[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022139535A1 - Thin film forming method using top-surface modifier - Google Patents

Thin film forming method using top-surface modifier Download PDF

Info

Publication number
WO2022139535A1
WO2022139535A1 PCT/KR2021/019788 KR2021019788W WO2022139535A1 WO 2022139535 A1 WO2022139535 A1 WO 2022139535A1 KR 2021019788 W KR2021019788 W KR 2021019788W WO 2022139535 A1 WO2022139535 A1 WO 2022139535A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
surface modifier
compound
film
alkyl group
Prior art date
Application number
PCT/KR2021/019788
Other languages
French (fr)
Korean (ko)
Inventor
고원용
김진식
박명호
이인재
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Priority to CN202180067978.8A priority Critical patent/CN116324025A/en
Publication of WO2022139535A1 publication Critical patent/WO2022139535A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • the present application relates to a top surface modifier, a top surface modifier composition comprising the same, and a film forming method using the same.
  • An object of the present application is to provide an upper surface modifier, an upper surface modifier composition comprising the same, and a method for forming a thin film using the same.
  • An object of the present application is to form a stable dielectric or metal film having excellent step coverage (step coverage) even in a pattern having a high step ratio by forming a film using an upper surface modifier.
  • a first aspect of the present disclosure provides a top surface modifier, represented by formula (I):
  • R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
  • R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
  • X is -O-, -S-, or -NH.
  • a second aspect of the present disclosure provides a top surface modifier composition, comprising a top surface modifier, represented by formula (I):
  • R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
  • R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
  • X is -O-, -S-, or -NH.
  • a third aspect of the present application provides a film forming method, in which a film is formed by an atomic layer deposition method using the upper surface modifier composition according to the second aspect and a film forming precursor.
  • the film When the film is formed using the upper surface modifier according to the embodiments of the present disclosure, the film may be uniformly formed in the upper region and the lower region, thereby solving a device problem caused by leakage current.
  • a thickness reduction of at least about 30%, at least about 40%, or at least about 50%, or at least about 30%, at least about 40%, at least about 50%, or at least about It can exhibit the effect of reducing the deposition rate of 60% or more.
  • the film is formed using the upper surface modifier according to the embodiments of the present application, it is possible to form a film uniformly and stably in the upper region and the lower region even in a process requiring a three-dimensional structure and a high step ratio, as well as fine thickness control may also be possible. Therefore, it is an essential material for high aspect ratio memory devices and non-memory devices, and can be applied to new processes requiring fine thickness control.
  • Figure 1 is hafnium according to the supply amount using the upper surface modifier of compounds 1 to 4 according to an embodiment of the present application It is a graph comparing the thickness reduction rate of the oxide film.
  • FIG. 2 is a graph showing the reduction rate of the thickness of the hafnium oxide film according to the temperature using the upper surface modifier of Compounds 2 and 4 according to an embodiment of the present application.
  • FIG 3 is a graph comparing the reduction rate of the thickness of the aluminum oxide film according to the supply amount using the upper surface modifier of Compound 2 according to an embodiment of the present application.
  • FIG. 5 is a graph comparing the thickness reduction rate of the aluminum oxide film according to the temperature when the upper surface modifier of Compounds 2 and 5 according to an embodiment of the present application is used and when the upper surface modifier is not used.
  • FIG. 6 is a graph comparing the deposition rate of the zirconium oxide film according to the temperature when using the upper surface modifier of Compound 2 according to an embodiment of the present application and when the upper surface modifier is not used.
  • FIG. 7 is a graph comparing the deposition rate of the hafnium oxide film according to the temperature when the upper surface modifier of Compounds 2 and 5 according to an embodiment of the present application is used and when the upper surface modifier is not used.
  • step of doing or “step of” does not mean “step for”.
  • film means “film or thin film”.
  • alkyl refers to a linear or branched alkyl group having 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 5 carbon atoms. and all possible isomers thereof.
  • the alkyl or alkyl group is a methyl group (Me), an ethyl group (Et), an n-propyl group ( n Pr), an iso-propyl group ( i Pr), an n-butyl group ( n Bu), an iso-butyl group ( i Bu), tert-butyl group (tert-Bu, t Bu), sec-butyl group (sec-Bu, sec Bu), n-pentyl group ( n Pe), iso-pentyl group ( iso Pe), sec -pentyl group ( sec Pe), tert-pentyl group ( t Pe), neo-pentyl group ( neo Pe), 3-pentyl group, n-hexyl group, iso-hexyl group, heptyl group, 4,4-dimethylphen tyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group
  • a first aspect of the present disclosure provides a top surface modifier, represented by formula (I):
  • R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
  • R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
  • X is -O-, -S-, or -NH.
  • R 1 and R 2 may be a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other, but may not be limited thereto.
  • R 1 and R 2 are, each independently, hydrogen, a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, dimethylamino group, ethylmethylamino group, diethylamino group, methylpropylamino group, ethylpropylamino group or dipropylamino group, or R 1 and R 2 are linked to each other to form a cyclic alkyl group including a central carbon to form a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclo
  • R 3 and R 4 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, It may be a tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, or 3-pentyl group, but may not be limited thereto. Further, in one embodiment of the present application, R 3 and R 4 may be connected to each other to form a heterocyclic structure including a central carbon and a hetero atom, and may be a cyclic polyether as a non-limiting example.
  • the upper surface modifier may be selected from the following compounds 1 to 5:
  • a second aspect of the present disclosure provides a top surface modifier composition, comprising a top surface modifier, represented by formula (I):
  • R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
  • R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
  • X is -O-, -S-, or -NH.
  • R 1 and R 2 may be a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other, but may not be limited thereto.
  • R 1 and R 2 are, each independently, hydrogen, a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, dimethylamino group, ethylmethylamino group, diethylamino group, methylpropylamino group, ethylpropylamino group or dipropylamino group, or R 1 and R 2 are linked to each other to form a cyclic alkyl group including a central carbon to form a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclo
  • R 3 and R 4 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, It may be a tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, or 3-pentyl group, but may not be limited thereto. Further, in one embodiment of the present application, R 3 and R 4 may be connected to each other to form a heterocyclic structure including a central carbon and a hetero atom, and may be a cyclic polyether as a non-limiting example.
  • the upper surface modifier may include one or more selected from the following compounds 1 to 5:
  • a third aspect of the present application provides a film forming method, in which a film is formed by an atomic layer deposition method using the upper surface modifier composition according to the second aspect and a film forming precursor.
  • the film may be selected from the group consisting of a metal film, an oxide film, a nitride film, a carbide film, and combinations thereof, but may not be limited thereto. In one embodiment of the present application, the film may be a metal film or an oxide film.
  • the precursor for film formation is Be, Mg, Ca, Sr, Ba, Al, Ga, In, Sc, Y, La, Si, Ge, Sn, P, As. Sb, S, Se, Te, Ti, Zr, Hf, V, Ta, Nb, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, It may include one or more selected from Cu, Ag, and Au.
  • the precursor for film formation is a group 2A Be, Mg, Ca, Sr, Ba; Group 3A Al, Ga, In; Sc, Y, La from group 3B; Si, Ge, Sn from group 4A; 5A, P, As. Sb; S, Se, Te from group 6A; Ti, Zr, Hf of group 4B; V, Ta, Nb of group 5B; or Cr, Mo, W of group 6B; Group 7B Mn, Tc, Re; Group 8 Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt; And it may be one comprising at least one selected from Cu, Ag, Au which is group 1B.
  • the precursor for film formation may include Mg, Zr, or Hf.
  • the film forming method may be performed at about 200 °C to about 500 °C.
  • the film forming method may be from about 200°C to about 500°C, from about 200°C to about 450°C, from about 200°C to about 400°C, from about 200°C to about 350°C, from about 200°C to about 300°C, about 200 °C to about 250 °C, about 250 °C to about 500 °C, about 250 °C to about 450 °C, about 250 °C to about 400 °C, about 250 °C to about 350 °C, about 250 °C to about 300 °C, about 300 °C to about 500 °C, about 300 °C to about 450 °C, about 300 °C to about 400 °C, about 300 °C to about 350 °C, about 350 °C to about 500 °C, about 350 °C to about 450 °C, about 350 °C to about 500 °C, about 350 °C to about 450
  • the film forming method includes providing a substrate in a reaction chamber; providing a source material including the precursor for film formation and the upper surface modifier composition on the substrate; purging the inside of the reaction chamber; and providing a reactant material capable of reacting with the source material to form a layer, but may not be limited thereto.
  • providing the upper surface modifier composition may be performed simultaneously or temporally overlapping with providing the source material including the precursor for film formation, or performed before or after, This may not be limited.
  • the reactant may be one or more selected from ammonia, nitrogen, hydrazine, dimethyl hydrazine, water vapor, oxygen, and ozone.
  • the upper surface modifier composition in the method of forming a film using the upper surface modifier according to the embodiment of the present application, is supplied into the reaction chamber to be adsorbed on the wafer surface, and then the precursor is supplied to form a thin film.
  • This method induces a chemical reaction on the surface, so that a thin film of uniform thickness is formed uniformly from the surface to the bottom, thereby securing excellent step coverage.
  • the method of forming a film using the upper surface modifier according to the embodiment of the present application forms a thin film having excellent coverage even on a complex-shaped substrate because the thickness and composition of the thin film can be precisely controlled. and the thickness uniformity and physical properties of the thin film can be improved.
  • the thickness reduction rate may be about 30% or more, about 40% or more, or about 50% or more.
  • the deposition rate when the film is formed using the upper surface modifier according to the embodiment of the present application, the deposition rate may decrease, which is about 30% or more, about 40% or more, about 50% or more, Or it may be reduced by about 60% or more.
  • Cp-Hf (C 5 H 5 )Hf(N(CH 3 ) 2 ) 3 [CpHf(NMe 2 ) 3 ]
  • ALD Atomic Layer Deposition
  • CpHf(NMe 2 ) 3 was used as a hafnium precursor, and O 3 as an oxygen source was used as a reaction gas.
  • the silicon wafer is immersed in a piranha solution mixed with sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) in a ratio of 4:1 for 10 minutes and then taken out, then immersed in HF aqueous solution for about 2 minutes
  • a hafnium oxide thin film was prepared by atomic layer deposition (ALD).
  • each deposition experiment was performed using compounds 1 to 4.
  • the ALD cycle was 100 times, the temperature of the substrate was fixed at 320° C., and the exposure time of the upper surface modifier was adjusted to 1, 5, 10, and 30 seconds for deposition. Thereafter, as compared with the case of depositing the hafnium oxide film without using the upper surface modifier, the exposure time of the upper surface modifier was selected so that the deposition rate was 50% or less, and the deposition characteristics were confirmed by changing the temperature of the substrate.
  • the temperature of the substrate was deposited by heating from 300°C to 360°C at 20°C intervals.
  • the thickness reduction rate of the hafnium oxide film was the highest, and it was confirmed that the thickness reduction rate decreased in the order of the surface modifiers of Compound 4, Compound 1, and Compound 3.
  • the thickness of the hafnium oxide film decreased, but in the case of compounds 2 and 4, it was confirmed that the same deposition rates were exhibited at 5 sec and 10 sec, respectively.
  • Figure 2 confirms the thickness reduction effect according to the temperature of Compounds 2 and 4, which has the greatest thickness reduction rate effect among Compounds 1 to 4.
  • the reaction cycle of the surface modifier was selected to be 5 seconds since the same thickness ratio was exhibited between 5 and 10 seconds. Even when the surface modifiers of Compounds 2 and 4 were used, a thickness reduction ratio of 50% or more was exhibited.
  • FIG. 2 it was confirmed that the thickness reduction rate increased as the temperature increased. Therefore, it can be seen that the surface desorption of the surface modifier does not occur within the deposited temperature range, and as the temperature increases, the activity of the surface modifier increases, thereby increasing the modification effect, thereby increasing the thickness reduction rate.
  • TMA trimethyl aluminum
  • Al(CH 3 ) 3 a known trimethyl aluminum
  • An aluminum oxide film was formed by atomic layer deposition (ALD-Atomic Layer Deposition) using ozone (O 3 ), which is a reactant gas and oxygen source. All substrates used for deposition for measuring the deposition rate were immersed in a piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) were mixed in a ratio of 4:1 for about 10 minutes and then taken out. After immersion in HF aqueous solution for about 2 minutes, it was washed with distilled water to form a pure silicon surface from which the natural oxide film was removed, and then an aluminum oxide film was deposited.
  • ALD-Atomic Layer Deposition atomic layer deposition
  • O 3 ozone
  • the upper surface modifier of Compound 2 and Compound 5 and the TMA precursor compound were placed in a stainless steel container and vaporized at 30°C.
  • the temperature of the moving space from the vessel to the reactor was sequentially raised to 120° C. to 150° C. and heated.
  • Argon (Ar) gas having a flow rate of 200 sccm to 500 sccm was used as a carrier gas for moving the upper surface modifier compounds of Compound 2 and Compound 5 to the reactor. Thereafter, argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier remaining in the reactor.
  • argon (Ar) gas having a flow rate of 200 sccm to 500 sccm was used as a carrier gas for moving the TMA precursor compound to the reactor.
  • argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the TMA precursor compound remaining in the reactor.
  • O 2 as an oxygen source was flowed at a flow rate of 500 sccm to 1000 sccm and sent to an ozone generator, and then ozone at a concentration of about 180 g/m 3 to 220 g/m 3 was generated and used as a reaction gas.
  • argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier, TMA precursor compound, ozone, and reaction by-products remaining in the reactor.
  • the process pressure of the reactor was measured to be 0.9 torr to 1.2 torr
  • the supply time of the vaporized upper surface modifier compound was about 1 to 30 seconds
  • the purge time in the reactor was about 5 to 30 seconds
  • the supply time of the compound was about 1 to 5 seconds
  • the purge time in the reactor was about 5 to 30 seconds
  • the ozone supply time was about 5 to 30 seconds
  • the purge time in the reactor was about 5 to 30 seconds.
  • the deposition cycle was repeated 100 times to deposit an aluminum oxide film, and the thickness and deposition rate were checked using an ellipsometer.
  • an aluminum oxide film was deposited while increasing the temperature of the substrate from 250°C to 400°C in units of 10°C to 25°C.
  • the deposition rate of the aluminum oxide film using only the TMA precursor compound at 250° C. was 1.17 ⁇ /cycle, and the upper surface modifier of Compound 2 was increased by increasing the exposure time to 5 to 30 seconds.
  • Deposition of the aluminum oxide film The rate was 0.74 ⁇ /cycle to 0.80 ⁇ /cycle, confirming the effect of reducing the deposition rate of about 35%.
  • the deposition rate of the aluminum oxide film using only the TMA precursor compound at 250° C. was 1.17 ⁇ /cycle, while the upper surface modifier of Compound 5 increased the exposure time from 1 second to 15 seconds.
  • the deposition rate was 0.34 ⁇ /cycle to 0.39 ⁇ /cycle, confirming the effect of reducing the deposition rate of about 71%, and it was confirmed that the deposition rate was constant when the exposure time of the upper surface modifier of Compound 5 was 1 second or more.
  • All substrates used for deposition for measuring the deposition rate were piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) were mixed in a 4:1 ratio for about 10 minutes, HF aqueous solution After soaking for about 2 minutes and taking it out, it was washed with distilled water to form a pure silicon surface from which the natural oxide film was removed, and then the oxide films were deposited.
  • top surface modifier compounds of compounds 2 and 5 and the Cp-Zr and Cp-Hf and Mg ( Et Cp) 2 precursor compounds were placed in a stainless steel container at 30° C., 30° C., 100° C., 100° C., and 60° C., respectively. It was vaporized to °C.
  • Argon (Ar) gas having a flow rate of 200 sccm to 500 sccm was used as a carrier gas for moving the upper surface modifier compound of Compound 2 and Compound 5 to the reactor.
  • argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier compound remaining in the reactor.
  • argon (Ar) gas having a flow rate of 200 sccm to 500 sccm was used as a carrier gas for moving the Cp-Zr and Cp-Hf and Mg( Et Cp) 2 precursor compounds to the reactor.
  • argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier and Cp-Zr and Cp-Hf and [ ⁇ CH 3 CH 2 (C 5 H 4 ) ⁇ 2 Mg] precursor compounds remaining in the reactor.
  • O 2 as an oxygen source was flowed at a flow rate of 500 sccm to 1000 sccm and sent to an ozone generator, and then ozone at a concentration of about 180 g/m 3 to 220 g/m 3 was generated and used as a reaction gas. Thereafter, argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier remaining in the reactor, and Cp-Zr, Cp-Hf and Mg( Et Cp) 2 precursor compounds, ozone, and reaction byproducts.
  • the process pressure of the reactor was measured to be 0.9 torr to 1.2 torr
  • the supply time of the vaporized upper surface modifier compound was about 1 to 30 seconds
  • the purge time in the reactor was about 5 to 30 seconds
  • the supply time of the Zr, Cp-Hf and Mg( Et Cp) 2 precursor compounds was about 5 to 20 seconds
  • the purge time in the reactor was about 5 to 30 seconds
  • the ozone supply time was about 5 to 30 seconds.
  • the purge time in the reactor was set to about 5 to 30 seconds.
  • the deposition cycle was repeated 100 times to deposit zirconium-, hafnium-, and magnesium-oxide films, and the thickness and deposition rate of each were checked using an ellipsometer.
  • the upper surface modifier compound of Compound 2 and Compound 5 was used, respectively, and the hafnium oxide film was deposited from 250 ° C to 400 ° C at 10 ° C to 25 ° C intervals. .
  • the deposition result is shown in FIG. 7 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

This application relates to a top-surface modifier, a top-surface modifier composition comprising same, and a thin film forming method using same.

Description

상부 표면 개질제를 이용하는 박막 형성 방법Thin film formation method using top surface modifier
본원은 상부 표면 개질제, 이를 포함하는 상부 표면 개질제 조성물 및 이를 이용하는 막 형성 방법에 관한 것이다.The present application relates to a top surface modifier, a top surface modifier composition comprising the same, and a film forming method using the same.
현재 메모리 분야의 DRAM 및 플래쉬 메모리(flashmemory) 등의 메모리 디바이스 및 비메모리 분야의 로직 메모리(logic memory) 등 시스템 IC 디바이스는 스케일링(scaling)에 의해 물리적 한계에 도달해 있다. 반도체 소자가 점점 미세화(scaling) 되면서 단위 면적당 칩 사이즈는 작아지고, 집적도가 높아짐에 따라 누설 전류 (leakage current)에 의한 문제들이 점점 증가하고 있으며, 요구되는 박막의 두께가 점차 얇아지고 있다. 따라서, 고용량의 셀 정전용량 확보를 위해서는 누설 전류를 효과적으로 차단하기 위한 산화막의 두께 조절이 필요하다. 높은 종횡비 (high aspect ratio)를 갖고 있는 DRAM과 3차원 구조의 3D NAND 플래쉬 및 GAA (Gate All Around), 핀펫(FinFET) 구조의 로직 디바이스에서도 상부 영역과 하부 영역에 균일하게 산화막 및 금속막을 형성시킬 수 있는 새로운 공정 기술 개발이 시급한 과제이다. 따라서, 우수한 스텝 커버리지의 확보를 위한 개선된 공정의 개발을 위한 많은 연구가 진행되고 있다.Currently, memory devices such as DRAM and flash memory in the memory field and system IC devices such as logic memory in the non-memory field have reached their physical limit due to scaling. As semiconductor devices become increasingly miniaturized (scaling), the chip size per unit area becomes smaller, and as the degree of integration increases, problems due to leakage current gradually increase, and the required thickness of the thin film is gradually decreasing. Therefore, in order to secure a high-capacity cell capacitance, it is necessary to control the thickness of the oxide film to effectively block the leakage current. Even in DRAMs with high aspect ratio, 3D NAND flash with a three-dimensional structure, and logic devices with GAA (Gate All Around) and FinFET structures, oxide and metal films can be uniformly formed in the upper and lower regions. The development of new process technologies that can do this is an urgent task. Accordingly, many studies are being conducted for the development of an improved process for securing excellent step coverage.
본원은 상부 표면 개질제, 이를 포함하는 상부 표면 개질제 조성물 및 이를 이용하는 박막 형성 방법을 제공하고자 한다.An object of the present application is to provide an upper surface modifier, an upper surface modifier composition comprising the same, and a method for forming a thin film using the same.
본원은 상부 표면 개질제를 이용하여 막을 형성함으로써, 고단차비의 패턴에서도 우수한 스텝 커버리지(단차피복성; step coverage)를 갖는 안정한 유전막 또는 금속막을 형성하는 것을 목적으로 한다. An object of the present application is to form a stable dielectric or metal film having excellent step coverage (step coverage) even in a pattern having a high step ratio by forming a film using an upper surface modifier.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present application are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 하기 화학식 Ⅰ로서 표시되는, 상부 표면 개질제를 제공한다:A first aspect of the present disclosure provides a top surface modifier, represented by formula (I):
[화학식 Ⅰ][Formula Ⅰ]
Figure PCTKR2021019788-appb-img-000001
;
Figure PCTKR2021019788-appb-img-000001
;
상기 화학식 Ⅰ에서, In the above formula (I),
R1 및 R2는, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-5 알킬기, 또는 선형 또는 분지형의 C1-5 알킬기로 치환된 디알킬아미노기이거나; 또는 R1 및 R2는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이며,R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
R3 및 R4는, 각각 독립적으로, 선형 또는 분지형의 C1-5 알킬기이거나; 또는 R3 및 R4는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이고,R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
X는 -O-, -S-, 또는 -NH임.X is -O-, -S-, or -NH.
본원의 제 2 측면은, 하기 화학식 Ⅰ로서 표시되는, 상부 표면 개질제를 포함하는, 상부 표면 개질제 조성물을 제공한다:A second aspect of the present disclosure provides a top surface modifier composition, comprising a top surface modifier, represented by formula (I):
[화학식 Ⅰ][Formula Ⅰ]
Figure PCTKR2021019788-appb-img-000002
;
Figure PCTKR2021019788-appb-img-000002
;
상기 화학식 Ⅰ에서, In the above formula (I),
R1 및 R2는, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-5 알킬기, 또는 선형 또는 분지형의 C1-5 알킬기로 치환된 디알킬아미노기이거나; 또는 R1 및 R2는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이며,R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
R3 및 R4는, 각각 독립적으로, 선형 또는 분지형의 C1-5 알킬기이거나; 또는 R3 및 R4는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이고,R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
X는 -O-, -S-, 또는 -NH임.X is -O-, -S-, or -NH.
본원의 제 3 측면은, 제 2 측면에 따른 상부 표면 개질제 조성물 및 막 형성용 전구체를 이용하여 원자층 증착법에 의해 막을 형성하는, 막 형성 방법을 제공한다. A third aspect of the present application provides a film forming method, in which a film is formed by an atomic layer deposition method using the upper surface modifier composition according to the second aspect and a film forming precursor.
본원의 구현예들에 따른 상부 표면 개질제를 사용하여 막을 형성하는 경우 상부 영역과 하부 영역에 균일하게 막을 형성할 수 있으므로 누설 전류로 인해 발생되는 소자의 문제점을 해결할 수 있다. When the film is formed using the upper surface modifier according to the embodiments of the present disclosure, the film may be uniformly formed in the upper region and the lower region, thereby solving a device problem caused by leakage current.
본원의 구현예들에 따른 상부 표면 개질제를 사용한 경우, 약 30% 이상, 약 40% 이상, 또는 약 50% 이상의 두께 감소율, 또는 약 30% 이상, 약 40% 이상, 약 50% 이상, 또는 약 60% 이상의 증착율의 감소 효과를 나타낼 수 있다.When using a top surface modifier according to embodiments herein, a thickness reduction of at least about 30%, at least about 40%, or at least about 50%, or at least about 30%, at least about 40%, at least about 50%, or at least about It can exhibit the effect of reducing the deposition rate of 60% or more.
본원의 구현예들에 따른 상부 표면 개질제를 사용하여 막을 형성하는 경우, 3 차원 구조 및 높은 단차율을 요구하는 공정에서도 상부 영역과 하부 영역에 균일하게 안정적으로 막을 형성할 수 있을 뿐만 아니라 미세한 두께 조절도 가능할 수 있다. 따라서, 높은 종횡비의 메모리 소자 및 비 메모리 소자에 반드시 필요한 소재이며, 미세한 두께 조절이 요구되는 새로운 신규 공정에도 적용될 수 있다.When the film is formed using the upper surface modifier according to the embodiments of the present application, it is possible to form a film uniformly and stably in the upper region and the lower region even in a process requiring a three-dimensional structure and a high step ratio, as well as fine thickness control may also be possible. Therefore, it is an essential material for high aspect ratio memory devices and non-memory devices, and can be applied to new processes requiring fine thickness control.
도 1은, 본원의 일 실시예에 따른 화합물 1 내지 4의 상부 표면 개질제를 이용한 공급량에 따른 하프늄 산화막의 두께 감소율을 비교한 그래프이다. Figure 1 is hafnium according to the supply amount using the upper surface modifier of compounds 1 to 4 according to an embodiment of the present application It is a graph comparing the thickness reduction rate of the oxide film.
도 2는, 본원의 일 실시예에 따른 화합물 2 및 4의 상부 표면 개질제를 이용한 온도에 따른 하프늄 산화막의 두께 감소율을 나타낸 그래프이다.2 is a graph showing the reduction rate of the thickness of the hafnium oxide film according to the temperature using the upper surface modifier of Compounds 2 and 4 according to an embodiment of the present application.
도 3은, 본원의 일 실시예에 따른 화합물 2의 상부 표면 개질제를 이용한 공급량에 따른 알루미늄 산화막의 두께 감소율을 비교한 그래프이다. 3 is a graph comparing the reduction rate of the thickness of the aluminum oxide film according to the supply amount using the upper surface modifier of Compound 2 according to an embodiment of the present application.
도 4는, 본원의 일 실시예에 따른 화합물 5의 상부 표면 개질제를 이용한 공급량에 따른 알루미늄 산화막의 두께 감소율을 비교한 그래프이다.4 is a graph comparing the reduction rate of the thickness of the aluminum oxide film according to the supply amount using the upper surface modifier of Compound 5 according to an embodiment of the present application.
도 5은, 본원의 일 실시예에 따른 화합물 2 및 5의 상부 표면 개질제를 이용한 경우와 상기 상부 표면 개질제를 이용하지 않은 경우의 온도에 따른 알루미늄 산화막의 두께 감소율을 비교한 그래프이다. 5 is a graph comparing the thickness reduction rate of the aluminum oxide film according to the temperature when the upper surface modifier of Compounds 2 and 5 according to an embodiment of the present application is used and when the upper surface modifier is not used.
도 6는, 본원의 일 실시예에 따른 화합물 2의 상부 표면 개질제를 이용한 경우와 상기 상부 표면 개질제를 이용하지 않은 경우의 온도에 따른 지르코늄 산화막의 증착률을 비교한 그래프이다.6 is a graph comparing the deposition rate of the zirconium oxide film according to the temperature when using the upper surface modifier of Compound 2 according to an embodiment of the present application and when the upper surface modifier is not used.
도 7은, 본원의 일 실시예에 따른 화합물 2 및 5의 상부 표면 개질제를 이용한 경우와 상기 상부 표면 개질제를 이용하지 않은 경우의 온도에 따른 하프늄 산화막의 증착률을 비교한 그래프이다. 7 is a graph comparing the deposition rate of the hafnium oxide film according to the temperature when the upper surface modifier of Compounds 2 and 5 according to an embodiment of the present application is used and when the upper surface modifier is not used.
도 8는, 본원의 일 실시예에 따른 화합물 2 및 5의 상부 표면 개질제를 이용한 경우와 상기 상부 표면 개질제를 이용하지 않은 경우의 온도에 따른 마그네슘 산화막의 증착률을 비교한 그래프이다.8 is a graph comparing the deposition rate of the magnesium oxide film according to the temperature when the upper surface modifier of Compounds 2 and 5 according to an embodiment of the present application is used and when the upper surface modifier is not used.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. Hereinafter, with reference to the accompanying drawings, embodiments and examples of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily carry out. However, the present application may be embodied in several different forms and is not limited to the embodiments and examples described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a part is "connected" with another part, this includes not only the case where it is "directly connected" but also the case where it is "electrically connected" with another element interposed therebetween. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is said to be located “on” another member, this includes not only a case in which a member is in contact with another member but also a case in which another member is present between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a part "includes" a certain element, it means that other elements may be further included, rather than excluding other elements, unless otherwise stated.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. As used herein, the terms "about," "substantially," and the like are used in a sense at or close to the numerical value when the manufacturing and material tolerances inherent in the stated meaning are presented, and to aid in the understanding of the present application. It is used to prevent an unconscionable infringer from using the mentioned disclosure in an unreasonable way.
본원 명세서 전체에서 사용되는 정도의 용어 “~ 하는 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.As used throughout this specification, the term “step of doing” or “step of” does not mean “step for”.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination(s) of these" included in the expression of the Markush form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the Markush form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.Throughout this specification, reference to “A and/or B” means “A or B, or A and B”.
본원 명세서 전체에서, 용어 "막"은 "막 또는 박막"을 의미한다. Throughout this specification, the term “film” means “film or thin film”.
본원 명세서 전체에서, 용어 "알킬" 또는 "알킬기"는, 1 내지 12 개의 탄소 원자, 1 내지 10 개의 탄소 원자, 1 내지 8 개의 탄소 원자, 또는 1 내지 5 개의 탄소 원자를 갖는 선형 또는 분지형 알킬기 및 이들의 모든 가능한 이성질체를 포함한다. 예를 들어, 상기 알킬 또는 알킬기는 메틸기(Me), 에틸기(Et), n-프로필기(nPr), iso-프로필기(iPr), n-부틸기(nBu), iso-부틸기(iBu), tert-부틸기(tert-Bu, tBu), sec-부틸기(sec-Bu, secBu), n-펜틸기(nPe), iso-펜틸기(isoPe), sec-펜틸기(secPe), tert-펜틸기(tPe), neo-펜틸기(neoPe), 3-펜틸기, n-헥실기, iso-헥실기, 헵틸기, 4,4-디메틸펜틸기, 옥틸기, 2,2,4-트리메틸펜틸기, 노닐기, 데실기, 운데실기, 도데실기, 및 이들의 이성질체들일 수 있다. Throughout this specification, the term "alkyl" or "alkyl group" refers to a linear or branched alkyl group having 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 5 carbon atoms. and all possible isomers thereof. For example, the alkyl or alkyl group is a methyl group (Me), an ethyl group (Et), an n-propyl group ( n Pr), an iso-propyl group ( i Pr), an n-butyl group ( n Bu), an iso-butyl group ( i Bu), tert-butyl group (tert-Bu, t Bu), sec-butyl group (sec-Bu, sec Bu), n-pentyl group ( n Pe), iso-pentyl group ( iso Pe), sec -pentyl group ( sec Pe), tert-pentyl group ( t Pe), neo-pentyl group ( neo Pe), 3-pentyl group, n-hexyl group, iso-hexyl group, heptyl group, 4,4-dimethylphen tyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group, undecyl group, dodecyl group, and isomers thereof.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present application have been described in detail, but the present application may not be limited thereto.
본원의 제 1 측면은, 하기 화학식 Ⅰ로서 표시되는, 상부 표면 개질제를 제공한다:A first aspect of the present disclosure provides a top surface modifier, represented by formula (I):
[화학식 Ⅰ][Formula Ⅰ]
Figure PCTKR2021019788-appb-img-000003
;
Figure PCTKR2021019788-appb-img-000003
;
상기 화학식 Ⅰ에서, In the above formula (I),
R1 및 R2는, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-5 알킬기, 또는 선형 또는 분지형의 C1-5 알킬기로 치환된 디알킬아미노기이거나; 또는 R1 및 R2는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이며,R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
R3 및 R4는, 각각 독립적으로, 선형 또는 분지형의 C1-5 알킬기이거나; 또는 R3 및 R4는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이고,R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
X는 -O-, -S-, 또는 -NH임.X is -O-, -S-, or -NH.
본원의 일 구현예에 있어서, R1 및 R2; 또는 R3 및 R4 중 어느 하나만 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, R 1 and R 2 ; Alternatively, only one of R 3 and R 4 may be a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other, but may not be limited thereto.
본원의 일 구현예에 있어서, R1 및 R2는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 디메틸아미노기, 에틸메틸아미노기, 디에틸아미노기, 메틸프로필아미노기, 에틸프로필아미노기 또는 디프로필아미노기이거나, 또는 R1 및 R2는 서로 연결되어 중심 탄소를 포함하는 고리형 알킬기를 형성하여 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 또는 시클로헵틸기일 수 있으나, 이에 제한되지 않을 수 있다. 여기서, "중심 탄소"는 하기 화학식 Ⅰ로서 표시되는 R1R2-C-(XR3)(XR4)의 중심에 위치하는 탄소를 의미한다. In one embodiment of the present application, R 1 and R 2 are, each independently, hydrogen, a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, dimethylamino group, ethylmethylamino group, diethylamino group, methylpropylamino group, ethylpropylamino group or dipropylamino group, or R 1 and R 2 are linked to each other to form a cyclic alkyl group including a central carbon to form a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, or a cycloheptyl group However, it may not be limited thereto. Here, "central carbon" refers to a carbon positioned at the center of R 1 R 2 -C-(XR 3 )(XR 4 ) represented by the following formula (I).
본원의 일 구현예에 있어서, R3 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 또는 3-펜틸기일 수 있으나, 이에 제한되지 않을 수 있다. 또한, 본원의 일 구현예에 있어서, R3 및 R4는 서로 연결되어 중심 탄소 및 헤테로 원자를 포함하는 헤테로고리형 구조를 형성할 수 있으며, 비제한적 예로서 고리형 폴리에테르일 수 있다. In one embodiment of the present application, R 3 and R 4 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, It may be a tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, or 3-pentyl group, but may not be limited thereto. Further, in one embodiment of the present application, R 3 and R 4 may be connected to each other to form a heterocyclic structure including a central carbon and a hetero atom, and may be a cyclic polyether as a non-limiting example.
본원의 일 구현예에 있어서, 상기 상부 표면 개질제는 하기 화합물 1 내지 화합물 5에서 선택되는 것일 수 있다:In one embodiment of the present application, the upper surface modifier may be selected from the following compounds 1 to 5:
[화합물 1][Compound 1]
Figure PCTKR2021019788-appb-img-000004
;
Figure PCTKR2021019788-appb-img-000004
;
[화합물 2][Compound 2]
Figure PCTKR2021019788-appb-img-000005
;
Figure PCTKR2021019788-appb-img-000005
;
[화합물 3][Compound 3]
Figure PCTKR2021019788-appb-img-000006
;
Figure PCTKR2021019788-appb-img-000006
;
[화합물 4][Compound 4]
Figure PCTKR2021019788-appb-img-000007
; 및
Figure PCTKR2021019788-appb-img-000007
; and
[화합물 5][Compound 5]
Figure PCTKR2021019788-appb-img-000008
.
Figure PCTKR2021019788-appb-img-000008
.
본원의 제 2 측면은, 하기 화학식 Ⅰ로서 표시되는, 상부 표면 개질제를 포함하는, 상부 표면 개질제 조성물을 제공한다:A second aspect of the present disclosure provides a top surface modifier composition, comprising a top surface modifier, represented by formula (I):
[화학식 Ⅰ][Formula Ⅰ]
Figure PCTKR2021019788-appb-img-000009
;
Figure PCTKR2021019788-appb-img-000009
;
상기 화학식 Ⅰ에서, In the above formula (I),
R1 및 R2는, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-5 알킬기, 또는 선형 또는 분지형의 C1-5 알킬기로 치환된 디알킬아미노기이거나; 또는 R1 및 R2는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이며,R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
R3 및 R4는, 각각 독립적으로, 선형 또는 분지형의 C1-5 알킬기이거나; 또는 R3 및 R4는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이고,R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
X는 -O-, -S-, 또는 -NH임.X is -O-, -S-, or -NH.
본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Although a detailed description of overlapping parts with the first aspect of the present application is omitted, the contents described for the first aspect of the present application may be equally applied even if the description thereof is omitted in the second aspect of the present application.
본원의 일 구현예에 있어서, R1 및 R2; 또는 R3 및 R4 중 어느 하나만 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, R 1 and R 2 ; Alternatively, only one of R 3 and R 4 may be a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other, but may not be limited thereto.
본원의 일 구현예에 있어서, R1 및 R2는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 디메틸아미노기, 에틸메틸아미노기, 디에틸아미노기, 메틸프로필아미노기, 에틸프로필아미노기 또는 디프로필아미노기이거나, 또는 R1 및 R2는 서로 연결되어 중심 탄소를 포함하는 고리형 알킬기를 형성하여 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 또는 시클로헵틸기일 수 있으나, 이에 제한되지 않을 수 있다. 여기서, "중심 탄소"는 하기 화학식 Ⅰ로서 표시되는 R1R2-C-(XR3)(XR4)의 중심에 위치하는 탄소를 의미한다. In one embodiment of the present application, R 1 and R 2 are, each independently, hydrogen, a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, dimethylamino group, ethylmethylamino group, diethylamino group, methylpropylamino group, ethylpropylamino group or dipropylamino group, or R 1 and R 2 are linked to each other to form a cyclic alkyl group including a central carbon to form a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, or a cycloheptyl group However, it may not be limited thereto. Here, "central carbon" refers to a carbon positioned at the center of R 1 R 2 -C-(XR 3 )(XR 4 ) represented by the following formula (I).
본원의 일 구현예에 있어서, R3 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 또는 3-펜틸기일 수 있으나, 이에 제한되지 않을 수 있다. 또한, 본원의 일 구현예에 있어서, R3 및 R4는 서로 연결되어 중심 탄소 및 헤테로 원자를 포함하는 헤테로고리형 구조를 형성할 수 있으며, 비제한적 예로서 고리형 폴리에테르일 수 있다. In one embodiment of the present application, R 3 and R 4 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, It may be a tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, or 3-pentyl group, but may not be limited thereto. Further, in one embodiment of the present application, R 3 and R 4 may be connected to each other to form a heterocyclic structure including a central carbon and a hetero atom, and may be a cyclic polyether as a non-limiting example.
본원의 일 구현예에 있어서, 상기 상부 표면 개질제는 하기 화합물 1 내지 화합물 5에서 선택되는 하나 이상을 포함하는 것일 수 있다:In one embodiment of the present application, the upper surface modifier may include one or more selected from the following compounds 1 to 5:
[화합물 1][Compound 1]
Figure PCTKR2021019788-appb-img-000010
;
Figure PCTKR2021019788-appb-img-000010
;
[화합물 2][Compound 2]
Figure PCTKR2021019788-appb-img-000011
;
Figure PCTKR2021019788-appb-img-000011
;
[화합물 3][Compound 3]
Figure PCTKR2021019788-appb-img-000012
;
Figure PCTKR2021019788-appb-img-000012
;
[화합물 4][Compound 4]
Figure PCTKR2021019788-appb-img-000013
; 및
Figure PCTKR2021019788-appb-img-000013
; and
[화합물 5][Compound 5]
Figure PCTKR2021019788-appb-img-000014
.
Figure PCTKR2021019788-appb-img-000014
.
본원의 제 3 측면은, 제 2 측면에 따른 상부 표면 개질제 조성물 및 막 형성용 전구체를 이용하여 원자층 증착법에 의해 막을 형성하는, 막 형성 방법을 제공한다. A third aspect of the present application provides a film forming method, in which a film is formed by an atomic layer deposition method using the upper surface modifier composition according to the second aspect and a film forming precursor.
본원의 제 1 측면 및 제 2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 및 제 2 측면에 대해 설명한 내용은 본원의 제 3 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Although detailed descriptions of parts overlapping with the first and second aspects of the present application are omitted, the descriptions of the first and second aspects of the present application are equally applicable even if the description is omitted in the third aspect of the present application. can
본원의 일 구현예에 있어서, 상기 막은 금속막, 산화막, 질화막, 탄화막, 및 이들의 조합들로 이루어진 군에서 선택되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 막은 금속막 또는 산화막일 수 있다. In one embodiment of the present application, the film may be selected from the group consisting of a metal film, an oxide film, a nitride film, a carbide film, and combinations thereof, but may not be limited thereto. In one embodiment of the present application, the film may be a metal film or an oxide film.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체는 Be, Mg, Ca, Sr, Ba, Al, Ga, In, Sc, Y, La, Si, Ge, Sn, P, As. Sb, S, Se, Te, Ti, Zr, Hf, V, Ta, Nb, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, 및 Au에서 선택되는 하나 이상을 포함하는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 막 형성용 전구체는 2A 족인 Be, Mg, Ca, Sr, Ba; 3A 족인 Al, Ga, In; 3B 족인 Sc, Y, La; 4A 족인 Si, Ge, Sn; 5A 족인 P, As. Sb; 6A 족인 S, Se, Te; 4B 족인 Ti, Zr, Hf; 5B 족인 V, Ta, Nb; 또는 6B족인 Cr, Mo, W; 7B 족인 Mn, Tc, Re; 8 족인 Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt; 및 1B 족인 Cu, Ag, Au에서 선택되는 하나 이상을 포함하는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 막 형성용 전구체는 Mg, Zr, 또는 Hf을 포함하는 것일 수 있다. In one embodiment of the present application, the precursor for film formation is Be, Mg, Ca, Sr, Ba, Al, Ga, In, Sc, Y, La, Si, Ge, Sn, P, As. Sb, S, Se, Te, Ti, Zr, Hf, V, Ta, Nb, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, It may include one or more selected from Cu, Ag, and Au. In one embodiment of the present application, the precursor for film formation is a group 2A Be, Mg, Ca, Sr, Ba; Group 3A Al, Ga, In; Sc, Y, La from group 3B; Si, Ge, Sn from group 4A; 5A, P, As. Sb; S, Se, Te from group 6A; Ti, Zr, Hf of group 4B; V, Ta, Nb of group 5B; or Cr, Mo, W of group 6B; Group 7B Mn, Tc, Re; Group 8 Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt; And it may be one comprising at least one selected from Cu, Ag, Au which is group 1B. In one embodiment of the present application, the precursor for film formation may include Mg, Zr, or Hf.
본원의 일 구현예에 있어서, 상기 막 형성 방법은 약 200℃ 내지 약 500℃에서 수행되는 것일 수 있다. 예를 들어, 상기 막 형성 방법은 약 200℃ 내지 약 500℃, 약 200℃ 내지 약 450℃, 약 200℃ 내지 약 400℃, 약 200℃ 내지 약 350℃, 약 200℃ 내지 약 300℃, 약 200℃ 내지 약 250℃, 약 250℃ 내지 약 500℃, 약 250℃ 내지 약 450℃, 약 250℃ 내지 약 400℃, 약 250℃ 내지 약 350℃, 약 250℃ 내지 약 300℃, 약 300℃ 내지 약 500℃, 약 300℃ 내지 약 450℃, 약 300℃ 내지 약 400℃, 약 300℃ 내지 약 350℃, 약 350℃ 내지 약 500℃, 약 350℃ 내지 약 450℃, 약 350℃ 내지 약 400℃, 약 400℃ 내지 약 500℃, 약 400℃ 내지 약 450℃, 또는 약 450℃ 내지 약 500℃에서 수행되는 것일 수 있다. In one embodiment of the present application, the film forming method may be performed at about 200 °C to about 500 °C. For example, the film forming method may be from about 200°C to about 500°C, from about 200°C to about 450°C, from about 200°C to about 400°C, from about 200°C to about 350°C, from about 200°C to about 300°C, about 200 °C to about 250 °C, about 250 °C to about 500 °C, about 250 °C to about 450 °C, about 250 °C to about 400 °C, about 250 °C to about 350 °C, about 250 °C to about 300 °C, about 300 °C to about 500 °C, about 300 °C to about 450 °C, about 300 °C to about 400 °C, about 300 °C to about 350 °C, about 350 °C to about 500 °C, about 350 °C to about 450 °C, about 350 °C to about It may be carried out at 400°C, about 400°C to about 500°C, about 400°C to about 450°C, or about 450°C to about 500°C.
본원의 일 구현예에 있어서, 상기 막 형성 방법은 반응 챔버 내에 기재를 제공하는 단계; 상기 기재 상에 상기 막 형성용 전구체를 포함하는 소스 물질 및 상기 상부 표면 개질제 조성물을 제공하는 단계; 상기 반응 챔버의 내부를 퍼지하는 단계; 및 상기 소스 물질과 반응하여 막을 형성할 수 있는 반응 물질을 제공하는 단계;를 포함하는 일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the film forming method includes providing a substrate in a reaction chamber; providing a source material including the precursor for film formation and the upper surface modifier composition on the substrate; purging the inside of the reaction chamber; and providing a reactant material capable of reacting with the source material to form a layer, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 상부 표면 개질제 조성물을 제공하는 것은 상기 막 형성용 전구체를 포함하는 소스 물질을 제공하는 것과 동시 또는 시간적으로 중첩되도록 수행되거나, 이전 또는 이후에 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, providing the upper surface modifier composition may be performed simultaneously or temporally overlapping with providing the source material including the precursor for film formation, or performed before or after, This may not be limited.
본원의 일 구현예에 있어서, 상기 반응 물질은 암모니아, 질소, 히드라진, 디메틸 히드라진, 수증기, 산소, 및 오존에서 선택되는 하나 이상일 수 있다. In one embodiment of the present application, the reactant may be one or more selected from ammonia, nitrogen, hydrazine, dimethyl hydrazine, water vapor, oxygen, and ozone.
본원의 일 구현예에 있어서, 본원의 일 구현예에 따른 상부 표면 개질제를 이용하여 막을 형성하는 방법은 상기 반응 챔버 내로 상부 표면 개질제 조성물을 공급하여 웨이퍼 표면에 흡착시킨 후 전구체를 공급하여 박막을 형성하는 방법이며, 표면에서 화학반응을 유발시켜 균일한 두께의 박막이 표면과 바닥까지 균일하게 박막을 형성시켜 우수한 스텝 커버리지를 확보할 수 있다. In one embodiment of the present application, in the method of forming a film using the upper surface modifier according to the embodiment of the present application, the upper surface modifier composition is supplied into the reaction chamber to be adsorbed on the wafer surface, and then the precursor is supplied to form a thin film. This method induces a chemical reaction on the surface, so that a thin film of uniform thickness is formed uniformly from the surface to the bottom, thereby securing excellent step coverage.
본원의 일 구현예에 있어서, 본원의 일 구현예에 따른 상부 표면 개질제를 이용하여 막을 형성하는 방법은 박막의 두께 및 조성을 정확히 제어할 수 있기 때문에 복잡한 형상의 기판에서도 우수한 피복성을 갖는 박막을 형성시킬 수 있고, 그 박막의 두께 균일도 및 물성을 향상시킬 수 있다. In one embodiment of the present application, the method of forming a film using the upper surface modifier according to the embodiment of the present application forms a thin film having excellent coverage even on a complex-shaped substrate because the thickness and composition of the thin film can be precisely controlled. and the thickness uniformity and physical properties of the thin film can be improved.
본원의 일 구현예에 있어서, 본원의 일 구현예에 따른 상부 표면 개질제를 이용하여 막을 형성하는 경우, 두께 감소율이 약 30% 이상, 약 40% 이상, 또는 약 50% 이상일 수 있다. In one embodiment of the present application, when the film is formed using the upper surface modifier according to the embodiment of the present application, the thickness reduction rate may be about 30% or more, about 40% or more, or about 50% or more.
본원의 일 구현예에 있어서, 본원의 일 구현예에 따른 상부 표면 개질제를 이용하여 막을 형성하는 경우, 증착율이 감소하는 것일 수 있으며, 이는 약 30% 이상, 약 40% 이상, 약 50% 이상, 또는 약 60 % 이상 감소하는 것일 수 있다. In one embodiment of the present application, when the film is formed using the upper surface modifier according to the embodiment of the present application, the deposition rate may decrease, which is about 30% or more, about 40% or more, about 50% or more, Or it may be reduced by about 60% or more.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present application will be described in more detail using examples, but the following examples are only illustrative to help the understanding of the present application, and the content of the present application is not limited to the following examples.
[실시예][Example]
<실험예 1> 상부 표면 개질제 및 (C5H5)Hf(N(CH3)2)3 [CpHf(NMe2)3] 전구체 화합물을 사용하여 증착된 산화막 특성 비교 <Experimental Example 1> Comparison of properties of oxide films deposited using the upper surface modifier and (C 5 H 5 )Hf(N(CH 3 ) 2 ) 3 [CpHf(NMe 2 ) 3 ] precursor compound
현재 사용되고 있는 전구체, (C5H5)Hf(N(CH3)2)3 [CpHf(NMe2)3] (이하, "Cp-Hf"으로도 표시함), 및 상기 화합물 1 내지 화합물 4의 상부 표면 개질제를 사용하여 원자 증착법(ALD; Atomic Layer Deposition) 공정을 수행하였다.Precursors currently used, (C 5 H 5 )Hf(N(CH 3 ) 2 ) 3 [CpHf(NMe 2 ) 3 ] (hereinafter also referred to as “Cp-Hf”), and the compounds 1 to 4 Atomic Layer Deposition (ALD) process was performed using the upper surface modifier of
상부 표면 개질제의 종류에 따른 증착 특성을 비교하기 위하여, 공지된 CpHf(NMe2)3를 하프늄 전구체로써 사용하였으며, 반응 가스로써 산소원인 O3를 사용하였다. 우선, 황산(H2SO4) 및 과산화수소수(H2O2)를 4:1로 혼합한 피라냐 (Piranha) 용액에 실리콘 웨이퍼를 10 분 동안 담갔다가 꺼낸 후, HF 수용액에 약 2 분 동안 담가 순수한 실리콘 표면을 형성한 후, 원자층 증착법(ALD)으로 하프늄 산화물 박막을 제조하였다. In order to compare deposition characteristics according to the type of upper surface modifier, known CpHf(NMe 2 ) 3 was used as a hafnium precursor, and O 3 as an oxygen source was used as a reaction gas. First, the silicon wafer is immersed in a piranha solution mixed with sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) in a ratio of 4:1 for 10 minutes and then taken out, then immersed in HF aqueous solution for about 2 minutes After the pure silicon surface was formed, a hafnium oxide thin film was prepared by atomic layer deposition (ALD).
상부 표면 개질제를 사용하여 최적화된 증착 조건을 확인하기 위하여, 화합물 1 내지 4를 사용하여 각각의 증착 실험을 수행하였다. ALD 주기는 100 회, 기재의 온도는 320℃로 고정하고, 상부 표면 개질제의 노출 시간을 1, 5, 10, 및 30 초로 조절하여 증착하였다. 이후, 상부 표면 개질제를 사용하지 않고 하프늄 산화막을 증착한 경우와 비교하여, 증착률이 50% 이하가 되도록 상부 표면 개질제의 노출 시간을 선정하고 기재의 온도를 변화시켜 증착 특성을 확인하였다. 온도에 따른 증착 특성을 확인하기 위하여, 기재의 온도는 300℃부터 360℃까지 20℃간격으로 가열하여 증착하였다. CpHf(NMe2)3 전구체 화합물 및 화합물 1 내지 4의 상부 표면 개질제는 스테인리스 스틸을 재질의 용기에 담아 각각 100℃ 및 상온으로 가열하여 사용하였다. 이때 반응기의 공정 압력은 1 torr이며, 300 sccm의 유속을 갖는 아르곤(Ar) 가스를 상기 하프늄 전구체 및 상기 표면 개질제의 운반 가스로 사용하여 기화시켰다. 상부 표면 개질제 및 하프늄 전구체를 사용한 산화막을 형성하기 위한 ALD 주기는 기화된 표면 개질제 공급, 표면 개질제 Purge, 전구체 공급, 전구체 Purge, O3 공급, O3 Purge 순으로 □초/5초/5초/10초/5초/10초로 하였다. 도 1에 표면 개질제 노출 시간에 따른 하프늄 산화막 증착 결과를 나타내었으며, 도 2에 표면 개질제 노출 시간을 선정하여 온도에 따른 하프늄 산화막 증착 결과를 나타내었다.In order to confirm the optimized deposition conditions using the upper surface modifier, each deposition experiment was performed using compounds 1 to 4. The ALD cycle was 100 times, the temperature of the substrate was fixed at 320° C., and the exposure time of the upper surface modifier was adjusted to 1, 5, 10, and 30 seconds for deposition. Thereafter, as compared with the case of depositing the hafnium oxide film without using the upper surface modifier, the exposure time of the upper surface modifier was selected so that the deposition rate was 50% or less, and the deposition characteristics were confirmed by changing the temperature of the substrate. In order to check the deposition characteristics according to the temperature, the temperature of the substrate was deposited by heating from 300°C to 360°C at 20°C intervals. CpHf(NMe 2 ) 3 As the precursor compound and the upper surface modifier of Compounds 1 to 4, stainless steel was placed in a container and heated to 100° C. and room temperature, respectively. At this time, the process pressure of the reactor was 1 torr, and argon (Ar) gas having a flow rate of 300 sccm was vaporized using the hafnium precursor and the carrier gas of the surface modifier. The ALD cycle for forming an oxide film using the upper surface modifier and the hafnium precursor is □sec/5sec/ 5sec / It was set as 10 sec/5 sec/10 sec. 1 shows the hafnium oxide film deposition results according to the surface modifier exposure time, and FIG. 2 shows the hafnium oxide layer deposition results according to the temperature by selecting the surface modifier exposure time.
도 1에서 확인할 수 있듯이, 화합물 2의 표면 개질제를 사용한 경우, 하프늄 산화막의 두께 감소율 가장 높았고, 화합물 4, 화합물 1 및 화합물 3의 표면 개질제 순으로 두께 감소율이 감소하는 것을 확인하였다. 표면 개질제의 노출 시간이 증가함에 따라 하프늄 산화막의 두께가 감소하였으나, 화합물 2 및 4의 경우, 5 초 및 10 초에서 각각 동일한 증착률을 나타내는 것을 확인할 수 있었다.As can be seen in FIG. 1 , when the surface modifier of Compound 2 was used, the thickness reduction rate of the hafnium oxide film was the highest, and it was confirmed that the thickness reduction rate decreased in the order of the surface modifiers of Compound 4, Compound 1, and Compound 3. As the exposure time of the surface modifier increased, the thickness of the hafnium oxide film decreased, but in the case of compounds 2 and 4, it was confirmed that the same deposition rates were exhibited at 5 sec and 10 sec, respectively.
도 2는 화합물 1 내지 4 중 가장 두께 감소율 효과가 큰 화합물 2 및 4의 온도에 따른 두께 감소 효과를 확인하였다. 표면 개질제의 반응 주기는 5 초에서 10 초 사이에 동일한 두께 비율을 나타내므로 5 초로 선정하였다. 화합물 2 및 4의 표면 개질제를 사용한 경우에도, 50% 이상의 두께 감소율을 나타내었다. 도 2에서 확인할 수 있듯이 온도가 증가함에 따라 두께 감소율이 증가하는 것을 확인하였다. 따라서, 증착시킨 온도 범위 내에서는 상기 표면 개질제의 표면 탈착이 일어나지 않는 것을 알 수 있으며 온도가 증가함에 따라 표면 개질제의 활성도가 높아져 개질 효과가 증가하여 두께 감소율이 높아졌다 것을 알 수 있었다.Figure 2 confirms the thickness reduction effect according to the temperature of Compounds 2 and 4, which has the greatest thickness reduction rate effect among Compounds 1 to 4. The reaction cycle of the surface modifier was selected to be 5 seconds since the same thickness ratio was exhibited between 5 and 10 seconds. Even when the surface modifiers of Compounds 2 and 4 were used, a thickness reduction ratio of 50% or more was exhibited. As can be seen in FIG. 2 , it was confirmed that the thickness reduction rate increased as the temperature increased. Therefore, it can be seen that the surface desorption of the surface modifier does not occur within the deposited temperature range, and as the temperature increases, the activity of the surface modifier increases, thereby increasing the modification effect, thereby increasing the thickness reduction rate.
<실험예 2> 상부 표면 개질제 및 TMA [Al(CH3)3] 전구체 화합물을 사용하여 증착된 산화막 특성 비교 <Experimental Example 2> Comparison of properties of oxide films deposited using the upper surface modifier and TMA [Al(CH 3 ) 3 ] precursor compound
상부 표면 개질제 사용 여부에 따른 증착률 감소 효과를 확인하기 위하여, 화합물 2 및 화합물 5를 각각 상부 표면 개질제로써 사용하였고, 공지된 트리메틸 알루미늄 (trimethyl aluminum; TMA) [Al(CH3)3] 전구체 화합물과 산소원 반응 가스인 오존(O3)을 사용하여 원자층 증착법(ALD-Atomic Layer Deposition)으로 알루미늄 산화막을 형성하였다. 증착률을 측정하기 위한 증착에 사용된 모든 기재는 황산(H2SO4) 및 과산화수소(H2O2)를 4:1로 혼합한 피라냐(piranha) 용액에 실리콘 기재를 약 10 분 담갔다가 꺼내고 HF 수용액에 약 2 분 동안 담근 후, 증류수로 세척하여 자연 산화막이 제거된 순수한 실리콘 표면을 형성한 후 알루미늄 산화막을 증착하였다.In order to confirm the effect of reducing the deposition rate depending on whether the upper surface modifier was used, Compound 2 and Compound 5 were each used as the upper surface modifier, and a known trimethyl aluminum (TMA) [Al(CH 3 ) 3 ] precursor compound An aluminum oxide film was formed by atomic layer deposition (ALD-Atomic Layer Deposition) using ozone (O 3 ), which is a reactant gas and oxygen source. All substrates used for deposition for measuring the deposition rate were immersed in a piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) were mixed in a ratio of 4:1 for about 10 minutes and then taken out. After immersion in HF aqueous solution for about 2 minutes, it was washed with distilled water to form a pure silicon surface from which the natural oxide film was removed, and then an aluminum oxide film was deposited.
화합물 2 및 화합물 5의 상부 표면 개질제와 TMA 전구체 화합물은 스테인리스 스틸 재질의 용기에 담아 30℃로 기화시켰다. 기화된 상부 표면 개질제 및 전구체 화합물을 응축(condensation)이 일어나지 않은 상태로 반응기(chamber)까지 이동시키기 위하여, 용기부터 반응기까지의 이동 공간의 온도는 120℃ 내지 150℃로 순차적으로 높여 가열하였다. 화합물 2 및 화합물 5의 상부 표면 개질제 화합물을 반응기까지 이동시키기 위한 운반 가스로써 200 sccm 내지 500 sccm의 유속을 갖는 아르곤(Ar) 가스를 사용하였다. 이후, 반응기 내에 남은 상부 표면 개질제를 흘려보내기 위하여 500 sccm 내지 2000 sccm의 유속을 갖는 아르곤 가스를 사용하였다. 이후, TMA 전구체 화합물을 반응기까지 이동시키기 위한 운반 가스로 200 sccm 내지 500 sccm의 유속을 갖는 아르곤(Ar) 가스를 사용하였다. 이후, 반응기 내에 남은 TMA 전구체 화합물을 흘려보내기 위하여 500 sccm 내지 2000sccm의 유속을 갖는 아르곤 가스를 사용하였다. 이후 산소원인 O2를 500 sccm 내지 1000 sccm의 유속으로 흘려 오존 생성기로 보낸 후 약 180 g/m3 내지 220 g/m3 농도의 오존을 생성하여 반응 가스로 사용하였다. 이후 반응기 내에 남은 상부 표면 개질제 및 TMA 전구체 화합물, 오존 및 반응 부산물 등을 흘려보내기 위하여 500 sccm 내지 2000 sccm의 유속을 갖는 아르곤 가스를 사용하였다. 이때 반응기의 공정 압력은 0.9 torr 내지 1.2torr로 측정되었으며, 기화된 상부 표면 개질제 화합물의 공급 시간을 약 1 초 내지 30 초로 하였고, 반응기 내 퍼지 시간을 약 5 초 내지 30 초로 하였고, 기화된 TMA 전구체 화합물의 공급 시간을 약 1 초 내지 5 초로 하였고, 반응기 내 퍼지 시간을 약 5 초 내지 30 초로 하였고, 오존 공급 시간을 약 5 초 내지 30 초로 하였고, 반응기 내 퍼지 시간을 약 5 초 내지 30 초로 하였다. 모든 공정은 상기 증착 주기를 100 회 반복하여 알루미늄 산화막을 증착하였고 엘립소미터를 사용하여 두께 및 증착률을 확인하였다. 온도에 따른 증착 특성을 확인하기 위하여 기질의 온도를 250℃부터 400℃까지 10℃ 내지 25℃ 단위로 증가시키며 알루미늄 산화막을 증착하였다.The upper surface modifier of Compound 2 and Compound 5 and the TMA precursor compound were placed in a stainless steel container and vaporized at 30°C. In order to move the vaporized upper surface modifier and precursor compound to the reactor in a state in which condensation did not occur, the temperature of the moving space from the vessel to the reactor was sequentially raised to 120° C. to 150° C. and heated. Argon (Ar) gas having a flow rate of 200 sccm to 500 sccm was used as a carrier gas for moving the upper surface modifier compounds of Compound 2 and Compound 5 to the reactor. Thereafter, argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier remaining in the reactor. Thereafter, argon (Ar) gas having a flow rate of 200 sccm to 500 sccm was used as a carrier gas for moving the TMA precursor compound to the reactor. Thereafter, argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the TMA precursor compound remaining in the reactor. After that, O 2 as an oxygen source was flowed at a flow rate of 500 sccm to 1000 sccm and sent to an ozone generator, and then ozone at a concentration of about 180 g/m 3 to 220 g/m 3 was generated and used as a reaction gas. Thereafter, argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier, TMA precursor compound, ozone, and reaction by-products remaining in the reactor. At this time, the process pressure of the reactor was measured to be 0.9 torr to 1.2 torr, the supply time of the vaporized upper surface modifier compound was about 1 to 30 seconds, the purge time in the reactor was about 5 to 30 seconds, and the vaporized TMA precursor The supply time of the compound was about 1 to 5 seconds, the purge time in the reactor was about 5 to 30 seconds, the ozone supply time was about 5 to 30 seconds, and the purge time in the reactor was about 5 to 30 seconds. . In all processes, the deposition cycle was repeated 100 times to deposit an aluminum oxide film, and the thickness and deposition rate were checked using an ellipsometer. In order to check the deposition characteristics according to the temperature, an aluminum oxide film was deposited while increasing the temperature of the substrate from 250°C to 400°C in units of 10°C to 25°C.
화합물 2 및 화합물 5의 상부 표면 개질제 화합물의 노출 시간에 따른 증착률 감소 효과를 비교하기 위하여 먼저, 상부 표면 개질제를 사용하지 않고 TMA 화합물만을 사용하여 알루미늄 산화막을 250℃에서 증착하였다. 또한, 화합물 2 및 화합물 5의 상부 표면 개질제 화합물을 각각 사용하여 노출시간을 증가시키며 알루미늄 산화막을 증착 시켜 증착률 감소 효과를 확인하였다. 상부 표면 개질제의 노출 시간에 따른 증착률을 비교하여 도 3 및 도 4 에 나타내었다. In order to compare the effect of reducing the deposition rate according to exposure time of the upper surface modifier compound of Compound 2 and Compound 5, an aluminum oxide film was deposited at 250° C. using only the TMA compound without using the upper surface modifier. In addition, the effect of decreasing the deposition rate was confirmed by depositing an aluminum oxide film while increasing the exposure time by using the upper surface modifier compound of Compound 2 and Compound 5, respectively. The deposition rates according to the exposure time of the upper surface modifier were compared and shown in FIGS. 3 and 4 .
또한, 250 내지 400℃에서, 상부 표면 개질제를 사용하지 않고 TMA만을 사용하여 증착된 알루미늄 산화막 증착률과, 화합물 2 및 화합물 5의 상부 표면 개질제 화합물을 사용하였을 경우의 알루미늄 산화막의 증착률을 비교한 결과를 도 5 에 나타내었다.In addition, the deposition rate of the aluminum oxide film deposited using only TMA without using the upper surface modifier at 250 to 400 ° C. and the deposition rate of the aluminum oxide film when the upper surface modifier compound of Compound 2 and Compound 5 were used. The results are shown in FIG. 5 .
도 3에서 확인할 수 있듯이, 250℃에서 TMA 전구체 화합물만을 사용한 알루미늄 산화막의 증착률은 1.17 Å/cycle이고, 화합물 2의 상부 표면 개질제를 5 초 내지 30 초로 노출시간을 증가시키며 증착한 알루미늄 산화막의 증착률은 0.74 Å/cycle 내지 0.80 Å/cycle로서 약 35%의 증착률 감소 효과를 확인하였다.As can be seen in FIG. 3 , the deposition rate of the aluminum oxide film using only the TMA precursor compound at 250° C. was 1.17 Å/cycle, and the upper surface modifier of Compound 2 was increased by increasing the exposure time to 5 to 30 seconds. Deposition of the aluminum oxide film The rate was 0.74 Å/cycle to 0.80 Å/cycle, confirming the effect of reducing the deposition rate of about 35%.
도 4에서 확인할 수 있듯이, 250℃에서 TMA 전구체 화합물만을 사용한 알루미늄 산화막의 증착률은 1.17Å/cycle인 반면, 화합물 5의 상부 표면 개질제를 1 초 내지 15초로 노출시간을 증가시키며 증착한 알루미늄 산화막의 증착률은 0.34 Å/cycle 내지 0.39Å/cycle로 약 71%의 증착률 감소 효과를 확인하였고, 화합물 5의 상부 표면 개질제의 노출시간이 1 초 이상일 경우 증착률이 일정해지는 것을 확인하였다.As can be seen in FIG. 4 , the deposition rate of the aluminum oxide film using only the TMA precursor compound at 250° C. was 1.17 Å/cycle, while the upper surface modifier of Compound 5 increased the exposure time from 1 second to 15 seconds. The deposition rate was 0.34 Å/cycle to 0.39 Å/cycle, confirming the effect of reducing the deposition rate of about 71%, and it was confirmed that the deposition rate was constant when the exposure time of the upper surface modifier of Compound 5 was 1 second or more.
도 5에서 확인할 수 있듯이, 화합물 2의 상부 표면 개질제를 사용하였을 경우, TMA 전구체 화합물의 증착률이 약 36.7% 내지 약 53.4%의 감소되는 효과를 나타내는 것을 확인하였고, 화합물 5의 상부 표면 개질제를 사용하였을 경우 TMA 전구체 화합물의 증착률이 약 66.5% 내지 74.0%의 감소되는 효과를 확인하였다. As can be seen in Figure 5, when the upper surface modifier of Compound 2 was used, it was confirmed that the deposition rate of the TMA precursor compound was reduced by about 36.7% to about 53.4%, and the upper surface modifier of Compound 5 was used It was confirmed that the deposition rate of the TMA precursor compound was reduced by about 66.5% to 74.0%.
<실험예 3> 상부 표면 개질제를 사용한 고유전율(high-k) 전구체 화합물의 산화막 증착 특성 <Experimental Example 3> Oxide film deposition characteristics of high-k (high- k ) precursor compound using upper surface modifier
상부 표면 개질제 사용 여부에 따른 증착률 감소 효과를 확인하기 위하여, 화합물 2 및 화합물 5를 상부 표면 개질제로써 사용하였고, 공지된 고유전율 전구체인 (C5H5)Zr(N(CH3)2)3 [CpZr(NMe2)3] (이하, "Cp-Zr"으로도 표시함) 및 (C5H5)Hf(N(CH3)2)3 [CpHf(NMe2)3] 전구체 화합물과 Mg(EtCp)2 [(CH3CH2(C5H4))2Mg] 전구체 화합물과 산소원 반응 가스인 오존(O3)을 사용하여 원자층 증착법으로 지르코늄 산화막, 하프늄 산화막 및 마그네슘 산화막을 각각 형성하였다. 증착률을 측정하기 위한 증착에 사용된 모든 기재는 황산(H2SO4)과 과산화수소(H2O2)를 4:1로 혼합한 피라냐(piranha) 용액에 실리콘 기재를 약 10 분, HF 수용액에 약 2 분 동안 담갔다 꺼낸 후 증류수로 세척하여 자연 산화막이 제거된 순수한 실리콘 표면을 형성한 후 산화막들을 증착하였다.In order to confirm the effect of reducing the deposition rate depending on whether the upper surface modifier was used, Compound 2 and Compound 5 were used as the upper surface modifier, and a known high-k precursor (C 5 H 5 )Zr(N(CH 3 ) 2 ) 3 [CpZr(NMe2)3] (hereinafter also referred to as “Cp-Zr”) and (C 5 H 5 )Hf(N(CH 3 ) 2 ) 3 [CpHf(NMe 2 ) 3 ] precursor compound and Mg ( Et Cp) 2 [(CH 3 CH 2 (C 5 H 4 )) 2 Mg] zirconium oxide film, hafnium oxide film, and magnesium oxide film by atomic layer deposition using ozone (O 3 ) as a precursor compound and oxygen source reaction gas each was formed. All substrates used for deposition for measuring the deposition rate were piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) were mixed in a 4:1 ratio for about 10 minutes, HF aqueous solution After soaking for about 2 minutes and taking it out, it was washed with distilled water to form a pure silicon surface from which the natural oxide film was removed, and then the oxide films were deposited.
화합물 2 및 화합물 5의 상부 표면 개질제 화합물과 Cp-Zr 및 Cp-Hf 및 Mg(EtCp)2 전구체 화합물은 스테인리스 스틸 재질의 용기에 담아 각각 30℃, 30℃, 100℃, 100℃, 및 60℃로 기화시켰다. 기화된 상부 표면 개질제 및 전구체 화합물의 응축(condensation)이 일어나지 않은 상태로 반응기(chamber)까지 이동시키기 위하여 용기부터 반응기까지의 이동 공간은 120℃ 내지 150℃로 순차적으로 높여 가열하였다. 화합물 2 및 화합물 5의 상부 표면 개질제 화합물을 반응기까지 이동시키기 위한 운반 가스로 200 sccm 내지 500 sccm의 유속을 갖는 아르곤(Ar) 가스를 사용하였다. 이후 반응기 내에 남은 상부 표면 개질제 화합물을 흘려보내기 위하여 500 sccm 내지 2000sccm의 유속을 갖는 아르곤 가스를 사용하였다. 이후 Cp-Zr 및 Cp-Hf 및 Mg(EtCp)2 전구체 화합물을 반응기까지 이동시키기 위한 운반 가스로 200 sccm 내지 500sccm의 유속을 갖는 아르곤(Ar) 가스를 사용하였다. 이후 반응기 내에 남은 상부 표면 개질제 및 Cp-Zr 및 Cp-Hf 및 [{CH3CH2(C5H4)}2Mg] 전구체 화합물을 흘려보내기 위하여 500 sccm 내지 2000sccm의 유속을 갖는 아르곤 가스를 사용하였다. 이후 산소원인 O2를 500 sccm 내지 1000sccm의 유속으로 흘려 오존 생성기로 보낸 후 약 180 g/m3 내지 220 g/m3 농도의 오존을 생성하여 반응 가스로 사용하였다. 이후 반응기 내에 남은 상부 표면 개질제, 및 Cp-Zr, Cp-Hf 및 Mg(EtCp)2 전구체 화합물, 오존 및 반응 부산물 등을 흘려보내기 위하여 500 sccm 내지 2000 sccm의 유속을 갖는 아르곤 가스를 사용하였다. 이때 반응기의 공정 압력은 0.9 torr 내지 1.2 torr로 측정되었으며, 기화된 상부 표면 개질제 화합물의 공급 시간을 약 1 초 내지 30초로 하였고, 반응기 내 퍼지 시간을 약 5 초 내지 30초로 하였고, 기화된 Cp-Zr, Cp-Hf 및 Mg(EtCp)2 전구체 화합물의 공급 시간을 약 5 초 내지 20초로 하였고, 반응기 내 퍼지 시간을 약 5 초 내지 30 초로 하였고, 오존 공급 시간을 약 5 초 내지 30초로 하였고, 반응기 내 퍼지 시간을 약 5 초 내지 30초로 하였다. 모든 공정은 상기 증착 주기를 100 회 반복하여 지르코늄-, 하프늄-, 및 마그네슘-산화막을 증착하였고 엘립소미터를 사용하여 각각의 두께 및 증착률을 확인하였다. The top surface modifier compounds of compounds 2 and 5 and the Cp-Zr and Cp-Hf and Mg ( Et Cp) 2 precursor compounds were placed in a stainless steel container at 30° C., 30° C., 100° C., 100° C., and 60° C., respectively. It was vaporized to °C. In order to move the vaporized upper surface modifier and the precursor compound to the reactor in a state in which condensation did not occur, the moving space from the vessel to the reactor was sequentially raised to 120° C. to 150° C. and heated. Argon (Ar) gas having a flow rate of 200 sccm to 500 sccm was used as a carrier gas for moving the upper surface modifier compound of Compound 2 and Compound 5 to the reactor. Thereafter, argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier compound remaining in the reactor. Thereafter, argon (Ar) gas having a flow rate of 200 sccm to 500 sccm was used as a carrier gas for moving the Cp-Zr and Cp-Hf and Mg( Et Cp) 2 precursor compounds to the reactor. Thereafter, argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier and Cp-Zr and Cp-Hf and [{CH 3 CH 2 (C 5 H 4 )} 2 Mg] precursor compounds remaining in the reactor. did After that, O 2 as an oxygen source was flowed at a flow rate of 500 sccm to 1000 sccm and sent to an ozone generator, and then ozone at a concentration of about 180 g/m 3 to 220 g/m 3 was generated and used as a reaction gas. Thereafter, argon gas having a flow rate of 500 sccm to 2000 sccm was used to flow the upper surface modifier remaining in the reactor, and Cp-Zr, Cp-Hf and Mg( Et Cp) 2 precursor compounds, ozone, and reaction byproducts. At this time, the process pressure of the reactor was measured to be 0.9 torr to 1.2 torr, the supply time of the vaporized upper surface modifier compound was about 1 to 30 seconds, the purge time in the reactor was about 5 to 30 seconds, and the vaporized Cp- The supply time of the Zr, Cp-Hf and Mg( Et Cp) 2 precursor compounds was about 5 to 20 seconds, the purge time in the reactor was about 5 to 30 seconds, and the ozone supply time was about 5 to 30 seconds. , the purge time in the reactor was set to about 5 to 30 seconds. In all processes, the deposition cycle was repeated 100 times to deposit zirconium-, hafnium-, and magnesium-oxide films, and the thickness and deposition rate of each were checked using an ellipsometer.
Cp-Zr 전구체 화합물의 온도 변화 및 상부 표면 개질제 사용 여부에 따른 증착 특성을 확인하기 위하여, 먼저 상부 표면 개질제를 사용하지 않고 Cp-Zr 화합물만을 사용하여 250℃부터 340℃까지 10℃ 내지 25℃ 간격으로 증가시키며 지르코늄 산화막을 증착하였고, 이후 화합물 2의 상부 표면 개질제 화합물을 사용하여 250℃부터 340℃까지 10℃ 내지 25℃ 간격으로 증가시키며 지르코늄 산화막을 증착하였고, 결과는 도 6에 나타내었다.In order to check the deposition characteristics according to the temperature change of the Cp-Zr precursor compound and whether or not the upper surface modifier is used, first, using only the Cp-Zr compound without using the upper surface modifier, from 250°C to 340°C, 10°C to 25°C interval A zirconium oxide film was deposited while increasing, and then, using the upper surface modifier compound of Compound 2, the zirconium oxide film was deposited at intervals of 10 °C to 25 °C from 250 °C to 340 °C, and the results are shown in FIG. 6 .
Cp-Hf 전구체 화합물의 온도 변화 및 상부 표면 개질제 사용 여부에 따른 증착 특성을 확인하기 위하여, 먼저 상부 표면 개질제를 사용하지 않고 Cp-Hf 화합물만을 사용하여 250℃부터 400℃까지 10℃ 내지 25℃ 간격으로 증가시키며 하프늄 산화막을 증착하였다. 또한, 상부 표면 개질제의 종류에 따른 증착 특성을 확인하기 위하여, 화합물 2 및 화합물 5의 상부 표면 개질제 화합물을 각각 사용하여 250℃부터 400℃까지 10℃ 내지 25℃ 간격으로 증가시키며 하프늄 산화막을 증착하였다. 상기 증착 결과는 도 7에 나타내었다.In order to check the deposition characteristics according to the temperature change of the Cp-Hf precursor compound and whether or not the upper surface modifier is used, first, using only the Cp-Hf compound without using the upper surface modifier, from 250°C to 400°C, 10°C to 25°C interval was increased to deposit a hafnium oxide film. In addition, in order to confirm the deposition characteristics according to the type of the upper surface modifier, the upper surface modifier compound of Compound 2 and Compound 5 was used, respectively, and the hafnium oxide film was deposited from 250 ° C to 400 ° C at 10 ° C to 25 ° C intervals. . The deposition result is shown in FIG. 7 .
Mg(EtCp)2 전구체 화합물의 온도 변화 및 상부 표면 개질제 사용 여부에 따른 증착 특성을 확인하기 위하여, 먼저 상부 표면 개질제를 사용하지 않고 Mg(EtCp)2 화합물만을 사용하여 250℃부터 340℃까지 10℃ 내지 25℃ 간격으로 증가시키며 마그네슘 산화막을 증착하였다. 또한, 상부 표면 개질제의 종류에 따른 증착 특성을 확인하기 위하여, 화합물 2 및 화합물 5의 상부 표면 개질제 화합물을 각각 사용하여 250℃부터 340℃까지 10℃ 내지 25℃ 간격으로 증가시키며 마그네슘 산화막을 증착하였다. 실험 결과는 도 8에 나타내었다.In order to check the deposition characteristics according to the temperature change of the Mg( Et Cp) 2 precursor compound and whether or not the upper surface modifier is used, first, using only the Mg( Et Cp) 2 compound without using the upper surface modifier, from 250° C. to 340° C. Magnesium oxide film was deposited at intervals of 10°C to 25°C. In addition, in order to confirm the deposition characteristics according to the type of the upper surface modifier, the upper surface modifier compound of Compound 2 and Compound 5 was used, respectively, and the magnesium oxide film was deposited from 250° C. to 340° C. at 10° C. to 25° C. intervals. . The experimental results are shown in FIG. 8 .
도 6에서 확인할 수 있듯이, 화합물 2의 상부 표면 개질제를 사용하였을 경우 Cp-Zr 전구체 화합물의 증착률이 약 34.3 내지 61.2%의 감소 효과를 나타내는 것을 확인하였다. As can be seen in FIG. 6 , when the upper surface modifier of Compound 2 was used, it was confirmed that the deposition rate of the Cp-Zr precursor compound decreased by about 34.3 to 61.2%.
도 7에서 확인할 수 있듯이, 화합물 2의 상부 표면 개질제를 사용하였을 경우 Cp-Hf 전구체 화합물의 증착률이 약 38.7 내지 56.0%의 감소 효과를 나타내는 것을 확인하였고, 화합물 5의 상부 표면 개질제를 사용하였을 경우 Cp-Hf 전구체 화합물의 증착률이 약 37.7 내지 75.4%의 감소 효과를 확인하였다. As can be seen in FIG. 7 , when the upper surface modifier of Compound 2 was used, it was confirmed that the deposition rate of the Cp-Hf precursor compound decreased by about 38.7 to 56.0%, and when the upper surface modifier of Compound 5 was used It was confirmed that the deposition rate of the Cp-Hf precursor compound was reduced by about 37.7 to 75.4%.
도 8에서 확인할 수 있듯이, 화합물 2의 상부 표면 개질제를 사용하였을 경우 Mg(EtCp)2 전구체 화합물의 증착률이 약 2.1 내지 48.6%의 감소 효과를 나타내는 것을 확인하였고, 화합물 5의 상부 표면 개질제를 사용하였을 경우 Mg(EtCp)2 전구체 화합물의 증착률이 약 74.8 내지 81.4%의 감소 효과를 확인하였다. As can be seen in Figure 8, when the upper surface modifier of compound 2 was used, it was confirmed that the deposition rate of the Mg( Et Cp) 2 precursor compound exhibited a reduction effect of about 2.1 to 48.6%, and the upper surface modifier of compound 5 was When used, it was confirmed that the deposition rate of the Mg ( Et Cp) 2 precursor compound was reduced by about 74.8 to 81.4%.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The above description of the present application is for illustration, and those of ordinary skill in the art to which the present application pertains will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and likewise components described as distributed may also be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 The scope of the present application is indicated by the claims to be described later rather than the detailed description, and is derived from the meaning and scope of the claims and their equivalents.

Claims (15)

  1. 하기 화학식 Ⅰ로서 표시되는, 상부 표면 개질제:A top surface modifier, represented by the formula (I):
    [화학식 Ⅰ][Formula Ⅰ]
    Figure PCTKR2021019788-appb-img-000015
    ;
    Figure PCTKR2021019788-appb-img-000015
    ;
    상기 화학식 Ⅰ에서, In the above formula (I),
    R1 및 R2는, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-5 알킬기, 또는 선형 또는 분지형의 C1-5 알킬기로 치환된 디알킬아미노기이거나; 또는 R1 및 R2는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이며,R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
    R3 및 R4는, 각각 독립적으로, 선형 또는 분지형의 C1-5 알킬기이거나; 또는 R3 및 R4는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이고,R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
    X는 -O-, -S-, 또는 -NH임.X is -O-, -S-, or -NH.
  2. 제 1 항에 있어서, The method of claim 1,
    R1 및 R2; 또는 R3 및 R4 중 어느 하나만 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기인 것인, 상부 표면 개질제.R 1 and R 2 ; Or, any one of R 3 and R 4 is a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other, the upper surface modifier.
  3. 제 1 항에 있어서, The method of claim 1,
    R1 및 R2는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 디메틸아미노기, 에틸메틸아미노기, 디에틸아미노기, 메틸프로필아미노기, 에틸프로필아미노기 또는 디프로필아미노기인이거나, 또는R 1 and R 2 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pen Tyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, dimethylamino group, ethylmethylamino group, diethylamino group, methylpropylamino group, ethylpropylamino group or dipropylamino group is, or
    R1 및 R2는 서로 연결되어 중심 탄소를 포함하는 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 또는 시클로헵틸기인 것인, R 1 and R 2 are a cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, or a cycloheptyl group connected to each other containing a central carbon,
    상부 표면 개질제.top surface modifier.
  4. 제 1 항에 있어서, The method of claim 1,
    R3 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 또는 3-펜틸기인 것인, R 3 and R 4 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pene which is a tyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, or 3-pentyl group,
    상부 표면 개질제.top surface modifier.
  5. 제 1 항에 있어서, The method of claim 1,
    하기 화합물 1 내지 화합물 5에서 선택되는 것인, 상부 표면 개질제:A top surface modifier, which is selected from the following compounds 1 to 5:
    [화합물 1][Compound 1]
    Figure PCTKR2021019788-appb-img-000016
    ;
    Figure PCTKR2021019788-appb-img-000016
    ;
    [화합물 2][Compound 2]
    Figure PCTKR2021019788-appb-img-000017
    ;
    Figure PCTKR2021019788-appb-img-000017
    ;
    [화합물 3][Compound 3]
    Figure PCTKR2021019788-appb-img-000018
    ;
    Figure PCTKR2021019788-appb-img-000018
    ;
    [화합물 4][Compound 4]
    Figure PCTKR2021019788-appb-img-000019
    ; 및
    Figure PCTKR2021019788-appb-img-000019
    ; and
    [화합물 5][Compound 5]
    Figure PCTKR2021019788-appb-img-000020
    .
    Figure PCTKR2021019788-appb-img-000020
    .
  6. 하기 화학식 Ⅰ로서 표시되는, 상부 표면 개질제를 포함하는, 상부 표면 개질제 조성물:A top surface modifier composition comprising a top surface modifier represented by the formula (I):
    [화학식 Ⅰ][Formula Ⅰ]
    Figure PCTKR2021019788-appb-img-000021
    ;
    Figure PCTKR2021019788-appb-img-000021
    ;
    상기 화학식 Ⅰ에서, In the above formula (I),
    R1 및 R2는, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-5 알킬기, 또는 선형 또는 분지형의 C1-5 알킬기로 치환된 디알킬아미노기이거나; 또는 R1 및 R2는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이며,R 1 and R 2 are each independently hydrogen or a dialkylamino group substituted with a linear or branched C 1-5 alkyl group, or a linear or branched C 1-5 alkyl group; Or R 1 and R 2 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
    R3 및 R4는, 각각 독립적으로, 선형 또는 분지형의 C1-5 알킬기이거나; 또는 R3 및 R4는 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기이고,R 3 and R 4 are each independently a linear or branched C 1-5 alkyl group; Or R 3 and R 4 are a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other,
    X는 -O-, -S-, 또는 -NH임.X is -O-, -S-, or -NH.
  7. 제 6 항에 있어서, 7. The method of claim 6,
    R1 및 R2; 또는 R3 및 R4 중 어느 하나만 서로 연결된 치환 또는 비치환된 C2-6 고리형 알킬기인 것인, 상부 표면 개질제 조성물.R 1 and R 2 ; Or, any one of R 3 and R 4 is a substituted or unsubstituted C 2-6 cyclic alkyl group connected to each other, the upper surface modifier composition.
  8. 제 6 항에 있어서, 7. The method of claim 6,
    상기 상부 표면 개질제는 하기 화합물 1 내지 화합물 5에서 선택되는 하나 이상을 포함하는 것인, 상부 표면 개질제 조성물:The upper surface modifier composition comprising at least one selected from the following compounds 1 to 5, the upper surface modifier composition:
    [화합물 1][Compound 1]
    Figure PCTKR2021019788-appb-img-000022
    ;
    Figure PCTKR2021019788-appb-img-000022
    ;
    [화합물 2][Compound 2]
    Figure PCTKR2021019788-appb-img-000023
    ;
    Figure PCTKR2021019788-appb-img-000023
    ;
    [화합물 3][Compound 3]
    Figure PCTKR2021019788-appb-img-000024
    ;
    Figure PCTKR2021019788-appb-img-000024
    ;
    [화합물 4][Compound 4]
    Figure PCTKR2021019788-appb-img-000025
    ; 및
    Figure PCTKR2021019788-appb-img-000025
    ; and
    [화합물 5][Compound 5]
    Figure PCTKR2021019788-appb-img-000026
    .
    Figure PCTKR2021019788-appb-img-000026
    .
  9. 제 6 항 내지 제 8 항 중 어느 한 항에 따른 상부 표면 개질제 조성물 및 막 형성용 전구체를 이용하여 원자층 증착법에 의해 막을 형성하는, 막 형성 방법.A method for forming a film, wherein a film is formed by an atomic layer deposition method using the upper surface modifier composition according to any one of claims 6 to 8 and a precursor for film formation.
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 막은 금속막, 산화막, 질화막, 탄화막, 및 이들의 조합들로 이루어진 군에서 선택되는 것인, 막 형성 방법.wherein the film is selected from the group consisting of a metal film, an oxide film, a nitride film, a carbide film, and combinations thereof.
  11. 제 9 항에 있어서, 10. The method of claim 9,
    상기 막 형성용 전구체는 Be, Mg, Ca, Sr, Ba, Al, Ga, In, Sc, Y, La, Si, Ge, Sn, P, As. Sb, S, Se, Te, Ti, Zr, Hf, V, Ta, Nb, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, 및 Au에서 선택되는 하나 이상을 포함하는 것인, 막 형성 방법.The film-forming precursor is Be, Mg, Ca, Sr, Ba, Al, Ga, In, Sc, Y, La, Si, Ge, Sn, P, As. Sb, S, Se, Te, Ti, Zr, Hf, V, Ta, Nb, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, A method of forming a film comprising at least one selected from Cu, Ag, and Au.
  12. 제 9 항에 있어서,10. The method of claim 9,
    상기 막 형성 방법은 200℃ 내지 500℃에서 수행되는 것인, 막 형성 방법.The film forming method will be carried out at 200 °C to 500 °C, the film forming method.
  13. 제 9 항에 있어서, 10. The method of claim 9,
    반응 챔버 내에 기재를 제공하는 단계;providing a substrate within the reaction chamber;
    상기 기재 상에 상기 막 형성용 전구체를 포함하는 소스 물질 및 상기 상부 표면 개질제 조성물을 제공하는 단계; providing a source material including the precursor for film formation and the upper surface modifier composition on the substrate;
    상기 반응 챔버의 내부를 퍼지하는 단계; 및purging the inside of the reaction chamber; and
    상기 소스 물질과 반응하여 막을 형성할 수 있는 반응 물질을 제공하는 단계;providing a reactant material capable of reacting with the source material to form a film;
    를 포함하는, 막 형성 방법.A film forming method comprising a.
  14. 제 13 항에 있어서, 14. The method of claim 13,
    상기 상부 표면 개질제 조성물을 제공하는 것은 상기 막 형성용 전구체를 포함하는 소스 물질을 제공하는 것과 동시 또는 시간적으로 중첩되도록 수행되거나, 이전 또는 이후에 수행되는 것인, 막 형성 방법.The method of claim 1, wherein the providing of the upper surface modifier composition is performed simultaneously or temporally overlapping with, or performed before or after, providing the source material including the precursor for forming the film.
  15. 제 13 항에 있어서,14. The method of claim 13,
    상기 반응 물질은 암모니아, 질소, 히드라진, 디메틸 히드라진, 수증기, 산소, 및 오존에서 선택되는 하나 이상인 것인, 막 형성 방법.wherein the reactant is at least one selected from ammonia, nitrogen, hydrazine, dimethyl hydrazine, water vapor, oxygen, and ozone.
PCT/KR2021/019788 2020-12-24 2021-12-24 Thin film forming method using top-surface modifier WO2022139535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180067978.8A CN116324025A (en) 2020-12-24 2021-12-24 Film forming method using upper surface modifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200182913 2020-12-24
KR10-2020-0182913 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022139535A1 true WO2022139535A1 (en) 2022-06-30

Family

ID=82159976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019788 WO2022139535A1 (en) 2020-12-24 2021-12-24 Thin film forming method using top-surface modifier

Country Status (3)

Country Link
KR (1) KR102723801B1 (en)
CN (1) CN116324025A (en)
WO (1) WO2022139535A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240049771A (en) * 2022-10-07 2024-04-17 솔브레인 주식회사 Dielectric film activator, method for preparing depostiion films, semiconductor and semiconductor device prepared thereof
WO2024076218A1 (en) * 2022-10-07 2024-04-11 솔브레인 주식회사 Chalcogenide-based thin-film modifier, and semiconductor substrate and semiconductor device produced using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234343A (en) * 2000-02-17 2001-08-31 Asahi Denka Kogyo Kk Metallic compound solution and method for producing thin film using the same
US20010022990A1 (en) * 2000-02-28 2001-09-20 Yoshimi Sato Coating solutions for use in forming bismuth-based ferroelectric thin films and a method of forming bismuth-based ferroelectric thin films using the coating solutions
KR20070026658A (en) * 2004-06-10 2007-03-08 미츠비시 마테리알 가부시키가이샤 Solution raw material for organic metal chemical vapor deposition and complex oxide dielectric thin film formed by using such raw material
US20130078392A1 (en) * 2011-09-27 2013-03-28 Air Products And Chemicals, Inc. Halogenated organoaminosilane precursors and methods for depositing films comprising same
WO2021133774A1 (en) * 2019-12-27 2021-07-01 Versum Materials Us, Llc Method for depositing a film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190061877A (en) 2017-11-28 2019-06-05 주식회사 원익아이피에스 Method of depositing thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234343A (en) * 2000-02-17 2001-08-31 Asahi Denka Kogyo Kk Metallic compound solution and method for producing thin film using the same
US20010022990A1 (en) * 2000-02-28 2001-09-20 Yoshimi Sato Coating solutions for use in forming bismuth-based ferroelectric thin films and a method of forming bismuth-based ferroelectric thin films using the coating solutions
KR20070026658A (en) * 2004-06-10 2007-03-08 미츠비시 마테리알 가부시키가이샤 Solution raw material for organic metal chemical vapor deposition and complex oxide dielectric thin film formed by using such raw material
US20130078392A1 (en) * 2011-09-27 2013-03-28 Air Products And Chemicals, Inc. Halogenated organoaminosilane precursors and methods for depositing films comprising same
WO2021133774A1 (en) * 2019-12-27 2021-07-01 Versum Materials Us, Llc Method for depositing a film

Also Published As

Publication number Publication date
TW202231643A (en) 2022-08-16
KR20220092440A (en) 2022-07-01
KR102723801B1 (en) 2024-10-31
CN116324025A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2022139535A1 (en) Thin film forming method using top-surface modifier
WO2012018210A2 (en) Method for depositing cyclic thin film
WO2021133080A1 (en) Yttrium/lanthanide metal precursor compound, composition comprising same for forming film, and method for forming yttrium/lanthanide metal-containing film using composition
WO2021060864A1 (en) Thin film fabrication method
WO2021096326A1 (en) Method for forming thin film using surface protection material
WO2010071364A9 (en) Organometallic precursor compound for thin film vapor deposition of metallic or metal oxide thin film and method for thin film vapor deposition using same
WO2021060860A1 (en) Method for manufacturing thin film
WO2015130108A1 (en) Precursor composition for forming zirconium-containing film and method for forming zirconium-containing film using same
WO2012176989A1 (en) A diamine compound or its salt, preparing method of the same, and uses of the same
WO2015142053A1 (en) Organic germanium amine compound and method for depositing thin film using same
US20150035119A1 (en) Capacitors and methods with praseodymium oxide insulators
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2019156400A1 (en) Organometallic compounds and thin film using same
WO2022025332A1 (en) Cobalt compound, precursor composition including same, and method for preparing thin film using same
US7829457B2 (en) Protection of conductors from oxidation in deposition chambers
KR20220087543A (en) Methods for growing low resistivity metal containing films
WO2022055103A1 (en) Method for forming region-selective thin film using selectivating agent
WO2020130216A1 (en) Rare earth precursor, manufacturing method therefor, and method for forming thin film by using same
WO2020130215A1 (en) Cobalt precursor, method for preparing same, and method for preparing thin film using same
WO2022239948A1 (en) Thin film formation method
WO2021141324A1 (en) Method for forming thin film using surface protection material
WO2022169290A1 (en) Hafnium precursor compound, composition for forming hafnium-containing film, comprising same, and method for forming hafnium-containing film
WO2021261890A1 (en) Precursor for formation of thin film, preparation method therefor, and method for forming thin film comprising same
WO2024196152A1 (en) Method for preparing ruthenium-containing thin film
WO2022139345A1 (en) Novel compound, precursor composition comprising same, and method for preparing thin film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911600

Country of ref document: EP

Kind code of ref document: A1