WO2022244797A1 - イソプロピルアルコールの製造方法 - Google Patents
イソプロピルアルコールの製造方法 Download PDFInfo
- Publication number
- WO2022244797A1 WO2022244797A1 PCT/JP2022/020634 JP2022020634W WO2022244797A1 WO 2022244797 A1 WO2022244797 A1 WO 2022244797A1 JP 2022020634 W JP2022020634 W JP 2022020634W WO 2022244797 A1 WO2022244797 A1 WO 2022244797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- acetone
- isopropyl alcohol
- reaction
- gas
- Prior art date
Links
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 title claims abstract description 312
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 63
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 347
- 239000003054 catalyst Substances 0.000 claims abstract description 195
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 104
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910001868 water Inorganic materials 0.000 claims abstract description 36
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 82
- 239000001257 hydrogen Substances 0.000 claims description 49
- 229910052739 hydrogen Inorganic materials 0.000 claims description 49
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 41
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 41
- 239000001569 carbon dioxide Substances 0.000 claims description 40
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 239000002028 Biomass Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 48
- 238000006243 chemical reaction Methods 0.000 description 92
- 239000007789 gas Substances 0.000 description 60
- 239000000203 mixture Substances 0.000 description 46
- 238000005984 hydrogenation reaction Methods 0.000 description 39
- 239000007788 liquid Substances 0.000 description 39
- 229910052751 metal Inorganic materials 0.000 description 38
- 238000002360 preparation method Methods 0.000 description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 239000002184 metal Substances 0.000 description 28
- 238000000926 separation method Methods 0.000 description 28
- 239000007864 aqueous solution Substances 0.000 description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 21
- 239000002994 raw material Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 18
- 238000004821 distillation Methods 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 229910052707 ruthenium Inorganic materials 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 16
- 239000000843 powder Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 238000011084 recovery Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 7
- 229910017604 nitric acid Inorganic materials 0.000 description 7
- 239000006200 vaporizer Substances 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 238000000975 co-precipitation Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000010574 gas phase reaction Methods 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- -1 for example Chemical compound 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000011949 solid catalyst Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 4
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 238000010533 azeotropic distillation Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- GTCKPGDAPXUISX-UHFFFAOYSA-N ruthenium(3+);trinitrate Chemical compound [Ru+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GTCKPGDAPXUISX-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 3
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- QZRHHEURPZONJU-UHFFFAOYSA-N iron(2+) dinitrate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QZRHHEURPZONJU-UHFFFAOYSA-N 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- GDQXQVWVCVMMIE-UHFFFAOYSA-N dinitrooxyalumanyl nitrate hexahydrate Chemical compound O.O.O.O.O.O.[Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GDQXQVWVCVMMIE-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- DEPMYWCZAIMWCR-UHFFFAOYSA-N nickel ruthenium Chemical compound [Ni].[Ru] DEPMYWCZAIMWCR-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/009—Preparation by separation, e.g. by filtration, decantation, screening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/323—Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
- C01B3/326—Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/143—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
- C07C29/145—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/783—Separation; Purification; Stabilisation; Use of additives by gas-liquid treatment, e.g. by gas-liquid absorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/81—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C45/82—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
Definitions
- the present invention relates to a method for producing isopropyl alcohol.
- Isopropyl alcohol is a key chemical widely used as a solvent, diluent, etc. in various industrial applications.
- isopropyl alcohol is mainly produced by a method that utilizes the hydration reaction to propylene obtained by pyrolysis of petroleum (Patent Document 1), or by hydrogenating acetone, which is a by-product of the production of phenol from benzene and propylene. (Patent Document 2) has been used.
- Patent Document 3 As a method for producing carbon-neutral isopropyl alcohol, a method for producing isopropyl alcohol from plant-derived raw materials using isopropyl alcohol-producing bacteria has been proposed (Patent Document 3). According to the method proposed in Patent Document 3, all the carbon in the obtained isopropyl alcohol is plant-derived, such as glucose, resulting in carbon-neutral isopropyl alcohol. However, isopropyl alcohol production using isopropyl alcohol-producing bacteria required several tens of hours of reaction time, and the accumulation concentration of isopropyl alcohol was insufficient, resulting in unsatisfactory production efficiency.
- isopropyl alcohol obtained by conventional production methods is derived from fossil resources, so it was not possible to provide carbon-neutral isopropyl alcohol, which is considered essential for building a decarbonized society.
- Isopropyl alcohol production using isopropyl alcohol-producing bacteria makes it possible to produce carbon-neutral isopropyl alcohol. was left.
- the present invention has been made in view of these circumstances, and provides a production method that is applicable to the production of carbon-neutral isopropyl alcohol and that enables the production of isopropyl alcohol in an efficient and simple operation. intended to
- the present invention comprises a step (1) of reacting ethanol and water in the presence of a catalyst to obtain acetone, a step (2) of purifying acetone, and a step (3) of reducing acetone to obtain isopropyl alcohol.
- a method for producing isopropyl alcohol comprising:
- the reducing agent used in step (3) preferably contains hydrogen obtained in step (1).
- the reducing agent used in step (3) preferably contains hydrogen obtained in step (2).
- the content of carbon dioxide in all components introduced in step (3) is less than 10 mol %.
- ethanol is preferably derived from biomass as a raw material.
- 1 is an example of a preferred embodiment of the isopropyl alcohol production process of the present disclosure.
- 1 is an example of a preferred embodiment of the isopropyl alcohol production process of the present disclosure.
- 1 is an example of a preferred embodiment of the isopropyl alcohol production process of the present disclosure.
- the method for producing isopropyl alcohol (sometimes referred to as isopropanol) of the present disclosure includes a step of reacting ethanol and water in the presence of a catalyst to obtain acetone (hereinafter referred to as step (1)).
- the catalyst also referred to as an acetone synthesis catalyst used in step (1) is not particularly limited as long as it contains various metal elements, preferably alkali metals, alkaline earth metals, iron, manganese, zinc, It preferably contains one or more elements selected from copper, aluminum, and zirconium.
- the state of the metal element contained in the catalyst used in step (1) is not particularly limited. etc.
- a metal oxide may be supported on a carrier.
- the metal oxide may be a composite metal oxide.
- composite metal oxides include spinel type, perovskite type, magnetoplumbite type, garnet type, etc., but spinel type is preferred.
- the catalyst used in step (1) preferably contains iron from the viewpoint of catalytic activity. More preferably, in addition to iron (Fe), it contains one or more metals (Me) selected from the group consisting of magnesium (Mg), calcium (Ca), manganese (Mn) and zinc (Zn).
- Fe iron
- Mg magnesium
- Ca calcium
- Mn manganese
- Zn zinc
- the catalyst containing one or more metals (Me) selected from the group consisting of magnesium (Mg), calcium (Ca), manganese (Mn) and zinc (Zn) has the following general formula: (1): MeO.nFe2O3 ( 1) (In formula (1), Me represents one or more metals selected from the group consisting of Mg, Ca, Mn and Zn, and n represents a number of 1 to 6), an iron composite oxide ( ferrite) is preferred. Specific examples of iron composite oxides include MgO.Fe 2 O 3 and ZnO.Fe 2 O 3 .
- the catalyst containing one or more metals (Me) selected from the group consisting of magnesium (Mg), calcium (Ca), manganese (Mn) and zinc (Zn) is on the other hand, one or more metals (Me) selected from the group consisting of magnesium, calcium, manganese and zinc are preferably 0.4 to 0.7 mol, more preferably 0.4 to 0.6 mol. Yes, more preferably 0.45 to 0.55 mol. That is, n in the above formula (1) is preferably 1.43 to 2.5, more preferably 1.67 to 2.5, still more preferably 2 to 2.22. Good catalytic activity is obtained by setting it as the said range.
- the catalyst used in step (1) is a metal element or metal oxide supported on a carrier
- the carrier include activated carbon, silica, alumina, silica-alumina, zeolite, silica-calcia, ceria, magnesia, Diatomaceous earth etc. are mentioned.
- the weight ratio of the carrier is preferably 20 to 70% by mass with respect to 100% by mass of the entire catalyst. . With such a ratio, the catalyst can be effectively dispersed and supported, and the catalyst can exhibit high activity.
- the mass ratio of the carrier is more preferably 25-67% by mass, more preferably 30-60% by mass, relative to 100% by mass of the entire catalyst.
- the catalyst used in step (1) contains aluminum (Al) as the metal element.
- Al aluminum
- the aluminum-containing catalyst is a compound containing aluminum singly, for example, aluminum oxide can be mentioned.
- the aluminum-containing catalyst is a composite metal oxide containing other metal elements, examples thereof include composite metal oxides of aluminum and Sn, Pb, Zn, Fe, In, and the like.
- the catalyst used in step (1) contains aluminum in the carrier, alumina (Al 2 O 3 ), silica-alumina and the like can be mentioned. From the viewpoint of catalytic performance, Al 2 O 3 is more preferable.
- the amount of aluminum is preferably 0.01 to 0.5 mol, more preferably 0.05 to 0.5, per 1 mol of iron. mol, more preferably 0.1 to 0.4 mol. By setting it as the said range, a catalyst can express favorable durability.
- the catalyst used in step (1) contains zirconium (Zr) as the metal element.
- zirconium-containing catalyst is a compound containing only zirconium, for example, zirconium oxide can be mentioned.
- zirconium is preferably 0.2 to 2.0 mol, more preferably 0.3 to 1.8 mol, per 1 mol of iron. mol, more preferably 0.4 to 1.5 mol. By setting it as the said range, a catalyst can express favorable durability.
- the total amount of one or more metals (Me) selected from the group consisting of magnesium, calcium, manganese and zinc, iron, aluminum, and zirconium contained in the catalyst is 100 mass of the catalyst. %, preferably 50 to 100% by mass, more preferably 80 to 100% by mass.
- the catalyst used in step (1) is not particularly limited in its manufacturing method, and can be manufactured, for example, by an impregnation method, a precipitation method, a coprecipitation method, or the like. More preferred is the coprecipitation method.
- a coprecipitate sometimes referred to as a catalyst precursor
- the metal elements which are the catalyst constituents, are uniformly and highly dispersed, resulting in a catalyst with excellent performance. can be manufactured.
- a catalyst in the coprecipitation method, can be produced by mixing aqueous solutions of compounds of metal elements contained in the catalyst and then adding a basic aqueous solution to these metal elements to simultaneously precipitate sparingly soluble salts.
- the compound of the metal element is not particularly limited as long as it is soluble in water. For example, it may be selected from chlorides, hydrochlorides, sulfates, nitrates, etc. according to the type of the metal element.
- the alkali added to precipitate the sparingly soluble salt of the metal element is not particularly limited, and sodium hydroxide, aqueous ammonia, potassium hydroxide, and the like can be used.
- a step of baking may be included.
- the amount of metal elements in the solution can be changed as appropriate.
- an impregnation method can be used.
- a catalyst in which a metal element is supported on a support can be produced by mixing a solution of a compound of a metal element with a support and then drying the mixture.
- the compound of the metal element is not particularly limited as long as it is soluble in a solvent such as water.
- the impregnation method may include a step of mixing the solution of the compound of the metal element and the carrier, a step of drying the mixture, and a step of firing the dried product.
- the amount of metal elements in the solution can be changed as appropriate.
- the dispersion state of each catalyst component in the produced catalyst can be evaluated using, for example, an electron microprobe analyzer (EPMA).
- EPMA electron microprobe analyzer
- the dispersibility of the metal component contained in the catalyst, such as aluminum is measured by measuring the X-ray dose in each 900 ⁇ m plane in the X-axis and Y-axis directions on the catalyst surface, and calculating the average value from arbitrary points measured. (S) and its standard deviation ( ⁇ ) are obtained.
- the dispersibility of aluminum contained in the catalyst can be evaluated by the ratio ( ⁇ /S) of the standard deviation ( ⁇ ) to the average value (S).
- the value of the ratio ( ⁇ /S) is preferably less than 0.25, more preferably less than 0.2, and even more preferably less than 0.15.
- reaction product containing acetone, hydrogen and carbon dioxide can be obtained by bringing ethanol and water, which are raw materials, into contact with a catalyst.
- a step of removing components adhering to the catalyst Before bringing ethanol and water, which are raw materials, into contact with the catalyst in step (1), a step of removing components adhering to the catalyst may be performed. Thereby, the function of the catalyst can be exhibited more sufficiently.
- the method for removing the components adhering to the catalyst is not particularly limited, but a method such as passing an inert gas through the catalyst under heating can be used.
- the reaction in step (1) is not particularly limited, and may be either a batch system or a continuous system, but a continuous system is preferred from the viewpoint of productivity.
- the reaction in step (1) is preferably a gas phase reaction.
- As the reaction format by gas phase reaction fixed bed, moving bed, fluidized bed and the like can be mentioned, but simpler fixed bed format is preferable.
- a mixture of gaseous ethanol and gaseous water (sometimes referred to as water vapor) is supplied as a raw material gas to the reactor and brought into contact with the catalyst.
- gaseous ethanol and water vapor may be separately supplied to the reactor as raw material gases and brought into contact with the catalyst.
- Gaseous ethanol is obtained, for example, by heating liquid ethanol in a vaporizer.
- Gaseous water is obtained, for example, by heating water in a vaporizer.
- the raw material gas may contain an inert gas such as nitrogen or helium.
- the raw material gas includes all gases supplied to the reactor.
- the concentration of ethanol contained in the raw material gas is preferably 3 to 66 mol %. With such a ratio, isopropyl alcohol can be produced with high productivity.
- the concentration of ethanol contained in the raw material gas is more preferably 5 to 50 mol %.
- the molar ratio of water to ethanol contained in the source gas is preferably 0.5-10. With such a ratio, the reaction between ethanol and water is carried out more efficiently. More preferably, the molar ratio of water to ethanol contained in the source gas is 1-5.
- Ethanol used for the raw material gas is not particularly limited, and may be obtained by any method. Examples include ethanol obtained by a hydration reaction of ethylene, and bioethanol made from biomass raw materials such as carbohydrates such as sugarcane, starches such as grains, and celluloses such as plants.
- the ethanol used for the gas preferably contains bioethanol.
- the content of bioethanol contained in 100% by mass of ethanol is preferably 50% by mass or more. More preferably, it is 75% by mass or more, and still more preferably 90% by mass or more.
- the reaction in step (1) can be carried out under reduced pressure, normal pressure, or increased pressure.
- the reaction pressure is preferably 0.07 MPa to 0.2 MPa, more preferably 0.1 MPa to 0.15 MPa. be.
- the reaction temperature in step (1) is preferably 250-600°C, more preferably 300-550°C, and even more preferably 330-500°C.
- the space velocity of the raw material gas is preferably 300 to 10000 (1/h), more preferably 400 to 8000 (1/h), and further Preferably, it is 500 to 6000 (1/h).
- the method for producing isopropyl alcohol of the present disclosure includes a step of separating acetone from a mixture containing acetone (hereinafter also referred to as an acetone-containing mixture) and/or purifying acetone (hereinafter referred to as step (2)).
- the acetone-containing mixture used in step (2) contains at least the acetone obtained in step (1).
- the acetone-containing mixture used in step (2) may be the product obtained in step (1) as it is, or the product obtained in step (1) may be used in step (3). ) may be the product obtained by performing. Moreover, both of these may be included. That is, in the method for producing isopropyl alcohol of the present disclosure, step (2) may be performed between step (1) and step (3), or may be performed after step (1) and step (3). may be performed both before and after step (3).
- the ratio of the acetone-containing mixture obtained in the step (1) to the acetone-containing mixture used in the step (2) is arbitrary, but for example, relative to 100% by mass of the acetone-containing mixture used in the step (2) , is preferably 25% by mass or more, more preferably 50% by mass or more, and even more preferably 80% by mass or more.
- the acetone-containing mixture used contains gas, it is separated into a gas mainly composed of hydrogen or carbon dioxide and a liquid mixture mainly composed of acetone by a known gas-liquid separation method (gas-liquid (sometimes referred to as separation).
- gas means a substance that exists as a gas under pressurized and cooled conditions in the gas-liquid separation operation.
- the pressure in the gas-liquid separation operation is preferably 0.1 MPa to 2 MPa, more preferably 0.2 MPa to 1 MPa.
- the temperature in the gas-liquid separation operation is preferably 0°C to 50°C, more preferably 5°C to 40°C.
- step (2) an operation of absorbing acetone from a gas mainly composed of hydrogen, carbon dioxide, etc. may be performed.
- the method of absorbing acetone is not particularly limited, but gas may be introduced into an absorption tower, the acetone in the gas may be absorbed by the absorbent supplied from the top of the tower, and recovered as an acetone-containing liquid from the bottom of the tower.
- the absorbent supplied from the top of the column any liquid can be used as long as it can effectively absorb acetone, but water is particularly preferred.
- the acetone-containing absorbent obtained from the bottom of the absorption tower may be combined with the acetone-based liquid mixture obtained by gas-liquid separation. Thereby, the recovery rate of acetone can be improved.
- step (2) purified acetone can be obtained by distilling the acetone-containing mixture, which is a liquid mixture mainly composed of acetone.
- Distillation can be performed by a known method. Known distillation methods include, for example, thin film distillation and rectification. Distillation may be continuous or batchwise.
- step (2) only gas-liquid separation may be performed, gas-liquid separation and distillation may be performed, or only distillation may be performed. in that order.
- purified acetone is obtained as a distillate by distillation, while the bottom liquid is a liquid mainly composed of water.
- Step (2) may be performed only once, or may be performed twice or more.
- step (2) The purified acetone obtained in step (2) can be used as an introduction material in step (3) below. As described above, step (2) may be performed between steps (1) and (3), or may be performed after steps (1) and (3) are performed. When step (2) is performed after step (3), the purified acetone obtained in step (2) can be returned to the reactor in which step (3) is performed and used as a raw material for step (3).
- the content of acetone contained in the purified acetone obtained in step (2) is preferably 90% by mass or more, more preferably 95% by mass or more, more preferably 98% by mass with respect to 100% by mass of purified acetone. It is more preferable that it is above.
- the acetone reduction reaction in the following step (3) is performed, and the isopropyl alcohol and gas contained in the obtained product are separated from the gas and liquid, thereby easily obtaining high-purity Isopropyl alcohol is obtained.
- the method for producing isopropyl alcohol of the present disclosure includes a step of reducing acetone to obtain isopropyl alcohol (hereinafter referred to as step (3)).
- At least part of the acetone used in step (3) is the acetone obtained in step (1) above.
- the product (acetone-containing mixture) of step (1) may be used as it is, but purified acetone in step (2) is preferably used.
- purified high-purity acetone is used as a raw material for the acetone reduction reaction, high-purity isopropyl alcohol can be easily obtained by gas-liquid separation of the isopropyl alcohol contained in the product in step (3) and the gas. . Therefore, performing step (2) before step (3) is one of the preferred embodiments of the method for producing isopropyl alcohol of the present disclosure.
- the substance for reduction (sometimes referred to as a reducing agent) includes hydrogen, lithium aluminum hydride, sodium borohydride, and the like. Hydrogen is preferred.
- step (3) the hydrogen used as the reducing agent is not particularly limited, and industrially produced hydrogen may be used. It is preferred to use the hydrogen obtained in step (1).
- the hydrogenation may also be carried out using the product of step (1) as is.
- the hydrogen used for reduction in step (3) may contain hydrogen obtained by separation from the acetone-containing mixture in step (2).
- step (3) hydrogen separated from the acetone-containing mixture in step (2) is brought into contact with purified acetone as a reducing agent, whereby isopropyl alcohol of high purity can be easily obtained.
- step (3) it is preferable that the content of carbon dioxide contained in all the components to be introduced is small.
- the content of carbon dioxide in all components introduced in step (3) is preferably less than 10 mol%, more preferably less than 5 mol%, and even more preferably less than 2 mol%.
- step (2) is performed before step (3), and carbon dioxide is separated from the acetone-containing mixture obtained in step (1) and then introduced into the reactor in which step (3) is performed.
- step (3) is one of the preferred embodiments of the method for producing isopropyl alcohol of the present disclosure.
- the catalyst used in step (3) is not particularly limited, and examples thereof include Raney catalysts.
- Other catalysts include, for example, solid catalysts containing metal elements such as Ba, Co, Cr, Cu, Fe, Mn, Ni, Pd, Pt, Zn, Zr, Ru, and Rh.
- a solid catalyst containing at least one metal element selected from the group consisting of Pt, Ru, Ni, Fe and Co is preferable, and the group consisting of Ru catalyst, Ni—Pt catalyst, Ru—Pt catalyst, and Ni—Ru catalyst. It is more preferable to use at least one or more solid catalysts selected from.
- the catalyst it is possible to use one in the form of a single metal element, an alloy, an oxide, or the like. It may also be a mixture of a single metal, a mixture of a single metal and a metal oxide, a mixture of metal oxides, or a mixed metal oxide.
- the metal elements are activated carbon, silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), ceria (CeO 2 ), magnesia (MgO), diatomaceous earth. You may use the thing carried
- the shape of these catalysts is not particularly limited, and may be ring-shaped, spherical, or the like.
- one type of catalyst may be used alone, or two or more types may be used.
- a known catalyst that reduces acetone to produce isopropyl alcohol may be used.
- the introduction containing acetone used in step (3) may be liquid or gas.
- a reaction solvent may be used in step (3).
- Examples include alcohols, ethers, hydrocarbons and the like. Water may be used.
- the reaction in step (3) is not particularly limited, and may be carried out either batchwise or continuously, but from the viewpoint of productivity, it is preferably carried out continuously.
- the reaction in step (3) is preferably a gas phase reaction.
- the reaction form of the gas phase reaction is not particularly limited, and fixed bed, fluidized bed and the like can be mentioned, but the simpler fixed bed form is preferred.
- the reaction pressure for the reaction in step (3) is preferably 0.1 MPa to 2 MPa, more preferably 0.1 MPa to 1 MPa.
- the reaction temperature of the reaction in step (3) is preferably 20°C to 200°C, more preferably 25°C to 150°C.
- a lower reaction temperature is advantageous in terms of equilibrium, but the hydrogenation is less likely to proceed. is concomitant with hydrocracking, and the yield tends to decrease.
- the space velocity of the introduced material containing acetone is preferably 200 to 50000 (1/h), more preferably 1000 to 20000 (1/h). Yes, more preferably 2000 to 10000 (1/h).
- the method for producing isopropyl alcohol of the present disclosure includes a step of recovering isopropyl alcohol.
- the isopropyl alcohol to be subjected to this recovery step may be the product obtained in the above step (3), and the product obtained by performing the step (3) may be used as it is in the recovery step. After subjecting the product obtained in step (3) to step (2) to separate acetone, the product may be used in the recovery step. Also, both of these products may be used in the recovery process.
- the isopropyl alcohol to be subjected to the present recovery step is a gas-liquid mixture containing isopropyl alcohol and gas
- a known method of gas-liquid separation can be used to obtain a gas containing mainly gas such as hydrogen and isopropyl alcohol.
- the isopropyl alcohol may be recovered after separation into the liquid mixture.
- gas means a substance that exists as a gas under pressurized and cooled conditions in the gas-liquid separation operation.
- the pressure in the gas-liquid separation operation is preferably 0.1 MPa to 2 MPa, more preferably 0.2 MPa to 1 MPa.
- the temperature in the gas-liquid separation operation is preferably 0°C to 50°C, more preferably 5°C to 40°C.
- Purified isopropyl alcohol can be obtained by distilling the liquid mixture containing isopropyl alcohol obtained by the gas-liquid separation operation in this recovery process.
- Distillation of the liquid mixture containing isopropyl alcohol can be performed by a known distillation method.
- Known distillation methods include, for example, thin film distillation and rectification.
- the distillation operation may be performed continuously or batchwise.
- azeotropic distillation may be performed as a distillation operation. Since isopropyl alcohol forms an azeotropic mixture with water, high-purity isopropyl alcohol can also be obtained by azeotropic distillation when the liquid mixture containing isopropyl alcohol contains water.
- the method of producing isopropyl alcohol of the present disclosure may include the step of separating the gas.
- the step of separating the gas includes, for example, a step of purifying hydrogen contained in the gas phase component obtained in the step (2) of purifying acetone (gas-liquid separation step).
- the step of purifying the hydrogen contained in the gas phase component obtained in step (2) is also referred to as step (4).
- the hydrogen-rich composition obtained in step (4) may be recovered as is, or part or all of it may be used for the reduction of acetone in step (3).
- the hydrogen/carbon dioxide molar ratio in the hydrogen-rich composition obtained in step (4) is preferably at least 90:10, more preferably at least 95:5, and at least 98:2. is more preferred.
- Examples of methods for separating gas (methods for refining hydrogen) in step (4) include known methods such as physical absorption, chemical absorption, membrane separation, cryogenic separation, and compression liquefaction.
- the physical absorption method is a method of separating and recovering carbon dioxide from a mixed gas by physical actions such as adsorption and dissolution without performing a chemical reaction, and particularly preferred is the PSA (Pressure Swing Adsorption) method.
- PSA Pressure Swing Adsorption
- the chemical absorption method mainly involves reacting carbon dioxide with basic substances such as amines and alkalis, converting them into forms such as hydrogen carbonates and absorbing them.
- carbon dioxide can be separated and recovered from the absorption liquid by heating or reducing the pressure.
- the membrane separation method is preferably a method using a separation membrane that selectively allows hydrogen or carbon dioxide to permeate.
- the membrane used at this time is not particularly limited, but examples include polymer material membranes, dendrimer membranes, amine group-containing membranes, inorganic material membranes such as zeolite membranes, and the like.
- the separation membrane may contain metal atoms. Although the metal atom is not particularly limited, examples thereof include Pd and the like.
- the step (4) preferably includes at least one step selected from a membrane separation step, an absorption step with a basic substance or an organic solvent, and an adsorption step with an adsorbent such as PSA or activated carbon.
- FIGS. 1 and 3 An example of a preferred embodiment of the process for producing isopropyl alcohol of the present disclosure is shown.
- the process of FIGS. 1 and 3 is an example of a process having an isopropyl alcohol recovery step after the steps (1) ⁇ (2) ⁇ (3) are performed in this order.
- the process of FIG. 2 is an example of a process having an isopropyl alcohol recovery step after the steps (1) ⁇ (3) ⁇ (2) are performed in this order.
- the process of FIG. 1 is an example including a gas separation step. If high purity isopropyl alcohol is to be obtained, the process of FIG. 2 would involve performing an azeotropic distillation step of isopropyl alcohol in the isopropyl alcohol recovery step.
- the processes shown in FIGS. 1 to 3 are more preferable from the viewpoint of simplicity in manufacturing. Furthermore, from the standpoint of catalytic activity, the process of FIG. 1 is more preferred, with a lower content of carbon dioxide being introduced into step (3).
- the method for producing isopropyl alcohol of the present disclosure may include a step of regenerating the catalyst when a change in activity of the catalyst is observed.
- the method of regeneration is not particularly limited, but a method of contacting with an oxidizing gas such as oxygen at a high temperature can be used.
- an oxidizing gas such as oxygen at a high temperature
- the raw material gas may be changed to an oxidizing gas to regenerate the catalyst. regeneration of the catalyst may be performed.
- a production apparatus used for producing isopropyl alcohol of the present disclosure may be of a batch type or a continuous type, but a continuous type is preferable from the viewpoint of productivity.
- a continuous reactor for carrying out step (1) known reactors such as fixed bed reactors, fluidized bed reactors and moving bed reactors can be used. Among these, it is preferable to use a fixed bed reactor, which is easier in terms of equipment and operation.
- the gas-liquid separation apparatus is not particularly limited, and an ordinary gas-liquid separation apparatus having a pressurization/cooling mechanism can be used.
- the distillation apparatus is not particularly limited, but a distillation apparatus using a distillation column having 4 to 40 theoretical plates is preferable.
- step (3) known reactors such as fixed bed reactors, fluidized bed reactors and moving bed reactors can be used. Among these, it is preferable to use a fixed bed reactor, which is easier in terms of equipment and operation.
- the isopropyl alcohol obtained by the production method of the present disclosure preferably has concentrations of ethanol, water, and acetone as impurities of 10000 ppm or less. Such a low concentration of impurities makes it suitable for various industrial uses. Concentrations of ethanol, water, and acetone as impurities are more preferably 10000 ppm or less, and still more preferably 5000 ppm or less. From the viewpoint of reducing impurities, the processes shown in FIGS. 1 and 3 are more preferable. From the viewpoint of the number of steps, the process of FIG. 1 is more preferable.
- isopropyl alcohol obtained by the production method of the present disclosure The use of isopropyl alcohol obtained by the production method of the present disclosure is not particularly limited, but it can be suitably used as a raw material for the production of propylene.
- Propylene can be produced from isopropyl alcohol of the present disclosure, for example, by dehydration by a known method.
- Catalyst Preparation B1/Catalyst for Acetone Hydrogenation 0.4 mL of dinitrodiammineplatinum nitric acid solution (Tanaka Kikinzoku Kogyo Co., Ltd., platinum content: 100 g/L) was added to 4.0 g of pure water to prepare a platinum-containing aqueous solution.
- the platinum-containing aqueous solution was added to 4.0 g of cerium oxide powder (manufactured by Rhodia, 3CO) weighed in a magnetic dish and mixed uniformly with a glass rod. Then, after drying at 120° C. for 10 hours, it was calcined at 400° C. for 1 hour to obtain catalyst B1.
- Step (1) Acetone synthesis reaction
- Acetone synthesis reaction was carried out using a SUS316 tubular reactor (outer diameter: 10 mm, inner diameter: 8 mm).
- Catalyst A1 powder uniformly pulverized in an agate mortar is filled in a vinyl chloride disk, compressed at 30 MPaG with a compression molding machine to form a disk, crushed and classified into 0.71 to 1.18 mm, and the granules are obtained.
- 2.0 g of the catalyst was packed in a SUS tubular reaction tube.
- a reaction tube filled with catalyst A1 was placed in a circular electric furnace, and nitrogen was supplied at a rate of 50.0 mL/min. (0° C., converted to 1 atm) and heated to 400° C. by heating in an electric furnace for 30 min. held. After that, nitrogen was stopped, and 0.08 g/min. and the reaction was carried out at normal pressure.
- the ethanol aqueous solution was supplied into the reaction system by the feeder to the ethanol aqueous solution vaporizer provided on the inlet side of the reaction tube.
- the ethanol aqueous solution vaporization section was heated to 100° C. by external heating.
- the ethanol aqueous solution supplied to the ethanol aqueous solution vaporization section in a liquid state by the feeder was immediately vaporized and introduced into the SUS316 tubular reactor.
- the ethanol conversion rate was 100% and the acetone selectivity was 69%.
- Acetone yield 100 x reactor outlet acetone flow rate x 3/(reactor inlet ethanol flow rate x 2) (2)
- the acetone yield in formula (2) is evaluated by the amount of carbon in the produced acetone with respect to the total carbon contained in the ethanol supplied from the inlet of the reactor. Therefore, the maximum acetone yield is 75%.
- Step (2) Acetone purification step
- the reactor outlet gas obtained in step (1) was introduced into a glass absorption bottle cooled to ice temperature. Pure water was contained in the glass absorption bottle, and condensed components consisting of acetone and water in the reactor outlet gas were collected by bubbling the ice-temperature pure water. When the collected liquid was analyzed by gas chromatography, most of the collected components other than water were acetone, and only a very small amount of components with unknown structures were present.
- Acetone can be separated and purified from the aqueous acetone solution by a normal distillation operation. Therefore, by distilling the aqueous acetone solution obtained here under appropriate conditions, high-purity acetone can be obtained from the top of the distillation apparatus.
- gaseous components Components that were not condensed and collected in the absorption bottle were discharged as gaseous components from the absorption bottle.
- the gaseous components mainly consisted of hydrogen and carbon dioxide, and a small amount of hydrocarbons such as methane, ethylene, and ethane, which were by-products of the reaction, were detected as other components. It was found that the amount of acetone in the gaseous component was extremely small, and that almost all of the acetone produced in the reaction process was collected in the previous absorption operation.
- This gas component was passed through an absorption bottle containing a 10% by weight sodium hydroxide aqueous solution at room temperature to absorb carbon dioxide in the gas. Hydrocarbons such as methane, ethylene, and ethane were then removed by adsorption through a column packed with activated carbon to obtain hydrogen gas with increased purity.
- Step (3) Acetone hydrogenation reaction
- acetone hydrogenation reaction Purified acetone obtained by distilling the acetone aqueous solution obtained by the absorption operation of the acetone synthesis reactor outlet gas is replaced with reagent acetone (manufactured by Nacalai Tesque, purity 99.5% or more), and hydrogen is also used in the acetone synthesis reaction.
- the acetone hydrogenation reaction was carried out by supplying hydrogen from a cylinder (manufactured by Nippon Steel Chemical & Materials Co., Ltd., purity 99.999% or higher) instead of hydrogen purified by treating the outlet gas.
- the acetone hydrogenation reaction was carried out using a SUS316 tubular reactor (outer diameter 10 mm, inner diameter 8 mm).
- Catalyst B1 powder uniformly pulverized in an agate mortar is filled in a vinyl chloride disk, compressed at 30 MPaG with a compression molding machine to form a disk, crushed and classified into 0.71 to 1.18 mm, and the granular form is obtained.
- 1.4 g of the catalyst was packed in a SUS tubular reaction tube.
- a reaction tube filled with catalyst B1 was placed in an annular electric furnace, and hydrogen was supplied at a rate of 10.0 mL/min. (0° C., converted to 1 atm), nitrogen at 40.0 mL/min.
- Acetone conversion 100-100 x (reactor outlet acetone flow rate/reactor inlet acetone flow rate) (4)
- Isopropyl alcohol selectivity 100 x reactor outlet isopropyl alcohol flow rate / (reactor inlet acetone flow rate - reactor outlet acetone flow rate) (5)
- acetone hydrogenation reactor outlet gas consists of hydrogen, isopropyl alcohol, and a trace amount of acetone, isopropyl alcohol and hydrogen can be easily separated by normal gas-liquid separation under pressure and cooling.
- Step (3): Acetone hydrogenation reaction Acetone hydrogenation reaction was carried out under conditions corresponding to the case where the hydrogen used in (Acetone hydrogenation reaction) in Example 1 was changed to a gas mainly composed of hydrogen and carbon dioxide discharged from the absorption bottle after acetone collection. carried out.
- the composition of the gas discharged from the absorption bottle after acetone collection is mainly composed of hydrogen and carbon dioxide. Cylinders (Nippon Steel Chemical & Materials, purity 99.999% or more) and liquefied carbon dioxide cylinders (Sumitomo Seika, purity 99.9% or more) are used to create a simulated gas and acetone hydrogenation reaction. used for
- Example 1 In the acetone hydrogenation reaction, the hydrogen in Example 1 was 60 mL/min. (0° C., converted to 1 atm), hydrogen 48 mL/min. (0° C., converted to 1 atm) and carbon dioxide 12 mL/min. (0°C, converted to 1 atmospheric pressure) total 60mL/min. It was carried out in the same manner as in Example 1, except that it was changed to (0° C., converted to 1 atm).
- catalyst B2 The composition of the resulting catalyst B2 was 1 wt% Pt/ZrO2 ( ie 99 wt% ZrO2 for 1 wt% Pt).
- Catalyst preparation B3/acetone hydrogenation catalyst Catalyst B3 was prepared in the same manner as Catalyst Preparation B2, except that 0.49 g of the dinitrodiammineplatinum nitric acid solution in Catalyst Preparation B2 was changed to 1.03 g of a ruthenium nitrate solution (manufactured by Tanaka Kikinzoku Co., Ltd., Ru content: 3.92% by mass). did. The composition of the resulting catalyst B3 was 5 mass % Ru/ZrO2.
- Catalyst preparation B4/acetone hydrogenation catalyst Catalyst B4 was prepared in the same manner as Catalyst Preparation B2, except that 0.49 g of the dinitrodiammineplatinum nitric acid solution in Catalyst Preparation B2 was changed to 11.3 g of a ruthenium nitrate solution (manufactured by Tanaka Kikinzoku Co., Ltd., Ru content: 3.92% by mass). did. The composition of the resulting catalyst B4 was 10 mass % Ru/ZrO2.
- Catalyst preparation B5/acetone hydrogenation catalyst Catalyst B5 was prepared in the same manner as Catalyst Preparation B2, except that 0.49 g of the dinitrodiammineplatinum nitric acid solution in Catalyst Preparation B2 was changed to 1.24 g of nickel nitrate hexahydrate (manufactured by Nacalai Tesque, special grade). The composition of the resulting catalyst B5 was 5.9 mass % Ni/ZrO2.
- Catalyst preparation B6/acetone hydrogenation catalyst 0.49 g of dinitrodiammine platinum nitric acid solution in catalyst preparation B2 was mixed with 0.36 g of nickel nitrate hexahydrate (manufactured by Nacalai Tesque, special grade) and dinitrodiammine platinum nitric acid solution (manufactured by Tanaka Kikinzoku Co., Ltd., Pt content 8.19 mass %)
- Catalyst B6 was prepared in the same manner as Catalyst Preparation B2, except that it was changed to 0.49 g.
- the composition of the resulting catalyst B6 was 1.8 mass % Ni-1 mass % Pt/ZrO 2 .
- Catalyst preparation B7/acetone hydrogenation catalyst 1.10 g of nickel nitrate hexahydrate (manufactured by Nacalai Tesque, special grade) and 5.67 g of ruthenium nitrate solution (manufactured by Tanaka Kikinzoku, Ru content 3.92% by mass) were weighed, and pure water was added to make nickel and ruthenium were prepared. After adding the above mixed aqueous solution to 4 g of ZrO 2 powder (Daiichi Kigenso Kagaku Co., Ltd., EP-L, specific surface area: 102 m 2 /g) placed in a magnetic dish, the mixture was heated while stirring with a glass rod to evaporate water. let me The obtained powder was dried at 120° C. for 10 hours and then calcined at 400° C. for 1 hour to prepare catalyst B7. The composition of the obtained catalyst B7 was 5 mass % Ni-5 mass % Ru/ZrO 2 .
- Catalyst preparation B8/acetone hydrogenation catalyst ZrO 2 powder (Daiichi Kigenso Kagaku Co., Ltd., EP-L, specific surface area 102 m 2 /g) in catalyst preparation B7 was changed to ZrO 2 powder (Daiichi Kigenso Kagaku Co., Ltd., RC-100, specific surface area 118 m 2 /g Catalyst B8 was prepared in the same manner as in Catalyst Preparation B7, except for changing to ).
- the composition of the obtained catalyst B8 was 5 mass % Ni-5 mass % Ru/ZrO 2 .
- Catalyst preparation B9/acetone hydrogenation catalyst ZrO 2 powder (Daiichi Kigenso Kagaku Co., Ltd., EP-L, specific surface area 102 m 2 /g) in catalyst preparation B7 was changed to CeO 2 powder (Rhodia Co., 3CO, specific surface area 171 m 2 /g).
- Catalyst B9 was prepared analogously to Preparation B7.
- the composition of the obtained catalyst B9 was 5% by weight Ni-5% by weight Ru/CeO 2 .
- Catalyst preparation B10/acetone hydrogenation catalyst ZrO 2 powder (Daiichi Kigenso Kagaku Co., Ltd., EP-L, specific surface area 102 m 2 /g) in catalyst preparation B7 was added to SiO 2 powder (Fuji Silysia Chemical Co., Ltd. Cariact Q-6, specific surface area 113 m 2 /g).
- Catalyst B10 was prepared in the same manner as Catalyst Preparation B7, except for the changes. The composition of the resulting catalyst B10 was 5 mass % Ni-5 mass % Ru/SiO 2 .
- the reactor outlet gas was introduced into a trap placed in an ice water bath, where unreacted raw materials and products were collected.
- the liquid component collected by the trap was quantitatively analyzed by GC-FID (Agilent, 7890B/capillary column HP-plot Q). Gas products not collected by the trap were introduced directly into the GC-FID for analysis. From these analysis results, acetone conversion and isopropyl alcohol selectivity were calculated according to Equations 3 and 4. Table 1 shows the reaction results obtained at an electric furnace temperature of 100°C.
- Example 8 An isopropyl alcohol production reaction was initiated by hydrogenation of acetone in the presence of carbon dioxide in the same manner as in Experimental Example 1, except that catalyst B2 was changed to catalyst B9. Table 1 shows the reaction results obtained at an electric furnace temperature of 100°C.
- Catalyst B5 (5.9% by mass Ni/ZrO 2 ) containing 5.9% by mass of nickel only had a low acetone conversion rate of 14.7%.
- a high acetone conversion rate was also obtained with catalysts B8, B9, and B10 in which the amounts of ruthenium and nickel supported were each fixed at 5% by mass, and the supports were ZrO 2 (RC-100), CeO 2 , and SiO 2 .
- Catalyst A3 was obtained in the same manner as in Catalyst Preparation Example A2, except that 22.3 g of zirconium oxynitrate hydrate (manufactured by Aldrich, technical grade) in Catalyst Preparation Example A2 was changed to 3.32 g.
- Catalyst A4 was obtained in the same manner as in Catalyst Preparation Example A2, except that 22.3 g of zirconium oxynitrate hydrate (manufactured by Aldrich, technical grade) in Catalyst Preparation Example A2 was changed to 11.1 g.
- Acetone synthesis reaction was carried out using a SUS316 tubular reactor (outer diameter: 10 mm, inner diameter: 8 mm).
- Catalyst A2 powder uniformly pulverized in an agate mortar is filled in a vinyl chloride disk, compressed at 30 MPaG with a compression molding machine to form a disk, crushed and classified to 0.71 to 1.18 mm, and the granules are obtained.
- 1.4 g of the catalyst was packed in a SUS tubular reaction tube.
- a reaction tube filled with catalyst A2 was placed in a circular electric furnace, and nitrogen was supplied at a rate of 11.0 mL/min. (0° C., converted to 1 atm) and heated to 375° C.
- the ethanol aqueous solution was supplied into the reaction system by the feeder to the ethanol aqueous solution vaporizer provided on the inlet side of the reaction tube.
- the ethanol aqueous solution vaporization section was heated to 100 degrees by external heating.
- the ethanol aqueous solution supplied to the ethanol aqueous solution vaporization section in a liquid state by the feeder was immediately vaporized and introduced into the SUS316 tubular reactor together with nitrogen.
- the reaction temperature was set at 375° C., it was confirmed that acetaldehyde, an intermediate product, was produced in addition to acetone.
- Catalyst A3 had a low ZrO2 content, so that the catalytic activity decreased in a short period of time. However, it was found that catalysts A2 and A4 with a higher ZrO2 content suppressed the decrease in catalytic activity over time . With catalyst A4, the conversion rate decreased from 51.6% to 43.4% at the beginning of the reaction, but after that, the activity was observed to recover. This behavior was reproduced when tested again under the same conditions. From these, it was found that acetone can be stably synthesized from ethanol by using a Fe 2 O 3 /ZnO/ZrO 2 catalyst containing a predetermined amount of ZrO 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
しかし、イソプロピルアルコール生産細菌を用いたイソプロピルアルコール生産には数十時間の反応時間を要し、さらにイソプロピルアルコール蓄積濃度も不十分で生産効率は満足なものでなかった。加えて、イソプロピルアルコール生産時には、培養液pHを所定範囲に制御するために、アンモニア水やNaOH水溶液のようなpH調節剤の添加が不可欠である等、煩雑な操作や追加試薬が必要となる等の問題もあった。
すなわち、本発明は、エタノールと水を触媒存在下で反応させてアセトンを得る工程(1)と、アセトンを精製する工程(2)と、アセトンを還元してイソプロピルアルコールを得る工程(3)と、を含む、イソプロピルアルコールの製造方法である。
<工程(1)>
本開示のイソプロピルアルコール(イソプロパノールという場合もある)の製造方法は、エタノールと水を触媒存在下で反応させてアセトンを得る工程(以下、工程(1)という)を含む。
工程(1)において使用する触媒(アセトン合成触媒ともいう。)としては、特に限定されないが、各種金属元素を含有すればよく、好ましくは、アルカリ金属、アルカリ土類金属、鉄、マンガン、亜鉛、銅、アルミニウム、ジルコニウムから選択される1種以上の元素を含むことが好ましい。
MeO・nFe2O3 (1)
(式(1)中、Meは、Mg、Ca、MnおよびZnからなる群より選ばれる一種以上の金属を表し、nは1~6の数を表す)で表される、鉄複合酸化物(フェライトという場合がある)が好ましい。
鉄複合酸化物として具体的には、例えば、MgO・Fe2O3、ZnO・Fe2O3などが挙げられる。
すなわち、上記式(1)におけるnは、1.43~2.5であることが好ましく、より好ましくは、1.67~2.5であり、更に好ましくは、2~2.22である。上記範囲とすることで、良好な触媒活性が得られる。
アルミニウムを含む触媒がアルミニウムを単一に含む化合物である場合、例えば、酸化アルミニウムが挙げられる。アルミニウムを含む触媒が他の金属元素を含む複合金属酸化物である場合、アルミニウムとSn、Pb、Zn、Fe、In等との複合金属酸化物が挙げられる。工程(1)において使用する触媒が担体にアルミニウムを含む場合、アルミナ(Al2O3)、シリカ-アルミナなどが挙げられる。触媒の性能の観点から、Al2O3であることがより好ましい。
ジルコニウムを含む触媒がジルコニウムを単一に含む化合物である場合、例えば、酸化ジルコニウムが挙げられる。
金属元素の化合物としては水に溶解するものであれば特に制限されず、例えば、塩化物、塩酸塩、硫酸塩、硝酸塩等から金属元素の種類に合わせて選択すればよい。
金属元素の難溶性の塩を沈殿させるために添加するアルカリは特に制限されず、水酸化ナトリウム、アンモニア水、水酸化カリウム等を用いることができる。
含浸法では、金属元素の化合物の溶液と担体を混合した後、混合物を乾燥することで金属元素が担体に担持した触媒を製造することができる。
金属元素の化合物としては水等の溶媒に溶解するものであれば特に制限されず、例えば、塩化物、塩酸塩、硫酸塩、硝酸塩等から金属元素の種類に合わせて選択すればよい。
比率(σ/S)の値は、0.25未満が好ましく、より好ましくは0.2未満であり、さらに好ましくは0.15未満である。
本発明のイソプロピルアルコールの製造方法の工程(1)において、原料であるエタノールと水とを触媒と接触させることにより、アセトン、水素および二酸化炭素を含む反応生成物を得ることができる。
ガス状のエタノールは、例えば、気化装置にて、液体のエタノールを加熱することにより得られる。ガス状の水は、例えば、気化装置にて、水を加熱することにより得られる。
また、原料ガスに含まれるエタノールに対する水のモル比率は、0.5~10であることが好ましい。このような割合であることで、エタノールと水との反応がより効率的に行われる。原料ガスに含まれるエタノールに対する水のモル比率は、1~5であることがより好ましい。
エタノール100質量%に含まれるバイオエタノールの含有量は、50質量%以上であることが好ましい。より好ましくは、75質量%以上であり、さらに好ましくは90質量%以上である。
本開示のイソプロピルアルコールの製造方法は、アセトンを含む混合物(以下、アセトン含有混合物ともいう)からアセトンを分離し、及び/又はアセトンを精製する工程(以下、工程(2)という)を含む。
すなわち、本開示のイソプロピルアルコールの製造方法において工程(2)は、工程(1)と工程(3)の間に行ってもよく、工程(1)と工程(3)とを行った後に行ってもよく、工程(3)の前と後の両方において行ってもよい。
工程(2)において、気液分離操作における温度は、0℃~50℃であることが好ましく、より好ましくは、5℃~40℃である。
工程(2)は、1回のみ行ってもよく、2回以上行ってもよい。
本開示のイソプロピルアルコールの製造方法は、アセトンを還元してイソプロピルアルコールを得る工程(以下、工程(3)という)を含む。
したがって、工程(3)の前に工程(2)を行うことは、本開示のイソプロピルアルコールの製造方法の好適な実施形態の1つである。
したがって、工程(3)の前に工程(2)を行って、工程(1)で得られたアセトン含有混合物から二酸化炭素を分離した後に工程(3)を行う反応器に導入して工程(3)を行うことは、本開示のイソプロピルアルコールの製造方法の好適な実施形態の1つである。
これらの触媒の形状は、リング状、球状等のいずれの形状のものでもよく特に限定されない。
工程(3)に用いる触媒として、アセトンを還元してイソプロピルアルコールを製造する公知の触媒を使用してもよい。
(イソプロピルアルコール回収工程)
本開示のイソプロピルアルコールの製造方法は、イソプロピルアルコールを回収する工程含む。
本開示のイソプロピルアルコールの製造方法は、ガスを分離する工程を含んでいてもよい。ガスを分離する工程としては、例えば、工程(2)のアセトンを精製する工程(気液分離工程)で得られた気相成分に含まれる水素を精製する工程が挙げられる。以下、工程(2)で得られた気相成分に含まれる水素を精製する工程を工程(4)とも言う。
このように二酸化炭素の含有量の少ない水素リッチの組成物を工程(3)に導入することで、触媒活性が向上する傾向にある。
膜分離法は、選択的に水素又は二酸化炭素を透過させる分離膜を用いる方法が好ましい。この時使用する膜は特に限定されないが、高分子素材膜、デンドリマー膜、アミン基含有膜、ゼオライト膜を始めとする無機素材膜、などを挙げることができる。分離膜には金属原子を含んでいてもよい。金属原子は特に限定されないが、例えば、Pd等が挙げられる。
本開示のイソプロピルアルコールの製造プロセスとして、好ましい実施形態の一例を示す。図1と図3のプロセスでは、工程(1)→工程(2)→工程(3)の順でおこなった後に、さらにイソプロピルアルコール回収工程を有するプロセスの一例である。図2のプロセスでは、工程(1)→工程(3)→工程(2)の順でおこなった後に、さらにイソプロピルアルコール回収工程を有するプロセスの一例である。なお、図1のプロセスは、ガス分離工程も含む一例である。
高純度のイソプロピルアルコールを取得する場合、図2のプロセスでは、イソプロピルアルコール回収工程においてイソプロピルアルコールの共沸蒸留工程を行うことが考えられる。
本開示のイソプロピルアルコールの製造方法において、触媒の活性に変化が見られた場合は、触媒を再生する工程を含んでもよい。
再生する方法は特に限定されないが、酸素などの酸化性ガスと高温で接触させる方法を用いることができる。例えば、原料ガスを固定床形式の反応器に供給してイソプロピルアルコールの製造を行う場合には、原料ガスを酸化性ガスに変更して触媒の再生を行ってもよく、反応器から触媒を抜き出して触媒の再生を行ってもよい。
本開示のイソプロピルアルコールの製造に用いる製造装置としては、バッチ式であっても連続式であってもよいが、生産性の観点から、連続式が好ましい。
工程(1)を行う連続式の反応装置としては、固定床反応器、流動床反応器、移動床反応器等の公知の反応器を用いることができる。これらの中でも、設備面、操作面でより容易となる固定床反応器を用いることが好ましい。
工程(2)を行う装置のうち、気液分離装置としては、特に限定されず、加圧・冷却機構を有する通常の気液分離装置を用いることができる。蒸留装置としては、特に限定されないが、理論段として、4~40段を有する蒸留塔を用いた蒸留装置が好ましい。
本開示の製造方法で得られるイソプロピルアルコールは、不純物としてのエタノール、水、アセトンの濃度が、それぞれ10000ppm以下であることが好ましい。このように不純物の濃度が低いことで、様々な工業的用途に好適に使用することができる。不純物としてのエタノール、水、アセトンの濃度は、より好ましくは、それぞれ10000ppm以下であり、更に好ましくは、それぞれ5000ppm以下である。
不純物を低減するという観点では、前記図1や図3のプロセスがより好ましい。工程数の観点から、図1のプロセスがさらに好ましい。
本開示の製造方法で得られるイソプロピルアルコールの用途は特に限定されないが、プロピレンの製造原料用途に好適に用いることができる。本開示のイソプロピルアルコールは、例えば公知の方法により脱水することにより、プロピレンを製造することが可能である。
(触媒調製A1/アセトン合成用触媒)
硝酸亜鉛六水和物(富士フイルム和光純薬(株)製、純度99.0%以上)12.3g、硝酸アルミニウム六水和物(富士フイルム和光純薬(株)製、純度97.0%以上)4.7g、硝酸鉄九水和物(ナカライテスク社製、純度98.0%以上)33.4gを純水400mLに溶解し、硝酸亜鉛、硝酸鉄、および、硝酸アルミニウムからなる混合水溶液を調製した。マグネティックスターラーで当該混合水溶液を攪拌しながら、室温でアンモニア水(富士フイルム和光純薬(株)製、純度28.0%)を滴下してpHを8とした。得られた沈殿をろ過により回収し、120℃で10時間乾燥後、450℃で2時間焼成して触媒A1を得た。
純水4.0gにジニトロジアンミン白金硝酸溶液(田中貴金属工業社、白金含有量100g/L)0.4mLを加え、白金含有水溶液を作成した。磁性皿に計り取った酸化セリウム粉末(Rhodia社製、3CO)4.0gに前記白金含有水溶液を追加してガラス棒で均一に混合した。次いで、120℃で10時間乾燥後、400℃で1時間焼成して触媒B1を得た。
(工程(1):アセトン合成反応)
アセトン合成反応は、SUS316製管型反応器を用いて行った(外径10mm、内径8mm)。メノウ乳鉢で均一に粉砕した触媒A1の粉末を塩化ビニルのディスクに充填し、圧縮成型機により30MPaGで圧縮してディスク化後、破砕して0.71~1.18mmに分級し、その顆粒状触媒2.0gをSUS製管型反応管に充填した。触媒A1を充填した反応管を環状電気炉内に設置し、窒素を50.0mL/min.(0℃、1気圧換算)で供給し、電気炉加熱により400℃まで昇温して30min.保持した。その後、窒素を停止し、56.1重量%エタノール水溶液をフィーダーにより0.08g/min.で供給し、常圧で反応を行った。
反応管出口ガスを分析した結果、エタノール転化率は100%、アセトン選択率は69%であった。
=100-100×(反応器出口エタノール流速/反応器入口エタノール流速) (1)
=100×反応器出口アセトン流速×3/(反応器入口エタノール流速×2) (2)
2C2H5OH + H2O → CH3COCH3 + CO2 + 4H2 (3)
工程(1)で得られた反応器出口ガスを氷温に冷却したガラス製吸収瓶に導入した。ガラス製吸収瓶内には純水が入っており、氷温の純水中を通気バブリングすることで反応器出口ガス中のアセトン、水からなる凝縮成分を捕集した。捕集液をガスクロマトグラフィーで分析したところ、水以外で捕集された成分の大部分はアセトンであり、構造不明成分が極微量存在する程度であった。
この気体成分を室温で10重量%水酸化ナトリウム水溶液を入れた吸収瓶に通気して気体中の二酸化炭素を吸収した。次いで、活性炭充填カラムに通気してメタン、エチレン、エタン等の炭化水素を吸着除去することで、純度の高められた水素ガスを得た。
アセトン合成反応器出口ガスの吸収操作で得られるアセトン水溶液を蒸留することで得られる精製アセトンを試薬アセトン(ナカライテスク社製、純度99.5%以上)で代替し、水素についても、アセトン合成反応器出口ガスを処理することで純度を高めた水素でなく、水素ボンベ(日鉄ケミカル&マテリアル社製、純度99.999%以上)から供給してアセトン水素化反応を実施した。
触媒B1を充填した反応管を環状電気炉内に設置し、水素を10.0mL/min.(0℃、1気圧換算)、窒素を40.0mL/min.(0℃、1気圧換算)で供給し、電気炉加熱により300℃まで昇温して30min.保持して触媒B1を還元した。その後、40℃まで降温後、窒素を停止して水素60mL/min.(0℃、1気圧換算)、フィーダーによりアセトンを0.08g/min.で供給し、常圧で反応を行った。入口ガスのモル比は、水素/アセトン=2であった。
フィーダーによる反応系内へのアセトン供給は、反応管入口側に設けたアセトン気化部に行った。アセトン気化部を外部加熱により40℃に加温し、その気化部に上流側より水素を供給した。フィーダーにより液体状態でアセトン気化部に供給されたアセトンは直ちに気化し、水素に同伴、混合されSUS316製管型反応器に導入された。
=100-100×(反応器出口アセトン流速/反応器入口アセトン流速) (4)
(工程(3):アセトン水素化反応)
実施例1の(アセトン水素化反応)で用いた水素を、アセトン捕集後の吸収瓶より排出される、主に水素、二酸化炭素からなる気体に変更した場合に相当する条件でアセトン水素化反応を実施した。
アセトン捕集後の吸収瓶より排出されるガスの組成は、主に水素、二酸化炭素からなり、ほぼ水素/二酸化炭素=4/1(モル比)であるので、同モル比となるように水素ボンベ(日鉄ケミカル&マテリアル社製、純度99.999%以上)、液化二酸化炭素ボンベ(住友精化社製、純度99.9%以上)を使用して模擬ガスを作成してアセトン水素化反応に使用した。
ジニトロジアンミン白金硝酸溶液(田中貴金属社製、Pt含有率8.19質量%)0.49gをビーカーに秤取り、純水を加えて白金含有水溶液を調製した。磁性皿に入れた4gのZrO2粉末(第一稀元素化学社製、EP-L、比表面積102m2/g)に前記白金含有水溶液を加えた後、ガラス棒で混ぜながら加熱して水分を蒸発させた。得られた粉体を120℃で10時間乾燥後、400℃で1時間焼成して触媒B2を調製した。得られた触媒B2の組成は、1質量%Pt/ZrO2(すなわち、1質量%のPtに対し、99質量%のZrO2)であった。
触媒調製B2におけるジニトロジアンミン白金硝酸溶液0.49gを硝酸ルテニウム溶液(田中貴金属社製、Ru含有率3.92質量%)1.03gに変更した以外は触媒調製B2と同様にして触媒B3を調製した。得られた触媒B3の組成は、5質量%Ru/ZrO2であった。
触媒調製B2におけるジニトロジアンミン白金硝酸溶液0.49gを硝酸ルテニウム溶液(田中貴金属社製、Ru含有率3.92質量%)11.3gに変更した以外は触媒調製B2と同様にして触媒B4を調製した。得られた触媒B4の組成は、10質量%Ru/ZrO2であった。
触媒調製B2におけるジニトロジアンミン白金硝酸溶液0.49gを硝酸ニッケル・六水和物(ナカライテスク社製、特級)1.24gに変更した以外は触媒調製B2と同様にして触媒B5を調製した。得られた触媒B5の組成は、5.9質量%Ni/ZrO2であった。
触媒調製B2におけるジニトロジアンミン白金硝酸溶液0.49gを硝酸ニッケル・六水和物(ナカライテスク社製、特級)0.36gおよびジニトロジアンミン白金硝酸溶液(田中貴金属社製、Pt含有率8.19質量%)0.49gに変更した以外は触媒調製B2と同様にして触媒B6を調製した。得られた触媒B6の組成は、1.8質量%Ni-1質量%Pt/ZrO2であった。
硝酸ニッケル・六水和物(ナカライテスク社製、特級)1.10gおよび硝酸ルテニウム溶液(田中貴金属社製、Ru含有率3.92質量%)5.67gを秤取り、純水を加えてニッケルとルテニウムを含む混合水溶液を調製した。磁性皿に入れた4gのZrO2粉末(第一稀元素化学社製、EP-L、比表面積102m2/g)に前記混合水溶液を加えた後、ガラス棒で混ぜながら加熱して水分を蒸発させた。得られた粉体を120℃で10時間乾燥後、400℃で1時間焼成して触媒B7を調製した。得られた触媒B7の組成は、5質量%Ni-5質量%Ru/ZrO2であった。
触媒調製B7におけるZrO2粉末(第一稀元素化学社製、EP-L、比表面積102m2/g)をZrO2粉末(第一稀元素化学社製、RC-100、比表面積118m2/g)に変更した以外は触媒調製B7と同様にして触媒B8を調製した。得られた触媒B8の組成は、5質量%Ni-5質量%Ru/ZrO2であった。
触媒調製B7におけるZrO2粉末(第一稀元素化学社製、EP-L、比表面積102m2/g)をCeO2粉末(Rhodia社製3CO、比表面積171m2/g)に変更した以外は触媒調製B7と同様にして触媒B9を調製した。得られた触媒B9の組成は、5質量%Ni-5質量%Ru/CeO2であった。
触媒調製B7におけるZrO2粉末(第一稀元素化学社製、EP-L、比表面積102m2/g)をSiO2粉末(富士シリシア化学社製Cariact Q-6、比表面積113m2/g)に変更した以外は触媒調製B7と同様にして触媒B10を調製した。得られた触媒B10の組成は、5質量%Ni-5質量%Ru/SiO2であった。
アセトン水素化反応は、SUS316製管型反応器を用いて行った(外径10mm、内径8mm)。メノウ乳鉢で均一に粉砕した触媒B2の粉末を塩化ビニルのディスクに充填し、圧縮成型機により30MPaGで圧縮してディスク化後、破砕して0.71~1.18mmに分級し、その顆粒状触媒0.35gをSUS製管型反応管に充填した。窒素(N2)20cm3/分(標準状態:0℃、1気圧での流量)および水素(H2)15cm3/分(標準状態:0℃、1気圧での流量)を流通しながら300℃で1時間前処理を行った。次いで、反応温度に設定後、二酸化炭素(CO2)7.5cm3/分(標準状態:0℃、1気圧での流量)を追加し、窒素、水素、二酸化炭素からなる混合ガス流を調製した。この混合ガス流を25℃とした純水入りバブラーに導入して飽和水蒸気に相当する水蒸気を同伴させた。バブラーを出た窒素、水素、二酸化炭素および水からなる混合ガス流中に、マイクロシリンジフィーダーによりアセトン(ナカライテスク社製、特級)を19.4mg/分で追加導入することで二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。
反応器出口ガスは氷水浴に配置されたトラップに導入し、ここで未反応原料、生成物を捕集した。トラップで捕集された液体成分はGC-FID(Agilent社、7890B/キャピラリーカラム HP―plot Q)により定量分析を行った。トラップで捕集されなかった気体生成物については直接GC-FIDに導入して分析した。これらの分析結果から、数3、4によりアセトン転化率とイソプロピルアルコール選択率を算出した。電気炉温度100℃で得られた反応結果を表1に示す。
触媒B2を触媒B3に変更した以外は実験例1と同様にして二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。電気炉温度100℃で得られた反応結果を表1に示す。
触媒B2を触媒B4に変更した以外は実験例1と同様にして二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。電気炉温度100℃で得られた反応結果を表1に示す。
触媒B2を触媒B5に変更した以外は実験例1と同様にして二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。電気炉温度100℃で得られた反応結果を表1に示す。
触媒B2を触媒B6に変更した以外は実験例1と同様にして二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。電気炉温度100℃で得られた反応結果を表1に示す。
触媒B2を触媒B7に変更した以外は実験例1と同様にして二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。電気炉温度100℃で得られた反応結果を表1に示す。
触媒B2を触媒B8に変更した以外は実験例1と同様にして二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。電気炉温度100℃で得られた反応結果を表1に示す。
触媒B2を触媒B9に変更した以外は実験例1と同様にして二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。電気炉温度100℃で得られた反応結果を表1に示す。
触媒B2を触媒B10に変更した以外は実験例1と同様にして二酸化炭素共存下でのアセトン水素化によるイソプロピルアルコール製造反応を開始した。電気炉温度100℃で得られた反応結果を表1に示す。
一方、ニッケルのみを5.9質量%含有する触媒B5(5.9質量%Ni/ZrO2)ではアセトン転化率が14.7%と低位であった。
ニッケルと白金をそれぞれ1.8質量%、1質量%含有する触媒B6のアセトン転化率も40.6%と不十分であった。
ルテニウムとニッケルをそれぞれ5質量%ZrO2(EP-L)に担持した触媒B7では、ルテニウムのみを5質量%担持した触媒B3、ニッケルのみを5.9質量%担持した触媒B5よりも優れたアセトン水素化活性を与え、アセトン転化率は66.8%となった。ルテニウムとニッケル担持量をそれぞれ5質量%に固定し、担体をZrO2(RC-100)、CeO2、SiO2とした触媒B8、B9、B10でも高いアセトン転化率が得られた。
硝酸亜鉛六水和物(富士フイルム和光純薬(株)製、純度99.0%以上)12.3g、オキシ硝酸ジルコニウム水和物(アルドリッチ社製、technical grade)22.3g、硝酸鉄九水和物(ナカライテスク社製、純度98.0%以上)33.4gを純水400mLに溶解し、硝酸亜鉛、硝酸鉄、および、オキシ硝酸ジルコニウムからなる混合水溶液を調製した。マグネティックスターラーで当該混合水溶液を攪拌しながら、室温でアンモニア水(富士フイルム和光純薬(株)製、純度28.0%)を滴下してpHを8とした。得られた沈殿をろ過により回収し、120℃で10時間乾燥後、450℃で2時間焼成して触媒A2を得た。
触媒A2の組成は、Fe2O3/ZnO/ZrO2=32.6/16.6/50.8(質量%)であった。
触媒調製例A2におけるオキシ硝酸ジルコニウム水和物(アルドリッチ社製、technical grade)22.3gを3.32gに変更した以外は触媒調製例A2と同様にして触媒A3を得た。触媒A3の組成は、Fe2O3/ZnO/ZrO2=57.4/29.3/13.3(質量%)であった。
触媒調製例A2におけるオキシ硝酸ジルコニウム水和物(アルドリッチ社製、technical grade)22.3gを11.1gに変更した以外は触媒調製例A2と同様にして触媒A4を得た。触媒A4の組成は、Fe2O3/ZnO/ZrO2=43.8/22.3/33.9(質量%)であった。
アセトン合成反応は、SUS316製管型反応器を用いて行った(外径10mm、内径8mm)。メノウ乳鉢で均一に粉砕した触媒A2の粉末を塩化ビニルのディスクに充填し、圧縮成型機により30MPaGで圧縮してディスク化後、破砕して0.71~1.18mmに分級し、その顆粒状触媒1.4gをSUS製管型反応管に充填した。触媒A2を充填した反応管を環状電気炉内に設置し、窒素を11.0mL/min.(0℃、1気圧換算)で供給し、電気炉加熱により375℃まで昇温して30min.保持した。その後、56.1重量%エタノール水溶液をフィーダーにより0.056g/min.で追加供給し、常圧で反応を行った。
フィーダーによる反応系内へのエタノール水溶液供給は、反応管入口側に設けたエタノール水溶液気化部に行った。エタノール水溶液気化部は外部加熱により100度に加温した。フィーダーにより液体状態でエタノール水溶液気化部に供給されたエタノール水溶液は直ちに気化して窒素とともにSUS316製管型反応器に導入された。
連続試験では、反応温度を375℃としたため、アセトン以外に中間生成物であるアセトアルデヒドの生成も確認された。連続試験における安定性評価は、エタノール転化率、アセトン選択率、アセトアルデヒド選択率の経時変化を追跡することで評価した。アセトン選択率、アセトアルデヒド選択率は以下により計算した。エタノール転化率は実施例1記載の式(1)により計算した。528時間反応を行った結果を表2にまとめた。
アセトン選択率
=100×反応器出口アセトン流速×3/(反応器入口エタノール流速×2×エタノール転化率×0.01)
アセトアルデヒド選択率
=100×反応器出口アセトアルデヒド流速/(反応器入口エタノール流速×エタノール転化率×0.01)
実験例10における触媒A2を触媒A3に変更した以外は実験例10と同様にアセトン合成反応を実施した。284時間反応を行った結果を表3にまとめた。
実験例10における触媒A2を触媒A4に変更した以外は実験例10と同様にアセトン合成反応を実施した。312時間反応を行った結果を表4にまとめた。
なお、ここでの試験では連続試験による触媒性能変化挙動を追跡するため、中程度での転化率となるように反応を行ったため、中間生成物のアセトアルデヒドが多く検出されているが、触媒を増量する、あるいは、反応温度を上昇させる、等の条件変更により、高エタノール転化率、高アセトン選択率で運転することができる。
Claims (5)
- エタノールと水を触媒存在下で反応させてアセトンを得る工程(1)と、
アセトンを精製する工程(2)と
アセトンを還元してイソプロピルアルコールを得る工程(3)と、
を含む、イソプロピルアルコールの製造方法。 - 工程(3)で用いる還元剤に、工程(1)で得られた水素を含む、請求項1に記載のイソプロピルアルコールの製造方法。
- 工程(3)で用いる還元剤に、工程(2)で得られた水素を含む、請求項1または2に記載のイソプロピルアルコールの製造方法。
- 工程(3)に導入される全成分中の二酸化炭素の含有率が10モル%未満である、請求項1~3のいずれかに記載のイソプロピルアルコールの製造方法。
- エタノールが、バイオマスを原料に由来する、請求項1~4のいずれかに記載のイソプロピルアルコールの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023522691A JPWO2022244797A1 (ja) | 2021-05-19 | 2022-05-18 | |
BR112023023966A BR112023023966A2 (pt) | 2021-05-19 | 2022-05-18 | Método para produzir álcool isopropílico |
US18/560,770 US20240262768A1 (en) | 2021-05-19 | 2022-05-18 | Method for producing isopropyl alcohol |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021084791 | 2021-05-19 | ||
JP2021-084791 | 2021-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022244797A1 true WO2022244797A1 (ja) | 2022-11-24 |
Family
ID=84141623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/020634 WO2022244797A1 (ja) | 2021-05-19 | 2022-05-18 | イソプロピルアルコールの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240262768A1 (ja) |
JP (1) | JPWO2022244797A1 (ja) |
BR (1) | BR112023023966A2 (ja) |
WO (1) | WO2022244797A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000103751A (ja) * | 1998-09-28 | 2000-04-11 | Degussa Huels Ag | アルコ―ルの製造方法 |
JP2002128716A (ja) * | 2000-10-20 | 2002-05-09 | Mitsui Chemicals Inc | イソプロピルアルコールの製造方法 |
JP2004526686A (ja) * | 2000-12-23 | 2004-09-02 | デグサ アクチエンゲゼルシャフト | カルボニル化合物の水素化によるアルコールの製法 |
JP2012240913A (ja) * | 2011-05-13 | 2012-12-10 | Tokyo Institute Of Technology | 炭素数3以上の含酸素化合物の製造方法 |
JP2012240914A (ja) * | 2011-05-13 | 2012-12-10 | Tokyo Institute Of Technology | プロピレンの製造方法 |
-
2022
- 2022-05-18 US US18/560,770 patent/US20240262768A1/en active Pending
- 2022-05-18 WO PCT/JP2022/020634 patent/WO2022244797A1/ja active Application Filing
- 2022-05-18 BR BR112023023966A patent/BR112023023966A2/pt unknown
- 2022-05-18 JP JP2023522691A patent/JPWO2022244797A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000103751A (ja) * | 1998-09-28 | 2000-04-11 | Degussa Huels Ag | アルコ―ルの製造方法 |
JP2002128716A (ja) * | 2000-10-20 | 2002-05-09 | Mitsui Chemicals Inc | イソプロピルアルコールの製造方法 |
JP2004526686A (ja) * | 2000-12-23 | 2004-09-02 | デグサ アクチエンゲゼルシャフト | カルボニル化合物の水素化によるアルコールの製法 |
JP2012240913A (ja) * | 2011-05-13 | 2012-12-10 | Tokyo Institute Of Technology | 炭素数3以上の含酸素化合物の製造方法 |
JP2012240914A (ja) * | 2011-05-13 | 2012-12-10 | Tokyo Institute Of Technology | プロピレンの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240262768A1 (en) | 2024-08-08 |
JPWO2022244797A1 (ja) | 2022-11-24 |
BR112023023966A2 (pt) | 2024-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014157202A1 (ja) | ナフテン系炭化水素用の脱水素触媒、ナフテン系炭化水素用の脱水素触媒の製造方法、水素の製造システム、及び水素の製造方法 | |
EP3196181B1 (en) | Method for producing butadiene and device for producing butadiene | |
CN102652037A (zh) | 再生含钌的负载型氢化催化剂的方法 | |
US10363524B2 (en) | Process for removing oxygen from a gas mixture comprising hydrocarbon and oxygen | |
Bhanushali et al. | Simultaneous dehydrogenation of 1, 4-butanediol to γ-butyrolactone and hydrogenation of benzaldehyde to benzyl alcohol mediated over competent CeO2–Al2O3 supported Cu as catalyst | |
JP2009254981A (ja) | アンモニア分解触媒及びアンモニア分解方法 | |
EP2607302B1 (en) | A method for producing hydrogen from ethanol | |
CA2410999C (en) | Integrated process for the production of vinyl acetate | |
US20130338405A1 (en) | Method for producing glycol from polyhydric alcohol | |
CN107427819B (zh) | 用于选择性甲烷化一氧化碳的钌-铼基催化剂 | |
Vikanova et al. | Rhenium-contained catalysts based on superacid ZrO2 supports for CO2 utilization | |
TWI549749B (zh) | A catalyst composition for preparing o-phenylphenol and a process for preparing o-phenylphenol using the catalyst composition | |
WO2022244797A1 (ja) | イソプロピルアルコールの製造方法 | |
JP4713895B2 (ja) | ヨウ化物の製造方法 | |
AU2020362824A1 (en) | Catalyst for dehydrogenation of cycloalkanes, preparation method therefor and application thereof | |
WO2017085603A2 (en) | Methods for the conversion of co2 into syngas for use in the production of olefins | |
EP2673248B1 (en) | Liquid phase hydrogenation of alkynes | |
JP2022178043A (ja) | アセトン製造用触媒及びアセトンの製造方法 | |
JPS6113689B2 (ja) | ||
JP3302402B2 (ja) | アンモニア分解触媒 | |
JP2023167854A (ja) | アセトン水素化触媒及びイソプロパノールの製造方法 | |
JP2012223768A (ja) | アンモニア分解触媒及びアンモニア分解方法 | |
US20210024440A1 (en) | Method for producing indene | |
RU2784334C1 (ru) | Катализатор для получения синтез-газа и способ получения синтез-газа с его использованием | |
JP2023167855A (ja) | アセトン水素化触媒及びイソプロパノールの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22804708 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18560770 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023522691 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023023966 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112023023966 Country of ref document: BR Kind code of ref document: A2 Effective date: 20231116 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22804708 Country of ref document: EP Kind code of ref document: A1 |