[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022130508A1 - Thin temperature sensor - Google Patents

Thin temperature sensor Download PDF

Info

Publication number
WO2022130508A1
WO2022130508A1 PCT/JP2020/046775 JP2020046775W WO2022130508A1 WO 2022130508 A1 WO2022130508 A1 WO 2022130508A1 JP 2020046775 W JP2020046775 W JP 2020046775W WO 2022130508 A1 WO2022130508 A1 WO 2022130508A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
thin temperature
thin
insulating substrate
electrode layer
Prior art date
Application number
PCT/JP2020/046775
Other languages
French (fr)
Japanese (ja)
Inventor
光昭 戸田
琢哉 長谷川
亮平 田代
Original Assignee
株式会社メイコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=81749592&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022130508(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社メイコー filed Critical 株式会社メイコー
Priority to PCT/JP2020/046775 priority Critical patent/WO2022130508A1/en
Priority to JP2021516704A priority patent/JP7076045B1/en
Priority to TW110146856A priority patent/TW202240604A/en
Publication of WO2022130508A1 publication Critical patent/WO2022130508A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • G01K1/12Protective devices, e.g. casings for preventing damage due to heat overloading
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/028Housing; Enclosing; Embedding; Filling the housing or enclosure the resistive element being embedded in insulation with outer enclosing sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/034Housing; Enclosing; Embedding; Filling the housing or enclosure the housing or enclosure being formed as coating or mould without outer sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient

Definitions

  • the present invention relates to a thin temperature sensor.
  • Thermistors and platinum resistance temperature detectors are known as temperature sensors using metals or metal oxides whose resistance value changes depending on the temperature, and are particularly widely used for industrial temperature measurement.
  • Such a temperature sensor can be made thinner by forming a metal thin film as a resistance temperature detector on an insulating substrate and providing a pair of electrode terminals conducting with the metal thin film.
  • Patent Documents 1 and 2 disclose a thin temperature sensor using a thermistor or a platinum resistance temperature detector.
  • Patent Document 1 discloses a thermistor in which a resistance film made of platinum is formed on an insulating substrate made of ceramic, and a platinum resistance temperature detector.
  • a thin temperature sensor is widely used in which a pair of electrode terminals are arranged on both sides of a patterned resistance film when the substrate surface is viewed in a plane.
  • the central portion of the resistance film is used as the pattern region, and both sides of the pattern region are used as the pad regions, so that the electrode terminals can be formed on the surface of the pad region relatively easily and inexpensively.
  • a pattern region of the resistance film is formed so as to connect the pair of electrode terminals in a zigzag shape.
  • a thin film-shaped heat-sensitive element made of a metal oxide such as manganese is provided on an insulating substrate, and the pattern region of a pair of opposing comb-shaped resistance films extending from each electrode terminal is the pattern region. It is formed on a heat sensitive element.
  • the thin temperature sensor as described above when used for measurement of 200 ° C. or higher, metal plating made of gold, copper, nickel or the like having a relatively high melting point is used for the electrode terminals.
  • the wiring is connected to the electrode terminal of the metal plating by soldering, the tin component contained in the solder diffuses into the metal plating by heat, and an intermetallic compound is formed at the boundary between the two.
  • the intermetallic compound has a high hardness, it has a brittle property. Therefore, when the thickness of the metal plating is less than about 1 ⁇ m, cracks are likely to occur and resistance is caused by a decrease in the proportion of pure metal components. The value will change. Therefore, it is necessary to secure a certain thickness of the electrode terminal in order to suppress the risk of damage and the change in resistance.
  • the intermetallic compound is not generated because the wiring connection is not performed by soldering, but the electrode terminal that can withstand the laser intensity is provided by the wiring connection by the laser via. It needs to be formed, and the thickness of the metal plating needs to be set to about 8 ⁇ m or more.
  • the present invention has been made in view of such a problem, and an object thereof is to prevent peeling of the resistance film even when the plating thickness of the electrode terminal formed on the resistance film is thick.
  • the purpose is to provide a thin temperature sensor capable of providing a thin temperature sensor.
  • the thin temperature sensor of the present invention is composed of an insulating substrate and a platinum thin film formed on the surface of the insulating substrate, and has a pattern region and a pair of substantially rectangular shapes extending from the pattern region. It is provided with an electrode layer including the pad region, a pair of electrode terminals formed by metal plating on a part of the pad region, a pattern region, and a glass protective film covering a corner portion of the pad region.
  • FIG. 1 is a perspective view schematically showing the outer shape of the thin temperature sensor 1 according to the first embodiment.
  • the thin temperature sensor 1 is a platinum resistance temperature detector arranged in the vicinity of a temperature measurement target, and in this embodiment, it is composed of an insulating substrate 2, an electrode layer 3, a pair of electrode terminals 4, and a glass protective film 5.
  • the thin temperature sensor 1 is not limited to the platinum resistance temperature detector, and may be a thermistor.
  • the insulating substrate 2 is a rectangular flat plate having rigidity, and is formed of an insulating material such as ceramic. Further, the insulating substrate 2 can be set to a thickness of, for example, 0.3 to 0.6 mm. However, the shape of the insulating substrate 2 is not limited to a rectangle, and can be appropriately changed according to the specifications of the thin temperature sensor 1.
  • the electrode layer 3 is a temperature measuring resistance element that is made of a platinum thin film in which a pattern is formed on the surface of the insulating substrate 2 and whose resistance value changes depending on the temperature.
  • the electrode layer 3 is set to a thickness of, for example, 0.1 to 3.0 ⁇ m, and is shown enlarged to a visible thickness in each figure.
  • the temperature measuring resistance element for example, a platinum resistor having a resistance value of 100 ⁇ at 0 ° C., so-called Pt100, can be adopted.
  • the electrode layer 3 is illustrated as having a shape in which the end portion when viewed in a plan view matches the contour of the insulating substrate 2, but the end portion is inside the contour of the insulating substrate 2.
  • the dimensions may be set so as to be.
  • the pair of electrode terminals 4 are made of metal plating formed on a part of the surface of the electrode layer 3, and the resistance value when a constant current is supplied between them is measured. Therefore, the pair of electrode terminals 4 have a function as wiring connection terminals to which lead wires are connected by soldering or welding, or are connected by laser vias when the thin temperature sensor 1 is built in the substrate.
  • the electrode terminal 4 is formed so that the metal plating has a sufficient thickness according to the specifications of the thin temperature sensor 1.
  • the metal plating of the electrode terminal 4 is formed of, for example, gold, copper, nickel, or palladium so that measurement up to a high temperature range is possible.
  • the glass protective film 5 is a coating layer made of a glass material having an insulating property, and in the present embodiment, the electrode layer 3 is electrically covered by covering the entire surface of the electrode layer 3 except the portion where the electrode terminal 4 is present. It is physically and physically protected.
  • FIG. 2 is a top view showing the shape of the electrode layer 3 according to the first embodiment.
  • the electrode layer 3 of the present embodiment is a single rectangular platinum thin film in which a pair of substantially rectangular pad regions 3b are provided at both ends, and a pattern extending in a zigzag shape so as to connect the pair of pad regions 3b. A region 3a is provided.
  • the shapes of the pattern region 3a and the pad region 3b can be appropriately changed as long as they function as the temperature measuring resistance element.
  • the shape of the pad region 3b is substantially rectangular, but the corners 3c at the four corners may have an R-plane shape.
  • the pattern region 3a is formed in a pair of facing comb teeth extending from the pair of pad regions 3b, and a heat sensitive element is provided between the thin temperature sensor 1 and the insulating substrate 2.
  • FIG. 3 is a top view of the thin temperature sensor 1 before forming the electrode terminal 4.
  • the above-mentioned electrode layer 3 is formed on the surface of the insulating substrate 2 by sputtering treatment, and the glass protective film 5 is further formed on the surface of the insulating substrate 2.
  • the electrode layer 3 provided directly below the glass protective film 5 is transparently shown.
  • the glass protective film 5 is provided with a pair of openings 5a in each pad region 3b so as to avoid the positions of the pair of electrode terminals 4 formed later. That is, in the state of FIG. 3, a part of the pad region 3b of the electrode layer 3 is exposed from the opening 5a.
  • the opening 5a is provided in the central portion of the pad region 3b so as not to overlap the corners 3c at the four corners of the pad region 3b, whereby the entire circumference of the end portion of the pad region 3b is covered with the glass protective film 5. Become.
  • the thin temperature sensor 1 shown in FIG. 1 is completed.
  • FIG. 4 is a side view of the thin temperature sensor E1 according to the first comparative example.
  • the electrode terminal 4 of the thin temperature sensor E1 is formed on the entire surface of the pad region 3b so as to overlap the corner portion 3c of the electrode layer 3.
  • the electrode terminal 4 according to the first comparative example is warped due to internal stress according to its thickness, and particularly at the corner portion 3c of the electrode layer 3, there is a possibility that the electrode terminal 4 will be lifted from the insulating substrate 2 together with the electrode layer 3 as shown by P1. Occurs. Then, as the floating progresses, the pad region 3b of the electrode layer 3 is completely separated from the insulating substrate 2 together with the electrode terminals 4.
  • FIG. 5 is a side view of the thin temperature sensor E2 according to the second comparative example.
  • the pad region 3b of the electrode layer 3 is narrow, and the electrode terminals 4 are formed so as to straddle the boundary between the insulating substrate 2 and the pad region 3b. That is, the electrode terminals 4 are arranged so as to cover the corners 3c of the electrode layer 3.
  • the electrode terminal 4 of the thin temperature sensor E2 is warped particularly around the corner portion 3c of the electrode layer 3 due to internal stress according to its thickness, and as shown by P2, the corner portion 3c of the electrode layer 3 is formed from the insulating substrate 2. There is a risk of peeling off.
  • FIG. 6 is a side view of the thin temperature sensor 1 according to the first embodiment of the present invention.
  • the entire circumference of the end portion of the pad region 3b including the corner portion 3c is covered with the glass protective film 5, the electrode terminal 4 does not exist directly above the electrode layer 3, and the glass protective film 5 is formed.
  • the contour portion of the pad region 3b is fixed to the insulating substrate 2 by the method.
  • the corner portion 3c together with the electrode terminal 4 is prevented from peeling from the insulating substrate 2. Therefore, according to the thin temperature sensor 1 according to the first embodiment of the present invention, even when the plating thickness of the electrode terminal 4 formed on the resistance film as the electrode layer 3 is thick, the resistance film can be peeled off. It can be suppressed.
  • the thin temperature sensor 10 according to the second embodiment will be described.
  • the shapes of the electrode terminals 4 and the glass protective film 5 in the thin temperature sensor 1 of the first embodiment described above are different from those of the first embodiment.
  • the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • FIG. 7 is a top view of the thin temperature sensor 10 according to the second embodiment. Similar to the thin temperature sensor 1 described above, the thin temperature sensor 10 has an electrode layer 3 formed on the surface of the insulating substrate 2.
  • the pair of electrode terminals 4a in the present embodiment are set to have dimensions such that the end portion in the longitudinal direction extends to the end portion of the insulating substrate 2 and the electrode layer 3 as compared with the above-mentioned thin temperature sensor 1. ing. Therefore, the glass protective film 5 is composed of a first portion 5b arranged between the pair of electrode terminals 4a and a pair of second portions 5c arranged outside the respective electrode terminals 4a.
  • the glass protective film 5 covers two sides of the end portion of the pad region 3b, including the corner portion 3c, facing each other so that the electrode terminal 4a does not exist directly above the corner portion 3c, and the pad region.
  • the two sides of 3b are fixed to the insulating substrate 2. Therefore, according to the thin temperature sensor 10 according to the second embodiment of the present invention, the case where the electrode terminal 4a formed on the resistance film as the electrode layer 3 has a thick plating thickness is similar to the thin temperature sensor 1 described above. Even so, it is possible to prevent the resistance film from peeling off.
  • the thin temperature sensor 10 according to the second embodiment since the first portion 5b and the second portion 5c of the glass protective film 5 have a simple shape, quality control becomes easy and the manufacturing cost can be suppressed. It is possible to reduce the cost of the product.
  • the thin temperature sensor 11 according to the third embodiment will be described.
  • the shapes of the electrode terminals 4 and the glass protective film 5 in the thin temperature sensor 1 of the first embodiment described above are different from those of the first embodiment.
  • the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • FIG. 8 is a top view of the thin temperature sensor 11 according to the third embodiment. Similar to the thin temperature sensor 1 described above, the thin temperature sensor 11 has an electrode layer 3 formed on the surface of the insulating substrate 2.
  • the pair of electrode terminals 4b in the present embodiment are set to have dimensions such that the end portion in the lateral direction extends to the end portion of the pad region 3b as compared with the above-mentioned thin temperature sensor 1. Therefore, the glass protective film 5d is formed in a continuous substantially H-shape.
  • the glass protective film 5d covers two sides of the end portion of the pad region 3b, including the corner portion 3c, facing each other so that the electrode terminal 4a does not exist directly above the corner portion 3c, and the pad region.
  • the two sides of 3b are fixed to the insulating substrate 2. Therefore, according to the thin temperature sensor 11 according to the third embodiment of the present invention, the case where the electrode terminal 4a formed on the resistance film as the electrode layer 3 has a thick plating thickness is similar to the thin temperature sensor 1 described above. Even so, the peeling of the resistance film can be suppressed.
  • the glass protective film 5d has a simple shape, which facilitates quality control and suppresses manufacturing costs. Therefore, it is possible to reduce the cost of the product.
  • the thin temperature sensor 12 according to the fourth embodiment is different from the first embodiment in the shape of the electrode layer 3, the arrangement of the electrode terminals 4, and the shape of the glass protective film 5 in the thin temperature sensor 1 of the first embodiment described above. ..
  • the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • FIG. 9 is a top view of the thin temperature sensor 12 according to the fourth embodiment.
  • the electrode layer 3'of the thin temperature sensor 12 has a shape in which a pair of pad regions 3b are arranged adjacent to each other in one of the longitudinal directions of the insulating substrate 2.
  • the thin temperature sensor 12 has a pair of electrode terminals 4c arranged at the center of the pair of pad regions 3b, and the other surface is covered with a glass protective film 5e.
  • the glass protective film 5e covers the entire circumference of the end portion of the pad region 3b including the corner portion 3c so that the electrode terminal 4c does not exist directly above the corner portion 3c, and the end of the pad region 3b.
  • the entire circumference of the portion is fixed to the insulating substrate 2. Therefore, according to the thin temperature sensor 12 according to the fourth embodiment of the present invention, although the shape of the electrode layer 3 is different from that of the thin temperature sensor 1 described above, the electrode layer 3'is similar to the thin temperature sensor 1 described above. Even when the plating thickness of the electrode terminal 4c formed on the resistance film is thick, the peeling of the resistance film can be suppressed.
  • the thin temperature sensor according to the first embodiment of the present invention comprises an insulating substrate and a platinum thin film formed on the surface of the insulating substrate, and has a pattern region and a pair of substantially rectangular shapes extending from the pattern region. It includes an electrode layer including a pad region, a pair of electrode terminals formed by metal plating on a part of the pad region, a pattern region, and a glass protective film covering a corner portion of the pad region.
  • a pattern region as a resistance temperature detector and a pad region for forming an electrode terminal in the electrode layer are provided on the insulating substrate, and a metal portion of the pad region is provided. Electrode terminals are formed by plating. Further, the electrode layer is insulated and protected by covering the corners of the pattern region and the pad region with a glass protective film. At this time, the corner portion of the pad region is fixed to the insulating substrate by the glass protective film without arranging the electrode terminals directly above, thereby preventing the electrode terminals from peeling off from the insulating substrate. Therefore, according to the thin temperature sensor according to the first embodiment, peeling of the resistance film can be suppressed even when the plating thickness of the electrode terminals formed on the resistance film is thick.
  • the glass protective film covers two opposite sides of the end portion of the pad region.
  • the corner portion of the pad region is fixed to the insulating substrate by the glass protective film as in the first embodiment described above, whereby the electrode terminal and the electrode terminal can be peeled off from the insulating substrate. Be prevented.
  • the glass protective film has a simple shape, so that quality control is easy, and the manufacturing cost can be suppressed, so that the cost of the product can be reduced.
  • the glass protective film covers the entire circumference of the end portion of the pad region.
  • the corner portion of the pad region but also the entire circumference of the end portion is fixed to the insulating substrate by the glass protective film, so that it is more effective that the electrode layer is peeled off from the insulating substrate. Can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

This thin temperature sensor (1) comprises: an insulating substrate (2); an electrode layer (3) formed form a thin platinum film formed on the surface of the insulating substrate (2), the electrode layer (3) including a pattern region (3a) and a pair of substantially rectangular pad regions (3b) extending from the pattern region (3a); a pair of electrode terminals (4) formed by metal plating on portions of the pad regions (3b); and a glass protective film (5) that covers the pattern region (3a) as well as corner sections (3c) of the pad regions (3b).

Description

薄型温度センサThin temperature sensor
 本発明は、薄型温度センサに関する。 The present invention relates to a thin temperature sensor.
 温度によって抵抗値が変化する金属又は金属酸化物を利用した温度センサとして、サーミスタ及び白金測温抵抗体が知られており、特に工業用の温度計測に広く利用されている。このような温度センサは、絶縁基板上において、測温抵抗体としての金属薄膜を形成すると共に、当該金属薄膜と導通する一対の電極端子を設ける構造とすることで薄型化することができる。例えば特許文献1及び2には、サーミスタや白金測温抵抗体による薄型温度センサが開示されている。 Thermistors and platinum resistance temperature detectors are known as temperature sensors using metals or metal oxides whose resistance value changes depending on the temperature, and are particularly widely used for industrial temperature measurement. Such a temperature sensor can be made thinner by forming a metal thin film as a resistance temperature detector on an insulating substrate and providing a pair of electrode terminals conducting with the metal thin film. For example, Patent Documents 1 and 2 disclose a thin temperature sensor using a thermistor or a platinum resistance temperature detector.
 より具体的には、特許文献1には、セラミックからなる絶縁基板上に白金からなる抵抗膜を形成したサーミスタ及び白金測温抵抗体が開示されている。このような薄型温度センサは、基板面を平面視した場合に、パターン形成された抵抗膜を挟む両側に一対の電極端子が配置される構成が広く使用されている。当該構成においては、抵抗膜の中央部をパターン領域とすると共に、当該パターン領域の両側をパッド領域とすることで、パッド領域の表面に比較的容易且つ安価に電極端子を形成することができる。尚、白金測温抵抗体においては、一対の電極端子をジグザグ状に繋ぐように抵抗膜のパターン領域が形成される。また、サーミスタにおいては、絶縁基板上にマンガン等の金属酸化物からなる薄膜状の感熱素子が設けられ、各電極端子から延びる一対の対向する櫛歯状に形成された抵抗膜のパターン領域が当該感熱素子上に形成される。 More specifically, Patent Document 1 discloses a thermistor in which a resistance film made of platinum is formed on an insulating substrate made of ceramic, and a platinum resistance temperature detector. Such a thin temperature sensor is widely used in which a pair of electrode terminals are arranged on both sides of a patterned resistance film when the substrate surface is viewed in a plane. In this configuration, the central portion of the resistance film is used as the pattern region, and both sides of the pattern region are used as the pad regions, so that the electrode terminals can be formed on the surface of the pad region relatively easily and inexpensively. In the platinum resistance temperature detector, a pattern region of the resistance film is formed so as to connect the pair of electrode terminals in a zigzag shape. Further, in the thermistor, a thin film-shaped heat-sensitive element made of a metal oxide such as manganese is provided on an insulating substrate, and the pattern region of a pair of opposing comb-shaped resistance films extending from each electrode terminal is the pattern region. It is formed on a heat sensitive element.
 ところで、上記のような薄型温度センサが200℃以上の測定に用いられる場合、電極端子は、融点が比較的高い金、銅、又はニッケル等からなる金属めっきが使用されることになる。ここで、金属めっきの電極端子に半田付けで配線接続する場合、半田に含まれる錫成分が熱により金属めっきに拡散し、両者の境界において金属間化合物を形成する。当該金属間化合物は、硬度が高い反面、脆い性質があるため、金属めっきの厚みが約1μm未満である場合にはクラックが発生し易くなる他、純粋な金属成分の割合が低下することにより抵抗値が変化してしまう。このため、電極端子は、損傷リスク及び抵抗変化を抑制するために、ある程度の厚みを確保する必要がある。 By the way, when the thin temperature sensor as described above is used for measurement of 200 ° C. or higher, metal plating made of gold, copper, nickel or the like having a relatively high melting point is used for the electrode terminals. Here, when the wiring is connected to the electrode terminal of the metal plating by soldering, the tin component contained in the solder diffuses into the metal plating by heat, and an intermetallic compound is formed at the boundary between the two. Although the intermetallic compound has a high hardness, it has a brittle property. Therefore, when the thickness of the metal plating is less than about 1 μm, cracks are likely to occur and resistance is caused by a decrease in the proportion of pure metal components. The value will change. Therefore, it is necessary to secure a certain thickness of the electrode terminal in order to suppress the risk of damage and the change in resistance.
 また、薄型温度センサは、回路基板に内蔵される場合、半田付けによる配線接続が行われないため金属間化合物が生成されないものの、レーザビアによる配線接続が行われることによりレーザ強度に耐え得る電極端子を形成する必要があり、金属めっきの厚みを約8μm以上に設定する必要がある。 In addition, when the thin temperature sensor is built in the circuit board, the intermetallic compound is not generated because the wiring connection is not performed by soldering, but the electrode terminal that can withstand the laser intensity is provided by the wiring connection by the laser via. It needs to be formed, and the thickness of the metal plating needs to be set to about 8 μm or more.
国際公開2018/066473号International Publication No. 2018/066473 特開2010-197163号公報Japanese Unexamined Patent Publication No. 2010-197163
 しかしながら、金属めっきは、膜厚が大きいほど内部応力により反りが発生し易く、上記のように絶縁基板上に設けられた抵抗膜の上に形成された場合には、抵抗膜を絶縁基板から剥離させてしまう虞が生じる。 However, in metal plating, the larger the film thickness, the more easily warpage occurs due to internal stress, and when it is formed on the resistance film provided on the insulating substrate as described above, the resistance film is peeled off from the insulating substrate. There is a risk of causing it.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、抵抗膜上に形成される電極端子のめっき厚が厚い場合であっても、抵抗膜の剥離を防止することができる薄型温度センサを提供することにある。 The present invention has been made in view of such a problem, and an object thereof is to prevent peeling of the resistance film even when the plating thickness of the electrode terminal formed on the resistance film is thick. The purpose is to provide a thin temperature sensor capable of providing a thin temperature sensor.
 上記目的を達成するため、本発明の薄型温度センサは、絶縁基板と、前記絶縁基板の表面上に形成される白金薄膜からなり、パターン領域、及び前記パターン領域から延在する略矩形状の一対のパッド領域を含む電極層と、前記パッド領域の一部に金属めっきで形成される一対の電極端子と、前記パターン領域、及び前記パッド領域の角部を覆うガラス保護膜と、を備える。 In order to achieve the above object, the thin temperature sensor of the present invention is composed of an insulating substrate and a platinum thin film formed on the surface of the insulating substrate, and has a pattern region and a pair of substantially rectangular shapes extending from the pattern region. It is provided with an electrode layer including the pad region, a pair of electrode terminals formed by metal plating on a part of the pad region, a pattern region, and a glass protective film covering a corner portion of the pad region.
 本発明に係る薄型温度センサにおいては、抵抗膜上に形成される電極端子のめっき厚が厚い場合であっても、抵抗膜の剥離を防止することができる。 In the thin temperature sensor according to the present invention, peeling of the resistance film can be prevented even when the plating thickness of the electrode terminals formed on the resistance film is thick.
第1実施形態に係る薄型温度センサの外形を模式的に表す斜視図である。It is a perspective view schematically showing the outer shape of the thin temperature sensor which concerns on 1st Embodiment. 第1実施形態に係る電極層の形状を表す上面図である。It is a top view which shows the shape of the electrode layer which concerns on 1st Embodiment. 電極端子を形成する前の薄型温度センサの上面図である。It is a top view of the thin temperature sensor before forming an electrode terminal. 第1比較例に係る薄型温度センサの側面図である。It is a side view of the thin temperature sensor which concerns on 1st comparative example. 第2比較例に係る薄型温度センサの側面図であるIt is a side view of the thin temperature sensor which concerns on 2nd comparative example. 第1実施形態に係る薄型温度センサの側面図である。It is a side view of the thin temperature sensor which concerns on 1st Embodiment. 第2実施形態に係る薄型温度センサの上面図である。It is a top view of the thin temperature sensor which concerns on 2nd Embodiment. 第3実施形態に係る薄型温度センサの上面図である。It is a top view of the thin temperature sensor which concerns on 3rd Embodiment. 第4実施形態に係る薄型温度センサの上面図である。It is a top view of the thin temperature sensor which concerns on 4th Embodiment.
 以下、図面を参照し、発明の実施形態について詳細に説明する。なお、本発明は、以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、又は省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。 Hereinafter, embodiments of the invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described below, and can be arbitrarily modified and implemented without changing the gist thereof. In addition, the drawings used for explaining the embodiments are all schematically showing the constituent members, and are partially emphasized, enlarged, reduced, or omitted in order to deepen the understanding of the constituent members. It may not accurately represent the scale or shape.
<第1実施形態>
 図1は、第1実施形態に係る薄型温度センサ1の外形を模式的に表す斜視図である。薄型温度センサ1は、測温対象の近傍に配置される白金測温抵抗体であり、本実施形態においては絶縁基板2、電極層3、一対の電極端子4、及びガラス保護膜5から構成される。ここで、薄型温度センサ1は、白金測温抵抗体に限定されるものではなく、サーミスタであってもよい。
<First Embodiment>
FIG. 1 is a perspective view schematically showing the outer shape of the thin temperature sensor 1 according to the first embodiment. The thin temperature sensor 1 is a platinum resistance temperature detector arranged in the vicinity of a temperature measurement target, and in this embodiment, it is composed of an insulating substrate 2, an electrode layer 3, a pair of electrode terminals 4, and a glass protective film 5. To. Here, the thin temperature sensor 1 is not limited to the platinum resistance temperature detector, and may be a thermistor.
 絶縁基板2は、剛性を有する長方形の平板であり、セラミック等の絶縁材料から形成されている。また、絶縁基板2は、例えば0.3~0.6mmの厚みに設定することができる。ただし、絶縁基板2の形状は長方形に限定されるものではなく、薄型温度センサ1の仕様に応じて適宜変更が可能である。 The insulating substrate 2 is a rectangular flat plate having rigidity, and is formed of an insulating material such as ceramic. Further, the insulating substrate 2 can be set to a thickness of, for example, 0.3 to 0.6 mm. However, the shape of the insulating substrate 2 is not limited to a rectangle, and can be appropriately changed according to the specifications of the thin temperature sensor 1.
 電極層3は、詳細を後述するように、絶縁基板2の表面上にパターン形成される白金薄膜からなり、温度によって抵抗値が変化する測温抵抗素子である。電極層3は、例えば0.1~3.0μmの厚みに設定されており、各図においては視認可能な厚みに拡大して示されている。ここで、測温抵抗素子としては、例えば0℃において100Ωの抵抗値を有する白金抵抗体、いわゆるPt100を採用することができる。また、電極層3は、本実施形態においては、平面視した場合の端部が絶縁基板2の輪郭と一致するような形状として例示しているが、端部が絶縁基板2の輪郭よりも内側となるような寸法に設定されてもよい。 As will be described in detail later, the electrode layer 3 is a temperature measuring resistance element that is made of a platinum thin film in which a pattern is formed on the surface of the insulating substrate 2 and whose resistance value changes depending on the temperature. The electrode layer 3 is set to a thickness of, for example, 0.1 to 3.0 μm, and is shown enlarged to a visible thickness in each figure. Here, as the temperature measuring resistance element, for example, a platinum resistor having a resistance value of 100Ω at 0 ° C., so-called Pt100, can be adopted. Further, in the present embodiment, the electrode layer 3 is illustrated as having a shape in which the end portion when viewed in a plan view matches the contour of the insulating substrate 2, but the end portion is inside the contour of the insulating substrate 2. The dimensions may be set so as to be.
 一対の電極端子4は、電極層3の表面の一部に形成される金属めっきからなり、両者の間に一定の電流が供給されるときの抵抗値が測定される。このため、一対の電極端子4は、例えば半田や溶接によりリード線が接続され、又は薄型温度センサ1が基板に内蔵される場合にはレーザビアで接続される配線接続用端子としての機能を有する。ここで、電極端子4は、金属めっきが薄型温度センサ1の仕様に応じて十分な厚みになるように形成される。尚、電極端子4の金属めっきは、高温域までの測定が可能となるよう例えば金、銅、ニッケル、又はパラジウムから形成される。 The pair of electrode terminals 4 are made of metal plating formed on a part of the surface of the electrode layer 3, and the resistance value when a constant current is supplied between them is measured. Therefore, the pair of electrode terminals 4 have a function as wiring connection terminals to which lead wires are connected by soldering or welding, or are connected by laser vias when the thin temperature sensor 1 is built in the substrate. Here, the electrode terminal 4 is formed so that the metal plating has a sufficient thickness according to the specifications of the thin temperature sensor 1. The metal plating of the electrode terminal 4 is formed of, for example, gold, copper, nickel, or palladium so that measurement up to a high temperature range is possible.
 ガラス保護膜5は、絶縁性を有するガラス材料からなる被覆層であり、本実施形態においては電極層3の表面のうち電極端子4が存在する部分以外を全て覆うことにより、電極層3を電気的、物理的に保護している。 The glass protective film 5 is a coating layer made of a glass material having an insulating property, and in the present embodiment, the electrode layer 3 is electrically covered by covering the entire surface of the electrode layer 3 except the portion where the electrode terminal 4 is present. It is physically and physically protected.
 図2は、第1実施形態に係る電極層3の形状を表す上面図である。本実施形態の電極層3は、1枚の長方形の白金薄膜において、両端に略矩形状の一対のパッド領域3bが設けられると共に、一対のパッド領域3bを繋ぐようにジグザグ状に延在するパターン領域3aが設けられている。 FIG. 2 is a top view showing the shape of the electrode layer 3 according to the first embodiment. The electrode layer 3 of the present embodiment is a single rectangular platinum thin film in which a pair of substantially rectangular pad regions 3b are provided at both ends, and a pattern extending in a zigzag shape so as to connect the pair of pad regions 3b. A region 3a is provided.
 尚、パターン領域3a及びパッド領域3bの形状については、測温抵抗素子として機能する範囲において適宜変更が可能である。例えば、本実施形態においてはパッド領域3bの形状を略矩形状としているが、四隅の角部3cがR面形状であってもよい。また、薄型温度センサ1がサーミスタである場合には、パターン領域3aは、一対のパッド領域3bから延びる一対の対向する櫛歯状に形成され、絶縁基板2との間に感熱素子が設けられる。 The shapes of the pattern region 3a and the pad region 3b can be appropriately changed as long as they function as the temperature measuring resistance element. For example, in the present embodiment, the shape of the pad region 3b is substantially rectangular, but the corners 3c at the four corners may have an R-plane shape. Further, when the thin temperature sensor 1 is a thermistor, the pattern region 3a is formed in a pair of facing comb teeth extending from the pair of pad regions 3b, and a heat sensitive element is provided between the thin temperature sensor 1 and the insulating substrate 2.
 図3は、電極端子4を形成する前の薄型温度センサ1の上面図である。薄型温度センサ1は、上記した電極層3がスパッタ処理により絶縁基板2の表面に形成され、更にその上からガラス保護膜5が形成される。図3においては、ガラス保護膜5の直下に設けられる電極層3を透過的に示している。ここで、ガラス保護膜5は、後に形成される一対の電極端子4の位置を避けるように一対の開口部5aがそれぞれのパッド領域3bに設けられている。すなわち、図3の状態においては、電極層3のパッド領域3bの一部が開口部5aから露出している。また、開口部5aがパッド領域3bの四隅の角部3cに重ならないようパッド領域3bの中央部に設けられ、これによりパッド領域3bの端部の全周がガラス保護膜5で覆われることになる。 FIG. 3 is a top view of the thin temperature sensor 1 before forming the electrode terminal 4. In the thin temperature sensor 1, the above-mentioned electrode layer 3 is formed on the surface of the insulating substrate 2 by sputtering treatment, and the glass protective film 5 is further formed on the surface of the insulating substrate 2. In FIG. 3, the electrode layer 3 provided directly below the glass protective film 5 is transparently shown. Here, the glass protective film 5 is provided with a pair of openings 5a in each pad region 3b so as to avoid the positions of the pair of electrode terminals 4 formed later. That is, in the state of FIG. 3, a part of the pad region 3b of the electrode layer 3 is exposed from the opening 5a. Further, the opening 5a is provided in the central portion of the pad region 3b so as not to overlap the corners 3c at the four corners of the pad region 3b, whereby the entire circumference of the end portion of the pad region 3b is covered with the glass protective film 5. Become.
 そして、パッド領域3bにおける開口部5aにおいて、露出した電極層3の上面に金属メッキで電極端子4を形成することにより、図1に示す薄型温度センサ1が完成する。 Then, by forming the electrode terminal 4 with metal plating on the upper surface of the exposed electrode layer 3 in the opening 5a in the pad region 3b, the thin temperature sensor 1 shown in FIG. 1 is completed.
 次に、従来技術を比較例として本発明の作用効果について説明する。図4は、第1比較例に係る薄型温度センサE1の側面図である。第1比較例においては、薄型温度センサE1の電極端子4は、電極層3の角部3cにも重なるようにパッド領域3bの全面に形成されている。 Next, the action and effect of the present invention will be described using the prior art as a comparative example. FIG. 4 is a side view of the thin temperature sensor E1 according to the first comparative example. In the first comparative example, the electrode terminal 4 of the thin temperature sensor E1 is formed on the entire surface of the pad region 3b so as to overlap the corner portion 3c of the electrode layer 3.
 第1比較例に係る電極端子4は、その厚みに応じた内部応力により反りが生じ、特に電極層3の角部3cにおいては、P1で示すように電極層3と共に絶縁基板2から浮き上がる虞が生じる。そして、当該浮き上がりが進行すると、電極層3のパッド領域3bが電極端子4と共に絶縁基板2から完全に剥離してしまう。 The electrode terminal 4 according to the first comparative example is warped due to internal stress according to its thickness, and particularly at the corner portion 3c of the electrode layer 3, there is a possibility that the electrode terminal 4 will be lifted from the insulating substrate 2 together with the electrode layer 3 as shown by P1. Occurs. Then, as the floating progresses, the pad region 3b of the electrode layer 3 is completely separated from the insulating substrate 2 together with the electrode terminals 4.
 また、図5は、第2比較例に係る薄型温度センサE2の側面図である。第2比較例に係る薄型温度センサE2は、電極層3のパッド領域3bが狭く、絶縁基板2とパッド領域3bとの境界を跨ぐように電極端子4が形成されている。すなわち、電極端子4は、電極層3の角部3cを覆うように配置されている。 Further, FIG. 5 is a side view of the thin temperature sensor E2 according to the second comparative example. In the thin temperature sensor E2 according to the second comparative example, the pad region 3b of the electrode layer 3 is narrow, and the electrode terminals 4 are formed so as to straddle the boundary between the insulating substrate 2 and the pad region 3b. That is, the electrode terminals 4 are arranged so as to cover the corners 3c of the electrode layer 3.
 薄型温度センサE2の電極端子4は、その厚みに応じた内部応力により特に電極層3の角部3c付近を中心に反りが生じ、P2で示すように絶縁基板2から電極層3の角部3cを引き剥がす虞が生じる。 The electrode terminal 4 of the thin temperature sensor E2 is warped particularly around the corner portion 3c of the electrode layer 3 due to internal stress according to its thickness, and as shown by P2, the corner portion 3c of the electrode layer 3 is formed from the insulating substrate 2. There is a risk of peeling off.
 これに対し、本発明に係る薄型温度センサ1は、上記のようなガラス保護膜5の構成により電極層3の剥離を防止している。図6は、本発明の第1実施形態に係る薄型温度センサ1の側面図である。本発明における電極層3は、上記したように、角部3cを含めパッド領域3bの端部の全周がガラス保護膜5で覆われ、直上に電極端子4が存在しないと共に、ガラス保護膜5によりパッド領域3bの輪郭部分が絶縁基板2に固定される。このため、電極層3のパッド領域3bは、電極端子4に内部応力が生じる場合であっても、電極端子4と共に角部3cが絶縁基板2から剥離することが防止される。従って、本発明の第1実施形態に係る薄型温度センサ1によれば、電極層3としての抵抗膜上に形成される電極端子4のめっき厚が厚い場合であっても、抵抗膜の剥離を抑制することができる。 On the other hand, in the thin temperature sensor 1 according to the present invention, the electrode layer 3 is prevented from peeling due to the structure of the glass protective film 5 as described above. FIG. 6 is a side view of the thin temperature sensor 1 according to the first embodiment of the present invention. As described above, in the electrode layer 3 of the present invention, the entire circumference of the end portion of the pad region 3b including the corner portion 3c is covered with the glass protective film 5, the electrode terminal 4 does not exist directly above the electrode layer 3, and the glass protective film 5 is formed. The contour portion of the pad region 3b is fixed to the insulating substrate 2 by the method. Therefore, in the pad region 3b of the electrode layer 3, even when an internal stress is generated in the electrode terminal 4, the corner portion 3c together with the electrode terminal 4 is prevented from peeling from the insulating substrate 2. Therefore, according to the thin temperature sensor 1 according to the first embodiment of the present invention, even when the plating thickness of the electrode terminal 4 formed on the resistance film as the electrode layer 3 is thick, the resistance film can be peeled off. It can be suppressed.
<第2実施形態>
 続いて、第2実施形態に係る薄型温度センサ10について説明する。第2実施形態に係る薄型温度センサ10は、上記した第1実施形態の薄型温度センサ1における電極端子4及びガラス保護膜5の形状が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
<Second Embodiment>
Subsequently, the thin temperature sensor 10 according to the second embodiment will be described. In the thin temperature sensor 10 according to the second embodiment, the shapes of the electrode terminals 4 and the glass protective film 5 in the thin temperature sensor 1 of the first embodiment described above are different from those of the first embodiment. Hereinafter, the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 図7は、第2実施形態に係る薄型温度センサ10の上面図である。薄型温度センサ10は、上記した薄型温度センサ1と同様に、絶縁基板2の表面に電極層3が形成されている。そして、本実施形態における一対の電極端子4aは、上記した薄型温度センサ1と比較して、長手方向の端部が絶縁基板2及び電極層3の端部まで延在するような寸法に設定されている。このため、ガラス保護膜5は、一対の電極端子4aの間に配置される第1部分5bと、それぞれの電極端子4aの外側に配置される一対の第2部分5cとから構成される。 FIG. 7 is a top view of the thin temperature sensor 10 according to the second embodiment. Similar to the thin temperature sensor 1 described above, the thin temperature sensor 10 has an electrode layer 3 formed on the surface of the insulating substrate 2. The pair of electrode terminals 4a in the present embodiment are set to have dimensions such that the end portion in the longitudinal direction extends to the end portion of the insulating substrate 2 and the electrode layer 3 as compared with the above-mentioned thin temperature sensor 1. ing. Therefore, the glass protective film 5 is composed of a first portion 5b arranged between the pair of electrode terminals 4a and a pair of second portions 5c arranged outside the respective electrode terminals 4a.
 このとき、ガラス保護膜5は、パッド領域3bの端部のうち角部3cを含めて互いに対向する二辺を覆い、角部3cの直上に電極端子4aが存在しないようにすると共に、パッド領域3bの当該二辺を絶縁基板2に固定している。従って、本発明の第2実施形態に係る薄型温度センサ10によれば、上記した薄型温度センサ1と同様に、電極層3としての抵抗膜上に形成される電極端子4aのめっき厚が厚い場合であっても、抵抗膜の剥離を防止することができる。 At this time, the glass protective film 5 covers two sides of the end portion of the pad region 3b, including the corner portion 3c, facing each other so that the electrode terminal 4a does not exist directly above the corner portion 3c, and the pad region. The two sides of 3b are fixed to the insulating substrate 2. Therefore, according to the thin temperature sensor 10 according to the second embodiment of the present invention, the case where the electrode terminal 4a formed on the resistance film as the electrode layer 3 has a thick plating thickness is similar to the thin temperature sensor 1 described above. Even so, it is possible to prevent the resistance film from peeling off.
 また、第2実施形態に係る薄型温度センサ10によれば、ガラス保護膜5の第1部分5b及び第2部分5cが単純形状となるため品質管理が容易となる他、製造コストが抑制できるため製品のコストダウンを図ることができる。 Further, according to the thin temperature sensor 10 according to the second embodiment, since the first portion 5b and the second portion 5c of the glass protective film 5 have a simple shape, quality control becomes easy and the manufacturing cost can be suppressed. It is possible to reduce the cost of the product.
<第3実施形態>
 続いて、第3実施形態に係る薄型温度センサ11について説明する。第3実施形態に係る薄型温度センサ11は、上記した第1実施形態の薄型温度センサ1における電極端子4及びガラス保護膜5の形状が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
<Third Embodiment>
Subsequently, the thin temperature sensor 11 according to the third embodiment will be described. In the thin temperature sensor 11 according to the third embodiment, the shapes of the electrode terminals 4 and the glass protective film 5 in the thin temperature sensor 1 of the first embodiment described above are different from those of the first embodiment. Hereinafter, the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 図8は、第3実施形態に係る薄型温度センサ11の上面図である。薄型温度センサ11は、上記した薄型温度センサ1と同様に、絶縁基板2の表面に電極層3が形成されている。そして、本実施形態における一対の電極端子4bは、上記した薄型温度センサ1と比較して、短手方向の端部がパッド領域3bの端部まで延在するような寸法に設定されている。このため、ガラス保護膜5dは、一続きの略H字形状に形成されることになる。 FIG. 8 is a top view of the thin temperature sensor 11 according to the third embodiment. Similar to the thin temperature sensor 1 described above, the thin temperature sensor 11 has an electrode layer 3 formed on the surface of the insulating substrate 2. The pair of electrode terminals 4b in the present embodiment are set to have dimensions such that the end portion in the lateral direction extends to the end portion of the pad region 3b as compared with the above-mentioned thin temperature sensor 1. Therefore, the glass protective film 5d is formed in a continuous substantially H-shape.
 このとき、ガラス保護膜5dは、パッド領域3bの端部のうち角部3cを含めて互いに対向する二辺を覆い、角部3cの直上に電極端子4aが存在しないようにすると共に、パッド領域3bの当該二辺を絶縁基板2に固定している。従って、本発明の第3実施形態に係る薄型温度センサ11によれば、上記した薄型温度センサ1と同様に、電極層3としての抵抗膜上に形成される電極端子4aのめっき厚が厚い場合であっても、抵抗膜の剥離を抑制することができる。 At this time, the glass protective film 5d covers two sides of the end portion of the pad region 3b, including the corner portion 3c, facing each other so that the electrode terminal 4a does not exist directly above the corner portion 3c, and the pad region. The two sides of 3b are fixed to the insulating substrate 2. Therefore, according to the thin temperature sensor 11 according to the third embodiment of the present invention, the case where the electrode terminal 4a formed on the resistance film as the electrode layer 3 has a thick plating thickness is similar to the thin temperature sensor 1 described above. Even so, the peeling of the resistance film can be suppressed.
 また、第3実施形態に係る薄型温度センサ11によれば、上記した薄型温度センサ1と比較して、ガラス保護膜5dが単純形状となるため品質管理が容易となる他、製造コストが抑制できるため製品のコストダウンを図ることができる。 Further, according to the thin temperature sensor 11 according to the third embodiment, as compared with the thin temperature sensor 1 described above, the glass protective film 5d has a simple shape, which facilitates quality control and suppresses manufacturing costs. Therefore, it is possible to reduce the cost of the product.
<第4実施形態>
 続いて、第4実施形態に係る薄型温度センサ12について説明する。第4実施形態に係る薄型温度センサ12は、上記した第1実施形態の薄型温度センサ1における電極層3の形状、電極端子4の配置、及びガラス保護膜5の形状が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
<Fourth Embodiment>
Subsequently, the thin temperature sensor 12 according to the fourth embodiment will be described. The thin temperature sensor 12 according to the fourth embodiment is different from the first embodiment in the shape of the electrode layer 3, the arrangement of the electrode terminals 4, and the shape of the glass protective film 5 in the thin temperature sensor 1 of the first embodiment described above. .. Hereinafter, the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 図9は、第4実施形態に係る薄型温度センサ12の上面図である。薄型温度センサ12の電極層3´は、一対のパッド領域3bが絶縁基板2の長手方向の一方において隣接して配置される形状である。そして、薄型温度センサ12は、一対の電極端子4cが当該一対のパッド領域3bの中央部に配置されると共に、その他の表面がガラス保護膜5eで覆われている。 FIG. 9 is a top view of the thin temperature sensor 12 according to the fourth embodiment. The electrode layer 3'of the thin temperature sensor 12 has a shape in which a pair of pad regions 3b are arranged adjacent to each other in one of the longitudinal directions of the insulating substrate 2. The thin temperature sensor 12 has a pair of electrode terminals 4c arranged at the center of the pair of pad regions 3b, and the other surface is covered with a glass protective film 5e.
 このとき、ガラス保護膜5eは、角部3cを含めてパッド領域3bの端部の全周を覆い、角部3cの直上に電極端子4cが存在しないようにすると共に、パッド領域3bの当該端部の全周を絶縁基板2に固定している。従って、本発明の第4実施形態に係る薄型温度センサ12によれば、上記した薄型温度センサ1とは電極層3の形状が異なるものの、上記した薄型温度センサ1と同様に、電極層3´としての抵抗膜上に形成される電極端子4cのめっき厚が厚い場合であっても、抵抗膜の剥離を抑制することができる。 At this time, the glass protective film 5e covers the entire circumference of the end portion of the pad region 3b including the corner portion 3c so that the electrode terminal 4c does not exist directly above the corner portion 3c, and the end of the pad region 3b. The entire circumference of the portion is fixed to the insulating substrate 2. Therefore, according to the thin temperature sensor 12 according to the fourth embodiment of the present invention, although the shape of the electrode layer 3 is different from that of the thin temperature sensor 1 described above, the electrode layer 3'is similar to the thin temperature sensor 1 described above. Even when the plating thickness of the electrode terminal 4c formed on the resistance film is thick, the peeling of the resistance film can be suppressed.
<本発明の実施態様>
 本発明の第1実施態様に係る薄型温度センサは、絶縁基板と、前記絶縁基板の表面上に形成される白金薄膜からなり、パターン領域、及び前記パターン領域から延在する略矩形状の一対のパッド領域を含む電極層と、前記パッド領域の一部に金属めっきで形成される一対の電極端子と、前記パターン領域、及び前記パッド領域の角部を覆うガラス保護膜と、を備える。
<Embodiment of the present invention>
The thin temperature sensor according to the first embodiment of the present invention comprises an insulating substrate and a platinum thin film formed on the surface of the insulating substrate, and has a pattern region and a pair of substantially rectangular shapes extending from the pattern region. It includes an electrode layer including a pad region, a pair of electrode terminals formed by metal plating on a part of the pad region, a pattern region, and a glass protective film covering a corner portion of the pad region.
 第1実施態様に係る薄型温度センサにおいては、電極層のうち測温抵抗体としてのパターン領域と電極端子を形成するためのパッド領域とが絶縁基板上に設けられ、パッド領域の一部に金属めっきを施すことにより電極端子が形成されている。また、電極層は、パターン領域、及びパッド領域の角部がガラス保護膜により覆われることで絶縁保護されている。このとき、パッド領域の角部は、直上に電極端子が配置されることなく、ガラス保護膜により絶縁基板に固定され、これにより電極端子と共に絶縁基板から剥離することが防止される。従って第1実施態様に係る薄型温度センサによれば、抵抗膜上に形成される電極端子のめっき厚が厚い場合であっても、抵抗膜の剥離を抑制することができる。 In the thin temperature sensor according to the first embodiment, a pattern region as a resistance temperature detector and a pad region for forming an electrode terminal in the electrode layer are provided on the insulating substrate, and a metal portion of the pad region is provided. Electrode terminals are formed by plating. Further, the electrode layer is insulated and protected by covering the corners of the pattern region and the pad region with a glass protective film. At this time, the corner portion of the pad region is fixed to the insulating substrate by the glass protective film without arranging the electrode terminals directly above, thereby preventing the electrode terminals from peeling off from the insulating substrate. Therefore, according to the thin temperature sensor according to the first embodiment, peeling of the resistance film can be suppressed even when the plating thickness of the electrode terminals formed on the resistance film is thick.
 本発明の第2実施態様に係る薄型温度センサは、上記した第1実施態様において、前記ガラス保護膜は、前記パッド領域の端部のうち互いに対向する二辺を覆う。 In the thin temperature sensor according to the second embodiment of the present invention, in the first embodiment described above, the glass protective film covers two opposite sides of the end portion of the pad region.
 第2実施態様に係る薄型温度センサによれば、上記した第1実施態様と同様にパッド領域の角部がガラス保護膜により絶縁基板に固定され、これにより電極端子と共に絶縁基板から剥離することが防止される。また、第2実施態様に係る薄型温度センサによれば、ガラス保護膜が単純形状となるため品質管理が容易となる他、製造コストが抑制できるため製品のコストダウンを図ることができる。 According to the thin temperature sensor according to the second embodiment, the corner portion of the pad region is fixed to the insulating substrate by the glass protective film as in the first embodiment described above, whereby the electrode terminal and the electrode terminal can be peeled off from the insulating substrate. Be prevented. Further, according to the thin temperature sensor according to the second embodiment, the glass protective film has a simple shape, so that quality control is easy, and the manufacturing cost can be suppressed, so that the cost of the product can be reduced.
 本発明の第3実施態様に係る薄型温度センサは、上記した第1実施態様又は第2実施態様において、前記ガラス保護膜は、前記パッド領域の端部の全周を覆う。 In the thin temperature sensor according to the third embodiment of the present invention, in the first embodiment or the second embodiment described above, the glass protective film covers the entire circumference of the end portion of the pad region.
 第3実施態様に係る薄型温度センサは、パッド領域の角部のみならず端部の全周がガラス保護膜により絶縁基板に固定されているため、電極層が絶縁基板から剥離することをより効果的に防止することができる。 In the thin temperature sensor according to the third embodiment, not only the corner portion of the pad region but also the entire circumference of the end portion is fixed to the insulating substrate by the glass protective film, so that it is more effective that the electrode layer is peeled off from the insulating substrate. Can be prevented.
 1、10~12 薄型温度センサ
 2 絶縁基板
 3、3´ 電極層
 3a パターン領域
 3b パッド領域
 3c 角部
 4、4a~4c 電極端子
 5、5d、5e ガラス保護膜
 5a 開口部
 5b 第1部分
 5c 第2部分
1, 10-12 Thin temperature sensor 2 Insulated substrate 3, 3'Electrode layer 3a Pattern area 3b Pad area 3c Square part 4, 4a- 4c Electrode terminal 5, 5d, 5e Glass protective film 5a Opening 5b 1st part 5c 1st 2 parts

Claims (3)

  1.  絶縁基板と、
     前記絶縁基板の表面上に形成される白金薄膜からなり、パターン領域、及び前記パターン領域から延在する略矩形状の一対のパッド領域を含む電極層と、
     前記パッド領域の一部に金属めっきで形成される一対の電極端子と、
     前記パターン領域、及び前記パッド領域の角部を覆うガラス保護膜と、を備える薄型温度センサ。
    Insulated board and
    An electrode layer composed of a platinum thin film formed on the surface of the insulating substrate and including a pattern region and a pair of substantially rectangular pad regions extending from the pattern region.
    A pair of electrode terminals formed by metal plating on a part of the pad region,
    A thin temperature sensor comprising the pattern region and a glass protective film covering the corners of the pad region.
  2.  前記ガラス保護膜は、前記パッド領域の端部のうち互いに対向する二辺を覆う、請求項1に記載の薄型温度センサ。 The thin temperature sensor according to claim 1, wherein the glass protective film covers two opposite sides of the end of the pad region.
  3.  前記ガラス保護膜は、前記パッド領域の端部の全周を覆う、請求項1又は2に記載の薄型温度センサ。 The thin temperature sensor according to claim 1 or 2, wherein the glass protective film covers the entire circumference of the end portion of the pad region.
PCT/JP2020/046775 2020-12-15 2020-12-15 Thin temperature sensor WO2022130508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/046775 WO2022130508A1 (en) 2020-12-15 2020-12-15 Thin temperature sensor
JP2021516704A JP7076045B1 (en) 2020-12-15 2020-12-15 Thin temperature sensor
TW110146856A TW202240604A (en) 2020-12-15 2021-12-15 Thin temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046775 WO2022130508A1 (en) 2020-12-15 2020-12-15 Thin temperature sensor

Publications (1)

Publication Number Publication Date
WO2022130508A1 true WO2022130508A1 (en) 2022-06-23

Family

ID=81749592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046775 WO2022130508A1 (en) 2020-12-15 2020-12-15 Thin temperature sensor

Country Status (3)

Country Link
JP (1) JP7076045B1 (en)
TW (1) TW202240604A (en)
WO (1) WO2022130508A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131003A (en) * 1989-10-16 1991-06-04 Kobe Steel Ltd Diamond thin-film thermistor
JPH06300643A (en) * 1993-04-14 1994-10-28 Koa Corp Platinum temperature sensor
JPH0792034A (en) * 1993-09-24 1995-04-07 Koa Corp Platinum temperature sensor and its manufacture
JP2007115938A (en) * 2005-10-21 2007-05-10 Ishizuka Electronics Corp Thin film thermistor
JP2011089859A (en) * 2009-10-21 2011-05-06 Yamatake Corp Temperature sensor
US20170211991A1 (en) * 2014-07-30 2017-07-27 Exsense Electronics Technology Co., Ltd High precision high reliability and quick response thermosensitive chip and manufacturing method thereof
JP2020085584A (en) * 2018-11-21 2020-06-04 立山科学工業株式会社 Resistor temperature sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131003B2 (en) 1992-02-28 2001-01-31 川崎製鉄株式会社 Hot-dip galvanizing method for high strength steel sheet
JP6134507B2 (en) * 2011-12-28 2017-05-24 ローム株式会社 Chip resistor and manufacturing method thereof
JP5736348B2 (en) * 2012-06-21 2015-06-17 立山科学工業株式会社 Thin film resistor temperature sensor and manufacturing method thereof
US8985513B2 (en) 2013-06-17 2015-03-24 The Boeing Company Honeycomb cores with splice joints and methods of assembling honeycomb cores
JP2020053433A (en) * 2018-09-21 2020-04-02 Koa株式会社 Strain sensor resistor
JP2020191389A (en) * 2019-05-22 2020-11-26 Koa株式会社 Resistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131003A (en) * 1989-10-16 1991-06-04 Kobe Steel Ltd Diamond thin-film thermistor
JPH06300643A (en) * 1993-04-14 1994-10-28 Koa Corp Platinum temperature sensor
JPH0792034A (en) * 1993-09-24 1995-04-07 Koa Corp Platinum temperature sensor and its manufacture
JP2007115938A (en) * 2005-10-21 2007-05-10 Ishizuka Electronics Corp Thin film thermistor
JP2011089859A (en) * 2009-10-21 2011-05-06 Yamatake Corp Temperature sensor
US20170211991A1 (en) * 2014-07-30 2017-07-27 Exsense Electronics Technology Co., Ltd High precision high reliability and quick response thermosensitive chip and manufacturing method thereof
JP2020085584A (en) * 2018-11-21 2020-06-04 立山科学工業株式会社 Resistor temperature sensor

Also Published As

Publication number Publication date
JPWO2022130508A1 (en) 2022-06-23
JP7076045B1 (en) 2022-05-26
TW202240604A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
JP4841914B2 (en) Chip resistor
US7782174B2 (en) Chip resistor
US10788377B2 (en) Sensor element and method for producing a sensor element
US7746212B2 (en) Temperature sensor and method for its production
EP2472529A1 (en) Thermistor and method for producing same
JP2024010234A (en) chip resistor
JP2018074143A (en) Resistive element and resistive element assembly
JP2002270409A (en) Chip resistor and its manufacturing method
JP7076045B1 (en) Thin temperature sensor
JPH08213221A (en) Manufacture of rectangular thin film chip resistor
JP2001110601A (en) Resistor and manufacturing method therefor
JP2000138102A (en) Resistor and its manufacture
JPH07176402A (en) Square chip fixed resistor
WO2014084197A1 (en) Thin film surge absorber, thin film device, method for producing thin film surge absorber, and method for manufacturing thin film device
WO2021044876A1 (en) Resistor unit, manufacturing method therefor, and device provided with resistor unit
JP2000124002A (en) Chip-type components
JPH0618121B2 (en) Chip resistor
JPH08330102A (en) Ship resistor
JP2024108612A (en) NTC thermistor element and electronic component device
JPH11204303A (en) Resistor and its manufacture
KR20190120674A (en) Thin film thermistor device
JP2021067463A (en) Sulfurization detection sensor and mounting structure of sulfurization detection sensor
JP2021012066A (en) Sulfuration detection sensor
JP2006278793A (en) Temperature detection element
JPH0298187A (en) Thick film integrated circuit and manufacture thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516704

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965896

Country of ref document: EP

Kind code of ref document: A1