 may be fitted over the end of inner handle 742 into their two retaining channels. Then the two halves of the outer handle shell 732, 734 may be brought together like buns over a hotdog,
  • the two halves 732, 734 of the outer shell may be ultrasonically welded without adhesives or solvents.
  • the two outer shell halves may have locking clips or hooks that may snap together to hold them temporarily before ultrasonic welding begins.
  • various energy directors and troughs may be designed to ensure high efficacy of ultrasonic welding.
  • the height of the energy director is slightly higher than the depth of its mating trough, and the width of the energy director is slightly narrower than the trough.
  • Ultrasonic vibration may cause the energy director to slightly melt and deform to fill the trough.
  • the ultrasonically-welded seams may come very close to fully enclosing the cavity of the outer handle, to reduce the likelihood of any fluid intrusion from outside into the interior of the endoscope. Any fluid carries risk of pathogens. Sterilization of the interior of devices such as endoscopes is difficult, so exclusion of fluids is important for any components that may be reused.
  • a high friction surface 750 may be bonded to or overmolded onto the outer surface of the outer handle shell 732, 734, to provide a high-friction contact between a surgeon’s gloved hand and the handle.
  • the surgeon’s glove and/or the handle may become covered with bodily fluids and other liquids that may reduce friction, so that the surgeon could have trouble maintaining control of a solid endoscope.
  • a high-friction compound 750 such as thermoplastic elastomer (TPE)
  • TPE thermoplastic elastomer
  • the handle becomes higher friction, which may improve the surgeon’s control. If the cover is overmolded as a single unitary layer, it may provide additional sealing against fluid intrusion.
  • TPE thermoplastic elastomer
  • One medical grade, biocompatible TPE is Medalist MD-34940 or MD-34950 from Teknor Apex of Pawtucket, RI.
  • the joint between the handle body and the outer sheath or insertion trocar 102 may be designed to provide a water tight seal between the endoscope and the outer sheath/trocar 102 without the use of an O-ring.
  • An O-ring at this joint may be undesirable if it could fall off mid-surgery or be introduced into the patient when the endoscope is being locked into the outer sheath/trocar 102.
  • the seating cup for the outer sheath/trocar 102 is shown in cutaway section, so that the male conical inner surface 810 of the seat can be seen, and the
  • a female mating cone 812 on the nose of the endoscope is shown in plan view, so that the mating between the outer surface of the male cone with the inner surface of the female cone in the cup of the outer sheath/trocar 102 can be seen.
  • FIG. 8C shows the two cones 810, 812 with some of the dimensions exaggerated.
  • Male cone 810 may have a slightly sharper angle of conicity than female cone 812, by about 1 ⁇ 2°.
  • the largest diameter of female cone 812 may be slightly smaller than the largest diameter at the base of the male cone 810, so that these two surfaces 810, 812 will form a watertight interference seal.
  • the interference of diameters may be on the order of 1 ⁇ 2 mm, when the diameters of the two cones are in the range of 19 to 25 mm.
  • the angle may be on the order of 15°, and the two cones may differ by about 1 ⁇ 2°.
  • the outer diameter of the male cone 810 may be the same as the inner diameter of the female cone 812, but male cone 810 may have small ridge 814 at its circumference, which leads to a watertight interference seal at this end as well.
  • the polymers of the parts may be chosen to provide an appropriate amount of resilience for the interference fit to appropriately seal the water.
  • FIG. 8D shows ridge 814 molded onto the small end of the male cone.
  • the ridge on male cone 810 may form an interference seal with the small end, inner diameter of female cone 814 in the mounting cup of outer sheath/trocar 102.
  • FIG. 8E shows the two parts mated.
  • the seal between the endoscope and outer sheath/trocar cap may use O-rings.
  • O-rings may be seated in channels on the surface of the inner male cone, so that the female cone engages to compress the O-ring into its channel before the contact begins to translate into lateral forces that would displace the O-ring.
  • O-rings may be especially desirable at the large- diameter end of the male cone abutting the face of the chassis of the endoscope, so that the female surface of the outer sheath/trocar cap cannot displace the O-ring.
  • the angles of the cones may be flatter than 15°, so that the compression force against the O-rings created by the twist lock (see discussion of FIGS. 9J, 9K, and 9L, in section XI.C) is increased relative to lengthwise frictional force that would tend to displace the O-rings.
  • the chamber 820 between the fluid indeed tube and the fluid flow annulus of outer sheath/trocar 102 may be designed as a squeezing cone to impart spiral flow to water or similar irrigation fluid.
  • Spiral flow 822 may be induced via the Bernoulli effect and Venturi effect as the water flows through the narrowing conical passage. Spiral vanes on the two conical surfaces may further accelerate the spiral flow.
  • Spiraling flow 822 may increase pressure and water velocity as the water emerges from the flow director holes at the tip of the endoscope. Spiraling motion 822 may help clean any debris that accumulates on the front window in front of camera 410.
  • parts made of stainless steel may be connected to parts made of plastics such as ABS without using adhesive.
  • One such technique is to cut holes 910 in the stainless steel and to overmold with ABS. Holes 910 may be shaped as slots, and the slots may be diagonal to the basic thrust and rotational forces. Diagonal slots 910 may provide additional securing in multiple dimensions. ABS has a shrinkage ratio, so a technique for confining play between the ABS and stainless steel may be advantageous.
  • Joining slots 910 may be used at multiple points, for example at the base of outer sheath/trocar 102 where the base cup of outer sheath/trocar 102 mounts to it, at the base of the endoscope insertion shaft/inner sheath/cannula mounts in the nose of the endoscope, and to join the endoscope flow director onto the distal end of the insertion shaft.
  • the handle/cap of obturator 104 may be hollow, to reduce weight and to reduce material costs.
  • the shaft of obturator 104 may be made of solid stainless steel, because it is used to force a piercing access portal into the patient’s tissues.
  • a circumferential groove 930 may be lathed into the handle/proximal end of the obturator shaft, or two parallel cuts 930 may be milled.
  • Base 932 of the obturator cap may then be overmolded onto this proximal end.
  • the shell 934 of the handle may be ultrasonically welded 936 onto the base part.
  • Advantages include reducing use of material, which reduces weight and cost.
  • the ultrasonic welding may joint the outer shell to the inner base of the handle without small metal parts that may become dislodged into the patient, without adhesives that may be toxic.
  • FIG. 9H shows the male energy director
  • FIG. 9G shows the female trough.
  • keyway 940 on a bayonet of the obturator handle may accept a key 942 on the inside of the mounting cap for outer sheath/trocar 102, which locks the two together during the piercing step.
  • Slope 944 may be on the order of 3° in order to draw the parts together.
  • one or more keyways on a bayonet on the nose of the endoscope may engage one or more pins on the inside of the mounting cap of outer sheath/trocar 102, to lock them together during observational use of the endoscope.
  • the key and keyways of the three components may be designed to be mutually compatible and interchangeable. This may reduce manufacturing costs, and may reduce handling during surgery.
  • Endoscope 100 may have a handle, and an insertion shaft, the insertion shaft having at its distal end a solid state camera.
  • the insertion shaft may have solid state illumination and imaging circuitry at or near a tip designed to provide illumination and imaging of the interior of a body cavity for a surgeon during surgery.
  • the proximal portion of the handle may have electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry.
  • the proximal handle portion may be designed to permit sterilization between uses.
  • a joint between the proximal handle portion and the insertion shaft may designed to separably connect the insertion shaft to the proximal handle portion.
  • the joint When it is separated, the joint may permit removal of the insertion shaft for disposal and replacement.
  • the joint may be designed so that, when connected, the joint can transfer mechanical force from a surgeon’s hand to the insertion shaft, and provides electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
  • the handle may have proximal and distal portions. The distal portion may lie between the insertion shaft and proximal handle portion.
  • the insertion shaft may be rigidly affixed to the distal handle portion.
  • the joint may be disposed to connect and disconnect the distal and proximal portions of the handle.
  • the distal handle portion may be designed to indirectly transfer mechanical force between a surgeon’s hand to the insertion shaft, and provide indirect electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
  • the handle may have a rotation collar having surface features designed to assist the surgeon in rotating the insertion shaft in the roll dimension about the axis of the insertion shaft relative to the proximal handle portion.
  • the electronics inside the proximal handle portion may be designed to sense roll of the insertion shaft, and provide an angular rotation signal designed to permit righting of a displayed image received from the imaging circuitry.
  • a mounting for the image sensor may be designed to permit panning of the image sensor about a pitch or yaw axis perpendicular to the central axis of the insertion shaft.
  • One or more ultraviolet LEDs internal to the endoscope may be designed to sterilize a region of the interior of the endoscope.
  • Hoses for insufflation fluid or gas may be designed on lie on or near a central axis of proximal handle portion.
  • Two or more insertion shafts each having dimensions different than the others, may each be connectable to the proximal handle portion at the joint, to permit use of the proximal handle in surgery with different requirements for insertion shaft.
  • a sterilization cabinet may be designed to sterilize components of the endoscope.
  • An insertion shaft of an endoscope tip has a rigid proximal portion and a distal portion. The distal portion is bendable to direct a field of view of imaging circuitry in a desired direction.
  • An illuminator and solid state imaging circuitry are at or near a distal tip of the articulable distal portion.
  • the illuminator is designed to illuminate, and the imaging circuitry being designed to capture imaging of, an interior of a body cavity for a surgeon during surgery.
  • a coupling of the replaceable endoscope tip is designed to separably connect the insertion
  • the coupling has mechanical connectors. When the joint is separated, the mechanical connectors permit removal of the insertion shaft from the handle for disposal and replacement. When the joint is connected, the joint is designed to provide mechanical force transfer between a surgeon’s hand to the insertion shaft.
  • Electrical connectors are designed to connect the insertion shaft to electronics in the handle.
  • the handle electronics are designed for drive of the illuminator and to receive imaging signal from the imaging circuitry, the handle being designed to permit sterilization between uses.
  • Control force transfer elements are designed to permit a surgeon to direct a direction of the imaging circuitry by transfer of mechanical force directed by a surgeon to the articulable distal portion.
  • the distal bendable portion includes a series of articulated rigid segments.
  • a sheath or cover over the articulated rigid segments is designed to reduce intrusion or pinching.
  • the distal bendable portion is formed of a solid component, bendable in its lateral and elevation dimensions, and relatively incompressible in compression in its longitudinal dimension.
  • the distal bendable portion is extendable from and retractable into a solid sheath.
  • the distal bendable portion is bendable in one dimension.
  • the distal bendable portion is bendable in two orthogonal dimensions.
  • the imaging circuitry is mounted within at or near a distal tip of the articulable distal portion via a pannable mounting.
  • the pannable mounting is designed as two sides of a parallelogram.
  • the imaging circuitry is mounted on a structural segment hinged to the two parallelogram sides.
  • Passages and apertures are designed to pass irrigation fluid to improve view from a lens or window over the imaging circuitry. Passages and apertures are designed to pass inflation fluid to enlarge a cavity for surgery.
  • Mechanical connectors of the coupling include a twist-lock designed to affix the endoscope insertion shaft to the handle portion.
  • a plurality of the endoscope tips are bundled and packaged together with a handle.
  • the handle has electronics designed for drive of the illuminator and to receive imaging signal from the imaging circuitry. The plurality of tips and handle are packaged for integrated shipment and sale.
  • the illuminator is an illumination LED mounted at or near the distal tip.
  • the illuminator is an emission end of a fiber optic fiber driven by an illumination source in the handle.
  • Camera 410 may be enclosed within a plastic casing.
  • the plastic casing may be formed as an overmolded jacket that is designed to protect camera 410 from bodily fluids and to structurally hold components of the tip in an operating configuration.
  • the overmolded jacket may be designed to retain a transparent window in operating configuration with camera 410.
  • the overmolded component may be formed of transparent plastic.
  • the overmolded component may be designed to function as a lens for camera 410.
  • Camera 410 may be mounted on a flexible circuit board.
  • Flexible circuit board 416 may mount an illumination LED.
  • the LED and camera may be mounted on opposite sides of flexible circuit board 416.
  • Camera 410 may be protected behind a transparent window.
  • the window may be molded in two thicknesses, a thinner portion designed for mounting and to allow passage of illumination light, a thicker portion over
  • the handle and its components may be designed with no metal fasteners, and no adhesives, except those captured by overmolding.
  • Control buttons of the endoscope may be molded with projections that function as return springs. The projections may be adhered into the endoscope handle via melting.
  • the circuit board may be overmolded by plastic that encapsulate the circuit board from contact with water. The circuit board may be mounted into the handle via melting.
  • Components of the handle may be joined to each other into a unitary structure via melting.
  • Components of the handle may be joined by resilient clips designed to held the two components to each other before joining into unitary structure via melting.
  • the handle may be formed of two shells concentric with each other.
  • Rotation of the two shells relative to each other may be controlled via one or more O-rings frictionally engaged with the two respective shells.
  • the handle may have overmolded a layer of a high-friction elastomer.
  • the insertion shaft may be connected to the handle via a separable joint.
  • a water joint of the separable joint may be molded for an interference seal without O-rings.
  • a water cavity of the separable joint may be designed to impart swirl to water flowing from the handle to the insertion shaft.
  • the insertion shaft may be formed of stainless steel and connected to the handle via a separable joint.
  • Plastic components of the endoscope may be joined to the insertion shaft via overmolding of plastic into slots aligned at an oblique angle in the wall of the insertion shaft, without adhesives.
  • the water joint may be formed as two cones in interference fit.
  • the cones may interfere at a large diameter.
  • the cones may interfere via a ridge raised on a lip of the inner male cone.
  • Obturator 104 may be designed to pierce tissue for introduction of the endoscope.
  • Features for twist-locking obturator 104 into trocar 102 may be compatible with features for twist-locking the endoscope into trocar 102.
  • An endoscope may have a handle and an insertion shaft.
  • the insertion shaft has solid state illumination and imaging circuitry at or near a tip designed to provide illumination and imaging of the interior of a body cavity for a surgeon during surgery.
  • the proximal portion of the handle has electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry, the proximal handle portion being designed to permit sterilization between uses.
  • a joint between the proximal handle portion and the insertion shaft is designed to separably connect the insertion shaft to the proximal handle portion. When it is separated, the joint permits removal of the insertion shaft for disposal and replacement.
  • the joint is designed so that, when connected, the joint can transfer mechanical force from a surgeon’s hand to the insertion shaft, and provides electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
  • An endoscope may have a handle and an insertion shaft, the insertion shaft having solid state illumination and imaging circuitry at or near a tip designed to provide illumination and imaging of the interior of a body cavity for a surgeon during surgery, and the proximal portion of the handle having electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry, the proximal handle portion being designed to permit sterilization between uses;
  • a and a joint between the proximal handle portion and the insertion shaft designed to separably connect the insertion shaft to the proximal handle portion.
  • the joint is separated to permit removal of the insertion shaft for disposal and replacement.
  • the joint is reconnected with a new insertion shaft, the connection designed to provide mechanical force transfer between a surgeon’ s hand to the insertion shaft, and electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
  • the handle may have proximal and distal portions.
  • the distal portion may lie between the insertion shaft and proximal handle portion.
  • the insertion shaft may be rigidly affixed to the distal handle portion.
  • the joint may be disposed to connect and disconnect the distal and proximal portions of the handle.
  • the distal handle portion may be designed to indirectly transfer mechanical force between a surgeon’s hand to the insertion shaft, and provide indirect electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
  • the handle may have a rotation collar having surface features designed to assist the surgeon in rotating the insertion shaft in the roll dimension about the axis of the insertion shaft relative to the proximal handle portion.
  • the electronics inside the proximal handle portion may be designed to sense roll of the insertion shaft, and provide an angular rotation signal designed to permit righting of a displayed image received from the imaging circuitry.
  • a mounting for the image sensor may be designed to permit panning of the image sensor about a pitch or yaw axis perpendicular to the central axis of the insertion shaft.
  • One or more ultraviolet LEDs internal to the endoscope may be designed to sterilize a region of the interior of the endoscope.
  • Hoses for insufflation fluid or gas may be designed on lie on or near a central axis of proximal handle portion.
  • Two or more insertion shafts each having dimensions different than the others, may each be connectable to the proximal handle portion at the joint, to permit use of the proximal handle in surgery with different requirements for insertion shaft.
  • a sterilization cabinet may be designed to sterilize components of the endoscope.
  • An endoscope may have a handle, and an insertion shaft.
  • the insertion shaft may have at its distal end a solid state camera.
  • Camera 410 may be enclosed within a plastic casing with an overmolded jacket that is designed to protect camera 410 from bodily fluids and to structurally hold components of the tip in an operating configuration.
  • Camera 410 may be protected behind a transparent window.
  • the window may be molded in two thicknesses. A thinner portion designed for mounting and to allow passage of illumination light, a thicker portion over camera 410.
  • the handle may have retained within a circuit board with circuitry for control of and receipt of signals from camera 410.
  • the handle and its components may be designed with no metal fasteners, and no adhesives, except those captured by overmolding.
  • the handle may be formed of two shells concentric with each other. Rotation of the two shells relative to each other may be controlled via one or more O-rings frictionally engaged with the two respective shells.
  • the handle may have an overmolded layer of a high-friction elastomer.
  • the insertion shaft may be connected to the handle via a separable
  • a joint, a water joint of the separable joint may be molded for an interference seal without O-rings.
  • the insertion shaft may be connected to the handle via a separable joint.
  • a water cavity of the separable joint may be designed to impart swirl to water flowing from the handle to the insertion shaft.
  • the insertion shaft may be formed of stainless steel and connected to the handle via a separable joint.
  • Plastic components of the endoscope may be joined to the insertion shaft via overmolding of plastic into slots aligned at an oblique angle in the wall of the insertion shaft, without adhesives.
  • the insertion shaft may be connected to the handle via a separable joint.
  • Obturator 104 may be designed to pierce tissue for introduction of the endoscope.
  • Features for twist-locking obturator 104 into trocar 102 may be compatible with features for twist-locking the endoscope into trocar 102.
  • Embodiments of the invention may include one or more of the following features.
  • the overmolded jacket may be designed to retain a transparent window in operating configuration with camera 410.
  • the overmolded component may be formed of transparent plastic and designed to function as a lens for camera 410.
  • Camera 410 may be mounted on a flexible circuit board: Flexible circuit board 416 may have mounted thereon an illumination LED. The LED and camera may be mounted on opposite sides of flexible circuit board 416.
  • Control buttons of the endoscope may be molded with projections that function as return springs, the projections to be adhered into the endoscope handle via melting.
  • the circuit board may be overmolded by plastic that encapsulates the circuit board from contact with water. The circuit board may be mounted into the handle via melting.
  • Components of the handle may be joined to each other into a unitary structure via melting
  • Components of the handle may be further joined by resilient clips designed to held the two components to each other before joining into unitary structure via melting.
  • the joint may be formed as two frusta of cones in interference fit. The two frusta may interfere at their large diameters. The frusta may interfering via a ridge raised on a lip of the inner male cone.
  • An endoscope may have a handle and an insertion shaft.
  • the insertion shaft has solid state illumination and imaging circuitry at or near a tip designed to provide illumination and imaging of the interior of a body cavity for a surgeon during surgery.
  • the proximal portion of the handle has electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry, the proximal handle portion may be designed to permit sterilization between uses.
  • a joint between the proximal handle portion and the insertion shaft is designed to separably connect the insertion shaft to the proximal handle portion. When it is separated, the joint permits removal of the insertion shaft for disposal and replacement.
  • the joint is designed so that, when connected, the joint can transfer mechanical force from a surgeon’s hand to the insertion shaft, and provides electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
  • An endoscope may have a handle and an insertion shaft, the insertion shaft having solid state illumination and imaging circuitry at or near a tip designed to provide illumination and
  • the proximal portion of the handle may have electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry.
  • the proximal handle portion may be designed to permit sterilization between uses.
  • a joint between the proximal handle portion and the insertion shaft designed to separably connect the insertion shaft to the proximal handle portion.
  • the joint may be separated to permit removal of the insertion shaft for disposal and replacement.
  • the joint may be reconnected with a new insertion shaft, the connection designed to provide mechanical force transfer between a surgeon’s hand to the insertion shaft, and electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
  • Embodiments of the invention may include one or more of the following features.
  • the handle may have proximal and distal portions.
  • the distal portion may lie between the insertion shaft and proximal handle portion.
  • the insertion shaft may be rigidly affixed to the distal handle portion.
  • the joint may be disposed to connect and disconnect the distal and proximal portions of the handle.
  • the distal handle portion may be designed to indirectly transfer mechanical force between a surgeon’s hand to the insertion shaft, and provide indirect electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
  • the handle may have a rotation collar having surface features designed to assist the surgeon in rotating the insertion shaft in the roll dimension about the axis of the insertion shaft relative to the proximal handle portion.
  • the electronics inside the proximal handle portion may be designed to sense roll of the insertion shaft, and provide an angular rotation signal designed to permit righting of a displayed image received from the imaging circuitry.
  • a mounting for the image sensor may be designed to permit panning of the image sensor about a pitch or yaw axis perpendicular to the central axis of the insertion shaft.
  • One or more ultraviolet LEDs internal to the endoscope may be designed to sterilize a region of the interior of the endoscope.
  • Hoses for insufflation fluid or gas may be designed on lie on or near a central axis of proximal handle portion.
  • Two or more insertion shafts may each be connectable to the proximal handle portion at the joint, to permit use of the proximal handle in surgery with different requirements for insertion shaft.
  • a sterilization cabinet may be designed to sterilize components of the endoscope.
  • a replaceable endoscope tip for an endoscope may have a rigid proximal portion and a distal portion.
  • the distal portion may be bendable to direct a field of view of imaging circuitry in a desired direction.
  • Illuminator and solid state imaging circuitry may be located at or near a distal tip of the articulable distal portion.
  • the illuminator may be designed to illuminate, and the imaging circuitry may be designed to capture imaging of, an interior of a body cavity for a surgeon during surgery.
  • a coupling is designed to separably connect the replaceable endoscope tip at a joint to a handle portion, and to disconnect the joint.
  • the coupling has mechanical connectors designed: (a) when separated, the mechanical connectors permitting removal of the replaceable endoscope tip from
  • Electrical connectors are designed to connect the replaceable endoscope tip to electronics in the handle, the handle electronics designed for drive of the illuminator and to receive imaging signal from the imaging circuitry, the handle may be designed to permit sterilization between uses.
  • Control force transfer elements are designed to permit a surgeon to direct a direction of the imaging circuitry by transfer of mechanical force directed by a surgeon to the bendable distal portion.
  • the invention features an apparatus.
  • An optical prism is designed to displace a field of view offset angle of an endoscope.
  • a connector is designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off- axis of the endoscope, and to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity.
  • the optical prism and connector are designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset when the prism and connector are affixed to an optical tip of the endoscope.
  • the invention features delivery packaging for an endoscope.
  • the packaging has mechanical features designed to retain components of an endoscope, and to protect the endoscope for shipping and/or delivery.
  • the packaging has a vial, well, or cavity designed to retain anti-adhesive lubricant in contact with a lens or window of the endoscope.
  • An endoscope may be inserted into a body cavity.
  • the endoscope has a field of view at an initial offset angle displaced off-axis of the endoscope.
  • the endoscope has affixed to its distal end an optical prism designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset.
  • the prism is affixed to the distal end of the endoscope by a connector designed to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity. The endoscope is withdrawn from the body with the prism affixed.
  • the prism is removed from the endoscope.
  • the endoscope is reinserted back into the body cavity with its field of view at the initial offset angle.
  • the distal bendable portion may include a series of articulated rigid segments.
  • a sheath or cover may cover the articulated rigid segments designed to reduce intrusion or pinching.
  • the distal bendable portion may be formed of a solid component, bendable in its lateral and elevation dimensions, and relatively incompressible in compression in its longitudinal dimension.
  • the distal bendable portion may be extendable from and retractable into a solid sheath.
  • the distal bendable portion may be bendable in one dimension.
  • the distal bendable portion may be bendable in two orthogonal dimensions.
  • the imaging circuitry may be mounted within at or near a distal tip of the bendable distal portion via a pannable mounting.
  • the pannable mounting may be designed as two sides of a parallelogram, and the imaging circuitry may be mounted on a structural segment hinged to the two
  • Passages and apertures may be designed to pass irrigation fluid to improve view from a lens or window over the imaging circuitry. Passages and apertures may be designed to pass inflation fluid to enlarge a cavity for surgery.
  • Mechanical connectors of the coupling may include a twist-lock designed to affix the endoscope replaceable endoscope tip to the handle portion.
  • a plurality of the endoscope replaceable endoscope tips may be packaged for integrated shipment and sale with a reusable handle, the handle having electronics designed for drive of the illuminator and to receive imaging signal from the imaging circuitry.
  • the illuminator may be an illumination LED mounted at or near the distal tip.
  • the illuminator may be an emission end of a fiber optic fiber driven by an illumination source in the handle.
  • the optical prism may be designed to reduce the offset angle of the endoscope’s field of view to no more than 10°, or to no more than 5°, or to no more than 3°.
  • the optical prism may be optically convex to magnify an image.
  • the optical prism may be optically concave to enlarge the endoscope’s field of view.
  • the connector may be designed to affix to the endoscope by mechanical forces.
  • An optical filter may be coupled with the prism.
  • the endoscope may have a wetting surface designed to entrain an anti-adhesive lubricant in a layer over a lens or window of the endoscope.
  • the wetting surface may be a porous solid.
  • the porous solid may be formed by sintering or other heating of particles.
  • the optical prism and connector may be affixed to the endoscope for shipment, and designed to retain an anti-adhesive lubricant in contact with a lens or window of the endoscope during shipment.
  • the vial, well, or cavity may have a cap with a seal to seal around a shaft of the endoscope.
  • the anti-adhesive lubricant may comprise silicone oil, or mixtures thereof.
  • the anti-adhesive lubricant may comprise a mixture of silicone oils of different viscosities.
  • the vial or cavity may include an optical prism designed to displace a field of view of an endoscope.
  • the invention features delivery packaging for an endoscope.
  • the packaging has mechanical features to retain components of an endoscope in a manner safe for shipping, and readily releasable for use.
  • a vial, well, or cavity is designed to retain anti adhesive lubricant in contact with a lens or window of the endoscope.
  • An optical prism may be designed to displace a field of view of an endoscope.
  • a connector may be designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off-axis of the endoscope.
  • the optical prism and connector may be designed to bring the offset angle for a field of view of the endoscope toward on-axis relative to the initial offset.
  • a processor e.g., one or more microprocessors, one or more microcontrollers, one or more digital signal processors
  • a processor will receive instructions (e.g., from a memory or like device), and execute those instructions, thereby performing one or more processes defined by those instructions.
  • a Instructions may be embodied in one or more computer programs, one or more scripts, or in other forms.
  • the processing may be performed on one or more microprocessors, central processing units (CPUs), computing devices, microcontrollers, digital signal processors, or like devices or any combination thereof.
  • Programs that implement the processing, and the data operated on, may be stored and transmitted using a variety of media.
  • hard-wired circuitry or custom hardware may be used in place of, or in combination with, some or all of the software instructions that can implement the processes. Algorithms other than those described may be used.
  • Programs and data may be stored in various media appropriate to the purpose, or a combination of heterogeneous media that may be read and/or written by a computer, a processor or a like device.
  • the media may include non-volatile media, volatile media, optical or magnetic media, dynamic random access memory (DRAM), static ram, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge or other memory technologies.
  • DRAM dynamic random access memory
  • Databases may be implemented using database management systems or ad hoc memory organization schemes. Alternative database structures to those described may be readily employed. Databases may be stored locally or remotely from a device which accesses data in such a database.
  • the processing may be performed in a network environment including a computer that is in communication (e.g., via a communications network) with one or more devices.
  • the computer may communicate with the devices directly or indirectly, via any wired or wireless medium (e.g. the Internet, LAN, WAN or Ethernet, Token Ring, a telephone line, a cable line, a radio channel, an optical communications line, commercial on-line service providers, bulletin board systems, a satellite communications link, a combination of any of the above).
  • Transmission media include coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to the processor.
  • Transmission may occur over transmission media, or over electromagnetic waves, such as via infrared, WiFi, Bluetooth, and the like, at various frequencies using various protocols.
  • Each of the devices may themselves comprise computers or other computing devices, such as those based on the Intel® Pentium® or CentrinoTM processor, that are adapted to communicate with the computer. Any number and type of devices may be in communication with the computer.
  • a server computer or centralized authority may or may not be necessary or desirable.
  • the network may or may not include a central authority device.
  • Various processing functions may be performed on a central authority server, one of several distributed servers, or other distributed devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

An optical prism is designed to displace a field of view offset angle of an endoscope. A connector is designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off-axis. The optical prism and connector are designed to reduce the offset angle of the field of view of the endoscope toward on-axis. Delivery packaging for an endoscope has a vial, well, or cavity designed to retain anti-adhesive lubricant in contact with a lens or window of the endoscope.

Description

Atty. Docket No. 4082-0010WO 10
Endoscope
BACKGROUND
[0001] This application claims priority from U.S. Provisional Application Serial No. 63/249,479, filed Sept. 28, 2021, titled Endoscope; and from U.S. Provisional Application Serial No. 63/193,387, filed May 26, 2021, titled Anti-Adhesive Window or Lens for Endoscope. The entire disclosure of the parent applications is incorporated herein by reference.
[0002] This application relates to endoscopes, laparoscopes, arthroscopes, colonoscopes, and similar surgical devices or appliances specially adapted or intended to be used for evaluating, examining, measuring, monitoring, studying, or testing living or dead human and animal bodies for medical purposes, or for use in operative surgery upon the body or in preparation for operative surgery, together with devices designed to assist in operative surgery.
SUMMARY
[0003] In general, in a first aspect, the invention features an apparatus. An optical prism is designed to displace a field of view offset angle of an endoscope. A connector is designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off- axis of the endoscope, and to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity. The optical prism and connector are designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset when the prism and connector are affixed to an optical tip of the endoscope.
[0004] In general, in a second aspect, the invention features delivery packaging for an endoscope. The packaging has mechanical features designed to retain components of an endoscope, and to protect the endoscope for shipping and/or delivery. The packaging has a vial, well, or cavity designed to retain anti-adhesive lubricant in contact with a lens or window of the endoscope.
[0005] In general, in a third aspect, the invention features a method. An endoscope is inserted into a body cavity. The endoscope has a field of view at an initial offset angle displaced off- axis of the endoscope. The endoscope has affixed to its distal end an optical prism designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset. The prism is affixed to the distal end of the endoscope by a connector designed to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity. The endoscope is withdrawn from the body with the prism affixed. The prism is removed from the endoscope. The endoscope is reinserted back into the body cavity with its field of view at the initial offset angle.
[0006] Embodiments of the invention may feature one or more of the following. The optical prism may be designed to reduce the offset angle of the endoscope’s field of view to no more than 10°, or to no more than 5°, or to no more than 3°. The optical prism may be optically convex to magnify an image. The optical prism may be optically concave to enlarge the endoscope’s field of view. The connector may be designed to affix to the endoscope by mechanical forces. An optical filter may be coupled with the prism. The endoscope may have a wetting surface designed to entrain an anti-adhesive lubricant in a layer over a lens or window of the endoscope. The wetting surface may be a porous solid. The porous solid may be formed by sintering or other heating of particles.
The optical prism and connector may be affixed to the endoscope for shipment, and designed to retain an anti-adhesive lubricant in contact with a lens or window of the endoscope during shipment. The vial, well, or cavity may have a cap with a seal to seal around a shaft of the endoscope. The anti adhesive lubricant may comprise silicone oil, or mixtures thereof. The anti-adhesive lubricant may comprise a mixture of silicone oils of different viscosities. The vial or cavity may include an optical prism designed to displace a field of view of an endoscope.
[0007] The above advantages and features are of representative embodiments only, and are presented only to assist in understanding the invention. It should be understood that they are not to be considered limitations on the invention as defined by the claims. Additional features and advantages of embodiments of the invention will become apparent in the following description, from the drawings, and from the claims.
DRAWINGS
[0008] FIGS. 1A to 1H, 2A to 2Q, and 3A to 3G, 4C, 4E to 4H, 4N to 4W, 5B, 7A, 7G to 7J, and 7N to 7Z, 9B, 9C, 9G, and 9J are perspective views of endoscopes and/or endoscope related apparatus.
[0009] FIGS. 4A, 5C, 5G to 5J, 6D, 7B, 7D, 8A to 8E, 9C, 9E to 91 are plan section views of endoscopes and/or endoscope related apparatus.
[0010] FIGS. 4B, 41, 4M, 6E, 7M, are exploded views of endoscopes and/or endoscope related apparatus.
[0011] FIGS. 4D, 4J, 4K, 4L, 5D to 5F, 7C, 7E, 7F, 7K, 7L, 8F, 9A, 9D are perspective section or cutaway views of endoscopes and/or endoscope related apparatus.
[0012] FIGS. 5A, 6A to 6C, 9K and 9L are plan views of endoscopes and/or endoscope related apparatus.
DESCRIPTION
I. Overview
[0013] Referring to FIG. 1A, endoscope 100 (such as an arthroscope, laparoscope, or other), trocar 102, and obturator 104 may be used for joint surgery, joint access, or other minimally-invasive surgery. A minimally-invasive surgery generally begins with penetration to the surgical site using a pointed instrument such as trocar 102 or obturator 104. Trocar 102 is a hollow tube used to pierce
A from the skin to the surgical site; trocar 102 will remain in place during the surgery to maintain an access port. During piercing, trocar 102 may have obturator 104 inserted through the lumen. Obturator 104 and/or trocar 102 may have sharp points for piercing into the tissue of a joint, abdominal cavity, or other surgical site to create an access portal. Obturator 104 may be inserted into trocar 102, used as a unit to pierce skin and other tissues, and once the space of interest is accessed, obturator 104 may be pulled out, leaving the “trocar cannula.” The scope may be placed through the cannula for visualization of the surgical site. The endoscope may be a “chip on a tip” scope, having an illumination source and a camera. After an access portal is cut via obturator 104 and trocar 102, the endoscope may be inserted through trocar 102 to the surgical site, to provide the visual access to a surgeon who performs the surgery with other instruments. Other trocars may placed for access by other instruments, such as laparoscopic scalpels, shavers, staplers, suture machines, and the like.
[0014] In some cases, endoscope 100 may be inserted down the inner lumen of obturator 104, and the point of obturator 104 may be transparent. The endoscope-within-obturator configuration may provide visual guidance to guide obturator 104 or trocar 102 to the correct surgical site. In other cases, trocar 102 may have a sharp point, and the endoscope may be inserted down the inner lumen of trocar 102, to guide trocar 102.
[0015] Referring to FIG. IB, endoscope 100 may have a number of features that ensure reliability, reduce manufacturing costs to the point that the entire endoscope, or portions thereof, may be disposable. Resterilization of endoscopes is costly, and always imperfect, which increases risk of cross-infection. Also, as endoscope 100 is reused, the optics become scratched and clouded, reducing the precision of the view available to the surgeon. Sections II to XI will discuss multiple features of the endoscope that provide such cost reduction and disposability.
[0016] Referring to FIG. 1C, obturator 104 may be locked into the outer sheath or trocar 102 via a twist lock 940, 942.
[0017] Referring to FIG. ID, obturator 104 and trocar 102 may be used to pierce into the surgical site, for example, a region of a knee behind the patella.
[0018] Referring to FIGS. IE and IF, obturator 104 may be unlocked from outer sheath/trocar 102. Obturator 104 and endoscope may be withdrawn, leaving hollow trocar 102 as a port to the site.
[0019] Referring to FIG. 1G, instruments, such as endoscope 100, etc. may be inserted through the outer sheath/trocar 102 to perform the surgery.
[0020] Referring to FIG. 1H, trocar/sheath 102 may be locked to the endoscope via the same twist lock motion as was used to hold the outer sheath/trocar 102 to obturator 104.
A II. An endoscope that is partially-reusable, partially disposable/replaceable, and a coupling joint between
[0021] Referring to FIGS. 2A, 2B, 2C, 2D, and 2E, a surgical endoscope 100 may be structured to permit detachment of a shaft 110 portion from the endoscope’s handle 112, 114. A camera or image sensor at tip 116 of the shaft, any panning mechanism, illumination, power and signal connectors, and fluid flow channels may be in the disposable shaft 110. Handle 112, 114 may be designed to be reusable (which implies that handle 112, 114 may be sterilizeable, for example in an autoclave or other sterilization device, or protectable by a disposable sterility sleeve). Joint 130 between the detachable shaft and the reusable parts of handle 112, 114 may be generally distal in the handle (but not necessarily at the distal-most end). The replaceable shaft portion 110 may be disposable, along with a disposable portion 120 of the handle that is disposable with shaft 110.
[0022] Referring to FIGS. 2 A and 2B, the handle of the endoscope 100 may include three principal components:
• The disposable cap 120. This distal-most portion of the handle may serve as a mounting base for shaft 110, and may disconnect from the remainder 112, 114 of the handle. This disposable cap portion 120 (along with shaft 110 and componentry inside) may be disposable.
• Rotation collar 112 may have surface features 302, 304 to allow a surgeon to rotate the rotation collar 120 about the central axis of the handle, that is, about the roll axis 126 of the shaft. During surgery, insertion shaft 110, disposable cap 120 and rotation collar 112 may be locked to rotate with each other, so that rotating the rotation collar effects rotation 126 of the disposable cap 120 and shaft 110.
• Proximal stationary handle 114 has a shell surrounding componentry within the handle. The outer diameter and outer surface of handle 114 may be designed to provide an easy and low- slip grip for a surgeon’s hand. Joint 128 between the proximal handle and rotation collar may allow these two components to rotate relative to each other. In some cases, a circuit board and similar componentry inside proximal handle 114 may rotate with disposable cap 120 and rotation collar 112, inside proximal handle 114.
Disposable cap 120 and rotation collar 112 may be separable from each other at joint 130, so that disposable cap 120 and shaft 110 may be disposable, while handle 114 and rotation collar 112 (and componentry inside them) are reusable.
[0023] Referring to FIGS. 2A, 2B, 2C, 3A, and 3B, between the disposable cap 120 and rotation collar 112, three basic connections may be made:
• A rotation-locking coupling 140, 142 to hold the disposable portion 120 to the reusable handle 112, 114. Coupling 140, 142 may have sufficient strength to transmit insertion and withdrawal forces, roll, pitch, and yaw torques, lateral forces, and similar forces from the proximal reusable handle 112, 114 to the distal disposable portion 120 and shaft 100, thereby to allow a physician to aim the illumination and/or camera as needed. Joint 130 between disposable cap 120 and rotation collar 112 may lie generally toward the distal end of the
A handle. The disposable cap and rotation collar 112 may engage through flat force -transmittal surfaces 144 at the center of joint 130 and around the circumferences, so that these forces are supported around the circumference of separable joint 130. One or more release buttons 146 may be pressed or squeezed to cause one or more locking snaps 148 to disengage. The mechanical connection may include a rotatable locking ring or other release/fixation mechanisms.
• An electrical connection to supply power to the illumination source and camera, and to carry optical signals back from camera 410 to the processing board in handle 112, 114 and display system outside the endoscope. The disconnectable electrical connections for power and signal may be effected by a USB-C connector 150, 152, mini HDMI connector, or similar connector that can maintain signal integrity for high speed signals. If illumination is conveyed by optical fiber, joint 130 may include an optical connector.
• A disconnectable connection to any panning mechanism for camera 410 may be effected by a physical connector, such as a linkage.
[0024] In some cases, the camera/image sensor 410, LED, and electronic connections (and any mechanical connections for panning the camera/image sensor 410) may be removable from insertion shaft 110. Shaft 110 and cap 120 may be smooth and simple enough in shape to allow easy sterilization. Similarly, once the electronics are removed from interior of shaft 110, they may be sterilizeable as well it may be cost-effective, especially in lower-labor-cost markets, to disassemble, sterilize, and reassemble the shaft and its interior components for reuse.
[0025] One or more fluid hoses 160 for irrigation liquid or inflation gas (or two hoses, one for fluid and one for gas) may enter through disposable cap 120, so that the entire set of fluid tubing for the irrigation/inflation channel may be disposable with the disposable shaft portion. In other cases (e.g., FIGS. 3E and 3F), a fluid hose 162 may enter the proximal end of the scope, and disconnectable fluid connections within joint 130 for fluid inflow and outflow may be effected by gaskets, O rings, and the like. Alternatively, connectors for the hoses may be outboard of the endoscope itself, either near the endoscope (for applications where it may be desirable to allow “quick change” replacement of the insertion shaft in the course of a single procedure), or far from the endoscope, typically at the receptacle for waste fluid, to ease disposal of all hoses that are potentially contaminated by contact with the patient.
[0026] Disposable shaft 110, 120 may be designed to facilitate disposability of components that come into contact with bodily fluids. Because sterilization is often imperfect, patient safety may be improved by disposing of components that have come into contact with patient bodily fluids. To improve sterilizability, it may desirable to reduce componentry in the disposable component 110, 120 so that cost of the disposable component may be reduced, and to reduce surface features and crevices that may be difficult to sterilize. Thus, the lens, image sensor, LED, panning mechanism, and shaft
A may be disposable. In addition, because shaft 110 is used for fluid inflow and outflow, and is disposable, sealing against bodily fluids may be unnecessary.
[0027] Referring to FIG. 2D, the replaceable/disposable shaft and its mounting componentry may be specialized to different types of surgery. For example, a purely diagnostic scope 172 may have an outer diameter of 1 to 3mm. A replaceable disposable cap / shaft unit 110, 120, 178 for laparoscopic thoracic surgery may have a shaft of 400 mm length and diameter of 10 mm.
Replaceable components 176 for arthroscopic surgery of knees and hips may be 155 mm in length, and 5.5 mm or 4 mm in diameter. For small joints, a replaceable shaft 174 of 2.9 mm diameter or less may be preferred. A replaceable shaft/scope unit with an bendable end 200 may be dimensioned for laparoscopic surgery. Typical dimensions for various surgical specialties may be as follows (measured in millimeters):
Figure imgf000008_0001
[0028] Various replaceable components 110 may have different instruments at tip 116. For example, various replaceable shafts may have cameras oriented at 0° (directly on-axis), 30°, 45°, 70°, and 90°.
[0029] Referring to FIG. 2B, disposable shaft portion 110, 120 may in turn be separable into an outer cannula 132 for protection and strength, and an inner shaft portion 134 carrying various illumination, optical, and fluid-carrying componentry. The scope may be sold as a handle unit 112, 114 with a set of ten or twelve or twenty replaceable shaft/cap unit 110, 120. [0030] U.S. App. Ser. No. 16/434,766, filed Jun. 7, 2019, and its formal drawings filed Aug.
13, 2019, are incorporated by reference.
III. Extendable, bendable, or articulated camera tip
[0031] Referring to FIGS. 2F and 2G, the camera tip 202 may be slideable within cannua1a shaft 132, to be extendable and retractable. When extended, the distal portion of camera stalk 202 may be bendable, for example, via articulation joints between segments 210. In FIGS. 2F and 2G, cone 204 shows the field of view of camera 410. The extendable/bendable portion of shaft 202 may be formed of a series of elements that are each essentially rigid in the longitudinal dimension, but articulated at each joint to permit bending or flexure. The articulation may all be in the same
A dimension, as shown in FIGS. 2F and 2G. Alternatively, as shown in FIGS. 2H and 21, articulation pivots 212 may be at alternating 90° angles, so that the bending may be in two dimensions, which in combination, may yield 360° of bending angles. Alternatively, the bendable portion 202 may be formed of elastic material, with an internal stiffener that is relatively stiff and incompressible against longitudinal compression dimension, and flexible in lateral and/or inclination bending. Bendable portion 202 may include two or four cable channels spaced around an outer surface, so that tension cables may cause bending in a desired direction.
[0032] Referring to FIGS. 2H, 21, 2J, 2K, 2L, and 2M, in some cases camera 410 may be pannable within endoscope tip 400. For example, camera 410 and its illumination LED may be mounted on one side of a substrate 220 formed as three rigid segments with two hinges 222, so that the two outer segments 224 may be moved relative to each other 226, and the center segment rotates in place, in the manner of a flexing parallelogram. The two outer segments 224 may be mounted in slide channels, and connected by cables 228 to controls at the handle. Referring to FIG. 2J, substrate 220 may be molded onto a flat flexible backing. The backing may contain folds 222 to create hinge points that allow the backing to fold into its parallelogram configuration (FIGS. 2K and 2L). Pivot points 230 may be molded into substrate 220. Referring to FIG. 2K, a flex circuit 232 may be laminated onto the substrate, and control tension cables 228 attached to the two ends. A camera, illumination LED, pressure sensor, temperature sensor, or other sensors may be affixed to substrate 220. Referring to FIG. 2L, substrate 220 may be folded into three sides of a parallelogram, and a fourth side may be formed by a linkage connected to hinge points. Further details are described in U.S. Pat. No. 9,375,139, incorporated herein by reference.
[0033] Longitudinal movement 226 of one face of the substrate relative to the other changes the angle of the center segment, and thus the angle of the image CCD or other camera, and any other sensor. This may provide an adjustable view angle over a range that may be as large as 90°. The endoscope can also accommodate for a 180° or retrograde view where the endoscope has a flat top construction and a rotatable or living hinge rectangular endoscope architecture.
[0034] Passages and apertures for ingress and egress of irrigation, inflation, or other fluids may be provided in the tip. An aperture for irrigation fluid may be aimed to clear fouling from a window or lens over camera 410.
[0035] At least one of surfaces 224 may contain a metal strip bonded onto or into segment 224. The metal strip may be a spring steel or nickel-titanium alloy with a preformed radius of curvature. The metal alloy may alternatively be a malleable metal such as aluminum or may be a nickel-titanium (nitinol) alloy with a shape memory feature. The metal strip allows the elongated core to reliably bend in one plane of curvature. Where the memory substrate is spring-steel or nitinol, it may bend to a shape if malleable, or may be made steerable with a nitinol shape-memory component.
A [0036] Referring to FIGS. 2N and 20, lever 240 may be moved to advance/project or retract/withdraw camera 410 within insertion shaft (FIGS. 2F and 2G). Another switch/lever 242 (for example a paddle-shaped switch) may control cables or levers that flex the articulable tip by exerting tension on cables 228 that extend to the tip, to cause rotational articulation at joints 212 along the extendable portion 202 of shaft 110, thereby to control articulation of the camera tip to move in positive-y and negative-y directions. Another lever may be used to control camera panning (FIGS. 2H, 21, 2J, 2K, 2L, and 2M).
[0037] Referring to FIGS. 2P and 2Q, a four-point control 244 may control four control cables 228 or rods or other load bearing components to the articulated or bendable portion of the extendable/retractable and/or articulated camera shaft 202, so that the camera tip may be articulated in positive-x, negative -x, positive-y, and negative-y directions.
[0038] Referring again to FIG. 2D and 2E, the extendable/retractable and/or articulated camera shaft 110, 200 may be used with a reusable handle, disposable tip configuration. The extendable/retractable and/or articulated camera shaft may be used with a reusable or single -use unibody scope configuration.
[0039] The articulated camera tip 200 may be especially useful in abdominal thoracic laparoscopy. Typically, during abdominal surgery, the abdominal cavity is inflated with carbon dioxide, to give the surgeon a large open field of view. This gives an extendable/retractable and/or articulated tip space to move. The extendable/retractable and/or articulated tip may be useful to provide a view behind an organ, such as the stomach or liver. If the surgeon only has a fixed view endoscope/laparoscope, the only way to obtain a view behind an organ would be to open another port from the opposite side of the body.
IV. Additional features of an endoscope
[0040] Referring to FIGS. 2 A and 2B, disposable shaft portion 110, 120 may in turn be separable into an outer cannula 132 for protection and strength, and an inner shaft portion 134 carrying various illumination, optical, and fluid-carrying componentry. Illumination may be provided by an LED at or near the distal tip, or via fiber optics from an illumination source in the handle, or illumination at an external controller.
[0041] Referring again to FIG. 2A, the endoscope may have a handle 112, 114, 120, and a shaft 110 for insertion into a body. At or near distal tip 116 of the shaft 110 may be a camera, electronic image sensor, or other optical component. The camera’s orientation may be fixed in the scope, or may be pannable. Camera 410 may be at tip 116, looking out from the shaft, or may be recessed a short distance behind the structural tip of the shaft. Also at or near the tip may be an illumination source, such as an LED. Tip 116 may have a rigid pointed tocar tip, or may have a spoon-shaped portion that reaches past the image sensor, or may be flexible (in the manner of the tip
A of a colonoscope), in each case extending a little beyond imaging camera to provide physical protection to the camera/image sensor 410 during insertion or to protect camera/image sensor 410 from a surgical cutting device.
[0042] Illumination may be in visible light, infrared, and/or ultraviolet. In some cases, an illumination LED (light emitting diode) or other illumination source may be placed in reusable handle 112, 114 or in a docking station/controller, and the disposable shaft may have fiber optics to transmit light to the tip, and joint 130 may have an optical coupler. In other cases, the illumination LED may be placed in tip 116 to illuminate the surgical cavity directly; in such cases, joint 130 may have a power connector. In some cases, the LED may be recessed from the tip, or placed somewhere in the shaft, or may be in an external controller, and optical fiber may carry illumination light to the tip. The optical fiber may be configured, for example, with a split, so that light will be arrayed in a desired pattern around the image sensor to better distribute the light into the surgical cavity around the image sensor.
[0043] The shaft 110 itself may be rigid, made of a nonbioreactive metal such as stainless steel or coated aluminum. In some cases, a surgical cavity around endoscope tip 400 may be insufflated by gas (typically carbon dioxide), or irrigated by saline solution. In either case, fluid inflow and outflow may be effected by channels through the shaft.
[0044] Shaft 110 may also carry power wires to the illumination LED and camera 410, and carry signal wires that carry an optical signal back from camera 410 to electronics in the reusable portion 112, 114 of the handle. Electrical power to camera 410 may be supplied over conductors in a flexible cable or on a printed circuit board (flexible or rigid), and insulated with a conformal and insulating coating such as parylene. This same flexible circuit board 416 may have signal conductors for the video signal from camera 410. The video signal may be transmitted from camera 410 to the handle using any video signal protocol, for example, MIPI (Mobile Industry Processor Interface) or HDMI. Parylene may also improve biocompatibility.
[0045] Shaft 110 may also carry cables or other mechanical elements to control panning of camera 410.
[0046] Referring to FIG. 3B, rotation collar may have various features that make rotation easy. For example, depressions 302 may provide a good grip for fingers for light roll torque. Fin 304 may provide greater leverage for greater roll torque, and may also provide a fixed rotational point of reference.
[0047] A button 310 may perform various functions, such as turning illumination LED on or off, taking pictures, starting and stopping video, and the like. A single button may perform all these functions based on the nature of the press. For example, press-and-hold for 3 seconds may turn the illumination LED on and off. A quick press may capture a single -frame still picture. A double-click may start and stop video recording.
A [0048] If camera 410 at the tip 116 of shaft 110 is pannable or has other controllable features, there may be a control (for example, a lever, or a touch-slide panel, etc.) near button 310 to control that adjustment of camera 410.
[0049] One or more ultraviolet LEDs or other illumination source may be placed inside handle 112,114, inside shaft 110, or near tip 116 to assist with insuring sterility of the internal components of the device or of the water as it passes thru the device
[0050] Irrigation/insufflation hose(s) 160, 162 may enter at various points through the handle. For example (FIG. 3B), irrigation/insufflation hose(s) 160, 162 may enter through fin 304.
Or (FIG. 3F), irrigation/insufflation fluid/gas hose(s) 160, 162 may enter through the proximal end of handle 114. This hose may then be disconnectable via a fluid disconnect joint 320 within joint 130.
In cases where hose(s) 160 for insufflation fluid/gas enters through disposable cap 120, various joints and strain relief features 340 may be used to hold hose(s) 160 in place.
[0051] Referring to FIG. 3B and FIG. 3F, electrical connectors 150, 152 such as USB-C or mini-HDMI connectors may be used to connect camera 410 to a circuit board interior to handle 114.
[0052] Referring to FIG. 3B, rotation-locking coupling 140, 142 may lock disposable cap 120 in rotational relationship to rotation collar 112. Various rigid and resilient features 144, 148 may lock them together for other forces and torques, and release buttons 146 may permit them to disengage to allow replacement of disposable cap 120. The coupling between cap portion 120 and rotation-locking coupling 140, 142 may place much of the stress at the periphery of the joint, so that joint 130 may carry and transmit forces (especially torques) well.
[0053] Referring to FIG. 3A, rotation between the handle’s stationary portion 114 and rotation collar 112 may be provided via a rotational bearing at joint 128.
[0054] Referring to FIGS. 3C and 3D, proximal handle 114 may contain a number of components, typically components that have only incidental patient contact (and therefore present less risk of cross-infection), are higher in cost (and therefore desirably reusable), and either sterilizeable or may be covered by a sterility sleeve. For example, proximal handle 114 may hold power transformers, signal amplifiers, controls for the illumination LED and camera, a mechanical control for panning camera 410, rotation sensors for righting of an image from camera 410, and the like. The handle may also include connections to external sources and destinations of power, signal, fluid, and the like.
[0055] Proximal handle 114 may include rotational sensors so that an angular orientation of camera 410 may be ascertained. For example, the inner surface of proximal handle 114 may mount one or more magnets 320, and printed circuit board 322 (which rotates with rotation collar 112 and disposable cap 120) may have Hall effect sensors 324 that detect the magnets. This may be used to compute a rotational orientation, which may in turn be used to “right” the image from camera 410 on a video display screen.
A [0056] The distal tip of the shaft, camera 410 mounted therein, and the mounting of componentry within the shaft may be designed to be robust. Occasionally, during surgery, the tip of the endoscope may come into contact with a shaver, ablation probe, or cauterization probe, and it may be desirable to have the tip be robust to such contacts. To reduce risk that componentry may be dislodged and left in the patient, the disposable shaft and its componentry may be designed to avoid joints that are at high risk of mechanical failure. A disposable optical system may prevent the image degradation that occurs when nondisposable optics are reused in multiple surgical procedures.
[0057] Endoscopes as a genus include arthroscopes, laparoscopes, colonoscopes, and other specialized scopes for various body cavities. For an arthroscope for joint surgery, the shaft may be as small as 5mm, 5.5mm, or 6mm, and highly rigid. For other endoscopes, such as a colonoscope, the diameter may be larger, and the shaft may be flexible.
[0058] The endoscope may be delivered as a handle and multiple tips, each tip individually sealed for sterility.
[0059] Referring to FIG. 3F, hoses 160, 162 for irrigation/insufflation fluid/gas in, irrigation/insufflation fluid/gas out, and electrical connection cord 164 may be permanently affixed 340, 342 to disposable cap 120. This arrangement may allow that hose 162 that carries water out of the surgical cavity, and which is therefore contaminated, may be disposable, and no fluid will come into contact with the reusable part 114 of the handle. Hoses and cord 160, 162 may be routed through channel 354 running the length of reusable handle 112, 114. Channel 344 may be of inner diameter large enough to permit easy passage of hoses and cord 160, 162, 164, and connectors 350, 352, and have a continuous smooth wall that permits easy sterilization, to permit ready replacement of the replaceable components. Channel 354 may be off the central axis, to allow printed circuit board 322 to lie on the central axis. Connectors 350, 352 at the end of hoses and cords 160, 162 may be small enough to pass through channel 354. Thus, replacement of shaft 110, cap 120, hoses and cords 160, 162 may be effected by threading connectors 350, 352 and hoses and cord 160, 162 through channel 344. Electrical cord 164 may have a connector 354 at or near joint 130, and hose(s) 160 for irrigation/insufflation fluid/gas flowing into the surgical cavity may likewise have a connector at joint 130 to allow this hose(s) to be reusable, or may be permanently affixed 340 to reduce possibility of leaking. Having hoses and cable 160, 162 roughly on-axis reduces undesirable cable flop as the scope is in use, and reduces undesirable torque on cap 120. Forming shaft 120, cap 120, and hoses 160, 162 as an integral unit for replacement reduces possibility of leaking, and improves sterility of the replacement operation.
[0060] Referring to FIG. 3G, reusable handles 112, 114 may be sterilized in a sterilizer 600. Preferably, hose(s) 160, 162 and all other portions of endoscope 100 that come into contact with the patient, or with fluids that have come into contact with the patient, are disposable, and the design for reusable portions 112, 114 ensures that contamination is minimized through avoiding contact with the
A patient’s bodily fluids. Sterilizer 360 may be arranged to accept one or more reusable handles 112,
114, and irradiate them with ultraviolet light from ultraviolet LEDs 362. Rods 364 that pass through handle channel 344 may have ultraviolet LEDs 366 arranged along their lengths, to sterilize internal channels 344.
V. Endoscope tip
V.A. Molding of components of the endoscope tip
[0061] Components of endoscope tip 400 may be designed to permit a camera or vision sensor 410, a light source, an objective lens or window, and fluid management to be mounted within a confined space, such as an endoscope of 5 mm diameter.
[0062] Referring to FIGS. 4A and 4B, endoscope tip 400 may be formed of top brace 412, bottom brace 414, and flexible circuit board 416. Camera 410 may be mounted on one side of flexible circuit board 416, and an illumination LED on the other side. Clear window 420 may protect camera 410 from the outside environment, such as the tissues and bodily fluids of an endoscopic procedure. The entire assembly may be locked together via overmolding.
[0063] Referring to FIG. 4B, to assemble the components, one end of flexible circuit board 416, the end with the LED mounted thereon, may be slotted into a slot or channel in top brace part 412, which holds the LED into place. Then board 416 may be folded around a bend in top brace 412, so that camera 410 comes into place through its hole in top brace 412. The folding and rotation brings the LED close to the sensor, which permits the assembly to fit within the 5mm diameter of tip 400. Then bottom brace 414 may be brought into place, which holds top brace 412, bottom brace 414, circuit board 416, LED, and camera 410 in their positions of mutual alignment. A locking notch and clip, or ultrasonic welding may hold this assembly together for a time. Then an overmolding step may lock everything together.
[0064] Referring to FIGS. 4C, 4D, 4E, 4F, and 4G, transparent window 420 may cover camera 410 to protect it. Window 420 may be two thicknesses, a thicker region over camera 410, and a thinner region for the portions used for mounting and for the LED to shine through. A peripheral ridge of endoscope tip 400 may extend beyond window 420 by a small amount. Top brace 412 may include a wall that surrounds the LED. These shapes, alone or in combination, may offer one or more of the following advantages. First, these shapes may reduce stray light from the LED being internally reflected into camera 410. Second, the thickness of the window 420 on the lens side may reduce vignetting artifacts, when the edge of the field of view of a camera image is occluded or the lens gathers less light toward its edge. Likewise, the shape of the lens may be used to reduce distortions such as fisheye distortions. Third, the ridge may tend to keep tissues away from the lens, reducing obscuring and improving view.
A [0065] Window 420 of FIGS. 4E and 4F may be placed over the surface of the assembly of circuit board 416 with LED and camera 410, top brace 412, bottom brace 414, and window 420 (FIGS. 4B, 4C). Then the assembly with window 420 may be locked together via overmolding of a covering sheath (FIGS. 4C, 4D, 4G). This overmolding may provide watertightness to the entire tip assembly. The overmolded assembly may then be fitted onto the tip of the endoscope’s insertion shift.
[0066] Referring to FIGS. 4H, 41, 4J, and 4K, in other cases, in an alternative, clear window 422 may be overmolded onto top brace 412, before circuit board 416, LED, camera 410, and bottom brace 414 are assembled. As window 422 is overmolded, a flat platen may be placed to project through camera 410 hole to provide a mold surface, to provide an optically smooth back surface of window 422. The mold may be flat (planar), or may have a desired curvature to form a convex or concave lens in overmolded window 422. As shown in FIG. 4K, the circumferential edges of top brace 412 may be shaped to provide a secure lock that engages overmolded window 422. Then circuit board 416 with LED may be inserted into the slot, and folded around top brace 412, and then bottom brace 414 may be snapped into place and ultrasonically welded.
[0067] Referring again to FIG. 4A, at its top right and bottom right corners, and referring to FIG. 4B, at the top right corner of top brace 412 and the lower right corner of bottom brace 414, energy directors molded into top brace 412 and bottom brace 414 may improve ultrasonic welding. Ultrasonic welding may improve adhesion and watertightness among top brace 412, bottom brace 414, and flow director components. The energy directors may be molded as triangular-profile ridges on the inside surface of the top-brace -bottom-brace assembly. The inner diameter of the energy directors may be slightly smaller than the outer diameter of the flow director, so that ultrasonic welding causes the energy directors to melt and to form a seal.
[0068] Taken together, these features may provide an endoscope tip 400 of very small diameter, such as 4mm or less, 5mm or less, 4.5mm or less, or 4mm or less, or a tip 400 slightly larger than an endoscope shaft, with ah components fitting inside that tip diameter. Mounting the LED and camera 410 on opposite sides of a flexible circuit board may assist in making the entire assembly more easily manufacturable. That manufacturing may involve inserting the end of a flexible circuit board 416 into a slot, and wrapping board 416 around a molded part or wrapping the board into a channel between molded parts to place various components in their preferred operating orientations. Components may be ultrasonically welded together. Overmolding may be used to structurally hold components together and to provide a watertight seal. Clear window 420, 422 may be overmolded onto a structural component, or the structural components may be overmolded over a clear window.
V.B. Fiber optic illumination for a single-use use scope tip
[0069] Referring to FIGS. 4L and 4W, a single use endoscope 100 or single -use tip for a reusable handle may have camera 410 on the tip, and may use fiber optical fibers 430 to deliver
A illumination light. Plastic optical fibers 430 may offer an attractive combination of attributes for disposable or single-use endoscopy applications, including cost, flexibility to bend around curves and for motion during a surgical procedure, numerical aperture (the cone of angles over which the fiber radiates light, and the cone within which it accepts), low heat radiation at the surgical site, and manufacturing resilience. Fiber optic illumination may deliver illumination adequate for applications such as laparoscopy, where the objective surface may be 200 or 300 mm from camera 410, while avoiding problems of heat dissipation that may arise by placing an LED at the tip. Fiber optic illumination may reduce complexity of chip on tip circuitry in the confined space of endoscope tip 400. Fiber optic illumination may permit use of multiple illumination sources of varying wavelength to be coupled at the collection end of the fiber, to change the illumination at endoscope tip 400.
[0070] One or more illumination sources 432 may be located either in the reusable endoscope handle or base station/IPU/Master Controller. Illumination source 432 may be one or more of single color LED, a white light source, a tricolor white LED, infrared or ultraviolet light, etc. Illumination source 432 may be an LED, combination of LEDs, flash lamp, incandescent lamp, or other illuminator. Fiber 430 may be coupled to illumination source 432 at the collector end by butt adjacency or other collection mechanisms. In some cases, where multiple illumination sources 432 are provided, they may be on a rotating carousel, sliding multiplexer, or other switch that brings successive ones of the multiple illumination sources into butt adjacent coupling with the coupling end of the light fibers 430. Light source devices 432 that are the same size or slightly larger than the collector end of optical fiber 430 offer the most efficient butt adjacency coupling.
[0071] Plastic light fibers 430 are available as fluoridated polymer optical fibers tradenamed Raytela™ from Toray Industries, Inc. of Japan. Plastic light fibers 430 may reduce cost relative to glass fibers 430 , which may be an especially important consideration in a single -use or disposable endoscope design. Plastic optical fibers 430 may be formed of two different plastic resins that have two different indices of refraction, the higher index resin used as a core, and the lower index resin used as a cladding layer. The boundary between the layers may provide total internal reflection to conduct light down the fiber. The diameter of fibers 430 may be chosen to optimize several simultaneous characteristics. The amount of light that can be carried per fiber is roughly proportional to cross-section area. The cost of optical fiber is primarily proportional to length, with a smaller cost growth with diameter. Likewise, manufacturing cost generally grows with the number of fibers, and grows with the number of fibers that break or are damaged during manufacture, so fewer larger- diameter fibers tends to be lower cost. On the other hand, mounting camera 410 and any working channel apparatus is generally more difficult, and the optical fibers are easier to fit into a small space if they are smaller diameter, which tends to favor a larger number of smaher-diameter fibers. To optimize among these tradeoffs, in some cases, twelve fibers of 0.5mm diameter may be used. They may be placed around the periphery of the working tip 400 of scope 100.
A [0072] Referring to FIGS. 4L and 4W, in some cases, fibers 430 may be relatively uniformly spaced around the 360° periphery of tip 400. Greater uniformity of the placement of the illumination fibers 430, and centering on the camera lens, may reduce variability of illumination across the imaging field, shadows, and other undesirable artifacts. In other cases, fibers 430 may be distributed over some arc less than 360° and greater than 180°, and may approach 270°. In some cases, larger fibers 430 may be used for part of the periphery, and smaller fibers 430 may be used for a part of the end of the endoscope that is crowded with other mechanical components. The closer the fibers 430 can approximate a uniform 360° distribution, the more uniform the lighting, and thus the better the image. Using fibers 430 with a larger numerical aperture or other dispersion at the end may likewise improve uniformity of illumination and image quality. Non-circular fibers 430 may be used to allow greater surface area of the illumination end of the fibers, and thereby provide better illumination.
[0073] Referring to FIGS. 4M and 4N, camera 410 may be mounted on a flex circuit board 416. Lens 434 may be held n place by an inner tip part 436, and these parts may be assembled into a subassembly.
[0074] Referring to FIG. 40, two jigs 440 may have a cap form, with inner diameter matching the outer diameter of outer tip part 438, and with throughholes conforming to the position of channels on the outer surface of outer tip part 438, the channels providing circumferential positions for the optical fibers 430. The holes in the two jigs are typically in pair-wise opposition to each other. Referring to FIG. 4P and 4Q, optical fibers 430 may be routed through the holes in the jig parts, from matching hole to matching hole. Referring to FIGS. 4R, 4S, and 4T, outer tip part 438 may have grooves along its periphery to capture fibers 430, and a set of inner channels and features to hold the camera/inner tip part assembly. Referring to FIG. 4S and 4T, outer tip part 438 may be placed into the nest of fibers held in place by jigs 440. Referring to FIGS. 4R and 4T, the camera/lens/inner tip part assembly may be placed into the outer tip part 438, and the flex board 416 laid into a channel formed by the optical fibers. Then rear jig 440 may be slid off the end of the flex board 416 and fibers 430. Referring to FIG. 4U and 4V, fibers 430 may be cut to match the surface of outer tip part 438, and the ends of the fibers may be polished and covered with window 420, typically glass or sapphire. The outer/distal surface of window 420 may be coated to accept a coating, such as that described in U.S. App. Ser. No. 16/069,220 and U.S. Provisional App. Ser. No 63/193,387, incorporated by reference. Window 420, 422 may be held in place by an adhesive. This adhesive may fill any air gap between the end of optical fibers 430 and window 420. Removing the air gap may improve light emission from fibers 430 through the window 420. Referring to FIGS. 4T, 4U, and 4V, the assembly of the fibers 430, outer tip part 438, inner tip part 436, camera 410, and flex board 416 may be threaded through the stainless steel tube of the scope’s insertion shaft, and slid into place for either friction fit, or to be held in place by an adhesive, such as epoxy or an optical grade UV- curing adhesive (available form Norland Products Inc. of Cranbury NJ, from the Henkel Adhesives
A division of Loctite, from Dymax Corp. of Torrington CT, and others), or to be held in place by a detent or deformation of the tube. Adhesive may also serve to seal the tip against intrusion by fluids. Referring to FIG. 4W, the surface of camera 410 may be recessed into the stainless steel tube. The surface of window 420 may be flush with the end of the tube, or may be recessed slightly, to provide protection against scratching or dislodgement of the window.
[0075] Light fibers 430 may be extruded in shapes that improve light delivery, such as rectangular, or a U-shaped light guide that would extend the length of the endoscope from the illumination source to the U-shaped emission surface at the distal end of the endoscope. In some cases, individual fibers 430 may be replaced, for at least some portion of their length, by a shaped light guide, such as a circular or U-shaped ring of clear light guide around the periphery of the outer tip part. The light guide may be a two-component structure, with two different indices of refraction for internal reflection analogous to optical fiber. In other cases, the light guide may be formed of a clear light transmission medium coated by a reflective coating, such as aluminum, gold, or silver. In some cases, the shaped light guide may extend only a short distance, for example, the length of the inner tip part, and traditional circular fibers may be used to bring light from the illumination source to the proximal end of the light guide at the outer tip part.
[0076] In some cases, the distal surface of the fibers or light guide may be roughened or coated with a diffusive coating, analogous to the coating used to coat the inside of soft white light bulbs. By diffusing the light at the emission end of the fiber, the dispersion angle may be increased, which increases the width of field, the cone of illumination, and may reduce undesirable shadows and other artifacts.
VI. Antifouling and antifogging VI.A. Heating
[0077] Lenses may also be fogged by condensation of water vapor from the body cavity that is being operated on. Endoscope tip 400 may be the coolest point in the bodily cavity because it is nonliving tissue with no metabolism, and because operating rooms are typically kept quite cool and the stainless steel insertion shaft conducts that cold from the ambient room air to the tip. In some cases, the tip of the endoscope may be heated. The heating need only be by a few degrees, enough to ensure that the endoscope is not the coolest point in the cavity. In some cases, apertures for insufflation fluid (saline, carbon dioxide, or other, as the case may be) may be oriented to direct the fluid flow over the window surface to provide additional cleaning.
VI.B. For endoscope’s delivery packaging, vial of fluid to protective a coating on the endoscope’s lens/window
[0078] Referring to FIGS. 5A, 5B, and 5C, optical lenses/windows of obturator 104 and/or endoscope may be coated with an anti-adhesive coating. Shipping or delivery packaging for
A endoscope 100 and/or obturator 104 may incorporate a well, vial, or other containment structure 510 to hold an anti-adhesive lubricant in contact with the coating on the objective lens or window 420 of the endoscope between the time of manufacture or refurbishing up to the moment of use, to improve the coating. Well/vial 510 may have a cap that retains the lubricant in contact with the lens/window matrix surface, to preserve the coating. The cap may have a seal against the outside environment, and a seal that seals around a shaft of the endoscope. The lubricant may be held in place over the endoscope lens/window by a rigid cap, or a flexible condom.
[0079] A lens/window 430 of endoscope 100 may have a coating to enhance optical or mechanical properties of the endoscope, and packaging for the endoscope may incorporate a vial or well or cap 510 of lubricant to maintain infusion into the retention matrix. The coating may be an anti-adhesive coating to reduce accumulation of contaminants on the surface of the lens/window, so that forward view of the endoscope remains clear. The anti-adhesive coating may be applied in two steps, first to build a porous matrix or network for retention of a lubricant on the surface of the lens/window, and then the lubricant. The lubricant may be an oil, or other liquid or gel, so that the lubricant acts as a liquid-on-liquid surface. The infused liquid may be a silicone oil (Momentive or Gelest polydimethylsiloxanes, such as 10 cSt, 350 cSt, 500 cSt), perfluorinated fluid (perfluoroperhydrophenanthrene, or Vitreon, and perfluoropolyethers or (PFPEs) of 80 cSt to 550 cSt: DuPont Krytox series), or other liquid or gel with appropriate combinations of high transparency, low surface energy, appropriate viscosity and volatility so it will be retained on the surface, chemical inertness, and prior US Food and Drug Administration (FDA)-approval. Suitable anti-adhesive coatings are described in Thin Layer Perfluorocarbon (TLP) coating developed by the Hansjdrg Wyss Institute for Biologically Inspired Engineering at Harvard University, described at https://wyss.harvard.edu/technology/tlp-a-non-stick-coating-for-medical-devices (incorporated by reference), and in U.S. Pat. App. Ser. No. 16/096,220, Anti-Fouling Endoscopes and Uses Thereof, filed Oct. 24, 2018 (incorporated by reference), and commercially developed as Slippery Liquid- Infused Porous Surfaces (SLIPS) coatings and other repellent coatings and additives by Adaptive Surface Technologies, Inc. of Cambridge, MA, described at https://adaptivesurface.tech and its subsidiary pages (incorporated by reference), and as described in Steffi Sunny, et al., Transparent antifouling material for improved operative field visibility in endoscopy, Proceedings of the National Academy of Sciences U.S.A., 2016 Oct 18;113(42): 11676-11681. doi: 10.1073/pnas.l605272113 (Sep. 29, 2016) (incorporated by reference).
[0080] The well or vial may be formed so that the cover includes appropriate seals 512 to retain the protective oil or gel. For example, edges around a cover may have a labyrinth seal. Two components of an end wall may each embrace slightly more than 180 degrees of the endoscope shaft so as to form a seal. Two components of an end way may have labyrinth seals against each other.
A The nature of the seal 512 may vary depending on the viscosity of the lubricant, and the surface energy of the lubricant vis-a-vis the material of the cap.
[0081] When endoscope 100 is placed in use, any excess of the lubricant may be wiped off. If the lubricant is bio-inert and nontoxic, it may be left in place to protect the lens during some phase of penetration.
[0082] Referring again to FIG. 5A, the shipping, delivery, or storage case for the endoscope may have compartments for one or more scope insertion shafts, for a handle, for various hoses and cords, obturator 104, in addition to the well or vial or other retention for anti-adhesive lubricant.
VII. Lens cap with optical correction for use during insertion of offset- view endoscope
[0083] Referring to FIGS. 5D to 5J, end cap 520 may be affixed to the end of the endoscope to alter a field-of-view angle so that a single endoscope may be used at two different phases of the surgical procedure. During penetration using an endoscope with a 30° offset of view angle, the endoscope may be fitted with a refractive cap or a prism, that bends light to reduce the offset angle. Refraction by refractive cap 520 may yield a 0° on-axis view, or a near-zero angel such as 3°, 5°, or 10°. A scope with refractive cap 520 may be used during initial penetration by trocar 102 and obturator 104, to give a straight-ahead view, or a near-straight-ahead view to within 3°, 5°, or 10° . Referring to FIGS. 5E and 5H, once trocar 102 and obturator 104 have reached the site of the surgery, refractive cap 520 may be removed from endoscope 100 to yield a 30° offset scope. Removal may require withdrawal of endoscope 100, and then reinsertion. Then, referring to FIG. 5F, endoscope 100 may be returned down trocar 102 for use in a surgical procedure with a 30° offset field of view. Typically, obturator 104 is discarded once the penetration pierce is completed.
[0084] Refractive cap 520 may be molded of clear plastic, such as polycarbonate, acrylic, styrene, polyolefin, silicone, or inorganic transparent materials such as silica (silicon dioxide). In some cases, the refractive cap may be formed of multiple materials, such as glass and plastic, or two different plastic resins, to marry light refraction and various mechanical functions, such as to provide a sharp piercing point for cases where the endoscope is used without an obturator. Referring to FIGS. 51 and 5J, refractive cap 520 may be formed of different materials that provide different properties. For example, a high-index-of-refraction prism 524 may be embedded in a plastic of lower index of refraction, so that the plastic may be shaped in a desired manner. Refractive cap 520 may be shaped to provide an atraumatic rounded nose 526, to avoid tissue injury. In other cases, FIGS. 5E, 5J, the low-refraction plastic may be shaped with a piercing point 528. The point may be reinforced by a steel piercing tip.
[0085] One surface or the other may be convex or concave 530 to widen or narrow the field of view, or to magnify or reduce the forward-looking view. Refractive cap 520 may permit a single endoscope to be used in two different phases of the surgery, where two different views are desired.
A The degree of refraction may be enough to reduce the offset angle by 5°, 10°, 15° 20°, 25°, or 30°. In some cases, obtaining partial correction less than 0° on-axis may be sufficient to improve the view during piercing. In some cases, the apex point of obturator 104 may create optical distortion, so it may be desirable to maintain some optical offset to keep that distortion away from the center of view.
[0086] Refractive cap 520 may be attached to the tip of endoscope 100 by friction fit or interference fit (the inner diameter of refractive cap 520 equal to or slightly smaller than the outer diameter of endoscope tip 400), by means of a weak or snap-frangible adhesive, via a small bump on the inner diameter of refractive cap 520 that engages with a depression or dimple in the tip of endoscope 100, a threading or channel on the inner diameter of refractive cap 520 to engage with a small raised stud on endoscope 100, or by other connector. The sleeve portion of refractive cap 520 may be formed of a heat-shrink plastic or other material that can be shrunk to secure the connection. Refractive cap 520 may be held in place by a sleeve of elastic plastic, like a condom. While it is not desirable that refractive cap 520 fall off during use, that is a low severity event, because the endoscope with refractive cap 520 is inside obturator 104, and the refractive cap will be captured and removed when obturator 104 is withdrawn.
[0087] Refractive cap 520 may have holes through the attachment sleeve to permit fluid flow and/or suction to flow through from passages in the endoscope shaft.
[0088] A surface of refractive cap 520 may be etched with a reticule or measuring scale. The reticule may be marked with a scale with which the surgeon can measure the size of objects seen through the endoscope. The surgeon may also use the reticule to align the endoscope within the surgical field.
[0089] Refractive cap 520 may have optical filters, for example, to reduce light reflected into the endoscope, to block certain wavelengths of light. The filter may include a polarizing filter, a bandpass filter, a color filter, or an interference filter. These filters can be used in conjunction with specialized light sources (e.g., ultraviolet, infrared, or polarized) and video processing for therapeutic and diagnostic purposes. Thus, refractive cap 520 may be part of a complete system to diagnose pathology using different wavelengths of light and/or colors of light and filtering the light. Further, refractive cap 520 may also be provided as part of system that delivers photonic energy to a surgical site to control and visualize photodynamic therapy.
[0090] Referring again to FIG. 5G, in some cases, objective lens/window of the endoscope may be treated with a coating, for example an anti-adhesive coating, and the endoscope may be delivered with anti-adhesive lubricant in a space between the lens/window and the proximal surface of the refractive cap’s prism. In such cases, the endoscope may be used as shown in FIGS. 5D, 5E, and 5F, first with refractive cap 520 attached to provide a close-to-00 view offset. Then refractive cap 520 may be removed, leaving endoscope with its 30° offset, with the anti-adhesive -coated lens/window exposed into the surgical cavity.
A VIII. 360° view tip
[0091] Referring to FIGS. 6A, 6B, 6C, 6D, and 6E, an endoscope tip 640 may provide a 360° view. Two cameras 410 may be mounted opposed to each other, with hemispherical lenses 642 over them. Hemispherical lenses 642 may be optically concave (as shown in FIG. 6D), to widen the field of view 644. LEDs or the emitting ends 644 of optical fibers 430 may be arrayed around the tip 640 to provide 360° illumination. Electronic image processing may be used to combine the two hemispherical views into a full 360° view that
IX. Avoiding fasteners, springs, and other small components
[0092] Moving parts and structural components of endoscope 100 may be joined and affixed in place using techniques that avoid small components such as fasteners and springs. These manufacturing techniques may reduce costs of molding, reduce costs of assembly, reduce manufacturing steps, and reduce the likelihood that a separate component, for example, a steel spring or screw, may come loose and endanger patient safety. Likewise, assembly may be accomplished without adhesives or solvents that may be toxic.
IX.A. A button without springs
[0093] Referring to FIG 7A, a control button 710 for the endoscope may be formed as a single component with the button, its guide track, and its springs 712 molded as a single component.
[0094] This single component may be manufactured to simultaneously provide adequate stiffness so that a button press is transmitted from the top of the button to the bottom, and adequate resilience in beam structures 712 to provide restoring force to return the button to its undepressed state. The loop beam structures 712 may be molded with flexible projections extending out from a united molded component. These extended flexible projections 712 may act in a combination of bending and torsion so that when button 710 is released, elastic memory of the materials will spring the button back into its initial position. FIGS. 7B and 7C show the button in its normahy-up position, with the spring loops 712 in their originally-molded planar configuration. FIGS. 7D and 7E show the button depressed, and the spring loop 712 deformed in torsion.
[0095] The button with its springs may be molded of ABS plastic.
[0096] In some cases, the handle may have metal fasteners and other small metal parts, or assembly may use chemical adhesives and the like, but they may be encapsulated fully or partially within overmolding sufficiently to ensure no loosening , escape, or contact with fluids that flow into a patient.
IX.B. Overmolding of case over circuit board
[0097] Referring to FIGS. 7F and 7G, a circuit board 722 to be mounted within the handle, with its connecting cables that will feed forward into the insertion shaft, and its connecting cables that will feed backwards to the supporting power supply and computer driver, may be overmolded 720
A using low pressure overmolding. Overmolding 720 may include through-holes that provide secure mechanical mounting points for mounting within the handle. Overmolding 720 may provide a covering that protects all sides and is resilient to protect circuit board 722 from mechanical insult during manufacturing and use. Overmolded case 720 may provide strain relief for the cables 724 at the two ends of circuit board 722, to reduce damage that might be caused by pulling on the cables 724. The overmolding 720 may provide a unified, no-seams covering to protect he circuit board 722 from water intrusion. Overmolding 720 may protect against fluid ingress to a level of IP65 under international standard EN 60529. Liquid-tight protection of overmolded case 720 over circuit board 722 (and any other liquid sensitive components within the handle) may allow the sterilization of the interior of the handle via flowing a sterilizing liquid or gas through the interior of the handle, and may provide dielectric protection to prevent electrical shock to the patient. These advantages may be achieved by reducing manufacturing to a single manufacturing step.
IX.C. Avoiding internal fasteners
[0098] Referring to FIG. 7H, the overmolded circuit board structure may be mounted within the handle via molded clips, heat staking, and similar techniques that result in a unitary structure, without separate small-part fasteners. In FIG. 7H, handle may be molded in two parts 732, 734. Top half 732, shown turned upside-down, may be molded with several molded bosses 736. In FIG. 7H, the button has been turned upside-down and set in place; the looping resilient projections are visible. In FIG. 71, the overmolded 720 PC board may be placed over bosses 736, so that bosses 736 project through the through-holes in the board casing. In FIG. 7J, heat and/or ultrasonic vibration may be used to melt the tips of bosses 736 into domes or heads 738 that hold the button and PC board in place.
[0099] By these techniques, endoscope 100 may be assembled into a structure that is strong, without small parts that require separate assembly steps or that can become dislodged, and without toxic adhesives or solvents.
IX.D. Rotational resistance via O-rings
[0100] Referring to FIG. 7K and 7L, the inner shell 742 and outer handle shells 732, 734 rotate relative to each other, so that the surgeon may adjust field of view, using the magnetic Hall effect sensors 324 discussed above. The inner handle 742 rotates in unison with rotation collar 112. Inner handle 742 and rotation collar rotate relative to outer handle 114. The inner handle 742 and outer handle shells 732, 734 may be coupled via two silicone O-rings 740 that provide some friction to maintain their relative position, while allowing the surgeon to rotate the two handle components to adjust the arthroscope’s field of view.
[0101] For assembly, the cylindrical inner handle may be fully assembled, and the O-rings 740 may be fitted over the end of inner handle 742 into their two retaining channels. Then the two halves of the outer handle shell 732, 734 may be brought together like buns over a hotdog,
A surrounding the inner shell and O-rings 740. Then the two halves of the outer shell 732, 734 may be ultrasonically welded to each other.
IX.E. Ultrasonic welding of the two halves of the outer handle shell
[0102] Referring to FIG. 7M and 7N, the two halves 732, 734 of the outer shell may be ultrasonically welded without adhesives or solvents. Referring to FIGS. 70 and 7P, the two outer shell halves may have locking clips or hooks that may snap together to hold them temporarily before ultrasonic welding begins.
[0103] Referring to FIGS. 70, 7P, 7Q, 7R, 7S, 7T, 7U, 7V, 7W, and 7X, various energy directors and troughs may be designed to ensure high efficacy of ultrasonic welding. In each case, the height of the energy director is slightly higher than the depth of its mating trough, and the width of the energy director is slightly narrower than the trough. Ultrasonic vibration may cause the energy director to slightly melt and deform to fill the trough. The ultrasonically-welded seams may come very close to fully enclosing the cavity of the outer handle, to reduce the likelihood of any fluid intrusion from outside into the interior of the endoscope. Any fluid carries risk of pathogens. Sterilization of the interior of devices such as endoscopes is difficult, so exclusion of fluids is important for any components that may be reused.
IX.F. Thermoplastic elastomer coating handle
[0104] Referring to FIGS. 7Y and 7Z, a high friction surface 750 may be bonded to or overmolded onto the outer surface of the outer handle shell 732, 734, to provide a high-friction contact between a surgeon’s gloved hand and the handle. During surgery, the surgeon’s glove and/or the handle may become covered with bodily fluids and other liquids that may reduce friction, so that the surgeon could have trouble maintaining control of a solid endoscope. By covering the endoscope handle with a high-friction compound 750, such as thermoplastic elastomer (TPE), the handle becomes higher friction, which may improve the surgeon’s control. If the cover is overmolded as a single unitary layer, it may provide additional sealing against fluid intrusion. One medical grade, biocompatible TPE is Medalist MD-34940 or MD-34950 from Teknor Apex of Pawtucket, RI.
X. Liquid flow
X.A. Liquid-tight seal
[0105] Referring to FIGS. 8A and 8B, the joint between the handle body and the outer sheath or insertion trocar 102 may be designed to provide a water tight seal between the endoscope and the outer sheath/trocar 102 without the use of an O-ring. An O-ring at this joint may be undesirable if it could fall off mid-surgery or be introduced into the patient when the endoscope is being locked into the outer sheath/trocar 102. In FIGS. 8A and 8B, the seating cup for the outer sheath/trocar 102 is shown in cutaway section, so that the male conical inner surface 810 of the seat can be seen, and the
A female mating cone 812 on the nose of the endoscope is shown in plan view, so that the mating between the outer surface of the male cone with the inner surface of the female cone in the cup of the outer sheath/trocar 102 can be seen.
[0106] FIG. 8C shows the two cones 810, 812 with some of the dimensions exaggerated. Male cone 810 may have a slightly sharper angle of conicity than female cone 812, by about ½°. The largest diameter of female cone 812 may be slightly smaller than the largest diameter at the base of the male cone 810, so that these two surfaces 810, 812 will form a watertight interference seal. The interference of diameters may be on the order of ½ mm, when the diameters of the two cones are in the range of 19 to 25 mm. The angle may be on the order of 15°, and the two cones may differ by about ½°. Likewise, at the small end of the cones, the outer diameter of the male cone 810 may be the same as the inner diameter of the female cone 812, but male cone 810 may have small ridge 814 at its circumference, which leads to a watertight interference seal at this end as well. The polymers of the parts may be chosen to provide an appropriate amount of resilience for the interference fit to appropriately seal the water.
[0107] FIG. 8D shows ridge 814 molded onto the small end of the male cone. The ridge on male cone 810 may form an interference seal with the small end, inner diameter of female cone 814 in the mounting cup of outer sheath/trocar 102. FIG. 8E shows the two parts mated.
[0108] In other alternatives, the seal between the endoscope and outer sheath/trocar cap may use O-rings. O-rings may be seated in channels on the surface of the inner male cone, so that the female cone engages to compress the O-ring into its channel before the contact begins to translate into lateral forces that would displace the O-ring. O-rings may be especially desirable at the large- diameter end of the male cone abutting the face of the chassis of the endoscope, so that the female surface of the outer sheath/trocar cap cannot displace the O-ring. In some cases, the angles of the cones may be flatter than 15°, so that the compression force against the O-rings created by the twist lock (see discussion of FIGS. 9J, 9K, and 9L, in section XI.C) is increased relative to lengthwise frictional force that would tend to displace the O-rings.
X.B. Inducing spiral flow
[0109] Referring to FIG. 8F, the chamber 820 between the fluid indeed tube and the fluid flow annulus of outer sheath/trocar 102 may be designed as a squeezing cone to impart spiral flow to water or similar irrigation fluid. Spiral flow 822 may be induced via the Bernoulli effect and Venturi effect as the water flows through the narrowing conical passage. Spiral vanes on the two conical surfaces may further accelerate the spiral flow.
[0110] This flow pattern may have several advantages. Spiraling flow 822 may increase pressure and water velocity as the water emerges from the flow director holes at the tip of the endoscope. Spiraling motion 822 may help clean any debris that accumulates on the front window in front of camera 410.
A XI. Molding and Joining
XI.A. Diagonal slots to connect dissimilar materials
[0111] Referring to FIGS. 9A, 9B, 9C, and 9D, parts made of stainless steel may be connected to parts made of plastics such as ABS without using adhesive. One such technique is to cut holes 910 in the stainless steel and to overmold with ABS. Holes 910 may be shaped as slots, and the slots may be diagonal to the basic thrust and rotational forces. Diagonal slots 910 may provide additional securing in multiple dimensions. ABS has a shrinkage ratio, so a technique for confining play between the ABS and stainless steel may be advantageous. Joining slots 910 may be used at multiple points, for example at the base of outer sheath/trocar 102 where the base cup of outer sheath/trocar 102 mounts to it, at the base of the endoscope insertion shaft/inner sheath/cannula mounts in the nose of the endoscope, and to join the endoscope flow director onto the distal end of the insertion shaft.
XI.B. Joining component parts of obturator
[0112] Referring to FIGS. 9F, 9G, 9H, and 91, the handle/cap of obturator 104 may be hollow, to reduce weight and to reduce material costs. The shaft of obturator 104 may be made of solid stainless steel, because it is used to force a piercing access portal into the patient’s tissues. As shown in FIG. 9E, a circumferential groove 930 may be lathed into the handle/proximal end of the obturator shaft, or two parallel cuts 930 may be milled. Base 932 of the obturator cap may then be overmolded onto this proximal end. Then the shell 934 of the handle may be ultrasonically welded 936 onto the base part. Advantages include reducing use of material, which reduces weight and cost. The ultrasonic welding may joint the outer shell to the inner base of the handle without small metal parts that may become dislodged into the patient, without adhesives that may be toxic.
[0113] FIG. 9H shows the male energy director, and FIG. 9G shows the female trough.
After ultrasonic welding 936, the two parts are melted together, as shown in FIG. 91.
XI.C. Twist-locking the parts together
[0114] Referring to FIGS. 1C, 9J, 9K, and 9L, keyway 940 on a bayonet of the obturator handle may accept a key 942 on the inside of the mounting cap for outer sheath/trocar 102, which locks the two together during the piercing step. Slope 944 may be on the order of 3° in order to draw the parts together. Likewise, one or more keyways on a bayonet on the nose of the endoscope may engage one or more pins on the inside of the mounting cap of outer sheath/trocar 102, to lock them together during observational use of the endoscope. The key and keyways of the three components may be designed to be mutually compatible and interchangeable. This may reduce manufacturing costs, and may reduce handling during surgery.
A XII. Embodiments
[0115] Embodiments of the invention may include any one or more of the following features, singly or in any combination. Endoscope 100 may have a handle, and an insertion shaft, the insertion shaft having at its distal end a solid state camera. The insertion shaft may have solid state illumination and imaging circuitry at or near a tip designed to provide illumination and imaging of the interior of a body cavity for a surgeon during surgery. The proximal portion of the handle may have electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry. The proximal handle portion may be designed to permit sterilization between uses. A joint between the proximal handle portion and the insertion shaft may designed to separably connect the insertion shaft to the proximal handle portion. When it is separated, the joint may permit removal of the insertion shaft for disposal and replacement. The joint may be designed so that, when connected, the joint can transfer mechanical force from a surgeon’s hand to the insertion shaft, and provides electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry. The handle may have proximal and distal portions. The distal portion may lie between the insertion shaft and proximal handle portion. The insertion shaft may be rigidly affixed to the distal handle portion. The joint may be disposed to connect and disconnect the distal and proximal portions of the handle. The distal handle portion may be designed to indirectly transfer mechanical force between a surgeon’s hand to the insertion shaft, and provide indirect electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry. The handle may have a rotation collar having surface features designed to assist the surgeon in rotating the insertion shaft in the roll dimension about the axis of the insertion shaft relative to the proximal handle portion. The electronics inside the proximal handle portion may be designed to sense roll of the insertion shaft, and provide an angular rotation signal designed to permit righting of a displayed image received from the imaging circuitry. A mounting for the image sensor may be designed to permit panning of the image sensor about a pitch or yaw axis perpendicular to the central axis of the insertion shaft. One or more ultraviolet LEDs internal to the endoscope may be designed to sterilize a region of the interior of the endoscope. Hoses for insufflation fluid or gas may be designed on lie on or near a central axis of proximal handle portion. Two or more insertion shafts each having dimensions different than the others, may each be connectable to the proximal handle portion at the joint, to permit use of the proximal handle in surgery with different requirements for insertion shaft. A sterilization cabinet may be designed to sterilize components of the endoscope. An insertion shaft of an endoscope tip has a rigid proximal portion and a distal portion. The distal portion is bendable to direct a field of view of imaging circuitry in a desired direction. An illuminator and solid state imaging circuitry are at or near a distal tip of the articulable distal portion. The illuminator is designed to illuminate, and the imaging circuitry being designed to capture imaging of, an interior of a body cavity for a surgeon during surgery. A coupling of the replaceable endoscope tip is designed to separably connect the insertion
A shaft at a joint to a handle portion, and to disconnect the joint. The coupling has mechanical connectors. When the joint is separated, the mechanical connectors permit removal of the insertion shaft from the handle for disposal and replacement. When the joint is connected, the joint is designed to provide mechanical force transfer between a surgeon’s hand to the insertion shaft. Electrical connectors are designed to connect the insertion shaft to electronics in the handle. The handle electronics are designed for drive of the illuminator and to receive imaging signal from the imaging circuitry, the handle being designed to permit sterilization between uses. Control force transfer elements are designed to permit a surgeon to direct a direction of the imaging circuitry by transfer of mechanical force directed by a surgeon to the articulable distal portion. The distal bendable portion includes a series of articulated rigid segments. A sheath or cover over the articulated rigid segments is designed to reduce intrusion or pinching. The distal bendable portion is formed of a solid component, bendable in its lateral and elevation dimensions, and relatively incompressible in compression in its longitudinal dimension. The distal bendable portion is extendable from and retractable into a solid sheath. The distal bendable portion is bendable in one dimension. The distal bendable portion is bendable in two orthogonal dimensions. The imaging circuitry is mounted within at or near a distal tip of the articulable distal portion via a pannable mounting. The pannable mounting is designed as two sides of a parallelogram. The imaging circuitry is mounted on a structural segment hinged to the two parallelogram sides. Passages and apertures are designed to pass irrigation fluid to improve view from a lens or window over the imaging circuitry. Passages and apertures are designed to pass inflation fluid to enlarge a cavity for surgery. Mechanical connectors of the coupling include a twist-lock designed to affix the endoscope insertion shaft to the handle portion. A plurality of the endoscope tips are bundled and packaged together with a handle. The handle has electronics designed for drive of the illuminator and to receive imaging signal from the imaging circuitry. The plurality of tips and handle are packaged for integrated shipment and sale.
The illuminator is an illumination LED mounted at or near the distal tip. The illuminator is an emission end of a fiber optic fiber driven by an illumination source in the handle. Camera 410 may be enclosed within a plastic casing. The plastic casing may be formed as an overmolded jacket that is designed to protect camera 410 from bodily fluids and to structurally hold components of the tip in an operating configuration. The overmolded jacket may be designed to retain a transparent window in operating configuration with camera 410. The overmolded component may be formed of transparent plastic. The overmolded component may be designed to function as a lens for camera 410. Camera 410 may be mounted on a flexible circuit board. Flexible circuit board 416 may mount an illumination LED. The LED and camera may be mounted on opposite sides of flexible circuit board 416. Camera 410 may be protected behind a transparent window. The window may be molded in two thicknesses, a thinner portion designed for mounting and to allow passage of illumination light, a thicker portion over camera 410. The handle may contain a circuit board with circuitry for control of
A and receipt of signals from camera 410. The handle and its components may be designed with no metal fasteners, and no adhesives, except those captured by overmolding. Control buttons of the endoscope may be molded with projections that function as return springs. The projections may be adhered into the endoscope handle via melting. The circuit board may be overmolded by plastic that encapsulate the circuit board from contact with water. The circuit board may be mounted into the handle via melting. Components of the handle may be joined to each other into a unitary structure via melting. Components of the handle may be joined by resilient clips designed to held the two components to each other before joining into unitary structure via melting. The handle may be formed of two shells concentric with each other. Rotation of the two shells relative to each other may be controlled via one or more O-rings frictionally engaged with the two respective shells. The handle may have overmolded a layer of a high-friction elastomer. The insertion shaft may be connected to the handle via a separable joint. A water joint of the separable joint may be molded for an interference seal without O-rings. A water cavity of the separable joint may be designed to impart swirl to water flowing from the handle to the insertion shaft. The insertion shaft may be formed of stainless steel and connected to the handle via a separable joint. Plastic components of the endoscope may be joined to the insertion shaft via overmolding of plastic into slots aligned at an oblique angle in the wall of the insertion shaft, without adhesives. The water joint may be formed as two cones in interference fit. The cones may interfere at a large diameter. The cones may interfere via a ridge raised on a lip of the inner male cone. Obturator 104 may be designed to pierce tissue for introduction of the endoscope. Features for twist-locking obturator 104 into trocar 102 may be compatible with features for twist-locking the endoscope into trocar 102.
[0116] An endoscope may have a handle and an insertion shaft. The insertion shaft has solid state illumination and imaging circuitry at or near a tip designed to provide illumination and imaging of the interior of a body cavity for a surgeon during surgery. The proximal portion of the handle has electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry, the proximal handle portion being designed to permit sterilization between uses. A joint between the proximal handle portion and the insertion shaft is designed to separably connect the insertion shaft to the proximal handle portion. When it is separated, the joint permits removal of the insertion shaft for disposal and replacement. The joint is designed so that, when connected, the joint can transfer mechanical force from a surgeon’s hand to the insertion shaft, and provides electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
[0117] An endoscope may have a handle and an insertion shaft, the insertion shaft having solid state illumination and imaging circuitry at or near a tip designed to provide illumination and imaging of the interior of a body cavity for a surgeon during surgery, and the proximal portion of the handle having electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry, the proximal handle portion being designed to permit sterilization between uses;
A and a joint between the proximal handle portion and the insertion shaft designed to separably connect the insertion shaft to the proximal handle portion. The joint is separated to permit removal of the insertion shaft for disposal and replacement. The joint is reconnected with a new insertion shaft, the connection designed to provide mechanical force transfer between a surgeon’ s hand to the insertion shaft, and electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
[0118] The handle may have proximal and distal portions. The distal portion may lie between the insertion shaft and proximal handle portion. The insertion shaft may be rigidly affixed to the distal handle portion. The joint may be disposed to connect and disconnect the distal and proximal portions of the handle. The distal handle portion may be designed to indirectly transfer mechanical force between a surgeon’s hand to the insertion shaft, and provide indirect electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry. The handle may have a rotation collar having surface features designed to assist the surgeon in rotating the insertion shaft in the roll dimension about the axis of the insertion shaft relative to the proximal handle portion. The electronics inside the proximal handle portion may be designed to sense roll of the insertion shaft, and provide an angular rotation signal designed to permit righting of a displayed image received from the imaging circuitry. A mounting for the image sensor may be designed to permit panning of the image sensor about a pitch or yaw axis perpendicular to the central axis of the insertion shaft. One or more ultraviolet LEDs internal to the endoscope may be designed to sterilize a region of the interior of the endoscope. Hoses for insufflation fluid or gas may be designed on lie on or near a central axis of proximal handle portion. Two or more insertion shafts each having dimensions different than the others, may each be connectable to the proximal handle portion at the joint, to permit use of the proximal handle in surgery with different requirements for insertion shaft.
A sterilization cabinet may be designed to sterilize components of the endoscope.
[0119] An endoscope may have a handle, and an insertion shaft. The insertion shaft may have at its distal end a solid state camera. Camera 410 may be enclosed within a plastic casing with an overmolded jacket that is designed to protect camera 410 from bodily fluids and to structurally hold components of the tip in an operating configuration. Camera 410 may be protected behind a transparent window. The window may be molded in two thicknesses. A thinner portion designed for mounting and to allow passage of illumination light, a thicker portion over camera 410. The handle may have retained within a circuit board with circuitry for control of and receipt of signals from camera 410. The handle and its components may be designed with no metal fasteners, and no adhesives, except those captured by overmolding. The handle may be formed of two shells concentric with each other. Rotation of the two shells relative to each other may be controlled via one or more O-rings frictionally engaged with the two respective shells. The handle may have an overmolded layer of a high-friction elastomer. The insertion shaft may be connected to the handle via a separable
A joint, a water joint of the separable joint may be molded for an interference seal without O-rings. The insertion shaft may be connected to the handle via a separable joint. A water cavity of the separable joint may be designed to impart swirl to water flowing from the handle to the insertion shaft. The insertion shaft may be formed of stainless steel and connected to the handle via a separable joint. Plastic components of the endoscope may be joined to the insertion shaft via overmolding of plastic into slots aligned at an oblique angle in the wall of the insertion shaft, without adhesives. The insertion shaft may be connected to the handle via a separable joint. Obturator 104 may be designed to pierce tissue for introduction of the endoscope. Features for twist-locking obturator 104 into trocar 102 may be compatible with features for twist-locking the endoscope into trocar 102.
[0120] Embodiments of the invention may include one or more of the following features.
The overmolded jacket may be designed to retain a transparent window in operating configuration with camera 410. The overmolded component may be formed of transparent plastic and designed to function as a lens for camera 410. Camera 410 may be mounted on a flexible circuit board: Flexible circuit board 416 may have mounted thereon an illumination LED. The LED and camera may be mounted on opposite sides of flexible circuit board 416. Control buttons of the endoscope may be molded with projections that function as return springs, the projections to be adhered into the endoscope handle via melting. The circuit board may be overmolded by plastic that encapsulates the circuit board from contact with water. The circuit board may be mounted into the handle via melting. Components of the handle may be joined to each other into a unitary structure via melting Components of the handle may be further joined by resilient clips designed to held the two components to each other before joining into unitary structure via melting. The joint may be formed as two frusta of cones in interference fit. The two frusta may interfere at their large diameters. The frusta may interfering via a ridge raised on a lip of the inner male cone.
[0121] An endoscope may have a handle and an insertion shaft. The insertion shaft has solid state illumination and imaging circuitry at or near a tip designed to provide illumination and imaging of the interior of a body cavity for a surgeon during surgery. The proximal portion of the handle has electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry, the proximal handle portion may be designed to permit sterilization between uses. A joint between the proximal handle portion and the insertion shaft is designed to separably connect the insertion shaft to the proximal handle portion. When it is separated, the joint permits removal of the insertion shaft for disposal and replacement. The joint is designed so that, when connected, the joint can transfer mechanical force from a surgeon’s hand to the insertion shaft, and provides electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
[0122] An endoscope may have a handle and an insertion shaft, the insertion shaft having solid state illumination and imaging circuitry at or near a tip designed to provide illumination and
A imaging of the interior of a body cavity for a surgeon during surgery. The proximal portion of the handle may have electronics for drive of the illumination circuitry and to receive imaging signal from the imaging circuitry. The proximal handle portion may be designed to permit sterilization between uses. A joint between the proximal handle portion and the insertion shaft designed to separably connect the insertion shaft to the proximal handle portion. The joint may be separated to permit removal of the insertion shaft for disposal and replacement. The joint may be reconnected with a new insertion shaft, the connection designed to provide mechanical force transfer between a surgeon’s hand to the insertion shaft, and electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry.
[0123] Embodiments of the invention may include one or more of the following features.
The handle may have proximal and distal portions. The distal portion may lie between the insertion shaft and proximal handle portion. The insertion shaft may be rigidly affixed to the distal handle portion. The joint may be disposed to connect and disconnect the distal and proximal portions of the handle. The distal handle portion may be designed to indirectly transfer mechanical force between a surgeon’s hand to the insertion shaft, and provide indirect electrical connectivity between the proximal handle circuitry and the illumination and imaging circuitry. The handle may have a rotation collar having surface features designed to assist the surgeon in rotating the insertion shaft in the roll dimension about the axis of the insertion shaft relative to the proximal handle portion. The electronics inside the proximal handle portion may be designed to sense roll of the insertion shaft, and provide an angular rotation signal designed to permit righting of a displayed image received from the imaging circuitry. A mounting for the image sensor may be designed to permit panning of the image sensor about a pitch or yaw axis perpendicular to the central axis of the insertion shaft. One or more ultraviolet LEDs internal to the endoscope may be designed to sterilize a region of the interior of the endoscope. Hoses for insufflation fluid or gas may be designed on lie on or near a central axis of proximal handle portion. Two or more insertion shafts each having dimensions different than the others, may each be connectable to the proximal handle portion at the joint, to permit use of the proximal handle in surgery with different requirements for insertion shaft. A sterilization cabinet may be designed to sterilize components of the endoscope.
[0124] A replaceable endoscope tip for an endoscope may have a rigid proximal portion and a distal portion. The distal portion may be bendable to direct a field of view of imaging circuitry in a desired direction. Illuminator and solid state imaging circuitry may be located at or near a distal tip of the articulable distal portion. The illuminator may be designed to illuminate, and the imaging circuitry may be designed to capture imaging of, an interior of a body cavity for a surgeon during surgery. A coupling is designed to separably connect the replaceable endoscope tip at a joint to a handle portion, and to disconnect the joint. The coupling has mechanical connectors designed: (a) when separated, the mechanical connectors permitting removal of the replaceable endoscope tip from
A the handle for disposal and replacement; and (b) when connected, the joint designed to provide mechanical force transfer between a surgeon’s hand to the insertion shaft. Electrical connectors are designed to connect the replaceable endoscope tip to electronics in the handle, the handle electronics designed for drive of the illuminator and to receive imaging signal from the imaging circuitry, the handle may be designed to permit sterilization between uses. Control force transfer elements are designed to permit a surgeon to direct a direction of the imaging circuitry by transfer of mechanical force directed by a surgeon to the bendable distal portion.
[00100] In general, in a first aspect, the invention features an apparatus. An optical prism is designed to displace a field of view offset angle of an endoscope. A connector is designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off- axis of the endoscope, and to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity. The optical prism and connector are designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset when the prism and connector are affixed to an optical tip of the endoscope.
[00101] In general, in a second aspect, the invention features delivery packaging for an endoscope. The packaging has mechanical features designed to retain components of an endoscope, and to protect the endoscope for shipping and/or delivery. The packaging has a vial, well, or cavity designed to retain anti-adhesive lubricant in contact with a lens or window of the endoscope.
[00102] An endoscope may be inserted into a body cavity. The endoscope has a field of view at an initial offset angle displaced off-axis of the endoscope. The endoscope has affixed to its distal end an optical prism designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset. The prism is affixed to the distal end of the endoscope by a connector designed to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity. The endoscope is withdrawn from the body with the prism affixed.
The prism is removed from the endoscope. The endoscope is reinserted back into the body cavity with its field of view at the initial offset angle.
[0125] The following features may be used singly, or in combination with each other. The distal bendable portion may include a series of articulated rigid segments. A sheath or cover may cover the articulated rigid segments designed to reduce intrusion or pinching. The distal bendable portion may be formed of a solid component, bendable in its lateral and elevation dimensions, and relatively incompressible in compression in its longitudinal dimension. The distal bendable portion may be extendable from and retractable into a solid sheath. The distal bendable portion may be bendable in one dimension. The distal bendable portion may be bendable in two orthogonal dimensions. The imaging circuitry may be mounted within at or near a distal tip of the bendable distal portion via a pannable mounting. The pannable mounting may be designed as two sides of a parallelogram, and the imaging circuitry may be mounted on a structural segment hinged to the two
A parallelogram sides. Passages and apertures may be designed to pass irrigation fluid to improve view from a lens or window over the imaging circuitry. Passages and apertures may be designed to pass inflation fluid to enlarge a cavity for surgery. Mechanical connectors of the coupling may include a twist-lock designed to affix the endoscope replaceable endoscope tip to the handle portion. A plurality of the endoscope replaceable endoscope tips may be packaged for integrated shipment and sale with a reusable handle, the handle having electronics designed for drive of the illuminator and to receive imaging signal from the imaging circuitry. The illuminator may be an illumination LED mounted at or near the distal tip. The illuminator may be an emission end of a fiber optic fiber driven by an illumination source in the handle. The optical prism may be designed to reduce the offset angle of the endoscope’s field of view to no more than 10°, or to no more than 5°, or to no more than 3°. The optical prism may be optically convex to magnify an image. The optical prism may be optically concave to enlarge the endoscope’s field of view. The connector may be designed to affix to the endoscope by mechanical forces. An optical filter may be coupled with the prism. The endoscope may have a wetting surface designed to entrain an anti-adhesive lubricant in a layer over a lens or window of the endoscope. The wetting surface may be a porous solid. The porous solid may be formed by sintering or other heating of particles. The optical prism and connector may be affixed to the endoscope for shipment, and designed to retain an anti-adhesive lubricant in contact with a lens or window of the endoscope during shipment. The vial, well, or cavity may have a cap with a seal to seal around a shaft of the endoscope. The anti-adhesive lubricant may comprise silicone oil, or mixtures thereof. The anti-adhesive lubricant may comprise a mixture of silicone oils of different viscosities. The vial or cavity may include an optical prism designed to displace a field of view of an endoscope.
[0126] In general, in a first aspect, the invention features delivery packaging for an endoscope. The packaging has mechanical features to retain components of an endoscope in a manner safe for shipping, and readily releasable for use. A vial, well, or cavity is designed to retain anti adhesive lubricant in contact with a lens or window of the endoscope.
[0127] An optical prism may be designed to displace a field of view of an endoscope. A connector may be designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off-axis of the endoscope. The optical prism and connector may be designed to bring the offset angle for a field of view of the endoscope toward on-axis relative to the initial offset.
[0128] Various processes described herein may be implemented by appropriately programmed general purpose computers, special purpose computers, and computing devices.
Typically a processor (e.g., one or more microprocessors, one or more microcontrollers, one or more digital signal processors) will receive instructions (e.g., from a memory or like device), and execute those instructions, thereby performing one or more processes defined by those instructions.
A Instructions may be embodied in one or more computer programs, one or more scripts, or in other forms. The processing may be performed on one or more microprocessors, central processing units (CPUs), computing devices, microcontrollers, digital signal processors, or like devices or any combination thereof. Programs that implement the processing, and the data operated on, may be stored and transmitted using a variety of media. In some cases, hard-wired circuitry or custom hardware may be used in place of, or in combination with, some or all of the software instructions that can implement the processes. Algorithms other than those described may be used.
[0129] Programs and data may be stored in various media appropriate to the purpose, or a combination of heterogeneous media that may be read and/or written by a computer, a processor or a like device. The media may include non-volatile media, volatile media, optical or magnetic media, dynamic random access memory (DRAM), static ram, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge or other memory technologies.
[0130] Databases may be implemented using database management systems or ad hoc memory organization schemes. Alternative database structures to those described may be readily employed. Databases may be stored locally or remotely from a device which accesses data in such a database.
[0131] In some cases, the processing may be performed in a network environment including a computer that is in communication (e.g., via a communications network) with one or more devices. The computer may communicate with the devices directly or indirectly, via any wired or wireless medium (e.g. the Internet, LAN, WAN or Ethernet, Token Ring, a telephone line, a cable line, a radio channel, an optical communications line, commercial on-line service providers, bulletin board systems, a satellite communications link, a combination of any of the above). Transmission media include coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to the processor. Transmission may occur over transmission media, or over electromagnetic waves, such as via infrared, WiFi, Bluetooth, and the like, at various frequencies using various protocols. Each of the devices may themselves comprise computers or other computing devices, such as those based on the Intel® Pentium® or Centrino™ processor, that are adapted to communicate with the computer. Any number and type of devices may be in communication with the computer.
[0132] A server computer or centralized authority may or may not be necessary or desirable. In various cases, the network may or may not include a central authority device. Various processing functions may be performed on a central authority server, one of several distributed servers, or other distributed devices.
[0133] The following applications are incorporated by reference. U.S. Provisional App. Ser. No. 63/237,906, fled Aug. 27, 2021, titled Endoscope, U.S. App. Ser. No. 17/361,711, filed Jun. 29,
A 2021, titled Endoscope with Bendable Camera Shaft, U.S. App. Ser. No. 16/434,766, filed Jun. 7, 2019, titled Endoscope with Disposable Camera Shaft and Reusable Handle, U.S. Prov. App. Ser. No. 63/214,296, filed Jun. 24, 2021, titled “Endoscope with Bendable Camera Shaft,” U.S. Provisional App. Ser. No. 63/067,781, filed Aug. 19, 2020, titled “Endoscope with Articulated Camera Shaft,” U.S. Provisional Application Ser. No. 63/047,588, filed Jul. 2, 2020, titled “Endoscope with Articulated Camera Shaft,” and U.S. Provisional App. Ser. No. 63/046,665, filed Jun. 30, 2020, titled “Endoscope with Articulated Camera Shaft,” U.S. Provisional App. Ser. No. 62/850,326, filed May 20, 2019, titled “Endoscope with Disposable Camera Shaft,” and U.S. Provisional App. Ser. No. 62/722,150, filed August 23, 2018, titled “Endoscope with Disposable Camera Shaft,” and U.S. Provisional App. Ser. No. 62/682,585 filed June 8, 2018, titled “Endoscope with Disposable Camera Shaft,” U.S. Provisional App. Ser No. 63/193,387 titled Anti-adhesive Window or Lens for Endoscope Tip, and U.S. App. Ser. No. 16/069,220, filed Oct. 24, 2018, titled “Anti-Fouling Endoscopes and Uses Thereof.”
[0134] For clarity of explanation, the above description has focused on a representative sample of all possible embodiments, a sample that teaches the principles of the invention and conveys the best mode contemplated for carrying it out. The invention is not limited to the described embodiments. Well known features may not have been described in detail to avoid unnecessarily obscuring the principles relevant to the claimed invention. Throughout this application and its associated file history, when the term “invention” is used, it refers to the entire collection of ideas and principles described; in contrast, the formal definition of the exclusive protected property right is set forth in the claims, which exclusively control. The description has not attempted to exhaustively enumerate all possible variations. Other undescribed variations or modifications may be possible. Where multiple alternative embodiments are described, in many cases it will be possible to combine elements of different embodiments, or to combine elements of the embodiments described here with other modifications or variations that are not expressly described. A list of items does not imply that any or all of the items are mutually exclusive, nor that any or all of the items are comprehensive of any category, unless expressly specified otherwise. In many cases, one feature or group of features may be used separately from the entire apparatus or methods described. Many of those undescribed alternatives, variations, modifications, and equivalents are within the literal scope of the following claims, and others are equivalent. The claims may be practiced without some or all of the specific details described in the specification. In many cases, method steps described in this specification can be performed in different orders than that presented in this specification, or in parallel rather than sequentially.
A

Claims

The invention claimed is: 1. Apparatus, comprising: an optical prism designed to displace a field of view offset angle of an endoscope; a connector designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off-axis of the endoscope, and to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity; the optical prism and connector designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset when the prism and connector are affixed to an optical tip of the endoscope.
2. The apparatus of claim 1, wherein: the optical prism is designed to reduce the offset angle of the endoscope’s field of view to no more than 10°.
3. The apparatus of claim 2, wherein: the optical prism is designed to reduce the offset angle of the endoscope’s field of view to no more than 5°.
4. The apparatus of any one of claims 1 to 3, wherein: the optical prism is optically convex to magnify an image.
5. The apparatus of any one of claims 1 to 3, wherein: the optical prism is optically concave to enlarge the endoscope’s field of view.
6. The apparatus of any one of claims 1 to 5, wherein: the connector is designed to affix to the endoscope by mechanical forces.
7. The apparatus of any one of claims 1 to 6, further comprising: the connector is designed to affix an optical filter in series with the prism.
8. The apparatus of any one of claims 1 to 7, wheren: the endoscope has a wetting surface treated to form a porous solid wetting surface designed to entrain an anti-adhesive lubricant in a layer over a lens or window of the endoscope.
9. The apparatus of any one of claims 1 to 8: wherein the optical prism and connector are affixed to the endoscope for shipment, and designed to retain an anti-adhesive lubricant in contact with a lens or window of the endoscope during shipment.
10. Packaging for an endoscope, comprising: mechanical features to retain components of an endoscope, and to protect the endoscope for shipping and/or delivery; a vial, well, or cavity designed to retain anti-adhesive lubricant in contact with a lens or window of the endoscope.
11. The packaging of claim 10, wherein: the vial, well, or cavity has a cap with a seal to seal around a shaft of the endoscope.
12. The packaging of any one of claims 10 to 11, wherein: the lens or window of the endoscope has a wetting surface formed by heating silica particles to a temperature below melting to fuse the silica particles into a porous solid.
13. The packaging of any one of claims 10 to 12, wherein: the anti-adhesive lubricant comprises silicone oil, or mixtures thereof.
14. The packaging of any one of claims 10 to 13: the anti-adhesive lubricant comprises a mixture of silicone oils of different viscosities.
15. The packaging of any one of claims 10 to 14, wherein: the vial or cavity includes an optical prism designed to displace a field of view of an endoscope a connector designed to affix the optical prism to a tip of an endoscope that has a field of view at an initial offset angle displaced off-axis of the endoscope; the optical prism and connector designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset.
16. A method, comprising the steps of: inserting an endoscope into a body cavity, the endoscope having a field of view at an initial offset angle displaced off-axis of the endoscope, the endoscope having affixed to its distal end an optical prism designed to reduce the offset angle of the field of view of the endoscope toward on-axis relative to the initial offset, the prism affixed to the distal end of the endoscope by a connector designed to retain the optical prism against displacement forces during insertion of the endoscope into a body cavity; withdrawing the endoscope from the body with the prism affixed; removing the prism from the endoscope; inserting the endoscope back into the body cavity with its field of view at the intial offset angle.
17. The method of claim 16, wherein: the optical prism is designed to reduce the offset angle of the endoscope’s field of view to no more than 5°.
18. The method of any one of claims 16 to 17, wherein: the optical prism is optically concave to enlarge the endoscope’s field of view.
19. The method of any one of claims 16 to 18, further comprising: an optical filter affixed with the prism.
20. The method of any one of claims 16 to 19, wherein:: the endoscope further comprises a wetting surface designed to entrain an anti-adhesive lubricant in a layer over a lens or window of the endoscope, the prisim and its affixation designed to retain the anti-adhesive lubricant in contact with a lens or window of the endoscope during the first insertion.
PCT/IB2022/054938 2021-05-26 2022-05-26 Endoscope WO2022249116A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163193387P 2021-05-26 2021-05-26
US63/193,387 2021-05-26
US202163249479P 2021-09-28 2021-09-28
US63/249,479 2021-09-28

Publications (2)

Publication Number Publication Date
WO2022249116A2 true WO2022249116A2 (en) 2022-12-01
WO2022249116A3 WO2022249116A3 (en) 2023-01-05

Family

ID=82156549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/054938 WO2022249116A2 (en) 2021-05-26 2022-05-26 Endoscope

Country Status (1)

Country Link
WO (1) WO2022249116A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375139B2 (en) 2010-07-29 2016-06-28 Cannuflow, Inc. Arthroscopic system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553278B2 (en) * 2005-06-01 2009-06-30 Cannuflow, Inc. Protective cap for arthroscopic instruments
US20150069728A1 (en) * 2010-09-24 2015-03-12 John Russell Seitz, III Multifunctional enclosure system for medical probes and method of use
CN105263393B (en) * 2013-03-15 2018-10-26 德普伊新特斯产品公司 With the observation trochar with integrated prism that angled endoscope is used together
US20150173594A1 (en) * 2013-07-18 2015-06-25 Ashkan Farhadi Method and Device for Improved Hygiene During Endoscopic Procedures
CN107157429A (en) * 2017-05-26 2017-09-15 首都医科大学附属北京中医医院 Branchofiberoscope packing case and its application method with lubricant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375139B2 (en) 2010-07-29 2016-06-28 Cannuflow, Inc. Arthroscopic system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUNNY ET AL.: "Transparent antifouling material for improved operative field visibility in endoscopy", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES U.S.A., vol. 113, no. 42, 29 September 2016 (2016-09-29), pages 11676 - 11681, XP055853355, DOI: 10.1073/pnas.1605272113

Also Published As

Publication number Publication date
WO2022249116A3 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US20220211249A1 (en) Endoscope with variable profile tip
US11253141B2 (en) Handheld surgical endoscope
US9895048B2 (en) Handheld endoscope
US10045683B2 (en) Control and display device
US20190374095A1 (en) Endoscope with Disposable Camera Shaft and Reuseable Handle
JP5702737B2 (en) Disposable sheath for use in imaging systems
JPWO2019234712A5 (en)
US20230070386A1 (en) Endoscope
US20220007918A1 (en) Endoscope with Bendable Camera Shaft
EP4171346A1 (en) Endoscope with bendable camera shaft
US20220378279A1 (en) Endoscope
US20230123867A1 (en) Illumination for Endoscope
EP4404818A1 (en) Illumination for endoscope
WO2022249116A2 (en) Endoscope
CN118019483A (en) Endoscope illumination
US20240156330A1 (en) Image Enhancement for Endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22732641

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22732641

Country of ref document: EP

Kind code of ref document: A2