WO2022138804A1 - リチウムイオン伝導性固体電解質および全固体電池 - Google Patents
リチウムイオン伝導性固体電解質および全固体電池 Download PDFInfo
- Publication number
- WO2022138804A1 WO2022138804A1 PCT/JP2021/047810 JP2021047810W WO2022138804A1 WO 2022138804 A1 WO2022138804 A1 WO 2022138804A1 JP 2021047810 W JP2021047810 W JP 2021047810W WO 2022138804 A1 WO2022138804 A1 WO 2022138804A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- lithium ion
- group
- ion conductive
- positive electrode
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 148
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 37
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 239000013078 crystal Substances 0.000 claims abstract description 51
- 239000007774 positive electrode material Substances 0.000 claims abstract description 40
- 239000007773 negative electrode material Substances 0.000 claims abstract description 26
- 150000004770 chalcogenides Chemical class 0.000 claims abstract description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 55
- 229910001416 lithium ion Inorganic materials 0.000 claims description 54
- 229910052719 titanium Inorganic materials 0.000 claims description 35
- 229910052782 aluminium Inorganic materials 0.000 claims description 34
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 28
- 229910052796 boron Inorganic materials 0.000 claims description 28
- 229910052698 phosphorus Inorganic materials 0.000 claims description 27
- 229910052760 oxygen Inorganic materials 0.000 claims description 26
- 229910052720 vanadium Inorganic materials 0.000 claims description 26
- 229910052715 tantalum Inorganic materials 0.000 claims description 25
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 25
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 24
- 239000011574 phosphorus Substances 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 21
- 229910052759 nickel Inorganic materials 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 19
- 229910052748 manganese Inorganic materials 0.000 claims description 18
- 229910052732 germanium Inorganic materials 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 229910052733 gallium Inorganic materials 0.000 claims description 13
- 229910052758 niobium Inorganic materials 0.000 claims description 13
- 239000010955 niobium Substances 0.000 claims description 13
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000000470 constituent Substances 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052798 chalcogen Inorganic materials 0.000 claims description 5
- 150000001787 chalcogens Chemical class 0.000 claims description 5
- 229910012506 LiSi Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 3
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims description 3
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 claims description 3
- 229910013290 LiNiO 2 Inorganic materials 0.000 claims description 3
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 56
- 239000010936 titanium Substances 0.000 description 31
- 239000000126 substance Substances 0.000 description 24
- 239000002994 raw material Substances 0.000 description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 238000010304 firing Methods 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 239000000843 powder Substances 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 5
- 235000019838 diammonium phosphate Nutrition 0.000 description 5
- 238000004453 electron probe microanalysis Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 5
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 5
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 4
- 229920000459 Nitrile rubber Polymers 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000005062 Polybutadiene Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000002134 carbon nanofiber Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000011244 liquid electrolyte Substances 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920002857 polybutadiene Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- -1 that is Substances 0.000 description 3
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 229910012258 LiPO Inorganic materials 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000003991 Rietveld refinement Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 241000545067 Venus Species 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 150000002641 lithium Chemical group 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 239000012856 weighed raw material Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910010603 Li6.25La3Zr2Al0.25O12 Inorganic materials 0.000 description 1
- 229910013184 LiBO Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910003870 O—Li Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000002203 sulfidic glass Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- FYNXQOUDSWHQQD-UHFFFAOYSA-N tantalum(5+) pentanitrate Chemical compound [Ta+5].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYNXQOUDSWHQQD-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a novel solid electrolyte and an all-solid-state battery having excellent lithium ion conductivity.
- lithium-ion batteries that can be charged and discharged are used in various application fields, from portable electronic devices to batteries for electric vehicles.
- commercial lithium-ion batteries have important safety issues in using flammable organic liquid electrolytes with low thermal stability. Further, when lithium dendrites grow in the organic electrolyte, there is a problem that the lithium ion battery is short-circuited.
- Solid lithium-ion electrolytes with high ionic conductivity and excellent mechanical strength can be applied to lithium-air batteries, lithium-based redox-flow cells, Li-H 2 O 2 semi-fuel cells, chemical sensors, etc. It has become.
- the sulfide-based solid electrolyte has a lithium ion conductivity as high as or higher than that of the conventional liquid electrolyte.
- the oxide-based solid electrolyte is relatively excellent in ease of handling, mechanical properties, chemical properties and thermal stability.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2020-17392 describes a raw material composition containing a constituent component of a sulfide containing an element Li, an element P and an element S, and tetrahydrofuran. Disclosed is a method for producing a sulfide solid electrolyte in which the above is mixed to obtain a precursor and then calcined to volatilize tetrahydrofuran.
- Non-Patent Document 1 states that LiTa 2 PO 8 , which has a monoclinic crystal structure, has high lithium ion conductivity (total conductivity (25 ° C.): 2.5 ⁇ 10). -4 S ⁇ cm -1 ) is described.
- Patent Document 2 discloses a fixed electrolyte and an all-solid-state battery that can realize high ionic conductivity even when fired at a low temperature, and the solid electrolyte includes a lithium ion conductive substance having a garnet-type structure and a LISION type. It is disclosed that a lithium ion conductive substance having a structure and a compound containing Li and B are included.
- Patent Document 3 discloses an ion conductive solid electrolyte compound, and LiTa 2 PO 8 produced based on Example 1 is a monoclinic crystal having an a-axis length of 9.716 ⁇ and a b-axis length of 11.536 ⁇ . It is disclosed that it has a crystal structure with a c-axis length of 10.697 ⁇ and a lattice constant of an axial angle of ⁇ 90.04 °.
- an object of the present invention is to provide a novel solid electrolyte having excellent ionic conductivity.
- the configuration example of the present invention is as follows. [1] It has a monoclinic crystal structure and has a monoclinic crystal structure.
- the a-axis length of the chalcogen is 9.690 to 9.711 ⁇
- the b-axis length is 11.520 to 11.531 ⁇
- the c-axis length is 10.680 to 10.695 ⁇
- the axial angle ⁇ is 90.01.
- a positive electrode having a positive electrode active material and a positive electrode Negative electrode with negative electrode active material and negative electrode A solid electrolyte layer between the positive electrode and the negative electrode, Including An all-solid-state battery in which the solid electrolyte layer contains the lithium ion conductive solid electrolyte according to any one of [1] to [12].
- the positive electrode active material is LiM3PO 4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements V and O. ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti.
- Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O. ], LiVP 2 O 7 , Li x7 V y7 M7 z7 [2 ⁇ x7 ⁇ 4, 1 ⁇ y7 ⁇ 3, 0 ⁇ z7 ⁇ 1, 1 ⁇ y7 + z7 ⁇ 3, M7 is Ti, Ge, Al, Ga and Zr. It is one or more elements selected from the group consisting of. ], Li 1 + x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
- the negative electrode active material is LiM3PO 4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements V and O.
- LiM5VO 4 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti.
- Li 2 M6P 2 O 7 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
- LiVP 2 O 7 Li x7 V y7 M7 z7 [2 ⁇ x7 ⁇ 4, 1 ⁇ y7 ⁇ 3, 0 ⁇ z7 ⁇ 1, 1 ⁇ y7 + z7 ⁇ 3, M7 is Ti, Ge, Al, Ga and Zr. It is one or more elements selected from the group consisting of.
- M8 is one or more elements selected from the group consisting of Ti and Ge. ], (Li 3-a9x9 + (5-b9) y9 M9 x9) (V 1-y9 M10 y9 ) O 4 [M9 is one or more elements selected from the group consisting of Mg, Al, Ga and Zn. , M10 is one or more elements selected from the group consisting of Zn, Al, Ga, Si, Ge, P and Ti, and 0 ⁇ x9 ⁇ 1.0, 0 ⁇ y9 ⁇ 0.6, and a9 are M9.
- B9 is the average valence of M10.
- a lithium ion conductive solid electrolyte composed of a single crystal having a predetermined crystal structure.
- This solid electrolyte has excellent thermal and chemical stability and high ionic conductivity.
- Such solid electrolytes can be used in whole solid lithium ion batteries, lithium-air batteries, Li-redox flow batteries, Li-H 2 O 2 semi-fuel cells, chemical sensors, etc. It can be applied to ionic conductive electrolyte materials.
- the lithium ion conductive solid electrolyte according to the present invention has a simple manufacturing method. For example, while suppressing decomposition and alteration of materials such as active materials contained in the positive electrode active material layer and the negative electrode active material layer, the positive electrode is used. An all-solid-state battery can be easily manufactured by laminating it with a material or a negative electrode material and sintering it together. Further, according to the present invention, since low-temperature firing is possible, miniaturization is possible, and the influence on other base materials and the like can be reduced.
- Example 6 is an XRD diagram of the solid electrolyte obtained in Example 3 and Comparative Example 1. It is a secondary electron image and a boron mapping image by EPMA of the solid electrolyte obtained in Example 3.
- FIG. 6 is an XRD diagram of the solid electrolyte obtained in Example 3 and Comparative Example 1. It is a secondary electron image and a boron mapping image by EPMA of the solid electrolyte obtained in Example 3.
- the lithium ion conductive solid electrolyte according to one embodiment of the present invention contains a chalcogenide, has a monoclinic crystal structure, and has an a-axis length of the monoclinic. 9.690 to 9.711 ⁇ , b-axis length is 11.520 to 11.531 ⁇ , c-axis length is 10.680 to 10.695 ⁇ , axial angle ⁇ is in the range of 90.01 to 90.08 °, and lithium. It has ionic conductivity.
- a lithium ion conductive solid electrolyte having a lithium ion conductivity superior to that of a conventional lithium ion conductive solid electrolyte is provided.
- the crystal structure of the monoclinic crystal, the a-axis length, b-axis length and c-axis length of the monoclinic crystal, and the axial angle ⁇ are composed and crystal structure by morphological observation by SEM-EDX, chemical analysis, X-ray diffraction, etc. Etc. can be confirmed.
- the shape of the solid electrolyte is not particularly limited, and may be in the form of particles, that is, powder, may be shaped into pellets, sheets, or the like, or may be in the form of amorphous lumps, depending on the form of use. It is selected as appropriate.
- the chalcogenide in the present specification is a compound of a chalcogen element and an element having a lower electronegativity than that, and is an oxide, a sulfide, or the like. Of these, there is no particular limitation as long as it can form a monoclinic crystal having the above-mentioned characteristics, but among these, those containing oxygen are preferable in the present invention.
- the chalcogenide has the stoichiometric chemical formula of the following general formula (1).
- A is an element constituting a cation having an oxidation state of +1 and M is an element constituting a cation having an oxidation state of +4, +5 or +6, and T is M. It is an element constituting a cation having a +4, +5-valent or hexavalent oxidation state different from that of G, an element constituting a cation having a +3 valence oxidation state, and K being a chalcogen element.
- x and y are independent of each other and are greater than 0, and x is greater than 0 and less than or equal to 3y.
- a, b, c, and d are appropriately selected so as to be stoichiometric numbers.
- A contains one or more elements selected from the group consisting of lithium, sodium and hydrogen
- M contains titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten.
- Tin, lead, antimony and bismuth where T comprises one or more elements selected from the group consisting of silicon, germanium, phosphorus and arsenic.
- G may contain one or more elements selected from the group consisting of boron, aluminum and gallium
- K may contain one or more elements selected from the group consisting of oxygen, sulfur.
- A is lithium
- M is tantalum
- T is phosphorus
- G is boron
- K is oxygen
- the constituent elements are composed of oxygen
- M contains niobium.
- the present inventors estimate the specific structure of the monoclinic crystal as follows. The M is 6-coordinated by the K anion to form the octahedral unit of MK 6 , and the T is 4-coordinated by K to form the TK 4 tetrahedral unit. Then, some of the octahedral units of the MK 6 are combined with the two TK 4 tetrahedral units so as to share a vertex to form a trimer link unit.
- each trimer link unit the two TK 4 tetrahedral units are located at the first vertex of the octahedral unit of MK 6 and the second vertex facing the first vertex. It is bound so as to share the located K ion.
- Patent Document 3 The details of such a structure are disclosed in Patent Document 3.
- the A ion is arranged in the space between the octahedral unit of MK 6 and the tetrahedral unit of TK 4 tetrahedron.
- G exists at the grain boundaries as an oxide or a sulfide, and partially substituting T in the TK4 tetrahedral unit.
- a chalcogenide containing a specific monoclinic crystal can provide a solid electrolyte having sufficient ionic conductivity even if the firing temperature at the time of producing the solid electrolyte is low (eg, 900 ° C. or lower).
- the volume of the monoclinic unit cell is preferably in the range of 1193.0 to 1197.9 ⁇ 3 .
- the solid electrolyte has sufficient ionic conductivity.
- the upper limit is not particularly limited, but is preferably less than 100.0%, more preferably 99.5% or less.
- the solid electrolyte tends to have a high total ionic conductivity.
- the compound that may be contained in addition to the chalcogenide of (1) include LiPO 3 , Li 3 PO 4 , TaPO 5 , LiTa 3 O 8 and Li Ta O 3 .
- diffraction peaks derived from raw materials may be confirmed. Examples of raw materials include lithium carbonate (Li 2 CO 3 ), tantalum pentoxide (Ta 2 O 5 ), boric acid and the like.
- the content of monoclinic crystals in the solid electrolyte is, for example, the XRD figure of the solid electrolyte, which is known as the analysis software RIETAN-FP (creator; Fujio Izumi's homepage "RIETAN-FP VENUS system distribution file" (http: // //). It can be obtained from fujioizumi.verse.jp/download/download.html).) It can be calculated by performing a Riet belt analysis.
- RIETAN-FP creator; Fujio Izumi's homepage "RIETAN-FP VENUS system distribution file” (http: // //). It can be obtained from fujioizumi.verse.jp/download/download.html).
- the solid electrolyte of the present invention preferably contains chalcogenide containing lithium, tantalum, boron, phosphorus and oxygen as constituent elements.
- the monoclinic crystal preferably contains lithium, tantalum, phosphorus and oxygen as constituent elements.
- the boron content is preferably 0.10 atomic% or more, more preferably 0, from the viewpoint that the sintering temperature for obtaining a solid electrolyte having sufficient ionic conductivity can be further lowered. .50 atomic% or more.
- the upper limit is preferably 5.00 atomic% or less, and more preferably 3.00 atomic% or less.
- the content of tantalum is preferably 10.00 atomic% or more, more preferably 11.00 atomic% or more, from the viewpoint of becoming a solid electrolyte having higher lithium ion conductivity.
- the upper limit is preferably 17.00 atomic% or less, and more preferably 16.00 atomic% or less.
- the phosphorus content is preferably 5.00 atomic% or more, more preferably 6.00 atomic% or more, from the viewpoint of becoming a solid electrolyte having higher lithium ion conductivity.
- the upper limit is preferably 8.50 atomic% or less, and more preferably 8.00 atomic% or less.
- the content of the lithium element is preferably 5.00 atomic% or more, more preferably 6.00 atomic% or more, from the viewpoint of becoming a solid electrolyte having higher lithium ion conductivity.
- the upper limit is preferably 20.00 atomic% or less, and more preferably 15.00 atomic% or less.
- Preferred embodiments include niobium as well as lithium, tantalum, boron, phosphorus and oxygen.
- the content of niobium is preferably 0.10 atomic% or more, more preferably 0.10 atomic% or more, from the viewpoint that the firing temperature for obtaining a sintered body having sufficient ionic conductivity can be further lowered. It is 0.50 atomic% or more.
- the upper limit is 5.00 atomic% or less, more preferably 3.00 atomic% or less, still more preferably 2.00 atomic% or less, and even more preferably 1.60 atomic% or less.
- the upper limit of the content is preferably 0.15 atomic%. If the silicon content exceeds the above upper limit, a solid electrolyte having sufficient ionic conductivity may not be obtained.
- each element can be determined by a known means such as a high frequency inductively coupled plasma (ICP) emission spectrometer or Auger electron spectroscopy (AES).
- ICP inductively coupled plasma
- AES Auger electron spectroscopy
- the chalcogenide can be produced by calcining a raw material mixed so as to have a stoichiometric ratio of the above formula (1).
- the raw material is crushed and mixed with a ball mill or a bead mill, and then fired. At this time, a predetermined shape may be compressed and fired or sintered.
- the obtained calcined product is mixed with various additives as described later as necessary, crushed, shaped by compression molding such as press molding, and calcined or sintered to form a solid electrolyte. It is also possible to do.
- salts such as carbonates, nitrates and borates of A can be used, and as the raw material of M, compounds such as oxides and salts of M can be used.
- the raw material of T the oxide and salt of T can be used, and as the raw material of G, the oxide and salt of C can be used.
- Hydroxides also include hydroxides.
- the raw material of lithium includes lithium carbonate, lithium oxide, lithium nitrate, lithium hydroxide, lithium acetate and hydrates thereof. Will be. Among these, lithium carbonate, lithium hydroxide, and lithium acetate are preferable because they are easily decomposed and reacted. Further, a compound containing sodium or the like may be used as a raw material, and sodium and lithium may be ion-exchanged after firing.
- tantalum pentoxide and tantalum nitrate can be used as the raw material of tantalum.
- Phosphate is preferable as a raw material for phosphorus, and examples of the phosphate include diammonium hydrogen phosphate, monoammonium dihydrogen phosphate, and ammonium phosphate because they are easily decomposed and reacted.
- boron oxide can also be used as the raw material for boron.
- a salt containing two or more kinds of elements constituting a solid electrolyte may be used, for example, LiPO 3 , LiH 2 PO 4 , LiBO 2 , LiB 3 O 5 , Li 2 B 4 O 7 , Li 3 B 11 O 18 , Li 3 BO 3 , Li 3 B 7 O 12 , Li 4 B 2 O 5 , Li 6 B 4 O 9 , Li 3-x B 1-x C x O 3 (0 ⁇ x ⁇ 1) , Li 4-x B 2-x C x O 5 (0 ⁇ x ⁇ 2) and the like can also be used.
- Examples of the compound containing a niobium atom include oxides and salts, and for example, Nb 2 O 5 , LiNbO 3 , LiNb 3 O 8 , and NbPO 5 can be used. As each of these raw materials, one kind may be used, or two or more kinds may be used.
- the firing depends on the firing time, but it is heated at a temperature of 500 to 1200 ° C, preferably 700 to 1000 ° C for about 1 to 16 hours. As a result, the impurity component and the like contained in the raw material are volatilized and removed, and the desired electrolyte is obtained.
- Sintering of the compression-molded molded product is carried out by heating in a temperature range of 600 to 1200 ° C. for about 1 to 96 hours.
- the above firing and sintering may be carried out in an atmosphere, or may be carried out in an atmosphere of nitrogen gas and / or argon gas having an oxygen gas content adjusted in the range of 0 to 20% by volume, and hydrogen. It may be carried out in a reducing gas atmosphere such as a nitrogen-hydrogen mixed gas containing a reducing gas such as a gas.
- reducing gas ammonia gas, carbon monoxide gas, or the like may be used in addition to hydrogen gas.
- the all-solid-state battery of the present invention includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a solid electrolyte layer between the positive electrode and the negative electrode, and the solid electrolyte layer is the lithium ion described above. Contains conductive solid electrolytes.
- Solid electrolyte layer As the solid electrolyte, one kind alone or two or more kinds can be used. When two or more kinds of solid electrolytes are used, two or more kinds of solid electrolytes may be mixed, or two or more layers of each solid electrolyte may be formed to form a multilayer structure.
- the solid electrolyte layer is not particularly limited as long as it contains the solid electrolyte according to the present invention, and the content thereof is, for example, 50% by mass or more, may be in the range of 60% by mass or more and 100% by mass or less, and is 70% by mass. It may be in the range of% or more and 100% by mass or less, and may be 100% by mass. It is preferably composed of the above-mentioned solid electrolyte.
- the above-mentioned solid electrolyte is contained in the positive electrode active material layer and the negative electrode active material layer. By doing so, it is possible to improve the adhesion between the solid electrolyte layer and the positive electrode active material layer and the solid electrolyte layer and the negative electrode active material layer, thereby improving the ionic conductivity, which is preferable.
- the solid electrolyte layer may contain a binder from the viewpoint of exhibiting plasticity and the like.
- a binder examples include acrylonitrile-butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), styrene-butadiene rubber (SBR), and the like.
- ABR acrylonitrile-butadiene rubber
- BR butadiene rubber
- PVdF polyvinylidene fluoride
- SBR styrene-butadiene rubber
- the binder is preferably 5% by mass or less.
- the thickness of the solid electrolyte layer is not particularly limited, and is usually 0.1 ⁇ m or more and 1 mm or less.
- Examples of the method for forming the solid electrolyte layer include, as described above, a method of pressure molding a powder of a solid electrolyte material containing a solid electrolyte and, if necessary, other components. When the powder of the solid electrolyte material is pressure-molded, a press pressure of about 1 MPa or more and 600 MPa or less may be usually applied.
- the all-solid-state battery (hereinafter, also referred to as “the battery”) according to the embodiment of the present invention is a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a solid electrolyte between the positive electrode and the negative electrode.
- the solid electrolyte layer contains the present solid electrolyte.
- the battery may be a primary battery or a secondary battery, but is preferably a secondary battery from the viewpoint of more exerting the effect of the present invention, and is preferably a lithium ion secondary battery. It is more preferable to have.
- the structure of the battery is not particularly limited as long as a solid electrolyte layer is included between the positive electrode, the negative electrode, and the positive electrode and the negative electrode, and may be a so-called thin film type, laminated type, or bulk type.
- the positive electrode is not particularly limited as long as it has a positive electrode active material, but a positive electrode having a positive electrode current collector and a positive electrode active material layer is preferable.
- the positive electrode active material layer may contain a solid electrolyte, a conductive material, a binder and the like as optional components.
- the positive electrode active material may contain a lithium element or may not contain a lithium element.
- the thickness of the positive electrode active material layer may be appropriately selected depending on the structure of the battery to be formed, and is not particularly limited, but may be 30 nm or more and 5000 nm or less.
- the positive electrode active material is LiM3PO 4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements V and O. .. ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
- M7 is Ti, Ge, Al, Ga and Zr. It is one or more elements selected from the group consisting of. ], Li 1 + x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
- LiNi 1/3 Co 1/3 Mn 1/3 O 2 LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 CoP 2 O 7 , Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 ( It preferably contains one or more compounds selected from the group consisting of PO 4 ) 3 , LiNi 0.5 Mn 1.5 O 4 and Li 4 Ti 5 O 12 .
- a coat layer containing a Li ion conductive oxide may be formed on the surface of the positive electrode active material. This is because the reaction between the positive electrode active material and the solid electrolyte can be suppressed.
- the Li ion conductive oxide include LiNbO 3 , Li 4 Ti 5 O 12 , Li 3 PO 4 , and the like.
- the thickness of the coat layer is, for example, 0.1 nm or more, and may be 1 nm or more. On the other hand, the thickness of the coat layer is, for example, 100 nm or less, and may be 20 nm or less.
- the coverage of the coat layer on the surface of the positive electrode active material is, for example, 70% or more, and may be 90% or more.
- the content of the solid electrolyte in the positive electrode layer is not particularly limited, but may be in the range of, for example, 1% by mass to 80% by mass when the total mass of the positive electrode layer is 100% by mass.
- the solid electrolyte of the present invention may be used, and other than the solid electrolyte of the present invention, an oxide-based solid electrolyte and a sulfide-based solid electrolyte described later may be mentioned. Be done.
- Examples of the sulfide-based solid electrolyte include Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiX-Li 2 S-SiS 2 , LiX-Li 2 SP 2 S 5 , LiX-Li 2 .
- Examples thereof include O-Li 2 SP 2 S 5 , LiX-Li 2 SP 2 O 5 , LiX-Li 3 PO 4 -P 2 S 5 , and Li 3 PS 4 .
- "X" indicates a halogen element.
- oxide-based solid electrolyte examples include Li 6.25 La 3 Zr 2 Al 0.25 O 12 , Li 3 PO 4 , and Li 3 + x PO 4-x N x (1 ⁇ x ⁇ 3).
- the shape of the solid electrolyte is preferably particulate from the viewpoint of good handleability.
- the volume average particle size (D50) of the particles of the solid electrolyte is not particularly limited, but the lower limit is preferably 0.5 ⁇ m or more, and the upper limit is preferably 2 ⁇ m or less.
- the conductive material a known material can be used, and examples thereof include a carbon material and metal particles.
- the carbon material include at least one selected from the group consisting of carbon blacks such as acetylene black and furnace black, carbon nanotubes, and carbon nanofibers, and among them, carbon nanotubes from the viewpoint of electron conductivity. , And at least one selected from the group consisting of carbon nanofibers is preferable.
- the carbon nanotubes and carbon nanofibers may be VGCF (gas phase carbon fiber).
- the metal particles include particles such as Ni, Cu, Fe, and SUS.
- the content of the conductive material in the positive electrode active material layer is not particularly limited.
- binder examples include acrylonitrile-butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), styrene-butadiene rubber (SBR), and the like.
- ABR acrylonitrile-butadiene rubber
- BR butadiene rubber
- PVdF polyvinylidene fluoride
- SBR styrene-butadiene rubber
- the content of the binder in the positive electrode active material layer is not particularly limited.
- the thickness of the positive electrode active material layer is not particularly limited.
- the positive electrode active material layer can be formed by a conventionally known method. For example, a positive electrode active material and, if necessary, other components are added to the solvent and stirred to prepare a slurry for the positive electrode active material layer, and the slurry for the positive electrode active material layer is used as a positive electrode current collector or the like.
- a positive electrode active material layer is obtained by applying it on one surface of the support and drying it.
- the solvent examples include butyl acetate, butyl butyrate, heptane, N-methyl-2-pyrrolidone and the like.
- the method of applying the slurry for the positive electrode active material layer on one surface of a support such as a positive electrode current collector is not particularly limited, and is a doctor blade method, a metal mask printing method, an electrostatic coating method, a dip coating method, and a spray coating method. , Roll coat method, gravure coat method, screen printing method and the like.
- the support one having self-supporting property can be appropriately selected and used, and is not particularly limited, and for example, metal foils such as Cu and Al can be used.
- the positive electrode active material layer may be formed by pressure molding a powder of the positive electrode mixture containing the positive electrode active material and, if necessary, other components. When the powder of the positive electrode mixture is pressure-molded, a press pressure of about 1 MPa or more and 600 MPa or less is usually applied.
- the pressurizing method is not particularly limited, and examples thereof include a method of applying pressure using a flat plate press, a roll press, or the like.
- a known metal that can be used as a current collector for an all-solid-state battery can be used.
- Such metals include one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In.
- Metallic materials can be exemplified.
- the form of the positive electrode current collector is not particularly limited, and may be various forms such as a foil shape and a mesh shape.
- the shape of the positive electrode as a whole is not particularly limited, but it may be in the form of a sheet.
- the thickness of the positive electrode as a whole is not particularly limited, and may be appropriately determined according to the desired performance.
- the content of the positive electrode active material in the positive electrode active material layer is preferably 20 to 80% by volume, more preferably 30 to 70% by volume.
- the positive electrode active material functions favorably, and a battery having a high energy density tends to be easily obtained.
- the conductive auxiliary agent include metal materials such as Ag, Au, Pd, Pt, Cu and Sn, and carbon materials such as acetylene black, ketjen black, carbon nanotubes and carbon nanofibers.
- a compound similar to the compound (b), a compound containing a niobium atom, a compound containing a bismuth atom, and a compound containing a silicon atom are preferable.
- the additive used for the positive electrode active material layer may be one kind or two or more kinds, respectively.
- the positive electrode current collector is not particularly limited as long as the material is one that conducts electrons without causing an electrochemical reaction.
- Examples of the material of the positive electrode current collector include simple metals such as copper, aluminum, and iron, alloys containing these metals, and conductive metal oxides such as antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO). Can be mentioned.
- a current collector having a conductive adhesive layer provided on the surface of the conductor can also be used.
- the conductive adhesive layer include a layer containing a granular conductive material, a fibrous conductive material, and the like.
- the negative electrode is not particularly limited as long as it has a negative electrode active material, but a negative electrode having a negative electrode current collector and a negative electrode active material layer is preferable.
- the negative electrode active material layer is not particularly limited as long as it contains the negative electrode active material, but preferably contains the negative electrode active material and the solid electrolyte, and may further contain additives such as a conductive auxiliary agent and a sintering aid. ..
- the thickness of the negative electrode active material layer is not particularly limited, but may be 30 nm or more and 5000 nm or less.
- LiM3PO 4 [M3 is a group consisting of Mn, Co, Ni, Fe, Al, Ti and V. One or more elements selected from the above, or two elements V and O.
- LiM5VO 4 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti.
- Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
- M7 is Ti, Ge, Al, Ga and Zr. It is one or more elements selected from the group consisting of. ], Li 1 + x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
- M9 is one or more elements selected from the group consisting of Mg, Al, Ga and Zn.
- M10 is one or more elements selected from the group consisting of Zn, Al, Ga, Si, Ge, P and Ti, and 0 ⁇ x9 ⁇ 1.0, 0 ⁇ y9 ⁇ 0.6, and a9 are M9.
- B9 is the average valence of M10.
- LiNb 2 O 7 , Li 4 Ti 5 O 12 , Li 4 Ti 5 PO 12 , TiO 2 , LiSi and graphite preferably contain one or more compounds selected from the group.
- the content of the negative electrode active material in the negative electrode active material layer is preferably 20 to 80% by volume, more preferably 30 to 70% by volume.
- the negative electrode active material functions favorably, and a battery having a high energy density tends to be easily obtained.
- the negative electrode active material layer may contain a solid electrolyte.
- the solid electrolyte include known ones including the solid electrolyte of the present invention.
- the negative electrode current collector may be a material that does not alloy with Li, and examples thereof include SUS, copper, and nickel. Examples of the form of the negative electrode current collector include a foil shape and a plate shape.
- the plan view shape of the negative electrode current collector is not particularly limited, and examples thereof include a circular shape, an elliptical shape, a rectangular shape, and an arbitrary polygonal shape.
- the thickness of the negative electrode current collector varies depending on the shape, but may be, for example, in the range of 1 ⁇ m to 50 ⁇ m and may be in the range of 5 ⁇ m to 20 ⁇ m.
- the negative electrode active material layer can be formed by a conventionally known method.
- the all-solid-state battery includes, if necessary, a positive electrode, a negative electrode, and an exterior body that houses the solid electrolyte layer.
- the material of the exterior body is not particularly limited as long as it is stable to the electrolyte, and examples thereof include resins such as polypropylene, polyethylene, and acrylic resin.
- the all-solid-state battery may be an all-solid-state lithium secondary battery.
- Examples of the shape of the all-solid-state battery include a coin type, a laminated type, a cylindrical type, a square type, and the like.
- the method for manufacturing the all-solid-state battery is not particularly limited, and the layers may be laminated and pressure-compressed as necessary.
- Example 1 Lithium carbonate (Li 2 CO 3 ) (Merck Sigma Aldrich, purity 99.0% or higher), Tantalum pentoxide (Ta 2 O 5 ) (Fuji Film Wako Pure Chemical Industries, Ltd., purity 99.9%), Tantalum (H 3 BO 3 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.5% or higher) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) (manufactured by Merck Sigma Aldrich, Purity of 98% or more) was weighed so that the atomic number ratio of lithium, tantalum, boron and phosphorus (Li: Ta: B: P) satisfied the chemical quantitative formula in Table 1.
- lithium carbonate is weighed so as to be 1.05 times the lithium atomic weight in Table 1, and further suppresses the formation of by-products in the firing step. Therefore, diammonium hydrogen phosphate was weighed so that the amount of lithium atom in Table 1 was multiplied by 1.06.
- An appropriate amount of toluene was added to each of the weighed raw material powders, and the mixture was pulverized and mixed for 2 hours using a zirconia ball mill (zirconia balls: diameter 5 mm) to obtain a primary mixture.
- the obtained primary mixture is placed in an alumina boat, and the temperature is raised to 1000 ° C. under the condition of a heating rate of 10 ° C./min in an atmosphere of air (flow rate: 100 mL / min) using a rotary firing furnace (manufactured by Motoyama Co., Ltd.). It was heated and calcined at the same temperature for 4 hours to obtain a primary calcined product.
- the obtained pellets are placed in an alumina boat, and the temperature is raised to 850 ° C in an atmosphere of air (flow rate: 100 mL / min) using a rotary firing furnace (manufactured by Motoyama Co., Ltd.) at a heating rate of 10 ° C / min. Then, it was fired at the same temperature for 96 hours to obtain a sintered body. After the temperature of the obtained sintered body was lowered to room temperature, it was taken out from a rotary firing furnace, transferred to a dehumidified nitrogen gas atmosphere, and stored to obtain a solid electrolyte.
- a rotary firing furnace manufactured by Motoyama Co., Ltd.
- Examples 2 to 4 A solid electrolyte was prepared in the same manner as in Example 1 except that the mixing ratio of the raw materials was changed so that the atomic number ratios of lithium, tantalum, boron and phosphorus satisfied the stoichiometric formulas in Table 1.
- Example 5 In Example 1, niobium pentoxide (Nb 2 O 5 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.9%) was further used, and the atomic number ratios of lithium, tantalum, niobium, boron and phosphorus (Li) were further used. : Ta: Nb: B: P) produced a solid electrolyte in the same manner as in Example 1 except that each raw material powder was used so as to satisfy the chemical quantitative formula in Table 1.
- Example 7 silicon dioxide (SiO 2 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.9%) was further used, and the atomic number ratios of lithium, tantalum, boron, phosphorus and silicon (Li: Ta:: A solid electrolyte was prepared in the same manner as in Example 1 except that each raw material powder was used so that B: P: Si) satisfied the stoichiometric formula in Table 1.
- the obtained primary mixture is placed in an alumina boat, and the temperature is raised to 1000 ° C. under the condition of a heating rate of 10 ° C./min in an atmosphere of air (flow rate: 100 mL / min) using a rotary firing furnace (manufactured by Motoyama Co., Ltd.). It was heated and calcined at the same temperature for 4 hours to obtain a primary calcined product.
- the obtained primary calcined product and Li 4 B 2 O 5 obtained by a known production method were weighed so as to have a molar ratio of 0.85: 0.15. Each weighed powder was pulverized and mixed for 30 minutes using an agate mortar to obtain a secondary mixture.
- a pressure of 40 MPa is applied to the obtained secondary mixture by a hydraulic press to form a disk-shaped molded product having a diameter of 10 mm and a thickness of 1 mm, and then a CIP (cold hydrostatic isobaric press) is formed. ), A pellet was prepared by applying a pressure of 300 MPa to the disk-shaped molded body.
- the obtained pellets are placed in an alumina boat, and the temperature is raised to 850 ° C in an atmosphere of air (flow rate: 100 mL / min) using a rotary firing furnace (manufactured by Motoyama Co., Ltd.) at a heating rate of 10 ° C / min. Then, it was fired at the same temperature for 96 hours to obtain a sintered body. After the temperature of the obtained sintered body was lowered to room temperature, it was taken out from a rotary firing furnace, transferred to a dehumidified nitrogen gas atmosphere, and stored to obtain a solid electrolyte.
- a rotary firing furnace manufactured by Motoyama Co., Ltd.
- the obtained XRD figure can be obtained from the known analysis software RIETAN-FP (creator; Fujio Izumi's homepage "RIETAN-FP VENUS system distribution file" (http://fujioizumi.verse.jp/download/download.html)).
- RIETAN-FP creator; Fujio Izumi's homepage "RIETAN-FP VENUS system distribution file” (http://fujioizumi.verse.jp/download/download.html)
- RIETAN-FP VENUS system distribution file http://fujioizumi.verse.jp/download/download.html
- Table 1 also shows the calculated a, b, and c axis lengths, axis angles ⁇ , volume V of the unit cell, and content of the monoclinic crystals.
- Example 3 The XRD figures of the solid electrolytes obtained in Example 3 and Comparative Example 1 are shown in FIG. From FIG. 1, in Comparative Example 1, only the peak derived from the crystal structure of the monoclinic crystal of LiTa 2 PO 8 was observed. In the solid electrolyte obtained in Example 3, in addition to the peak derived from the LiTa 2 PO 8 structure, the peak derived from LiTa 3 O 8 (ICSD code: 493) and the peak derived from Ta 2 O 5 (ICSD code: 66366) are derived. Peak was observed.
- EPMA measurement acceleration voltage: 10 kV, irradiation current: 1 ⁇ 10 -7 A
- the secondary electron image and the boron mapping image were performed.
- the secondary electron image and the boron mapping image of the solid electrolyte obtained in Example 3 by EPMA are shown in FIG.
- the portion corresponding to the gray intermediate color is a monoclinic crystal, and the black and white portions indicate the grain boundaries.
- the boron mapping the portion having a high boron atom content is shown in white, and the portion having a low boron atom content is shown in black. From FIG. 2, it can be seen that many boron atoms are present at the grain boundaries.
- the obtained measurement pellets were held in a constant temperature bath at 25 ° C. for 2 hours before measurement.
- AC impedance measurement was performed in a frequency range of 1 Hz to 10 MHz using an impedance analyzer (manufactured by Solartron Analytical Co., Ltd., model number: 1260 A) under the condition of an amplitude of 25 mV.
- the obtained impedance spectrum is fitted in an equivalent circuit using the equivalent circuit analysis software ZView attached to the device to obtain the respective lithium ion conductivity in the crystal grains and at the grain boundaries, and the total ions are totaled. The conductivity was calculated. The results are also shown in Table 1.
- the lithium ion conductive solid electrolyte of the present invention is excellent in ion conductivity.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
したがって本発明の課題は、イオン伝導性に優れた新規な固体電解質を提供することにある。
本発明の構成例は以下のとおりである。
[1]単斜晶の結晶構造を有し、
前記単斜晶のa軸長が9.690~9.711Å、b軸長が11.520~11.531Å、c軸長が10.680~10.695Åであり、軸角βが90.01~90.08°の範囲にあるカルコゲン化物を含むリチウムイオン伝導性固体電解質。
[2]前記カルコゲン化物が、リチウム、タンタル、ホウ素、リンおよび酸素を構成元素として有する、[1]に記載のリチウムイオン伝導性固体電解質。
[3]前記単斜晶の結晶構造が、リチウム、タンタル、リンおよび酸素を構成元素として構成されている、[1]または[2]に記載のリチウムイオン伝導性固体電解質。
[4]前記単斜晶の単位格子の体積が、1193.0~1197.9Å3である、[1]~[3]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[5]ホウ素の含有量が0.10~5.00原子%である、[1]~[4]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[6]タンタルの含有量が10.00~17.00原子%である、[1]~[5]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[7]リンの含有量が5.00~8.50原子%である、[1]~[6]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[8]リチウムの含有量が5.00~20.00原子%である、[1]~[7]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[9]さらに、ニオブを含み、ニオブの含有量が0.10~5.00原子%である、[1]~[8]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[10]前記単斜晶の含有率が70.0%以上である、[1]~[9]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[11]さらに、ケイ素を含み、ケイ素の含有量の上限が0.15原子%である、[1]~[10]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[12]ホウ素が結晶粒界に存在している、[2]~[11]のいずれか1項に記載のリチウムイオン伝導性固体電解質。
[13]正極活物質を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に固体電解質層と、
を含み、
前記固体電解質層が、[1]~[12]のいずれか1項に記載のリチウムイオン伝導性固体電解質を含む、全固体電池。
[14]前記正極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P2O7[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP2O7、Lix7Vy7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO4)3[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、LiNi1/3Co1/3Mn1/3O2、LiCoO2、LiNiO2、LiMn2O4、Li2CoP2O7、Li3V2(PO4)3、Li3Fe2(PO4)3、LiNi0.5Mn1.5O4およびLi4Ti5O12からなる群より選ばれる1種以上の化合物を含む、[13]に記載の全固体電池。
[15]前記負極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P2O7[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP2O7、Lix7Vy7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO4)3[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4[M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数、b9はM10の平均価数である。]、LiNb2O7、Li4Ti5O12、Li4Ti5PO12、TiO2、LiSiおよびグラファイトからなる群より選ばれる1種以上の化合物を含む、[13]または[14]に記載の全固体電池。
[16]前記正極および負極が、[1]~[12]のいずれか1項に記載のリチウムイオン伝導性固体電解質を含有する、[13]~[15]のいずれか1項に記載の全固体電池。
本発明の一実施形態に係るリチウムイオン伝導性固体電解質(以下、本固体電解質ともいう。)は、カルコゲン化物を含み、単斜晶の結晶構造を有し、前記単斜晶のa軸長が9.690~9.711Å、b軸長が11.520~11.531Å、c軸長が10.680~10.695Å、軸角βが90.01~90.08°の範囲にあり、リチウムイオン伝導性を具備する。
Ax(MaTbGcKd)y (1)
単斜晶の具体的構造は、以下のように本発明者らは推定している。前記Mは、Kアニオンにより6配位されMK6の八面体単位を形成し、Tは、Kにより4配位されTK4四面体単位を形成する。そして、前記MK6の八面体単位のいくつかは、2個の前記TK4四面体単位と頂点を共有するように結合されて三量体リンク単位を形成する。このとき、それぞれの三量体リンク単位において、前記2個のTK4四面体単位はMK6の八面体単位の頂点のうちの第1の頂点と
前記第1頂点に対向する第2の頂点に位置するKイオンを共有するように結合している。なお、このような構造の詳細は前記特許文献3に開示されている。
固体電解質中の単斜晶の含有率(=単斜晶の結晶量×100/確認された全ての結晶の合計結晶量)は、好ましくは70.0%以上、さらに好ましくは80.0%以上であり、上限は特に制限されないが、好ましくは100.0%未満であり、より好ましくは99.5%以下である。
前記(1)のカルコゲン化物以外に含まれていてもよい化合物としては、LiPO3、Li3PO4、TaPO5、LiTa3O8およびLiTaO3などが挙げられる。また、原材料に由来する回折ピークが確認される場合がある。原材料として用いる、炭酸リチウム(Li2CO3)、五酸化タンタル(Ta2O5)、ホウ酸などが挙げられる。
たとえば原料物質を、ボールミルやビーズミルなどで粉砕・混合したのち、焼成処理する。このとき、所定の形状に圧縮加工を行って焼成ないし焼結処理してもよい。
リンの原料物質としてはリン酸塩が好ましく、リン酸塩としては、分解、反応させやすいことから、例えば、リン酸水素二アンモニウム、リン酸二水素一アンモニウム、リン酸アンモニウムが挙げられる。
さらに原料物質として、固体電解質を構成する元素を2種類以上含む塩を使用してもよく、たとえばLiPO3、LiH2PO4、LiBO2、LiB3O5、Li2B4O7、Li3B11O18、Li3BO3、Li3B7O12、Li4B2O5、Li6B4O9、Li3-xB1-xCxO3(0<x<1)、Li4-xB2-xCxO5(0<x<2)なども使用可能である。
これらの原材料はそれぞれ、1種を用いてもよく、2種以上を用いてもよい。
上記の焼成および焼結は大気下で行ってもよいが、0~20体積%の範囲で酸素ガス含有量の調整された、窒素ガスおよび/またはアルゴンガスの雰囲気下で行ってもよく、水素ガスなどの還元性ガスを含む、窒素水素混合ガス等の還元性ガス雰囲気下で行ってもよい。還元性ガスとしては、水素ガス以外に、アンモニアガス、一酸化炭素ガスなどを用いてもよい。
本発明の全固体電池は、正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に固体電解質層とを含み、前記固体電解質層が、前記したリチウムイオン伝導性固体電解質を含む。
固体電解質は、1種単独で、又は2種以上のものを用いることができる。また、2種以上の固体電解質を用いる場合、2種以上の固体電解質を混合してもよく、又は2層以上の固体電解質それぞれの層を形成して多層構造としてもよい。
固体電解質層を形成する方法としては、前記したように、固体電解質及び必要に応じ他の成分を含む固体電解質材料の粉末を加圧成形する方法等が挙げられる。固体電解質材料の粉末を加圧成形する場合には、通常、1MPa以上600MPa以下程度のプレス圧を負荷すればよい。
電池の構造は、正極と、負極と、該正極と該負極との間に固体電解質層を含めば特に制限されず、いわゆる、薄膜型、積層型、バルク型のいずれであってもよい。
正極は正極活物質を有すれば特に制限されないが、好ましくは、正極集電体と正極活物質層とを有する正極が挙げられる。
正極活物質層には、任意成分として、固体電解質、導電材、及びバインダー等が含まれていてもよい。
正極活物質層の厚さは、形成したい電池の構造に応じて適宜選択すればよく、特に限定されないが、30nm以上5000nm以下であってもよい。
前記正極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P2O7[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP2O7、Lix7Vy7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO4)3[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、LiNi1/3Co1/3Mn1/3O2、LiCoO2、LiNiO2、LiMn2O4、Li2CoP2O7、Li3V2(PO4)3、Li3Fe2(PO4)3、LiNi0.5Mn1.5O4およびLi4Ti5O12からなる群より選ばれる1種以上の化合物を含むことが好ましい。
Liイオン伝導性酸化物としては、例えば、LiNbO3、Li4Ti5O12、及びLi3PO4等が挙げられる。コート層の厚さは、例えば、0.1nm以上であり、1nm以上であっても良い。一方、コート層の厚さは、例えば、100nm以下であり、20nm以下であっても良い。正極活物質の表面におけるコート層の被覆率は、例えば、70%以上であり、90%以上であっても良い。
正極層における固体電解質の含有量は、特に限定されないが、正極層の総質量を100質量%としたとき、例えば1質量%~80質量%の範囲内であってもよい。
正極活物質層に含まれる固体電解質は、本発明の固体電解質を用いてもよく、本発明の固体電解質以外の、後述する酸化物系固体電解質、及び硫化物系固体電解質等も挙げられる。
固体電解質の形状は、取扱い性が良いという観点から粒子状であることが好ましい。固体電解質の粒子の体積平均粒径(D50)は、特に限定されないが、下限が0.5μm以上であることが好ましく、上限が2μm以下であることが好ましい。
正極活物質層は、従来公知の方法で形成することができる。
例えば、正極活物質、及び、必要に応じ他の成分を溶媒中に投入し、撹拌することにより、正極活物質層用スラリーを作製し、当該正極活物質層用スラリーを正極集電体等の支持体の一面上に塗布して乾燥させることにより、正極活物質層が得られる。
正極集電体等の支持体の一面上に正極活物質層用スラリーを塗布する方法は、特に限定されず、ドクターブレード法、メタルマスク印刷法、静電塗布法、ディップコート法、スプレーコート法、ロールコート法、グラビアコート法、及びスクリーン印刷法等が挙げられる。
また、正極活物質層の形成方法の別の方法として、正極活物質及び必要に応じ他の成分を含む正極合剤の粉末を加圧成形することにより正極活物質層を形成してもよい。正極合剤の粉末を加圧成形する場合には、通常、1MPa以上600MPa以下程度のプレス圧を負荷する。
正極集電体としては、全固体電池の集電体として使用可能な公知の金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、及びInからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。
正極の全体としての形状は特に限定されるものではないが、シート状であってもよい。この場合、正極の全体としての厚みは特に限定されるものではなく、目的とする性能に応じて、適宜決定すればよい。
正極活物質の含有量が前記範囲にあると、正極活物質が好適に機能し、エネルギー密度の高い電池を容易に得ることができる傾向にある。
前記導電助剤の好適例としては、Ag、Au、Pd、Pt、Cu、Snなどの金属材料、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料が挙げられる。
正極活物質層に用いられる添加剤はそれぞれ、1種でもよく、2種以上でもよい。
正極集電体は、その材質が電気化学反応を起こさずに電子を導電するものであれば特に限定されない。正極集電体の材質としては、例えば、銅、アルミニウム、鉄等の金属の単体、これらの金属を含む合金、アンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)などの導電性金属酸化物が挙げられる。
負極は負極活物質を有すれば特に制限されないが、好ましくは、負極集電体と負極活物質層とを有する負極が挙げられる。
負極活物質層は、負極活物質を含めば特に制限されないが、負極活物質と固体電解質とを含むことが好ましく、さらに、導電助剤や焼結助剤等の添加剤を含んでいてもよい。
負極活物質層の厚さは、特に限定されないが、30nm以上5000nm以下であってもよい。
負極活物質としては、例えば、公知のものを用いることが可能であり、具体的には、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P2O7[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP2O7、Lix7Vy7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO4)3[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4[M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数、b9はM10の平均価数である。]、LiNb2O7、Li4Ti5O12、Li4Ti5PO12、TiO2、LiSiおよびグラファイトからなる群より選ばれる1種以上の化合物を含むことが好ましい。
負極活物質の含有量が前記範囲にあると、負極活物質が好適に機能し、エネルギー密度の高い電池を容易に得ることができる傾向にある。
負極集電体は、Liと合金化しない材料であってもよく、例えばSUS、銅、及び、ニッケル等を挙げることができる。負極集電体の形態としては、例えば、箔状、及び、板状等を挙げることができる。負極集電体の平面視形状は、特に限定されるものではないが、例えば、円状、楕円状、矩形状、及び、任意の多角形状等を挙げることができる。また、負極集電体の厚さは、形状によって異なるものであるが、例えば1μm~50μmの範囲内であり、5μm~20μmの範囲内であってもよい。
全固体電池は、必要に応じ、正極、負極、及び、固体電解質層を収容する外装体を備える。
全固体電池としては、全固体リチウム二次電池であってもよい。
全固体電池の製造方法は特に制限なく、前記各層を積層し、必要に応じて加圧圧縮などを行えばよい。
炭酸リチウム(Li2CO3)(メルク社シグマアルドリッチ製、純度99.0%以上)、五酸化タンタル(Ta2O5)(富士フイルム和光純薬(株)製、純度99.9%)、ホウ酸(H3BO3)(富士フイルム和光純薬(株)製、純度99.5%以上)、および、リン酸水素二アンモニウム((NH4)2HPO4)(メルク社シグマアルドリッチ製、純度98%以上)を、リチウム、タンタル、ホウ素およびリンの原子数比(Li:Ta:B:P)が、表1の化学量論式を満たすように秤量した。さらに焼成工程において系外に流出するリチウム原子を考慮し、炭酸リチウムを表1中のリチウム原子量を1.05倍した量となるように秤量し、さらに焼成工程において副生成物の生成を抑制するために、リン酸水素二アンモニウムを表1中のリン原子量を1.06倍した量となるように秤量した。秤量した各原料粉末に、適量のトルエンを加え、ジルコニアボールミル(ジルコニアボール:直径5mm)を用いて2時間粉砕混合し、一次混合物を得た。
錠剤成形機を用い、得られた二次混合物に、油圧プレスで40MPaの圧力をかけることで、直径10mm、厚さ1mmの円盤状成形体を形成し、次いでCIP(冷間静水等方圧プレス)により、円盤状成形体に300MPaの圧力をかけることでペレットを作製した。
得られた焼結体を室温まで降温後、回転焼成炉から取り出し、除湿された窒素ガス雰囲気下に移して保管し、固体電解質を得た。
リチウム、タンタル、ホウ素およびリンの原子数比が表1の化学量論式を満たすように、原材料の混合比を変更した以外は、実施例1と同様にして、固体電解質を作製した。
実施例1において、五酸化ニオブ(Nb2O5)(富士フイルム和光純薬(株)製、純度99.9%)をさらに用い、リチウム、タンタル、ニオブ、ホウ素およびリンの原子数比(Li:Ta:Nb:B:P)が、表1の化学量論式を満たすように各原料粉末を用いた以外は、実施例1と同様にして、固体電解質を作製した。
実施例1において、二酸化ケイ素(SiO2)(富士フイルム和光純薬(株)製、純度99.9%)をさらに用い、リチウム、タンタル、ホウ素、リンおよびケイ素の原子数比(Li:Ta:B:P:Si)が、表1の化学量論式を満たすように各原料粉末を用いた以外は、実施例1と同様にして、固体電解質を作製した。
炭酸リチウム(Li2CO3)(メルク社シグマアルドリッチ製、純度99.0%以上)、五酸化タンタル(Ta2O5)(富士フイルム和光純薬(株)製、純度99.9%)、および、リン酸水素二アンモニウム((NH4)2HPO4)(メルク社シグマアルドリッチ製、純度98%以上)を、リチウム、タンタルおよびリンの原子数比(Li:Ta:P)が、表1の化学量論式を満たすように各原料粉末を用いた以外は、実施例1と同様にして、固体電解質を作製した。
二酸化ケイ素(SiO2)(富士フイルム和光純薬(株)製、純度99.9%)をさらに用い、リチウム、タンタル、リンおよびケイ素の原子数比(Li:Ta:P:Si)が、表1の化学量論式を満たすように各原料粉末を用いた以外は、比較例1と同様にして、固体電解質を作製した。
五酸化ニオブ(Nb2O5)(富士フイルム和光純薬(株)製、純度99.9%)をさらに用い、リチウム、タンタル、ニオブおよびリンの原子数比(Li:Ta:Nb:P)が、表1の化学量論式を満たすように各原料粉末を用いた以外は、比較例1と同様にして、固体電解質を作製した。
炭酸リチウム(Li2CO3)(メルク社シグマアルドリッチ製、純度99.0%以上)、五酸化タンタル(Ta2O5)(富士フイルム和光純薬(株)製、純度99.9%)、および、リン酸水素二アンモニウム((NH4)2HPO4)(メルク社シグマアルドリッチ製、純度98%以上)を、リチウム、タンタルおよびリンの原子数比(Li:Ta:P)が、1.05:2.00:1.06を満たすように秤量した。秤量した各原料粉末に、適量のトルエンを加え、ジルコニアボールミル(ジルコニアボール:直径5mm)を用いて2時間粉砕混合し、一次混合物を得た。
得られた焼結体を室温まで降温後、回転焼成炉から取り出し、除湿された窒素ガス雰囲気下に移して保管し、固体電解質を得た。
得られた固体電解質を、メノウ乳鉢を用いて30分解砕し、XRD測定用の粉末を得た。
図1から、比較例1では、LiTa2PO8の単斜晶の結晶構造に由来するピークのみが観測された。実施例3で得られた固体電解質では、LiTa2PO8構造に由来するピークに加え、LiTa3O8(ICSDコード:493)に由来するピークとTa2O5(ICSDコード:66366)に由来するピークが観測された。
得られた固体電解質を切断し、イオンミリング法(CP加工、加速電圧:6kV、加工時間:8時間)によって断面出しを行った。
図2より、ホウ素原子は結晶粒界に多く存在することが分かる。
得られた固体電解質の両面に、スパッタ機を用いて金層を形成することで、イオン伝導度評価用の測定ペレットを得た。
Claims (16)
- 単斜晶の結晶構造を有し、
前記単斜晶のa軸長が9.690~9.711Å、b軸長が11.520~11.531Å、c軸長が10.680~10.695Åであり、軸角βが90.01~90.08°の範囲にあるカルコゲン化物を含むリチウムイオン伝導性固体電解質。 - 前記カルコゲン化物が、リチウム、タンタル、ホウ素、リンおよび酸素を構成元素として有する、請求項1に記載のリチウムイオン伝導性固体電解質。
- 前記単斜晶の結晶構造が、リチウム、タンタル、リンおよび酸素を構成元素として構成されている、請求項1または2に記載のリチウムイオン伝導性固体電解質。
- 前記単斜晶の単位格子の体積が、1193.0~1197.9Å3である、請求項1~3のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- ホウ素の含有量が0.10~5.00原子%である、請求項2~4のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- タンタルの含有量が10.00~17.00原子%である、請求項2~5のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- リンの含有量が5.00~8.50原子%である、請求項2~6のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- リチウムの含有量が5.00~20.00原子%である、請求項2~7のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- さらに、ニオブを含み、ニオブの含有量が0.10~5.00原子%である、請求項2~8のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- 前記単斜晶の含有率が70.0%以上である、請求項1~9のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- さらに、ケイ素を含み、ケイ素の含有量の上限が0.15原子%である、請求項1~10のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- ホウ素が結晶粒界に存在している、請求項2~11のいずれか1項に記載のリチウムイオン伝導性固体電解質。
- 正極活物質を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に固体電解質層と、
を含み、
前記固体電解質層が、請求項1~12のいずれか1項に記載のリチウムイオン伝導性固体電解質を含む、
全固体電池。 - 前記正極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P2O7[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP2O7、Lix7Vy7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO4)3[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、LiNi1/3Co1/3Mn1/3O2、LiCoO2、LiNiO2、LiMn2O4、Li2CoP2O7、Li3V2(PO4)3、Li3Fe2(PO4)3、LiNi0.5Mn1.5O4およびLi4Ti5O12からなる群より選ばれる1種以上の化合物を含む、請求項13に記載の全固体電池。
- 前記負極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P2O7[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP2O7、Lix7Vy7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO4)3[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4[M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数、b9はM10の平均価数である。]、LiNb2O7、Li4Ti5O12、Li4Ti5PO12、TiO2、LiSiおよびグラファイトからなる群より選ばれる1種以上の化合物を含む、請求項13または14に記載の全固体電池。
- 前記正極および負極が、請求項1~12のいずれか1項に記載のリチウムイオン伝導性固体電解質を含有する、請求項13~15のいずれか1項に記載の全固体電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237025269A KR20230125026A (ko) | 2020-12-25 | 2021-12-23 | 리튬 이온 전도성 고체 전해질 및 전고체 전지 |
JP2022571611A JP7548334B2 (ja) | 2020-12-25 | 2021-12-23 | リチウムイオン伝導性固体電解質および全固体電池 |
CN202180084251.0A CN116601113A (zh) | 2020-12-25 | 2021-12-23 | 锂离子传导性固体电解质和全固体电池 |
EP21910943.6A EP4269344A1 (en) | 2020-12-25 | 2021-12-23 | Lithium ion-conductive solid electrolyte, and all-solid-state battery |
US18/269,364 US20240088431A1 (en) | 2020-12-25 | 2021-12-23 | Lithium ion conductive solid electrolyte and all-solid-state battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020217271 | 2020-12-25 | ||
JP2020-217271 | 2020-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022138804A1 true WO2022138804A1 (ja) | 2022-06-30 |
Family
ID=82157007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/047810 WO2022138804A1 (ja) | 2020-12-25 | 2021-12-23 | リチウムイオン伝導性固体電解質および全固体電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240088431A1 (ja) |
EP (1) | EP4269344A1 (ja) |
JP (1) | JP7548334B2 (ja) |
KR (1) | KR20230125026A (ja) |
CN (1) | CN116601113A (ja) |
WO (1) | WO2022138804A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023243327A1 (ja) * | 2022-06-15 | 2023-12-21 | 国立研究開発法人産業技術総合研究所 | 酸化物焼結体および酸化物焼結体の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230178796A1 (en) * | 2020-06-10 | 2023-06-08 | Showa Denko K.K. | Lithium ion conductive solid electrolyte and all-solid-state battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015187936A (ja) * | 2014-03-26 | 2015-10-29 | 本田技研工業株式会社 | リチウム二次電池用活物質及びその製造方法並びにそれを用いたリチウム二次電池 |
WO2018025582A1 (ja) * | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2019044901A1 (ja) | 2017-08-30 | 2019-03-07 | 株式会社村田製作所 | 固体電解質及び全固体電池 |
WO2020036290A1 (ko) | 2018-08-16 | 2020-02-20 | 아주대학교산학협력단 | 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치 |
JP2020173992A (ja) | 2019-04-11 | 2020-10-22 | トヨタ自動車株式会社 | 硫化物固体電解質、硫化物固体電解質の製造方法、電極体および全固体電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5177672B2 (ja) * | 2008-11-20 | 2013-04-03 | 独立行政法人産業技術総合研究所 | リチウム電池用活物質及びその製造方法、並びにそれを用いたリチウム電池 |
JP6536515B2 (ja) * | 2016-08-15 | 2019-07-03 | トヨタ自動車株式会社 | リチウムイオン電池およびリチウムイオン電池の製造方法 |
KR102037260B1 (ko) | 2017-10-23 | 2019-11-26 | 주식회사 래도 | 능동형 속도관리시스템 |
KR20200036290A (ko) | 2018-09-28 | 2020-04-07 | 엘지디스플레이 주식회사 | 모니터링용 패드 및 이를 이용한 표시패널 |
WO2020105604A1 (ja) * | 2018-11-19 | 2020-05-28 | 三井金属鉱業株式会社 | 固体電解質、電極合剤、固体電解質層及び全固体電池 |
JP7194703B2 (ja) * | 2020-01-17 | 2022-12-22 | 住友化学株式会社 | 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池 |
-
2021
- 2021-12-23 CN CN202180084251.0A patent/CN116601113A/zh active Pending
- 2021-12-23 JP JP2022571611A patent/JP7548334B2/ja active Active
- 2021-12-23 WO PCT/JP2021/047810 patent/WO2022138804A1/ja active Application Filing
- 2021-12-23 EP EP21910943.6A patent/EP4269344A1/en active Pending
- 2021-12-23 US US18/269,364 patent/US20240088431A1/en active Pending
- 2021-12-23 KR KR1020237025269A patent/KR20230125026A/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015187936A (ja) * | 2014-03-26 | 2015-10-29 | 本田技研工業株式会社 | リチウム二次電池用活物質及びその製造方法並びにそれを用いたリチウム二次電池 |
WO2018025582A1 (ja) * | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2019044901A1 (ja) | 2017-08-30 | 2019-03-07 | 株式会社村田製作所 | 固体電解質及び全固体電池 |
WO2020036290A1 (ko) | 2018-08-16 | 2020-02-20 | 아주대학교산학협력단 | 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치 |
JP2020173992A (ja) | 2019-04-11 | 2020-10-22 | トヨタ自動車株式会社 | 硫化物固体電解質、硫化物固体電解質の製造方法、電極体および全固体電池 |
Non-Patent Citations (1)
Title |
---|
J. KIM ET AL., J. MATER. CHEM. A, vol. 6, 2018, pages 22478 - 22482 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023243327A1 (ja) * | 2022-06-15 | 2023-12-21 | 国立研究開発法人産業技術総合研究所 | 酸化物焼結体および酸化物焼結体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240088431A1 (en) | 2024-03-14 |
EP4269344A1 (en) | 2023-11-01 |
JPWO2022138804A1 (ja) | 2022-06-30 |
CN116601113A (zh) | 2023-08-15 |
KR20230125026A (ko) | 2023-08-28 |
JP7548334B2 (ja) | 2024-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021251411A1 (ja) | リチウムイオン伝導性固体電解質および全固体電池 | |
WO2022138804A1 (ja) | リチウムイオン伝導性固体電解質および全固体電池 | |
WO2021251405A1 (ja) | 固体電解質材料、固体電解質、これらの製造方法および全固体電池 | |
WO2022230426A1 (ja) | リチウムイオン伝導性酸化物および全固体電池 | |
WO2021251408A1 (ja) | 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池 | |
WO2021251407A1 (ja) | 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池 | |
WO2023032773A1 (ja) | 固体電解質、全固体電池および固体電解質材料 | |
JP7260660B2 (ja) | 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池 | |
WO2021251409A1 (ja) | 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池 | |
WO2021251406A1 (ja) | 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池 | |
US20240380000A1 (en) | Solid electrolyte, all-solid-state battery, and solid electrolyte material | |
WO2023032772A1 (ja) | リチウムイオン伝導性固体電解質材料、リチウムイオン伝導性固体電解質、これらの製造方法および全固体電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21910943 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180084251.0 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022571611 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18269364 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20237025269 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021910943 Country of ref document: EP Effective date: 20230725 |