[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022138291A1 - Substrate treatment apparatus, substrate treatment method, and storage medium - Google Patents

Substrate treatment apparatus, substrate treatment method, and storage medium Download PDF

Info

Publication number
WO2022138291A1
WO2022138291A1 PCT/JP2021/045865 JP2021045865W WO2022138291A1 WO 2022138291 A1 WO2022138291 A1 WO 2022138291A1 JP 2021045865 W JP2021045865 W JP 2021045865W WO 2022138291 A1 WO2022138291 A1 WO 2022138291A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
substrate
film
work
Prior art date
Application number
PCT/JP2021/045865
Other languages
French (fr)
Japanese (ja)
Inventor
悠一郎 松岡
光 赤田
聖人 林
恭満 山口
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2022572176A priority Critical patent/JP7583835B2/en
Publication of WO2022138291A1 publication Critical patent/WO2022138291A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present disclosure relates to a substrate processing apparatus, a substrate processing method, and a storage medium.
  • Patent Document 1 a film thickness measuring means placed along the radial direction of a substrate having a film formed on the surface, and a chemical solution discharge amount and a chemical solution based on the measurement results output from the film thickness measuring means.
  • a substrate processing apparatus having an arithmetic control unit for controlling a reciprocating speed of a nozzle and a substrate rotation speed is disclosed.
  • the present disclosure provides a substrate processing apparatus, a substrate processing method, and a storage medium capable of accurately estimating the film thickness based on the reflected light from the substrate.
  • the substrate processing apparatus is a liquid configured to rotate a substrate in a state where the treatment liquid is supplied on the surface so that a film of the treatment liquid is formed on the surface of the substrate.
  • a processing unit a light projecting unit configured to irradiate light toward a portion overlapping the surface of the substrate during a rotation period in which the liquid processing unit rotates the substrate, and a processing liquid after reflecting the surface of the substrate.
  • a light receiving unit configured to receive the reflected light obtained by combining the light emitted through the film and the light reflected on the outer surface of the processing liquid film, the liquid processing unit, the light projecting unit, and the light emitting unit. It includes a control unit that controls the light receiving unit.
  • the control unit has a signal acquisition unit configured to acquire a signal waveform indicating a time change in the intensity of the reflected light during the rotation period based on the reflected light received by the light receiving unit, and a signal waveform acquired by the signal acquisition unit.
  • the thickness of the processing liquid film at the measurement time point is calculated based on the waveform between the predetermined measurement time point within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point. It has a film thickness calculation unit configured in.
  • a substrate processing apparatus capable of accurately estimating the film thickness based on the reflected light from the substrate are provided.
  • FIG. 1 is a schematic diagram showing an example of a substrate processing system.
  • FIG. 2 is a schematic view showing an example of a coating and developing apparatus.
  • FIG. 3 is a schematic diagram showing an example of a liquid treatment unit and a measurement unit.
  • FIG. 4 is a schematic diagram showing an example of the irradiation position of light from the measuring unit.
  • 5 (a) and 5 (b) are schematic views for explaining the relationship between the film thickness and the reflected light.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the control device.
  • FIG. 7 is a block diagram showing an example of the hardware configuration of the control device.
  • FIG. 8 is a flowchart showing an example of the substrate processing method.
  • FIG. 1 is a schematic diagram showing an example of a substrate processing system.
  • FIG. 2 is a schematic view showing an example of a coating and developing apparatus.
  • FIG. 3 is a schematic diagram showing an example of a liquid treatment unit and a measurement unit.
  • FIG. 9 is a graph showing an example of the time change of the intensity of the reflected light.
  • FIG. 10 is a flowchart showing an example of a method for generating a model formula for estimating the film thickness.
  • FIG. 11 is a schematic diagram showing an example of the measuring unit.
  • FIG. 12 is a schematic diagram showing an example of the measuring unit.
  • 13 (a) and 13 (b) are schematic views showing an example of a measuring unit.
  • FIG. 14 is a graph for explaining an example of the film thickness estimation method.
  • 15 (a) and 15 (b) are graphs for explaining an example of the film thickness estimation method.
  • FIG. 16 is a graph for explaining an example of the film thickness estimation method.
  • the substrate processing apparatus is configured to rotate a substrate in a state where the treatment liquid is supplied on the surface so that a film of the treatment liquid is formed on the surface of the substrate.
  • the liquid treatment unit, the light projecting unit configured to irradiate light toward the portion overlapping the surface of the substrate during the rotation period during which the liquid treatment unit rotates the substrate, and the processing after reflecting the surface of the substrate.
  • a light receiving unit configured to receive the reflected light obtained by combining the light emitted through the liquid film and the light reflected on the outer surface of the processing liquid film, the liquid treatment unit, and the light projecting unit. It also includes a control unit that controls the light receiving unit.
  • the control unit has a signal acquisition unit configured to acquire a signal waveform indicating a time change in the intensity of the reflected light during the rotation period based on the reflected light received by the light receiving unit, and a signal waveform acquired by the signal acquisition unit.
  • the thickness of the processing liquid film at the measurement time point is calculated based on the waveform between the predetermined measurement time point within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point. It has a film thickness calculation unit configured in.
  • the time change of the intensity of the reflected light obtained by combining the light emitted through the film of the treatment liquid after reflecting on the surface of the substrate and the light reflected on the outer surface of the film of the treatment liquid is changed.
  • the indicated signal waveform is acquired.
  • the state of interference between the light emitted through the film of the treatment liquid after reflecting on the surface of the substrate and the light reflected on the outer surface of the film of the treatment liquid changes.
  • the signal waveform contains information about the film thickness of the treatment liquid.
  • the film thickness of the processing liquid can be calculated from the waveform between the predetermined measurement time point within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point among the signal waveforms. ..
  • the thickness of the film of the treatment liquid is calculated from the time change of the intensity of the reflected light. Therefore, even if the thickness of the film of the treatment liquid fluctuates, the film of the treatment liquid can be used. It is possible to estimate the thickness with high accuracy.
  • the control unit further has a feature amount acquisition unit configured to acquire the feature amount from the waveform between the measurement time point and the time point when the signal waveform satisfies a predetermined condition among the signal waveforms. You may.
  • the film thickness calculation unit may be configured to calculate the film thickness of the treatment liquid at the time of measurement based on the feature amount acquired by the feature amount acquisition unit. Since the signal waveform contains information about the film thickness of the treatment liquid, the feature amount obtained from a part of the waveform can correlate with the film thickness of the treatment liquid. Therefore, by utilizing the correlation between the feature amount and the film thickness, the calculation for calculating the film thickness of the treatment liquid is simplified.
  • the light projecting unit may be configured to irradiate light toward the above-mentioned part and another part overlapping the surface of the substrate at a position different from the above-mentioned part. In this case, by further acquiring the signal waveform based on the reflected light from another location, it is possible to estimate the film thickness of the processing liquid at a plurality of locations.
  • the distance between the above-mentioned location and the center of the substrate and the distance between the above-mentioned other location and the center of the substrate may be different from each other. In this case, it is possible to measure the film thickness at positions where the distances from the center of the substrate are different from each other.
  • the liquid treatment unit may have a support unit configured to support the substrate.
  • the above-mentioned portion may be set so as to overlap with the support portion.
  • the thickness of the portion of the film of the treatment liquid corresponding to the support portion may be affected by the support portion. In the above configuration, since the film thickness at the portion affected by the support portion is estimated, it is possible to evaluate the film thickness after taking the relevant portion into consideration.
  • the light projecting unit is configured to irradiate the above-mentioned part with light having a predetermined frequency and to irradiate the above-mentioned other part with another light having a frequency different from the frequency of the light irradiating the part. You may. In this configuration, even when a part of the reflected light from another place is received by the light receiving portion, it is easy to remove the influence of a part of the reflected light from another place from the signal waveform.
  • the light projecting unit is configured to divide the light from one light source that generates the light to irradiate the substrate and the light from one light source into the light radiated to the above-mentioned place and the light radiated to the other place. It may have a branch portion. In this case, when the film thickness is estimated by irradiating a plurality of places with light, the number of light sources can be reduced, and the apparatus can be simplified.
  • the liquid treatment unit may have a housing that forms an internal space for processing the substrate with the treatment liquid.
  • the light projecting unit may have a light source that generates light to irradiate the substrate.
  • the light source may be provided on the inner wall of the housing or may be arranged outside the housing. When the light source is placed near the substrate, the film thickness can vary due to the heat of the light source.
  • the light source and the substrate subjected to the liquid treatment can be separated from each other, it is possible to reduce the influence of the heat of the light source on the liquid treatment.
  • the light projecting unit may have a mirror member configured to change the direction of the light irradiating the substrate by reflecting the light.
  • the member When the member is arranged vertically above the substrate, it affects the airflow above the substrate and the film thickness may fluctuate.
  • the portion included in the light projecting unit to be irradiated with light can be arranged away from the substrate, it is possible to reduce the influence of the light projecting unit on the liquid treatment.
  • the reflective surface of the mirror member may be formed with a film configured to suppress scattering and absorption of incident light on the reflective surface. In this case, it is possible to suppress a decrease in the amount of light received by the light receiving unit while reducing noise contained in the light received by the light receiving unit. As a result, it becomes possible to estimate the film thickness with higher accuracy based on the signal waveform.
  • the substrate processing apparatus may further include an adjusting member configured to adjust the light receiving state of the reflected light in the light receiving portion according to the vertical positional deviation of the substrate or the warp of the substrate.
  • an adjusting member configured to adjust the light receiving state of the reflected light in the light receiving portion according to the vertical positional deviation of the substrate or the warp of the substrate.
  • the control unit may further have a condition setting unit configured to change the set value of the light intensity from the light projecting unit based on the comparison result between the intensity of the reflected light and a predetermined threshold value.
  • a condition setting unit configured to change the set value of the light intensity from the light projecting unit based on the comparison result between the intensity of the reflected light and a predetermined threshold value.
  • the substrate processing method is to rotate the substrate in a state where the treatment liquid is supplied on the surface so that a film of the treatment liquid is formed on the surface of the substrate, and to rotate the substrate.
  • the light is irradiated toward the part that overlaps the surface of the substrate, the light emitted through the film of the treatment liquid after reflecting the surface of the substrate, and the outside of the film of the treatment liquid.
  • receiving the reflected light that is combined with the light reflected on the surface and acquiring the signal waveform showing the time change of the intensity of the reflected light during the rotation period based on the received reflected light.
  • the thickness of the film of the processing liquid at the time of measurement is calculated based on the waveform between the predetermined measurement time point within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point. include.
  • the thickness of the film of the treatment liquid is calculated from the time change of the intensity of the reflected light, so that the thickness of the film of the treatment liquid may fluctuate. However, it is possible to accurately estimate the film thickness of the treatment liquid.
  • the storage medium is a computer-readable storage medium that stores a program for causing the board processing apparatus to execute the board processing method.
  • the substrate processing system 1 (substrate processing apparatus) shown in FIG. 1 is a system that forms a photosensitive film, exposes the photosensitive film, and develops the photosensitive film on the work W.
  • the work W to be processed is, for example, a substrate or a substrate in which a film, a circuit, or the like is formed by being subjected to a predetermined treatment.
  • the substrate is, for example, a silicon wafer.
  • the work W (board) may be circular.
  • the work W may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like.
  • the photosensitive film is, for example, a resist film.
  • the substrate processing system 1 includes a coating and developing device 2, an exposure device 3, and a control device 100 (control unit).
  • the exposure device 3 is a device that exposes a resist film (photosensitive film) formed on the work W (substrate). Specifically, the exposure apparatus 3 irradiates the exposed portion of the resist film with energy rays by a method such as immersion exposure.
  • the coating and developing apparatus 2 performs a process of applying a resist (chemical solution) to the surface of the work W to form a resist film before the exposure process by the exposure apparatus 3, and develops the resist film after the exposure process.
  • the coating and developing apparatus 2 includes a carrier block 4, a processing block 5, and an interface block 6.
  • the carrier block 4 introduces the work W into the coating / developing device 2 and derives the work W from the coating / developing device 2.
  • the carrier block 4 can support a plurality of carriers C for the work W, and has a built-in transfer device A1 including a transfer arm.
  • the carrier C accommodates, for example, a plurality of circular workpieces W.
  • the transport device A1 takes out the work W from the carrier C, passes it to the processing block 5, receives the work W from the processing block 5, and returns it to the carrier C.
  • the processing block 5 has processing modules 11, 12, 13, and 14.
  • the processing module 11 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units.
  • the treatment module 11 forms an underlayer film on the surface of the work W by the liquid treatment unit U1 and the heat treatment unit U2.
  • Examples of the lower layer film include an SOC (Spin On Carbon) film.
  • the liquid treatment unit U1 applies a treatment liquid for forming an underlayer film onto the work W.
  • the heat treatment unit U2 performs various heat treatments accompanying the formation of the underlayer film.
  • the processing module 12 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units.
  • the treatment module 12 forms a resist film on the lower layer film by the liquid treatment unit U1 and the heat treatment unit U2.
  • the liquid treatment unit U1 forms a film of the treatment liquid on the lower layer film (on the surface of the work W) by applying the treatment liquid for forming the resist film on the lower layer film.
  • the heat treatment unit U2 performs various heat treatments accompanying the formation of the resist film.
  • the processing module 13 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units.
  • the treatment module 13 forms an upper layer film on the resist film by the liquid treatment unit U1 and the heat treatment unit U2.
  • the liquid treatment unit U1 applies a treatment liquid for forming an upper layer film onto the resist film.
  • the heat treatment unit U2 performs various heat treatments accompanying the formation of the upper layer film.
  • the processing module 14 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units.
  • the processing module 14 uses the liquid treatment unit U1 and the heat treatment unit U2 to develop the exposed resist film and perform heat treatment associated with the development treatment.
  • the liquid treatment unit U1 develops a resist film by applying a developing solution on the surface of the exposed work W and then rinsing it with a rinsing solution.
  • the heat treatment unit U2 performs various heat treatments associated with the development process. Specific examples of the heat treatment include heat treatment before development (PEB: Post Exposure Bake), heat treatment after development (PB: Post Bake), and the like.
  • a shelf unit U10 is provided on the carrier block 4 side in the processing block 5.
  • the shelf unit U10 is divided into a plurality of cells arranged in the vertical direction.
  • a transport device A7 including an elevating arm is provided in the vicinity of the shelf unit U10. The transport device A7 raises and lowers the work W between the cells of the shelf unit U10.
  • a shelf unit U11 is provided on the interface block 6 side in the processing block 5.
  • the shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
  • the interface block 6 transfers the work W to and from the exposure apparatus 3.
  • the interface block 6 has a built-in transfer device A8 including a transfer arm, and is connected to the exposure device 3.
  • the transport device A8 passes the work W arranged in the shelf unit U11 to the exposure device 3.
  • the transport device A8 receives the work W from the exposure device 3 and returns it to the shelf unit U11.
  • the control device 100 controls the coating / developing device 2 so as to execute the coating / developing process in the following procedure, for example. First, the control device 100 controls the transfer device A1 so as to transfer the work W in the carrier C to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 11.
  • control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 11. Further, the control device 100 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form a lower layer film on the surface of the work W. After that, the control device 100 controls the transfer device A3 so as to return the work W on which the lower layer film is formed to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 12. ..
  • control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 12. Further, the control device 100 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form a resist film on the lower film of the work W. After that, the control device 100 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 13.
  • control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to each unit in the processing module 13. Further, the control device 100 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form an upper layer film on the resist film of the work W. After that, the control device 100 controls the transfer device A3 so as to transfer the work W to the shelf unit U11.
  • control device 100 controls the transport device A8 so as to send the work W of the shelf unit U11 to the exposure device 3. After that, the control device 100 controls the transfer device A8 so as to receive the exposed work W from the exposure device 3 and arrange it in the cell for the processing module 14 in the shelf unit U11.
  • control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U11 to each unit in the processing module 14, and the liquid processing unit U1 so as to develop the resist film of the work W. And control the heat treatment unit U2.
  • control device 100 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 and the transfer device A1 so as to return the work W to the carrier C. This completes the coating and developing process for one piece of work W.
  • the control device 100 controls the coating / developing device 2 so as to execute the coating / developing process in the same manner as described above for each of the subsequent plurality of work Ws.
  • the specific configuration of the substrate processing apparatus is not limited to the configuration of the substrate processing system 1 exemplified above.
  • the substrate processing apparatus may be any as long as it includes a liquid treatment unit that supplies the treatment liquid to the substrate and performs the liquid treatment, and a control device that can control the liquid treatment unit.
  • the liquid treatment unit U1 (Liquid treatment unit) forms a film of the treatment liquid on the surface Wa of the work W in a state where the treatment liquid is supplied on the surface Wa. Rotate to be.
  • the film of the treatment liquid formed by the liquid treatment unit U1 is referred to as “coating film AF”.
  • the liquid treatment unit U1 has a rotation holding unit 30 and a processing liquid supply unit 40.
  • the rotation holding unit 30 holds and rotates the work W.
  • the rotation holding unit 30 has, for example, a holding unit 32, a shaft 34, and a rotation driving unit 36.
  • the holding portion 32 (supporting portion) supports the work W.
  • the holding portion 32 supports, for example, the central portion of the work W arranged horizontally with the surface Wa facing up, and holds the work W by vacuum suction or the like.
  • the upper surface (the surface supporting the work W) of the holding portion 32 may be formed in a circular shape when viewed from above, and has a radius of about 1/6 to 1/2 times the radius of the work W. May be good.
  • a rotary drive unit 36 is connected below the holding unit 32 via a shaft 34.
  • the rotation drive unit 36 is an actuator including a power source such as an electric motor, and rotates the holding unit 32 around the vertical axis Ax.
  • a power source such as an electric motor
  • the holding portion 32 may hold the work W so that the center CP of the work W (see FIG. 4) substantially coincides with the axis Ax.
  • the treatment liquid supply unit 40 supplies the treatment liquid to the surface Wa of the work W.
  • the treatment liquid is a solution (resist) for forming a resist film.
  • the processing liquid supply unit 40 has, for example, a nozzle 42, a supply source 44, an on-off valve 46, and a nozzle drive unit 48.
  • the nozzle 42 discharges the processing liquid onto the surface Wa of the work W held by the holding portion 32.
  • the nozzle 42 is arranged above the work W (vertically above the center CP of the work W) and discharges the treatment liquid downward.
  • the supply source 44 supplies the treatment liquid to the nozzle 42.
  • the on-off valve 46 is provided in the supply path between the nozzle 42 and the supply source 44.
  • the on-off valve 46 switches the open / closed state of the supply path.
  • the nozzle drive unit 48 moves the nozzle 42 between the discharge position above the work W and the retracted position away from the discharge position.
  • the discharge position is, for example, a position vertically above the center of rotation of the work W (a position on the axis Ax).
  • the standby position is set, for example, to a position outside the peripheral edge of the work W.
  • the coating and developing apparatus 2 further includes a measuring unit 60 for measuring the thickness of the coating film AF of the processing liquid.
  • the measuring unit 60 is provided in the liquid processing unit U1.
  • the measuring unit 60 rotates the work W after the treatment liquid is supplied, and irradiates the rotating work W with light during the period when the coating film AF is formed.
  • the measuring unit 60 irradiates the surface Wa of the work W held by the holding unit 32 with light that can pass through the coating film AF (treatment liquid) on the surface Wa, and generates light according to the irradiated light. Receives reflected light (reflected by work W).
  • the measuring unit 60 has, for example, light emitting and receiving devices 70A to 70C.
  • Each of the light emitting and receiving devices 70A to 70C irradiates light toward the irradiation points P1 to P3 overlapping the surface Wa of the work W on the holding portion 32, and receives the reflected light reflected from the irradiation points P1 to P3.
  • Each of the irradiation points P1 to P3 is a fixed fixed position and does not change even if the work W rotates.
  • Each of the light emitting and receiving devices 70A to 70C irradiates the surface Wa of the work W with a laser beam as irradiation light.
  • Each of the light emitting and receiving devices 70A to 70C irradiates a laser beam that can pass through the coating film AF of the treatment liquid formed on the surface Wa.
  • the laser light emitted from each of the light receiving and receiving devices 70A to 70C may be visible light or infrared light.
  • the wavelength of the laser beam may be 500 nm to 1200 nm, 600 nm to 1100 nm, or 780 nm to 1000 nm.
  • the wavelength of the laser beam may be set according to the type of the processing liquid. For example, the wavelength of the laser beam is set so as not to promote the reaction in the treatment liquid and to reduce the absorption of light.
  • the frequencies of the laser beams emitted from the light receiving and receiving devices 70A to 70C may be different from each other. That is, the frequency of the light emitted from the light emitting / receiving device 70A toward the irradiation point P1 is the frequency of the light emitted from the light receiving / receiving device 70B (light emitting / receiving device 70C) toward the irradiation point P2 (irradiation point P3). It may be different.
  • the light source included in each of the light emitting and receiving devices 70A to 70C may be a laser diode or an LED.
  • the beam width of the laser beam may be about several mm to several tens of mm.
  • the irradiation points P1 to P3 of the light (laser light) from the light emitting and receiving devices 70A to 70C are set at different positions from each other. That is, the measuring unit 60 irradiates the irradiation point P1 (point) and the irradiation points P2 and P3 (different points) that overlap the surface Wa of the work W at a position different from the irradiation point P1. do.
  • the distances from the center CP of the work W are mutual. It's different. In one example, the distance between the irradiation point P1 and the center CP of the work W is smaller than the distance between the irradiation point P2 and the center CP of the work W. The distance between the irradiation point P2 and the center CP of the work W is smaller than the distance between the irradiation point P3 and the center CP of the work W.
  • the irradiation points P1, the irradiation points P2, and the irradiation points P3 may be arranged in a line in this order from the center CP of the work W along the radial direction of the work W.
  • the irradiation points P1, the irradiation points P2, and the irradiation points P3 may be arranged at substantially equal intervals.
  • the irradiation point P1 is located at the center of the surface Wa of the work W. Specifically, the irradiation point P1 is set so as to overlap the upper surface of the holding portion 32 (the surface supporting the back surface of the work W).
  • the irradiation point P3 located on the outside is located in a region (peripheral region) in the vicinity of the peripheral edge of the work W.
  • the light emitting and receiving devices 70A to 70C function as a light emitting unit that irradiates light toward a predetermined portion overlapping the surface Wa of the work W.
  • the light emitting and receiving devices 70A to 70C may generate an electric signal according to the intensity of the reflected light received. Since the laser beam can pass through the coating film AF on the surface Wa of the work W, it is reflected by the outer surface Fa (upper surface) of the coating film AF at the irradiation site, and the work W located below the coating film AF. After reflecting the surface Wa of the above, it is emitted through the coating film AF.
  • the surface Wa of the work W on which a part of the laser beam is reflected is the surface of the base material contained in the work W or the surface of another film existing under the coating film AF and already solidified. ..
  • the other film may be, for example, a film existing directly under the coating film AF (for example, the above-mentioned lower layer film).
  • the light emitting / receiving device 70A receives light emitted from the irradiation point P1. Specifically, in the light emitting / receiving device 70A, the light emitted through the coating film AF after reflecting the surface Wa of the work W at the irradiation point P1 and the light reflected by the outer surface Fa of the coating film AF are generated. It receives the reflected light obtained by synthesizing. At each of the irradiation points P2 and P3, the laser beam is reflected by the outer surface Fa of the coating film AF and the surface Wa located under the coating film AF.
  • the light emitting and receiving devices 70B and 70C also receive the light emitted from the irradiation points P2 and P3, respectively, like the light emitting and receiving device 70A. More specifically, the light emitting and receiving devices 70B and 70C reflect the light emitted through the coating film AF after reflecting the surface Wa of the work W at the irradiation points P2 and P3 and the light emitted by the outer surface Fa of the coating film AF. The reflected light obtained by synthesizing the combined light is received.
  • the light receiving and receiving devices 70A to 70C are light receiving units that receive the reflected light obtained by combining the light reflected by the outer surface Fa and the light reflected by the surface Wa in the coating film AF of the treatment liquid on the surface Wa. Also works as.
  • the reflected light has an intensity corresponding to the thickness of the coating film AF during the period in which the coating film AF of the treatment liquid is formed on the surface Wa of the work W.
  • the portion of any of the light emitting and receiving devices that irradiates the laser beam is indicated by the “light emitting unit 72”, and the portion that receives the reflected light is the “light receiving unit”. 74 ”.
  • FIGS. 5 (a) and 5 (b) exemplify a case where light is incident on the surface Wa from an oblique direction.
  • the reflected light accompanying the laser beam radiated toward the surface Wa of the work W passes through the coating film AF of the treatment liquid, reflects the surface Wa, and then emits to the outside via the coating film AF.
  • the light L1 to be generated and the light L2 reflected by the outer surface Fa of the coating film AF without being incident on the coating film AF are included.
  • the reflected light received by the light receiving unit 74 is the reflected light Lc obtained by synthesizing the light L1 and the light L2.
  • the phase of the light L2 with respect to the light L1 changes, and there are cases where they strengthen each other and cases where they weaken each other. As shown in FIG.
  • the thickness of the coating film AF gradually decreases during the period in which the work W is rotated.
  • the phase of the light L2 with respect to the light L1 also changes, and the states of strengthening each other and the states of weakening each other are alternately repeated.
  • a waveform showing the time change of the intensity of the reflected light a waveform in which the peak portion and the valley portion are alternately repeated is obtained (see FIG. 9).
  • the thickness (film thickness) of the coating film AF is estimated based on this waveform. The details of the film thickness estimation method will be described later.
  • the control device 100 causes the coating / developing device 2 to execute the processing of the work W by partially or wholly controlling the coating / developing device 2.
  • the control device 100 has, for example, a processing information storage unit 112, a liquid processing control unit 114, and a film thickness estimation unit 120 as a functional configuration (hereinafter referred to as “functional module”). And have.
  • the processing executed by these functional modules corresponds to the processing executed by the control device 100.
  • the processing information storage unit 112 stores processing information related to liquid processing for the work W.
  • Various conditions for executing the liquid treatment are set in the processing information. For example, as setting values of various conditions, the timing (time) at which the discharge of the treatment liquid is started and stopped, the rotation speed (rotation speed) of the work W when the treatment liquid is discharged, and the coating on the surface Wa after the treatment liquid is supplied.
  • the rotation speed of the work W when forming the film AF, the rotation time of the work W when forming the coating film AF, and the like are predetermined.
  • the liquid treatment control unit 114 controls the liquid treatment unit U1 so as to perform liquid treatment on the work W.
  • the liquid processing control unit 114 controls the rotation holding unit 30 and the processing liquid supply unit 40 so as to execute liquid processing on the work W according to various conditions defined in the processing information stored in the processing information storage unit 112.
  • the film thickness estimation unit 120 acquires a waveform (hereinafter referred to as “signal waveform”) indicating the time change of the intensity of the reflected light from the work W from the measurement unit 60, and applies the coating film on the surface Wa based on the signal waveform. Estimate the thickness of the membrane AF. That is, the substrate processing system 1 has a film thickness estimation device 20 including a measurement unit 60 and a film thickness estimation unit 120 (see FIG. 4). As a functional module, the film thickness estimation unit 120 includes, for example, a light projection control unit 122, a signal acquisition unit 124, a feature amount acquisition unit 126, a film thickness calculation unit 128, and model information. A storage unit 132 and a model construction unit 134 are included. The process executed by these functional modules corresponds to the process executed by the film thickness estimation unit 120 (control device 100).
  • the light projection control unit 122 irradiates light toward the irradiation point overlapping the surface Wa of the work W during the rotation period in which the rotation holding unit 30 of the liquid treatment unit U1 rotates the work W after the treatment liquid is supplied. Controls the light emitting and receiving devices 70A to 70C.
  • the light projection control unit 122 may start irradiation of light from the light emitting and receiving devices 70A to 70C before starting to discharge the processing liquid in the liquid treatment to the work W.
  • the light projection control unit 122 stops the irradiation of light from the light emitting and receiving devices 70A to 70C after stopping the rotation for forming the coating film AF.
  • the signal acquisition unit 124 acquires a signal waveform indicating the time change of the intensity of the reflected light received by the irradiation device from each light emitting / receiving device during the above rotation period.
  • the signal acquisition unit 124 may acquire the intensity of the reflected light at a predetermined sampling period.
  • the sampling period is set to such an extent that the change in the interference state between the light L1 reflected by the surface Wa and the light L2 reflected by the outer surface Fa of the coating film AF can be grasped by the signal waveform.
  • the sampling period may be set to about several tens of ms to several hundreds of ms.
  • the feature amount acquisition unit 126 is a waveform of the signal waveform acquired by the signal acquisition unit 124 between a predetermined measurement time point within the rotation period and a time point in which the signal waveform satisfies a predetermined condition before the measurement time point. Obtain the feature quantity from.
  • the feature amount is a value obtained from the above signal waveform according to predetermined conditions, and correlates with the thickness of the coating film AF.
  • the feature amount acquisition unit 126 acquires the feature amount from the signal waveform for each of the irradiation points P1 to P3, for example.
  • the film thickness calculation unit 128 calculates the film thickness of the coating film AF at the time of measurement based on the feature amount acquired by the feature amount acquisition unit 126.
  • the film thickness calculation unit 128 calculates the thickness of the coating film AF based on the feature amount for each of the irradiation points P1 to P3, for example.
  • the measurement time point may be set to any time point within the rotation period.
  • the measurement time point is set, for example, at the end time point of the rotation period (time point when the rotation of the work W stops). In this case, the film thickness calculation unit 128 calculates the thickness of the coating film AF at the end of the rotation period.
  • the film thickness calculation unit 128 may calculate the thickness of the coating film AF at the time of measurement based on the above-mentioned feature amount and the model formula constructed in advance for estimating the thickness of the coating film AF.
  • the model information storage unit 132 stores a model formula constructed in advance for estimating the thickness of the coating film AF. This model formula is constructed to show the relationship between the feature amount of the signal waveform and the estimated value of the film thickness.
  • the model building unit 134 generates a model formula for estimating the thickness of the coating film AF. For example, the model building unit 134 performs liquid processing on a plurality of test workpieces W by changing the rotation speed in a plurality of stages, and at each stage, a feature amount based on a signal waveform and a measurement time point. Obtain the measured value of the thickness of the coating film AF. Then, the model building unit 134 sets the estimated value and the feature amount of the thickness of the coating film AF based on the feature amount for each of the plurality of stages in which the rotation speed is changed and the measured value of the thickness of the coating film AF. Generate a model formula showing the relationship. The model building unit 134 may generate a model formula for each irradiation point, or may generate one model formula for a plurality of irradiation points.
  • the control device 100 is composed of one or a plurality of control computers.
  • the control device 100 has a circuit 150 shown in FIG.
  • the circuit 150 includes one or more processors 152, a memory 154, a storage 156, an input / output port 158, and a timer 162.
  • the storage 156 has a storage medium readable by a computer, such as a hard disk.
  • the storage medium stores a program for causing the control device 100 to execute the substrate processing method and the film thickness estimation method described later.
  • the storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk.
  • the memory 154 temporarily stores the program loaded from the storage medium of the storage 156 and the calculation result by the processor 152.
  • the processor 152 constitutes each of the above-mentioned functional modules by executing the above program in cooperation with the memory 154.
  • the input / output port 158 inputs / outputs an electric signal to / from the rotation holding unit 30, the processing liquid supply unit 40, the measuring unit 60, and the like in accordance with a command from the processor 152.
  • the timer 162 measures the elapsed time, for example, by counting a reference pulse having a fixed cycle.
  • each functional module may be realized by an individual control computer.
  • the control device 100 is for control including a control computer including a functional module for executing liquid treatment by the liquid treatment unit U1 and a functional module (thickness estimation unit 120) for estimating the thickness of the coating film AF. It may be configured with a computer. Alternatively, each of these functional modules may be realized by a combination of two or more control computers. In these cases, the plurality of control computers may be connected to each other so as to be able to communicate with each other, and the substrate processing method and the film thickness estimation method described later may be executed in cooperation with each other.
  • the hardware configuration of the control device 100 is not necessarily limited to that constituting each functional module by a program.
  • each functional module of the control device 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the logic circuit is integrated.
  • ASIC Application Specific Integrated Circuit
  • FIG. 8 is a flowchart showing an example of a series of processes executed by the control device 100 for liquid processing and estimation of film thickness.
  • the control device 100 executes step S11, for example, by receiving a command from the host controller.
  • step S11 for example, the liquid treatment control unit 114 controls the rotation holding unit 30 so as to start the rotation of the work W.
  • the liquid processing control unit 114 controls the rotation holding unit 30 so that the work W rotates at a set value of the rotation speed at the time of discharging the processing liquid after the rotation of the work W starts.
  • step S12 for example, the film thickness estimation unit 120 waits until a predetermined measurement start time is reached.
  • the measurement start time is, for example, a time determined based on the time when a command from the host controller is received.
  • step S13 for example, the film thickness estimation unit 120 controls the measurement unit 60 so as to start measuring the intensity of the reflected light.
  • the light projection control unit 122 controls the light emitting and receiving devices 70A to 70C so as to start irradiation of laser light toward the irradiation points P1 to P3, respectively.
  • the signal acquisition unit 124 starts acquiring the intensity of the reflected light accompanying the irradiation of the laser light from each of the light emitting / receiving devices 70A to 70C. In the subsequent processing, irradiation of the laser beam and acquisition of the intensity of the reflected light are continued.
  • step S14 for example, the liquid treatment control unit 114 waits until a predetermined discharge start time is reached.
  • the discharge start time is, for example, a time determined based on the time when a command from the host controller is received.
  • step S15 for example, the liquid processing control unit 114 controls the processing liquid supply unit 40 so as to start discharging the processing liquid.
  • step S16 for example, the liquid treatment control unit 114 waits until a predetermined discharge time elapses from the discharge start time of the treatment liquid.
  • step S17 for example, the liquid processing control unit 114 controls the processing liquid supply unit 40 so as to stop the discharge of the processing liquid.
  • step S18 for example, the liquid processing control unit 114 controls the rotation holding unit 30 to rotate the work W so that the work W rotates at the set value of the rotation speed after the treatment liquid is supplied. Adjust.
  • the set value of the rotation speed is defined in the processing information stored in the processing information storage unit 112.
  • step S19 for example, the liquid treatment control unit 114 waits until a predetermined drying time elapses from the discharge stop time of the treatment liquid.
  • step S20 for example, the liquid treatment control unit 114 controls the rotation holding unit 30 so as to stop the rotation of the work W.
  • step S21 for example, the film thickness estimation unit 120 controls the measurement unit 60 so as to stop the measurement of the intensity of the reflected wave.
  • the light projection control unit 122 controls the light emitting and receiving devices 70A to 70C so as to stop the irradiation of the laser light toward the irradiation points P1 to P3, respectively.
  • the signal acquisition unit 124 stops acquiring the intensity of the reflected light accompanying the irradiation of the laser beam.
  • the timing of receiving the processing start command from the host controller is indicated by "0", and the timing of stopping the discharge of the processing liquid (timing of the start of the drying time) is "t1". It is shown and the measurement time point corresponding to the end timing of the drying time is indicated by "MT”.
  • the peak portion and the valley portion are formed according to the time change of the interference state between the light L1 reflected by the surface Wa and the light L2 reflected by the outer surface Fa of the coating film AF.
  • a signal waveform in which is repeated is obtained.
  • the apex of the mountain portion is drawn with a black circle mark, and the lowest point of the valley portion is drawn with a white circle mark. Further, the signal waveform before the time t1 is omitted.
  • step S22 for example, the film thickness calculation unit 128 between the measurement time point MT and the time point when the signal waveform satisfies a predetermined condition before the measurement time point MT among the signal waveforms obtained up to the execution of step S21.
  • the thickness of the coating film AF at the measurement time point MT is calculated based on the waveform of. More specifically, the feature amount acquisition unit 126 acquires the feature amount from the waveform between the measurement time point MT and the time point where the signal waveform satisfies a predetermined condition before the measurement time point MT among the above signal waveforms. Then, the film thickness calculation unit 128 calculates the thickness of the coating film AF at the measurement time point MT based on the above feature amount.
  • the feature amount obtained from a part of the signal waveform is, for example, the time of the extreme point appearing at the nth position (n is an integer of 1 or more) counted from the MT at the time of measurement. That is, the feature amount acquisition unit 126 is concerned with the waveform between the measurement time point MT and the time point at which the signal waveform satisfies the condition of the nth extremum point counted in the direction in which the time returns from the measurement time point MT.
  • the time of the nth extremum point of the waveform is acquired as a feature quantity.
  • the extreme point is a general term for the apex (maximum point) of the mountain portion and the lowest point (minimum point) of the valley portion.
  • the time of the tenth extreme point (the apex of the fifth mountain portion counted from the measurement time MT) counted from the measurement time point MT is acquired as the feature amount F1.
  • the ninth extreme value point appearing from the measurement time point MT is the lowest point of the fifth valley portion counting from the measurement time point MT.
  • the feature amount F1 corresponds to the time between the reference timing of liquid processing (for example, the timing when the processing start command is received from the above-mentioned host controller) and the nth extreme value point counted from the measurement time point MT. ..
  • the film thickness calculation unit 128 calculates the thickness of the coating film AF at the measurement time point MT based on the feature amount F1 by utilizing the correlation between the feature amount F1 and the thickness of the coating film AF. The method of calculating the thickness of the coating film AF using the correlation will be described later.
  • the film thickness calculation unit 128 calculates, for example, the thickness of the coating film AF at each irradiation position based on the signal waveform for each of the irradiation points P1 to P3.
  • the control device 100 may sequentially execute the same series of processes for the plurality of subsequent work Ws. In this case, the control device 100 starts and starts measuring the timing of starting and stopping the discharge of the processing liquid, the drying time for rotating the work W after the treatment liquid is supplied, and the intensity of the reflected light among the plurality of work Ws.
  • a series of processes may be repeatedly executed so that the stop timing is constant.
  • FIG. 10 is a flowchart showing an example of a method for constructing a model formula for estimating the thickness of the coating film AF based on the feature amount.
  • the rotation speed of the test work WT is changed to a plurality of stages to form the coating film AF, and the feature amount is acquired and the thickness of the coating film AF is measured for each stage. ..
  • a model formula showing the relationship between the feature amount and the estimated value of the thickness of the coating film AF is constructed.
  • the test work WT is a substrate of the same type as the work W.
  • step S31 the model building unit 134 sets the rotation speed of the test work WT to the initial value. More specifically, the model building unit 134 sets the rotation speed when rotating the test work WT after the treatment liquid is supplied to an initial value (rotation speed of any of a plurality of stages to be changed).
  • the range in which the rotation speed is changed and the range of change per rotation are predetermined by an operator or the like.
  • the range for changing the rotation speed is, for example, 80 rpm to 300 rpm, and the change width per time is 5 rpm to 50 rpm.
  • step S32 the control device 100 executes steps S32 and S33.
  • step S32 the control device 100 executes the liquid processing and acquires the signal waveform in the same manner as in steps S11 to S21 described above.
  • step S32 the liquid processing and the signal waveform are processed under the same conditions as those in steps S11 to S21 described above, except that the test work WT is used and the rotation speed of the work when forming the coating film AF. Acquisition is done.
  • step S33 for example, the model building unit 134 acquires the feature amount F1 from the signal waveform obtained in step S32.
  • step S34 for example, the model building unit 134 acquires a measured value indicating the thickness of the coating film AF formed on the surface of the test work WT in step S32.
  • the measured value of the thickness of the coating film AF may be a value measured by any method (using a film thickness measuring device of any method) other than the method of calculating the film thickness based on the signal waveform.
  • the measured value of the thickness of the coating film AF may be, for example, the film thickness measured based on the spectral spectrum obtained by splitting the reflected light from the coating film AF after the rotation is stopped.
  • step S35 the model building unit 134 determines whether or not the acquisition of the measured values of the feature amount F1 and the film thickness is completed at all the rotation speeds to be changed. If it is determined in step S35 that the acquisition of the feature amount F1 and the measured values of the film thickness has not been completed at all the rotation speeds (step S35: NO), the control device 100 executes step S36.
  • step S36 for example, the model building unit 134 changes the set value of the rotation speed of the test work WT. Then, the control device 100 repeats the processes of steps S32 to S35. As a result, the model building unit 134 acquires the feature amount F1 and the measured value of the film thickness for each rotation speed that is changed stepwise.
  • the set value of the rotation speed of the work W is set to at least the first rotation speed and the second rotation speed different from the first rotation speed.
  • the model building unit 134 has the feature amount F1 (first) at the first rotation speed based on the signal waveform obtained while rotating the test work WT (first test substrate) at the first rotation speed. 1 feature amount) is acquired.
  • the model building unit 134 is based on the signal waveform obtained while rotating the test work WT (second test substrate) at the second rotation speed, and the feature amount F1 (second feature amount) at the second rotation speed is used. ).
  • the model building unit 134 acquires a measured value (first measured value) indicating the thickness of the coating film AF formed on the test work WT when rotated at the first rotation speed.
  • the model building unit 134 acquires a measured value (second measured value) indicating the thickness of the coating film AF formed on the test work WT when rotated at the second rotation speed.
  • the test work WTs to be rotated at each of the plurality of rotation speeds may be different workpieces or the same workpieces.
  • the coating film AF may be removed by a chemical solution or the like after the coating film AF is formed and the film thickness is measured.
  • step S35 When it is determined in step S35 that the acquisition of the feature amount F1 and the measured values of the film thickness is completed at all the rotation speeds (step S35: YES), the control device 100 executes step S37.
  • step S37 for example, the model building unit 134 estimates the film thickness from the feature amount F1 based on the plurality of feature amounts F1 obtained by repeating steps S32 to S35 and the measured values of the plurality of film thicknesses. Generate a model formula to do so.
  • the model building unit 134 when the estimated value of the film thickness is "Th”, the model building unit 134 generates a linear expression represented by the following equation (1) as a model equation.
  • the model construction unit 134 stores the generated (constructed) model formula in the model information storage unit 132. After the construction of the above model formula is completed, the above-mentioned processes of steps S11 to S22 are executed.
  • the film thickness calculation unit 128 corresponds to the feature amount F1 obtained during the execution of the liquid treatment by referring to the model formula of the formula (1) stored in the model information storage unit 132. Calculate the film thickness.
  • the film thickness estimation unit 120 estimates the thickness of the coating film AF formed by performing the liquid treatment on the work W.
  • the method of irradiating the surface Wa of the work W with laser light is not limited to the above example.
  • the measuring unit 60 may irradiate the surface Wa of the work W with the laser beam via the mirror member.
  • the measuring unit 60 includes, for example, a light emitting / receiving device 170 and a mirror member 80.
  • the light emitting / receiving device 170 and the mirror member 80 are arranged side by side along the horizontal direction (the surface Wa of the work W supported by the holding portion 32).
  • the size of the mirror member 80 may be smaller than that of the light emitting / receiving device 170.
  • the light emitting / receiving device 170 is arranged outside the peripheral edge of the work W.
  • the mirror member 80 is arranged above the work W held by the holding portion 32 (for example, vertically above the irradiation point of the laser beam).
  • the mirror member 80 changes the direction (direction in which the light travels) of the laser beam irradiating the work W by reflecting the light.
  • the mirror member 80 has, for example, a reflecting surface 82 facing the light emitting / receiving device 170 and the surface Wa of the work W held by the holding portion 32.
  • the light emitting and receiving device 170 irradiates a laser beam that can pass through the coating film AF, similarly to the light emitting and receiving devices 70A to 70C.
  • the light emitting / receiving device 170 (light emitting unit) irradiates a laser beam toward the reflecting surface 82 of the mirror member 80.
  • the laser beam emitted from the light emitting / receiving device 170 is reflected by the reflecting surface 82 of the mirror member 80 and then irradiated to the surface Wa of the work W.
  • the light emitting / receiving device 170 receives the reflected light of the laser light in the work W through the reflecting surface 82 of the mirror member 80. Similar to the light emitting / receiving devices 70A to 70C, the measuring unit 60 may have a plurality of sets of light receiving / receiving devices 170 and a mirror member 80 in order to irradiate a plurality of different locations with laser light.
  • the light source of the laser beam may be provided on the inner wall of the housing forming a space for performing the liquid treatment so that the heat does not affect the liquid treatment.
  • the liquid treatment unit U1 has a housing 28 that accommodates the rotation holding portion 30 and forms an internal space S for processing the work W with the treatment liquid.
  • the light emitting / receiving device 170 may include a light source 172 that generates a laser beam inside the light emitting / receiving device 170.
  • the light emitting / receiving device 170 (light source 172) may be provided on the inner wall (for example, the inner surface of the side wall) of the housing 28.
  • the light source of the laser beam may be arranged outside the housing that forms a space for liquid treatment so that the heat does not affect the heat treatment.
  • the measuring unit 60 may include a light emitting device 180 (light emitting unit) and a light receiving device 190 (light receiving unit).
  • the light projecting device 180 includes a light source 182, a light guide unit 184, and an irradiation unit 186.
  • the light source 182 generates a laser beam that irradiates the surface Wa of the work W.
  • the light source 182 is arranged outside the housing 28.
  • the light guide unit 184 guides the laser beam from the light source 182 to the inside of the housing 28.
  • the light guide unit 184 is, for example, an optical fiber.
  • the irradiation unit 186 irradiates the surface Wa of the work W with the laser beam guided by the light guide unit 184 via the mirror member.
  • the light receiving device 190 includes a light collecting unit 192, a light guide unit 194, and a detection unit 196.
  • the reflected light from the work W accompanying the irradiation of the laser beam is incident on the light collecting unit 192 via the mirror member.
  • the light guide unit 194 guides the reflected light incident on the light collecting unit 192 to the detection unit 196 arranged outside the housing 28.
  • the light guide unit 194 is, for example, an optical fiber.
  • the detection unit 196 generates an electric signal corresponding to the reflected light guided by the light guide unit 194.
  • the measuring unit 60 may have a plurality of sets of the light emitting and receiving devices 180 and the light receiving device 190 in order to irradiate the laser beam to each of a plurality of different points.
  • the mirror member may have a film that suppresses scattering and absorption of light.
  • the measuring unit 60 may have a mirror member 80A.
  • the mirror member 80A reflects the irradiated laser light toward the surface Wa of the work W, and reflects the reflected light from the work W toward the light receiving device 190.
  • a film 84 that suppresses scattering and absorption of incident laser light on the reflecting surface 82 is formed on the reflecting surface 82 of the mirror member 80A.
  • the measuring unit 60 may have a member that adjusts the light receiving state of the reflected light according to the positional deviation of the reflected point of the laser light in the work W in the vertical direction.
  • the light receiving device 190 of the measuring unit 60 may have an adjusting member 198 that adjusts the light receiving state of the reflected light.
  • the adjusting member 198 adjusts the light receiving state of the reflected light in the light receiving device 190 according to the vertical positional deviation of the work W or the warp of the work W.
  • the adjusting member 198 is provided in, for example, the light collecting unit 192.
  • the adjusting member 198 reflects the work W so that the intensity of the reflected light received by the light receiving device 190 is about the same as the intensity of the reflected light when the work W has no warp or the like even if the work W has a warp or the like. Adjust the light reception state.
  • the adjusting member 198 is, for example, an optical component that adjusts the optical path of the reflected light or the focal point of the reflected light as the light receiving state of the reflected light.
  • the surface Wa of the work W may be irradiated with laser light from an oblique direction.
  • the measuring unit 60 may include a light emitting device 280 (light emitting unit) and a light receiving device 290 (light receiving unit).
  • the light emitting device 280 and the light receiving device 290 are arranged along the horizontal direction so as to sandwich the work W between them.
  • the light emitting device 280 and the light receiving device 290 are located outside the peripheral edge of the work W.
  • the light projecting device 280 irradiates the laser beam toward a predetermined irradiation point from a direction inclined with respect to a direction (vertical direction) perpendicular to the surface Wa of the work W.
  • the light receiving device 290 receives the reflected light reflected in the direction inclined with respect to the direction perpendicular to the surface Wa of the work W (vertical direction).
  • the measuring unit 60 may have a plurality of light emitting devices 280 that irradiate laser light toward each of a plurality of different points.
  • the measuring unit 60 may have a plurality of light receiving devices 290 corresponding to each of the plurality of floodlight devices 280.
  • a light projecting / light receiving device that functions as a light projecting unit and a light receiving unit may be arranged at a position where the light projecting device 280 is arranged.
  • a mirror member may be arranged in place of the light receiving device 290 at a position where the light receiving device 290 is arranged.
  • the light emitting / receiving device irradiates the surface Wa of the work W with laser light from an oblique direction, and the reflected light from the work W is reflected by the mirror member toward the light receiving / receiving device.
  • the laser beam generated from one light source is the light emitted to one location and the light emitted to a location different from the one location. It may be divided into and.
  • the measuring unit 60 may have a light projecting device 280A and a plurality (three) light receiving devices 290.
  • the floodlight device 280A includes one light source 282, a branch portion 284, and a plurality of light guide portions 286.
  • the light source 282 generates a laser beam that is emitted toward the surface Wa of the work W.
  • the branch portion 284 divides the laser light from the light source 282 into the laser light emitted toward each of a plurality of locations. For example, the branching portion 284 branches the laser light from the light source 282 into a light that irradiates any one of the plurality of locations and a light that irradiates the other one of the plurality of locations.
  • the branch portion 284 is composed of an optical component such as a beam splitter.
  • the plurality of laser beams branched by the branch portion 284 may be incident on each of the plurality of light guide portions 286.
  • the light guide unit 286 is, for example, an optical fiber.
  • the light projecting device 280A irradiates the laser light guided by the plurality of light guide units 286 toward a plurality of locations overlapping the surface Wa of the work W.
  • the branch portion 284 may divide the light from one light source so as to go to a different place at each time.
  • the branch portion 284 may be configured by a MEMS (Micro-Electro-Mechanical Systems) mirror having a function of changing the angle of the reflecting surface (mirror surface) by swinging.
  • MEMS Micro-Electro-Mechanical Systems
  • the laser beam is irradiated to three places overlapping the surface Wa of the work W, but the laser light may be irradiated to one place overlapping the surface Wa of the work W.
  • the film thickness estimation unit 120 of the control device 100 may estimate the thickness of the coating film AF at the one point irradiated with the laser beam.
  • the irradiation points of the laser beam (estimated points of the thickness of the coating film AF) may be two places or four or more places.
  • the distances between these locations and the center CP of the work W may be substantially the same as each other.
  • the optical path of the laser light and the reflected light in the measuring unit 60 may be adjusted by using another laser light for adjustment.
  • the adjustment of the optical path using another laser beam may be performed by an operator or the like before the liquid treatment is performed.
  • the intensity of the laser beam applied to the work W may be adjusted according to the intensity of the reflected light received by the measuring unit 60 (for example, the average intensity).
  • the control device 100 film thickness estimation unit 120
  • the light projection condition setting unit 138 changes the setting value of the light intensity from the light projection unit such as the light emitting / receiving devices 70A to 70C based on the comparison result between the intensity of the reflected light and a predetermined threshold value.
  • the light projecting condition setting unit 138 increases the setting value of the intensity of the laser light emitted from the light projecting unit when the average intensity of the reflected light falls below a predetermined threshold value.
  • the light projecting control unit 122 controls the measuring unit 60 so that the laser light having the changed intensity of the set value is irradiated. do.
  • the light projection condition setting unit 138 may acquire the intensity of the reflected light for changing the set value of the irradiation intensity of the laser light for each execution of one or a plurality of liquid treatments.
  • the floodlight condition setting unit 138 changes the set value of the laser beam irradiation intensity after forming the coating film AF on the test work W during the period when the liquid treatment on the work W is not executed. The intensity of the reflected light may be obtained.
  • the control device 100 may change the liquid treatment conditions for the subsequent work W according to the film thickness calculated by the film thickness calculation unit 128.
  • the control device 100 (film thickness estimation unit 120) may have a processing condition changing unit 136 as a functional module.
  • the processing condition changing unit 136 sets values of various conditions for liquid processing included in the processing information stored in the processing information storage unit 112 based on the thickness of the coating film AF calculated by the film thickness calculation unit 128. change. For example, in the processing condition changing unit 136, when the absolute value of the difference between the average value of the thickness of the coating film AF calculated for the irradiation points P1 to P3 and the predetermined target thickness is larger than the predetermined value. , The set value of the rotation speed of the work W after the treatment liquid is supplied is changed so that the difference is reduced.
  • the feature amount obtained from the waveform between the measurement time point MT and the time point where the signal waveform satisfies a predetermined condition before the measurement time point MT is calculated.
  • the time of the nth extreme value point counted from the measurement time point MT is used as the feature amount F1
  • the coating film AF at the measurement time point MT is based on a feature amount different from the feature amount F1.
  • the thickness of may be calculated.
  • the feature amount obtained from a part of the signal waveform may be the time from the last time point when the signal waveform intensity matches the preset base intensity to the measurement time point MT.
  • the feature amount acquisition unit 126 is the time between the measurement time point MT and the coincidence point from the waveform between the measurement time point MT and the time point satisfying the condition that the intensity of the signal waveform finally matches the predetermined base strength. Is acquired as the feature amount F2. Even when the feature amount F2 is used, a model formula showing the relationship between the thickness of the coating film AF and the feature amount F2 is constructed.
  • FIG. 14 shows a graph of the signal waveform acquired while forming the coating film AF on the test work WT by changing the rotation speed in five steps.
  • the waveform of only the latter half of the signal waveform (near the end of the rotation time) is shown.
  • the changed rotation speed values are indicated by " ⁇ 1" to " ⁇ 5", respectively, and the values increase in the order of ⁇ 1 to ⁇ 5.
  • the above-mentioned base strength is indicated by "BI”, and the base strength BI is, for example, at the measurement time point MT of the signal waveform obtained from the coating film AF formed at the lowest rotation speed when creating a model formula. Corresponds to strength.
  • the base strength BI may be set to the strength at the measurement time point MT of the signal waveform obtained from the coating film AF formed at the maximum rotation speed.
  • the model building unit 134 generates a model formula for estimating the film thickness from the feature amount F2 based on the plurality of feature amounts F2 obtained by changing the rotation speed in five steps and the measured values of the plurality of film thicknesses. do.
  • the model building unit 134 generates a quadratic formula represented by the following formula (2) as a model formula for defining the relationship between the estimated film thickness Th and the feature amount F2.
  • formula (2) "a1", "b1" and "c1" are coefficients, and a model equation is constructed by defining these coefficients.
  • Th a1 x F2 x F2 + b1 x F2 + c1 (2)
  • the film thickness calculation unit 128 calculates the film thickness according to the feature amount F2 obtained during the execution of the liquid treatment by referring to the constructed model formula.
  • the model building unit 134 may generate a model formula by using a polynomial approximation of degree 3 or higher. Which approximate formula to use for the model formula may be selected for each feature amount after the correlation between the measured value of the film thickness and the feature amount is evaluated.
  • the feature quantity obtained from a part of the signal waveform is the intensity of the signal waveform at the extreme value point (maximum or minimum point) that appears first from the measurement time MT and the measurement time MT. It may be a value obtained by dividing the difference from the intensity of the signal waveform in (1) by the intensity of the signal waveform at the first extremum point.
  • FIG. 15A shows the waveform of the latter half of the signal waveform (near the end of the rotation period).
  • the feature amount acquisition unit 126 is the first waveform from the waveform between the measurement time point MT and the time point at which the signal waveform satisfies the condition of becoming the first extreme value point counting in the direction in which the time returns from the measurement time point MT.
  • the signal waveform intensity In1 at the extreme point of the measurement and the signal waveform intensity In2 at the measurement time point MT are acquired.
  • the feature amount acquisition unit 126 obtains a value obtained by subtracting the intensity In1 from the intensity In2, and calculates the value obtained by dividing the obtained value by the intensity In1 as the feature amount F3.
  • the film thickness estimation unit 120 constructs a model formula for the feature amount F3, and by referring to the model formula, the feature amount acquired in the liquid treatment to the work W.
  • the thickness of the coating film AF is calculated (estimated) according to F3.
  • the feature quantity obtained from a part of the signal waveform is the phase according to the intensity of the signal waveform at the extreme value point that appears first from the measurement time MT, and the signal waveform at the measurement time MT. It may be the difference from the phase according to the intensity of.
  • FIG. 15 (b) shows a waveform obtained by converting the time change of the intensity in a part of the latter half of the signal waveform (the period indicated by “LP” in FIG. 15 (a)) into the time change of the phase. .. In the conversion from intensity to phase, the phase of the point of the signal waveform where the intensity is maximum is ⁇ / 2, and the phase of the point of the signal waveform where the intensity is minimum is (- ⁇ / 2).
  • an operation using an inverse sine function (arc sine) is performed.
  • the strength of the signal waveform is first normalized. Specifically, normalization is performed so that the maximum value of the intensity of the signal waveform is 1 and the minimum value of the intensity is -1. Then, by calculating the inverse sine function with the normalized intensity as a variable, the conversion from the intensity to the phase is performed.
  • the feature amount acquisition unit 126 acquires, for example, the intensity In1 of the signal waveform at the first extreme point and the intensity In2 of the signal waveform at the time of measurement. Then, the feature amount acquisition unit 126 converts the intensity In1 into the phase Ph1 and converts the intensity In2 into the phase Ph2 by performing an operation using the inverse sine function. After that, the feature amount acquisition unit 126 calculates the value obtained by subtracting the phase Ph1 from the phase Ph2 as the feature amount F4. Similar to the case where the feature amounts F1 and F2 are used, the film thickness estimation unit 120 constructs a model formula for the feature amount F4, and by referring to the model formula, the feature amount acquired in the liquid treatment to the work W. The thickness of the coating film AF is calculated (estimated) according to F4.
  • the feature amount obtained from a part of the signal waveform may be the difference between the preset base intensity BI and the intensity of the signal waveform at the measurement time point MT.
  • the base intensity BI is determined at the measurement time point MT of the signal waveform obtained from the coating film AF formed at the smallest rotation speed or the largest rotation speed when the model formula is created, as in the case where the feature amount F2 is used. It may be strong.
  • FIG. 16 shows a plurality of signal waveforms obtained when creating a model formula.
  • the difference between the base intensity BI and the intensity Inm of the signal waveform at the measurement time point MT is acquired as the feature amount F5. That is, the feature amount acquisition unit 126 acquires the difference between the base intensity BI and the intensity Inm (a value obtained by subtracting the base intensity BI from the intensity Innm) as the feature amount F5 from the waveform at the measurement time point MT.
  • the waveform (information) between the measurement time point MT and the time point in which the signal waveform satisfies a predetermined condition before the measurement time point MT may be determined depending on the above-mentioned predetermined conditions.
  • the waveform (information) at the measurement time point MT is also included.
  • the film thickness estimation unit 120 constructs a model formula for the feature amount F5, and by referring to the model formula, the feature amount acquired in the liquid treatment to the work W.
  • the thickness of the coating film AF is calculated (estimated) according to F5.
  • the feature amount obtained from a part of the signal waveform may be the difference between the phase corresponding to the preset base intensity BI and the phase corresponding to the intensity of the signal waveform at the measurement time point MT. good.
  • the base intensity BI is determined at the measurement time point MT of the signal waveform obtained from the coating film AF formed at the smallest rotation speed or the largest rotation speed when the model formula is created, as in the case where the feature amount F2 is used. It may be strong.
  • the feature amount acquisition unit 126 acquires the intensity Inm of the signal waveform at the measurement time point MT from the waveform at the measurement time point MT. Then, the feature amount acquisition unit 126 converts the base intensity BI into the phase and the intensity Inm into the phase by performing an operation using the inverse sine function, as in the case where the feature amount F4 is used. After that, the feature amount acquisition unit 126 calculates a value obtained by subtracting the phase corresponding to the base intensity BI from the phase corresponding to the intensity Inm as the feature amount F6. Similar to the case where the feature amounts F1 and F2 are used, the film thickness estimation unit 120 constructs a model formula for the feature amount F6, and by referring to the model formula, the feature amount acquired in the liquid treatment to the work W. The thickness of the coating film AF is calculated (estimated) according to F6.
  • the feature amount acquisition unit 126 is based on the above-mentioned feature from the waveform (information) between the measurement time point MT and the time point where the signal waveform satisfies a predetermined condition before the measurement time point MT among the signal waveforms.
  • Feature quantities other than the quantities F1 to F6 may be acquired. Any feature amount may be used as long as a correlation can be obtained with the thickness of the coating film AF.
  • the film thickness estimation unit 120 is a film other than the resist film (for example, a lower layer).
  • the thickness of the coating film of the treatment liquid for forming the film or the upper layer film) may be estimated.
  • the film thickness estimation unit 120 may estimate the thickness of the developer film for developing the resist film.
  • the measurement time point MT is set at the end time point of the rotation period (drying time), but it may be set at any time point before the end time point.
  • the film thickness estimation unit 120 may construct a model formula showing the relationship between the film thickness and the feature amount at the time point when the measurement time point MT is set.
  • the above-mentioned series of processing executed by the control device 100 in the substrate processing method (film thickness estimation method) and the model formula construction method is an example, and can be appropriately changed. For example, some of the steps (processes) described above may be omitted, or the steps may be executed in a different order. Further, any two or more steps among the above-mentioned steps may be combined, or a part of the steps may be modified or deleted. Alternatively, other steps may be performed in addition to each of the above steps.
  • the substrate processing system 1 described above rotates the work W in a state where the treatment liquid is supplied on the surface Wa so that a film of the treatment liquid (coating film AF) is formed on the surface Wa of the work W.
  • the liquid treatment unit U1 configured to cause the light and the light projection configured to irradiate the portion overlapping the surface Wa of the work W during the rotation period in which the liquid treatment unit U1 rotates the work W. It is configured to receive the reflected light obtained by combining the light emitted through the coating film AF after reflecting the surface Wa of the work W and the light reflected by the outer surface Fa of the coating film AF.
  • the control device 100 acquires a signal acquisition unit 124 configured to acquire a signal waveform indicating a time change in the intensity of the reflected light during the rotation period based on the reflected light received by the light receiving unit, and a signal acquisition unit 124.
  • the thickness of the coating film AF at the measurement time point MT based on the waveform between the predetermined measurement time point MT within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point MT. It has a film thickness calculation unit 128 configured to calculate the signal.
  • the work W in a state where the treatment liquid is supplied on the surface Wa is rotated so that the coating film AF is formed on the surface Wa of the work W, and the work W is formed.
  • the light is irradiated toward the portion overlapping the surface Wa of the work W, the light emitted through the coating film AF after reflecting the surface Wa of the work W, and the coating film AF.
  • the thickness of the processing liquid film at the measurement time point MT based on the waveform between the predetermined measurement time point MT within the rotation period and the time point when the signal waveform satisfies the predetermined condition before the measurement time point MT. Includes calculating.
  • the reflected light is a combination of the light emitted through the coating film AF after reflecting the surface Wa of the work W and the light reflected by the outer surface Fa of the coating film AF.
  • a signal waveform indicating the time change of the intensity of is acquired.
  • the signal waveform contains information regarding the thickness of the coating film AF.
  • the thickness of the coating film AF is calculated from the time change of the intensity of the reflected light. Therefore, even if the thickness of the coating film AF fluctuates, the coating film AF is calculated. It is possible to estimate the AF thickness with high accuracy. For example, since the feature amount is based on the relative time change of the signal waveform, it is not easily affected by noise generated by various factors when detecting the reflected light. Therefore, it is possible to improve the estimation accuracy by estimating the film thickness based on the feature amount.
  • the control device 100 is a feature amount acquisition unit configured to acquire a feature amount from a waveform between a measurement time point MT and a time point in which the signal waveform satisfies a predetermined condition before the measurement time point MT among the signal waveforms.
  • 126 may be further included.
  • the film thickness calculation unit 128 may be configured to calculate the thickness of the coating film AF at the measurement time point MT based on the feature amount acquired by the feature amount acquisition unit 126. Since the signal waveform contains information about the thickness of the coating film AF, the feature amount obtained from a part of the waveform can correlate with the thickness of the coating film AF. Therefore, by utilizing the correlation between the feature amount and the thickness of the coating film AF, the calculation for calculating the thickness of the coating film AF is simplified.
  • the light projecting unit irradiates light toward the above-mentioned portion (for example, the irradiation portion P1) and another portion (for example, the irradiation portion P2) that overlaps the surface Wa of the work W at a position different from the location. It may be configured in.
  • the distance between the above-mentioned place and the center CP of the work W and the distance between the above-mentioned other place and the center CP of the work W may be different from each other.
  • the liquid treatment unit U1 may have a holding portion 32 that supports the work W.
  • the above-mentioned portion (for example, the irradiation portion P1) may be set so as to overlap with the holding portion 32.
  • the thickness of the portion of the coating film AF corresponding to the holding portion 32 may be affected by the holding portion 32. In the above configuration, since the film thickness at the portion affected by the holding portion 32 is estimated, it is possible to evaluate the film thickness after taking the relevant portion into consideration.
  • the light projecting unit is configured to irradiate the above-mentioned part with light having a predetermined frequency and to irradiate the above-mentioned other part with another light having a frequency different from the frequency of the light irradiating the part. You may. In this configuration, even when a part of the reflected light from another place is received by the light receiving portion, it is easy to remove the influence of a part of the reflected light from another place from the signal waveform. For example, when two lights with different frequencies are mixed in the light received by one light receiving unit, one of the reflected light from another place is obtained by removing components other than the frequency to be received by the light receiving unit. The influence of the part can be removed.
  • the light projecting unit is configured to divide the light from one light source 282 that generates the light to irradiate the work W and the light from the light source 282 into the light radiated to the above-mentioned portion and the light radiated to the other portion. It may have a branch portion 284 and the branch portion 284. In this case, when the film thickness is estimated by irradiating a plurality of places with light, the number of light sources can be reduced, and the apparatus can be simplified.
  • the liquid treatment unit U1 may have a housing 28 that forms an internal space S for performing liquid treatment using the treatment liquid on the work W.
  • the light projecting unit may have a light source that generates light to irradiate the work W. When the light source is placed near the work W, the film thickness may fluctuate due to the heat of the light source.
  • the light source and the work W to which the liquid treatment is applied can be separated from each other, it is possible to reduce the influence of the heat of the light source on the liquid treatment.
  • the light projecting unit may have mirror members 80, 80A configured to change the direction of the light applied to the work W by reflecting the light.
  • the member When the member is arranged vertically above the work W, it affects the air flow above the substrate and the film thickness may fluctuate.
  • the portion included in the light projecting unit to be irradiated with light can be arranged away from the work W, it is possible to reduce the influence of the light projecting unit on the liquid treatment.
  • the reflecting surface 82 of the mirror member 80A may be formed with a film 84 configured to suppress scattering and absorption of incident light on the reflecting surface 82. In this case, it is possible to suppress a decrease in the amount of light received by the light receiving unit while reducing noise contained in the light received by the light receiving unit. As a result, it becomes possible to estimate the film thickness with higher accuracy based on the signal waveform.
  • the substrate processing system 1 may further include an adjusting member 198 configured to adjust the light receiving state of the reflected light in the light receiving portion according to the vertical positional deviation of the work W or the warp of the work W.
  • an adjusting member 198 configured to adjust the light receiving state of the reflected light in the light receiving portion according to the vertical positional deviation of the work W or the warp of the work W.
  • the control device 100 further includes a light projection condition setting unit 138 configured to change the set value of the light intensity from the light projector unit based on the comparison result between the intensity of the reflected light and a predetermined threshold value. You may. In this case, when the intensity of the reflected light received by the light receiving unit is lowered, the intensity of the reflected light can be maintained by increasing the set value of the intensity of the light from the light projecting unit. As a result, it is possible to stabilize the estimation of the film thickness even if the light receiving portion may be deteriorated (for example, even if the lens which is an optical component may be fogged).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Coating Apparatus (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A substrate treatment apparatus according to an aspect of the present invention comprises: a liquid treatment unit (U1) configured to rotate a substrate (W) that that a film (AF) of a treatment liquid is formed on a surface (Wa); projection units (70A-70C) configured to radiate light to a location superposed on the surface of the substrate in a rotation period during which the substrate is rotated; light-receiving units (70A-70C) configured to receive reflected light obtained by synthesis of light emitted via the film of the treatment liquid after being reflected by the surface of the substrate, and light reflected by the outer surface of the film of the treatment liquid; and a control unit (100). The control unit has: a signal acquisition unit (124) configured to acquire a signal waveform that indicates a time variation in the intensity of the reflected light in the rotation period; and a film thickness calculation unit (128) configured to calculate the thickness of the film of the treatment liquid at a prescribed measurement time in the rotation period, on the basis of the waveform between the measurement time and a time at which the signal waveform satisfies a prescribed condition at or before the measurement time in the signal waveform.

Description

基板処理装置、基板処理方法、及び記憶媒体Board processing equipment, board processing method, and storage medium
 本開示は、基板処理装置、基板処理方法、及び記憶媒体に関する。 The present disclosure relates to a substrate processing apparatus, a substrate processing method, and a storage medium.
 特許文献1には、表面上に膜が形成された基板の半径方向に沿って載置した膜厚測定手段と、膜厚測定手段から出力される測定結果に基づいて、薬液の吐出量、薬液ノズルの往復速度、及び基板回転数を制御する演算制御部とを有する基板処理装置が開示されている。 In Patent Document 1, a film thickness measuring means placed along the radial direction of a substrate having a film formed on the surface, and a chemical solution discharge amount and a chemical solution based on the measurement results output from the film thickness measuring means. A substrate processing apparatus having an arithmetic control unit for controlling a reciprocating speed of a nozzle and a substrate rotation speed is disclosed.
特開平1-276722号公報Japanese Unexamined Patent Publication No. 1-276722
 本開示は、基板からの反射光に基づいて膜厚を精度良く推定することが可能な基板処理装置、基板処理方法、及び記憶媒体を提供する。 The present disclosure provides a substrate processing apparatus, a substrate processing method, and a storage medium capable of accurately estimating the film thickness based on the reflected light from the substrate.
 本開示の一側面に係る基板処理装置は、表面上に処理液が供給された状態の基板を、当該基板の表面上に処理液の膜が形成されるように回転させるように構成された液処理部と、液処理部が基板を回転させている回転期間において、基板の表面と重なる箇所に向けて光を照射するように構成された投光部と、基板の表面を反射した後に処理液の膜を介して出射される光と、処理液の膜の外表面で反射した光とが合成された反射光を受光するように構成された受光部と、液処理部、投光部、及び受光部を制御する制御部とを備える。制御部は、受光部が受光した反射光に基づいて、回転期間における反射光の強度の時間変化を示す信号波形を取得するように構成された信号取得部と、信号取得部が取得した信号波形のうちの、回転期間内の所定の計測時点と、計測時点以前において信号波形が所定の条件を満たす時点との間の波形に基づいて、計測時点における処理液の膜の厚さを算出するように構成された膜厚算出部とを有する。 The substrate processing apparatus according to one aspect of the present disclosure is a liquid configured to rotate a substrate in a state where the treatment liquid is supplied on the surface so that a film of the treatment liquid is formed on the surface of the substrate. A processing unit, a light projecting unit configured to irradiate light toward a portion overlapping the surface of the substrate during a rotation period in which the liquid processing unit rotates the substrate, and a processing liquid after reflecting the surface of the substrate. A light receiving unit configured to receive the reflected light obtained by combining the light emitted through the film and the light reflected on the outer surface of the processing liquid film, the liquid processing unit, the light projecting unit, and the light emitting unit. It includes a control unit that controls the light receiving unit. The control unit has a signal acquisition unit configured to acquire a signal waveform indicating a time change in the intensity of the reflected light during the rotation period based on the reflected light received by the light receiving unit, and a signal waveform acquired by the signal acquisition unit. Of these, the thickness of the processing liquid film at the measurement time point is calculated based on the waveform between the predetermined measurement time point within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point. It has a film thickness calculation unit configured in.
 本開示によれば、基板からの反射光に基づいて膜厚を精度良く推定することが可能な基板処理装置、基板処理方法、及び記憶媒体が提供される。 According to the present disclosure, a substrate processing apparatus, a substrate processing method, and a storage medium capable of accurately estimating the film thickness based on the reflected light from the substrate are provided.
図1は、基板処理システムの一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a substrate processing system. 図2は、塗布現像装置の一例を示す模式図である。FIG. 2 is a schematic view showing an example of a coating and developing apparatus. 図3は、液処理ユニット及び計測部の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a liquid treatment unit and a measurement unit. 図4は、計測部からの光の照射位置の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the irradiation position of light from the measuring unit. 図5(a)及び図5(b)は、膜厚と反射光との関係を説明するための模式図である。5 (a) and 5 (b) are schematic views for explaining the relationship between the film thickness and the reflected light. 図6は、制御装置の機能構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of the functional configuration of the control device. 図7は、制御装置のハードウェア構成の一例を示すブロック図である。FIG. 7 is a block diagram showing an example of the hardware configuration of the control device. 図8は、基板処理方法の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of the substrate processing method. 図9は、反射光の強度の時間変化の一例を示すグラフである。FIG. 9 is a graph showing an example of the time change of the intensity of the reflected light. 図10は、膜厚を推定するためのモデル式の生成方法の一例を示すフローチャートである。FIG. 10 is a flowchart showing an example of a method for generating a model formula for estimating the film thickness. 図11は、計測部の一例を示す模式図である。FIG. 11 is a schematic diagram showing an example of the measuring unit. 図12は、計測部の一例を示す模式図である。FIG. 12 is a schematic diagram showing an example of the measuring unit. 図13(a)及び図13(b)は、計測部の一例を示す模式図である。13 (a) and 13 (b) are schematic views showing an example of a measuring unit. 図14は、膜厚推定方法の一例を説明するためのグラフである。FIG. 14 is a graph for explaining an example of the film thickness estimation method. 図15(a)及び図15(b)は、膜厚推定方法の一例を説明するためのグラフである。15 (a) and 15 (b) are graphs for explaining an example of the film thickness estimation method. 図16は、膜厚推定方法の一例を説明するためのグラフである。FIG. 16 is a graph for explaining an example of the film thickness estimation method.
 以下、種々の例示的実施形態について説明する。 Hereinafter, various exemplary embodiments will be described.
 一つの例示的実施形態に係る基板処理装置は、表面上に処理液が供給された状態の基板を、当該基板の表面上に処理液の膜が形成されるように回転させるように構成された液処理部と、液処理部が基板を回転させている回転期間において、基板の表面と重なる箇所に向けて光を照射するように構成された投光部と、基板の表面を反射した後に処理液の膜を介して出射される光と、処理液の膜の外表面で反射した光とが合成された反射光を受光するように構成された受光部と、液処理部、投光部、及び受光部を制御する制御部とを備える。制御部は、受光部が受光した反射光に基づいて、回転期間における反射光の強度の時間変化を示す信号波形を取得するように構成された信号取得部と、信号取得部が取得した信号波形のうちの、回転期間内の所定の計測時点と、計測時点以前において信号波形が所定の条件を満たす時点との間の波形に基づいて、計測時点における処理液の膜の厚さを算出するように構成された膜厚算出部とを有する。 The substrate processing apparatus according to one exemplary embodiment is configured to rotate a substrate in a state where the treatment liquid is supplied on the surface so that a film of the treatment liquid is formed on the surface of the substrate. The liquid treatment unit, the light projecting unit configured to irradiate light toward the portion overlapping the surface of the substrate during the rotation period during which the liquid treatment unit rotates the substrate, and the processing after reflecting the surface of the substrate. A light receiving unit configured to receive the reflected light obtained by combining the light emitted through the liquid film and the light reflected on the outer surface of the processing liquid film, the liquid treatment unit, and the light projecting unit. It also includes a control unit that controls the light receiving unit. The control unit has a signal acquisition unit configured to acquire a signal waveform indicating a time change in the intensity of the reflected light during the rotation period based on the reflected light received by the light receiving unit, and a signal waveform acquired by the signal acquisition unit. Of these, the thickness of the processing liquid film at the measurement time point is calculated based on the waveform between the predetermined measurement time point within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point. It has a film thickness calculation unit configured in.
 この基板処理装置では、基板の表面を反射した後に処理液の膜を介して出射される光と、処理液の膜の外表面で反射した光とが合成された反射光の強度の時間変化を示す信号波形が取得される。処理液の膜の厚さに応じて、基板の表面を反射した後に処理液の膜を介して出射される光と、処理液の膜の外表面で反射した光との干渉状態が変化するので、信号波形には、処理液の膜の厚さに関する情報が含まれる。そのため、信号波形のうちの、回転期間内の所定の計測時点と、計測時点以前において信号波形が所定の条件を満たす時点との間の波形から処理液の膜の厚さを算出することができる。上記基板処理装置では、反射光の強度の時間変化から、処理液の膜の厚さを算出しているので、処理液の膜の厚さが変動する場合であっても、処理液の膜の厚さを精度良く推定することが可能となる。 In this substrate processing apparatus, the time change of the intensity of the reflected light obtained by combining the light emitted through the film of the treatment liquid after reflecting on the surface of the substrate and the light reflected on the outer surface of the film of the treatment liquid is changed. The indicated signal waveform is acquired. Depending on the thickness of the film of the treatment liquid, the state of interference between the light emitted through the film of the treatment liquid after reflecting on the surface of the substrate and the light reflected on the outer surface of the film of the treatment liquid changes. , The signal waveform contains information about the film thickness of the treatment liquid. Therefore, the film thickness of the processing liquid can be calculated from the waveform between the predetermined measurement time point within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point among the signal waveforms. .. In the substrate processing apparatus, the thickness of the film of the treatment liquid is calculated from the time change of the intensity of the reflected light. Therefore, even if the thickness of the film of the treatment liquid fluctuates, the film of the treatment liquid can be used. It is possible to estimate the thickness with high accuracy.
 制御部は、信号波形のうちの、計測時点と、計測時点以前において信号波形が所定の条件を満たす時点との間の波形から特徴量を取得するように構成された特徴量取得部を更に有してもよい。膜厚算出部は、特徴量取得部が取得した特徴量に基づいて、計測時点における処理液の膜の厚さを算出するように構成されていてもよい。信号波形には処理液の膜の厚さに関する情報が含まれるので、当該波形の一部から得られる特徴量は、処理液の膜の厚さに相関し得る。そのため、特徴量と膜の厚さとの間の相関関係を利用することで、処理液の膜の厚さを算出するための演算が簡素化される。 The control unit further has a feature amount acquisition unit configured to acquire the feature amount from the waveform between the measurement time point and the time point when the signal waveform satisfies a predetermined condition among the signal waveforms. You may. The film thickness calculation unit may be configured to calculate the film thickness of the treatment liquid at the time of measurement based on the feature amount acquired by the feature amount acquisition unit. Since the signal waveform contains information about the film thickness of the treatment liquid, the feature amount obtained from a part of the waveform can correlate with the film thickness of the treatment liquid. Therefore, by utilizing the correlation between the feature amount and the film thickness, the calculation for calculating the film thickness of the treatment liquid is simplified.
 投光部は、上記箇所と、当該箇所とは別の位置で基板の表面と重なる別の箇所とに向けて光を照射するように構成されていてもよい。この場合、別の箇所からの反射光に基づき信号波形を更に取得することで、複数箇所について処理液の膜の厚さを推定することが可能となる。 The light projecting unit may be configured to irradiate light toward the above-mentioned part and another part overlapping the surface of the substrate at a position different from the above-mentioned part. In this case, by further acquiring the signal waveform based on the reflected light from another location, it is possible to estimate the film thickness of the processing liquid at a plurality of locations.
 上記箇所と基板の中心との間の距離と、上記別の箇所と基板の中心との間の距離とは互いに異なっていてもよい。この場合、基板の中心からの距離が互いに異なる位置について、膜厚を測定することが可能となる。 The distance between the above-mentioned location and the center of the substrate and the distance between the above-mentioned other location and the center of the substrate may be different from each other. In this case, it is possible to measure the film thickness at positions where the distances from the center of the substrate are different from each other.
 液処理部は、基板を支持するように構成された支持部を有してもよい。上記箇所は、支持部と重なるように設定されていてもよい。処理液の膜のうちの、支持部に対応する部分の厚さは、支持部の影響を受ける場合がある。上記構成では、支持部の影響を受ける箇所での膜厚が推定されるので、当該箇所を加味したうえで膜厚を評価することが可能となる。 The liquid treatment unit may have a support unit configured to support the substrate. The above-mentioned portion may be set so as to overlap with the support portion. The thickness of the portion of the film of the treatment liquid corresponding to the support portion may be affected by the support portion. In the above configuration, since the film thickness at the portion affected by the support portion is estimated, it is possible to evaluate the film thickness after taking the relevant portion into consideration.
 投光部は、上記箇所に所定の周波数を有する光を照射する共に、当該箇所に照射する光の周波数とは異なる周波数を有する別の光を、上記別の箇所に照射するように構成されていてもよい。この構成では、受光部において別の箇所からの反射光の一部が受光された場合でも、信号波形から別の箇所からの反射光の一部の影響を除去することが容易である。 The light projecting unit is configured to irradiate the above-mentioned part with light having a predetermined frequency and to irradiate the above-mentioned other part with another light having a frequency different from the frequency of the light irradiating the part. You may. In this configuration, even when a part of the reflected light from another place is received by the light receiving portion, it is easy to remove the influence of a part of the reflected light from another place from the signal waveform.
 投光部は、基板に照射する光を生成する1つの光源と、1つの光源からの光を、上記箇所に照射される光と上記別の箇所に照射される光とに分けるように構成された分岐部とを有してもよい。この場合、複数箇所に光を照射して膜厚を推定する場合に、光源の数を減らすことができ、装置の簡素化を図ることが可能となる。 The light projecting unit is configured to divide the light from one light source that generates the light to irradiate the substrate and the light from one light source into the light radiated to the above-mentioned place and the light radiated to the other place. It may have a branch portion. In this case, when the film thickness is estimated by irradiating a plurality of places with light, the number of light sources can be reduced, and the apparatus can be simplified.
 液処理部は、基板に対して処理液を用いた処理を行うための内部空間を形成する筐体を有してもよい。投光部は、基板に照射する光を生成する光源を有してもよい。光源は、筐体の内壁に設けられるか、又は筐体外に配置されてもよい。光源が基板の近くに配置されると、光源の熱によって膜厚が変動し得る。これに対して、上記構成では、光源と液処理が施されている基板とを離すことができるので、光源の熱が液処理に与える影響を低減することが可能となる。 The liquid treatment unit may have a housing that forms an internal space for processing the substrate with the treatment liquid. The light projecting unit may have a light source that generates light to irradiate the substrate. The light source may be provided on the inner wall of the housing or may be arranged outside the housing. When the light source is placed near the substrate, the film thickness can vary due to the heat of the light source. On the other hand, in the above configuration, since the light source and the substrate subjected to the liquid treatment can be separated from each other, it is possible to reduce the influence of the heat of the light source on the liquid treatment.
 投光部は、光を反射することによって基板に照射する光の方向を変更するように構成されたミラー部材を有してもよい。基板の鉛直上方に部材が配置されると、基板の上方における気流に影響を及ぼし、膜厚が変動し得る。これに対して、上記構成では、投光部に含まれる光を照射する部分を基板から離して配置できるので、投光部が液処理に与える影響を低減することが可能となる。 The light projecting unit may have a mirror member configured to change the direction of the light irradiating the substrate by reflecting the light. When the member is arranged vertically above the substrate, it affects the airflow above the substrate and the film thickness may fluctuate. On the other hand, in the above configuration, since the portion included in the light projecting unit to be irradiated with light can be arranged away from the substrate, it is possible to reduce the influence of the light projecting unit on the liquid treatment.
 ミラー部材の反射面には、入射された光の反射面における散乱と吸収とを抑制するように構成された膜が形成されていてもよい。この場合、受光部が受光する光に含まれるノイズを低減しつつ、受光部が受光する光の量の低下を抑制することが可能となる。その結果、信号波形に基づいて、より高い精度で膜厚を推定することが可能となる。 The reflective surface of the mirror member may be formed with a film configured to suppress scattering and absorption of incident light on the reflective surface. In this case, it is possible to suppress a decrease in the amount of light received by the light receiving unit while reducing noise contained in the light received by the light receiving unit. As a result, it becomes possible to estimate the film thickness with higher accuracy based on the signal waveform.
 基板処理装置は、基板の上下方向の位置ずれ、又は基板の反りに応じて、受光部における反射光の受光状態を調節するように構成された調節部材を更に備えてもよい。この場合、基板の上下方向の位置ずれ又は基板の反りの影響が反射光に付加されていても、受光部が当該反射光を受光する前に、調節部材によって当該影響が反射光から低減される。その結果、膜厚の推定を安定化させることが可能となる。 The substrate processing apparatus may further include an adjusting member configured to adjust the light receiving state of the reflected light in the light receiving portion according to the vertical positional deviation of the substrate or the warp of the substrate. In this case, even if the effect of the vertical displacement of the substrate or the warp of the substrate is added to the reflected light, the effect is reduced from the reflected light by the adjusting member before the light receiving portion receives the reflected light. .. As a result, it becomes possible to stabilize the estimation of the film thickness.
 制御部は、反射光の強度と所定の閾値との比較結果に基づいて、投光部からの光の強度の設定値を変更するように構成された条件設定部を更に有してもよい。この場合、受光部において受光される反射光の強度が低下してきた場合に、投光部からの光の強度の設定値を大きくすることで、反射光の強度を維持することができる。その結果、膜厚の推定を安定化させることが可能となる。 The control unit may further have a condition setting unit configured to change the set value of the light intensity from the light projecting unit based on the comparison result between the intensity of the reflected light and a predetermined threshold value. In this case, when the intensity of the reflected light received by the light receiving unit is lowered, the intensity of the reflected light can be maintained by increasing the set value of the intensity of the light from the light projecting unit. As a result, it becomes possible to stabilize the estimation of the film thickness.
 一つの例示的実施形態に係る基板処理方法は、表面上に処理液が供給された状態の基板を、当該基板の表面上に処理液の膜が形成されるように回転させることと、基板を回転させている回転期間において、基板の表面と重なる箇所に向けて光を照射することと、基板の表面を反射した後に処理液の膜を介して出射される光と、処理液の膜の外表面で反射した光とが合成された反射光を受光することと、受光した反射光に基づいて、回転期間における反射光の強度の時間変化を示す信号波形を取得することと、信号波形のうちの、回転期間内の所定の計測時点と、計測時点以前において信号波形が所定の条件を満たす時点との間の波形に基づいて、計測時点における処理液の膜の厚さを算出することとを含む。この基板処理方法では、上記基板処理装置と同様に、反射光の強度の時間変化から、処理液の膜の厚さを算出しているので、処理液の膜の厚さが変動する場合であっても、処理液の膜の厚さを精度良く推定することが可能となる。 The substrate processing method according to one exemplary embodiment is to rotate the substrate in a state where the treatment liquid is supplied on the surface so that a film of the treatment liquid is formed on the surface of the substrate, and to rotate the substrate. During the rotating period, the light is irradiated toward the part that overlaps the surface of the substrate, the light emitted through the film of the treatment liquid after reflecting the surface of the substrate, and the outside of the film of the treatment liquid. Of the signal waveforms, receiving the reflected light that is combined with the light reflected on the surface, and acquiring the signal waveform showing the time change of the intensity of the reflected light during the rotation period based on the received reflected light. The thickness of the film of the processing liquid at the time of measurement is calculated based on the waveform between the predetermined measurement time point within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point. include. In this substrate processing method, as in the case of the substrate processing apparatus, the thickness of the film of the treatment liquid is calculated from the time change of the intensity of the reflected light, so that the thickness of the film of the treatment liquid may fluctuate. However, it is possible to accurately estimate the film thickness of the treatment liquid.
 一つの例示的実施形態に係る記憶媒体は、上記基板処理方法を基板処理装置に実行させるためのプログラムを記憶した、コンピュータ読み取り可能な記憶媒体である。 The storage medium according to one exemplary embodiment is a computer-readable storage medium that stores a program for causing the board processing apparatus to execute the board processing method.
 以下、図面を参照して、いくつかの実施形態について詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, some embodiments will be described in detail with reference to the drawings. In the description, the same elements or elements having the same function are designated by the same reference numerals, and duplicate description will be omitted.
[基板処理システム]
 図1に示される基板処理システム1(基板処理装置)は、ワークWに対し、感光性被膜の形成、当該感光性被膜の露光、及び当該感光性被膜の現像を施すシステムである。処理対象のワークWは、例えば基板、あるいは所定の処理が施されることで膜又は回路等が形成された状態の基板である。当該基板は、一例として、シリコンウェハである。ワークW(基板)は、円形であってもよい。ワークWは、ガラス基板、マスク基板、又はFPD(Flat Panel Display)などであってもよい。感光性被膜は、例えばレジスト膜である。
[Board processing system]
The substrate processing system 1 (substrate processing apparatus) shown in FIG. 1 is a system that forms a photosensitive film, exposes the photosensitive film, and develops the photosensitive film on the work W. The work W to be processed is, for example, a substrate or a substrate in which a film, a circuit, or the like is formed by being subjected to a predetermined treatment. The substrate is, for example, a silicon wafer. The work W (board) may be circular. The work W may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like. The photosensitive film is, for example, a resist film.
 図1及び図2に示されるように、基板処理システム1は、塗布現像装置2と、露光装置3と、制御装置100(制御部)とを備える。露光装置3は、ワークW(基板)に形成されたレジスト膜(感光性被膜)を露光する装置である。具体的には、露光装置3は、液浸露光等の方法によりレジスト膜の露光対象部分にエネルギー線を照射する。 As shown in FIGS. 1 and 2, the substrate processing system 1 includes a coating and developing device 2, an exposure device 3, and a control device 100 (control unit). The exposure device 3 is a device that exposes a resist film (photosensitive film) formed on the work W (substrate). Specifically, the exposure apparatus 3 irradiates the exposed portion of the resist film with energy rays by a method such as immersion exposure.
 塗布現像装置2は、露光装置3による露光処理前に、ワークWの表面にレジスト(薬液)を塗布してレジスト膜を形成する処理を行い、露光処理後にレジスト膜の現像処理を行う。塗布現像装置2は、キャリアブロック4と、処理ブロック5と、インタフェースブロック6と、を備える。 The coating and developing apparatus 2 performs a process of applying a resist (chemical solution) to the surface of the work W to form a resist film before the exposure process by the exposure apparatus 3, and develops the resist film after the exposure process. The coating and developing apparatus 2 includes a carrier block 4, a processing block 5, and an interface block 6.
 キャリアブロック4は、塗布現像装置2内へのワークWの導入及び塗布現像装置2内からのワークWの導出を行う。例えばキャリアブロック4は、ワークW用の複数のキャリアCを支持可能であり、受け渡しアームを含む搬送装置A1を内蔵している。キャリアCは、例えば円形の複数枚のワークWを収容する。搬送装置A1は、キャリアCからワークWを取り出して処理ブロック5に渡し、処理ブロック5からワークWを受け取ってキャリアC内に戻す。処理ブロック5は、処理モジュール11,12,13,14を有する。 The carrier block 4 introduces the work W into the coating / developing device 2 and derives the work W from the coating / developing device 2. For example, the carrier block 4 can support a plurality of carriers C for the work W, and has a built-in transfer device A1 including a transfer arm. The carrier C accommodates, for example, a plurality of circular workpieces W. The transport device A1 takes out the work W from the carrier C, passes it to the processing block 5, receives the work W from the processing block 5, and returns it to the carrier C. The processing block 5 has processing modules 11, 12, 13, and 14.
 処理モジュール11は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール11は、液処理ユニットU1及び熱処理ユニットU2によりワークWの表面上に下層膜を形成する。下層膜としては、例えばSOC(Spin On Carbon)膜が挙げられる。液処理ユニットU1は、下層膜形成用の処理液をワークW上に塗布する。熱処理ユニットU2は、下層膜の形成に伴う各種熱処理を行う。 The processing module 11 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units. The treatment module 11 forms an underlayer film on the surface of the work W by the liquid treatment unit U1 and the heat treatment unit U2. Examples of the lower layer film include an SOC (Spin On Carbon) film. The liquid treatment unit U1 applies a treatment liquid for forming an underlayer film onto the work W. The heat treatment unit U2 performs various heat treatments accompanying the formation of the underlayer film.
 処理モジュール12は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール12は、液処理ユニットU1及び熱処理ユニットU2により下層膜上にレジスト膜を形成する。液処理ユニットU1は、レジスト膜形成用の処理液を下層膜上に塗布することで、下層膜上に(ワークWの表面上に)当該処理液の膜を形成する。熱処理ユニットU2は、レジスト膜の形成に伴う各種熱処理を行う。 The processing module 12 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units. The treatment module 12 forms a resist film on the lower layer film by the liquid treatment unit U1 and the heat treatment unit U2. The liquid treatment unit U1 forms a film of the treatment liquid on the lower layer film (on the surface of the work W) by applying the treatment liquid for forming the resist film on the lower layer film. The heat treatment unit U2 performs various heat treatments accompanying the formation of the resist film.
 処理モジュール13は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール13は、液処理ユニットU1及び熱処理ユニットU2によりレジスト膜上に上層膜を形成する。液処理ユニットU1は、上層膜形成用の処理液をレジスト膜上に塗布する。熱処理ユニットU2は、上層膜の形成に伴う各種熱処理を行う。 The processing module 13 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units. The treatment module 13 forms an upper layer film on the resist film by the liquid treatment unit U1 and the heat treatment unit U2. The liquid treatment unit U1 applies a treatment liquid for forming an upper layer film onto the resist film. The heat treatment unit U2 performs various heat treatments accompanying the formation of the upper layer film.
 処理モジュール14は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール14は、液処理ユニットU1及び熱処理ユニットU2により、露光処理が施されたレジスト膜の現像処理及び現像処理に伴う熱処理を行う。液処理ユニットU1は、露光済みのワークWの表面上に現像液を塗布した後、これをリンス液により洗い流すことで、レジスト膜の現像処理を行う。熱処理ユニットU2は、現像処理に伴う各種熱処理を行う。熱処理の具体例としては、現像前の加熱処理(PEB:Post Exposure Bake)、及び現像後の加熱処理(PB:Post Bake)等が挙げられる。 The processing module 14 incorporates a liquid processing unit U1, a heat treatment unit U2, and a transfer device A3 for transporting the work W to these units. The processing module 14 uses the liquid treatment unit U1 and the heat treatment unit U2 to develop the exposed resist film and perform heat treatment associated with the development treatment. The liquid treatment unit U1 develops a resist film by applying a developing solution on the surface of the exposed work W and then rinsing it with a rinsing solution. The heat treatment unit U2 performs various heat treatments associated with the development process. Specific examples of the heat treatment include heat treatment before development (PEB: Post Exposure Bake), heat treatment after development (PB: Post Bake), and the like.
 処理ブロック5内におけるキャリアブロック4側には棚ユニットU10が設けられている。棚ユニットU10は、上下方向に並ぶ複数のセルに区画されている。棚ユニットU10の近傍には昇降アームを含む搬送装置A7が設けられている。搬送装置A7は、棚ユニットU10のセル同士の間でワークWを昇降させる。 A shelf unit U10 is provided on the carrier block 4 side in the processing block 5. The shelf unit U10 is divided into a plurality of cells arranged in the vertical direction. A transport device A7 including an elevating arm is provided in the vicinity of the shelf unit U10. The transport device A7 raises and lowers the work W between the cells of the shelf unit U10.
 処理ブロック5内におけるインタフェースブロック6側には棚ユニットU11が設けられている。棚ユニットU11は、上下方向に並ぶ複数のセルに区画されている。 A shelf unit U11 is provided on the interface block 6 side in the processing block 5. The shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
 インタフェースブロック6は、露光装置3との間でワークWの受け渡しを行う。例えばインタフェースブロック6は、受け渡しアームを含む搬送装置A8を内蔵しており、露光装置3に接続される。搬送装置A8は、棚ユニットU11に配置されたワークWを露光装置3に渡す。搬送装置A8は、露光装置3からワークWを受け取って棚ユニットU11に戻す。 The interface block 6 transfers the work W to and from the exposure apparatus 3. For example, the interface block 6 has a built-in transfer device A8 including a transfer arm, and is connected to the exposure device 3. The transport device A8 passes the work W arranged in the shelf unit U11 to the exposure device 3. The transport device A8 receives the work W from the exposure device 3 and returns it to the shelf unit U11.
 制御装置100は、例えば以下の手順で塗布・現像処理を実行するように塗布現像装置2を制御する。まず制御装置100は、キャリアC内のワークWを棚ユニットU10に搬送するように搬送装置A1を制御し、このワークWを処理モジュール11用のセルに配置するように搬送装置A7を制御する。 The control device 100 controls the coating / developing device 2 so as to execute the coating / developing process in the following procedure, for example. First, the control device 100 controls the transfer device A1 so as to transfer the work W in the carrier C to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 11.
 次に制御装置100は、棚ユニットU10のワークWを処理モジュール11内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置100は、このワークWの表面上に下層膜を形成するように、液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置100は、下層膜が形成されたワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWを処理モジュール12用のセルに配置するように搬送装置A7を制御する。 Next, the control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 11. Further, the control device 100 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form a lower layer film on the surface of the work W. After that, the control device 100 controls the transfer device A3 so as to return the work W on which the lower layer film is formed to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 12. ..
 次に制御装置100は、棚ユニットU10のワークWを処理モジュール12内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置100は、このワークWの下層膜上にレジスト膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置100は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWを処理モジュール13用のセルに配置するように搬送装置A7を制御する。 Next, the control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 12. Further, the control device 100 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form a resist film on the lower film of the work W. After that, the control device 100 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 so as to arrange the work W in the cell for the processing module 13.
 次に制御装置100は、棚ユニットU10のワークWを処理モジュール13内の各ユニットに搬送するように搬送装置A3を制御する。また、制御装置100は、このワークWのレジスト膜上に上層膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置100は、ワークWを棚ユニットU11に搬送するように搬送装置A3を制御する。 Next, the control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to each unit in the processing module 13. Further, the control device 100 controls the liquid treatment unit U1 and the heat treatment unit U2 so as to form an upper layer film on the resist film of the work W. After that, the control device 100 controls the transfer device A3 so as to transfer the work W to the shelf unit U11.
 次に制御装置100は、棚ユニットU11のワークWを露光装置3に送り出すように搬送装置A8を制御する。その後制御装置100は、露光処理が施されたワークWを露光装置3から受け入れて、棚ユニットU11における処理モジュール14用のセルに配置するように搬送装置A8を制御する。 Next, the control device 100 controls the transport device A8 so as to send the work W of the shelf unit U11 to the exposure device 3. After that, the control device 100 controls the transfer device A8 so as to receive the exposed work W from the exposure device 3 and arrange it in the cell for the processing module 14 in the shelf unit U11.
 次に制御装置100は、棚ユニットU11のワークWを処理モジュール14内の各ユニットに搬送するように搬送装置A3を制御し、このワークWのレジスト膜の現像処理を行うように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置100は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWをキャリアC内に戻すように搬送装置A7及び搬送装置A1を制御する。以上で1枚のワークWについての塗布現像処理が完了する。制御装置100は、後続の複数のワークWのそれぞれについても、上述と同様に塗布現像処理を実行するように塗布現像装置2を制御する。 Next, the control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U11 to each unit in the processing module 14, and the liquid processing unit U1 so as to develop the resist film of the work W. And control the heat treatment unit U2. After that, the control device 100 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 and the transfer device A1 so as to return the work W to the carrier C. This completes the coating and developing process for one piece of work W. The control device 100 controls the coating / developing device 2 so as to execute the coating / developing process in the same manner as described above for each of the subsequent plurality of work Ws.
 なお、基板処理装置の具体的な構成は、以上に例示した基板処理システム1の構成に限られない。基板処理装置は、処理液を基板に供給して液処理を行う液処理ユニット、及びこれを制御可能な制御装置を備えていればどのようなものであってもよい。 The specific configuration of the substrate processing apparatus is not limited to the configuration of the substrate processing system 1 exemplified above. The substrate processing apparatus may be any as long as it includes a liquid treatment unit that supplies the treatment liquid to the substrate and performs the liquid treatment, and a control device that can control the liquid treatment unit.
(液処理ユニット)
 続いて、図3を参照して、処理モジュール12の液処理ユニットU1の一例について説明する。液処理ユニットU1(液処理部)は、ワークWの表面Waに処理液を供給した後に、表面Wa上に処理液が供給された状態のワークWを、表面Wa上に処理液の膜が形成されるように回転させる。以下では、液処理ユニットU1によって形成される処理液の膜を「塗布膜AF」と称する。図3に示されるように、液処理ユニットU1は、回転保持部30と、処理液供給部40とを有する。
(Liquid treatment unit)
Subsequently, an example of the liquid processing unit U1 of the processing module 12 will be described with reference to FIG. After supplying the treatment liquid to the surface Wa of the work W, the liquid treatment unit U1 (liquid treatment unit) forms a film of the treatment liquid on the surface Wa of the work W in a state where the treatment liquid is supplied on the surface Wa. Rotate to be. Hereinafter, the film of the treatment liquid formed by the liquid treatment unit U1 is referred to as “coating film AF”. As shown in FIG. 3, the liquid treatment unit U1 has a rotation holding unit 30 and a processing liquid supply unit 40.
 回転保持部30は、ワークWを保持して回転させる。回転保持部30は、例えば、保持部32と、シャフト34と、回転駆動部36とを有する。保持部32(支持部)は、ワークWを支持する。保持部32は、例えば、表面Waを上にして水平に配置されたワークWの中心部を支持し、当該ワークWを真空吸着等により保持する。保持部32の上面(ワークWを支持する面)は、上方から見て円形に形成されていてもよく、ワークWの半径の1/6倍~1/2倍程度の半径を有していてもよい。保持部32の下方には、シャフト34を介して回転駆動部36が接続されている。 The rotation holding unit 30 holds and rotates the work W. The rotation holding unit 30 has, for example, a holding unit 32, a shaft 34, and a rotation driving unit 36. The holding portion 32 (supporting portion) supports the work W. The holding portion 32 supports, for example, the central portion of the work W arranged horizontally with the surface Wa facing up, and holds the work W by vacuum suction or the like. The upper surface (the surface supporting the work W) of the holding portion 32 may be formed in a circular shape when viewed from above, and has a radius of about 1/6 to 1/2 times the radius of the work W. May be good. A rotary drive unit 36 is connected below the holding unit 32 via a shaft 34.
 回転駆動部36は、例えば電動モータ等の動力源を含むアクチュエータであり、鉛直な軸線Axまわりに保持部32を回転させる。回転駆動部36により保持部32が回転することで、保持部32に保持(支持)されているワークWが回転する。保持部32は、ワークWの中心CP(図4参照)が軸線Axに略一致するようにワークWを保持してもよい。 The rotation drive unit 36 is an actuator including a power source such as an electric motor, and rotates the holding unit 32 around the vertical axis Ax. When the holding portion 32 is rotated by the rotation driving portion 36, the work W held (supported) by the holding portion 32 is rotated. The holding portion 32 may hold the work W so that the center CP of the work W (see FIG. 4) substantially coincides with the axis Ax.
 処理液供給部40は、ワークWの表面Waに処理液を供給する。処理液は、レジスト膜を形成するための溶液(レジスト)である。処理液供給部40は、例えば、ノズル42と、供給源44と、開閉バルブ46と、ノズル駆動部48とを有する。ノズル42は、保持部32に保持されたワークWの表面Waに処理液を吐出する。例えば、ノズル42は、ワークWの上方(ワークWの中心CPの鉛直上方)に配置され、処理液を下方に吐出する。供給源44は、処理液をノズル42に供給する。 The treatment liquid supply unit 40 supplies the treatment liquid to the surface Wa of the work W. The treatment liquid is a solution (resist) for forming a resist film. The processing liquid supply unit 40 has, for example, a nozzle 42, a supply source 44, an on-off valve 46, and a nozzle drive unit 48. The nozzle 42 discharges the processing liquid onto the surface Wa of the work W held by the holding portion 32. For example, the nozzle 42 is arranged above the work W (vertically above the center CP of the work W) and discharges the treatment liquid downward. The supply source 44 supplies the treatment liquid to the nozzle 42.
 開閉バルブ46は、ノズル42と供給源44との間の供給路に設けられる。開閉バルブ46は、当該供給路の開閉状態を切り替える。ノズル駆動部48は、ワークWの上方の吐出位置と、当該吐出位置から離れた退避位置との間でノズル42を移動させる。吐出位置は、例えばワークWの回転中心の鉛直上方の位置(軸線Ax上の位置)である。待機位置は、例えば、ワークWの周縁よりも外側の位置に設定される。 The on-off valve 46 is provided in the supply path between the nozzle 42 and the supply source 44. The on-off valve 46 switches the open / closed state of the supply path. The nozzle drive unit 48 moves the nozzle 42 between the discharge position above the work W and the retracted position away from the discharge position. The discharge position is, for example, a position vertically above the center of rotation of the work W (a position on the axis Ax). The standby position is set, for example, to a position outside the peripheral edge of the work W.
(計測部)
 塗布現像装置2は、処理液の塗布膜AFの厚さを計測するための計測部60を更に有する。計測部60は、液処理ユニットU1に設けられている。計測部60は、処理液が供給された後のワークWを回転させて、塗布膜AFが形成されている期間に、回転中のワークWに向けて光を照射する。計測部60は、保持部32に保持されたワークWの表面Waに向けて、表面Wa上の塗布膜AF(処理液)を透過可能な光を照射すると共に、照射した光に応じて発生する(ワークWで反射した)反射光を受光する。
(Measurement unit)
The coating and developing apparatus 2 further includes a measuring unit 60 for measuring the thickness of the coating film AF of the processing liquid. The measuring unit 60 is provided in the liquid processing unit U1. The measuring unit 60 rotates the work W after the treatment liquid is supplied, and irradiates the rotating work W with light during the period when the coating film AF is formed. The measuring unit 60 irradiates the surface Wa of the work W held by the holding unit 32 with light that can pass through the coating film AF (treatment liquid) on the surface Wa, and generates light according to the irradiated light. Receives reflected light (reflected by work W).
 計測部60は、例えば、投受光デバイス70A~70Cを有する。投受光デバイス70A~70Cはそれぞれ、保持部32上のワークWの表面Waと重なる照射箇所P1~P3に向けて光を照射し、照射箇所P1~P3から反射された反射光を受光する。照射箇所P1~P3それぞれは、固定された定位置であり、ワークWが回転しても変化しない。投受光デバイス70A~70Cそれぞれは、照射光としてレーザ光をワークWの表面Waに向けて照射する。投受光デバイス70A~70Cそれぞれは、表面Wa上に形成されている処理液の塗布膜AFを透過可能なレーザ光を照射する。 The measuring unit 60 has, for example, light emitting and receiving devices 70A to 70C. Each of the light emitting and receiving devices 70A to 70C irradiates light toward the irradiation points P1 to P3 overlapping the surface Wa of the work W on the holding portion 32, and receives the reflected light reflected from the irradiation points P1 to P3. Each of the irradiation points P1 to P3 is a fixed fixed position and does not change even if the work W rotates. Each of the light emitting and receiving devices 70A to 70C irradiates the surface Wa of the work W with a laser beam as irradiation light. Each of the light emitting and receiving devices 70A to 70C irradiates a laser beam that can pass through the coating film AF of the treatment liquid formed on the surface Wa.
 投受光デバイス70A~70Cそれぞれから照射されるレーザ光は、可視光線又は赤外線であってもよい。レーザ光の波長は、500nm~1200nmであってもよく、600nm~1100nmであってもよく、780nm~1000nmであってもよい。レーザ光の波長は、処理液の種類に応じて設定されてもよい。例えば、処理液内の反応を促進させずに、且つ光の吸収が小さくなるように、レーザ光の波長が設定される。 The laser light emitted from each of the light receiving and receiving devices 70A to 70C may be visible light or infrared light. The wavelength of the laser beam may be 500 nm to 1200 nm, 600 nm to 1100 nm, or 780 nm to 1000 nm. The wavelength of the laser beam may be set according to the type of the processing liquid. For example, the wavelength of the laser beam is set so as not to promote the reaction in the treatment liquid and to reduce the absorption of light.
 投受光デバイス70A~70Cから照射されるレーザ光の周波数は、互いに異なっていてもよい。すなわち、投受光デバイス70Aから照射箇所P1に向けて照射される光の周波数は、投受光デバイス70B(投受光デバイス70C)から照射箇所P2(照射箇所P3)に向けて照射される光の周波数と異なっていてもよい。投受光デバイス70A~70Cがそれぞれ含む光源は、レーザダイオードであってもよく、LEDであってもよい。レーザ光のビーム幅は、数mm~数十mm程度であってもよい。 The frequencies of the laser beams emitted from the light receiving and receiving devices 70A to 70C may be different from each other. That is, the frequency of the light emitted from the light emitting / receiving device 70A toward the irradiation point P1 is the frequency of the light emitted from the light receiving / receiving device 70B (light emitting / receiving device 70C) toward the irradiation point P2 (irradiation point P3). It may be different. The light source included in each of the light emitting and receiving devices 70A to 70C may be a laser diode or an LED. The beam width of the laser beam may be about several mm to several tens of mm.
 投受光デバイス70A~70Cからの光(レーザ光)の照射箇所P1~P3は、図4に示されるように、互いに異なる位置に設定されている。すなわち、計測部60は、照射箇所P1(箇所)と、当該照射箇所P1とは別の位置でワークWの表面Waと重なる照射箇所P2,P3(別の箇所)とに向けてレーザ光を照射する。投受光デバイス70Aからの光の照射箇所P1、投受光デバイス70Bからの光の照射箇所P2、及び投受光デバイス70Cからの光の照射箇所P3では、ワークWの中心CPとの間の距離が互いに異なっている。一例では、照射箇所P1とワークWの中心CPとの間の距離は、照射箇所P2とワークWの中心CPとの間の距離よりも小さい。照射箇所P2とワークWの中心CPとの間の距離は、照射箇所P3とワークWの中心CPとの間の距離よりも小さい。 As shown in FIG. 4, the irradiation points P1 to P3 of the light (laser light) from the light emitting and receiving devices 70A to 70C are set at different positions from each other. That is, the measuring unit 60 irradiates the irradiation point P1 (point) and the irradiation points P2 and P3 (different points) that overlap the surface Wa of the work W at a position different from the irradiation point P1. do. At the light irradiation point P1 from the light emitting / receiving device 70A, the light irradiation point P2 from the light emitting / receiving device 70B, and the light irradiation point P3 from the light emitting / receiving device 70C, the distances from the center CP of the work W are mutual. It's different. In one example, the distance between the irradiation point P1 and the center CP of the work W is smaller than the distance between the irradiation point P2 and the center CP of the work W. The distance between the irradiation point P2 and the center CP of the work W is smaller than the distance between the irradiation point P3 and the center CP of the work W.
 照射箇所P1、照射箇所P2、及び照射箇所P3は、ワークWの径方向に沿って、ワークWの中心CPからこの順に一列に並んでいてもよい。照射箇所P1、照射箇所P2、及び照射箇所P3は、略等間隔に配置されていてもよい。照射箇所P1は、ワークWの表面Waの中心部に位置している。具体的には、照射箇所P1は、保持部32の上面(ワークWの裏面を支持する面)に重なるように設定されている。外側に位置する照射箇所P3は、ワークWの周縁の近傍の領域(周縁領域)に位置している。以上のように、投受光デバイス70A~70Cは、ワークWの表面Waと重なる所定の箇所に向けて光を照射する投光部として機能する。 The irradiation points P1, the irradiation points P2, and the irradiation points P3 may be arranged in a line in this order from the center CP of the work W along the radial direction of the work W. The irradiation points P1, the irradiation points P2, and the irradiation points P3 may be arranged at substantially equal intervals. The irradiation point P1 is located at the center of the surface Wa of the work W. Specifically, the irradiation point P1 is set so as to overlap the upper surface of the holding portion 32 (the surface supporting the back surface of the work W). The irradiation point P3 located on the outside is located in a region (peripheral region) in the vicinity of the peripheral edge of the work W. As described above, the light emitting and receiving devices 70A to 70C function as a light emitting unit that irradiates light toward a predetermined portion overlapping the surface Wa of the work W.
 投受光デバイス70A~70Cは、受光した反射光の強度に応じた電気信号を生成してもよい。レーザ光は、ワークWの表面Wa上の塗布膜AFを透過可能であるので、照射箇所において、塗布膜AFの外表面Fa(上面)で反射すると共に、塗布膜AFの下に位置するワークWの表面Waを反射した後に、塗布膜AFを介して出射する。本開示において、レーザ光の一部が反射するワークWの表面Waは、ワークWが含む基材の表面、又は、塗布膜AFの下に存在し、既に固化された別の膜の表面である。別の膜は、例えば、塗布膜AFの直下に存在する膜(例えば、上記下層膜)であってもよい。 The light emitting and receiving devices 70A to 70C may generate an electric signal according to the intensity of the reflected light received. Since the laser beam can pass through the coating film AF on the surface Wa of the work W, it is reflected by the outer surface Fa (upper surface) of the coating film AF at the irradiation site, and the work W located below the coating film AF. After reflecting the surface Wa of the above, it is emitted through the coating film AF. In the present disclosure, the surface Wa of the work W on which a part of the laser beam is reflected is the surface of the base material contained in the work W or the surface of another film existing under the coating film AF and already solidified. .. The other film may be, for example, a film existing directly under the coating film AF (for example, the above-mentioned lower layer film).
 投受光デバイス70Aは、照射箇所P1から発せられる光を受光する。具体的には、投受光デバイス70Aは、照射箇所P1において、ワークWの表面Waを反射した後に塗布膜AFを介して出射される光と、塗布膜AFの外表面Faで反射した光とが合成されて得られる反射光とを受光する。照射箇所P2,P3それぞれにおいても、レーザ光は、塗布膜AFの外表面Faと、塗布膜AFの下に位置する表面Waとで反射する。すなわち、投受光デバイス70B,70Cも、投受光デバイス70Aと同様に、照射箇所P2,P3から発せられる光をそれぞれ受光する。より詳細には、投受光デバイス70B,70Cは、照射箇所P2,P3において、ワークWの表面Waを反射した後に塗布膜AFを介して出射される光と、塗布膜AFの外表面Faで反射した光とが合成されて得られる反射光をそれぞれ受光する。以上のように、投受光デバイス70A~70Cは、表面Wa上の処理液の塗布膜AFにおける外表面Faで反射した光と表面Waで反射した光とが合成された反射光を受光する受光部としても機能する。 The light emitting / receiving device 70A receives light emitted from the irradiation point P1. Specifically, in the light emitting / receiving device 70A, the light emitted through the coating film AF after reflecting the surface Wa of the work W at the irradiation point P1 and the light reflected by the outer surface Fa of the coating film AF are generated. It receives the reflected light obtained by synthesizing. At each of the irradiation points P2 and P3, the laser beam is reflected by the outer surface Fa of the coating film AF and the surface Wa located under the coating film AF. That is, the light emitting and receiving devices 70B and 70C also receive the light emitted from the irradiation points P2 and P3, respectively, like the light emitting and receiving device 70A. More specifically, the light emitting and receiving devices 70B and 70C reflect the light emitted through the coating film AF after reflecting the surface Wa of the work W at the irradiation points P2 and P3 and the light emitted by the outer surface Fa of the coating film AF. The reflected light obtained by synthesizing the combined light is received. As described above, the light receiving and receiving devices 70A to 70C are light receiving units that receive the reflected light obtained by combining the light reflected by the outer surface Fa and the light reflected by the surface Wa in the coating film AF of the treatment liquid on the surface Wa. Also works as.
 ここで、図5(a)及び図5(b)を参照して、上記反射光の強度の時間変化について説明する。反射光は、ワークWの表面Wa上に処理液の塗布膜AFが形成されている期間において、塗布膜AFの厚さに応じた強度を有する。図5(a)及び図5(b)では、いずれかの投受光デバイスのうちの、レーザ光を照射する部分が「投光部72」で示され、反射光を受光する部分が「受光部74」で示されている。なお、図5(a)及び図5(b)では、図3とは異なり、表面Waに対して斜め方向から光が入射する場合が例示されている。 Here, with reference to FIGS. 5 (a) and 5 (b), the time change of the intensity of the reflected light will be described. The reflected light has an intensity corresponding to the thickness of the coating film AF during the period in which the coating film AF of the treatment liquid is formed on the surface Wa of the work W. In FIGS. 5 (a) and 5 (b), the portion of any of the light emitting and receiving devices that irradiates the laser beam is indicated by the “light emitting unit 72”, and the portion that receives the reflected light is the “light receiving unit”. 74 ”. Note that, unlike FIG. 3, FIGS. 5 (a) and 5 (b) exemplify a case where light is incident on the surface Wa from an oblique direction.
 ワークWの表面Waに向けて照射されたレーザ光に伴う反射光には、上述のように、処理液の塗布膜AFを透過し表面Waを反射した後に、塗布膜AFを介して外部に出射される光L1と、塗布膜AF内に入射せずに、塗布膜AFの外表面Faで反射する光L2とが含まれる。受光部74で受光する反射光は、光L1と光L2とを合成することで得られる反射光Lcとなる。塗布膜AFの厚さによって、光L1に対する光L2の位相が変化し、互いに強め合う場合と互いに弱め合う場合とがある。図5(a)に示されるように、光L1における振幅の山部分と光L2における振幅の山部分とが重なると、光L1と光L2とは互いに強め合い、反射光Lcの強度は大きくなる。一方、図5(b)に示されるように、光L1における振幅の山部分と光L2における振幅の谷部分とが重なると、光L1と光L2とは互いに弱め合い、反射光Lcの強度は小さくなる。 As described above, the reflected light accompanying the laser beam radiated toward the surface Wa of the work W passes through the coating film AF of the treatment liquid, reflects the surface Wa, and then emits to the outside via the coating film AF. The light L1 to be generated and the light L2 reflected by the outer surface Fa of the coating film AF without being incident on the coating film AF are included. The reflected light received by the light receiving unit 74 is the reflected light Lc obtained by synthesizing the light L1 and the light L2. Depending on the thickness of the coating film AF, the phase of the light L2 with respect to the light L1 changes, and there are cases where they strengthen each other and cases where they weaken each other. As shown in FIG. 5A, when the peak portion of the amplitude in the light L1 and the peak portion of the amplitude in the light L2 overlap, the light L1 and the light L2 strengthen each other, and the intensity of the reflected light Lc increases. .. On the other hand, as shown in FIG. 5B, when the peak portion of the amplitude in the light L1 and the valley portion of the amplitude in the light L2 overlap, the light L1 and the light L2 weaken each other, and the intensity of the reflected light Lc becomes high. It gets smaller.
 処理液が表面Waに供給された直後では、処理液の液膜が形成されており、その後にワークWを回転させることによって、塗布膜AFの固化(揮発)が徐々に進行する。そのため、ワークWを回転させている期間において、塗布膜AFの厚さが徐々に減少する。これにより、光L1に対する光L2の位相も変化し、互いに強め合う状態と互いに弱め合う状態とが交互に繰り返される。その結果、反射光の強度の時間変化を示す波形として、山部分と谷部分とが交互に繰り返えされる波形が得られる(図9参照)。本開示の基板処理システム1では、この波形に基づき、塗布膜AFの厚さ(膜厚)の推定が行われる。膜厚の推定方法の詳細については後述する。 Immediately after the treatment liquid is supplied to the surface Wa, a liquid film of the treatment liquid is formed, and then by rotating the work W, solidification (volatilization) of the coating film AF gradually progresses. Therefore, the thickness of the coating film AF gradually decreases during the period in which the work W is rotated. As a result, the phase of the light L2 with respect to the light L1 also changes, and the states of strengthening each other and the states of weakening each other are alternately repeated. As a result, as a waveform showing the time change of the intensity of the reflected light, a waveform in which the peak portion and the valley portion are alternately repeated is obtained (see FIG. 9). In the substrate processing system 1 of the present disclosure, the thickness (film thickness) of the coating film AF is estimated based on this waveform. The details of the film thickness estimation method will be described later.
(制御装置)
 制御装置100は、塗布現像装置2を部分的又は全体的に制御することで、ワークWの処理を塗布現像装置2に実行させる。図6に示されるように、制御装置100は、例えば、機能上の構成(以下、「機能モジュール」という。)として、処理情報記憶部112と、液処理制御部114と、膜厚推定部120とを有する。これらの機能モジュールが実行する処理は、制御装置100が実行する処理に相当する。
(Control device)
The control device 100 causes the coating / developing device 2 to execute the processing of the work W by partially or wholly controlling the coating / developing device 2. As shown in FIG. 6, the control device 100 has, for example, a processing information storage unit 112, a liquid processing control unit 114, and a film thickness estimation unit 120 as a functional configuration (hereinafter referred to as “functional module”). And have. The processing executed by these functional modules corresponds to the processing executed by the control device 100.
 処理情報記憶部112は、ワークWに対する液処理に関する処理情報を記憶する。処理情報には、液処理を実行する際の各種条件が設定されている。例えば、各種条件の設定値として、処理液の吐出を開始及び停止するタイミング(時刻)、処理液を吐出する際のワークWの回転速度(回転数)、処理液の供給後に表面Wa上に塗布膜AFを形成する際のワークWの回転速度、及び、塗布膜AFを形成する際のワークWの回転時間等が予め定められている。 The processing information storage unit 112 stores processing information related to liquid processing for the work W. Various conditions for executing the liquid treatment are set in the processing information. For example, as setting values of various conditions, the timing (time) at which the discharge of the treatment liquid is started and stopped, the rotation speed (rotation speed) of the work W when the treatment liquid is discharged, and the coating on the surface Wa after the treatment liquid is supplied. The rotation speed of the work W when forming the film AF, the rotation time of the work W when forming the coating film AF, and the like are predetermined.
 液処理制御部114は、ワークWに対して液処理を施すように液処理ユニットU1を制御する。液処理制御部114は、処理情報記憶部112が記憶する処理情報に定められる各種条件に従って、ワークWに対する液処理を実行するように回転保持部30及び処理液供給部40を制御する。 The liquid treatment control unit 114 controls the liquid treatment unit U1 so as to perform liquid treatment on the work W. The liquid processing control unit 114 controls the rotation holding unit 30 and the processing liquid supply unit 40 so as to execute liquid processing on the work W according to various conditions defined in the processing information stored in the processing information storage unit 112.
 膜厚推定部120は、ワークWからの反射光の強度の時間変化を示す波形(以下、「信号波形」という。)を計測部60から取得し、当該信号波形に基づいて表面Wa上の塗布膜AFの厚さを推定する。すなわち、基板処理システム1は、計測部60と膜厚推定部120とを含む膜厚推定装置20を有する(図4参照)。膜厚推定部120は、機能モジュールとして、図6に示されるように、例えば、投光制御部122と、信号取得部124と、特徴量取得部126と、膜厚算出部128と、モデル情報記憶部132と、モデル構築部134とを含む。これらの機能モジュールが実行する処理は、膜厚推定部120(制御装置100)が実行する処理に相当する。 The film thickness estimation unit 120 acquires a waveform (hereinafter referred to as “signal waveform”) indicating the time change of the intensity of the reflected light from the work W from the measurement unit 60, and applies the coating film on the surface Wa based on the signal waveform. Estimate the thickness of the membrane AF. That is, the substrate processing system 1 has a film thickness estimation device 20 including a measurement unit 60 and a film thickness estimation unit 120 (see FIG. 4). As a functional module, the film thickness estimation unit 120 includes, for example, a light projection control unit 122, a signal acquisition unit 124, a feature amount acquisition unit 126, a film thickness calculation unit 128, and model information. A storage unit 132 and a model construction unit 134 are included. The process executed by these functional modules corresponds to the process executed by the film thickness estimation unit 120 (control device 100).
 投光制御部122は、処理液の供給後に液処理ユニットU1の回転保持部30がワークWを回転させている回転期間において、ワークWの表面Waと重なる照射箇所に向けて光を照射するように投受光デバイス70A~70Cを制御する。投光制御部122は、ワークWに対する液処理での処理液の吐出開始前に、投受光デバイス70A~70Cからの光の照射を開始させてもよい。投光制御部122は、塗布膜AFを形成するための回転を停止させた後に、投受光デバイス70A~70Cからの光の照射を停止させる。 The light projection control unit 122 irradiates light toward the irradiation point overlapping the surface Wa of the work W during the rotation period in which the rotation holding unit 30 of the liquid treatment unit U1 rotates the work W after the treatment liquid is supplied. Controls the light emitting and receiving devices 70A to 70C. The light projection control unit 122 may start irradiation of light from the light emitting and receiving devices 70A to 70C before starting to discharge the processing liquid in the liquid treatment to the work W. The light projection control unit 122 stops the irradiation of light from the light emitting and receiving devices 70A to 70C after stopping the rotation for forming the coating film AF.
 信号取得部124は、各投受光デバイスから、上記回転期間において当該照射デバイスが受光した反射光の強度の時間変化を示す信号波形を取得する。信号取得部124は、予め定められたサンプリング周期で、反射光の強度を取得してもよい。サンプリング周期は、表面Waで反射する光L1と、塗布膜AFの外表面Faで反射する光L2との干渉状態の変化が、信号波形によって把握できる程度に設定される。サンプリング周期は、数十ms~数百ms程度に設定されてもよい。 The signal acquisition unit 124 acquires a signal waveform indicating the time change of the intensity of the reflected light received by the irradiation device from each light emitting / receiving device during the above rotation period. The signal acquisition unit 124 may acquire the intensity of the reflected light at a predetermined sampling period. The sampling period is set to such an extent that the change in the interference state between the light L1 reflected by the surface Wa and the light L2 reflected by the outer surface Fa of the coating film AF can be grasped by the signal waveform. The sampling period may be set to about several tens of ms to several hundreds of ms.
 特徴量取得部126は、信号取得部124によって取得された信号波形のうちの、回転期間内の所定の計測時点と、その計測時点以前において信号波形が所定の条件を満たす時点との間の波形から特徴量を取得する。特徴量は、上記信号波形から予め定められた条件に従って取得される値であり、塗布膜AFの厚さに相関する。特徴量取得部126は、例えば、照射箇所P1~P3それぞれについて、信号波形から特徴量を取得する。 The feature amount acquisition unit 126 is a waveform of the signal waveform acquired by the signal acquisition unit 124 between a predetermined measurement time point within the rotation period and a time point in which the signal waveform satisfies a predetermined condition before the measurement time point. Obtain the feature quantity from. The feature amount is a value obtained from the above signal waveform according to predetermined conditions, and correlates with the thickness of the coating film AF. The feature amount acquisition unit 126 acquires the feature amount from the signal waveform for each of the irradiation points P1 to P3, for example.
 膜厚算出部128は、特徴量取得部126によって取得された特徴量に基づいて、計測時点における塗布膜AFの膜の厚さを算出する。膜厚算出部128は、例えば、照射箇所P1~P3それぞれについて、特徴量に基づいて塗布膜AFの厚さを算出する。計測時点は、回転期間内のいずれの時点に設定されていてもよい。計測時点は、例えば、回転期間の終了時点(ワークWの回転が停止する時点)に設定される。この場合、膜厚算出部128は、回転期間の終了時点での塗布膜AFの厚さを算出する。膜厚算出部128は、上記特徴量と、塗布膜AFの厚さを推定するために予め構築されたモデル式とに基づいて、計測時点における塗布膜AFの厚さを算出してもよい。 The film thickness calculation unit 128 calculates the film thickness of the coating film AF at the time of measurement based on the feature amount acquired by the feature amount acquisition unit 126. The film thickness calculation unit 128 calculates the thickness of the coating film AF based on the feature amount for each of the irradiation points P1 to P3, for example. The measurement time point may be set to any time point within the rotation period. The measurement time point is set, for example, at the end time point of the rotation period (time point when the rotation of the work W stops). In this case, the film thickness calculation unit 128 calculates the thickness of the coating film AF at the end of the rotation period. The film thickness calculation unit 128 may calculate the thickness of the coating film AF at the time of measurement based on the above-mentioned feature amount and the model formula constructed in advance for estimating the thickness of the coating film AF.
 モデル情報記憶部132は、塗布膜AFの厚さを推定するために予め構築されたモデル式を記憶する。このモデル式は、信号波形の特徴量と、膜厚の推定値との関係を示すように構築される。 The model information storage unit 132 stores a model formula constructed in advance for estimating the thickness of the coating film AF. This model formula is constructed to show the relationship between the feature amount of the signal waveform and the estimated value of the film thickness.
 モデル構築部134は、塗布膜AFの厚さを推定するためのモデル式を生成する。モデル構築部134は、例えば、複数のテスト用のワークWに対して、回転速度を複数段階に変化させて液処理を実行しつつ、段階ごとに、信号波形に基づく特徴量と計測時点での塗布膜AFの厚さの測定値とを取得する。そして、モデル構築部134は、回転速度を変更させた複数段階それぞれについての特徴量と塗布膜AFの厚さの測定値とに基づいて、塗布膜AFの厚さの推定値と特徴量との関係を示すモデル式を生成する。モデル構築部134は、照射箇所ごとにモデル式を生成してもよく、複数の照射箇所について1つのモデル式を生成してもよい。 The model building unit 134 generates a model formula for estimating the thickness of the coating film AF. For example, the model building unit 134 performs liquid processing on a plurality of test workpieces W by changing the rotation speed in a plurality of stages, and at each stage, a feature amount based on a signal waveform and a measurement time point. Obtain the measured value of the thickness of the coating film AF. Then, the model building unit 134 sets the estimated value and the feature amount of the thickness of the coating film AF based on the feature amount for each of the plurality of stages in which the rotation speed is changed and the measured value of the thickness of the coating film AF. Generate a model formula showing the relationship. The model building unit 134 may generate a model formula for each irradiation point, or may generate one model formula for a plurality of irradiation points.
 制御装置100は、一つ又は複数の制御用コンピュータにより構成される。例えば制御装置100は、図7に示される回路150を有する。回路150は、一つ又は複数のプロセッサ152と、メモリ154と、ストレージ156と、入出力ポート158と、タイマ162とを有する。ストレージ156は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、後述の基板処理方法及び膜厚推定方法を制御装置100に実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。 The control device 100 is composed of one or a plurality of control computers. For example, the control device 100 has a circuit 150 shown in FIG. The circuit 150 includes one or more processors 152, a memory 154, a storage 156, an input / output port 158, and a timer 162. The storage 156 has a storage medium readable by a computer, such as a hard disk. The storage medium stores a program for causing the control device 100 to execute the substrate processing method and the film thickness estimation method described later. The storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk.
 メモリ154は、ストレージ156の記憶媒体からロードしたプログラム及びプロセッサ152による演算結果を一時的に記憶する。プロセッサ152は、メモリ154と協働して上記プログラムを実行することで、上述した各機能モジュールを構成する。入出力ポート158は、プロセッサ152からの指令に従って、回転保持部30、処理液供給部40、及び計測部60等との間で電気信号の入出力を行う。タイマ162は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。 The memory 154 temporarily stores the program loaded from the storage medium of the storage 156 and the calculation result by the processor 152. The processor 152 constitutes each of the above-mentioned functional modules by executing the above program in cooperation with the memory 154. The input / output port 158 inputs / outputs an electric signal to / from the rotation holding unit 30, the processing liquid supply unit 40, the measuring unit 60, and the like in accordance with a command from the processor 152. The timer 162 measures the elapsed time, for example, by counting a reference pulse having a fixed cycle.
 制御装置100が複数の制御用コンピュータで構成される場合、各機能モジュールがそれぞれ、個別の制御用コンピュータによって実現されていてもよい。制御装置100は、液処理ユニットU1による液処理を実行するための機能モジュールを含む制御用コンピュータと、塗布膜AFの厚さを推定するための機能モジュール(膜厚推定部120)を含む制御用コンピュータとで構成されてもよい。あるいは、これらの各機能モジュールがそれぞれ、2つ以上の制御用コンピュータの組み合わせによって実現されていてもよい。これらの場合、複数の制御用コンピュータは、互いに通信可能に接続された状態で、後述する基板処理方法及び膜厚推定方法を連携して実行してもよい。なお、制御装置100のハードウェア構成は、必ずしもプログラムにより各機能モジュールを構成するものに限られない。例えば制御装置100の各機能モジュールは、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。 When the control device 100 is composed of a plurality of control computers, each functional module may be realized by an individual control computer. The control device 100 is for control including a control computer including a functional module for executing liquid treatment by the liquid treatment unit U1 and a functional module (thickness estimation unit 120) for estimating the thickness of the coating film AF. It may be configured with a computer. Alternatively, each of these functional modules may be realized by a combination of two or more control computers. In these cases, the plurality of control computers may be connected to each other so as to be able to communicate with each other, and the substrate processing method and the film thickness estimation method described later may be executed in cooperation with each other. The hardware configuration of the control device 100 is not necessarily limited to that constituting each functional module by a program. For example, each functional module of the control device 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the logic circuit is integrated.
[基板処理方法]
 続いて、基板処理方法の一例として、制御装置100が実行する一連の処理の一例を説明する。制御装置100が実行する一連の処理では、液処理ユニットU1による液処理を行うための処理と、塗布膜AFの厚さを推定するための処理(膜厚推定方法)とが並行して行われる。以下では、処理液の供給終了後における回転期間の終了時点が、膜厚を推定する計測時点(以下、「計測時点MT」という。)に設定されている場合を例示する。
[Board processing method]
Subsequently, as an example of the substrate processing method, an example of a series of processing executed by the control device 100 will be described. In a series of processes executed by the control device 100, a process for performing liquid treatment by the liquid treatment unit U1 and a process for estimating the thickness of the coating film AF (film thickness estimation method) are performed in parallel. .. In the following, an example will be illustrated in which the end point of the rotation period after the end of supply of the treatment liquid is set to the measurement time point for estimating the film thickness (hereinafter referred to as “measurement time point MT”).
 図8は、液処理及び膜厚の推定のために制御装置100が実行する一連の処理の一例を示すフローチャートである。制御装置100は、例えば、上位コントローラからの指令を受けることで、ステップS11を実行する。ステップS11では、例えば、液処理制御部114が、ワークWの回転を開始させるように回転保持部30を制御する。液処理制御部114は、ワークWの回転開始後に、ワークWが処理液の吐出時の回転速度の設定値で回転するように、回転保持部30を制御する。 FIG. 8 is a flowchart showing an example of a series of processes executed by the control device 100 for liquid processing and estimation of film thickness. The control device 100 executes step S11, for example, by receiving a command from the host controller. In step S11, for example, the liquid treatment control unit 114 controls the rotation holding unit 30 so as to start the rotation of the work W. The liquid processing control unit 114 controls the rotation holding unit 30 so that the work W rotates at a set value of the rotation speed at the time of discharging the processing liquid after the rotation of the work W starts.
 次に、制御装置100は、ステップS12,S13を実行する。ステップS12では、例えば、膜厚推定部120が、所定の計測開始時刻となるまで待機する。計測開始時刻は、例えば、上位コントローラからの指令を受け取った時点を基準として定められる時刻である。ステップS13では、例えば、膜厚推定部120が、反射光の強度の計測を開始するように計測部60を制御する。一例では、投光制御部122が、照射箇所P1~P3に向けたレーザ光の照射をそれぞれ開始させるように投受光デバイス70A~70Cを制御する。そして、信号取得部124が、投受光デバイス70A~70Cそれぞれから、レーザ光の照射に伴う反射光の強度の取得を開始する。以降の処理において、レーザ光の照射と反射光の強度の取得とが継続される。 Next, the control device 100 executes steps S12 and S13. In step S12, for example, the film thickness estimation unit 120 waits until a predetermined measurement start time is reached. The measurement start time is, for example, a time determined based on the time when a command from the host controller is received. In step S13, for example, the film thickness estimation unit 120 controls the measurement unit 60 so as to start measuring the intensity of the reflected light. In one example, the light projection control unit 122 controls the light emitting and receiving devices 70A to 70C so as to start irradiation of laser light toward the irradiation points P1 to P3, respectively. Then, the signal acquisition unit 124 starts acquiring the intensity of the reflected light accompanying the irradiation of the laser light from each of the light emitting / receiving devices 70A to 70C. In the subsequent processing, irradiation of the laser beam and acquisition of the intensity of the reflected light are continued.
 次に、制御装置100は、ステップS14,S15を実行する。ステップS14では、例えば、液処理制御部114が、所定の吐出開始時刻となるまで待機する。吐出開始時刻は、例えば、上位コントローラからの指令を受け取った時点を基準として定められる時刻である。ステップS15では、例えば、液処理制御部114が、処理液の吐出を開始するように処理液供給部40を制御する。 Next, the control device 100 executes steps S14 and S15. In step S14, for example, the liquid treatment control unit 114 waits until a predetermined discharge start time is reached. The discharge start time is, for example, a time determined based on the time when a command from the host controller is received. In step S15, for example, the liquid processing control unit 114 controls the processing liquid supply unit 40 so as to start discharging the processing liquid.
 次に、制御装置100は、ステップS16,S17,S18を実行する。ステップS16では、例えば、液処理制御部114が、処理液の吐出開始時刻から所定の吐出時間が経過するまで待機する。ステップS17では、例えば、液処理制御部114が、処理液の吐出を停止するように処理液供給部40を制御する。ステップS18では、例えば、液処理制御部114が、回転保持部30を制御することで、処理液の供給後での回転速度の設定値でワークWが回転するように、ワークWの回転速度を調節する。回転速度の設定値は、処理情報記憶部112が記憶する処理情報に定められている。 Next, the control device 100 executes steps S16, S17, and S18. In step S16, for example, the liquid treatment control unit 114 waits until a predetermined discharge time elapses from the discharge start time of the treatment liquid. In step S17, for example, the liquid processing control unit 114 controls the processing liquid supply unit 40 so as to stop the discharge of the processing liquid. In step S18, for example, the liquid processing control unit 114 controls the rotation holding unit 30 to rotate the work W so that the work W rotates at the set value of the rotation speed after the treatment liquid is supplied. Adjust. The set value of the rotation speed is defined in the processing information stored in the processing information storage unit 112.
 次に、制御装置100は、ステップS19,S20を実行する。ステップS19では、例えば、液処理制御部114が、処理液の吐出停止時刻から所定の乾燥時間が経過するまで待機する。ステップS20では、例えば、液処理制御部114が、ワークWの回転を停止させるように回転保持部30を制御する。以上のステップS19,S20の実行によって、予め定められた乾燥時間だけ、処理液が供給された状態のワークWが回転し、回転している最中にワークWの表面Wa上に処理液の塗布膜AFが形成される。この乾燥時間だけワークWを回転させる期間が、処理液の供給後にワークWを回転させる回転期間に相当する。 Next, the control device 100 executes steps S19 and S20. In step S19, for example, the liquid treatment control unit 114 waits until a predetermined drying time elapses from the discharge stop time of the treatment liquid. In step S20, for example, the liquid treatment control unit 114 controls the rotation holding unit 30 so as to stop the rotation of the work W. By executing the above steps S19 and S20, the work W in the state where the treatment liquid is supplied is rotated for a predetermined drying time, and the treatment liquid is applied onto the surface Wa of the work W while rotating. Membrane AF is formed. The period during which the work W is rotated by this drying time corresponds to the rotation period during which the work W is rotated after the treatment liquid is supplied.
 次に、制御装置100は、ステップS21を実行する。ステップS21では、例えば、膜厚推定部120が、反射波の強度の計測を停止するように計測部60を制御する。一例では、投光制御部122が、照射箇所P1~P3に向けたレーザ光の照射をそれぞれ停止させるように投受光デバイス70A~70Cを制御する。そして、信号取得部124が、レーザ光の照射に伴う反射光の強度の取得を停止する。以上のステップS21までの処理が実行されることで、図9に示されるような信号波形(反射波の強度の時間変化)が、照射箇所P1~P3それぞれについて取得される。 Next, the control device 100 executes step S21. In step S21, for example, the film thickness estimation unit 120 controls the measurement unit 60 so as to stop the measurement of the intensity of the reflected wave. In one example, the light projection control unit 122 controls the light emitting and receiving devices 70A to 70C so as to stop the irradiation of the laser light toward the irradiation points P1 to P3, respectively. Then, the signal acquisition unit 124 stops acquiring the intensity of the reflected light accompanying the irradiation of the laser beam. By executing the above processes up to step S21, a signal waveform (time change in the intensity of the reflected wave) as shown in FIG. 9 is acquired for each of the irradiation points P1 to P3.
 図9に示される信号波形のグラフでは、上位コントローラから処理開始の指令を受けたタイミングが「0」で示され、処理液の吐出停止のタイミング(乾燥時間の開始のタイミング)が「t1」で示され、乾燥時間の終了タイミングに対応する計測時点が「MT」で示されている。図9に示されるように、時刻t1以降において、表面Waで反射する光L1と塗布膜AFの外表面Faで反射する光L2との干渉状態の時間変化に応じて、山部分と谷部分とが繰り返される信号波形が得られる。図9において、山部分の頂点が黒丸印で描かれ、谷部分の最下点が白抜きの丸印で描かれている。また、時刻t1よりも前の信号波形は省略されている。 In the graph of the signal waveform shown in FIG. 9, the timing of receiving the processing start command from the host controller is indicated by "0", and the timing of stopping the discharge of the processing liquid (timing of the start of the drying time) is "t1". It is shown and the measurement time point corresponding to the end timing of the drying time is indicated by "MT". As shown in FIG. 9, after the time t1, the peak portion and the valley portion are formed according to the time change of the interference state between the light L1 reflected by the surface Wa and the light L2 reflected by the outer surface Fa of the coating film AF. A signal waveform in which is repeated is obtained. In FIG. 9, the apex of the mountain portion is drawn with a black circle mark, and the lowest point of the valley portion is drawn with a white circle mark. Further, the signal waveform before the time t1 is omitted.
 ステップS21の実行後に、制御装置100は、ステップS22を実行する。ステップS22では、例えば、膜厚算出部128が、ステップS21の実行までで得られた信号波形のうちの、計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形に基づいて、計測時点MTにおける塗布膜AFの厚さを算出する。より詳細には、特徴量取得部126が、上記信号波形のうちの、計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形から特徴量を取得する。そして、膜厚算出部128が、上記特徴量に基づいて、計測時点MTにおける塗布膜AFの厚さを算出する。 After executing step S21, the control device 100 executes step S22. In step S22, for example, the film thickness calculation unit 128 between the measurement time point MT and the time point when the signal waveform satisfies a predetermined condition before the measurement time point MT among the signal waveforms obtained up to the execution of step S21. The thickness of the coating film AF at the measurement time point MT is calculated based on the waveform of. More specifically, the feature amount acquisition unit 126 acquires the feature amount from the waveform between the measurement time point MT and the time point where the signal waveform satisfies a predetermined condition before the measurement time point MT among the above signal waveforms. Then, the film thickness calculation unit 128 calculates the thickness of the coating film AF at the measurement time point MT based on the above feature amount.
 信号波形の一部から得られる特徴量は、例えば、計測時点MTから数えて第n番目(nは1以上の整数)に現れる極値点の時刻である。すなわち、特徴量取得部126は、計測時点MTと、信号波形が、計測時点MTから時刻が戻る向きに数えて第n番目の極値点となる条件を満たす時点との間の波形から、当該波形の第n番目の極値点の時刻を特徴量として取得する。本開示において、極値点とは、山部分の頂点(極大となる点)及び谷部分の最下点(極小となる点)を総称している。 The feature amount obtained from a part of the signal waveform is, for example, the time of the extreme point appearing at the nth position (n is an integer of 1 or more) counted from the MT at the time of measurement. That is, the feature amount acquisition unit 126 is concerned with the waveform between the measurement time point MT and the time point at which the signal waveform satisfies the condition of the nth extremum point counted in the direction in which the time returns from the measurement time point MT. The time of the nth extremum point of the waveform is acquired as a feature quantity. In the present disclosure, the extreme point is a general term for the apex (maximum point) of the mountain portion and the lowest point (minimum point) of the valley portion.
 図9に例示される信号波形のグラフでは、計測時点MTから数えて第10番目の極値点(計測時点MTから数えて第5番目の山部分の頂点)の時刻が、特徴量F1として取得されている。なお、図9の信号波形のグラフにおいて、計測時点MTから数えて第9番目に現れる極値点は、計測時点MTから数えて第5番目の谷部分の最下点である。特徴量F1は、液処理の基準タイミング(例えば、上述の上位コントローラから処理開始の指令を受けたタイミング)と、計測時点MTから数えて第n番目の極値点との間の時間に対応する。 In the graph of the signal waveform exemplified in FIG. 9, the time of the tenth extreme point (the apex of the fifth mountain portion counted from the measurement time MT) counted from the measurement time point MT is acquired as the feature amount F1. Has been done. In the signal waveform graph of FIG. 9, the ninth extreme value point appearing from the measurement time point MT is the lowest point of the fifth valley portion counting from the measurement time point MT. The feature amount F1 corresponds to the time between the reference timing of liquid processing (for example, the timing when the processing start command is received from the above-mentioned host controller) and the nth extreme value point counted from the measurement time point MT. ..
 膜厚算出部128は、特徴量F1と塗布膜AFの厚さとの相関関係を利用して、特徴量F1に基づき、計測時点MTにおける塗布膜AFの厚さを算出する。相関関係を利用した塗布膜AFの厚さの算出方法については後述する。膜厚算出部128は、例えば、照射箇所P1~P3それぞれについて、信号波形に基づいて、各照射位置での塗布膜AFの厚さを算出する。 The film thickness calculation unit 128 calculates the thickness of the coating film AF at the measurement time point MT based on the feature amount F1 by utilizing the correlation between the feature amount F1 and the thickness of the coating film AF. The method of calculating the thickness of the coating film AF using the correlation will be described later. The film thickness calculation unit 128 calculates, for example, the thickness of the coating film AF at each irradiation position based on the signal waveform for each of the irradiation points P1 to P3.
 以上により、1枚のワークWに対する液処理と膜厚の推定とを行う一連の処理が終了する。制御装置100は、後続の複数のワークWに対しても、同様の一連の処理を順に実行してもよい。この場合、制御装置100は、複数のワークW間で、処理液の吐出開始及び吐出停止のタイミング、処理液の供給後にワークWを回転させる乾燥時間、並びに、反射光の強度の計測を開始及び停止するタイミングが一定となるように、一連の処理を繰り返し実行してもよい。ワークWに対して上記一連の処理を実行する前には、塗布膜AFの厚さを推定するためのモデル式の構築が行われる。 With the above, a series of processes for performing liquid treatment and estimating the film thickness for one work W is completed. The control device 100 may sequentially execute the same series of processes for the plurality of subsequent work Ws. In this case, the control device 100 starts and starts measuring the timing of starting and stopping the discharge of the processing liquid, the drying time for rotating the work W after the treatment liquid is supplied, and the intensity of the reflected light among the plurality of work Ws. A series of processes may be repeatedly executed so that the stop timing is constant. Before executing the above series of processes on the work W, a model formula for estimating the thickness of the coating film AF is constructed.
(モデル式の構築方法)
 図10は、特徴量に基づき塗布膜AFの厚さを推定するためのモデル式の構築方法の一例を示すフローチャートである。このモデル式の構築方法では、テスト用ワークWTの回転速度を複数段階に変更して塗布膜AFを形成し、段階ごとに、特徴量の取得と塗布膜AFの厚さの測定とが行われる。そして、特徴量と塗布膜AFの厚さの推定値との関係を示すモデル式が構築される。以下では、特徴量として、計測時点MTから数えて第n番目に現れる極値点の時刻(上述の特徴量F1)を用いる場合を例示する。テスト用ワークWTは、ワークWと同じ種類の基板である。
(How to build a model formula)
FIG. 10 is a flowchart showing an example of a method for constructing a model formula for estimating the thickness of the coating film AF based on the feature amount. In the construction method of this model formula, the rotation speed of the test work WT is changed to a plurality of stages to form the coating film AF, and the feature amount is acquired and the thickness of the coating film AF is measured for each stage. .. Then, a model formula showing the relationship between the feature amount and the estimated value of the thickness of the coating film AF is constructed. In the following, a case where the time of the extreme value point (the above-mentioned feature amount F1) that appears at the nth position from the measurement time point MT is used as the feature amount will be illustrated. The test work WT is a substrate of the same type as the work W.
 このモデル式の構築方法では、最初に、制御装置100がステップS31を実行する。ステップS31では、例えば、モデル構築部134が、テスト用ワークWTの回転速度を初期値に設定する。より詳細には、モデル構築部134は、処理液が供給された後にテスト用ワークWTを回転させる際の回転速度を初期値(変化させる複数段階のいずれかの回転速度)に設定する。回転速度を変化させる範囲、及び1回あたりの変化幅は、オペレータ等により予め定められている。回転速度を変化させる範囲(最大の回転速度と最小の回転速度との差)は、例えば、80rpm~300rpmであり、1回あたりの変化幅は、5rpm~50rpmである。 In this model formula construction method, first, the control device 100 executes step S31. In step S31, for example, the model building unit 134 sets the rotation speed of the test work WT to the initial value. More specifically, the model building unit 134 sets the rotation speed when rotating the test work WT after the treatment liquid is supplied to an initial value (rotation speed of any of a plurality of stages to be changed). The range in which the rotation speed is changed and the range of change per rotation are predetermined by an operator or the like. The range for changing the rotation speed (difference between the maximum rotation speed and the minimum rotation speed) is, for example, 80 rpm to 300 rpm, and the change width per time is 5 rpm to 50 rpm.
 次に、制御装置100は、ステップS32,S33を実行する。ステップS32では、例えば、制御装置100が、上述のステップS11~S21と同様に、液処理の実行と信号波形の取得とを行う。ステップS32では、テスト用ワークWTが用いられる点、及び塗布膜AFを形成する際のワークの回転速度を除いて、上述のステップS11~S21での処理条件と同じ条件で液処理及び信号波形の取得が行われる。ステップS33では、例えば、モデル構築部134が、ステップS32で得られた信号波形から特徴量F1を取得する。 Next, the control device 100 executes steps S32 and S33. In step S32, for example, the control device 100 executes the liquid processing and acquires the signal waveform in the same manner as in steps S11 to S21 described above. In step S32, the liquid processing and the signal waveform are processed under the same conditions as those in steps S11 to S21 described above, except that the test work WT is used and the rotation speed of the work when forming the coating film AF. Acquisition is done. In step S33, for example, the model building unit 134 acquires the feature amount F1 from the signal waveform obtained in step S32.
 次に、制御装置100は、ステップS34を実行する。ステップS34では、例えば、モデル構築部134が、ステップS32において、テスト用ワークWTの表面上に形成された塗布膜AFの厚さを示す測定値を取得する。塗布膜AFの厚さの測定値は、信号波形に基づく膜厚の算出方法以外のどのような方法で(いずれの方式の膜厚測定器を用いて)測定された値であってもよい。塗布膜AFの厚さの測定値は、例えば、回転停止後の塗布膜AFからの反射光を分光し、分光して得られた分光スペクトルに基づき測定された膜厚であってもよい。 Next, the control device 100 executes step S34. In step S34, for example, the model building unit 134 acquires a measured value indicating the thickness of the coating film AF formed on the surface of the test work WT in step S32. The measured value of the thickness of the coating film AF may be a value measured by any method (using a film thickness measuring device of any method) other than the method of calculating the film thickness based on the signal waveform. The measured value of the thickness of the coating film AF may be, for example, the film thickness measured based on the spectral spectrum obtained by splitting the reflected light from the coating film AF after the rotation is stopped.
 次に、制御装置100は、ステップS35を実行する。ステップS35では、例えば、モデル構築部134が、変更させる全ての回転速度において、特徴量F1及び膜厚の測定値の取得が終了したかどうかを判断する。ステップS35において、全ての回転速度において特徴量F1及び膜厚の測定値の取得が終了していないと判断された場合(ステップS35:NO)、制御装置100は、ステップS36を実行する。ステップS36では、例えば、モデル構築部134が、テスト用ワークWTの回転速度の設定値を変更する。そして、制御装置100は、ステップS32~S35の処理を繰り返す。これにより、モデル構築部134は、段階的に変化させる回転速度ごとに、特徴量F1と膜厚の測定値とを取得する。 Next, the control device 100 executes step S35. In step S35, for example, the model building unit 134 determines whether or not the acquisition of the measured values of the feature amount F1 and the film thickness is completed at all the rotation speeds to be changed. If it is determined in step S35 that the acquisition of the feature amount F1 and the measured values of the film thickness has not been completed at all the rotation speeds (step S35: NO), the control device 100 executes step S36. In step S36, for example, the model building unit 134 changes the set value of the rotation speed of the test work WT. Then, the control device 100 repeats the processes of steps S32 to S35. As a result, the model building unit 134 acquires the feature amount F1 and the measured value of the film thickness for each rotation speed that is changed stepwise.
 ステップS32~S35の処理が繰り返される際に、ワークWの回転速度の設定値は、少なくとも、第1回転速度と、その第1回転速度とは異なる第2回転速度とに設定される。この場合、モデル構築部134は、テスト用ワークWT(第1テスト用基板)を第1回転速度で回転させながら得られた信号波形に基づいて、その第1回転速度での特徴量F1(第1特徴量)を取得する。モデル構築部134は、テスト用ワークWT(第2テスト用基板)を第2回転速度で回転させながら得られた信号波形に基づいて、その第2回転速度での特徴量F1(第2特徴量)を取得する。 When the processes of steps S32 to S35 are repeated, the set value of the rotation speed of the work W is set to at least the first rotation speed and the second rotation speed different from the first rotation speed. In this case, the model building unit 134 has the feature amount F1 (first) at the first rotation speed based on the signal waveform obtained while rotating the test work WT (first test substrate) at the first rotation speed. 1 feature amount) is acquired. The model building unit 134 is based on the signal waveform obtained while rotating the test work WT (second test substrate) at the second rotation speed, and the feature amount F1 (second feature amount) at the second rotation speed is used. ).
 モデル構築部134は、第1回転速度で回転させた際にテスト用ワークWTに形成された塗布膜AFの厚さを示す測定値(第1測定値)を取得する。、モデル構築部134は、第2回転速度で回転させた際にテスト用ワークWTに形成された塗布膜AFの厚さを示す測定値(第2測定値)を取得する。複数段階の回転速度それぞれで回転させるテスト用ワークWTは、互いに異なるワークであってもよく、互いに同一のワークであってもよい。同一のワークが用いられる場合には、塗布膜AFを形成し膜厚が測定された後に、当該塗布膜AFが薬液等によって除去されてもよい。 The model building unit 134 acquires a measured value (first measured value) indicating the thickness of the coating film AF formed on the test work WT when rotated at the first rotation speed. , The model building unit 134 acquires a measured value (second measured value) indicating the thickness of the coating film AF formed on the test work WT when rotated at the second rotation speed. The test work WTs to be rotated at each of the plurality of rotation speeds may be different workpieces or the same workpieces. When the same work is used, the coating film AF may be removed by a chemical solution or the like after the coating film AF is formed and the film thickness is measured.
 ステップS35において、全ての回転速度において特徴量F1及び膜厚の測定値の取得が終了したと判断された場合(ステップS35:YES)、制御装置100は、ステップS37を実行する。ステップS37では、例えば、モデル構築部134が、ステップS32~S35が繰り返されることで得られた複数の特徴量F1と複数の膜厚の測定値とに基づいて、特徴量F1から膜厚を推定するためのモデル式を生成する。一例では、膜厚の推定値を「Th」としたときに、モデル構築部134は、下記の式(1)で表される一次式をモデル式として生成する。式(1)において、「a」及び「b」は係数であり、これらの係数が定められることでモデル式が構築される。
   Th=a×F1+b   (1)
When it is determined in step S35 that the acquisition of the feature amount F1 and the measured values of the film thickness is completed at all the rotation speeds (step S35: YES), the control device 100 executes step S37. In step S37, for example, the model building unit 134 estimates the film thickness from the feature amount F1 based on the plurality of feature amounts F1 obtained by repeating steps S32 to S35 and the measured values of the plurality of film thicknesses. Generate a model formula to do so. In one example, when the estimated value of the film thickness is "Th", the model building unit 134 generates a linear expression represented by the following equation (1) as a model equation. In the formula (1), "a" and "b" are coefficients, and a model formula is constructed by defining these coefficients.
Th = a × F1 + b (1)
 モデル構築部134は、生成(構築)したモデル式をモデル情報記憶部132に記憶する。以上のモデル式の構築が終了した後に、上述のステップS11~S22の処理が実行される。上述のステップS22では、膜厚算出部128が、モデル情報記憶部132に記憶された式(1)のモデル式を参照することで、液処理の実行中に得られた特徴量F1に応じた膜厚を算出する。以上のように、膜厚推定部120によって、ワークWに対して液処理が行われることで形成される塗布膜AFの厚さが推定される。 The model construction unit 134 stores the generated (constructed) model formula in the model information storage unit 132. After the construction of the above model formula is completed, the above-mentioned processes of steps S11 to S22 are executed. In step S22 described above, the film thickness calculation unit 128 corresponds to the feature amount F1 obtained during the execution of the liquid treatment by referring to the model formula of the formula (1) stored in the model information storage unit 132. Calculate the film thickness. As described above, the film thickness estimation unit 120 estimates the thickness of the coating film AF formed by performing the liquid treatment on the work W.
[変形例]
 (1)ワークWの表面Waに対するレーザ光の照射方法は、上述の例に限られない。計測部60は、ミラー部材を介して、レーザ光をワークWの表面Waに向けて照射してもよい。図11に示されるように、計測部60は、例えば、投受光デバイス170と、ミラー部材80とを有する。投受光デバイス170とミラー部材80とは、水平方向(保持部32に支持されたワークWの表面Wa)に沿って並んで配置される。ミラー部材80の大きさ(サイズ)は、投受光デバイス170よりも小さくてもよい。投受光デバイス170は、ワークWの周縁よりも外に配置されている。
[Modification example]
(1) The method of irradiating the surface Wa of the work W with laser light is not limited to the above example. The measuring unit 60 may irradiate the surface Wa of the work W with the laser beam via the mirror member. As shown in FIG. 11, the measuring unit 60 includes, for example, a light emitting / receiving device 170 and a mirror member 80. The light emitting / receiving device 170 and the mirror member 80 are arranged side by side along the horizontal direction (the surface Wa of the work W supported by the holding portion 32). The size of the mirror member 80 may be smaller than that of the light emitting / receiving device 170. The light emitting / receiving device 170 is arranged outside the peripheral edge of the work W.
 ミラー部材80は、保持部32に保持されたワークWの上方(例えば、レーザ光の照射箇所の鉛直上方)に配置される。ミラー部材80は、光を反射することによってワークWに照射するレーザ光の方向(光が進行する方向)を変更する。ミラー部材80は、例えば、投受光デバイス170と保持部32に保持されたワークWの表面Waとに対向する反射面82を有する。投受光デバイス170は、投受光デバイス70A~70Cと同様に、塗布膜AFを透過可能なレーザ光を照射する。投受光デバイス170(投光部)は、ミラー部材80の反射面82に向けてレーザ光を照射する。これにより、投受光デバイス170から照射されたレーザ光が、ミラー部材80の反射面82において反射した後に、ワークWの表面Waに照射される。 The mirror member 80 is arranged above the work W held by the holding portion 32 (for example, vertically above the irradiation point of the laser beam). The mirror member 80 changes the direction (direction in which the light travels) of the laser beam irradiating the work W by reflecting the light. The mirror member 80 has, for example, a reflecting surface 82 facing the light emitting / receiving device 170 and the surface Wa of the work W held by the holding portion 32. The light emitting and receiving device 170 irradiates a laser beam that can pass through the coating film AF, similarly to the light emitting and receiving devices 70A to 70C. The light emitting / receiving device 170 (light emitting unit) irradiates a laser beam toward the reflecting surface 82 of the mirror member 80. As a result, the laser beam emitted from the light emitting / receiving device 170 is reflected by the reflecting surface 82 of the mirror member 80 and then irradiated to the surface Wa of the work W.
 投受光デバイス170(受光部)は、レーザ光のワークWにおける反射光を、ミラー部材80の反射面82を介して受光する。計測部60は、投受光デバイス70A~70Cと同様に、互いに異なる複数箇所それぞれにレーザ光を照射するために、複数組の投受光デバイス170及びミラー部材80を有してもよい。 The light emitting / receiving device 170 (light receiving unit) receives the reflected light of the laser light in the work W through the reflecting surface 82 of the mirror member 80. Similar to the light emitting / receiving devices 70A to 70C, the measuring unit 60 may have a plurality of sets of light receiving / receiving devices 170 and a mirror member 80 in order to irradiate a plurality of different locations with laser light.
 (2)レーザ光の光源は、その熱が液処理に影響を及ぼさないように、液処理を行うための空間を形成する筐体の内壁に設けられてもよい。図11に示されるように、液処理ユニットU1は、回転保持部30を収容し、ワークWに対して処理液を用いた処理を行うための内部空間Sを形成する筐体28を有する。投受光デバイス170は、その内部にレーザ光を生成する光源172を含んでいてもよい。投受光デバイス170(光源172)は、筐体28の内壁(例えば、側壁の内面)に設けられてもよい。 (2) The light source of the laser beam may be provided on the inner wall of the housing forming a space for performing the liquid treatment so that the heat does not affect the liquid treatment. As shown in FIG. 11, the liquid treatment unit U1 has a housing 28 that accommodates the rotation holding portion 30 and forms an internal space S for processing the work W with the treatment liquid. The light emitting / receiving device 170 may include a light source 172 that generates a laser beam inside the light emitting / receiving device 170. The light emitting / receiving device 170 (light source 172) may be provided on the inner wall (for example, the inner surface of the side wall) of the housing 28.
 (3)レーザ光の光源は、その熱が熱処理に影響を及ぼさないように、液処理を行うための空間を形成する筐体の外に配置されていてもよい。図12に示されるように、計測部60は、投光デバイス180(投光部)と、受光デバイス190(受光部)とを有してもよい。投光デバイス180は、光源182と、導光部184と、照射部186とを含む。光源182は、ワークWの表面Waに照射するレーザ光を生成する。光源182は、筐体28の外に配置されている。導光部184は、光源182からのレーザ光を筐体28の内部まで導く。導光部184は、例えば光ファイバである。照射部186は、導光部184によって導光されたレーザ光を、ミラー部材を介してワークWの表面Waに照射する。 (3) The light source of the laser beam may be arranged outside the housing that forms a space for liquid treatment so that the heat does not affect the heat treatment. As shown in FIG. 12, the measuring unit 60 may include a light emitting device 180 (light emitting unit) and a light receiving device 190 (light receiving unit). The light projecting device 180 includes a light source 182, a light guide unit 184, and an irradiation unit 186. The light source 182 generates a laser beam that irradiates the surface Wa of the work W. The light source 182 is arranged outside the housing 28. The light guide unit 184 guides the laser beam from the light source 182 to the inside of the housing 28. The light guide unit 184 is, for example, an optical fiber. The irradiation unit 186 irradiates the surface Wa of the work W with the laser beam guided by the light guide unit 184 via the mirror member.
 受光デバイス190は、集光部192と、導光部194と、検出部196とを含む。集光部192には、レーザ光の照射に伴うワークWからの反射光が、ミラー部材を介して入射する。導光部194は、集光部192に入射した反射光を、筐体28の外に配置された検出部196まで導く。導光部194は、例えば光ファイバである。検出部196は、導光部194によって導光された反射光に応じた電気信号を生成する。計測部60は、投受光デバイス70A~70Cと同様に、互いに異なる複数箇所それぞれにレーザ光を照射するために、複数組の投光デバイス180及び受光デバイス190を有してもよい。 The light receiving device 190 includes a light collecting unit 192, a light guide unit 194, and a detection unit 196. The reflected light from the work W accompanying the irradiation of the laser beam is incident on the light collecting unit 192 via the mirror member. The light guide unit 194 guides the reflected light incident on the light collecting unit 192 to the detection unit 196 arranged outside the housing 28. The light guide unit 194 is, for example, an optical fiber. The detection unit 196 generates an electric signal corresponding to the reflected light guided by the light guide unit 194. Similar to the light emitting and receiving devices 70A to 70C, the measuring unit 60 may have a plurality of sets of the light emitting and receiving devices 180 and the light receiving device 190 in order to irradiate the laser beam to each of a plurality of different points.
 (4)計測部60がミラー部材を用いる場合、ミラー部材は、光の散乱と吸収とを抑制する膜を有してもよい。図12に示されるように、計測部60は、ミラー部材80Aを有してもよい。ミラー部材80Aは、照射されたレーザ光をワークWの表面Waに向けて反射し、ワークWからの反射光を受光デバイス190に向けて反射する。ミラー部材80Aの反射面82には、入射されたレーザ光の当該反射面82における散乱と吸収とを抑制する膜84が形成されている。 (4) When the measuring unit 60 uses a mirror member, the mirror member may have a film that suppresses scattering and absorption of light. As shown in FIG. 12, the measuring unit 60 may have a mirror member 80A. The mirror member 80A reflects the irradiated laser light toward the surface Wa of the work W, and reflects the reflected light from the work W toward the light receiving device 190. A film 84 that suppresses scattering and absorption of incident laser light on the reflecting surface 82 is formed on the reflecting surface 82 of the mirror member 80A.
 (5)計測部60は、ワークWにおけるレーザ光の反射点の上下方向における位置ずれに応じて、反射光の受光状態を調節する部材を有してもよい。図12に示されるように、計測部60の受光デバイス190は、反射光の受光状態を調節する調節部材198を有してもよい。調節部材198は、ワークWの上下方向の位置ずれ、又はワークWの反りに応じて、受光デバイス190における反射光の受光状態を調節する。調節部材198は、例えば、集光部192内に設けられている。 (5) The measuring unit 60 may have a member that adjusts the light receiving state of the reflected light according to the positional deviation of the reflected point of the laser light in the work W in the vertical direction. As shown in FIG. 12, the light receiving device 190 of the measuring unit 60 may have an adjusting member 198 that adjusts the light receiving state of the reflected light. The adjusting member 198 adjusts the light receiving state of the reflected light in the light receiving device 190 according to the vertical positional deviation of the work W or the warp of the work W. The adjusting member 198 is provided in, for example, the light collecting unit 192.
 調節部材198は、ワークWに反り等があっても、受光デバイス190で受光する反射光の強度が、ワークWに反り等がない場合での反射光の強度と同程度となるように、反射光の受光状態を調節する。調節部材198は、例えば、反射光の受光状態として、反射光の光路、又は、反射光の焦点を調節する光学部品である。 The adjusting member 198 reflects the work W so that the intensity of the reflected light received by the light receiving device 190 is about the same as the intensity of the reflected light when the work W has no warp or the like even if the work W has a warp or the like. Adjust the light reception state. The adjusting member 198 is, for example, an optical component that adjusts the optical path of the reflected light or the focal point of the reflected light as the light receiving state of the reflected light.
 (6)ワークWの表面Waに対して、斜め方向からレーザ光が照射されてもよい。図13(a)に示されるように、計測部60は、投光デバイス280(投光部)と、受光デバイス290(受光部)とを有してもよい。投光デバイス280と受光デバイス290とは、水平方向に沿って並び、互いの間にワークWを挟むように配置される。投光デバイス280と受光デバイス290とは、ワークWの周縁よりも外側に位置している。投光デバイス280は、ワークWの表面Waに垂直な方向(上下方向)に対して傾いた方向から、所定の照射箇所に向けてレーザ光を照射する。受光デバイス290は、ワークWの表面Waに垂直な方向(上下方向)に対して傾いた方向に反射される反射光を受光する。 (6) The surface Wa of the work W may be irradiated with laser light from an oblique direction. As shown in FIG. 13A, the measuring unit 60 may include a light emitting device 280 (light emitting unit) and a light receiving device 290 (light receiving unit). The light emitting device 280 and the light receiving device 290 are arranged along the horizontal direction so as to sandwich the work W between them. The light emitting device 280 and the light receiving device 290 are located outside the peripheral edge of the work W. The light projecting device 280 irradiates the laser beam toward a predetermined irradiation point from a direction inclined with respect to a direction (vertical direction) perpendicular to the surface Wa of the work W. The light receiving device 290 receives the reflected light reflected in the direction inclined with respect to the direction perpendicular to the surface Wa of the work W (vertical direction).
 計測部60は、投受光デバイス70A~70Cと同様に、互いに異なる複数箇所それぞれに向けてレーザ光を照射する複数の投光デバイス280を有してもよい。この場合、計測部60は、複数の投光デバイス280それぞれに対応する複数の受光デバイス290を有してもよい。投光デバイス280が配置される位置に、投光デバイス280に代えて、投光部及び受光部として機能する投受光デバイスが配置されてもよい。受光デバイス290が配置される位置に、受光デバイス290に代えてミラー部材が配置されてもよい。この場合、投受光デバイスからワークWの表面Waに斜め方向からレーザ光が照射され、ワークWからの反射光がミラー部材で投受光デバイスに向けて反射される。 Similar to the light emitting and receiving devices 70A to 70C, the measuring unit 60 may have a plurality of light emitting devices 280 that irradiate laser light toward each of a plurality of different points. In this case, the measuring unit 60 may have a plurality of light receiving devices 290 corresponding to each of the plurality of floodlight devices 280. Instead of the light projecting device 280, a light projecting / light receiving device that functions as a light projecting unit and a light receiving unit may be arranged at a position where the light projecting device 280 is arranged. A mirror member may be arranged in place of the light receiving device 290 at a position where the light receiving device 290 is arranged. In this case, the light emitting / receiving device irradiates the surface Wa of the work W with laser light from an oblique direction, and the reflected light from the work W is reflected by the mirror member toward the light receiving / receiving device.
 (7)複数箇所それぞれにレーザ光を照射する場合に、1つの光源から生成されるレーザ光が、一の箇所に照射される光と、当該一の箇所とは別の箇所に照射される光とに分けられてもよい。図13(b)に示されるように、計測部60は、投光デバイス280Aと、複数(3つ)の受光デバイス290とを有してもよい。投光デバイス280Aは、1つの光源282と、分岐部284と、複数の導光部286とを含む。光源282は、ワークWの表面Waに向けて照射されるレーザ光を生成する。 (7) When irradiating each of a plurality of locations with laser light, the laser beam generated from one light source is the light emitted to one location and the light emitted to a location different from the one location. It may be divided into and. As shown in FIG. 13B, the measuring unit 60 may have a light projecting device 280A and a plurality (three) light receiving devices 290. The floodlight device 280A includes one light source 282, a branch portion 284, and a plurality of light guide portions 286. The light source 282 generates a laser beam that is emitted toward the surface Wa of the work W.
 分岐部284は、光源282からのレーザ光を、複数箇所それぞれに向けて照射されるレーザ光に分ける。例えば、分岐部284は、光源282からのレーザ光を、複数箇所のいずれか一つに照射される光と、複数箇所のうちの他の一箇所に照射される光とに分岐させる。分岐部284は、例えば、ビームスプリッタ等の光学部品によって構成される。分岐部284によって分岐された複数のレーザ光は、複数の導光部286にそれぞれ入射されてもよい。導光部286は、例えば光ファイバである。投光デバイス280Aは、複数の導光部286によって導光されたレーザ光を、ワークWの表面Waに重なる複数箇所に向けてそれぞれ照射する。なお、分岐部284は、1つの光源からの光を、時刻ごとに異なる箇所に向かうように分けてもよい。例えば、分岐部284は、揺動によって反射面(鏡面)の角度が変化する機能を有するMEMS(Micro-Electro-Mechanical Systems)ミラーによって構成されてもよい。 The branch portion 284 divides the laser light from the light source 282 into the laser light emitted toward each of a plurality of locations. For example, the branching portion 284 branches the laser light from the light source 282 into a light that irradiates any one of the plurality of locations and a light that irradiates the other one of the plurality of locations. The branch portion 284 is composed of an optical component such as a beam splitter. The plurality of laser beams branched by the branch portion 284 may be incident on each of the plurality of light guide portions 286. The light guide unit 286 is, for example, an optical fiber. The light projecting device 280A irradiates the laser light guided by the plurality of light guide units 286 toward a plurality of locations overlapping the surface Wa of the work W. The branch portion 284 may divide the light from one light source so as to go to a different place at each time. For example, the branch portion 284 may be configured by a MEMS (Micro-Electro-Mechanical Systems) mirror having a function of changing the angle of the reflecting surface (mirror surface) by swinging.
 (8)上述の例では、ワークWの表面Waと重なる3箇所に向けてレーザ光が照射されるが、ワークWの表面Waと重なる一箇所に向けてレーザ光が照射されてもよい。この場合、制御装置100の膜厚推定部120は、レーザ光が照射された当該一箇所における塗布膜AFの厚さを推定してもよい。レーザ光の照射箇所(塗布膜AFの厚さの推定箇所)は、2箇所であってもよく、4箇所以上であってもよい。複数箇所での膜厚の推定が行われる場合に、上述の例とは異なり、これらの箇所とワークWの中心CPとの間の距離が互いに略一致していてもよい。 (8) In the above example, the laser beam is irradiated to three places overlapping the surface Wa of the work W, but the laser light may be irradiated to one place overlapping the surface Wa of the work W. In this case, the film thickness estimation unit 120 of the control device 100 may estimate the thickness of the coating film AF at the one point irradiated with the laser beam. The irradiation points of the laser beam (estimated points of the thickness of the coating film AF) may be two places or four or more places. When the film thickness is estimated at a plurality of locations, unlike the above example, the distances between these locations and the center CP of the work W may be substantially the same as each other.
 (9)計測部60におけるレーザ光及び反射光の光路が、調節用の別のレーザ光を用いて調節されてもよい。別のレーザ光を用いた光路の調節が、液処理の実行前に作業員等によって行われてもよい。 (9) The optical path of the laser light and the reflected light in the measuring unit 60 may be adjusted by using another laser light for adjustment. The adjustment of the optical path using another laser beam may be performed by an operator or the like before the liquid treatment is performed.
 (10)計測部60が受光する反射光の強度(例えば、平均強度)に応じて、ワークWに照射されるレーザ光の強度が調節されてもよい。図6に示されるように、制御装置100(膜厚推定部120)は、機能モジュールとして投光条件設定部138(条件設定部)を有してもよい。投光条件設定部138は、反射光の強度と所定の閾値との比較結果に基づいて、投受光デバイス70A~70C等の投光部からの光の強度の設定値を変更する。例えば、投光条件設定部138は、反射光の平均強度が所定の閾値を下回った場合に、投光部から照射されるレーザ光の強度の設定値を大きくする。 (10) The intensity of the laser beam applied to the work W may be adjusted according to the intensity of the reflected light received by the measuring unit 60 (for example, the average intensity). As shown in FIG. 6, the control device 100 (film thickness estimation unit 120) may have a light projection condition setting unit 138 (condition setting unit) as a functional module. The light projection condition setting unit 138 changes the setting value of the light intensity from the light projection unit such as the light emitting / receiving devices 70A to 70C based on the comparison result between the intensity of the reflected light and a predetermined threshold value. For example, the light projecting condition setting unit 138 increases the setting value of the intensity of the laser light emitted from the light projecting unit when the average intensity of the reflected light falls below a predetermined threshold value.
 投光条件設定部138によって、レーザ光の強度の設定値が変更された場合、投光制御部122は、変更された設定値の強度を有するレーザ光が照射されるように計測部60を制御する。投光条件設定部138は、レーザ光の照射強度の設定値を変更するための反射光の強度の取得を、1回又は複数回の液処理の実行ごとに行ってもよい。投光条件設定部138は、ワークWに対する液処理を実行していない期間において、テスト用のワークWに対して塗布膜AFを形成したうえで、レーザ光の照射強度の設定値を変更するために反射光の強度を取得してもよい。 When the set value of the laser light intensity is changed by the light projecting condition setting unit 138, the light projecting control unit 122 controls the measuring unit 60 so that the laser light having the changed intensity of the set value is irradiated. do. The light projection condition setting unit 138 may acquire the intensity of the reflected light for changing the set value of the irradiation intensity of the laser light for each execution of one or a plurality of liquid treatments. The floodlight condition setting unit 138 changes the set value of the laser beam irradiation intensity after forming the coating film AF on the test work W during the period when the liquid treatment on the work W is not executed. The intensity of the reflected light may be obtained.
 (11)制御装置100は、膜厚算出部128によって算出された膜厚に応じて、後続のワークWに対する液処理の条件を変更してもよい。制御装置100(膜厚推定部120)は、機能モジュールとして処理条件変更部136を有してもよい。処理条件変更部136は、膜厚算出部128によって算出された塗布膜AFの厚さに基づいて、処理情報記憶部112に記憶されている処理情報に含まれる液処理の各種条件の設定値を変更する。例えば、処理条件変更部136は、照射箇所P1~P3について算出された塗布膜AFの厚さの平均値と予め定められた目標の厚さとの差分の絶対値が、所定値よりも大きい場合に、当該差分が縮小するように、処理液供給後でのワークWの回転速度の設定値を変更する。 (11) The control device 100 may change the liquid treatment conditions for the subsequent work W according to the film thickness calculated by the film thickness calculation unit 128. The control device 100 (film thickness estimation unit 120) may have a processing condition changing unit 136 as a functional module. The processing condition changing unit 136 sets values of various conditions for liquid processing included in the processing information stored in the processing information storage unit 112 based on the thickness of the coating film AF calculated by the film thickness calculation unit 128. change. For example, in the processing condition changing unit 136, when the absolute value of the difference between the average value of the thickness of the coating film AF calculated for the irradiation points P1 to P3 and the predetermined target thickness is larger than the predetermined value. , The set value of the rotation speed of the work W after the treatment liquid is supplied is changed so that the difference is reduced.
 (12)上述したように、受光した反射光に基づく信号波形のうちの、計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形から得られる特徴量に基づき、計測時点MTにおける塗布膜AFの厚さが算出される。上述の例では、計測時点MTから数えて第n番目の極値点の時刻が特徴量F1として用いられているが、特徴量F1とは異なる特徴量に基づいて、計測時点MTにおける塗布膜AFの厚さの算出が行われてもよい。以下、いくつかの特徴量について例示する。 (12) As described above, among the signal waveforms based on the received reflected light, the feature amount obtained from the waveform between the measurement time point MT and the time point where the signal waveform satisfies a predetermined condition before the measurement time point MT. Based on this, the thickness of the coating film AF at the measurement time point MT is calculated. In the above example, the time of the nth extreme value point counted from the measurement time point MT is used as the feature amount F1, but the coating film AF at the measurement time point MT is based on a feature amount different from the feature amount F1. The thickness of may be calculated. Hereinafter, some feature quantities will be illustrated.
 (12-1)信号波形の一部から得られる特徴量は、信号波形の強度が予め設定されたベース強度に一致する最後の時点から計測時点MTまでの時間であってもよい。特徴量取得部126は、計測時点MTと、信号波形の強度が所定のベース強度に最後に一致するという条件を満たす時点との間の波形から、計測時点MTとその一致点との間の時間を特徴量F2として取得する。特徴量F2を用いる場合も、塗布膜AFの厚さと特徴量F2との関係を示すモデル式が構築される。 (12-1) The feature amount obtained from a part of the signal waveform may be the time from the last time point when the signal waveform intensity matches the preset base intensity to the measurement time point MT. The feature amount acquisition unit 126 is the time between the measurement time point MT and the coincidence point from the waveform between the measurement time point MT and the time point satisfying the condition that the intensity of the signal waveform finally matches the predetermined base strength. Is acquired as the feature amount F2. Even when the feature amount F2 is used, a model formula showing the relationship between the thickness of the coating film AF and the feature amount F2 is constructed.
 図14には、5段階に回転速度を変化させてテスト用ワークWTに塗布膜AFを形成しつつ取得された信号波形のグラフが示されている。図14の信号波形のグラフでは、信号波形のうちの後半部分(回転時間の終了付近)だけの波形が示されている。変化させた回転速度の値が、それぞれ「ω1」~「ω5」で示されており、ω1~ω5の順で値が大きくなる。上述のベース強度が「BI」で示されており、ベース強度BIは、例えば、モデル式を作成する際に、最も小さい回転速度で形成された塗布膜AFから得られる信号波形の計測時点MTにおける強度に相当する。なお、ベース強度BIは、最も大きい回転速度で形成された塗布膜AFから得られた信号波形の計測時点MTにおける強度に設定されてもよい。 FIG. 14 shows a graph of the signal waveform acquired while forming the coating film AF on the test work WT by changing the rotation speed in five steps. In the graph of the signal waveform of FIG. 14, the waveform of only the latter half of the signal waveform (near the end of the rotation time) is shown. The changed rotation speed values are indicated by "ω1" to "ω5", respectively, and the values increase in the order of ω1 to ω5. The above-mentioned base strength is indicated by "BI", and the base strength BI is, for example, at the measurement time point MT of the signal waveform obtained from the coating film AF formed at the lowest rotation speed when creating a model formula. Corresponds to strength. The base strength BI may be set to the strength at the measurement time point MT of the signal waveform obtained from the coating film AF formed at the maximum rotation speed.
 例えば、回転速度がω5である場合、その回転速度についての信号波形の強度がベース強度BIに最後に一致する点での時刻t5と、計測時点MTとの間の時間が、特徴量F2として取得される。モデル構築部134は、5段階に回転速度を変化させて得られる複数の特徴量F2と複数の膜厚の測定値とに基づいて、特徴量F2から膜厚を推定するためのモデル式を生成する。一例では、モデル構築部134は、膜厚の推定値Thと特徴量F2との関係を定めるモデル式として、下記の式(2)で示される二次式を生成する。式(2)において「a1」「b1」及び「c1」は係数であり、これらの係数が定められることでモデル式が構築される。
   Th=a1×F2×F2+b1×F2+c1   (2)
For example, when the rotation speed is ω5, the time between the time t5 at the point where the intensity of the signal waveform for the rotation speed finally matches the base intensity BI and the measurement time point MT is acquired as the feature amount F2. Will be done. The model building unit 134 generates a model formula for estimating the film thickness from the feature amount F2 based on the plurality of feature amounts F2 obtained by changing the rotation speed in five steps and the measured values of the plurality of film thicknesses. do. In one example, the model building unit 134 generates a quadratic formula represented by the following formula (2) as a model formula for defining the relationship between the estimated film thickness Th and the feature amount F2. In the equation (2), "a1", "b1" and "c1" are coefficients, and a model equation is constructed by defining these coefficients.
Th = a1 x F2 x F2 + b1 x F2 + c1 (2)
 膜厚算出部128は、構築されたモデル式を参照することで、液処理の実行中に得られた特徴量F2に応じた膜厚を算出する。なお、モデル構築部134は、3次以上の多項式近似を利用して、モデル式を生成してもよい。モデル式にいずれの近似式を用いるかは、膜厚の測定値と特徴量との相関が評価されたうえで、特徴量ごとに選択されてもよい。 The film thickness calculation unit 128 calculates the film thickness according to the feature amount F2 obtained during the execution of the liquid treatment by referring to the constructed model formula. The model building unit 134 may generate a model formula by using a polynomial approximation of degree 3 or higher. Which approximate formula to use for the model formula may be selected for each feature amount after the correlation between the measured value of the film thickness and the feature amount is evaluated.
 (12-2)信号波形の一部から得られる特徴量は、計測時点MTから数えて第1番目に現れる極値点(極大又は極小となる点)での信号波形の強度と、計測時点MTでの信号波形の強度との差分を、第1番目の極値点での信号波形の強度で除算して得られる値であってもよい。図15(a)には、信号波形のうちの後半部分(回転期間が終了する付近)の波形が示されている。 (12-2) The feature quantity obtained from a part of the signal waveform is the intensity of the signal waveform at the extreme value point (maximum or minimum point) that appears first from the measurement time MT and the measurement time MT. It may be a value obtained by dividing the difference from the intensity of the signal waveform in (1) by the intensity of the signal waveform at the first extremum point. FIG. 15A shows the waveform of the latter half of the signal waveform (near the end of the rotation period).
 特徴量取得部126は、計測時点MTと、信号波形が、計測時点MTから時刻が戻る向きに数えて第1番目の極値点となる条件を満たす時点との間の波形から、第1番目の極値点での信号波形の強度In1と、計測時点MTでの信号波形の強度In2とを取得する。そして、特徴量取得部126は、強度In2から強度In1を減算して得られる値を求め、その求められた値を強度In1で除算することで得られる値を、特徴量F3として算出する。膜厚推定部120は、特徴量F1,F2を用いる場合と同様に、特徴量F3についてモデル式を構築し、当該モデル式を参照することで、ワークWへの液処理において取得された特徴量F3に応じて塗布膜AFの厚さを算出(推定)する。 The feature amount acquisition unit 126 is the first waveform from the waveform between the measurement time point MT and the time point at which the signal waveform satisfies the condition of becoming the first extreme value point counting in the direction in which the time returns from the measurement time point MT. The signal waveform intensity In1 at the extreme point of the measurement and the signal waveform intensity In2 at the measurement time point MT are acquired. Then, the feature amount acquisition unit 126 obtains a value obtained by subtracting the intensity In1 from the intensity In2, and calculates the value obtained by dividing the obtained value by the intensity In1 as the feature amount F3. Similar to the case where the feature amounts F1 and F2 are used, the film thickness estimation unit 120 constructs a model formula for the feature amount F3, and by referring to the model formula, the feature amount acquired in the liquid treatment to the work W. The thickness of the coating film AF is calculated (estimated) according to F3.
 (12-3)信号波形の一部から得られる特徴量は、計測時点MTから数えて第1番目に現れる極値点での信号波形の強度に応じた位相と、計測時点MTでの信号波形の強度に応じた位相との差分であってもよい。図15(b)には、信号波形の後半部分の一部(図15(a)の「LP」で示す期間)における強度の時間変化を、位相の時間変化に変換した波形が示されている。強度から位相への変換では、信号波形のうちの強度が最大となる点の位相がπ/2となり、信号波形のうちの強度が最小となる点の位相が(-π/2)となるように、逆正弦関数(アークサイン)を用いた演算が行われる。例えば、逆正弦関数を用いた演算では、最初に、信号波形の強度の正規化が行われる。具体的には、信号波形のうちの強度の最大値が1となり、強度の最小値が-1となるように正規化が行われる。そして、正規化された強度を変数として逆正弦関数を算出することで、強度から位相への変換が行われる。 (12-3) The feature quantity obtained from a part of the signal waveform is the phase according to the intensity of the signal waveform at the extreme value point that appears first from the measurement time MT, and the signal waveform at the measurement time MT. It may be the difference from the phase according to the intensity of. FIG. 15 (b) shows a waveform obtained by converting the time change of the intensity in a part of the latter half of the signal waveform (the period indicated by “LP” in FIG. 15 (a)) into the time change of the phase. .. In the conversion from intensity to phase, the phase of the point of the signal waveform where the intensity is maximum is π / 2, and the phase of the point of the signal waveform where the intensity is minimum is (-π / 2). Then, an operation using an inverse sine function (arc sine) is performed. For example, in an operation using an inverse sine function, the strength of the signal waveform is first normalized. Specifically, normalization is performed so that the maximum value of the intensity of the signal waveform is 1 and the minimum value of the intensity is -1. Then, by calculating the inverse sine function with the normalized intensity as a variable, the conversion from the intensity to the phase is performed.
 特徴量取得部126は、例えば、第1番目の極値点での信号波形の強度In1と、計測時点での信号波形の強度In2とを取得する。そして、特徴量取得部126は、逆正弦関数を用いた演算を行うことで、強度In1を位相Ph1に変換し、強度In2を位相Ph2に変換する。その後、特徴量取得部126は、位相Ph2から位相Ph1を減算して得られる値を特徴量F4として算出する。膜厚推定部120は、特徴量F1,F2を用いる場合と同様に、特徴量F4についてモデル式を構築し、当該モデル式を参照することで、ワークWへの液処理において取得された特徴量F4に応じて塗布膜AFの厚さを算出(推定)する。 The feature amount acquisition unit 126 acquires, for example, the intensity In1 of the signal waveform at the first extreme point and the intensity In2 of the signal waveform at the time of measurement. Then, the feature amount acquisition unit 126 converts the intensity In1 into the phase Ph1 and converts the intensity In2 into the phase Ph2 by performing an operation using the inverse sine function. After that, the feature amount acquisition unit 126 calculates the value obtained by subtracting the phase Ph1 from the phase Ph2 as the feature amount F4. Similar to the case where the feature amounts F1 and F2 are used, the film thickness estimation unit 120 constructs a model formula for the feature amount F4, and by referring to the model formula, the feature amount acquired in the liquid treatment to the work W. The thickness of the coating film AF is calculated (estimated) according to F4.
 (12-4)信号波形の一部から得られる特徴量は、予め設定されたベース強度BIと、計測時点MTでの信号波形の強度との差分であってもよい。ベース強度BIは、特徴量F2が用いられる場合と同様に、モデル式を作成する際に、最も小さい回転速度又は最も大きい回転速度で形成された塗布膜AFから得られる信号波形の計測時点MTにおける強度であってもよい。図16には、モデル式を作成する際に得られる複数の信号波形が示されている。 (12-4) The feature amount obtained from a part of the signal waveform may be the difference between the preset base intensity BI and the intensity of the signal waveform at the measurement time point MT. The base intensity BI is determined at the measurement time point MT of the signal waveform obtained from the coating film AF formed at the smallest rotation speed or the largest rotation speed when the model formula is created, as in the case where the feature amount F2 is used. It may be strong. FIG. 16 shows a plurality of signal waveforms obtained when creating a model formula.
 この例では、ベース強度BIと、計測時点MTでの信号波形の強度Inmとの差分が、特徴量F5として取得される。すなわち、特徴量取得部126は、計測時点MTにおける波形から、ベース強度BIと強度Inmとの差分(強度Inmからベース強度BIを減算して得られる値)を特徴量F5として取得する。このように、本開示において、信号波形のうちの、計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形(情報)には、上記所定の条件によっては、計測時点MTにおける波形(情報)も含まれる。膜厚推定部120は、特徴量F1,F2を用いる場合と同様に、特徴量F5についてモデル式を構築し、当該モデル式を参照することで、ワークWへの液処理において取得された特徴量F5に応じて塗布膜AFの厚さを算出(推定)する。 In this example, the difference between the base intensity BI and the intensity Inm of the signal waveform at the measurement time point MT is acquired as the feature amount F5. That is, the feature amount acquisition unit 126 acquires the difference between the base intensity BI and the intensity Inm (a value obtained by subtracting the base intensity BI from the intensity Innm) as the feature amount F5 from the waveform at the measurement time point MT. As described above, in the present disclosure, among the signal waveforms, the waveform (information) between the measurement time point MT and the time point in which the signal waveform satisfies a predetermined condition before the measurement time point MT may be determined depending on the above-mentioned predetermined conditions. , The waveform (information) at the measurement time point MT is also included. Similar to the case where the feature amounts F1 and F2 are used, the film thickness estimation unit 120 constructs a model formula for the feature amount F5, and by referring to the model formula, the feature amount acquired in the liquid treatment to the work W. The thickness of the coating film AF is calculated (estimated) according to F5.
 (12-5)信号波形の一部から得られる特徴量は、予め設定されたベース強度BIに応じた位相と、計測時点MTでの信号波形の強度に応じた位相との差分であってもよい。ベース強度BIは、特徴量F2が用いられる場合と同様に、モデル式を作成する際に、最も小さい回転速度又は最も大きい回転速度で形成された塗布膜AFから得られる信号波形の計測時点MTにおける強度であってもよい。 (12-5) The feature amount obtained from a part of the signal waveform may be the difference between the phase corresponding to the preset base intensity BI and the phase corresponding to the intensity of the signal waveform at the measurement time point MT. good. The base intensity BI is determined at the measurement time point MT of the signal waveform obtained from the coating film AF formed at the smallest rotation speed or the largest rotation speed when the model formula is created, as in the case where the feature amount F2 is used. It may be strong.
 特徴量取得部126は、計測時点MTにおける波形から、計測時点MTでの信号波形の強度Inmを取得する。そして、特徴量取得部126は、特徴量F4が用いられる場合と同様に、逆正弦関数を用いた演算を行うことで、ベース強度BIを位相に変換し、強度Inmを位相に変換する。その後、特徴量取得部126は、強度Inmに応じた位相からベース強度BIに応じた位相を減算して得られる値を、特徴量F6として算出する。膜厚推定部120は、特徴量F1,F2を用いる場合と同様に、特徴量F6についてモデル式を構築し、当該モデル式を参照することで、ワークWへの液処理において取得された特徴量F6に応じて塗布膜AFの厚さを算出(推定)する。 The feature amount acquisition unit 126 acquires the intensity Inm of the signal waveform at the measurement time point MT from the waveform at the measurement time point MT. Then, the feature amount acquisition unit 126 converts the base intensity BI into the phase and the intensity Inm into the phase by performing an operation using the inverse sine function, as in the case where the feature amount F4 is used. After that, the feature amount acquisition unit 126 calculates a value obtained by subtracting the phase corresponding to the base intensity BI from the phase corresponding to the intensity Inm as the feature amount F6. Similar to the case where the feature amounts F1 and F2 are used, the film thickness estimation unit 120 constructs a model formula for the feature amount F6, and by referring to the model formula, the feature amount acquired in the liquid treatment to the work W. The thickness of the coating film AF is calculated (estimated) according to F6.
 (12-6)特徴量取得部126は、信号波形のうちの、計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形(情報)から、上述した特徴量F1~F6以外の特徴量を取得してもよい。塗布膜AFの厚さとの間に相関が得られるものであれば、どのような特徴量が用いられてもよい。 (12-6) The feature amount acquisition unit 126 is based on the above-mentioned feature from the waveform (information) between the measurement time point MT and the time point where the signal waveform satisfies a predetermined condition before the measurement time point MT among the signal waveforms. Feature quantities other than the quantities F1 to F6 may be acquired. Any feature amount may be used as long as a correlation can be obtained with the thickness of the coating film AF.
 (13)上述の例では、レジスト膜を形成するための処理液(レジスト)の塗布膜AFの厚さが推定されているが、膜厚推定部120は、レジスト膜以外の膜(例えば、下層膜又は上層膜)を形成するための処理液の塗布膜の厚さを推定してもよい。膜厚推定部120は、レジスト膜を現像するための現像液の膜の厚さを推定してもよい。 (13) In the above example, the thickness of the coating film AF of the treatment liquid (resist) for forming the resist film is estimated, but the film thickness estimation unit 120 is a film other than the resist film (for example, a lower layer). The thickness of the coating film of the treatment liquid for forming the film or the upper layer film) may be estimated. The film thickness estimation unit 120 may estimate the thickness of the developer film for developing the resist film.
 (14)上述の例では、計測時点MTは、回転期間(乾燥時間)の終了時点に設定されているが、終了時点以前のいずれの時点に設定されてもよい。この場合、膜厚推定部120は、計測時点MTが設定される時点に合わせて、当該時点での膜厚と特徴量との関係を示すモデル式を構築してもよい。 (14) In the above example, the measurement time point MT is set at the end time point of the rotation period (drying time), but it may be set at any time point before the end time point. In this case, the film thickness estimation unit 120 may construct a model formula showing the relationship between the film thickness and the feature amount at the time point when the measurement time point MT is set.
 (15)基板処理方法(膜厚推定方法)及びモデル式の構築方法において制御装置100が実行する上述の一連の処理は一例であり、適宜変更可能である。例えば、上述したステップ(処理)の一部が省略されてもよいし、別の順序で各ステップが実行されてもよい。また、上述したステップのうちの任意の2以上のステップが組み合わされてもよいし、ステップの一部が修正または削除されてもよい。あるいは、上記の各ステップに加えて他のステップが実行されてもよい。 (15) The above-mentioned series of processing executed by the control device 100 in the substrate processing method (film thickness estimation method) and the model formula construction method is an example, and can be appropriately changed. For example, some of the steps (processes) described above may be omitted, or the steps may be executed in a different order. Further, any two or more steps among the above-mentioned steps may be combined, or a part of the steps may be modified or deleted. Alternatively, other steps may be performed in addition to each of the above steps.
[実施形態の効果]
 以上に説明した基板処理システム1は、表面Wa上に処理液が供給された状態のワークWを、当該ワークWの表面Wa上に処理液の膜(塗布膜AF)が形成されるように回転させるように構成された液処理ユニットU1と、液処理ユニットU1がワークWを回転させている回転期間において、ワークWの表面Waと重なる箇所に向けて光を照射するように構成された投光部と、ワークWの表面Waを反射した後に塗布膜AFを介して出射される光と、塗布膜AFの外表面Faで反射した光とが合成された反射光を受光するように構成された受光部と、液処理ユニットU1、投光部、及び受光部を制御する制御装置100とを備える。制御装置100は、受光部が受光した反射光に基づいて、回転期間における反射光の強度の時間変化を示す信号波形を取得するように構成された信号取得部124と、信号取得部124が取得した信号波形のうちの、回転期間内の所定の計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形に基づいて、計測時点MTにおける塗布膜AFの厚さを算出するように構成された膜厚算出部128とを有する。
[Effect of embodiment]
The substrate processing system 1 described above rotates the work W in a state where the treatment liquid is supplied on the surface Wa so that a film of the treatment liquid (coating film AF) is formed on the surface Wa of the work W. The liquid treatment unit U1 configured to cause the light and the light projection configured to irradiate the portion overlapping the surface Wa of the work W during the rotation period in which the liquid treatment unit U1 rotates the work W. It is configured to receive the reflected light obtained by combining the light emitted through the coating film AF after reflecting the surface Wa of the work W and the light reflected by the outer surface Fa of the coating film AF. It includes a light receiving unit, a liquid processing unit U1, a light projecting unit, and a control device 100 that controls the light receiving unit. The control device 100 acquires a signal acquisition unit 124 configured to acquire a signal waveform indicating a time change in the intensity of the reflected light during the rotation period based on the reflected light received by the light receiving unit, and a signal acquisition unit 124. The thickness of the coating film AF at the measurement time point MT based on the waveform between the predetermined measurement time point MT within the rotation period and the time point where the signal waveform satisfies the predetermined condition before the measurement time point MT. It has a film thickness calculation unit 128 configured to calculate the signal.
 以上に説明した基板処理方法は、表面Wa上に処理液が供給された状態のワークWを、当該ワークWの表面Wa上に塗布膜AFが形成されるように回転させることと、ワークWを回転させている回転期間において、ワークWの表面Waと重なる箇所に向けて光を照射することと、ワークWの表面Waを反射した後に塗布膜AFを介して出射される光と、塗布膜AFの外表面Faで反射した光とが合成された反射光を受光することと、受光した反射光に基づいて、回転期間における反射光の強度の時間変化を示す信号波形を取得することと、信号波形のうちの、回転期間内の所定の計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形に基づいて、計測時点MTにおける処理液の膜の厚さを算出することとを含む。 In the substrate processing method described above, the work W in a state where the treatment liquid is supplied on the surface Wa is rotated so that the coating film AF is formed on the surface Wa of the work W, and the work W is formed. During the rotating period, the light is irradiated toward the portion overlapping the surface Wa of the work W, the light emitted through the coating film AF after reflecting the surface Wa of the work W, and the coating film AF. Receiving the reflected light combined with the light reflected by the outer surface Fa of the above, acquiring the signal waveform showing the time change of the intensity of the reflected light during the rotation period based on the received reflected light, and the signal The thickness of the processing liquid film at the measurement time point MT based on the waveform between the predetermined measurement time point MT within the rotation period and the time point when the signal waveform satisfies the predetermined condition before the measurement time point MT. Includes calculating.
 上記基板処理システム1及び基板処理方法では、ワークWの表面Waを反射した後に塗布膜AFを介して出射される光と、塗布膜AFの外表面Faで反射した光とが合成された反射光の強度の時間変化を示す信号波形が取得される。回転させている最中の塗布膜AFの厚さに応じて、ワークWの表面Waを反射した後に塗布膜AFを介して出射される光と、塗布膜AFの外表面Faで反射した光との干渉状態が変化するので、信号波形には、塗布膜AFの厚さに関する情報が含まれる。そのため、信号波形のうちの、回転期間内の所定の計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形から塗布膜AFを算出(推定)することができる。上記基板処理システム1及び基板処理方法では、反射光の強度の時間変化から、塗布膜AFの厚さを算出しているので、塗布膜AFの厚さが変動する場合であっても、塗布膜AFの厚さを精度良く推定することが可能となる。例えば、特徴量は、信号波形の相対的な時間変化に基づくので、反射光を検出する際に種々の要因で発生するノイズの影響を受け難い。そのため、特徴量に基づき膜厚を推定することで、推定精度を向上させることが可能となる。 In the substrate processing system 1 and the substrate processing method, the reflected light is a combination of the light emitted through the coating film AF after reflecting the surface Wa of the work W and the light reflected by the outer surface Fa of the coating film AF. A signal waveform indicating the time change of the intensity of is acquired. Depending on the thickness of the coating film AF during rotation, the light emitted through the coating film AF after reflecting the surface Wa of the work W and the light reflected by the outer surface Fa of the coating film AF Since the interference state of is changed, the signal waveform contains information regarding the thickness of the coating film AF. Therefore, it is possible to calculate (estimate) the coating film AF from the waveform between the predetermined measurement time point MT within the rotation period and the time point when the signal waveform satisfies the predetermined condition before the measurement time point MT among the signal waveforms. can. In the substrate processing system 1 and the substrate processing method, the thickness of the coating film AF is calculated from the time change of the intensity of the reflected light. Therefore, even if the thickness of the coating film AF fluctuates, the coating film AF is calculated. It is possible to estimate the AF thickness with high accuracy. For example, since the feature amount is based on the relative time change of the signal waveform, it is not easily affected by noise generated by various factors when detecting the reflected light. Therefore, it is possible to improve the estimation accuracy by estimating the film thickness based on the feature amount.
 制御装置100は、信号波形のうちの、計測時点MTと、計測時点MT以前において信号波形が所定の条件を満たす時点との間の波形から特徴量を取得するように構成された特徴量取得部126を更に有してもよい。膜厚算出部128は、特徴量取得部126が取得した特徴量に基づいて、計測時点MTにおける塗布膜AFの厚さを算出するように構成されていてもよい。信号波形には塗布膜AFの厚さに関する情報が含まれるので、当該波形の一部から得られる特徴量は、塗布膜AFの厚さに相関し得る。そのため、特徴量と塗布膜AFの厚さとの間の相関関係を利用することで、塗布膜AFの厚さを算出するための演算が簡素化される。 The control device 100 is a feature amount acquisition unit configured to acquire a feature amount from a waveform between a measurement time point MT and a time point in which the signal waveform satisfies a predetermined condition before the measurement time point MT among the signal waveforms. 126 may be further included. The film thickness calculation unit 128 may be configured to calculate the thickness of the coating film AF at the measurement time point MT based on the feature amount acquired by the feature amount acquisition unit 126. Since the signal waveform contains information about the thickness of the coating film AF, the feature amount obtained from a part of the waveform can correlate with the thickness of the coating film AF. Therefore, by utilizing the correlation between the feature amount and the thickness of the coating film AF, the calculation for calculating the thickness of the coating film AF is simplified.
 投光部は、上記箇所(例えば、照射箇所P1)と、当該箇所とは別の位置でワークWの表面Waと重なる別の箇所(例えば、照射箇所P2)とに向けて光を照射するように構成されていてもよい。この場合、別の箇所からの反射光に基づき信号波形を更に取得することで、複数箇所について塗布膜AFの厚さを推定することが可能となる。例えば、複数箇所での塗布膜AFの厚さを推定することで、塗布膜AFの厚さを平均値で評価することができる。 The light projecting unit irradiates light toward the above-mentioned portion (for example, the irradiation portion P1) and another portion (for example, the irradiation portion P2) that overlaps the surface Wa of the work W at a position different from the location. It may be configured in. In this case, by further acquiring the signal waveform based on the reflected light from another location, it is possible to estimate the thickness of the coating film AF at a plurality of locations. For example, by estimating the thickness of the coating film AF at a plurality of locations, the thickness of the coating film AF can be evaluated by an average value.
 上記箇所とワークWの中心CPとの間の距離と、上記別の箇所とワークWの中心CPとの間の距離とは互いに異なっていてもよい。この場合、ワークWの中心CPからの距離が互いに異なる位置について、膜厚を推定することが可能となる。例えば、中心CPからの距離が異なる箇所での膜厚を推定することで、平均値での膜厚の評価の精度を向上させることが可能となる。 The distance between the above-mentioned place and the center CP of the work W and the distance between the above-mentioned other place and the center CP of the work W may be different from each other. In this case, it is possible to estimate the film thickness at positions where the distances from the center CP of the work W are different from each other. For example, by estimating the film thickness at different distances from the central CP, it is possible to improve the accuracy of the evaluation of the film thickness at the average value.
 液処理ユニットU1は、ワークWを支持する保持部32を有してもよい。上記箇所(例えば、照射箇所P1)は、保持部32と重なるように設定されていてもよい。塗布膜AFのうちの、保持部32に対応する部分の厚さは、保持部32の影響を受ける場合がある。上記構成では、保持部32の影響を受ける箇所での膜厚が推定されるので、当該箇所を加味したうえで膜厚を評価することが可能となる。 The liquid treatment unit U1 may have a holding portion 32 that supports the work W. The above-mentioned portion (for example, the irradiation portion P1) may be set so as to overlap with the holding portion 32. The thickness of the portion of the coating film AF corresponding to the holding portion 32 may be affected by the holding portion 32. In the above configuration, since the film thickness at the portion affected by the holding portion 32 is estimated, it is possible to evaluate the film thickness after taking the relevant portion into consideration.
 投光部は、上記箇所に所定の周波数を有する光を照射する共に、当該箇所に照射する光の周波数とは異なる周波数を有する別の光を、上記別の箇所に照射するように構成されていてもよい。この構成では、受光部において別の箇所からの反射光の一部が受光された場合でも、信号波形から別の箇所からの反射光の一部の影響を除去することが容易である。例えば、一つの受光部において受光する光に、異なる周波数の2つの光が混在した場合に、当該受光部において受光すべき周波数以外の成分を除去することで、別の箇所からの反射光の一部の影響を除去できる。 The light projecting unit is configured to irradiate the above-mentioned part with light having a predetermined frequency and to irradiate the above-mentioned other part with another light having a frequency different from the frequency of the light irradiating the part. You may. In this configuration, even when a part of the reflected light from another place is received by the light receiving portion, it is easy to remove the influence of a part of the reflected light from another place from the signal waveform. For example, when two lights with different frequencies are mixed in the light received by one light receiving unit, one of the reflected light from another place is obtained by removing components other than the frequency to be received by the light receiving unit. The influence of the part can be removed.
 投光部は、ワークWに照射する光を生成する1つの光源282と、光源282からの光を、上記箇所に照射される光と上記別の箇所に照射される光とに分けるように構成された分岐部284とを有してもよい。この場合、複数箇所に光を照射して膜厚を推定する場合に、光源の数を減らすことができ、装置の簡素化を図ることが可能となる。 The light projecting unit is configured to divide the light from one light source 282 that generates the light to irradiate the work W and the light from the light source 282 into the light radiated to the above-mentioned portion and the light radiated to the other portion. It may have a branch portion 284 and the branch portion 284. In this case, when the film thickness is estimated by irradiating a plurality of places with light, the number of light sources can be reduced, and the apparatus can be simplified.
 液処理ユニットU1は、ワークWに対して処理液を用いた液処理を行うための内部空間Sを形成する筐体28を有してもよい。投光部は、ワークWに照射する光を生成する光源を有してもよい。光源がワークWの近くに配置されると、光源の熱によって膜厚が変動し得る。これに対して、上記構成では、光源と液処理が施されているワークWとを離すことができるので、光源の熱が液処理に与える影響を低減することが可能となる。 The liquid treatment unit U1 may have a housing 28 that forms an internal space S for performing liquid treatment using the treatment liquid on the work W. The light projecting unit may have a light source that generates light to irradiate the work W. When the light source is placed near the work W, the film thickness may fluctuate due to the heat of the light source. On the other hand, in the above configuration, since the light source and the work W to which the liquid treatment is applied can be separated from each other, it is possible to reduce the influence of the heat of the light source on the liquid treatment.
 投光部は、光を反射することによってワークWに照射する光の方向を変更するように構成されたミラー部材80,80Aを有してもよい。ワークWの鉛直上方に部材が配置されると、基板の上方における気流に影響を及ぼし、膜厚が変動し得る。これに対して、上記構成では、投光部に含まれる光を照射する部分をワークWから離して配置できるので、投光部が液処理に与える影響を低減することが可能となる。 The light projecting unit may have mirror members 80, 80A configured to change the direction of the light applied to the work W by reflecting the light. When the member is arranged vertically above the work W, it affects the air flow above the substrate and the film thickness may fluctuate. On the other hand, in the above configuration, since the portion included in the light projecting unit to be irradiated with light can be arranged away from the work W, it is possible to reduce the influence of the light projecting unit on the liquid treatment.
 ミラー部材80Aの反射面82には、入射された光の反射面82における散乱と吸収とを抑制するように構成された膜84が形成されていてもよい。この場合、受光部が受光する光に含まれるノイズを低減しつつ、受光部が受光する光の量の低下を抑制することが可能となる。その結果、信号波形に基づいて、より高い精度で膜厚を推定することが可能となる。 The reflecting surface 82 of the mirror member 80A may be formed with a film 84 configured to suppress scattering and absorption of incident light on the reflecting surface 82. In this case, it is possible to suppress a decrease in the amount of light received by the light receiving unit while reducing noise contained in the light received by the light receiving unit. As a result, it becomes possible to estimate the film thickness with higher accuracy based on the signal waveform.
 基板処理システム1は、ワークWの上下方向の位置ずれ、又はワークWの反りに応じて、受光部における反射光の受光状態を調節するように構成された調節部材198を更に備えてもよい。この場合、ワークWの上下方向の位置ずれ又はワークWの反りの影響が反射光に付加されていても、受光部が当該反射光を受光する前に、調節部材によって当該影響が反射光から低減される。その結果、膜厚の推定を安定化させることが可能となる。 The substrate processing system 1 may further include an adjusting member 198 configured to adjust the light receiving state of the reflected light in the light receiving portion according to the vertical positional deviation of the work W or the warp of the work W. In this case, even if the effect of the vertical displacement of the work W or the warp of the work W is added to the reflected light, the effect is reduced from the reflected light by the adjusting member before the light receiving portion receives the reflected light. Will be done. As a result, it becomes possible to stabilize the estimation of the film thickness.
 制御装置100は、反射光の強度と所定の閾値との比較結果に基づいて、投光部からの光の強度の設定値を変更するように構成された投光条件設定部138を更に有してもよい。この場合、受光部において受光される反射光の強度が低下してきた場合に、投光部からの光の強度の設定値を大きくすることで、反射光の強度を維持することができる。その結果、受光部が劣化する可能性があっても(例えば、光学部品であるレンズに曇りが生じる可能性があっても)、膜厚の推定を安定化させることが可能となる。 The control device 100 further includes a light projection condition setting unit 138 configured to change the set value of the light intensity from the light projector unit based on the comparison result between the intensity of the reflected light and a predetermined threshold value. You may. In this case, when the intensity of the reflected light received by the light receiving unit is lowered, the intensity of the reflected light can be maintained by increasing the set value of the intensity of the light from the light projecting unit. As a result, it is possible to stabilize the estimation of the film thickness even if the light receiving portion may be deteriorated (for example, even if the lens which is an optical component may be fogged).
 1…基板処理システム、2…塗布現像装置、20…膜厚推定装置、60…計測部、70A~70C,170…投受光デバイス、72…投光部、180,280,280A…投光デバイス、74…受光部、190,290…受光デバイス、80,80A…ミラー部材、82…反射面、84…膜、100…制御装置、122…投光制御部、124…信号取得部、126…特徴量取得部、128…膜厚算出部、134…モデル構築部、136…処理条件変更部、138…投光条件設定部、W…ワーク、Wa…表面、CP…中心、AF…塗布膜、Fa…外表面、P1~P3…照射箇所、F1~F6…特徴量。

 
1 ... Substrate processing system, 2 ... Coating and developing device, 20 ... Film film estimation device, 60 ... Measuring unit, 70A to 70C, 170 ... Projecting and receiving device, 72 ... Projecting unit, 180, 280, 280A ... Projecting device, 74 ... light receiving unit, 190, 290 ... light receiving device, 80, 80A ... mirror member, 82 ... reflective surface, 84 ... film, 100 ... control device, 122 ... light projection control unit, 124 ... signal acquisition unit, 126 ... feature quantity Acquisition unit, 128 ... Film thickness calculation unit, 134 ... Model construction unit, 136 ... Processing condition change unit, 138 ... Light projection condition setting unit, W ... Work, Wa ... Surface, CP ... Center, AF ... Coating film, Fa ... Outer surface, P1 to P3 ... irradiation points, F1 to F6 ... feature quantities.

Claims (14)

  1.  表面上に処理液が供給された状態の基板を、当該基板の表面上に前記処理液の膜が形成されるように回転させるように構成された液処理部と、
     前記液処理部が前記基板を回転させている回転期間において、前記基板の表面と重なる箇所に向けて光を照射するように構成された投光部と、
     前記基板の表面を反射した後に前記処理液の膜を介して出射される光と、前記処理液の膜の外表面で反射した光とが合成された反射光を受光するように構成された受光部と、
     前記液処理部、前記投光部、及び前記受光部を制御する制御部とを備え、
     前記制御部は、
      前記受光部が受光した前記反射光に基づいて、前記回転期間における前記反射光の強度の時間変化を示す信号波形を取得するように構成された信号取得部と、
      前記信号取得部が取得した前記信号波形のうちの、前記回転期間内の所定の計測時点と、前記計測時点以前において前記信号波形が所定の条件を満たす時点との間の波形に基づいて、前記計測時点における前記処理液の膜の厚さを算出するように構成された膜厚算出部とを有する、基板処理装置。
    A liquid treatment unit configured to rotate the substrate in a state where the treatment liquid is supplied on the surface so that a film of the treatment liquid is formed on the surface of the substrate.
    A light projecting unit configured to irradiate light toward a portion overlapping the surface of the substrate during a rotation period in which the liquid processing unit rotates the substrate.
    Light receiving light configured to receive reflected light that is a combination of light emitted through the film of the treatment liquid after being reflected on the surface of the substrate and light reflected on the outer surface of the film of the treatment liquid. Department and
    A control unit for controlling the liquid treatment unit, the light projection unit, and the light receiving unit is provided.
    The control unit
    A signal acquisition unit configured to acquire a signal waveform indicating a time change in the intensity of the reflected light during the rotation period based on the reflected light received by the light receiving unit.
    The signal waveform acquired by the signal acquisition unit is based on a waveform between a predetermined measurement time point within the rotation period and a time point in which the signal waveform satisfies a predetermined condition before the measurement time point. A substrate processing apparatus having a film thickness calculating unit configured to calculate the film thickness of the processing liquid at the time of measurement.
  2.  前記制御部は、前記信号波形のうちの、前記計測時点と、前記計測時点以前において前記信号波形が所定の条件を満たす時点との間の波形から特徴量を取得するように構成された特徴量取得部を更に有し、
     前記膜厚算出部は、前記特徴量取得部が取得した前記特徴量に基づいて、前記計測時点における前記処理液の膜の厚さを算出するように構成されている、請求項1に記載の基板処理装置。
    The control unit is configured to acquire a feature amount from the waveform of the signal waveform between the measurement time point and the time point when the signal waveform satisfies a predetermined condition before the measurement time point. It also has an acquisition unit,
    The first aspect of the present invention, wherein the film thickness calculation unit is configured to calculate the film thickness of the treatment liquid at the time of measurement based on the feature amount acquired by the feature amount acquisition unit. Board processing equipment.
  3.  前記投光部は、前記箇所と、前記箇所とは別の位置で前記基板の表面と重なる別の箇所とに向けて光を照射するように構成されている、請求項1又は2に記載の基板処理装置。 2. Board processing equipment.
  4.  前記箇所と前記基板の中心との間の距離と、前記別の箇所と前記基板の中心との間の距離とは互いに異なっている、請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the distance between the location and the center of the substrate and the distance between the other location and the center of the substrate are different from each other.
  5.  前記液処理部は、前記基板を支持するように構成された支持部を有し、
     前記箇所は、前記支持部と重なるように設定されている、請求項3又は4に記載の基板処理装置。
    The liquid treatment unit has a support unit configured to support the substrate, and the liquid treatment unit has a support unit.
    The substrate processing apparatus according to claim 3 or 4, wherein the portion is set so as to overlap the support portion.
  6.  前記投光部は、前記箇所に所定の周波数を有する光を照射する共に、前記箇所に照射する光の周波数とは異なる周波数を有する別の光を、前記別の箇所に照射するように構成されている、請求項3~5のいずれか一項に記載の基板処理装置。 The light projecting unit is configured to irradiate the portion with light having a predetermined frequency and to irradiate the other portion with another light having a frequency different from the frequency of the light irradiating the portion. The substrate processing apparatus according to any one of claims 3 to 5.
  7.  前記投光部は、前記基板に照射する光を生成する1つの光源と、前記1つの光源からの光を、前記箇所に照射される光と前記別の箇所に照射される光とに分けるように構成された分岐部とを有する、請求項3~5のいずれか一項に記載の基板処理装置。 The light projecting unit divides the light from one light source that generates the light to irradiate the substrate and the light from the one light source into the light radiated to the portion and the light radiated to the other portion. The substrate processing apparatus according to any one of claims 3 to 5, further comprising a branch portion configured in.
  8.  前記液処理部は、前記基板に対して前記処理液を用いた処理を行うための内部空間を形成する筐体を有し、
     前記投光部は、前記基板に照射する光を生成する光源を有し、
     前記光源は、前記筐体の内壁に設けられるか、又は前記筐体外に配置されている、請求項1~6のいずれか一項に記載の基板処理装置。
    The liquid treatment unit has a housing that forms an internal space for processing the substrate with the treatment liquid.
    The light projecting unit has a light source that generates light to irradiate the substrate.
    The substrate processing apparatus according to any one of claims 1 to 6, wherein the light source is provided on the inner wall of the housing or is arranged outside the housing.
  9.  前記投光部は、光を反射することによって前記基板に照射する光の方向を変更するように構成されたミラー部材を有する、請求項1~8のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 8, wherein the light projecting unit has a mirror member configured to change the direction of light irradiating the substrate by reflecting light.
  10.  前記ミラー部材の反射面には、入射された光の前記反射面における散乱と吸収とを抑制するように構成された膜が形成されている、請求項9に記載の基板処理装置。 The substrate processing apparatus according to claim 9, wherein a film configured to suppress scattering and absorption of incident light on the reflecting surface is formed on the reflecting surface of the mirror member.
  11.  前記基板の上下方向の位置ずれ、又は前記基板の反りに応じて、前記受光部における前記反射光の受光状態を調節するように構成された調節部材を更に備える、請求項1~10のいずれか一項に記載の基板処理装置。 Any of claims 1 to 10, further comprising an adjusting member configured to adjust the light receiving state of the reflected light in the light receiving portion according to the vertical positional deviation of the substrate or the warp of the board. The substrate processing apparatus according to paragraph 1.
  12.  前記制御部は、前記反射光の強度と所定の閾値との比較結果に基づいて、前記投光部からの光の強度の設定値を変更するように構成された条件設定部を更に有する、請求項1~11のいずれか一項に記載の基板処理装置。 The control unit further includes a condition setting unit configured to change a set value of the intensity of light from the light projecting unit based on a comparison result between the intensity of the reflected light and a predetermined threshold value. Item 6. The substrate processing apparatus according to any one of Items 1 to 11.
  13.  表面上に処理液が供給された状態の基板を、当該基板の表面上に前記処理液の膜が形成されるように回転させることと、
     前記基板を回転させている回転期間において、前記基板の表面と重なる箇所に向けて光を照射することと、
     前記基板の表面を反射した後に前記処理液の膜を介して出射される光と、前記処理液の膜の外表面で反射した光とが合成された反射光を受光することと、
     受光した前記反射光に基づいて、前記回転期間における前記反射光の強度の時間変化を示す信号波形を取得することと、
     前記信号波形のうちの、前記回転期間内の所定の計測時点と、前記計測時点以前において前記信号波形が所定の条件を満たす時点との間の波形に基づいて、前記計測時点における前記処理液の膜の厚さを算出することと、を含む基板処理方法。
    The substrate in which the treatment liquid is supplied on the surface is rotated so that a film of the treatment liquid is formed on the surface of the substrate.
    During the rotation period during which the substrate is rotated, light is applied to a portion that overlaps the surface of the substrate.
    Receiving the reflected light, which is a combination of the light emitted through the film of the treatment liquid after being reflected on the surface of the substrate and the light reflected on the outer surface of the film of the treatment liquid.
    To acquire a signal waveform indicating a time change in the intensity of the reflected light during the rotation period based on the received reflected light.
    The processing liquid at the measurement time point is based on the waveform of the signal waveform between a predetermined measurement time point within the rotation period and a time point at which the signal waveform satisfies a predetermined condition before the measurement time point. Substrate processing methods, including calculating film thickness.
  14.  請求項13に記載の基板処理方法を基板処理装置に実行させるためのプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。

     
    A computer-readable storage medium in which a program for causing a substrate processing apparatus to execute the substrate processing method according to claim 13 is stored.

PCT/JP2021/045865 2020-12-24 2021-12-13 Substrate treatment apparatus, substrate treatment method, and storage medium WO2022138291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572176A JP7583835B2 (en) 2020-12-24 2021-12-13 SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020215581 2020-12-24
JP2020-215581 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138291A1 true WO2022138291A1 (en) 2022-06-30

Family

ID=82157915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045865 WO2022138291A1 (en) 2020-12-24 2021-12-13 Substrate treatment apparatus, substrate treatment method, and storage medium

Country Status (2)

Country Link
TW (1) TW202234488A (en)
WO (1) WO2022138291A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112873A (en) * 1982-12-18 1984-06-29 Toshiba Corp Application of resist and apparatus therefor
JPS6115072U (en) * 1984-06-29 1986-01-28 ホ−ヤ株式会社 Resist coating equipment
JPH02142113A (en) * 1988-11-22 1990-05-31 Kawasaki Steel Corp Resist applicator
JPH02237678A (en) * 1989-03-08 1990-09-20 Mitsubishi Electric Corp Coating device
JP2001053121A (en) * 1999-08-09 2001-02-23 Dainippon Screen Mfg Co Ltd Status detector of substrate and substrate processor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112873A (en) * 1982-12-18 1984-06-29 Toshiba Corp Application of resist and apparatus therefor
JPS6115072U (en) * 1984-06-29 1986-01-28 ホ−ヤ株式会社 Resist coating equipment
JPH02142113A (en) * 1988-11-22 1990-05-31 Kawasaki Steel Corp Resist applicator
JPH02237678A (en) * 1989-03-08 1990-09-20 Mitsubishi Electric Corp Coating device
JP2001053121A (en) * 1999-08-09 2001-02-23 Dainippon Screen Mfg Co Ltd Status detector of substrate and substrate processor using the same

Also Published As

Publication number Publication date
TW202234488A (en) 2022-09-01
JPWO2022138291A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
TWI652456B (en) Method and optical system for evaluating spectral characteristics of pulsed beams
TWI645451B (en) Control of a spectral feature of a pulsed light beam
US4624551A (en) Light irradiation control method for projection exposure apparatus
CN108474651A (en) Shape measurement system
TWI424281B (en) Lithographic apparatus and device manufacturing method
KR102445980B1 (en) Plasma-based light source with target material coated on cylindrical-symmetrical element
JP6909873B2 (en) Alignment measurement system
TWI553421B (en) Radiation source
WO2022138291A1 (en) Substrate treatment apparatus, substrate treatment method, and storage medium
US11555691B2 (en) Substrate inspection system, substrate inspection method and recording medium
JP6557403B2 (en) Lithographic apparatus and method
CN110462522A (en) Lithography system, EUV radiation source, photoetching scanning device and control system
JP7583835B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND STORAGE MEDIUM
JP2022101198A (en) Film thickness estimation method, storage medium and film thickness estimation device
JP2017531203A (en) Lithographic apparatus and method
WO2021182117A1 (en) Abnormality detection device, substrate processing device, abnormality detection method, and storage medium
JP2021040025A (en) Substrate processing apparatus, substrate processing method and storage medium
US8730454B2 (en) EUV radiation source and method of generating EUV radiation
US20230049820A1 (en) Semiconductor processing tool and methods of operation
JP2022181680A (en) Film thickness estimation method, storage medium, and substrate processing apparatus
TW202303288A (en) Substrate processing apparatus and substrate processing method
TW202236117A (en) Film thickness analysis method, film thickness analysis device, and storage medium
JP2011109014A (en) Scanning exposure apparatus
JP7579747B2 (en) SUBSTRATE PROCESSING METHOD, STORAGE MEDIUM, AND SUBSTRATE PROCESSING APPARATUS
WO2023127488A1 (en) Device for detecting foreign matter and method for detecting foreign matter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910440

Country of ref document: EP

Kind code of ref document: A1