WO2022137524A1 - 血管モデル - Google Patents
血管モデル Download PDFInfo
- Publication number
- WO2022137524A1 WO2022137524A1 PCT/JP2020/048806 JP2020048806W WO2022137524A1 WO 2022137524 A1 WO2022137524 A1 WO 2022137524A1 JP 2020048806 W JP2020048806 W JP 2020048806W WO 2022137524 A1 WO2022137524 A1 WO 2022137524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood vessel
- cap member
- lesion
- main body
- vessel model
- Prior art date
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 235
- 230000003902 lesion Effects 0.000 claims abstract description 138
- 239000011148 porous material Substances 0.000 claims abstract description 13
- 239000002861 polymer material Substances 0.000 claims description 34
- 239000012530 fluid Substances 0.000 claims description 14
- 230000002792 vascular Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 15
- 238000004088 simulation Methods 0.000 description 37
- 238000000034 method Methods 0.000 description 27
- 229920002635 polyurethane Polymers 0.000 description 19
- 239000004814 polyurethane Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 238000002679 ablation Methods 0.000 description 12
- 241000283690 Bos taurus Species 0.000 description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 description 9
- 210000004102 animal cell Anatomy 0.000 description 8
- 230000004087 circulation Effects 0.000 description 7
- 238000013334 tissue model Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000013459 approach Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 230000000149 penetrating effect Effects 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000001684 chronic effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 229920002527 Glycogen Polymers 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 230000036772 blood pressure Effects 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- -1 for example Substances 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 229940096919 glycogen Drugs 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- 235000010413 sodium alginate Nutrition 0.000 description 3
- 239000000661 sodium alginate Substances 0.000 description 3
- 229940005550 sodium alginate Drugs 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- 102220570135 Histone PARylation factor 1_L30D_mutation Human genes 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000010097 foam moulding Methods 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 230000002966 stenotic effect Effects 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
Definitions
- the present invention relates to a blood vessel model.
- Patent Documents 1 and 2 disclose simulated blood vessels capable of simulating a procedure using these medical devices.
- a lesion model simulating a stenotic lesion or an occluded lesion is provided inside a simulated blood vessel made of silicon or the like.
- the lesions that occur in the blood vessels are caused by atherosclerotic lesions in which the lipid pool is transformed into a necrotic core, plaque lesions in which the necrotic core is enlarged, and bleeding in the plaque lesions, depending on the degree of progression.
- These lesions differ in the hardness of the lesion.
- the outer portion facing the blood flow is compressed and hardened by the blood pressure as compared with the inner portion not facing the blood flow.
- the technique described in Patent Document 1 has a problem that the hardness of the lesion model becomes uniform because the lesion model is formed of a single-layer compound (polystyrene copolymer).
- the lesion model is composed of compounds having different hardness, it is said that the actual hardness of the lesion cannot be simulated because acrylic resin or polycarbonate is used. There was a challenge.
- any of the techniques described in Patent Documents 1 and 2 since the lesion model uses an insulating material, it is not possible to simulate the actual damage form due to ablation of the lesion portion.
- CTO Chronic Total Occlusion
- the inside of a blood vessel may be obstructed by a lesion.
- the CTO may be opened by ablating the lesion with a plasma guide wire that cuts the living tissue by streamer discharge.
- the techniques described in Patent Documents 1 and 2 cannot simulate the damage morphology due to ablation of the lesion, it is not possible to simulate the procedure using the plasma guide wire in an environment close to actual clinical practice. There was a challenge.
- the present invention has been made to solve at least a part of the above-mentioned problems, and makes it possible to simulate a procedure using a medical device in a blood vessel model having a lesion in an environment close to actual clinical practice.
- the purpose is.
- the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.
- a blood vessel model comprises a hollow tube-shaped blood vessel formed of a first polymer material and a lesion arranged in the lumen of the blood vessel, wherein the lesion is the first.
- a main body portion formed of a second polymer material different from the polymer material, a first cap member arranged on the tip side of the main body portion and formed of a porous body, and a base of the main body portion. It has a second cap member arranged on the end side.
- the lesion portion (lesion model) of the blood vessel model includes the main body portion, the first cap member arranged on the distal end side of the main body portion, and the second cap member arranged on the proximal end side of the main body portion. It has a cap member and. Therefore, the "compressed and hardened outer portion" of the actual human lesion can be simulated by the first cap member and the second cap member arranged at both ends of the main body portion. Further, among the lesion portions, the main body portion is formed of a second polymer material, and the first cap member is formed of a porous body. Therefore, the hardness of the lesion can be made closer to that of an actual human lesion as compared with the case where the lesion is formed of acrylic resin or polycarbonate.
- the main body portion formed of the second polymer material and the first cap member formed of the porous body both have conductivity. Therefore, the state of the lesion when ablated with the plasma guide wire can be made to resemble an actual human lesion. As a result, in a blood vessel model having a lesion, it is possible to simulate a procedure using a medical device in an environment close to actual clinical practice.
- the main body portion is filled in the lumen of the blood vessel portion to obstruct the flow of fluid in the blood vessel portion
- the first cap member is the main body.
- the tip surface of the portion is covered, and the second cap member may cover the base end surface of the main body portion.
- the main body portion is filled in the lumen of the blood vessel portion to obstruct the flow of fluid in the blood vessel portion
- the first cap member has the tip surface of the main body portion and the second cap member. Since the proximal surface of the main body is covered with each other, it is possible to realize a lesion portion simulating a chronic total occupation (CTO).
- CTO chronic total occupation
- a protruding portion protruding toward the main body portion may be formed on the side of the first cap member facing the main body portion.
- the plaque lesion may clog a blood vessel at the end of the lesion and be compressed by blood pressure to form a mass of plaque lesion.
- a protruding portion is formed so as to project toward the main body portion. The resulting mass of plaque lesions can be simulated.
- the inner diameter of the pores of the first cap member may be 0.5 ⁇ m or more and 200 ⁇ m or less.
- the inner diameter of the pores of the first cap member is 0.5 ⁇ m or more and 200 ⁇ m or less, so that the size of the voids of the first cap member is approximated to the size of animal cells. be able to.
- the amount of water retained in the first cap member can be approximated to the amount of water retained in the actual human lesion, and the state of the lesion when ablated using the plasma guide wire can be obtained. , Can be more similar to the actual human lesion.
- the end surface of the second cap member on the opposite side of the second cap member facing the main body may be inclined with respect to the central axis of the blood vessel.
- the end surface (that is, the outer end surface) on the opposite side of the second cap member facing the main body portion is inclined with respect to the central axis of the blood vessel portion. Therefore, the tip of the medical device can be slippery on the outer end face of the second cap member 20. As a result, the difficulty level of the procedure that can be simulated using the blood vessel model can be improved, which can be useful for improving the level of the procedure of the operator.
- the blood vessel portion is a main branch having the lesion portion in the lumen and a side branch extending from the main branch in a state where the main branch and the lumen are communicated with each other.
- a side branch extending from a position close to the inclined end face of the second cap member may be provided.
- the blood vessel portion is a side branch extending from the main branch in a state where the main branch and the lumen communicate with each other, and the position of the main branch close to the inclined end face of the second cap member. Has side branches extending from.
- the medical device slips on the inclined end face of the second cap member, and the lesion is likely to be guided to a side branch different from the main branch.
- the difficulty level of the procedure that can be simulated using the blood vessel model can be improved, which can be useful for improving the level of the procedure of the operator.
- the second cap member may be formed of a third polymer material different from the first polymer material and the second polymer material. ..
- the second cap member is formed of a third polymer material, which is different from the first polymer material and the second polymer material. Therefore, the hardness of the second cap member can be made closer to that of an actual human lesion as compared with the case where the second cap member is formed of acrylic resin or polycarbonate. Furthermore, since the second cap member has conductivity, the state of the lesion when ablated with the plasma guide wire can be made to resemble an actual human lesion.
- the present invention can be realized in various embodiments, for example, a blood vessel model including a lesion (lesion model), an organ that includes the blood vessel model and imitates an organ such as a heart, liver, or brain. It can be realized in the form of a model, a human body simulation device including these blood vessel models and organ models, and a control method of the human body simulation device.
- FIG. 1 is a diagram showing a schematic configuration of a blood vessel simulation device 100.
- the blood vessel simulation device 100 of the present embodiment is a device used for simulating a treatment or examination procedure using a medical device for a blood vessel.
- a medical device a plasma guide wire that cuts a living tissue by a streamer discharge is exemplified.
- medical devices may include all devices for minimally invasive treatment or testing, such as catheters and guidewires.
- the blood vessel simulation device 100 includes a blood vessel model 1 including a lesion 2, an outer tissue model 3, and a circulation pump 9.
- the axis passing through the center of the blood vessel model 1, the lesion 2, and the outer tissue model 3 is represented by the axis O (dashed line).
- the axis passing through the center of the blood vessel model 1, the axis passing through the center of the lesion 2, and the axis passing through the center of the outer tissue model 3 all coincide with the axis line O.
- the axes passing through the centers of the blood vessel model 1, the lesion 2, and the outer tissue model 3 may be different from the axis O, respectively.
- FIGS. 1 and the following figures for convenience of explanation, a portion is included in which the relative ratio of the sizes of the constituent members is described so as to be different from the actual one. In addition, a part of each component is exaggerated and described.
- Blood vessel model 1 is a model that simulates human blood vessels.
- the blood vessel model 1 has a long substantially cylindrical shape having openings 1a and 1b at both ends, and a lesion portion 2 simulating a human lesion is arranged inside (lumen 1L shown in FIG. 2). ing.
- the lesion 2 is also referred to as a "lesion model". Details of the lesion 2 will be described later.
- human muscle, fat, skin, etc. are surrounded by at least a part of the outer peripheral surface of the blood vessel model 1 (in the illustrated example, the central part excluding both ends of the blood vessel model 1).
- a simulated outer tissue model 3 is arranged.
- the outer structure model 3 is formed of a soft material synthetic resin (for example, polyvinyl alcohol: PVA, silicon, etc.).
- the circulation pump 9 is, for example, a non-volumetric centrifugal pump.
- the circulation pump 9 is provided in the middle of the flow path connecting the opening 1a and the opening 1b of the blood vessel model 1, and circulates the fluid discharged from the opening 1b and supplies the fluid to the opening 1a.
- FIG. 2 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1.
- FIG. 2 illustrates XYZ axes that are orthogonal to each other.
- the X-axis corresponds to the longitudinal direction of the blood vessel model 1 and the lesion 2
- the Y-axis corresponds to the height of the blood vessel model 1 and the lesion 2
- the Z-axis corresponds to the width of the blood vessel model 1 and the lesion 2. do.
- the left side (-X-axis direction) of FIG. 2 is referred to as the "tip side" of the blood vessel model 1 and the lesion portion 2.
- the distal side is the side farther (distal, distal) from the insertion site of the medical device when the anterograde approach is adopted.
- FIG. 2 the right side (+ X-axis direction) of FIG. 2 is referred to as the "base end side" of the blood vessel model 1 and the lesion portion 2.
- the proximal side is the side closer to the insertion site of the medical device (proximal, proximal side) when the anterograde approach is adopted. These points are also common to FIGS. 2 and later.
- the upper part of FIG. 2 shows the vertical cross-sectional structure of the blood vessel model 1.
- the lower part of FIG. 2 (inside the broken line balloon) shows the configuration of the blood vessel model 1 in the cross section along the line AA in the upper part of FIG.
- the blood vessel model 1 has a blood vessel portion 10 and a lesion portion 2 arranged in the lumen 1L of the blood vessel portion 10.
- the blood vessel portion 10 is a portion simulating a human blood vessel and has a hollow tube shape having openings 1a and 1b at both ends.
- the blood vessel portion 10 is formed of the first polymer material. In the present embodiment, PVA having slipperiness and elasticity similar to those of human blood vessels is adopted as the first polymer material.
- the first polymer material for example, polysaccharides such as agarose, sodium alginate, cellulose, starch and glycogen, and resins such as silicon, latex and polyurethane may be adopted.
- the inner and outer diameters of the blood vessel portion 10 and the length in the X-axis direction can be arbitrarily determined.
- the lesion portion 2 has a main body portion 40, a first cap member 30, and a second cap member 20.
- the body 40 mimics the tissue of the medial part of a human lesion (eg, a plaque lesion).
- the main body portion 40 is filled in the lumen 1L of the blood vessel portion 10 to obstruct the flow of fluid in the blood vessel portion 10.
- the main body portion 40 is arranged inside the blood vessel portion 10 in a state of being in contact with the inner peripheral surface 12 of the blood vessel portion 10 and closing the lumen 1L of the blood vessel portion 10.
- a concave portion 41 recessed in a substantially conical shape is formed along the shape of the first cap member 30.
- An inclined portion 42 inclined along the shape of the second cap member 20 is formed on the base end side of the main body portion 40 (in other words, the side facing the second cap member 20). The tip surface of the main body 40 is in contact with the first cap member 30, and the base end surface of the main body 40 is in contact with the second cap member 20.
- the main body portion 40 is formed of a second polymer material different from the first polymer material constituting the blood vessel portion 10.
- agarose whose elasticity is close to that of CTO is adopted as the second polymer material.
- the second polymer material for example, polysaccharides such as PVA, sodium alginate, cellulose, starch and glycogen, and resins such as silicon, latex and polyurethane may be adopted.
- the length of the main body 40 in the X-axis direction can be arbitrarily determined.
- the first cap member 30 simulates the compressed and hardened tissue of the distal end side of the human lesion (for example, a mass of plaque lesion, a calcified lesion, etc.). As shown in the upper part of FIG. 2, the first cap member 30 is arranged on the tip end side of the main body portion 40 and covers the tip surface of the main body portion 40. In the present embodiment, the first cap member 30 has a protruding portion 31 and a main body portion 32. The protruding portion 31 is located on the base end side (in other words, the side facing the main body portion 40) of the first cap member 30, and a part of the first cap member 30 protrudes toward the main body portion 40. This is the part that was done.
- the protruding portion 31 has a substantially conical shape.
- the main body portion 32 is a portion of the first cap member 30 located on the tip end side (in other words, the side opposite to the side facing the main body portion 40), and has a substantially cylindrical shape.
- the length L30 of the first cap member 30 in the X-axis direction is preferably 1 mm or more. If the length L30 is 1 mm or more, it is difficult for the penetrating guide wire (a guide wire for physically penetrating the lesion 2 without ablation) to penetrate the first cap member 30, so that the blood vessel model 1 Can be configured to be suitable for use with plasma guide wires.
- the length L30 is a point located on the + X-axis side most from the extension line of the point where the first cap member 30 is located most on the ⁇ X-axis side in an arbitrary vertical cross section. The length to the extension line.
- the first cap member 30 is formed of a porous body.
- a polyurethane sponge is adopted as the porous body.
- a synthetic sponge made by foam molding a synthetic resin other than polyurethane may be adopted, or natural sponge may be adopted.
- the inner diameter of the pores of the first cap member 30 is preferably 0.5 ⁇ m or more and 200 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less.
- the average value of the inner diameters of a plurality of pores contained in a predetermined unit area can be adopted.
- the inner diameter in the longitudinal direction is adopted to obtain the average value.
- the length and shape of the protruding portion 31 in the X-axis direction and the length of the main body portion 32 in the X-axis direction can be arbitrarily determined.
- the second cap member 20 simulates a compressed and hardened tissue on the proximal end side (for example, a mass of plaque lesions, a calcified lesion, etc.) in a human lesion.
- the second cap member 20 is arranged on the proximal end side of the main body portion 40 and covers the proximal end surface of the main body portion 40.
- the second cap member 20 has a flat plate shape.
- the end surface 21 of the second cap member 20 on the base end side is inclined with respect to the central axis O of the blood vessel portion 10.
- the length L20 of the second cap member 20 in the X-axis direction is preferably 1 mm or more. If the length L20 is 1 mm or more, it is difficult for the second cap member 20 to penetrate the through guide wire, so that the blood vessel model 1 can be configured to be suitable for use of the plasma guide wire. As shown in the upper part of FIG. 2, the length L20 is the length of the portion of the second cap member 20 having the shortest length in the X-axis direction in an arbitrary vertical cross section.
- the second cap member 20 is formed of a third polymer material that is different from the first polymer material constituting the blood vessel portion 10 and also different from the second polymer material constituting the main body portion 40. There is.
- PVA having a hardness different from that of the blood vessel portion 10 is adopted as the third polymer material.
- the third polymer material for example, polysaccharides such as agarose, sodium alginate, cellulose, starch and glycogen, and resins such as silicon, latex and polyurethane may be adopted.
- the length L20 of the second cap member 20 and the inclination of the second cap member 20 with respect to the axis O can be arbitrarily determined.
- FIG. 3 is a diagram illustrating a simulation of a procedure using the blood vessel simulation device 100.
- the operator can simulate a procedure using a medical device for the lesion portion 2 of the blood vessel model 1.
- the surgeon operates a circulation pump 9 to circulate a fluid (for example, simulated blood such as physiological saline) in the blood vessel model 1, incises a part of the blood vessel portion 10, and performs the blood vessel portion 10.
- the plasma guide wire 8 is inserted into the lumen 1L of the blood vessel. After that, the operator delivers the tip of the plasma guide wire 8 to the position of the lesion 2.
- the operator performs an anterograde approach in which the tip of the plasma guide wire 8 is brought closer to the lesion 2 from the side of the second cap member 20, as shown in the figure. After that, the operator ablate the second cap member 20 as shown in the figure by the streamer discharge of the plasma guide wire 8, and then ablate the main body portion 40 and the first cap member 30 to cause the lesion portion 2. Can be simulated to open the door.
- the surgeon may simulate a procedure for opening the lesion 2 by a retrograde approach in which the tip of the plasma guide wire 8 is brought closer to the lesion 2 from the side of the first cap member 30. Further, the surgeon may use the blood vessel simulation device 100 for simulating a procedure using another medical device other than the plasma guide wire 8. For example, the surgeon may use a penetrating guide wire to simulate a procedure for opening a lesion 2.
- the length L30 or L20 of the cap member (first cap member 30 or second cap member 20) located on the side receiving the approach by the through guide wire is preferably less than 1 mm.
- FIG. 4 is a table showing the results of the ablation test.
- a 1 mm thick sample made of the materials shown in the following a1 to a5 was prepared.
- A1 Sample S10 Human aortic wall sample
- Sample S21 A sample of the second cap member 20 prepared using PVA4000, and a sample (a3) sample S22: having a PVA concentration of 15 wt%.
- Sample of member 30 (a5) Sample S32: Sample of the first cap member 30 produced by using a polyurethane sponge having an inner diameter of a pore of 15 ⁇ m.
- each sample was ablated by the streamer discharge of the plasma guide wire 8.
- the length to the deepest part of the holes drilled in each sample was measured and used as the "ablation depth (mm)".
- the horizontal axis of FIG. 4 shows each sample, and the vertical axis shows the measured ablation depth.
- the PVA4000 used as the material of the second cap member 20 has an ablation depth equivalent to that of the human aorta wall (S10). It can be seen that the damage form due to ablation can be simulated.
- the polyurethane sponge used as the material of the first cap member 30 has an ablation depth equivalent to that of the human aortic wall (S10). , It can be seen that the damage morphology due to ablation of the human aortic wall can be simulated.
- FIG. 5 is a table showing the results of the tensile test.
- FIG. 5A is a diagram showing the results of a tensile test.
- FIG. 5B is a diagram showing the shape of a sample piece for a tensile test. In this test, a sample having the shape shown in FIG. 5B, which consists of the materials shown in the following b1 and b2, was prepared.
- Sample S11 Bovine aortic wall sample
- Samples S33, S34, S35 Sample of the first cap member 30 prepared using a polyurethane sponge having a pore inner diameter of 15 ⁇ m.
- each sample was subjected to a tensile tester, and the applied "load (N)” and the “elongation (mm)” until each sample broke were measured.
- the horizontal axis of FIG. 5 shows the elongation, and the vertical axis shows the load.
- the polyurethane sponge used as the material of the first cap member 30 has an initial elastic modulus equivalent to that of the bovine aortic wall (S11) (FIG. 5: broken line round frame). From this, it can be seen that the physical characteristics of the bovine aortic wall can be simulated in the first cap member 30.
- FIG. 6 is a table showing the results of the tensile test.
- a sample having the shape shown in FIG. 5B which consists of the materials shown in the following c1 to c4, was prepared.
- Sample S12 Bovine aortic wall sample
- Sample S23 A sample of the second cap member 20 prepared using PVA1700
- sample S24 having a PVA concentration of 20 wt%.
- Sample (c4) sample S36 which is a sample of the second cap member 20 manufactured by using PVA4000 and has a PVA concentration of 20 wt%: the first cap manufactured by using a polyurethane sponge having an inner diameter of 15 ⁇ m.
- Sample of member 30 Sample of member 30
- the PVA4000 used as the material of the second cap member 20 has an initial elastic modulus equivalent to that of the bovine aortic wall (S12) (FIG. 6: broken line round frame), and therefore the second cap. It can be seen that the member 20 can simulate the physical properties of the bovine aortic wall. Similarly, as shown in S36 of FIG.
- the polyurethane sponge used as the material of the first cap member 30 has an initial elastic modulus equivalent to that of the bovine aortic wall (S12) (FIG. 6: broken line round frame). It can be seen that the first cap member 30 can simulate the physical characteristics of the bovine aortic wall.
- FIG. 7 is an example of an enlarged view of an animal cell and a porous body.
- FIG. 7A shows an image of a bovine aortic wall as an example of animal cells when observed under a microscope.
- FIG. 7B shows an image of a sample of the first cap member 30 made of a polyurethane sponge having a pore diameter of 25 ⁇ m when observed under a microscope.
- the polyurethane sponge has tiny voids for retaining water, similar in size to the animal cells that make up the bovine aortic wall. Therefore, by approximating the inner diameter of the pores in the polyurethane sponge to the inner diameter of the animal cell, the polyurethane sponge can have physical properties similar to those of the animal cell and a form of damage due to ablation.
- the lesion portion 2 (lesion model) includes the main body portion 40, the first cap member 30 arranged on the tip side of the main body portion 40, and the main body portion 40. It has a second cap member 20 arranged on the base end side thereof. Therefore, the "compressed and hardened outer portion" of the actual human lesion can be simulated by the first cap member 30 and the second cap member 20 arranged at both ends of the main body portion 40. Further, in the lesion portion 2, the main body portion 40 is formed of a second polymer material, and the second cap member 20 is formed of a porous body.
- the hardness of the lesion 2 can be made closer to that of an actual human lesion as compared with the case where the lesion 2 is formed of acrylic resin or polycarbonate.
- the main body portion 40 formed of the second polymer material and the first cap member 30 formed of the porous body both have conductivity. Therefore, the state of the lesion 2 when ablated with the plasma guide wire 8 can be made to resemble an actual human lesion.
- the blood vessel model 1 having the lesion portion 2 it is possible to realize the simulation of the procedure using the medical device in an environment close to the actual clinical practice.
- the main body portion 40 is filled in the lumen 1L of the blood vessel portion 10 to obstruct the flow of fluid in the blood vessel portion 10, and the first cap member 30 is Since the tip surface of the main body 40 and the second cap member 20 cover the proximal surface of the main body 40, a lesion portion 2 simulating a chronic complete occlusion (CTO: Chronic Total Occlusion) can be realized.
- CTO Chronic Total Occlusion
- the plaque lesion may clog a blood vessel at the end of the lesion and be compressed by blood pressure to form a mass of plaque lesion.
- the protruding portion 31 protruding toward the main body portion 40 is formed on the side of the first cap member 30 facing the main body portion 40, this protrusion is formed.
- Section 31 can simulate a mass of plaque lesions that occurs in an actual human lesion.
- the inner diameter of the pores of the first cap member 30 is 0.5 ⁇ m or more and 200 ⁇ m or less, the size of the voids of the first cap member 30 can be approximated to the size of an animal cell. can.
- the amount of water retained in the first cap member 30 can be approximated to the amount of water retained in the actual human lesion, and the lesion 2 when ablated with the plasma guide wire 8 can be used.
- the condition can be more similar to that of a real human lesion.
- the proximal end surface 21 (that is, the outer end surface) on the opposite side to the main body portion 40 is the center of the blood vessel portion 10. It is tilted with respect to the axis O. Therefore, the tip end portion of the medical device such as the plasma guide wire 8 can be made slippery on the proximal end surface 21. As a result, the difficulty level of the procedure that can be simulated by using the blood vessel model 1 can be improved, which can be useful for improving the level of the procedure of the operator.
- the second cap member 20 is formed of a third polymer material, which is different from the first polymer material and the second polymer material.
- the hardness of the second cap member 20 can be made closer to that of an actual human lesion as compared with the case where the second cap member 20 is formed of acrylic resin or polycarbonate. Further, since the second cap member 20 has conductivity, the state of the lesion portion 2 when ablated with the plasma guide wire 8 can be made to resemble an actual human lesion portion.
- FIG. 8 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1A of the second embodiment.
- the blood vessel simulation device 100A of the second embodiment includes a blood vessel model 1A instead of the blood vessel model 1.
- the blood vessel model 1A includes a lesion 2A instead of the lesion 2 in the configuration described in the first embodiment.
- the lesion portion 2A has a second cap member 20A instead of the second cap member 20.
- the second cap member 20A has the same configuration as that of the first embodiment except that it is formed of a porous body.
- a porous body for example, a polyurethane sponge, a synthetic sponge made by foam molding a synthetic resin other than polyurethane, or natural sponge may be adopted.
- the same material as the first cap member 30 may be used for the second cap member 20A, or a material different from that of the first cap member 30 may be used.
- the configuration of the second cap member 20A can be variously changed, and may be formed of a porous body such as a polyurethane sponge. Further, the same material as that of the first cap member 30 may be used for the second cap member 20A.
- the blood vessel model 1A of the second embodiment also has the same effect as that of the first embodiment described above. According to the blood vessel model 1A of the second embodiment, the second cap member 20A can be formed of various materials.
- FIG. 9 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1B of the third embodiment.
- the blood vessel simulation device 100B of the third embodiment includes a blood vessel model 1B instead of the blood vessel model 1.
- the blood vessel model 1B includes the lesion portion 2B instead of the lesion portion 2 in the configuration described in the first embodiment.
- the lesion portion 2B has a second cap member 20B instead of the second cap member 20.
- the second cap member 20B has the same configuration as that of the first embodiment except that the proximal end surface 21 of the second cap member 20B is arranged perpendicular to the central axis O of the blood vessel portion 10. ing.
- the configuration of the second cap member 20B can be variously changed, and the proximal end surface 21 of the second cap member 20B may be perpendicular to the central axis O of the blood vessel portion 10.
- the blood vessel model 1B of the third embodiment also has the same effect as that of the first embodiment described above.
- the second cap member 20B can be arranged at various inclinations.
- FIG. 10 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1C of the fourth embodiment.
- the blood vessel simulation device 100C of the fourth embodiment includes a blood vessel model 1C instead of the blood vessel model 1.
- the blood vessel model 1C includes a lesion 2C instead of the lesion 2 in the configuration described in the first embodiment.
- the lesion portion 2C has a second cap member 20C instead of the second cap member 20.
- the second cap member 20C has a plate shape curved in a substantially C shape.
- a part of the proximal end surface 21C on the opposite side facing the main body 40 is inclined with respect to the central axis O of the blood vessel portion 10, and a part is perpendicular to the central axis O. Is.
- the configuration of the second cap member 20C can be changed in various ways, and the shape of the second cap member 20C is not limited to the flat plate shape but can be any shape.
- the second cap member 20C may have a substantially C-shaped curved plate shape, a spherical shape, a hemispherical shape, or a random shape.
- the second cap member 20C may have a structure having a substantially conical protruding portion and a substantially cylindrical main body portion, similarly to the first cap member 30.
- the blood vessel model 1C of the fourth embodiment also has the same effect as that of the first embodiment described above. According to the blood vessel model 1C of the fourth embodiment, the second cap member 20C can have various shapes.
- FIG. 11 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1D of the fifth embodiment.
- the blood vessel simulation device 100D of the fifth embodiment includes a blood vessel model 1D instead of the blood vessel model 1.
- the blood vessel model 1D includes the lesion portion 2D in place of the lesion portion 2 in the configuration described in the first embodiment.
- the lesion portion 2D has a first cap member 30D instead of the first cap member 30.
- the first cap member 30D has a flat plate shape and is arranged perpendicular to the central axis O of the blood vessel portion 10.
- the length L30D of the first cap member 30D in the X-axis direction is preferably 1 mm or more.
- the length L30D is the length of the portion of the first cap member 30D having the shortest length in the X-axis direction in any vertical cross section.
- the configuration of the first cap member 30D can be variously changed, and the shape of the first cap member 30D is not limited to the shape having the protruding portion 31 and the main body portion 32, and can be any shape.
- the first cap member 30D may have a flat plate shape, a plate shape curved in a substantially C shape, a spherical shape, a hemispherical shape, or a random shape.
- the first cap member 30D may be arranged so as to be inclined with respect to the central axis O of the blood vessel portion 10, similarly to the second cap member 20.
- the blood vessel model 1D of the fifth embodiment also has the same effect as that of the first embodiment described above. According to the blood vessel model 1D of the fifth embodiment, the first cap member 30D can have various shapes.
- FIG. 12 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1E of the sixth embodiment.
- the blood vessel simulation device 100E of the sixth embodiment includes a blood vessel model 1E instead of the blood vessel model 1.
- the blood vessel model 1E includes the lesion portion 2E in place of the lesion portion 2 in the configuration described in the first embodiment.
- the lesion portion 2E has a first cap member 30E instead of the first cap member 30.
- the upper part of FIG. 12 shows the vertical cross-sectional structure of the blood vessel model 1E.
- the left dashed line balloon (BB1) in the lower part of FIG. 12 an example of the blood vessel model 1E in the cross section along the line BB in the upper part of FIG. 12 is shown.
- the right dashed line balloon (BB2) in the lower part of FIG. 12 another example of the blood vessel model 1E in the cross section along the line BB in the upper part of FIG. 12 is shown.
- the first cap member 30E has a substantially cylindrical shape and has a through hole 33 penetrating the first cap member 30E in the X-axis direction.
- the through hole 33 is a circular hole provided in a substantially central portion of the first cap member 30E, as shown in the left dashed line balloon (BB1), and is surrounded by a thick portion of the first cap member 30E. You may.
- the through hole 33 may be a hole having various shapes such as an ellipse, a rectangle, and a polygon, instead of a circular hole.
- the through hole 33 may be a hole that divides the first cap member 30E in the Y-axis direction (or Z-axis direction) as shown in the right dashed line balloon (BB2).
- the length L30E of the first cap member 30E in the X-axis direction is preferably 1 mm or more.
- the length L30E is the length of the portion of the first cap member 30E having the shortest length in the X-axis direction in an arbitrary vertical cross section.
- the configuration of the first cap member 30E can be variously changed, and the first cap member 30E may be provided with a through hole 33 penetrating the first cap member 30E in the X-axis direction. .. Further, the first cap member 30E may have a gap provided inside the first cap member 30E (inside the thick portion) instead of the through hole 33.
- the blood vessel model 1E of the sixth embodiment also has the same effect as that of the first embodiment described above. According to the blood vessel model 1E of the sixth embodiment, the first cap member 30E can have various shapes having through holes 33 and voids.
- FIG. 13 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1F of the seventh embodiment.
- the blood vessel simulation device 100F of the seventh embodiment includes a blood vessel model 1F instead of the blood vessel model 1.
- the blood vessel model 1F includes the blood vessel portion 10F instead of the blood vessel portion 10 in the configuration described in the first embodiment.
- the blood vessel portion 10F has a main branch 10a and a side branch 10b.
- a lesion 2 is provided in the lumen 1L of the main branch 10a.
- the side branch 10b is a portion simulating a human side branch blood vessel.
- One end of the side branch 10b is open, and the other end is connected to the main branch 10a in a state where the lumen 1L communicates with the main branch 10a.
- the side branch 10b branches and extends from the main branch 10a with the main branch 10a and the lumen 1L communicating with each other. Further, the side branch 10b branches and extends from a position of the main branch 10a close to the inclined base end surface 21 of the second cap member 20. By doing so, as shown in FIG.
- the side branch 10b When the tip end portion of the plasma guide wire 8 inserted by the anterograde approach slips on the base end surface 21 of the second cap member 20, the side branch 10b It becomes easy to be guided to the lumen 1L. As shown in FIG. 13, it is preferable that the inclination of the inner wall of the side branch 10b is close to the inclination of the base end surface 21 of the second cap member 20. Then, the tip of the plasma guide wire 8 can be more easily inserted into the lumen 1L of the side branch 10b.
- the configuration of the blood vessel portion 10F can be variously changed, and may have a side branch 10b different from the main branch 10a in which the lesion portion 2 is provided.
- a side branch 10b may extend from a position close to the end surface of the first cap member 30 on the tip end side (in other words, the side opposite to the side facing the main body 40).
- a pseudocavity in which the blood vessel wall is dissociated may be formed in the main branch 10a.
- the blood vessel model 1F of the seventh embodiment also has the same effect as that of the first embodiment described above.
- the blood vessel portion 10F is a side branch 10b that branches and extends from the main branch 10a in a state where the main branch 10a and the lumen 1L are communicated with each other, and is a side branch 10b of the main branch 10a.
- it has a side branch 10b extending from a position close to the inclined base end surface 21 of the second cap member 20. Therefore, in the simulation of the procedure using the blood vessel model 1F of the seventh embodiment, the plasma guide wire 8 (medical device) slips on the inclined proximal end surface 21 of the second cap member 20, and the lesion portion 2 is formed.
- FIG. 14 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1G of the eighth embodiment.
- the blood vessel simulation device 100G of the eighth embodiment includes a blood vessel model 1G instead of the blood vessel model 1.
- the blood vessel model 1G includes the lesion portion 2G instead of the lesion portion 2 in the configuration described in the first embodiment.
- the lesion portion 2G has a main body portion 40G in place of the main body portion 40, a first cap member 30G in place of the first cap member 30, and a second cap member 20G in place of the second cap member 20.
- the upper part of FIG. 14 shows the vertical cross-sectional structure of the blood vessel model 1G.
- the left dashed line balloon (CC1) in the lower part of FIG. 14 an example of the blood vessel model 1G in the cross section along the CC line in the upper part of FIG. 14 is shown.
- the right dashed line balloon (CC2) in the lower part of FIG. 14 another example of the blood vessel model 1G in the cross section along the CC line in the upper part of FIG. 14 is shown.
- a through hole TH that penetrates each member in the X-axis direction is formed in the main body portion 40G, the first cap member 30G, and the second cap member 20G.
- the through hole TH can have any shape, and may be a hole having a semicircular cross section as shown in the left dashed line blowout (CC1), or may be a hole having a semicircular cross section, and may be a circle as shown in the right broken line blowout (CC2). It may be a hole having a cross section of a shape. As described above, in the blood vessel model 1G, the fluid can flow in the blood vessel portion 10 through the through hole TH.
- the configuration of the lesion portion 2G can be variously changed, and the flow of the fluid in the blood vessel portion 10 may be enabled by providing the through hole TH penetrating the lesion portion 2G.
- a through hole TH extending linearly along the X axis is exemplified, but the through hole TH may meander and extend in the YZ axis direction.
- the lesion portion 2G may be provided with a plurality of through holes TH.
- the blood vessel model 1G of the eighth embodiment also has the same effect as that of the first embodiment described above. According to the blood vessel model 1G of the eighth embodiment, the stenotic lesion can be simulated by the lesion portion 2G.
- FIG. 15 is an explanatory diagram illustrating the cross-sectional configuration of the blood vessel model 1H of the ninth embodiment.
- the blood vessel simulation device 100H of the ninth embodiment includes a blood vessel model 1H instead of the blood vessel model 1.
- the blood vessel model 1H has a main body 40H instead of the main body 40 in the configuration described in the first embodiment.
- a part of the tip surface 43 of the tip surface 43 located on the tip side (in other words, the side facing the first cap member 30) of the main body portion 40H is separated from the first cap member 30.
- a gap SP1 is provided between the tip surface 43 of the main body portion 40H and the first cap member 30.
- a part of the proximal end surface 44 is separated from the second cap member 20. ..
- a gap SP2 is provided between the base end surface 44 of the main body portion 40H and the second cap member 20.
- the configuration of the main body portion 40H can be variously changed, the shape of the main body portion 40H can be arbitrarily determined, and the main body portion 40H is a boundary with the first cap member 30 and the second cap member 20. May have voids SP1 and SP2. One of the voids SP1 and SP2 may be omitted. Further, there may be two or more gaps between the main body portion 40H and the first cap member 30, and even if there are two or more gaps between the main body portion 40H and the second cap member 20. good.
- the blood vessel model 1H of the ninth embodiment also has the same effect as that of the first embodiment described above. According to the blood vessel model 1H of the ninth embodiment, the main body portion 40H can have various shapes.
- FIG. 16 is an explanatory diagram illustrating a schematic configuration of the blood vessel simulation device 100I of the tenth embodiment.
- the blood vessel simulation apparatus 100I does not include the outer tissue model 3 and the circulation pump 9 in the configuration described in the first embodiment.
- the blood vessel model 1 of the blood vessel simulation apparatus 100I may be used after being moistened with a fluid (for example, simulated blood such as physiological saline), or may be used in a dry state.
- the blood vessel simulation device 100I is provided with, for example, a water tank capable of filling the inside with a fluid, and the blood vessel model 1 may be used in a state of being placed in the water tank filled with the fluid. Even with the blood vessel simulation device 100I of the tenth embodiment, the same effect as that of the first embodiment described above can be obtained.
- the configuration of the blood vessel simulation device 100 can be changed in various ways.
- the blood vessel simulation device 100 may have an organ model that imitates an organ such as a heart, a liver, or a brain.
- the blood vessel model 1 may be provided on the outside or inside of the organ model.
- the blood vessel simulation device 100 may include a pulsation pump for adding a movement simulating pulsation to the fluid circulated by the circulation pump 9.
- a positive displacement reciprocating pump or a rotary pump rotated at a low speed can be used.
- the configuration of the blood vessel model 1 can be changed in various ways.
- the blood vessel portion 10 may have an arbitrary shape such as a curved shape, a meandering shape, or the like, in addition to a linear shape.
- the blood vessel portion 10 may be coated with a resin having hydrophilicity or hydrophobicity.
- the lesion portion 2 may have a member different from the main body portion 40, the second cap member 20, and the first cap member 30 described in the above embodiment.
- This member has an arbitrary shape (for example, a spherical shape or a lump of an arbitrary shape) provided in the thick portion of the main body portion 40, and simulates a calcified lesion formed inside the main body portion 40. You may. Further, this member may have a flat plate shape similar to that of the second cap member 20.
- These members may be provided between the main body portion 40 and the first cap member 30 in addition to the inside of the thick portion of the main body portion 40, and may be provided on the tip side (-X-axis direction) of the first cap member 30. It may be provided, it may be provided between the main body portion 40 and the second cap member 20, or it may be provided on the proximal end side (+ X-axis direction) of the second cap member 20.
- the configurations of the above may be combined as appropriate.
- the blood vessel model 1 may be formed by arbitrarily combining the part 40 and the blood vessel part 10 described in the seventh embodiment.
- the blood vessel model 1 described in any of the first to ninth embodiments may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Algebra (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medical Informatics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Theoretical Computer Science (AREA)
- Instructional Devices (AREA)
Abstract
血管モデルは、第1の高分子材料により形成された中空管形状の血管部と、血管部の内腔に配置された病変部と、を備える。病変部は、第1の高分子材料とは異なる第2の高分子材料により形成された本体部と、本体部よりも先端側に配置され、多孔質体により形成された第1キャップ部材と、本体部よりも基端側に配置された第2キャップ部材と、を有する。
Description
本発明は、血管モデルに関する。
血管内への低侵襲な治療または検査のために、ガイドワイヤ等の医療用デバイスが使用されている。例えば、特許文献1,2には、これらの医療用デバイスを用いた手技を模擬することが可能な模擬血管が開示されている。特許文献1,2では、シリコン等で作成された模擬血管の内部に、狭窄病変や閉塞病変を模擬した病変モデルが設けられている。
ここで、血管内に生じる病変には、進行の程度に応じて、リピッドプールが壊死性コアへと変化した粥状硬化性病変、壊死性コアが拡大したプラーク病変、プラーク病変内の出血により生じる石灰化病変等がある。これらの病変は、病変部の硬さがそれぞれ相違する。また、病変部のうち、血流に面する外側部分は、血流に面さない内側部分と比較して、血圧により圧縮されて硬くなる。この点、特許文献1に記載の技術では、病変モデルが単一層の化合物(ポリスチレン共重合体)により形成されているため、病変モデルの硬さが一様になるという課題があった。また、特許文献2に記載の技術では、病変モデルが異なる硬度の化合物から構成されているものの、アクリル樹脂やポリカーボネートが用いられていることから、実際の病変部の硬さを模擬できていないという課題があった。
また、特許文献1,2に記載の技術では、いずれも、病変モデルが絶縁性の材料を使用していることから、実際の病変部のアブレーションによる損傷形態を模擬できていない。ここで、例えば、慢性完全閉塞(CTO:Chronic Total Occlusion)のように、血管内が病変部により閉塞される場合がある。このような場合、ストリーマ放電によって生体組織を切断するプラズマガイドワイヤを用いて、病変部をアブレーションすることで、CTOの開通を行うことがある。しかし、特許文献1,2に記載の技術では、病変部のアブレーションによる損傷形態を模擬できていないため、プラズマガイドワイヤを用いた手技の模擬を、実臨床に近い環境で実施することができないという課題があった。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、病変部を有する血管モデルにおいて、医療用デバイスを用いた手技の模擬を実臨床に近い環境で実現可能とすることを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、血管モデルが提供される。この血管モデルは、第1の高分子材料により形成された中空管形状の血管部と、前記血管部の内腔に配置された病変部と、を備え、前記病変部は、前記第1の高分子材料とは異なる第2の高分子材料により形成された本体部と、前記本体部よりも先端側に配置され、多孔質体により形成された第1キャップ部材と、前記本体部よりも基端側に配置された第2キャップ部材と、を有する。
この構成によれば、血管モデルの病変部(病変モデル)は、本体部と、本体部よりも先端側に配置された第1キャップ部材と、本体部よりも基端側に配置された第2キャップ部材と、を有する。このため、本体部の両端に配置された第1キャップ部材及び第2キャップ部材によって、実際のヒトの病変部のうちの「圧縮されて硬くなった外側部分」を模擬できる。また、病変部のうち、本体部は第2の高分子材料により形成され、第1キャップ部材は多孔質体により形成されている。このため、病変部をアクリル樹脂やポリカーボネートにより形成する場合と比較して、病変部の硬さを実際のヒトの病変部に近づけることができる。さらに、第2の高分子材料により形成された本体部と、多孔質体により形成された第1キャップ部材とは、共に導電性を有する。このため、プラズマガイドワイヤを用いてアブレーションした際の病変部の状態を、実際のヒトの病変部に似せることができる。これらの結果、病変部を有する血管モデルにおいて、医療用デバイスを用いた手技の模擬を実臨床に近い環境で実現可能とできる。
(2)上記形態の血管モデルにおいて、前記本体部は、前記血管部の内腔に充填されることにより、前記血管部における流体の流通を阻害しており、前記第1キャップ部材は、前記本体部の先端面を被覆しており、前記第2キャップ部材は、前記本体部の基端面を被覆していてもよい。
この構成によれば、本体部は、血管部の内腔に充填されることにより、血管部における流体の流通を阻害しており、第1キャップ部材は本体部の先端面を、第2キャップ部材は本体部の基端面を、それぞれ被覆しているため、慢性完全閉塞(CTO:Chronic Total Occlusion)を模擬した病変部を実現できる。
この構成によれば、本体部は、血管部の内腔に充填されることにより、血管部における流体の流通を阻害しており、第1キャップ部材は本体部の先端面を、第2キャップ部材は本体部の基端面を、それぞれ被覆しているため、慢性完全閉塞(CTO:Chronic Total Occlusion)を模擬した病変部を実現できる。
(3)上記形態の血管モデルにおいて、前記第1キャップ部材のうち、前記本体部に面する側には、前記本体部に向かって突出した突出部が形成されていてもよい。
実際のヒトの病変部では、病変部の端部においてプラーク病変が血管に詰まり、血圧により圧縮されてプラーク病変の塊を生じる場合がある。この構成によれば、第1キャップ部材のうち、本体部に面する側には、本体部に向かって突出した突出部が形成されているため、この突出部によって、実際のヒトの病変部に生じるプラーク病変の塊を模擬できる。
実際のヒトの病変部では、病変部の端部においてプラーク病変が血管に詰まり、血圧により圧縮されてプラーク病変の塊を生じる場合がある。この構成によれば、第1キャップ部材のうち、本体部に面する側には、本体部に向かって突出した突出部が形成されているため、この突出部によって、実際のヒトの病変部に生じるプラーク病変の塊を模擬できる。
(4)上記形態の血管モデルにおいて、前記第1キャップ部材の細孔の内径は、0.5μm以上、かつ、200μm以下であってもよい。
この構成によれば、第1キャップ部材の細孔の内径は、0.5μm以上、かつ、200μm以下であるため、第1キャップ部材が有する空隙の大きさを、動物細胞の大きさに近似させることができる。この結果、第1キャップ部材内に保持される水分量を、実際のヒトの病変部において保持される水分量に近似させることができ、プラズマガイドワイヤを用いてアブレーションした際の病変部の状態を、実際のヒトの病変部により一層似せることができる。
この構成によれば、第1キャップ部材の細孔の内径は、0.5μm以上、かつ、200μm以下であるため、第1キャップ部材が有する空隙の大きさを、動物細胞の大きさに近似させることができる。この結果、第1キャップ部材内に保持される水分量を、実際のヒトの病変部において保持される水分量に近似させることができ、プラズマガイドワイヤを用いてアブレーションした際の病変部の状態を、実際のヒトの病変部により一層似せることができる。
(5)上記形態の血管モデルにおいて、前記第2キャップ部材のうち、前記本体部に面する側の反対側の端面は、前記血管部の中心軸に対して傾斜していてもよい。
この構成によれば、第2キャップ部材のうち、本体部に面する側の反対側の端面(すなわち、外側の端面)は、血管部の中心軸に対して傾斜している。このため、医療用デバイスの先端部を、第2キャップ部材20の外側の端面において滑りやすくできる。この結果、血管モデルを用いて模擬可能な手技の難易度を向上させることができ、術者の手技のレベル向上に役立てることができる。
この構成によれば、第2キャップ部材のうち、本体部に面する側の反対側の端面(すなわち、外側の端面)は、血管部の中心軸に対して傾斜している。このため、医療用デバイスの先端部を、第2キャップ部材20の外側の端面において滑りやすくできる。この結果、血管モデルを用いて模擬可能な手技の難易度を向上させることができ、術者の手技のレベル向上に役立てることができる。
(6)上記形態の血管モデルにおいて、前記血管部は、内腔に前記病変部が設けられた本枝と、前記本枝と内腔を連通させた状態で前記本枝から分岐して延びる側枝であって、前記本枝のうち、前記第2キャップ部材の傾斜した前記端面に近接した位置から延びる側枝と、を有していてもよい。
この構成によれば、血管部は、本枝と内腔を連通させた状態で本枝から分岐して延びる側枝であって、本枝のうち、第2キャップ部材の傾斜した端面に近接した位置から延びる側枝を有する。すなわち、本構成の血管モデルを用いた手技の模擬では、医療用デバイスが、第2キャップ部材の傾斜した端面において滑りを生じ、病変部がある本枝とは異なる側枝に導かれやすくなる。この結果、血管モデルを用いて模擬可能な手技の難易度を向上させることができ、術者の手技のレベル向上に役立てることができる。
この構成によれば、血管部は、本枝と内腔を連通させた状態で本枝から分岐して延びる側枝であって、本枝のうち、第2キャップ部材の傾斜した端面に近接した位置から延びる側枝を有する。すなわち、本構成の血管モデルを用いた手技の模擬では、医療用デバイスが、第2キャップ部材の傾斜した端面において滑りを生じ、病変部がある本枝とは異なる側枝に導かれやすくなる。この結果、血管モデルを用いて模擬可能な手技の難易度を向上させることができ、術者の手技のレベル向上に役立てることができる。
(7)上記形態の血管モデルにおいて、前記第2キャップ部材は、前記第1の高分子材料及び前記第2の高分子材料とはそれぞれ異なる、第3の高分子材料により形成されていてもよい。
この構成によれば、第2キャップ部材は、第1の高分子材料及び第2の高分子材料とはそれぞれ異なる、第3の高分子材料により形成されている。このため、第2キャップ部材をアクリル樹脂やポリカーボネートにより形成する場合と比較して、第2キャップ部材の硬さを実際のヒトの病変部に近づけることができる。さらに、第2キャップ部材は導電性を有するため、プラズマガイドワイヤを用いてアブレーションした際の病変部の状態を、実際のヒトの病変部に似せることができる。
この構成によれば、第2キャップ部材は、第1の高分子材料及び第2の高分子材料とはそれぞれ異なる、第3の高分子材料により形成されている。このため、第2キャップ部材をアクリル樹脂やポリカーボネートにより形成する場合と比較して、第2キャップ部材の硬さを実際のヒトの病変部に近づけることができる。さらに、第2キャップ部材は導電性を有するため、プラズマガイドワイヤを用いてアブレーションした際の病変部の状態を、実際のヒトの病変部に似せることができる。
なお、本発明は、種々の態様で実現することが可能であり、例えば、病変部(病変モデル)を含む血管モデル、当該血管モデルを備えており心臓、肝臓、脳等の臓器を模した臓器モデル、これらの血管モデルや臓器モデル含む人体シミュレーション装置、人体シミュレーション装置の制御方法などの形態で実現することができる。
<第1実施形態>
図1は、血管シミュレーション装置100の概略構成を示す図である。本実施形態の血管シミュレーション装置100は、血管に対する、医療用デバイスを用いた治療または検査の手技を模擬するために使用される装置である。本実施形態では、医療用デバイスとして、ストリーマ放電によって生体組織を切断するプラズマガイドワイヤを例示する。しかし、医療用デバイスには、カテーテルやガイドワイヤ等の、低侵襲な治療または検査のためのデバイス全般が用いられてもよい。血管シミュレーション装置100は、病変部2を含む血管モデル1と、外側組織モデル3と、循環ポンプ9とを備えている。
図1は、血管シミュレーション装置100の概略構成を示す図である。本実施形態の血管シミュレーション装置100は、血管に対する、医療用デバイスを用いた治療または検査の手技を模擬するために使用される装置である。本実施形態では、医療用デバイスとして、ストリーマ放電によって生体組織を切断するプラズマガイドワイヤを例示する。しかし、医療用デバイスには、カテーテルやガイドワイヤ等の、低侵襲な治療または検査のためのデバイス全般が用いられてもよい。血管シミュレーション装置100は、病変部2を含む血管モデル1と、外側組織モデル3と、循環ポンプ9とを備えている。
図1では、血管モデル1、病変部2、及び外側組織モデル3の中心に通る軸を軸線O(一点鎖線)で表す。以降の例では、血管モデル1の中心を通る軸と、病変部2の中心を通る軸と、外側組織モデル3の中心を通る軸とは、いずれも軸線Oと一致する。しかし、血管モデル1、病変部2、及び外側組織モデル3の各中心を通る軸は、それぞれ軸線Oとは相違していてもよい。また、図1及び以降の図では、説明の便宜上、各構成部材の大きさの相対比を実際とは異なるように記載している部分を含んでいる。また、各構成部材の一部を誇張して記載している部分を含んでいる。
血管モデル1は、ヒトの血管を模擬したモデルである。血管モデル1は、両端に開口1a,1bを有する、長尺の略円筒形状であって、内側(図2に示す内腔1L)には、ヒトの病変部を模擬した病変部2が配置されている。病変部2は「病変モデル」とも呼ばれる。病変部2の詳細は後述する。血管モデル1の外側には、血管モデル1の外周面のうちの少なくとも一部分(図示の例では、血管モデル1の両端を除く中央部分)を取り囲むようにして、ヒトの筋肉、脂肪、皮膚等を模擬した外側組織モデル3が配置されている。外側組織モデル3は、軟性素材の合成樹脂(例えば、ポリビニルアルコール:PVA、シリコン等)により形成されている。循環ポンプ9は、例えば、非容積式の遠心ポンプである。循環ポンプ9は、血管モデル1の開口1aと開口1bとを繋ぐ流路の途中に設けられており、開口1bから排出された流体を循環させて、開口1aへと供給する。
図2は、血管モデル1の断面構成を例示した説明図である。図2には、相互に直交するXYZ軸を図示する。X軸は血管モデル1及び病変部2の長手方向に対応し、Y軸は血管モデル1及び病変部2の高さ方向に対応し、Z軸は血管モデル1及び病変部2の幅方向に対応する。図2の左側(-X軸方向)を血管モデル1及び病変部2の「先端側」と呼ぶ。先端側は、順行性アプローチを採用した場合に、医療用デバイスの挿入部位から遠い側(distal、遠位側)となる。また、図2の右側(+X軸方向)を血管モデル1及び病変部2の「基端側」と呼ぶ。基端側は、順行性アプローチを採用した場合に、医療用デバイスの挿入部位から近い側(proximal、近位側)となる。これらの点は、図2以降においても共通する。
図2上段には、血管モデル1の縦断面構成を示す。図2下段(破線吹き出し内)には、図2上段のA-A線に沿った横断面における血管モデル1の構成を示す。図2上段に示すように、血管モデル1は、血管部10と、血管部10の内腔1Lに配置された病変部2と、を有している。血管部10は、ヒトの血管を模擬した部分であり、両端に開口1a,1bを有する中空管形状を有している。血管部10は、第1の高分子材料により形成されている。本実施形態では、第1の高分子材料として、滑り性や弾性がヒトの血管と近似したPVAが採用されている。しかし、第1の高分子材料としては、例えば、アガロース、アルギン酸ナトリウム、セルロース、デンプン、グリコーゲン等の多糖類や、シリコン、ラテックス、ポリウレタン等の樹脂を採用してもよい。なお、血管部10の内径及び外径、X軸方向の長さは、任意に決定できる。
病変部2は、本体部40と、第1キャップ部材30と、第2キャップ部材20とを有している。本体部40は、ヒトの病変部のうちの、内側部分の組織(例えば、プラーク病変)を模擬している。図2に示すように、本体部40は、血管部10の内腔1Lに充填されることにより、血管部10における流体の流通を阻害している。具体的には、本体部40は、血管部10の内周面12に接触し、かつ、血管部10の内腔1Lを塞いだ状態で、血管部10の内側に配置されている。本体部40の先端側(換言すれば、第1キャップ部材30に面する側)には、第1キャップ部材30の形状に沿って、略円錐状に窪んだ凹部41が形成されている。本体部40の基端側(換言すれば、第2キャップ部材20に面する側)には、第2キャップ部材20の形状に沿って傾斜した傾斜部42が形成されている。本体部40の先端面は第1キャップ部材30に接触しており、本体部40の基端面は第2キャップ部材20に接触している。
本体部40は、血管部10を構成する第1の高分子材料とは異なる、第2の高分子材料により形成されている。本実施形態では、第2の高分子材料として、弾性がCTOと近似したアガロースが採用されている。しかし、第2の高分子材料としては、例えば、PVA、アルギン酸ナトリウム、セルロース、デンプン、グリコーゲン等の多糖類や、シリコン、ラテックス、ポリウレタン等の樹脂を採用してもよい。なお、本体部40のX軸方向の長さは、任意に決定できる。
第1キャップ部材30は、ヒトの病変部のうちの、圧縮されて硬くなった先端側部分の組織(例えば、プラーク病変の塊や、石灰化病変等)を模擬している。図2上段に示すように、第1キャップ部材30は、本体部40よりも先端側に配置されて、本体部40の先端面を被覆している。本実施形態では、第1キャップ部材30は、突出部31と、本体部32とを有している。突出部31は、第1キャップ部材30のうちの基端側(換言すれば、本体部40に面する側)に位置しており、第1キャップ部材30の一部分が本体部40に向かって突出した部分である。本実施形態では、突出部31は、略円錐形状を有している。本体部32は、第1キャップ部材30のうちの先端側(換言すれば、本体部40に面する側の反対側)に位置した部分であり、略円柱形状を有している。
ここで、第1キャップ部材30のX軸方向の長さL30は、1mm以上であることが好ましい。長さL30を1mm以上とすれば、貫通ガイドワイヤ(アブレーションを行わず、物理的に病変部2を貫通するためのガイドワイヤ)による第1キャップ部材30の貫通を困難とできるため、血管モデル1をプラズマガイドワイヤの使用に適した構成とできる。なお、長さL30は、図2上段に示すように、任意の縦断面において、第1キャップ部材30が最も-X軸側に位置する点の延長線から、最も+X軸側に位置する点の延長線までの長さとする。
第1キャップ部材30は、多孔質体により形成されている。本実施形態では、多孔質体として、ポリウレタンスポンジが採用されている。しかし、多孔質体としては、例えば、ポリウレタン以外の合成樹脂を発泡成形して作られた合成スポンジが採用されてもよく、天然の海綿が採用されてもよい。ここで、第1キャップ部材30の細孔の内径は、0.5μm以上、かつ、200μm以下であることが好ましく、10μm以上、かつ、30μm以下であることがより好ましい。第1キャップ部材30の細孔の内径は、第1キャップ部材30を顕微鏡観察した際に、所定の単位面積中に含まれる複数の細孔についての、内径の平均値を採用できる。このとき、楕円形状の細孔の場合、長手方向の内径を採用して平均値を求める。なお、突出部31のX軸方向の長さ及び形状、本体部32のX軸方向の長さは、任意に決定できる。
第2キャップ部材20は、ヒトの病変部のうちの、圧縮されて硬くなった基端側部分の組織(例えば、プラーク病変の塊や、石灰化病変等)を模擬している。図2上段に示すように、第2キャップ部材20は、本体部40よりも基端側に配置されて、本体部40の基端面を被覆している。本実施形態では、第2キャップ部材20は平板状である。第2キャップ部材20のうちの基端側(換言すれば、本体部40に面する側の反対側)の端面21は、血管部10の中心軸Oに対して傾斜している。
ここで、第2キャップ部材20のX軸方向の長さL20は、1mm以上であることが好ましい。長さL20を1mm以上とすれば、貫通ガイドワイヤによる第2キャップ部材20の貫通を困難とできるため、血管モデル1をプラズマガイドワイヤの使用に適した構成とできる。なお、長さL20は、図2上段に示すように、任意の縦断面において、第2キャップ部材20のX軸方向の長さが最も短い部分の長さとする。
第2キャップ部材20は、血管部10を構成する第1の高分子材料とは異なり、かつ、本体部40を構成する第2の高分子材料とも異なる、第3の高分子材料により形成されている。本実施形態では、第3の高分子材料として、血管部10とは異なる硬さを有するPVAが採用されている。しかし、第3の高分子材料としては、例えば、アガロース、アルギン酸ナトリウム、セルロース、デンプン、グリコーゲン等の多糖類や、シリコン、ラテックス、ポリウレタン等の樹脂を採用してもよい。なお、第2キャップ部材20の長さL20、及び第2キャップ部材20の軸線Oに対する傾きは、任意に決定できる。
図3は、血管シミュレーション装置100を用いた手技の模擬について説明する図である。以上のような血管シミュレーション装置100を用いて、術者は、血管モデル1の病変部2に対する、医療用デバイスを用いた手技の模擬ができる。例えば、術者は、循環ポンプ9を動作させて、流体(例えば、生理食塩水などの模擬血液)を血管モデル1に循環させた状態で、血管部10の一部分を切開して、血管部10の内腔1Lにプラズマガイドワイヤ8を挿入する。その後、術者は、プラズマガイドワイヤ8の先端部を、病変部2の位置までデリバリする。例えば術者は、図示のように、プラズマガイドワイヤ8の先端部を、第2キャップ部材20の側から病変部2に接近させる順行性アプローチを行う。その後、術者は、プラズマガイドワイヤ8のストリーマ放電によって、第2キャップ部材20を図示のようにアブレーションし、続いて、本体部40と第1キャップ部材30とをアブレーションすることで、病変部2を開通させる手技を模擬できる。
なお、術者は、プラズマガイドワイヤ8の先端部を、第1キャップ部材30の側から病変部2に接近させる逆行性アプローチによって、病変部2を開通させる手技を模擬してもよい。また、術者は、プラズマガイドワイヤ8以外の、他の医療用デバイスを用いた手技の模擬のために、血管シミュレーション装置100を用いてもよい。例えば、術者は、貫通ガイドワイヤを用いて、病変部2の開通を行う手技を模擬してもよい。この場合、貫通ガイドワイヤによるアプローチを受ける側に位置するキャップ部材(第1キャップ部材30または第2キャップ部材20)の長さL30またはL20は、1mm未満とされることが好ましい。
図4は、アブレーション試験の結果を示す表である。本試験では、次のa1~a5に示す材料からなる、厚さ1mmのサンプルを準備した。
(a1)サンプルS10:ヒトの大動脈壁のサンプル
(a2)サンプルS21:PVA4000を用いて作製された第2キャップ部材20のサンプルであって、PVA濃度を15wt%としたサンプル
(a3)サンプルS22:PVA4000を用いて作製された第2キャップ部材20のサンプルであって、PVA濃度を20wt%としたサンプル
(a4)サンプルS31:細孔の内径が25μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプル
(a5)サンプルS32:細孔の内径が15μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプル
(a1)サンプルS10:ヒトの大動脈壁のサンプル
(a2)サンプルS21:PVA4000を用いて作製された第2キャップ部材20のサンプルであって、PVA濃度を15wt%としたサンプル
(a3)サンプルS22:PVA4000を用いて作製された第2キャップ部材20のサンプルであって、PVA濃度を20wt%としたサンプル
(a4)サンプルS31:細孔の内径が25μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプル
(a5)サンプルS32:細孔の内径が15μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプル
次いで、各サンプルに対して、プラズマガイドワイヤ8のストリーマ放電によるアブレーションを行った。その結果、各サンプルに穿たれた穴のうち、最も深い部分までの長さを測定し「アブレーション深さ(mm)」とした。図4の横軸には各サンプルを、縦軸には測定されたアブレーション深さを、それぞれ記載している。図4のS21,S22に示すように、第2キャップ部材20の材料として用いたPVA4000は、ヒト大動脈壁(S10)と同等のアブレーション深さとなることから、第2キャップ部材20において、ヒト大動脈壁のアブレーションによる損傷形態を模擬できていることがわかる。同様に、図4のS31,S32に示すように、第1キャップ部材30の材料として用いたポリウレタンスポンジは、ヒト大動脈壁(S10)と同等のアブレーション深さとなることから、第1キャップ部材30において、ヒト大動脈壁のアブレーションによる損傷形態を模擬できていることがわかる。
図5は、引張試験の結果を示す表である。図5(A)は引張試験の結果を表す図である。図5(B)は引張試験のサンプル片の形状を表す図である。本試験では、次のb1,b2に示す材料からなる、図5(B)に示す形状のサンプルを準備した。
(b1)サンプルS11:ウシの大動脈壁のサンプル
(b2)サンプルS33,S34,S35:細孔の内径が15μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプル
(b1)サンプルS11:ウシの大動脈壁のサンプル
(b2)サンプルS33,S34,S35:細孔の内径が15μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプル
次いで、各サンプルを引張試験機にかけて、付加した「荷重(N)」と、各サンプルが破断するまでの「伸び(mm)」を測定した。図5の横軸には伸びを、縦軸には荷重を、それぞれ記載している。図5のS33,S34,S35に示すように、第1キャップ部材30の材料として用いたポリウレタンスポンジは、ウシ大動脈壁(S11)と同等の初期弾性率(図5:破線丸枠)であることから、第1キャップ部材30において、ウシ大動脈壁の物理的特性を模擬できていることがわかる。
図6は、引張試験の結果を示す表である。本試験では、次のc1~c4に示す材料からなる、図5(B)に示す形状のサンプルを準備した。
(c1)サンプルS12:ウシの大動脈壁のサンプル
(c2)サンプルS23:PVA1700を用いて作製された第2キャップ部材20のサンプルであって、PVA濃度を20wt%としたサンプル
(c3)サンプルS24:PVA4000を用いて作製された第2キャップ部材20のサンプルであって、PVA濃度を20wt%としたサンプル
(c4)サンプルS36:細孔の内径が15μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプル
(c1)サンプルS12:ウシの大動脈壁のサンプル
(c2)サンプルS23:PVA1700を用いて作製された第2キャップ部材20のサンプルであって、PVA濃度を20wt%としたサンプル
(c3)サンプルS24:PVA4000を用いて作製された第2キャップ部材20のサンプルであって、PVA濃度を20wt%としたサンプル
(c4)サンプルS36:細孔の内径が15μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプル
次いで、各サンプルを引張試験機にかけて荷重を付加し、変位量を測定することで、「応力(MPa)」と「歪み(%)」との関係を求めた。図6の横軸には応力を、縦軸には歪みを、それぞれ記載している。図6のS24に示すように、第2キャップ部材20の材料として用いたPVA4000は、ウシ大動脈壁(S12)と同等の初期弾性率(図6:破線丸枠)であることから、第2キャップ部材20において、ウシ大動脈壁の物理的特性を模擬できていることがわかる。同様に、図6のS36に示すように、第1キャップ部材30の材料として用いたポリウレタンスポンジは、ウシ大動脈壁(S12)と同等の初期弾性率(図6:破線丸枠)であることから、第1キャップ部材30において、ウシ大動脈壁の物理的特性を模擬できていることがわかる。
図7は、動物細胞と多孔質体の拡大図の一例である。図7(A)には、動物細胞の例としてのウシの大動脈壁を、顕微鏡で観察した際の像を示す。図7(B)には、細孔の内径が25μmのポリウレタンスポンジを用いて作製された第1キャップ部材30のサンプルを、顕微鏡で観察した際の像を示す。図示のように、ポリウレタンスポンジは、ウシ大動脈壁を構成する動物細胞と同様の大きさの、水分を保持するための微小な空隙を有している。このため、ポリウレタンスポンジにおける細孔の内径を、動物細胞の内径に近似させることによって、ポリウレタンスポンジを、動物細胞に類似した物理的特性やアブレーションによる損傷形態とすることができる。
以上のように、第1実施形態の血管モデル1において、病変部2(病変モデル)は、本体部40と、本体部40よりも先端側に配置された第1キャップ部材30と、本体部40よりも基端側に配置された第2キャップ部材20と、を有する。このため、本体部40の両端に配置された第1キャップ部材30及び第2キャップ部材20によって、実際のヒトの病変部のうちの「圧縮されて硬くなった外側部分」を模擬できる。また、病変部2のうち、本体部40は第2の高分子材料により形成され、第2キャップ部材20は多孔質体により形成されている。このため、病変部2をアクリル樹脂やポリカーボネートにより形成する場合と比較して、病変部2の硬さを実際のヒトの病変部に近づけることができる。さらに、第2の高分子材料により形成された本体部40と、多孔質体により形成された第1キャップ部材30とは、共に導電性を有する。このため、プラズマガイドワイヤ8を用いてアブレーションした際の病変部2の状態を、実際のヒトの病変部に似せることができる。これらの結果、病変部2を有する血管モデル1において、医療用デバイスを用いた手技の模擬を実臨床に近い環境で実現可能とできる。
また、第1実施形態の血管モデル1において、本体部40は、血管部10の内腔1Lに充填されることにより、血管部10における流体の流通を阻害しており、第1キャップ部材30は本体部40の先端面を、第2キャップ部材20は本体部40の基端面を、それぞれ被覆しているため、慢性完全閉塞(CTO:Chronic Total Occlusion)を模擬した病変部2を実現できる。
さらに、実際のヒトの病変部では、病変部の端部においてプラーク病変が血管に詰まり、血圧により圧縮されてプラーク病変の塊を生じる場合がある。第1実施形態の血管モデル1によれば、第1キャップ部材30のうち、本体部40に面する側には、本体部40に向かって突出した突出部31が形成されているため、この突出部31によって、実際のヒトの病変部に生じるプラーク病変の塊を模擬できる。また、第1キャップ部材30の細孔の内径は、0.5μm以上、かつ、200μm以下であるため、第1キャップ部材30が有する空隙の大きさを、動物細胞の大きさに近似させることができる。この結果、第1キャップ部材30内に保持される水分量を、実際のヒトの病変部において保持される水分量に近似させることができ、プラズマガイドワイヤ8を用いてアブレーションした際の病変部2の状態を、実際のヒトの病変部により一層似せることができる。
さらに、第1実施形態の血管モデル1によれば、第2キャップ部材20のうち、本体部40に面する側の反対側の基端面21(すなわち、外側の端面)は、血管部10の中心軸Oに対して傾斜している。このため、プラズマガイドワイヤ8等の医療用デバイスの先端部を、基端面21において滑りやすくできる。この結果、血管モデル1を用いて模擬可能な手技の難易度を向上させることができ、術者の手技のレベル向上に役立てることができる。また、第2キャップ部材20は、第1の高分子材料及び第2の高分子材料とはそれぞれ異なる、第3の高分子材料により形成されている。このため、第2キャップ部材20をアクリル樹脂やポリカーボネートにより形成する場合と比較して、第2キャップ部材20の硬さを実際のヒトの病変部に近づけることができる。さらに、第2キャップ部材20は導電性を有するため、プラズマガイドワイヤ8を用いてアブレーションした際の病変部2の状態を、実際のヒトの病変部に似せることができる。
<第2実施形態>
図8は、第2実施形態の血管モデル1Aの断面構成を例示した説明図である。第2実施形態の血管シミュレーション装置100Aは、血管モデル1に代えて血管モデル1Aを備える。血管モデル1Aは、第1実施形態で説明した構成において、病変部2に代えて病変部2Aを備える。病変部2Aは、第2キャップ部材20に代えて第2キャップ部材20Aを有している。第2キャップ部材20Aは、多孔質体により形成されている点を除いて、第1実施形態と同様の構成を有している。多孔質体としては、例えば、ポリウレタンスポンジ、ポリウレタン以外の合成樹脂を発泡成形して作られた合成スポンジ、天然の海綿が採用されてもよい。ここで、第2キャップ部材20Aには、第1キャップ部材30と同じ材料が使用されてもよく、第1キャップ部材30とは異なる材料が使用されてもよい。
図8は、第2実施形態の血管モデル1Aの断面構成を例示した説明図である。第2実施形態の血管シミュレーション装置100Aは、血管モデル1に代えて血管モデル1Aを備える。血管モデル1Aは、第1実施形態で説明した構成において、病変部2に代えて病変部2Aを備える。病変部2Aは、第2キャップ部材20に代えて第2キャップ部材20Aを有している。第2キャップ部材20Aは、多孔質体により形成されている点を除いて、第1実施形態と同様の構成を有している。多孔質体としては、例えば、ポリウレタンスポンジ、ポリウレタン以外の合成樹脂を発泡成形して作られた合成スポンジ、天然の海綿が採用されてもよい。ここで、第2キャップ部材20Aには、第1キャップ部材30と同じ材料が使用されてもよく、第1キャップ部材30とは異なる材料が使用されてもよい。
このように、第2キャップ部材20Aの構成は種々の変更が可能であり、ポリウレタンスポンジ等の多孔質体により形成されてもよい。また、第2キャップ部材20Aには、第1キャップ部材30と同じ材料が使用されてもよい。このような第2実施形態の血管モデル1Aによっても、上述した第1実施形態と同様の効果を奏することができる。第2実施形態の血管モデル1Aによれば、種々の材料で第2キャップ部材20Aを形成できる。
<第3実施形態>
図9は、第3実施形態の血管モデル1Bの断面構成を例示した説明図である。第3実施形態の血管シミュレーション装置100Bは、血管モデル1に代えて血管モデル1Bを備える。血管モデル1Bは、第1実施形態で説明した構成において、病変部2に代えて病変部2Bを備える。病変部2Bは、第2キャップ部材20に代えて第2キャップ部材20Bを有している。第2キャップ部材20Bは、第2キャップ部材20Bの基端面21が、血管部10の中心軸Oに対して垂直に配置されている点を除いて、第1実施形態と同様の構成を有している。このように、第2キャップ部材20Bの構成は種々の変更が可能であり、第2キャップ部材20Bの基端面21は、血管部10の中心軸Oに対して垂直であってもよい。このような第3実施形態の血管モデル1Bによっても、上述した第1実施形態と同様の効果を奏することができる。第3実施形態の血管モデル1Bによれば、種々の傾きで第2キャップ部材20Bを配置できる。
図9は、第3実施形態の血管モデル1Bの断面構成を例示した説明図である。第3実施形態の血管シミュレーション装置100Bは、血管モデル1に代えて血管モデル1Bを備える。血管モデル1Bは、第1実施形態で説明した構成において、病変部2に代えて病変部2Bを備える。病変部2Bは、第2キャップ部材20に代えて第2キャップ部材20Bを有している。第2キャップ部材20Bは、第2キャップ部材20Bの基端面21が、血管部10の中心軸Oに対して垂直に配置されている点を除いて、第1実施形態と同様の構成を有している。このように、第2キャップ部材20Bの構成は種々の変更が可能であり、第2キャップ部材20Bの基端面21は、血管部10の中心軸Oに対して垂直であってもよい。このような第3実施形態の血管モデル1Bによっても、上述した第1実施形態と同様の効果を奏することができる。第3実施形態の血管モデル1Bによれば、種々の傾きで第2キャップ部材20Bを配置できる。
<第4実施形態>
図10は、第4実施形態の血管モデル1Cの断面構成を例示した説明図である。第4実施形態の血管シミュレーション装置100Cは、血管モデル1に代えて血管モデル1Cを備える。血管モデル1Cは、第1実施形態で説明した構成において、病変部2に代えて病変部2Cを備える。病変部2Cは、第2キャップ部材20に代えて第2キャップ部材20Cを有している。第2キャップ部材20Cは、略C字状に湾曲した板状である。第2キャップ部材20Cのうち、本体部40に面する側の反対側の基端面21Cは、一部分が血管部10の中心軸Oに対して傾斜しており、一部分が中心軸Oに対して垂直である。
図10は、第4実施形態の血管モデル1Cの断面構成を例示した説明図である。第4実施形態の血管シミュレーション装置100Cは、血管モデル1に代えて血管モデル1Cを備える。血管モデル1Cは、第1実施形態で説明した構成において、病変部2に代えて病変部2Cを備える。病変部2Cは、第2キャップ部材20に代えて第2キャップ部材20Cを有している。第2キャップ部材20Cは、略C字状に湾曲した板状である。第2キャップ部材20Cのうち、本体部40に面する側の反対側の基端面21Cは、一部分が血管部10の中心軸Oに対して傾斜しており、一部分が中心軸Oに対して垂直である。
このように、第2キャップ部材20Cの構成は種々の変更が可能であり、第2キャップ部材20Cの形状は、平板状に限らず、任意の形状とできる。例えば、第2キャップ部材20Cは、略C字状に湾曲した板状のほか、球状や、半球状や、そのほかランダムな形状であってもよい。例えば、第2キャップ部材20Cは、第1キャップ部材30と同様に、略円錐形状の突出部と、略円柱形状の本体部とを有する構成であってもよい。このような第4実施形態の血管モデル1Cによっても、上述した第1実施形態と同様の効果を奏することができる。第4実施形態の血管モデル1Cによれば、第2キャップ部材20Cを種々の形状とできる。
<第5実施形態>
図11は、第5実施形態の血管モデル1Dの断面構成を例示した説明図である。第5実施形態の血管シミュレーション装置100Dは、血管モデル1に代えて血管モデル1Dを備える。血管モデル1Dは、第1実施形態で説明した構成において、病変部2に代えて病変部2Dを備える。病変部2Dは、第1キャップ部材30に代えて第1キャップ部材30Dを有している。第1キャップ部材30Dは、平板状であって、血管部10の中心軸Oに対して垂直に配置されている。第1キャップ部材30DのX軸方向の長さL30Dは、1mm以上であることが好ましい。ここで、長さL30Dは、図11に示すように、任意の縦断面において、第1キャップ部材30DのX軸方向の長さが最も短い部分の長さとする。
図11は、第5実施形態の血管モデル1Dの断面構成を例示した説明図である。第5実施形態の血管シミュレーション装置100Dは、血管モデル1に代えて血管モデル1Dを備える。血管モデル1Dは、第1実施形態で説明した構成において、病変部2に代えて病変部2Dを備える。病変部2Dは、第1キャップ部材30に代えて第1キャップ部材30Dを有している。第1キャップ部材30Dは、平板状であって、血管部10の中心軸Oに対して垂直に配置されている。第1キャップ部材30DのX軸方向の長さL30Dは、1mm以上であることが好ましい。ここで、長さL30Dは、図11に示すように、任意の縦断面において、第1キャップ部材30DのX軸方向の長さが最も短い部分の長さとする。
このように、第1キャップ部材30Dの構成は種々の変更が可能であり、第1キャップ部材30Dの形状は、突出部31及び本体部32を有する形状に限らず、任意の形状とできる。例えば、第1キャップ部材30Dは、平板状のほか、略C字状に湾曲した板状や、球状や、半球状や、そのほかランダムな形状であってもよい。また、第1キャップ部材30Dは、第2キャップ部材20と同様に、血管部10の中心軸Oに対して傾斜して配置されていてもよい。このような第5実施形態の血管モデル1Dによっても、上述した第1実施形態と同様の効果を奏することができる。第5実施形態の血管モデル1Dによれば、第1キャップ部材30Dを種々の形状とできる。
<第6実施形態>
図12は、第6実施形態の血管モデル1Eの断面構成を例示した説明図である。第6実施形態の血管シミュレーション装置100Eは、血管モデル1に代えて血管モデル1Eを備える。血管モデル1Eは、第1実施形態で説明した構成において、病変部2に代えて病変部2Eを備える。病変部2Eは、第1キャップ部材30に代えて第1キャップ部材30Eを有している。
図12は、第6実施形態の血管モデル1Eの断面構成を例示した説明図である。第6実施形態の血管シミュレーション装置100Eは、血管モデル1に代えて血管モデル1Eを備える。血管モデル1Eは、第1実施形態で説明した構成において、病変部2に代えて病変部2Eを備える。病変部2Eは、第1キャップ部材30に代えて第1キャップ部材30Eを有している。
図12上段には、血管モデル1Eの縦断面構成を示す。図12下段の左側破線吹き出し内(BB1)には、図12上段のB-B線に沿った横断面における血管モデル1Eの一例を示す。図12下段の右側破線吹き出し内(BB2)には、図12上段のB-B線に沿った横断面における血管モデル1Eの他の例を示す。第1キャップ部材30Eは、略円柱形状であり、X軸方向に第1キャップ部材30Eを貫通する貫通孔33を有している。貫通孔33は、左側破線吹き出し内(BB1)に示すように、第1キャップ部材30Eの略中央部分に設けられた円孔であり、周囲を第1キャップ部材30Eの肉厚部によって取り囲まれていてもよい。なお、貫通孔33は、円孔でなく、楕円形、矩形、多角形等、種々の形状の孔としてよい。また、貫通孔33は、右側破線吹き出し内(BB2)に示すように、第1キャップ部材30EをY軸方向(またはZ軸方向)に分割する孔であってもよい。第1キャップ部材30EのX軸方向の長さL30Eは、1mm以上であることが好ましい。ここで、長さL30Eは、図12上段に示すように、任意の縦断面において、第1キャップ部材30EのX軸方向の長さが最も短い部分の長さとする。
このように、第1キャップ部材30Eの構成は種々の変更が可能であり、第1キャップ部材30Eには、X軸方向に第1キャップ部材30Eを貫通する貫通孔33が設けられていてもよい。また、第1キャップ部材30Eは、貫通孔33に代えて、第1キャップ部材30Eの内部(肉厚部内)に設けられた空隙を有していてもよい。このような第6実施形態の血管モデル1Eによっても、上述した第1実施形態と同様の効果を奏することができる。第6実施形態の血管モデル1Eによれば、第1キャップ部材30Eを、貫通孔33や空隙を有する、種々の形状とできる。
<第7実施形態>
図13は、第7実施形態の血管モデル1Fの断面構成を例示した説明図である。第7実施形態の血管シミュレーション装置100Fは、血管モデル1に代えて血管モデル1Fを備える。血管モデル1Fは、第1実施形態で説明した構成において、血管部10に代えて血管部10Fを備える。血管部10Fは、本枝10aと、側枝10bとを有している。
図13は、第7実施形態の血管モデル1Fの断面構成を例示した説明図である。第7実施形態の血管シミュレーション装置100Fは、血管モデル1に代えて血管モデル1Fを備える。血管モデル1Fは、第1実施形態で説明した構成において、血管部10に代えて血管部10Fを備える。血管部10Fは、本枝10aと、側枝10bとを有している。
本枝10aの内腔1Lには、病変部2が設けられている。側枝10bは、ヒトの側枝血管を模擬した部分である。側枝10bは、一端が開口しており、他端が本枝10aに対して内腔1Lを連通させた状態で接続されている。換言すれば、側枝10bは、本枝10aと内腔1Lを連通させた状態で、本枝10aから分岐して延びている。また、側枝10bは、本枝10aのうち、第2キャップ部材20の傾斜した基端面21に近接した位置から分岐して延びている。このようにすれば、図13に示すように、順行性アプローチで挿入されたプラズマガイドワイヤ8の先端部が、第2キャップ部材20の基端面21で滑りを生じた際に、側枝10bの内腔1Lへと導かれやすくなる。なお、図13に示すように、側枝10bの内壁の傾きを、第2キャップ部材20の基端面21の傾きと近づけることが好ましい。そうすれば、プラズマガイドワイヤ8の先端部を、側枝10bの内腔1Lへとより入り込みやすくできる。
このように、血管部10Fの構成は種々の変更が可能であり、病変部2が設けられた本枝10aとは異なる側枝10bを有していてもよい。図13の例では、1本の側枝10bについて例示したが、2本以上の任意の数の側枝10bが設けられていてもよい。また、側枝10bは、第1キャップ部材30のうちの先端側(換言すれば、本体部40に面する側の反対側)の端面に近接した位置から延びていてもよい。さらに、本枝10aには、血管壁が解離した偽腔が形成されていてもよい。
このような第7実施形態の血管モデル1Fによっても、上述した第1実施形態と同様の効果を奏することができる。さらに、第7実施形態の血管モデル1Fによれば、血管部10Fは、本枝10aと内腔1Lを連通させた状態で本枝10aから分岐して延びる側枝10bであって、本枝10aのうち、第2キャップ部材20の傾斜した基端面21に近接した位置から延びる側枝10bを有する。このため、第7実施形態の血管モデル1Fを用いた手技の模擬では、プラズマガイドワイヤ8(医療用デバイス)が、第2キャップ部材20の傾斜した基端面21において滑りを生じ、病変部2がある本枝10aとは異なる、側枝10bに導かれやすくなる。この結果、血管モデル1Fを用いて模擬可能な手技の難易度を向上させることができ、術者の手技のレベル向上に役立てることができる。
<第8実施形態>
図14は、第8実施形態の血管モデル1Gの断面構成を例示した説明図である。第8実施形態の血管シミュレーション装置100Gは、血管モデル1に代えて血管モデル1Gを備える。血管モデル1Gは、第1実施形態で説明した構成において、病変部2に代えて病変部2Gを備える。病変部2Gは、本体部40に代えて本体部40Gを、第1キャップ部材30に代えて第1キャップ部材30Gを、第2キャップ部材20に代えて第2キャップ部材20Gを、それぞれ有する。
図14は、第8実施形態の血管モデル1Gの断面構成を例示した説明図である。第8実施形態の血管シミュレーション装置100Gは、血管モデル1に代えて血管モデル1Gを備える。血管モデル1Gは、第1実施形態で説明した構成において、病変部2に代えて病変部2Gを備える。病変部2Gは、本体部40に代えて本体部40Gを、第1キャップ部材30に代えて第1キャップ部材30Gを、第2キャップ部材20に代えて第2キャップ部材20Gを、それぞれ有する。
図14上段には、血管モデル1Gの縦断面構成を示す。図14下段の左側破線吹き出し内(CC1)には、図14上段のC-C線に沿った横断面における血管モデル1Gの一例を示す。図14下段の右側破線吹き出し内(CC2)には、図14上段のC-C線に沿った横断面における血管モデル1Gの他の例を示す。本体部40G、第1キャップ部材30G、及び第2キャップ部材20Gには、X軸方向に各部材を貫通する貫通孔THが形成されている。貫通孔THは任意の形状とでき、左側破線吹き出し内(CC1)に示すように、半円形状の横断面を有する孔であってもよく、右側破線吹き出し内(CC2)に示すように、円形状の横断面を有する孔であってもよい。このように、血管モデル1Gでは、貫通孔THを通じて、血管部10における流体の流通が可能である。
このように、病変部2Gの構成は種々の変更が可能であり、病変部2Gを貫通する貫通孔THを設けることによって、血管部10における流体の流通を可能としてもよい。図14の例では、X軸に沿って直線状に延びる貫通孔THを例示したが、貫通孔THは、YZ軸方向に蛇行して延びていてもよい。また、病変部2Gには、複数の貫通孔THが設けられていてもよい。このような第8実施形態の血管モデル1Gによっても、上述した第1実施形態と同様の効果を奏することができる。第8実施形態の血管モデル1Gによれば、病変部2Gによって、狭窄病変を模擬できる。
<第9実施形態>
図15は、第9実施形態の血管モデル1Hの断面構成を例示した説明図である。第9実施形態の血管シミュレーション装置100Hは、血管モデル1に代えて血管モデル1Hを備える。血管モデル1Hは、第1実施形態で説明した構成において、本体部40に代えて本体部40Hを有する。
図15は、第9実施形態の血管モデル1Hの断面構成を例示した説明図である。第9実施形態の血管シミュレーション装置100Hは、血管モデル1に代えて血管モデル1Hを備える。血管モデル1Hは、第1実施形態で説明した構成において、本体部40に代えて本体部40Hを有する。
本体部40Hの先端側(換言すれば、第1キャップ部材30に面する側)に位置する先端面43は、先端面43の一部分が、第1キャップ部材30と離間している。本体部40Hの先端面43と、第1キャップ部材30との間には、空隙SP1が設けられている。同様に、本体部40Hの基端側(換言すれば、第2キャップ部材20に面する側)に位置する基端面44は、基端面44の一部分が、第2キャップ部材20と離間している。本体部40Hの基端面44と、第2キャップ部材20との間には、空隙SP2が設けられている。
このように、本体部40Hの構成は種々の変更が可能であり、本体部40Hの形状は任意に定めることができ、本体部40Hは、第1キャップ部材30や第2キャップ部材20との境界において、空隙SP1,SP2を有していてもよい。空隙SP1,SP2のうち、いずれか一方は省略されてもよい。また、本体部40Hと第1キャップ部材30との間には2つ以上の空隙があってもよく、本体部40Hと第2キャップ部材20との間には2つ以上の空隙があってもよい。このような第9実施形態の血管モデル1Hによっても、上述した第1実施形態と同様の効果を奏することができる。第9実施形態の血管モデル1Hによれば、本体部40Hを種々の形状とできる。
<第10実施形態>
図16は、第10実施形態の血管シミュレーション装置100Iの概略構成を例示した説明図である。血管シミュレーション装置100Iは、第1実施形態で説明した構成において、外側組織モデル3と、循環ポンプ9とを備えていない。血管シミュレーション装置100Iの血管モデル1は、流体(例えば、生理食塩水などの模擬血液)によって湿らせた後で使用されてもよく、乾いた状態で使用されてもよい。また、血管シミュレーション装置100Iは、例えば、内部に流体を満たすことが可能な水槽を備えており、血管モデル1は、流体を満たした水槽内に置いた状態で使用されてもよい。このような第10実施形態の血管シミュレーション装置100Iによっても、上述した第1実施形態と同様の効果を奏することができる。
図16は、第10実施形態の血管シミュレーション装置100Iの概略構成を例示した説明図である。血管シミュレーション装置100Iは、第1実施形態で説明した構成において、外側組織モデル3と、循環ポンプ9とを備えていない。血管シミュレーション装置100Iの血管モデル1は、流体(例えば、生理食塩水などの模擬血液)によって湿らせた後で使用されてもよく、乾いた状態で使用されてもよい。また、血管シミュレーション装置100Iは、例えば、内部に流体を満たすことが可能な水槽を備えており、血管モデル1は、流体を満たした水槽内に置いた状態で使用されてもよい。このような第10実施形態の血管シミュレーション装置100Iによっても、上述した第1実施形態と同様の効果を奏することができる。
<本実施形態の変形例>
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
[変形例1]
上記第1~10実施形態では、血管シミュレーション装置100,100A~100Iの構成の一例を示した。しかし、血管シミュレーション装置100の構成は種々の変更が可能である。例えば、血管シミュレーション装置100は、心臓、肝臓、脳等の臓器を模した臓器モデルを有していてもよい。この場合、血管モデル1は、臓器モデルの外側や、内側に設けられていてもよい。例えば、血管シミュレーション装置100は、循環ポンプ9により循環される流体に、脈動を模擬した動きを加えるための脈動ポンプを備えていてもよい。脈動ポンプには、例えば、容積式の往復ポンプや、低速回転された回転ポンプを使用できる。
上記第1~10実施形態では、血管シミュレーション装置100,100A~100Iの構成の一例を示した。しかし、血管シミュレーション装置100の構成は種々の変更が可能である。例えば、血管シミュレーション装置100は、心臓、肝臓、脳等の臓器を模した臓器モデルを有していてもよい。この場合、血管モデル1は、臓器モデルの外側や、内側に設けられていてもよい。例えば、血管シミュレーション装置100は、循環ポンプ9により循環される流体に、脈動を模擬した動きを加えるための脈動ポンプを備えていてもよい。脈動ポンプには、例えば、容積式の往復ポンプや、低速回転された回転ポンプを使用できる。
[変形例2]
上記第1~10実施形態では、血管モデル1,1A~1Hの構成の一例を示した。しかし、血管モデル1の構成は種々の変更が可能である。例えば、血管部10は、直線状のほか、湾曲形状や、蛇行形状等の任意の形状としてよい。例えば、血管部10は、親水性または疎水性を有する樹脂によりコーティングされていてもよい。
上記第1~10実施形態では、血管モデル1,1A~1Hの構成の一例を示した。しかし、血管モデル1の構成は種々の変更が可能である。例えば、血管部10は、直線状のほか、湾曲形状や、蛇行形状等の任意の形状としてよい。例えば、血管部10は、親水性または疎水性を有する樹脂によりコーティングされていてもよい。
例えば、病変部2は、上記実施形態で説明した本体部40、第2キャップ部材20、及び第1キャップ部材30とは異なる部材を有していてもよい。この部材は、本体部40の肉厚部内に設けられた、任意の形状(例えば、球状や、任意の形の塊状)であって、本体部40の内部に形成された石灰化病変等を模擬してもよい。また、この部材は、第2キャップ部材20と同様の平板状であってもよい。これらの部材は、本体部40の肉厚部内のほか、本体部40と第1キャップ部材30との間に設けられてもよく、第1キャップ部材30よりも先端側(-X軸方向)に設けられてもよく、本体部40と第2キャップ部材20との間に設けられてもよく、第2キャップ部材20よりも基端側(+X軸方向)に設けられてもよい。
[変形例3]
第1~10実施形態の血管シミュレーション装置100,100A~100Iまたは血管モデル1,1A~1Hの構成、及び上記変形例1,2の血管シミュレーション装置100,100A~100Iまたは血管モデル1,1A~1Hの構成は、適宜組み合わせてもよい。例えば、第2~第4実施形態のいずれかで説明した第2キャップ部材20と、第5及び第6実施形態のいずれかで説明した第1キャップ部材30と、第9実施形態で説明した本体部40と、第7実施形態で説明した血管部10と、を任意に組み合わせて、血管モデル1を構成してもよい。例えば、第10実施形態の血管シミュレーション装置100において、第1~第9実施形態のいずれかで説明した血管モデル1を用いてもよい。
第1~10実施形態の血管シミュレーション装置100,100A~100Iまたは血管モデル1,1A~1Hの構成、及び上記変形例1,2の血管シミュレーション装置100,100A~100Iまたは血管モデル1,1A~1Hの構成は、適宜組み合わせてもよい。例えば、第2~第4実施形態のいずれかで説明した第2キャップ部材20と、第5及び第6実施形態のいずれかで説明した第1キャップ部材30と、第9実施形態で説明した本体部40と、第7実施形態で説明した血管部10と、を任意に組み合わせて、血管モデル1を構成してもよい。例えば、第10実施形態の血管シミュレーション装置100において、第1~第9実施形態のいずれかで説明した血管モデル1を用いてもよい。
以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
1,1A~1H…血管モデル
1a,1b…開口
2,2A~2E,2G…病変部
3…外側組織モデル
8…プラズマガイドワイヤ
9…循環ポンプ
10,10F…血管部
10a…本枝
10b…側枝
12…内周面
20,20A~20C,20G…第2キャップ部材
30,30D,30E,30G…第1キャップ部材
21…基端面
31…突出部
32…本体部
33…貫通孔
40,40G,40H…本体部
41…凹部
42…傾斜部
43…先端面
44…基端面
100,100A~100I…血管シミュレーション装置
1a,1b…開口
2,2A~2E,2G…病変部
3…外側組織モデル
8…プラズマガイドワイヤ
9…循環ポンプ
10,10F…血管部
10a…本枝
10b…側枝
12…内周面
20,20A~20C,20G…第2キャップ部材
30,30D,30E,30G…第1キャップ部材
21…基端面
31…突出部
32…本体部
33…貫通孔
40,40G,40H…本体部
41…凹部
42…傾斜部
43…先端面
44…基端面
100,100A~100I…血管シミュレーション装置
Claims (7)
- 血管モデルであって、
第1の高分子材料により形成された中空管形状の血管部と、
前記血管部の内腔に配置された病変部と、
を備え、
前記病変部は、
前記第1の高分子材料とは異なる第2の高分子材料により形成された本体部と、
前記本体部よりも先端側に配置され、多孔質体により形成された第1キャップ部材と、
前記本体部よりも基端側に配置された第2キャップ部材と、
を有する、血管モデル。 - 請求項1に記載の血管モデルであって、
前記本体部は、前記血管部の内腔に充填されることにより、前記血管部における流体の流通を阻害しており、
前記第1キャップ部材は、前記本体部の先端面を被覆しており、
前記第2キャップ部材は、前記本体部の基端面を被覆している、血管モデル。 - 請求項1または請求項2に記載の血管モデルであって、
前記第1キャップ部材のうち、前記本体部に面する側には、前記本体部に向かって突出した突出部が形成されている、血管モデル。 - 請求項1から請求項3のいずれか一項に記載の血管モデルであって、
前記第1キャップ部材の細孔の内径は、0.5μm以上、かつ、200μm以下である、血管モデル。 - 請求項1から請求項4のいずれか一項に記載の血管モデルであって、
前記第2キャップ部材のうち、前記本体部に面する側の反対側の端面は、前記血管部の中心軸に対して傾斜している、血管モデル。 - 請求項5に記載の血管モデルであって、
前記血管部は、
内腔に前記病変部が設けられた本枝と、
前記本枝と内腔を連通させた状態で前記本枝から分岐して延びる側枝であって、前記本枝のうち、前記第2キャップ部材の傾斜した前記端面に近接した位置から延びる側枝と、を有する、血管モデル。 - 請求項1から請求項6のいずれか一項に記載の血管モデルであって、
前記第2キャップ部材は、前記第1の高分子材料及び前記第2の高分子材料とはそれぞれ異なる、第3の高分子材料により形成されている、血管モデル。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/048806 WO2022137524A1 (ja) | 2020-12-25 | 2020-12-25 | 血管モデル |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/048806 WO2022137524A1 (ja) | 2020-12-25 | 2020-12-25 | 血管モデル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137524A1 true WO2022137524A1 (ja) | 2022-06-30 |
Family
ID=82157935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/048806 WO2022137524A1 (ja) | 2020-12-25 | 2020-12-25 | 血管モデル |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022137524A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024157323A1 (ja) * | 2023-01-23 | 2024-08-02 | 朝日インテック株式会社 | 病変モデル、および病変モデル付き生体モデル |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012189909A (ja) * | 2011-03-11 | 2012-10-04 | Asahi Intecc Co Ltd | 血管病変モデル |
JP2012251057A (ja) * | 2011-06-01 | 2012-12-20 | Osaka Univ | ポリビニルアルコール多孔質体およびその製造方法 |
CN105206154A (zh) * | 2015-09-24 | 2015-12-30 | 中国人民解放军第三军医大学第二附属医院 | 分叉血管模型、模具及制作方法 |
JP2018178069A (ja) * | 2016-08-31 | 2018-11-15 | 株式会社リコー | ハイドロゲル構造体、その製造方法、活性エネルギー線硬化型液体組成物、及び用途 |
-
2020
- 2020-12-25 WO PCT/JP2020/048806 patent/WO2022137524A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012189909A (ja) * | 2011-03-11 | 2012-10-04 | Asahi Intecc Co Ltd | 血管病変モデル |
JP2012251057A (ja) * | 2011-06-01 | 2012-12-20 | Osaka Univ | ポリビニルアルコール多孔質体およびその製造方法 |
CN105206154A (zh) * | 2015-09-24 | 2015-12-30 | 中国人民解放军第三军医大学第二附属医院 | 分叉血管模型、模具及制作方法 |
JP2018178069A (ja) * | 2016-08-31 | 2018-11-15 | 株式会社リコー | ハイドロゲル構造体、その製造方法、活性エネルギー線硬化型液体組成物、及び用途 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024157323A1 (ja) * | 2023-01-23 | 2024-08-02 | 朝日インテック株式会社 | 病変モデル、および病変モデル付き生体モデル |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2611132T3 (es) | Catéteres guiados por imágenes | |
US6790043B2 (en) | Method and apparatus for surgical training | |
EP1667609B1 (en) | System for breast augmentation | |
JP5165088B2 (ja) | 外科手術用アクセス装置における使用のための外科手術用シール | |
CN112055564B (zh) | 用于封闭组织中的通道的系统和方法 | |
JP3780253B2 (ja) | 超音波用ファントム | |
CN101217916B (zh) | 穿刺和闭合装置以及方法 | |
CN108463156A (zh) | 光学引导式外科手术装置 | |
TW200403039A (en) | Method and barrier for limiting fluid movement through a tissue rent | |
IL129518A (en) | Echogenic coating containing gaseous spaces for ultrasonography | |
JP2016525391A (ja) | 外科研修及び撮像脳ファントム | |
WO2020116277A1 (ja) | 血管モデル及び臓器シミュレータ | |
JP2012189909A (ja) | 血管病変モデル | |
WO2022137524A1 (ja) | 血管モデル | |
US20210272481A1 (en) | Organ simulator | |
CN116964655A (zh) | 血管模型 | |
JP2019045602A (ja) | 手技シミュレータ | |
Waxman et al. | Preclinical safety testing of percutaneous transatrial access to the normal pericardial space for local cardiac drug delivery and diagnostic sampling | |
JP2017146415A (ja) | 生体モデルおよびその製造方法 | |
JP7343109B2 (ja) | 超音波ガイド法の穿刺手技訓練用皮膚モデルおよび超音波ガイド法の穿刺手技訓練用皮膚モデルのエコー画像における針先の視認性調整方法 | |
EP4386721A1 (en) | Vascular lesion model | |
CN108697887A (zh) | 在软组织中提供植入点位的方法 | |
JP2018136384A (ja) | 外科手技モデル及び手技シミュレータ | |
TWI630934B (zh) | 移植醫藥設備到神經組織中的方法以及設備 | |
CN106409043A (zh) | 模拟脏器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20967010 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20967010 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |