WO2022128739A1 - Tool robot comprising at least one rotating arm - Google Patents
Tool robot comprising at least one rotating arm Download PDFInfo
- Publication number
- WO2022128739A1 WO2022128739A1 PCT/EP2021/085036 EP2021085036W WO2022128739A1 WO 2022128739 A1 WO2022128739 A1 WO 2022128739A1 EP 2021085036 W EP2021085036 W EP 2021085036W WO 2022128739 A1 WO2022128739 A1 WO 2022128739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- branch
- robot
- platform
- proximal
- arm
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
- B25J9/0045—Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
- B25J9/0051—Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base with kinematics chains of the type rotary-universal-universal or rotary-spherical-spherical, e.g. Delta type manipulators
Definitions
- Robot tool comprising at least one rotator arm
- the present invention relates to the field of tool robots or industrial robots, and more particularly to the field of robots intended to manipulate an object in a three-dimensional space.
- the invention relates to a robot comprising a rotator arm having a new architecture to provide one or more additional degrees of freedom to a tool carried by the arm.
- a Delta robot typically comprises a base and a platform, the latter being intended to support the manipulation tool.
- the base is connected to the platform by means of three arms, each arm comprising an actuator connected to a motor fixed to the base and a deformable parallelogram with ball joints connecting the actuator to the platform.
- Object manipulation robots are characterized in particular by the number of degrees of freedom offered to the tool.
- the Delta architecture allows the platform to be moved according to three translational degrees of freedom. It was developed in particular in the field of packaging light and small-sized objects because it makes it possible to meet industrial speed requirements while offering satisfactory precision in the placement of objects.
- Document US4,976,582 describes such a Delta robot.
- an additional motor can be implemented on the platform in order to rotate the tool with respect to the platform.
- This document proposes as a variant to control a telescopic arm connected on the one hand to an additional motor at the base and on the other hand to the platform.
- the platform can pivot around the axis of the telescopic arm.
- the presence of the telescopic rod also weighs down the robot, involves the aforementioned drawbacks of an additional motor.
- the telescopic rod weakens the architecture of the robot, increasing the risk of breakage and immobilization of the robot.
- the use of a cane limits the working space of the robot in height.
- the invention aims in particular to provide a solution to the aforementioned drawbacks by proposing a new arm architecture for a robot, in particular for a robot for manipulating objects, making it possible to increase the number of degrees of freedom of a tool carried by the robot without weighing down the robot, reducing its speed of movement, or limiting the workspace.
- the invention relates to a robot tool, such as an object manipulation robot, comprising a base and a platform.
- the platform is intended to carry a tool, such as an object manipulation tool.
- the robot includes at least three arms connecting the base to the platform.
- Each arm comprises on the one hand a proximal portion actuated individually in rotation around a primary axis of the base, and on the other hand comprising a distal portion articulated with respect to the proximal portion and connecting the proximal portion to the platform, so as to allow three degrees of freedom in translation of the platform relative to the base.
- At least one of the three arms of the robot is a rotator arm, which further comprises:
- the robot may comprise at least two rotator arms, each rotator arm defining a working axis of the tool.
- the work axis defined by a first rotator arm can be parallel or not parallel to the work axis defined by the second rotator arm.
- the robot may comprise three rotator arms, each rotator arm defining a work axis of the tool, this axis possibly being parallel or not to the work axis defined by each of the other two rotator arms.
- the robot can thus operate any type of tool, such as a vacuum gripping system, such as a suction cup, or a gripper or even a deployable mechanism.
- the proximal portion of the rotator arm comprises a proximal main branch and a connecting branch.
- the proximal main branch is actuated in rotation relative to the base around the primary axis of the base and is connected on the other hand to the connecting branch by a pivot connection with an axis parallel to the primary axis.
- the connecting branch is connected on the other hand by a ball joint to at least one of the distal portion and the distal secondary branch.
- the proximal portion further comprises a proximal secondary branch actuated in rotation around the primary axis of the base, and a non-actuated proximal tertiary branch connected in a pivot connection around axes parallel to the axis primary to both the proximal secondary branch and the connecting branch, so that the proximal main branch, the secondary branch proximal, the connecting branch and the proximal tertiary branch form a deformable quadrilateral.
- the rotator arm can be associated with a first motor and a second motor, the first motor being connected to the proximal main branch so as to be capable of actuating the translation of the platform and the second motor being connected to the connecting branch so as to be able to actuate the tilting movement of the rod.
- the first motor and the second motor are preferably fixed to the base, so as not to weigh down the arm. They can be collinear, but not necessarily.
- the second motor can be connected directly or indirectly to the connecting part 9.
- connection between the connecting branch and the distal secondary branch and on the other hand are located on the same side with respect to a plane passing through the connections of the distal portion of the rotator arm on the one hand on the proximal portion and on the other hand on the platform.
- it is the interior side, in order to limit the size of the robot.
- it is the outer side in order to further limit the risk of collisions between the parts of the rotator arm during operation of the robot.
- connection between the connecting branch and the distal secondary branch and on the other hand are located on either side.
- the volume of work of the robot is thus increased by limiting the risks of collisions between the parts of the rotator arm.
- the proximal portion of the rotator arm may be provided with a secondary motor between the proximal main branch and the connecting branch.
- the connecting branch 9 is then actuated with respect to the proximal main branch by the secondary motor, which does not weigh down the distal portion or the platform or the distal secondary branch of the rotator arm, and makes it possible to simplify the architecture of the proximal portion.
- the distal portion of at least one arm comprises a deformable quadrilateral system with ball joints, adding robustness to the rotator arm.
- FIG. 1 shows an example of a prior art Delta-type robot.
- FIG. 2 shows a perspective view of a robot according to one embodiment of the invention comprising a rotator arm according to a first variant.
- FIG. 3 represents a perspective view of the rotator arm of the robot of figure 2.
- FIG. 4 shows a side view of the rotator arm of figure 3.
- FIG. 5 shows a detail view of a link according to one embodiment at the distal end of the rotator arm of figure 4.
- FIG. 6 represents a perspective view of a second variant of the rotator arm.
- FIG. 7 shows a side view of the arm of figure 6.
- FIG. 8 represents a perspective view of a third variant of the rotator arm.
- FIG. 9 shows a side view of the arm of figure 8.
- FIG. 10 represents a perspective view of a robot according to another embodiment.
- FIG. 11 shows a detail view of one embodiment of a rotator arm conversion system.
- FIG. 12 shows a detail view of one embodiment of a two-arm rotator conversion system.
- the invention relates to a robot, in particular a robot for handling tools, which is light and fast. It is for example a Delta-type robot, a diagram of which is reproduced in figure 1 .
- the prior art A Delta robot typically includes a B base, a C platform, and three D arms connecting the B base to the C platform.
- the three D arms allow the C platform to have three degrees of freedom in translation with respect to the base B.
- each arm D is typically articulated in rotation on the base B by a motor E.
- Each arm D comprises a portion D1 and a portion D2 articulated relative to each other by Cardan joints, or other equivalent connection, the portion D2 also being connected to the platform C by a Cardan joint, or other equivalent connection.
- a tool fixed to the platform C can move in translation in the three directions with respect to the base B.
- FIG 2 there is shown a robot 1 according to a first embodiment of the invention.
- the robot 1 of the invention comprises a base 2 and a platform 3.
- the platform 3 is intended to carry a tool.
- the tool is of any type, and can for example be a vacuum gripping system, such as a suction cup, pliers or even a deployable mechanism.
- Three arms connect the base 2 to the platform 3.
- the robot 1 comprises two arms 4 called translators, because providing degrees of freedom in translation, and an arm 5 called a rotator because, in addition translation, it provides at least one degree of freedom in rotation of the tool.
- Each arm 4, 5 is connected to the base 2 in a pivot connection around an axis P called the primary axis of the base 2.
- the axes P of each arm 4, 5 are coplanar.
- Each arm 4, 5 is associated with at least one motor 6, 6a, 6b, each motor 6, 6a, 6b being dedicated to a single arm 4, 5, and being fixed on the base 2. Thus, each arm 4, 5 is operated individually.
- the arms are arranged at 120° around the base 2.
- other arrangements for example at 90°, are possible.
- Each arm, respectively 4, 5 comprises two portions, respectively 4a, 4b and 5a, 5b, namely a so-called proximal portion 4a, 5a and a so-called distal portion 4b, 5b.
- the proximal portion 4a comprises for example a single branch, on the one hand in pivot connection around a primary axis P on the base 2, and on the other hand articulated in ball joint connection on the distal portion 4b.
- the distal portion 4b is formed for example as a deformable quadrilateral, and even more specifically as a deformable parallelogram, in a plane substantially perpendicular to the primary axis P of the arm 4 in question.
- the distal portion 4b may comprise two parallel branches 7, each connected in a ball joint by a first end on the branch of the proximal portion 4a, and connected in a ball joint via a second end on the platform 3.
- This deformable parallelogram, or more generally quadrilateral, architecture makes it possible to provide robustness to the translator arm 4.
- the proximal portion 5a comprises for example a proximal main branch 8 connected in pivot connection around the primary axis P, and actuated by a first motor 6a.
- the proximal portion 5a further comprises a branch 9 called connecting branch connected in a pivot connection, around an axis parallel to the corresponding primary axis P, to the main proximal branch 8.
- the proximal portion 5a includes the means for rotating the connecting branch 9 with respect to the proximal main branch 8. According to one embodiment which is that of the figures, these means comprise a proximal secondary branch 10 and a proximal tertiary branch 11.
- the proximal secondary branch 10 is connected to the base 2 and articulated in rotation with respect to the base 2 around the primary axis P, for example by a second motor 6b, aligned with the first motor 6a actuating the proximal main branch 8.
- the proximal portion 5a forms a deformable quadrilateral, and more precisely according to the example presented in the figures a deformable parallelogram in the plane perpendicular to the primary axis P.
- means for rotating the connecting branch 9 with respect to the proximal main branch 8 may be provided.
- the proximal secondary branch 10 can be actuated around an axis of the base 2 other than the primary axis P, the second motor 6b then not being aligned with the first motor 6a.
- the proximal secondary branch 10 and the proximal tertiary branch 11 can be eliminated and replaced, for example, by a third motor on board the proximal main branch 8 in order to set the connecting branch 9 directly in motion with respect to the branch 8 main proximal.
- the rotator arm 5 can be associated with two motors: the first motor 6a, connected to the proximal main branch 8 in order to transmit a translation movement of the platform 3, and the second motor 6b, connected , directly or indirectly, to the connecting branch 9 in order to obtain the tilting movement of the rod 14, and thus the rotational movement of the tool.
- the distal portion 5b may comprise, similarly to the distal portion 4b of the arms 4 translators, at least one, and according to the example of the figures two parallel branches 12, called distal main branches, each connected in ball joint connection by a first end on the proximal portion 5a, for example either directly on the proximal main branch 8 or on the connecting part 9, and connected in ball joint connection by a second end on the platform 3.
- a deformable quadrilateral system, and more precisely with a deformable parallelogram according to the example of the figures presented here, can be defined by the two main distal branches 12, the axis of the ball joints on the platform 3 and the axis of the ball joints on the proximal portion 5a. This is called a spatial parallelogram. This architecture allows for good robustness of the distal portion 5b of the rotator arm.
- the rotator arm 5 further comprises a distal secondary branch 13 and a connecting rod 14.
- the distal secondary branch 13 notably makes it possible to actuate the connecting rod 14 in rotation about an axis Q with respect to the platform 3. Indeed , when the distal secondary branch 13 is actuated to be set in motion relative to the distal portion 5b, it causes the rocking link 14 around the axis Q relative to the platform 3.
- the distal secondary branch 13 is connected by a ball joint to the proximal portion 5a of the rotator arm 5, for example either the proximal main branch 8 or the connecting branch 9, but always at a distance from the connection of the distal main 12 branches on the proximal portion 5a.
- the distal secondary branch 13 is also connected by a ball joint to the link 14.
- the rod 14 is pivotally mounted around the Q axis of the platform 3, so as to be able to tilt relative to the platform 3 around this Q axis.
- the Q axis of rotation of the rod 14 on the platform 3 passes through the center of the ball joints of the branches 12 of the distal portion 5b of the rotator arm 5 on the platform 3.
- the rotator arm 5 further comprises a system 15 for converting the tilting movement of the rod 14 relative to the platform 3 into a rotational movement of the tool about an axis of work of the platform 3.
- the connecting piece 9 is actuated in rotation relative to the main branch 8 of the proximal portion 5a
- the distal secondary branch 13 is set in motion and moves the connecting rod 14 relative to the platform 3.
- the connecting rod 14 then cooperates with the conversion system 15 in order to obtain a rotation of the tool around a determined working axis of the platform 3.
- the connecting branch 9 carries at least two joints: the joint 16 on the main branch 8, which will be referred to for simplification purposes in what follows as the main joint; the joint 17 on the distal secondary branch 13 or the parallel distal main branches 12, which will be referred to for simplification purposes in the following as distal joint.
- the axis of rotation of the main joint 16 can pass through the center of the ball joints of the branches 12 of the distal portion 5b on the main branch 1, as is the case on the embodiments of Figures 2, 3, 4, 6 and 7.
- the distal joint 17 of the connecting branch 9 corresponds to the joint of the distal secondary branch 13.
- the axis of rotation of the main joint 16 passes through the center of the ball joint connection of the distal secondary branch 13 on the main branch 8.
- the distal joint 17 of the connecting branch 9 corresponds to the joint of the main distal branches 12.
- the link 14 also carries at least two joints: the joint 18 on the platform, which will be called for simplification purposes in what follows platform joint, with axis Q of rotation; the joint 19 on the distal secondary arm 13, which will be referred to for the purposes of simplification in what follows link rod joint,
- the connecting branch 9 carries a third joint, in this case the joint with the tertiary branch 11 of the parallelogram , and then has a bent shape.
- connecting rods are located on the same side with respect to a plane passing through the connections of the distal main branches 12, in this case a plane passing through the axis of the main joint 16 and the axis of the joint 18 platform.
- This side is said to be inside because it is oriented towards the inside of the robot 1, that is to say in particular towards the other arms 4, 5 of the robot 1.
- the connection of the distal secondary branch 13 on the proximal portion 5a and the connection of the distal secondary branch 13 to the connecting rod 14 are located on the inside of the robot.
- the distal secondary branch 13, the connecting branch 9, the connecting rod 14 and one of the branches 12 main distal portions of the distal portion 5b also form a deformable quadrilateral, and in this case according to the embodiment shown in the figures a deformable parallelogram.
- the elbow-shaped link branch 9 is oriented towards the inside of the robot.
- the distal secondary branch 13 moves in space on the inside of the robot 1, so that the size of the robot 1 is limited. Indeed, the distal secondary branch 12 remains on the same interior side during the operation of the robot 1.
- the distal joint 17 of the connecting branch 9 is connected with the distal secondary branch 13, and on the other hand the distal joint 17 and the link 19 are located on either side of a plane passing through the connections of the main proximal branches 12 on the proximal portion 5a and on the platform 3, that is to say in this case a plane passing through the axis of the main articulation 16 and the axis of the articulation 18 platform.
- the connecting rod joint 19 is located on the interior side of the robot, and the distal joint 17 is located on the exterior side of the robot, opposite the interior side.
- the connection of the distal secondary branch 13 on the proximal portion 5a is located on the exterior side of the robot, and the connection of the distal secondary branch 13 on the connecting rod 14 is located on the interior side of the robot.
- the distal secondary branch 13 crosses the distal main branches 12.
- This second variant makes it possible in particular to limit the risks of collision between the distal secondary branch 13 and the proximal main branch 8 in order to widen the workspace, that is to say the volume in which the arm 5 rotator can move relative to base 2.
- the distal joint 17 of the connecting branch 9 is connected with the distal main branches 12, so that the distal secondary branch 13 is connected to the proximal main branch 8, for example at the level of the main joint 16.
- the main joint 16 and the connecting rod joint 19 are located on the same interior side with respect to a plane passing through the connections of the main proximal branches 12, in this case a plane passing through the axis of the distal joint 17 and the axis of the platform joint 18.
- the connection of the distal secondary branch 13 to the proximal portion 5a and the connection of the distal secondary branch 13 to the connecting rod 14 are located on the inside of the robot.
- a spatial quadrilateral or deformable spatial parallelogram can again be defined by the distal secondary branch 13, the billet 14, one of the main distal branches 12 and the connecting branch 9.
- the rotator arm 5 allows, thanks to the tilting of the rod 14 relative to the platform 3 by the actuation of the distal secondary branch 13 according to any one of the variants presented above, to be able to obtain a degree of rotational freedom of a tool around a determined working axis.
- the movement conversion system 15 cooperates with the link 14 in order to transform the tilting movement of the link 14 with respect to the platform 3 into a rotational movement around a determined working axis.
- the robot 1 can comprise two rotator arms 5, as illustrated in FIG. 10. Although in FIG. 10, the two rotator arms 5 have the same configuration, it can be otherwise, and rotator arms 5 according to the different variants shown can be combined. Finally, three degrees of freedom in rotation can be obtained by setting up three rotator arms 5.
- the tool whose what is in question here is a support 160 for a vacuum gripping device, such as a suction cup, or the like, in order to grasp an object to be moved and release it at a position and in a direction determined.
- the tool 160 can however be of any type, for example a clamp or even a deployable mechanism.
- FIG 11 an example of a first conversion system 150 is shown in order to obtain a rotation of the tool 160 around a first work axis T1.
- the second conversion system 1500 is partly masked for the sake of clarity.
- the link 14 of a first rotator arm 5 further comprises an oblong opening 20.
- the conversion system 151 then comprises a first shaft 151, one end of which is pivotally mounted in the opening 20 of the connecting rod 14, in rotation about an axis perpendicular to the axis of extension of the first shaft 151, for example at using a first roller 152.
- the conversion system 150 comprises a turret 153, partly transparent in FIG. 11, rigidly fixed to the base 3, and in which the first shaft 151 is guided in translation along its axis d 'extension.
- the turret 153 and the base 3 can be one-piece, that is to say formed from one and the same piece.
- the second end of the first shaft 151 comprises a second roller 154, with an axis substantially parallel to that of the first roller 152.
- the second roller 154 engages in an oblong opening 21 of the tool 160.
- the tool 160 is moreover pivotally mounted around the first working axis T1, on the turret 153.
- FIG 12 there is shown an example of a second conversion system 1500 combined with the first conversion system 150, in order to obtain two degrees of freedom in rotation of the tool 160. Only a few elements of the second rotator arm associated with the second conversion system 1500 are represented.
- the link 14 also includes an oblong opening 20.
- the second conversion system 1500 then comprises a second shaft 1501 whose first end is pivotally mounted in the opening 20' of the rod 14', in rotation about an axis perpendicular to the axis of extension of the second shaft 1501 for example using a first roller 1502.
- the second shaft 1501 is guided in translation, along its axis of extension, in an oblong opening 1503 of the turret 153.
- a second roller 1504, of axis parallel to the first roller 1502, on the second end of the second shaft 1501 makes it possible to guide the translation of the second shaft 1501.
- the connecting rod 14 rocking relative to platform 3 also transparent in figure 12
- the second shaft 1501 slides along its axis of extension relative to platform 3.
- Turret 153 is common to both conversion systems 150, 1500. More specifically, it consists of two parts. A first part 1531 is rigidly fixed to the base 3 (transparent in FIG. 12), and a second part 1532 is pivotally mounted with respect to the first part 1531, for example around the axis of extension of the first shaft 151 of the first conversion system 150. In this case, the tool 160 is fixed on the second part 1532 of the turret 153, that is to say that the first working axis T1 is carried by the second part 1532 of the turret 153.
- the second conversion system 1500 comprises a system of two toothed wheels 1505, 1506.
- the first toothed wheel 1505 is pivotally mounted on the first part 1531 of the turret and is associated with the second shaft 1501, which is threaded.
- the second wheel 1506 is mounted on the second part 1532 of the turret 153, and engages the first toothed wheel 1505.
- the second wheel 1506 is rigidly fixed to the second part 1532 of the turret 153.
- the sliding movement of the second shaft 1501 causes the setting in motion of the first wheel 1505 relative to the first part 1531 of the turret 1, and causes the rotation of the second wheel 1506, and therefore of the second part 1532 of the turret 153 with respect to the first part 1531.
- the axis of rotation of the second wheel 1506 coincides with the axis of extension of the first shaft 151.
- the rotation of the second part 1532 causes the rotation of the tool 160 around a second working axis T2 corresponding to the axis of extension of the first shaft 151.
- the robot 1 makes it easy to obtain up to three additional degrees of freedom in rotation of the tool 160, as needed, without weighing down the arm by a motor attached to the arm, nor the setting work of a telescopic arm.
- the design is simplified and the manufacturing costs remain low.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
Tool robot (1), such as a robot (1) for handling objects, comprising a base (2) and a platform (3), the platform (3) being intended to support a tool (160) such as a tool for handling objects, the robot (1) comprising at least three arms (4, 5) connecting the base (2) to the platform (3) so as to give the platform (3) three degrees of freedom in translation relative to the base (2), the tool robot (1) being characterised in that at least one of the three arms (4, 5) is a rotating arm (5) for producing a rotating movement of the tool (160) about a working axis of the platform (3).
Description
DESCRIPTION DESCRIPTION
Titre : Robot outil comprenant au moins un bras rotateurTitle: Robot tool comprising at least one rotator arm
DOMAINE DE L’INVENTION FIELD OF THE INVENTION
[01] La présente invention concerne le domaine des robots outils ou robots industriels, et plus particulièrement au domaine des robots destinés à manipuler un objet dans un espace à trois dimensions. [01] The present invention relates to the field of tool robots or industrial robots, and more particularly to the field of robots intended to manipulate an object in a three-dimensional space.
[02] Plus précisément, l’invention se rapporte à un robot comprenant un bras rotateur présentant une nouvelle architecture pour apporter un ou plusieurs degrés de liberté supplémentaires à un outil porté par le bras. [02] More specifically, the invention relates to a robot comprising a rotator arm having a new architecture to provide one or more additional degrees of freedom to a tool carried by the arm.
ARRIÈRE-PLAN TECHNOLOGIQUE TECHNOLOGICAL BACKGROUND
[03] Dans le domaine des robots industriels, plusieurs types d’architecture ont été mises au point, répondant à des exigences par exemple en termes d’encombrement, d’espace de travail, d’amplitude de déplacement, de cadence et bien entendu en fonction des opérations à effectuer. [03] In the field of industrial robots, several types of architecture have been developed, meeting requirements, for example in terms of size, workspace, amplitude of movement, rate and of course depending on the operations to be performed.
[04] Concernant le domaine plus particulier des robots destinés à manipuler les objets, une architecture connue est le robot Delta, qui est elle-même une catégorie de l’architecture dite parallèle. Un robot Delta comprend typiquement une base et une plateforme, cette dernière étant destinée à supporter l’outil de manipulation. La base est reliée à la plateforme au moyen de trois bras, chaque bras comprenant un actionneur relié à un moteur fixé à la base et un parallélogramme déformable à rotules connectant l’actionneur à la plateforme. [04] Concerning the more specific field of robots intended to manipulate objects, a known architecture is the Delta robot, which is itself a category of so-called parallel architecture. A Delta robot typically comprises a base and a platform, the latter being intended to support the manipulation tool. The base is connected to the platform by means of three arms, each arm comprising an actuator connected to a motor fixed to the base and a deformable parallelogram with ball joints connecting the actuator to the platform.
[05] Les robots de manipulation d’objets sont notamment caractérisés par le nombre de degrés de liberté offerts à l’outil. [05] Object manipulation robots are characterized in particular by the number of degrees of freedom offered to the tool.
[06] L’architecture Delta permet de déplacer la plateforme selon trois degrés de liberté en translation. Elle a été développée en particulier dans le domaine de l’emballage d’objets légers et de petites dimensions car elle permet de répondre aux exigences de cadence industrielle tout en offrant une précision satisfaisante dans le placement des objets. [06] The Delta architecture allows the platform to be moved according to three translational degrees of freedom. It was developed in particular in the field of packaging light and small-sized objects because it makes it possible to meet industrial speed requirements while offering satisfactory precision in the placement of objects.
[07] Le document US4,976,582 décrit un tel robot Delta. Selon ce document, afin d’obtenir un degré de liberté en rotation de la plateforme, un moteur supplémentaire peut être mis en œuvre sur la plateforme afin de mettre en rotation l’outil par rapport à la plateforme. Ce document propose en variante de contrôler un bras télescopique relié d’une part à un moteur supplémentaire à la base et d’autre part à la plateforme. Ainsi, la plateforme peut pivoter autour de l’axe du bras télescopique.
[08] En effet, il peut être avantageux de pouvoir orienter les objets à emballer afin de les présenter dans une bonne position vis-à-vis de l’emballage ou de la machine d’emballage. [07] Document US4,976,582 describes such a Delta robot. According to this document, in order to obtain a degree of freedom in rotation of the platform, an additional motor can be implemented on the platform in order to rotate the tool with respect to the platform. This document proposes as a variant to control a telescopic arm connected on the one hand to an additional motor at the base and on the other hand to the platform. Thus, the platform can pivot around the axis of the telescopic arm. [08] Indeed, it may be advantageous to be able to orient the objects to be packaged in order to present them in a good position vis-à-vis the packaging or the packaging machine.
[09] Toutefois, les solutions de US 4,976,582 n’apportent pas entière satisfaction. [09] However, the solutions of US 4,976,582 are not entirely satisfactory.
[10] Ces deux solutions proposent un unique degré de liberté en rotation, ce qui peut être insuffisant lorsque le mouvement à opérer pour mettre l’objet à emballer dans l’orientation souhaitée dépasse la simple rotation autour d’un unique axe. [10] These two solutions offer a single degree of rotational freedom, which may be insufficient when the movement required to place the object to be wrapped in the desired orientation exceeds simple rotation around a single axis.
[11] En outre, l’ajout d’un moteur supplémentaire sur la plateforme augmente la masse à déplacer par le robot, ce qui conduit à une diminution indésirable de la cadence. La commande du moteur supplémentaire complexifie par ailleurs le contrôle du robot. [11] Furthermore, adding an additional motor on the platform increases the mass to be moved by the robot, which leads to an undesirable decrease in cadence. The additional motor control also complicates the control of the robot.
[12] Enfin, la présence de la canne télescopique alourdit également le robot, implique les inconvénients précités d’un moteur supplémentaire. De plus la canne télescopique fragilise l’architecture du robot, augmentant les risques de casses et d’immobilisation du robot. En outre, l’utilisation d’une canne limite l’espace de travail du robot en hauteur. [12] Finally, the presence of the telescopic rod also weighs down the robot, involves the aforementioned drawbacks of an additional motor. In addition, the telescopic rod weakens the architecture of the robot, increasing the risk of breakage and immobilization of the robot. In addition, the use of a cane limits the working space of the robot in height.
[13] L’invention vise notamment à apporter une solution aux inconvénients précités en proposant une nouvelle architecture des bras pour un robot, notamment pour un robot de manipulation d’objets, permettant d’augmenter le nombre de degrés de liberté d’un outil porté par le robot sans alourdir le robot, ni réduire sa vitesse de déplacement, ni limiter l’espace de travail. [13] The invention aims in particular to provide a solution to the aforementioned drawbacks by proposing a new arm architecture for a robot, in particular for a robot for manipulating objects, making it possible to increase the number of degrees of freedom of a tool carried by the robot without weighing down the robot, reducing its speed of movement, or limiting the workspace.
RÉSUMÉ DE L’INVENTION SUMMARY OF THE INVENTION
[14] Ainsi, l’invention se rapporte à un robot outil, tel qu’un robot de manipulation d’objets, comprenant une base et une plateforme. La plateforme est destinée à porter un outil, tel qu’un outil de manipulation d’objets. Le robot comprend au moins trois bras reliant la base à la plateforme. Chaque bras comprend d’une part une portion proximale actionnée individuellement en rotation autour d’un axe primaire de la base, et comprenant d’autre part une portion distale articulée par rapport à la portion proximale et connectant la portion proximale à la plateforme, de manière à permettre trois degrés de liberté en translation de la plateforme par rapport à la base. Au moins un des trois bras du robot est un bras rotateur, qui comprend de plus :[14] Thus, the invention relates to a robot tool, such as an object manipulation robot, comprising a base and a platform. The platform is intended to carry a tool, such as an object manipulation tool. The robot includes at least three arms connecting the base to the platform. Each arm comprises on the one hand a proximal portion actuated individually in rotation around a primary axis of the base, and on the other hand comprising a distal portion articulated with respect to the proximal portion and connecting the proximal portion to the platform, so as to allow three degrees of freedom in translation of the platform relative to the base. At least one of the three arms of the robot is a rotator arm, which further comprises:
- au moins une branche secondaire distale, connectée à la portion proximale ; - at least one distal secondary branch, connected to the proximal portion;
- au moins une biellette articulée d’une part sur la branche secondaire distale et d’autre part sur la plateforme de sorte que la biellette opère un mouvement de basculement par rapport à la plateforme par actionnement de la branche secondaire distale du bras rotateur,
- au moins un système de conversion du mouvement de basculement de la biellette par rapport à la plateforme en un mouvement de rotation de l’outil autour d’un axe de travail de la plateforme. - at least one connecting rod articulated on the one hand on the distal secondary branch and on the other hand on the platform so that the connecting rod operates a tilting movement relative to the platform by actuation of the distal secondary branch of the rotator arm, - at least one system for converting the tilting movement of the link relative to the platform into a rotational movement of the tool around a working axis of the platform.
[15] Grâce à ces dispositions, un degré de liberté de rotation de l’outil peut être obtenu de manière simple, sans impliquer de bras télescopique, et sans impliquer la nécessité d’un moteur. La vitesse de fonctionnement du robot reste compatible avec des cadences industrielles. Les coûts de fabrication du robot ne sont pas ou peu augmentés. Un bras rotateur pet facilement être mis en place sans revoir l’architecture du robot dans son ensemble. Ainsi, plusieurs bras rotateurs peuvent être mis en place en fonction des besoins en degrés de liberté en rotation de l’outil. [15] Thanks to these provisions, a degree of freedom of rotation of the tool can be obtained in a simple way, without involving a telescopic arm, and without involving the need for a motor. The robot's operating speed remains compatible with industrial rates. The manufacturing costs of the robot are not or only slightly increased. A rotator arm can easily be set up without reviewing the architecture of the robot as a whole. Thus, several rotator arms can be set up according to the needs in degrees of freedom in rotation of the tool.
[16] Ainsi, selon une réalisation, le robot peut comprendre au moins deux bras rotateurs, chaque bras rotateur définissant un axe de travail de l’outil. L’axe de travail défini par un premier bras rotateur peut être parallèle ou non parallèle à l’axe de travail défini par le deuxième bras rotateur. Eventuellement, le robot peut comprendre trois bras rotateurs, chaque bras rotateur définissant un axe de travail de l’outil, cet axe pouvant être parallèle ou non à l’axe de travail défini par chacun des deux autres bras rotateurs. Le robot peut ainsi actionner tout type d’outil, tel qu’un système de préhension par la vide, comme une ventouse, ou une pince ou encore un mécanisme déployable. [16] Thus, according to one embodiment, the robot may comprise at least two rotator arms, each rotator arm defining a working axis of the tool. The work axis defined by a first rotator arm can be parallel or not parallel to the work axis defined by the second rotator arm. Optionally, the robot may comprise three rotator arms, each rotator arm defining a work axis of the tool, this axis possibly being parallel or not to the work axis defined by each of the other two rotator arms. The robot can thus operate any type of tool, such as a vacuum gripping system, such as a suction cup, or a gripper or even a deployable mechanism.
[17] Selon différents aspects, il est possible de prévoir l’une et/ou l’autre des caractéristiques ci-dessous prises seules ou en combinaison. [17] Depending on various aspects, it is possible to provide one and/or the other of the characteristics below, taken alone or in combination.
[18] Selon une réalisation, la portion proximale du bras rotateur comprend une branche principale proximale et une branche de liaison. La branche principale proximale est actionnée en rotation par rapport à la base autour de l’axe primaire de la base et est connectée d’autre part à la branche de liaison par une liaison pivot d’axe parallèle à l’axe primaire. La branche de liaison est connectée d’autre part par une liaison rotule à au moins l’une de la portion distale et de la branche secondaire distale. [18] According to one embodiment, the proximal portion of the rotator arm comprises a proximal main branch and a connecting branch. The proximal main branch is actuated in rotation relative to the base around the primary axis of the base and is connected on the other hand to the connecting branch by a pivot connection with an axis parallel to the primary axis. The connecting branch is connected on the other hand by a ball joint to at least one of the distal portion and the distal secondary branch.
[19] Ainsi, en actionnant la branche de liaison par rapport à la branche principale proximale, on obtient le mouvement de la biellette par rapport à la plateforme. Plusieurs variantes peuvent être envisagées pour obtenir le mouvement de la branche de liaison par rapport à la branche principale [19] Thus, by actuating the connecting branch relative to the proximal main branch, the movement of the rod relative to the platform is obtained. Several variants can be considered to obtain the movement of the connecting branch relative to the main branch
[20] Selon une réalisation, la portion proximale comprend en outre une branche secondaire proximale actionnée en rotation autour de l’axe primaire de la base, et une branche tertiaire proximale non actionnée connectée en liaison pivot autour d’axes parallèles à l’axe primaire à la fois à la branche secondaire proximale et à la branche de liaison, de sorte que la branche principale proximale, la branche secondaire
proximale, la branche de liaison et la branche tertiaire proximale forment un quadrilatère déformable. [20] According to one embodiment, the proximal portion further comprises a proximal secondary branch actuated in rotation around the primary axis of the base, and a non-actuated proximal tertiary branch connected in a pivot connection around axes parallel to the axis primary to both the proximal secondary branch and the connecting branch, so that the proximal main branch, the secondary branch proximal, the connecting branch and the proximal tertiary branch form a deformable quadrilateral.
[21] Selon cette réalisation, le bras rotateur peut être associé à un premier moteur et à un deuxième moteur, le premier moteur étant connecté à la branche principale proximale de manière à être apte à actionner la translation de la plateforme et le deuxième moteur étant connecté à la branche de liaison de manière à être apte à actionner le mouvement de basculement de la biellette. [21] According to this embodiment, the rotator arm can be associated with a first motor and a second motor, the first motor being connected to the proximal main branch so as to be capable of actuating the translation of the platform and the second motor being connected to the connecting branch so as to be able to actuate the tilting movement of the rod.
[22] Le premier moteur et le deuxième moteur sont de préférence fixés à la base, afin de ne pas alourdir le bras. Ils peuvent être colinéaires, mais pas nécessairement. Le deuxième moteur peut être connecté directement ou indirectement à la pièce 9 de liaison. Ainsi, le mouvement de translation de la plateforme est contrôlé de manière découplée du mouvement de rotation de l’outil, facilitant la gestion et le contrôle des mouvements. [22] The first motor and the second motor are preferably fixed to the base, so as not to weigh down the arm. They can be collinear, but not necessarily. The second motor can be connected directly or indirectly to the connecting part 9. Thus, the translational movement of the platform is controlled in a way that is decoupled from the rotational movement of the tool, facilitating the management and control of movements.
[23] Selon une réalisation, pour un bras rotateur, d’une part la connexion entre la branche de liaison et la branche secondaire distale et d’autre part la connexion entre la biellette et la branche secondaire distale sont situées d’un même côté par rapport à un plan passant par les connexions de la portion distale du bras rotateur d’une part sur la portion proximale et d’autre part sur la plateforme. Selon une première variante, il s’agit du côté intérieur, afin de limiter l’encombrement du robot. Selon une deuxième variante, il s’agit du côté extérieur afin d’en plus limiter les risques de collisions entre les pièces du bras rotateur lors du fonctionnement du robot. [23] According to one embodiment, for a rotator arm, on the one hand the connection between the connecting branch and the distal secondary branch and on the other hand the connection between the connecting rod and the distal secondary branch are located on the same side with respect to a plane passing through the connections of the distal portion of the rotator arm on the one hand on the proximal portion and on the other hand on the platform. According to a first variant, it is the interior side, in order to limit the size of the robot. According to a second variant, it is the outer side in order to further limit the risk of collisions between the parts of the rotator arm during operation of the robot.
[24] Selon une autre réalisation, pour un bras rotateur, d’une part la connexion entre la branche de liaison et la branche secondaire distale et d’autre part la connexion entre la biellette et la branche secondaire distale sont situées de part et d’autre d’un plan passant par les connexions de la portion distale du bras rotateur d’une part sur la portion proximale et d’autre part sur la plateforme. Le volume de travail du robot est ainsi augmenté en limitant les risques de collisions entre les pièces du bras rotateur. [24] According to another embodiment, for a rotator arm, on the one hand the connection between the connecting branch and the distal secondary branch and on the other hand the connection between the connecting rod and the distal secondary branch are located on either side. the other of a plane passing through the connections of the distal portion of the rotator arm on the one hand on the proximal portion and on the other hand on the platform. The volume of work of the robot is thus increased by limiting the risks of collisions between the parts of the rotator arm.
[25] Selon une réalisation, la portion proximale du bras rotateur peut être munie d’un moteur secondaire entre la branche principale proximale et la branche de liaison. La branche 9 de liaison est alors actionnée par rapport à la branche principale proximale par le moteur secondaire, ce qui n’alourdit pas la portion distale ou la plateforme ou la branche secondaire distale du bras rotateur, et permet de simplifier l’architecture de la portion proximale.
[26] Selon une réalisation, la portion distale d’au moins un bras comprend un système à quadrilatère déformable à liaisons rotules, ajoutant de la robustesse au bras rotateur.
[25] According to one embodiment, the proximal portion of the rotator arm may be provided with a secondary motor between the proximal main branch and the connecting branch. The connecting branch 9 is then actuated with respect to the proximal main branch by the secondary motor, which does not weigh down the distal portion or the platform or the distal secondary branch of the rotator arm, and makes it possible to simplify the architecture of the proximal portion. [26] According to one embodiment, the distal portion of at least one arm comprises a deformable quadrilateral system with ball joints, adding robustness to the rotator arm.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF DRAWINGS
[28] Des modes de réalisation de l’invention seront décrits ci-dessous par référence aux dessins, décrits brièvement ci-dessous : [28] Embodiments of the invention will be described below with reference to the drawings, briefly described below:
[29] [Fig. 1] représente un exemple d’un robot de type Delta de l’art antérieur. [29] [Fig. 1] shows an example of a prior art Delta-type robot.
[30] [Fig. 2] représente une vue en perspective d’un robot selon un mode de réalisation de l’invention comprenant un bras rotateur selon une première variante. [30] [Fig. 2] shows a perspective view of a robot according to one embodiment of the invention comprising a rotator arm according to a first variant.
[31] [Fig. 3] représente une vue en perspective du bras rotateur du robot de la figure 2. [31] [Fig. 3] represents a perspective view of the rotator arm of the robot of figure 2.
[32] [Fig. 4] représente une vue de côté du bras rotateur de la figure 3. [32] [Fig. 4] shows a side view of the rotator arm of figure 3.
[33] [Fig. 5] représente une vue de détail d’une biellette selon un mode de réalisation à l’extrémité distale du bras rotateur de la figure 4. [33] [Fig. 5] shows a detail view of a link according to one embodiment at the distal end of the rotator arm of figure 4.
[34] [Fig. 6] représente une vue en perspective d’une deuxième variante du bras rotateur. [34] [Fig. 6] represents a perspective view of a second variant of the rotator arm.
[35] [Fig. 7] représente une vue de côté du bras de la figure 6. [35] [Fig. 7] shows a side view of the arm of figure 6.
[36] [Fig. 8] représente une vue en perspective d’une troisième variante du bras rotateur. [36] [Fig. 8] represents a perspective view of a third variant of the rotator arm.
[37] [Fig. 9] représente une vue de côté du bras de la figure 8. [37] [Fig. 9] shows a side view of the arm of figure 8.
[38] [Fig. 10] représente une vue en perspective d’un robot selon un autre mode de réalisation. [38] [Fig. 10] represents a perspective view of a robot according to another embodiment.
[39] [Fig. 11] représente une vue de détail d’un mode de réalisation d’un système de conversion d’un bras rotateur. [39] [Fig. 11] shows a detail view of one embodiment of a rotator arm conversion system.
[40] [Fig. 12] représente une vue de détail d’un mode de réalisation d’un système de conversion de deux bras rotateurs. [40] [Fig. 12] shows a detail view of one embodiment of a two-arm rotator conversion system.
[41] Sur les dessins, des références identiques désignent des objets identiques ou similaires. [41] In the drawings, identical references designate identical or similar objects.
DESCRIPTION DÉTAILLÉE DETAILED DESCRIPTION
[42] L’invention concerne un robot, notamment un robot de manipulation d’outils, léger et rapide. Il s’agit par exemple d’un robot de type Delta, dont un schéma est reproduit en figure 1 . [42] The invention relates to a robot, in particular a robot for handling tools, which is light and fast. It is for example a Delta-type robot, a diagram of which is reproduced in figure 1 .
[43] Le robot A Delta de l’art antérieur comprend typiquement une base B, une plateforme C et trois bras D reliant la base B à la plateforme C. Les trois bras D permettent à la plateforme C d’avoir trois degrés de liberté en translation par rapport à la base B. Pour cela, chaque bras D est typiquement articulé en rotation sur la base B par un moteur E. Chaque bras D comprend une portion D1 et une portion D2 articulée l’une par rapport à l’autre par des joints de Cardan, ou autre liaison équivalente, la portion D2 étant également connectée à la plateforme C par un joint de Cardan, ou autre liaison équivalente.
[44] Il en résulte qu’un outil fixé à la plateforme C peut se déplacer en translation selon les trois directions par rapport à la base B. [43] The prior art A Delta robot typically includes a B base, a C platform, and three D arms connecting the B base to the C platform. The three D arms allow the C platform to have three degrees of freedom in translation with respect to the base B. For this, each arm D is typically articulated in rotation on the base B by a motor E. Each arm D comprises a portion D1 and a portion D2 articulated relative to each other by Cardan joints, or other equivalent connection, the portion D2 also being connected to the platform C by a Cardan joint, or other equivalent connection. [44] As a result, a tool fixed to the platform C can move in translation in the three directions with respect to the base B.
[45] Comme présenté en introduction, le problème est d’apporter à l’outil des degrés de liberté supplémentaires, en l’occurrence en rotation. [45] As presented in the introduction, the problem is to provide the tool with additional degrees of freedom, in this case in rotation.
[46] Sur la figure 2, il est représenté un robot 1 selon un premier mode de réalisation de l’invention. [46] In Figure 2, there is shown a robot 1 according to a first embodiment of the invention.
[47] Comme pour le robot Delta de l’art antérieur présenté, le robot 1 de l’invention comprend une base 2 et une plateforme 3. La plateforme 3 est destinée à porter un outil. L’outil est de tout type, et peut être par exemple un système de préhension par le vde, comme une ventouse, une pince ou encore un mécanisme déployable. Trois bras relient la base 2 à la plateforme 3. Selon le mode de réalisation de la figure 2, le robot 1 comprend deux bras 4 dits translateurs, car apportant des degrés de liberté en translation, et un bras 5 dit rotateur car, en plus de la translation, il apporte au moins un degré de liberté en rotation de l’outil. [47] As for the Delta robot of the prior art presented, the robot 1 of the invention comprises a base 2 and a platform 3. The platform 3 is intended to carry a tool. The tool is of any type, and can for example be a vacuum gripping system, such as a suction cup, pliers or even a deployable mechanism. Three arms connect the base 2 to the platform 3. According to the embodiment of FIG. 2, the robot 1 comprises two arms 4 called translators, because providing degrees of freedom in translation, and an arm 5 called a rotator because, in addition translation, it provides at least one degree of freedom in rotation of the tool.
[48] Chaque bras 4, 5 est connecté à la base 2 en liaison pivot autour d’un axe P dit axe primaire de la base 2. De préférence, mais non nécessairement, les axes P de chaque bras 4, 5 sont coplanaires. Chaque bras 4, 5 est associé à au moins un moteur 6, 6a, 6b, chaque moteur 6, 6a, 6b étant dédié à un unique bras 4, 5, et étant fixé sur la base 2. Ainsi, chaque bras 4, 5 est actionné individuellement. [48] Each arm 4, 5 is connected to the base 2 in a pivot connection around an axis P called the primary axis of the base 2. Preferably, but not necessarily, the axes P of each arm 4, 5 are coplanar. Each arm 4, 5 is associated with at least one motor 6, 6a, 6b, each motor 6, 6a, 6b being dedicated to a single arm 4, 5, and being fixed on the base 2. Thus, each arm 4, 5 is operated individually.
[49] Selon l’exemple des figures, les bras sont disposés à 120° autours de la base 2. Toutefois, d’autres dispositions, par exemple à 90°, sont possibles. [49] According to the example of the figures, the arms are arranged at 120° around the base 2. However, other arrangements, for example at 90°, are possible.
[50] Chaque bras, respectivement 4, 5 comprend deux portions, respectivement 4a, 4b et 5a, 5b, à savoir une portion 4a, 5a dite proximale et une portion 4b, 5b dite distale. [50] Each arm, respectively 4, 5 comprises two portions, respectively 4a, 4b and 5a, 5b, namely a so-called proximal portion 4a, 5a and a so-called distal portion 4b, 5b.
[51] Les adjectifs distal et proximal sont pris ici en référence à la base 2, la portion proximale étant directement connectée à la base 2. [51] The adjectives distal and proximal are taken here in reference to base 2, the proximal portion being directly connected to base 2.
[52] Concernant les bras 4 translateurs, la portion 4a proximale comprend par exemple une unique branche, d’une part en liaison pivot autour d’un axe P primaire sur la base 2, et d’autre part articulée en liaison rotule sur la portion 4b distale. [52] Concerning the arms 4 translators, the proximal portion 4a comprises for example a single branch, on the one hand in pivot connection around a primary axis P on the base 2, and on the other hand articulated in ball joint connection on the distal portion 4b.
[53] Dans ce qui suit, en référence aux figures, on parlera de liaison rotule pour désigner toute liaison à trois degrés de liberté en rotation, étant entendu que tout autre type de liaison à trois degrés de liberté en rotation convient également. [53] In what follows, with reference to the figures, we will speak of a ball joint to designate any connection with three degrees of freedom in rotation, it being understood that any other type of connection with three degrees of freedom in rotation is also suitable.
[54] Plus précisément, la portion 4b distale est formée par exemple comme un quadrilatère déformable, et plus précisément encore comme un parallélogramme déformable, dans un plan sensiblement perpendiculaire à l’axe P primaire du bras 4 en question. Ainsi, comme représenté sur la figure 1 , la portion 4b distale peut comprendre deux branches 7 parallèles, chacune connectée en liaison rotule par une
première extrémité sur la branche de la portion 4a proximale, et connectée en liaison rotule par une deuxième extrémité sur la plateforme 3. Cette architecture à parallélogramme, ou plus généralement à quadrilatère, déformable permet d’apporter de la robustesse au bras 4 translateur. [54] More specifically, the distal portion 4b is formed for example as a deformable quadrilateral, and even more specifically as a deformable parallelogram, in a plane substantially perpendicular to the primary axis P of the arm 4 in question. Thus, as shown in Figure 1, the distal portion 4b may comprise two parallel branches 7, each connected in a ball joint by a first end on the branch of the proximal portion 4a, and connected in a ball joint via a second end on the platform 3. This deformable parallelogram, or more generally quadrilateral, architecture makes it possible to provide robustness to the translator arm 4.
[55] Concernant le bras 5 rotateur, une première variante de réalisation est illustrée notamment sur les figures 3 et 4. La portion 5a proximale comprend par exemple une branche 8 principale proximale connectée en liaison pivot autour de l’axe P primaire, et actionnée par un premier moteur 6a. La portion 5a proximale comprend en outre une branche 9 dite branche de liaison connectée en liaison pivot, autour d’un axe parallèle à l’axe P primaire correspondant, à la branche 8 principale proximale. [55] Regarding the rotator arm 5, a first embodiment is illustrated in particular in Figures 3 and 4. The proximal portion 5a comprises for example a proximal main branch 8 connected in pivot connection around the primary axis P, and actuated by a first motor 6a. The proximal portion 5a further comprises a branch 9 called connecting branch connected in a pivot connection, around an axis parallel to the corresponding primary axis P, to the main proximal branch 8.
[56] La portion 5a proximale comprend les moyens pour mettre en rotation la branche 9 de liaison par rapport à la branche 8 principale proximale. Selon un mode de réalisation qui est celui des figures, ces moyens comprennent une branche 10 secondaire proximale et une branche 11 tertiaire proximale. La branche 10 secondaire proximale est connectée à la base 2 et articulée en rotation par rapport à la base 2 autour de l’axe P primaire, par exemple par un deuxième moteur 6b, aligné avec le premier moteur 6a actionnant la branche 8 principale proximale. Ainsi, la portion 5a proximale forme un quadrilatère déformable, et plus précisément selon l’exemple présenté sur les figures un parallélogramme déformable dans le plan perpendiculaire à l’axe P primaire. [56] The proximal portion 5a includes the means for rotating the connecting branch 9 with respect to the proximal main branch 8. According to one embodiment which is that of the figures, these means comprise a proximal secondary branch 10 and a proximal tertiary branch 11. The proximal secondary branch 10 is connected to the base 2 and articulated in rotation with respect to the base 2 around the primary axis P, for example by a second motor 6b, aligned with the first motor 6a actuating the proximal main branch 8. Thus, the proximal portion 5a forms a deformable quadrilateral, and more precisely according to the example presented in the figures a deformable parallelogram in the plane perpendicular to the primary axis P.
[57] Ainsi, lorsque le deuxième moteur 6b est mis en route, la branche 10 secondaire proximale est actionnée en rotation autour de l’axe P primaire et fait pivoter la branche 9 de liaison par rapport à la branche 8 principale proximale. [57] Thus, when the second motor 6b is started, the proximal secondary branch 10 is actuated in rotation around the primary axis P and causes the connecting branch 9 to pivot relative to the main proximal branch 8.
[58] D’autres variantes de réalisation, non représentées sur les figures, des moyens pour mettre en rotation la branche 9 de liaison par rapport à la branche 8 principale proximale peuvent être prévues. Par exemple, en première variante, la branche 10 secondaire proximale peut être actionnée autour d’un autre axe de la base 2 que l’axe P primaire, le deuxième moteur 6b étant alors non aligné avec le premier moteur 6a. En deuxième variante, la branche 10 secondaire proximale et la branche 11 tertiaire proximale peuvent être supprimées et remplacées par exemple par un troisième moteur embarqué sur la branche 8 principale proximale afin de mettre en mouvement directement la branche 9 de liaison par rapport à la branche 8 principale proximale. Elles peuvent encore être remplacées par une courroie transmettant le mouvement depuis le deuxième moteur 6b jusqu’à la branche 9 de liaison par l’intermédiaire d’une roue dentée.
[59] Ainsi, plus généralement, le bras 5 rotateur peut être associé à deux moteurs : le premier moteur 6a, connecté à la branche 8 principale proximale afin de transmettre un mouvement de translation de la plateforme 3, et le deuxième moteur 6b, connecté, directement ou indirectement, à la branche 9 de liaison afin d’obtenir le mouvement de basculement de la biellette 14, et ainsi le mouvement de rotation de l’outil. [58] Other embodiments, not shown in the figures, means for rotating the connecting branch 9 with respect to the proximal main branch 8 may be provided. For example, in the first variant, the proximal secondary branch 10 can be actuated around an axis of the base 2 other than the primary axis P, the second motor 6b then not being aligned with the first motor 6a. As a second variant, the proximal secondary branch 10 and the proximal tertiary branch 11 can be eliminated and replaced, for example, by a third motor on board the proximal main branch 8 in order to set the connecting branch 9 directly in motion with respect to the branch 8 main proximal. They can also be replaced by a belt transmitting the movement from the second motor 6b to the connecting branch 9 via a toothed wheel. [59] Thus, more generally, the rotator arm 5 can be associated with two motors: the first motor 6a, connected to the proximal main branch 8 in order to transmit a translation movement of the platform 3, and the second motor 6b, connected , directly or indirectly, to the connecting branch 9 in order to obtain the tilting movement of the rod 14, and thus the rotational movement of the tool.
[60] La portion 5b distale peut comprendre, de manière similaire à la portion 4b distale des bras 4 translateurs, au moins une, et selon l’exemple des figures deux branches 12 parallèles, dites branches principales distales, chacune connectée en liaison rotule par une première extrémité sur la portion 5a proximale, par exemple soit directement sur la branche 8 principale proximale soit sur la pièce 9 de liaison, et connectée en liaison rotule par une deuxième extrémité sur la plateforme 3. Un système à quadrilatère déformable, et plus précisément à parallélogramme déformable selon l’exemple des figures présentées ici, peut être défini par les deux branches 12 principales distales, l’axe des rotules sur la plateforme 3 et l’axe des rotules sur la portion 5a proximale. On parle alors de parallélogramme spatial. Cette architecture permet d’avoir une bonne robustesse de la portion 5b distale du bras rotateur. [60] The distal portion 5b may comprise, similarly to the distal portion 4b of the arms 4 translators, at least one, and according to the example of the figures two parallel branches 12, called distal main branches, each connected in ball joint connection by a first end on the proximal portion 5a, for example either directly on the proximal main branch 8 or on the connecting part 9, and connected in ball joint connection by a second end on the platform 3. A deformable quadrilateral system, and more precisely with a deformable parallelogram according to the example of the figures presented here, can be defined by the two main distal branches 12, the axis of the ball joints on the platform 3 and the axis of the ball joints on the proximal portion 5a. This is called a spatial parallelogram. This architecture allows for good robustness of the distal portion 5b of the rotator arm.
[61] Le bras 5 rotateur comprend de plus une branche 13 secondaire distale et une biellette 14. La branche 13 secondaire distale permet notamment d’actionner la biellette 14 en rotation autour d’un axe Q par rapport à la plateforme 3. En effet, lorsque la branche 13 secondaire distale est actionnée pour être mise en mouvement par rapport à la portion 5b distale, elle entraîne le basculement de la biellette 14 autour de l’axe Q par rapport à la plateforme 3. [61] The rotator arm 5 further comprises a distal secondary branch 13 and a connecting rod 14. The distal secondary branch 13 notably makes it possible to actuate the connecting rod 14 in rotation about an axis Q with respect to the platform 3. Indeed , when the distal secondary branch 13 is actuated to be set in motion relative to the distal portion 5b, it causes the rocking link 14 around the axis Q relative to the platform 3.
[62] Plus précisément, la branche 13 secondaire distale est connectée par une liaison rotule à la portion 5a proximale du bras 5 rotateur, par exemple soit la branche 8 principale proximale soit la branche 9 de liaison, mais toujours à distance de la liaison des branches 12 principales distales sur la portion 5a proximale. La branche 13 secondaire distale est en outre connectée par une liaison rotule à la biellette 14. [62] More specifically, the distal secondary branch 13 is connected by a ball joint to the proximal portion 5a of the rotator arm 5, for example either the proximal main branch 8 or the connecting branch 9, but always at a distance from the connection of the distal main 12 branches on the proximal portion 5a. The distal secondary branch 13 is also connected by a ball joint to the link 14.
[63] La biellette 14 est montée pivotante autour de l’axe Q de la plateforme 3, de manière à pouvoir basculer par rapport à la plateforme 3 autour de cet axe Q. Selon le mode de réalisation des figures, l’axe Q de rotation de la biellette 14 sur la plateforme 3 passe par le centre des liaisons rotules des branches 12 de la portion 5b distale du bras 5 rotateur sur la plateforme 3. [63] The rod 14 is pivotally mounted around the Q axis of the platform 3, so as to be able to tilt relative to the platform 3 around this Q axis. According to the embodiment of the figures, the Q axis of rotation of the rod 14 on the platform 3 passes through the center of the ball joints of the branches 12 of the distal portion 5b of the rotator arm 5 on the platform 3.
[64] Comme cela sera explicité plus loin, le bras 5 rotateur comprend en outre un système 15 de conversion du mouvement de basculement de la biellette 14 par rapport à la plateforme 3 en un mouvement de rotation de l’outil autour d’un axe de
travail de la plateforme 3. Ainsi, lorsque la pièce 9 de liaison est actionnée en rotation par rapport à la branche 8 principale de la portion 5a proximale, la branche 13 secondaire distale est mise en mouvement et déplace la biellette 14 par rapport à la plateforme 3. La biellette 14 coopère alors avec le système 15 de conversion afin d’obtenir une rotation de l’outil autour d’un axe de travail déterminé de la plateforme 3. [64] As will be explained later, the rotator arm 5 further comprises a system 15 for converting the tilting movement of the rod 14 relative to the platform 3 into a rotational movement of the tool about an axis of work of the platform 3. Thus, when the connecting piece 9 is actuated in rotation relative to the main branch 8 of the proximal portion 5a, the distal secondary branch 13 is set in motion and moves the connecting rod 14 relative to the platform 3. The connecting rod 14 then cooperates with the conversion system 15 in order to obtain a rotation of the tool around a determined working axis of the platform 3.
[65] La branche 9 de liaison porte au moins deux articulations : l’articulation 16 sur la branche 8 principale, qui sera dénommée à des fins de simplifications dans ce qui suit articulation principale ; l’articulation 17 sur la branche 13 secondaire distale ou les branches 12 principales distale parallèles, qui sera dénommée à des fins de simplifications dans ce qui suit articulation distale. [65] The connecting branch 9 carries at least two joints: the joint 16 on the main branch 8, which will be referred to for simplification purposes in what follows as the main joint; the joint 17 on the distal secondary branch 13 or the parallel distal main branches 12, which will be referred to for simplification purposes in the following as distal joint.
[66] De préférence, mais non nécessairement, l’axe de rotation de l’articulation 16 principale peut passer par le centre des liaisons rotule des branches 12 de la portion 5b distale sur la branche 1 principale, comme cela est le cas sur les modes de réalisation des figures 2, 3, 4, 6 et 7. Dans ce cas, l’articulation 17 distale de la branche 9 de liaison correspond à l’articulation de la branche 13 secondaire distale. Sur les figures 8 et 9, l’axe de rotation de l’articulation 16 principale passe par le centre de la liaison rotule de la branche 13 secondaire distale sur la branche 8 principale. Dans ce cas, l’articulation 17 distale de la branche 9 de liaison correspond à l’articulation des branches 12 principales distales. [66] Preferably, but not necessarily, the axis of rotation of the main joint 16 can pass through the center of the ball joints of the branches 12 of the distal portion 5b on the main branch 1, as is the case on the embodiments of Figures 2, 3, 4, 6 and 7. In this case, the distal joint 17 of the connecting branch 9 corresponds to the joint of the distal secondary branch 13. In Figures 8 and 9, the axis of rotation of the main joint 16 passes through the center of the ball joint connection of the distal secondary branch 13 on the main branch 8. In this case, the distal joint 17 of the connecting branch 9 corresponds to the joint of the main distal branches 12.
[67] La biellette 14 porte également au moins deux articulations : l’articulation 18 sur la plateforme, qui sera dénommée à des fins de simplifications dans ce qui suit articulation plateforme, d’axe Q de rotation ; l’articulation 19 sur le bras 13 secondaire distal, qui sera dénommée à des fins de simplifications dans ce qui suit articulation biellette, [67] The link 14 also carries at least two joints: the joint 18 on the platform, which will be called for simplification purposes in what follows platform joint, with axis Q of rotation; the joint 19 on the distal secondary arm 13, which will be referred to for the purposes of simplification in what follows link rod joint,
[68] De préférence, mais non nécessairement, l’axe de rotation de l’articulation[68] Preferably, but not necessarily, the axis of rotation of the joint
18 plateforme passe par le centre des liaisons rotule des branches 12 de la portion 5b distale sur la plateforme 3. 18 platform passes through the center of the ball joints of the branches 12 of the distal portion 5b on the platform 3.
[69] Selon le mode de réalisation des figures, dans lequel la portion 5a proximale du bras 5 rotateur comprend un parallélogramme déformable, la branche 9 de liaison porte une troisième articulation, en l’occurrence l’articulation avec la branche 11 tertiaire du parallélogramme, et présente alors une forme coudée. [69] According to the embodiment of the figures, in which the proximal portion 5a of the rotator arm 5 comprises a deformable parallelogram, the connecting branch 9 carries a third joint, in this case the joint with the tertiary branch 11 of the parallelogram , and then has a bent shape.
[70] Dans une première variante illustrée notamment sur les figures 3 et 4, d’une part l’articulation 17 distale de la branche 9 de liaison est connectée avec la branche 13 secondaire distale, et d’autre part l’articulation 17 distale et l’articulation[70] In a first variant illustrated in particular in Figures 3 and 4, on the one hand the distal joint 17 of the connecting branch 9 is connected with the distal secondary branch 13, and on the other hand the distal joint 17 and the joint
19 biellette sont situées d’un même côté par rapport à un plan passant par les
connexions des branches 12 principales distales, en l’occurrence un plan passant par l’axe de l’articulation 16 principale et l’axe de l’articulation 18 plateforme. Ce côté est dit intérieur car orienté vers l’intérieur du robot 1 , c'est-à-dire notamment vers les autres bras 4, 5 du robot 1. En d’autres termes, la connexion de la branche 13 secondaire distale sur la portion 5a proximale et la connexion de la branche 13 secondaire distale sur la biellette 14 sont située du côté intérieur du robot. 19 connecting rods are located on the same side with respect to a plane passing through the connections of the distal main branches 12, in this case a plane passing through the axis of the main joint 16 and the axis of the joint 18 platform. This side is said to be inside because it is oriented towards the inside of the robot 1, that is to say in particular towards the other arms 4, 5 of the robot 1. In other words, the connection of the distal secondary branch 13 on the proximal portion 5a and the connection of the distal secondary branch 13 to the connecting rod 14 are located on the inside of the robot.
[71] Ainsi, dans un plan parallèle au plan du parallélogramme déformable formé par la portion 5a proximale (qui est le plan de la figure 4), la branche 13 secondaire distale, la branche 9 de liaison, la biellette 14 et une des branches 12 principales distales de la portion 5b distale forment également un quadrilatère déformable, et en l’occurrence selon le mode de réalisation présenté sur les figures un parallélogramme déformable. [71] Thus, in a plane parallel to the plane of the deformable parallelogram formed by the proximal portion 5a (which is the plane of FIG. 4), the distal secondary branch 13, the connecting branch 9, the connecting rod 14 and one of the branches 12 main distal portions of the distal portion 5b also form a deformable quadrilateral, and in this case according to the embodiment shown in the figures a deformable parallelogram.
[72] Dans cette première variante, la branche 9 de liaison de forme coudée est orientée vers l’intérieur du robot. Lorsque le robot 1 est en opération, la branche 13 secondaire distale se déplace dans l’espace du côté intérieur du robot 1, de sorte que l’encombrement du robot 1 est limité. En effet, la branche 12 secondaire distale reste du même côté intérieur pendant le fonctionnement du robot 1. [72] In this first variant, the elbow-shaped link branch 9 is oriented towards the inside of the robot. When the robot 1 is in operation, the distal secondary branch 13 moves in space on the inside of the robot 1, so that the size of the robot 1 is limited. Indeed, the distal secondary branch 12 remains on the same interior side during the operation of the robot 1.
[73] Selon une deuxième variante, illustrée sur les figures 6 et 7, d’une part l’articulation 17 distale de la branche 9 de liaison est connectée avec la branche 13 secondaire distale, et d’autre part l’articulation 17 distale et l’articulation 19 biellette sont situées de part et d’autre d’un plan passant par les connexions des branches 12 principales proximales sur la portion 5a proximale et sur la plateforme 3, c'est-à-dire en l’occurrence un plan passant par l’axe de l’articulation 16 principale et l’axe de l’articulation 18 plateforme. Plus précisément, l’articulation 19 biellette est située du côté intérieur du robot, et l’articulation 17 distale est située du côté extérieur du robot, opposé au côté intérieur. En d’autres termes, la connexion de la branche 13 secondaire distale sur la portion 5a proximale est située du côté extérieur du robot, et la connexion de la branche 13 secondaire distale sur la biellette 14 est située du côté intérieur du robot. [73] According to a second variant, illustrated in Figures 6 and 7, on the one hand the distal joint 17 of the connecting branch 9 is connected with the distal secondary branch 13, and on the other hand the distal joint 17 and the link 19 are located on either side of a plane passing through the connections of the main proximal branches 12 on the proximal portion 5a and on the platform 3, that is to say in this case a plane passing through the axis of the main articulation 16 and the axis of the articulation 18 platform. More precisely, the connecting rod joint 19 is located on the interior side of the robot, and the distal joint 17 is located on the exterior side of the robot, opposite the interior side. In other words, the connection of the distal secondary branch 13 on the proximal portion 5a is located on the exterior side of the robot, and the connection of the distal secondary branch 13 on the connecting rod 14 is located on the interior side of the robot.
[74] Ainsi, dans un plan parallèle au plan du parallélogramme déformable formé par la portion 5a proximale (qui est le plan de la figure 7), la branche 13 secondaire distale croise les branches 12 principales distales. [74] Thus, in a plane parallel to the plane of the deformable parallelogram formed by the proximal portion 5a (which is the plane of FIG. 7), the distal secondary branch 13 crosses the distal main branches 12.
[75] Cette deuxième variante permet notamment de limiter les risques de collision entre la branche 13 secondaire distale et la branche 8 principale proximale afin d’élargir l’espace de travail, c'est-à-dire le volume dans lequel le bras 5 rotateur peut se déplacer par rapport à la base 2.
[76] Selon une troisième variante, illustrée sur les figures 8 et 9, d’une part l’articulation 17 distale de la branche 9 de liaison est connectée avec les branches 12 principales distales, de sorte que la branche 13 secondaire distale est connectée à la branche 8 principale proximale, par exemple au niveau de l’articulation 16 principale. D’autre part l’articulation 16 principale et l’articulation 19 biellette sont situées du même côté intérieur par rapport à un plan passant par les connexions des branches 12 principales proximales, en l’occurrence un plan passant par l’axe de l’articulation 17 distale et l’axe de l’articulation 18 plateforme. En d’autres termes, la connexion de la branche 13 secondaire distale sur la portion 5a proximale et la connexion de la branche 13 secondaire distale sur la biellette 14 sont situées du côté intérieur du robot. [75] This second variant makes it possible in particular to limit the risks of collision between the distal secondary branch 13 and the proximal main branch 8 in order to widen the workspace, that is to say the volume in which the arm 5 rotator can move relative to base 2. [76] According to a third variant, illustrated in Figures 8 and 9, on the one hand the distal joint 17 of the connecting branch 9 is connected with the distal main branches 12, so that the distal secondary branch 13 is connected to the proximal main branch 8, for example at the level of the main joint 16. On the other hand, the main joint 16 and the connecting rod joint 19 are located on the same interior side with respect to a plane passing through the connections of the main proximal branches 12, in this case a plane passing through the axis of the distal joint 17 and the axis of the platform joint 18. In other words, the connection of the distal secondary branch 13 to the proximal portion 5a and the connection of the distal secondary branch 13 to the connecting rod 14 are located on the inside of the robot.
[77] Ainsi, dans un plan parallèle au parallélogramme de la portion 5a proximale (qui est le plan de la figure 9), un quadrilatère spatial ou parallélogramme spatial déformable peut là encore être défini par la branche 13 secondaire distale, la billette 14, une des branches 12 principales distales et la branche 9 de liaison. [77] Thus, in a plane parallel to the parallelogram of the proximal portion 5a (which is the plane of FIG. 9), a spatial quadrilateral or deformable spatial parallelogram can again be defined by the distal secondary branch 13, the billet 14, one of the main distal branches 12 and the connecting branch 9.
[78] Dans cette troisième variante, les risques de collision entre la branche 13 secondaire distale et la branche 8 principale proximale sont réduits, tandis que l’encombrement est également limité, la branche 13 secondaire distale restant localisée pendant le fonctionnement du robot du côté intérieur. [78] In this third variant, the risks of collision between the distal secondary branch 13 and the proximal main branch 8 are reduced, while the bulk is also limited, the distal secondary branch 13 remaining localized during operation of the robot on the side interior.
[79] Le bras 5 rotateur permet, grâce au basculement de la biellette 14 par rapport à la plateforme 3 par l’actionnement de la branche 13 secondaire distale selon l’une quelconque des variantes présentées ci-dessus, de pouvoir obtenir un degré de liberté en rotation d’un outil autour d’un axe de travail déterminé. A cet effet, le système 15 de conversion de mouvement coopère avec la biellette 14 afin de transformer le mouvement de basculement de la biellette 14 par rapport à la plateforme 3 en un mouvement de rotation autour d’un axe de travail déterminé. [79] The rotator arm 5 allows, thanks to the tilting of the rod 14 relative to the platform 3 by the actuation of the distal secondary branch 13 according to any one of the variants presented above, to be able to obtain a degree of rotational freedom of a tool around a determined working axis. To this end, the movement conversion system 15 cooperates with the link 14 in order to transform the tilting movement of the link 14 with respect to the platform 3 into a rotational movement around a determined working axis.
[80] Afin d’obtenir deux degrés de liberté en rotation de l’outil, le robot 1 peut comprendre deux bras rotateurs 5, comme illustré sur la figure 10. Bien que sur la figure 10, les deux bras 5 rotateurs ont la même configuration, il peut en être autrement, et des bras 5 rotateurs selon les différentes variantes exposées peuvent être combinés. Enfin, trois degrés de liberté en rotation peuvent être obtenus en mettant en place trois bras rotateurs 5. [80] In order to obtain two degrees of freedom in rotation of the tool, the robot 1 can comprise two rotator arms 5, as illustrated in FIG. 10. Although in FIG. 10, the two rotator arms 5 have the same configuration, it can be otherwise, and rotator arms 5 according to the different variants shown can be combined. Finally, three degrees of freedom in rotation can be obtained by setting up three rotator arms 5.
[81] Il va maintenant être décrit deux exemples de réalisation du système 15 de conversion, tels que l’on pourrait les trouver combinés sur le robot 1 de la figure 10. Ils seront numérotés par la suite 150 et 1500. L’outil dont il est question ici est un support 160 pour un dispositif de préhension par le vide, telle qu’une ventouse, ou équivalent, afin de saisir un objet à déplacer et le relâcher à une position et dans une
orientation déterminées. L’outil 160 peut toutefois être de tout type, par exemple une pince ou encore un mécanisme déployable. [81] Two embodiments of the conversion system 15 will now be described, such as they could be found combined on the robot 1 of FIG. 10. They will be numbered hereinafter 150 and 1500. The tool whose what is in question here is a support 160 for a vacuum gripping device, such as a suction cup, or the like, in order to grasp an object to be moved and release it at a position and in a direction determined. The tool 160 can however be of any type, for example a clamp or even a deployable mechanism.
[82] Sur la figure 11 , un exemple d’un premier système 150 de conversion est représenté afin d’obtenir une rotation de l’outil 160 autour d’un premier axe T1 de travail. Sur cette figure, le deuxième système 1500 de conversion est masqué en partie dans un souci de clarté. [82] In Figure 11, an example of a first conversion system 150 is shown in order to obtain a rotation of the tool 160 around a first work axis T1. In this figure, the second conversion system 1500 is partly masked for the sake of clarity.
[83] Selon cet exemple, la biellette 14 d’un premier bras 5 rotateur comprend en outre une ouverture 20 oblongue. Le système 151 de conversion comprend alors un premier arbre 151 dont une première extrémité est montée pivotante dans l’ouverture 20 de la biellette 14, en rotation autour d’un axe perpendiculaire à l’axe d’extension du premier arbre 151 par exemple à l’aide d’un premier galet 152. Le système 150 de conversion comprend une tourelle 153, en partie transparente sur la figure 11, fixée rigidement à la base 3, et dans laquelle le premier arbre 151 est guidé en translation suivant son axe d’extension. La tourelle 153 et la base 3 peuvent être monoblocs, c'est-à-dire formées d’une seule et même pièce. La deuxième extrémité du premier arbre 151 comprend un deuxième galet 154, d’axe sensiblement parallèle à celui du premier galet 152. Le deuxième galet 154 s’engage dans une ouverte 21 oblongue de l’outil 160. L’outil 160 est par ailleurs monté pivotant autour du premier axe T1 de travail, sur la tourelle 153. [83] According to this example, the link 14 of a first rotator arm 5 further comprises an oblong opening 20. The conversion system 151 then comprises a first shaft 151, one end of which is pivotally mounted in the opening 20 of the connecting rod 14, in rotation about an axis perpendicular to the axis of extension of the first shaft 151, for example at using a first roller 152. The conversion system 150 comprises a turret 153, partly transparent in FIG. 11, rigidly fixed to the base 3, and in which the first shaft 151 is guided in translation along its axis d 'extension. The turret 153 and the base 3 can be one-piece, that is to say formed from one and the same piece. The second end of the first shaft 151 comprises a second roller 154, with an axis substantially parallel to that of the first roller 152. The second roller 154 engages in an oblong opening 21 of the tool 160. The tool 160 is moreover pivotally mounted around the first working axis T1, on the turret 153.
[84] Ainsi, lorsque la biellette 14 est basculée autour de l’axe Q de la plateforme 3 par l’actionnement de la branche 13 secondaire distale, le premier arbre 151 glisse par rapport à la plateforme 3, et fait basculer l’outil 160 autour du premier axe T1 de travail. Un premier degré de liberté en rotation est ainsi obtenu pour l’outil 160. [84] Thus, when the rod 14 is tilted around the axis Q of the platform 3 by the actuation of the distal secondary branch 13, the first shaft 151 slides relative to the platform 3, and tilts the tool 160 around the first working axis T1. A first degree of freedom in rotation is thus obtained for the tool 160.
[85] Sur la figure 12, on a représenté un exemple d’un deuxième système 1500 de conversion combiné au premier système 150 de conversion, afin d’obtenir deux degrés de liberté en rotation de l’outil 160. Seuls quelques éléments du deuxième bras rotateur associé au deuxième système 1500 de conversion sont représentés. [85] In Figure 12, there is shown an example of a second conversion system 1500 combined with the first conversion system 150, in order to obtain two degrees of freedom in rotation of the tool 160. Only a few elements of the second rotator arm associated with the second conversion system 1500 are represented.
[86] Ainsi, sur la figure 12, la biellette 14 comprend également une ouverture 20 oblongue. Le deuxième système 1500 de conversion comprend alors un deuxième arbre 1501 dont une première extrémité est montée pivotante dans l’ouverture 20’ de la biellette 14’, en rotation autour d’un axe perpendiculaire à l’axe d’extension du deuxième arbre 1501 par exemple à l’aide d’un premier galet 1502. Le deuxième arbre 1501 est guidé en translation, suivant son axe d’extension, dans une ouverture 1503 oblongue de la tourelle 153. Par exemple, un deuxième galet 1504, d’axe parallèle au premier galet 1502, sur la deuxième extrémité du deuxième arbre 1501 permet de guider la translation du deuxième arbre 1501. Ainsi, lorsque la biellette 14
bascule par rapport à la plateforme 3, également transparente sur la figure 12, le deuxième arbre 1501 glisse selon son axe d’extension par rapport à la plateforme 3. [86] Thus, in Figure 12, the link 14 also includes an oblong opening 20. The second conversion system 1500 then comprises a second shaft 1501 whose first end is pivotally mounted in the opening 20' of the rod 14', in rotation about an axis perpendicular to the axis of extension of the second shaft 1501 for example using a first roller 1502. The second shaft 1501 is guided in translation, along its axis of extension, in an oblong opening 1503 of the turret 153. For example, a second roller 1504, of axis parallel to the first roller 1502, on the second end of the second shaft 1501 makes it possible to guide the translation of the second shaft 1501. Thus, when the connecting rod 14 rocking relative to platform 3, also transparent in figure 12, the second shaft 1501 slides along its axis of extension relative to platform 3.
[87] La tourelle 153 est commune aux deux systèmes 150, 1500 de conversion. Plus précisément, elle comprend deux parties. Une première partie 1531 est fixée rigidement à la base 3 (en transparent sur la figure 12), et une deuxième partie 1532 est montée pivotante par rapport à la première partie 1531 , par exemple autour de l’axe d’extension du premier arbre 151 du premier système 150 de conversion. Dans ce cas, l’outil 160 est fixé sur la deuxième partie 1532 de la tourelle 153, c'est-à-dire que le premier axe T1 de travail est porté par la deuxième partie 1532 de la tourelle 153. [87] Turret 153 is common to both conversion systems 150, 1500. More specifically, it consists of two parts. A first part 1531 is rigidly fixed to the base 3 (transparent in FIG. 12), and a second part 1532 is pivotally mounted with respect to the first part 1531, for example around the axis of extension of the first shaft 151 of the first conversion system 150. In this case, the tool 160 is fixed on the second part 1532 of the turret 153, that is to say that the first working axis T1 is carried by the second part 1532 of the turret 153.
[88] Le deuxième système 1500 de conversion comprend un système de deux roues 1505, 1506 dentées. La première roue 1505 dentée est montée pivotante sur la première partie 1531 de la tourelle et est associée au deuxième arbre 1501 , qui est fileté. La deuxième roue 1506 est montée sur la deuxième partie 1532 de la tourelle 153, et engrène la première roue 1505 dentée. La deuxième roue 1506 est fixée rigidement à la deuxième partie 1532 de la tourelle 153. Ainsi, le mouvement de glissement du deuxième arbre 1501 entraîne la mise en mouvement de la première roue 1505 par rapport à la première partie 1531 de la tourelle 1 , et entraîne la rotation de la deuxième roue 1506, et donc de la deuxième partie 1532 de la tourelle 153 par rapport à la première partie 1531. Selon l’exemple des figures, l’axe de rotation de la deuxième roue 1506 est confondu avec l’axe d’extension du premier arbre 151. Ainsi, la rotation de la deuxième partie 1532 entraîne la rotation de l’outil 160 autour d’un deuxième axe T2 de travail correspondant à l’axe d’extension du premier arbre 151. [88] The second conversion system 1500 comprises a system of two toothed wheels 1505, 1506. The first toothed wheel 1505 is pivotally mounted on the first part 1531 of the turret and is associated with the second shaft 1501, which is threaded. The second wheel 1506 is mounted on the second part 1532 of the turret 153, and engages the first toothed wheel 1505. The second wheel 1506 is rigidly fixed to the second part 1532 of the turret 153. Thus, the sliding movement of the second shaft 1501 causes the setting in motion of the first wheel 1505 relative to the first part 1531 of the turret 1, and causes the rotation of the second wheel 1506, and therefore of the second part 1532 of the turret 153 with respect to the first part 1531. According to the example of the figures, the axis of rotation of the second wheel 1506 coincides with the axis of extension of the first shaft 151. Thus, the rotation of the second part 1532 causes the rotation of the tool 160 around a second working axis T2 corresponding to the axis of extension of the first shaft 151.
[89] Le robot 1 outil ainsi décrit apporte une solution nouvelle et originale afin de mettre en place des degrés de liberté en rotation pour l’outil 160. [89] The 1-tool robot thus described provides a new and original solution to set up rotational degrees of freedom for tool 160.
[90] En effet, le robot 1 permet d’obtenir aisément jusqu’à trois degrés de liberté en rotation supplémentaires de l’outil 160, selon les besoins, sans alourdir le bras par un moteur rapporté sur le bras, ni la mise en œuvre d’un bras télescopique. La conception en est simplifiée et les coûts de fabrication restent faibles. [90] Indeed, the robot 1 makes it easy to obtain up to three additional degrees of freedom in rotation of the tool 160, as needed, without weighing down the arm by a motor attached to the arm, nor the setting work of a telescopic arm. The design is simplified and the manufacturing costs remain low.
[91] Les axes de travail sont librement déterminés en fonction des besoins, et peuvent être parallèles ou non entre eux. [91] The axes of work are freely determined according to the needs, and can be parallel or not between them.
[92] La mise en place de la biellette 14 basculée sur la plateforme 3 par le bras 13 secondaire distal n’alourdit pas ou peu le robot, de sorte que la vitesse de fonctionnement du robot 1 reste compatible avec les cadences industrielles.
[92] The placement of the rod 14 tilted on the platform 3 by the distal secondary arm 13 does not weigh down the robot, or only slightly, so that the operating speed of the robot 1 remains compatible with industrial rates.
Claims
[Revendication 1] Robot (1) outil, tel qu’un robot (1) de manipulation d’objets, comprenant une base (2) et une plateforme (3), la plateforme (3) étant destinée à porter un outil (160), tel qu’un outil de manipulation d’objets, le robot (1) comprenant au moins trois bras (4, 5) reliant la base (2) à la plateforme (3), chaque bras (4, 5) comprenant d’une part une portion (4a, 5a) proximale actionnée individuellement en rotation autour d’un axe (P) primaire de la base (2), et comprenant d’autre part une portion (4b, 5b) distale articulée par rapport à la portion (4a, 5a) proximale et connectant la portion (4a, 5a) proximale à la plateforme (3), de manière à permettre trois degrés de liberté en translation de la plateforme (3) par rapport à la base (2), le robot (1) outil étant caractérisé en ce qu’au moins un des trois bras (4, 5) est un bras (5) rotateur, le bras (5) rotateur comprenant de plus : au moins une branche (13) secondaire distale, connectée à la portion (5a) proximale ; au moins une biellette (14) articulée d’une part sur la branche (13) secondaire distale et d’autre part sur la plateforme (3) de sorte que la biellette (14) opère un mouvement de basculement par rapport à la plateforme (3) par actionnement de la branche (13) secondaire distale du bras (5) rotateur, au moins un système (15) de conversion du mouvement de basculement de la biellette (14) par rapport à la plateforme (3) en un mouvement de rotation de l’outil (160) autour d’un axe (T 1 , T2) de travail de la plateforme (3). [Claim 1] Robot (1) tool, such as a robot (1) for manipulating objects, comprising a base (2) and a platform (3), the platform (3) being intended to carry a tool (160 ), such as an object manipulation tool, the robot (1) comprising at least three arms (4, 5) connecting the base (2) to the platform (3), each arm (4, 5) comprising on the one hand a proximal portion (4a, 5a) actuated individually in rotation around a primary axis (P) of the base (2), and on the other hand comprising a distal portion (4b, 5b) articulated relative to the proximal portion (4a, 5a) and connecting the proximal portion (4a, 5a) to the platform (3), so as to allow three degrees of translational freedom of the platform (3) relative to the base (2), the robot (1) tool being characterized in that at least one of the three arms (4, 5) is a rotator arm (5), the rotator arm (5) further comprising: at least one distal secondary branch (13), connected to the proximal portion (5a); at least one link (14) articulated on the one hand on the distal secondary branch (13) and on the other hand on the platform (3) so that the link (14) performs a tilting movement relative to the platform ( 3) by actuating the distal secondary branch (13) of the rotator arm (5), at least one system (15) for converting the tilting movement of the rod (14) relative to the platform (3) into a movement of rotation of the tool (160) around a working axis (T 1 , T2) of the platform (3).
[Revendication 2] Robot (1) selon la revendication 1 , comprenant au moins deux bras (5) rotateurs, chaque bras rotateur (5) définissant un axe (T 1 , T2) de travail de l’outil (160). [Claim 2] Robot (1) according to claim 1, comprising at least two rotator arms (5), each rotator arm (5) defining an axis (T 1 , T2) of work of the tool (160).
[Revendication 3] Robot (1) selon la revendication 1 , comprenant trois bras (5) rotateurs, chaque bras rotateur définissant un axe de travail de l’outil (160). [Claim 3] Robot (1) according to claim 1, comprising three rotator arms (5), each rotator arm defining a working axis of the tool (160).
[Revendication 4] Robot (1) selon l’une quelconque des revendications précédentes, dans lequel la portion (5a) proximale du bras (5) rotateur comprend une branche (8) principale proximale et une branche (9) de liaison, la branche (8) principale proximale étant actionnée en rotation par rapport à la base (2) autour de
l’axe (P) primaire de la base (2) et étant connectée d’autre part à la branche (9) de liaison par une liaison pivot d’axe parallèle à l’axe (P) primaire, la branche (9) de liaison étant connectée d’autre part par une liaison rotule à au moins l’une de la portion (5a) distale et de la branche (13) secondaire distale. [Claim 4] Robot (1) according to any one of the preceding claims, in which the proximal portion (5a) of the rotator arm (5) comprises a main proximal branch (8) and a connecting branch (9), the branch (8) main proximal being actuated in rotation with respect to the base (2) around the primary axis (P) of the base (2) and being connected on the other hand to the connecting branch (9) by a pivot connection with an axis parallel to the primary axis (P), the branch (9) link being connected on the other hand by a ball joint to at least one of the distal portion (5a) and the distal secondary branch (13).
[Revendication 5] Robot (1) selon la revendication 4, dans lequel la portion (5a) proximale comprend en outre une branche (10) secondaire proximale actionnée en rotation autour de l’axe (P) primaire de la base (2), et une branche (11) tertiaire proximale non actionnée connectée en liaison pivot autour d’axes parallèles à l’axe (P) primaire à la fois à la branche (10) secondaire proximale et à la branche (9) de liaison, de sorte que la branche (8) principale proximale, la branche (10) secondaire proximale, la branche (9) de liaison et la branche (11) tertiaire proximale forment un quadrilatère déformable. [Claim 5] Robot (1) according to claim 4, in which the proximal portion (5a) further comprises a proximal secondary branch (10) actuated in rotation about the primary axis (P) of the base (2), and a non-actuated proximal tertiary branch (11) pivotally connected about axes parallel to the primary axis (P) to both the proximal secondary branch (10) and to the connecting branch (9), so that the proximal main branch (8), the proximal secondary branch (10), the connecting branch (9) and the proximal tertiary branch (11) form a deformable quadrilateral.
[Revendication 6] Robot (1) selon la revendication 4 ou la revendication 5 dans lequel le bras (5) rotateur est associé à un premier moteur (6a) et à un deuxième moteur (6b), le premier moteur (6a) étant connecté à la branche (8) principale proximale de manière à être apte à actionner la translation de la plateforme (3) et le deuxième moteur (6b) étant connecté à la branche (9) de liaison de manière à être apte à actionner le mouvement de basculement de la biellette (14). [Claim 6] Robot (1) according to Claim 4 or Claim 5, in which the rotator arm (5) is associated with a first motor (6a) and with a second motor (6b), the first motor (6a) being connected to the main proximal branch (8) so as to be able to actuate the translation of the platform (3) and the second motor (6b) being connected to the connecting branch (9) so as to be able to actuate the movement of tilting of the link (14).
[Revendication 7] Robot (1) selon l’une quelconque des revendications 4 à 6, dans lequel, pour un bras (5) rotateur, d’une part la connexion entre la branche (9) de liaison et la branche (13) secondaire distale et d’autre part la connexion entre la biellette (14) et la branche (13) secondaire distale sont situées d’un même côté par rapport un plan passant par les connexions de la portion (5b) distale du bras (5) rotateur d’une part sur la portion (5a) proximale et d’autre part sur la plateforme (3). [Claim 7] Robot (1) according to any one of Claims 4 to 6, in which, for a rotator arm (5), on the one hand the connection between the connecting branch (9) and the branch (13) distal secondary and on the other hand the connection between the connecting rod (14) and the distal secondary branch (13) are located on the same side with respect to a plane passing through the connections of the distal portion (5b) of the arm (5) rotator on the one hand on the proximal portion (5a) and on the other hand on the platform (3).
[Revendication 8] Robot (1) selon l’une quelconque des revendications 4 à 7, dans lequel, pour un bras (5) rotateur, d’une part la connexion entre la branche (9) de liaison et la branche (13) secondaire distale et d’autre part la connexion entre la biellette (14) et la branche (13) secondaire distale sont situées de part et d’autre d’un plan passant par les connexions de la portion (5b) distale du bras (5) rotateur d’une part sur la portion (5a) proximale et d’autre part sur la plateforme (3). [Claim 8] Robot (1) according to any one of Claims 4 to 7, in which, for a rotator arm (5), on the one hand the connection between the connecting branch (9) and the branch (13) distal secondary and on the other hand the connection between the connecting rod (14) and the distal secondary branch (13) are located on either side of a plane passing through the connections of the distal portion (5b) of the arm (5 ) Rotator on the one hand on the proximal portion (5a) and on the other hand on the platform (3).
[Revendication 9] Robot (1) selon l’une quelconque des revendications 1 à 5, dans lequel la portion (5a) proximale du bras (5) rotateur est munie d’un moteur secondaire entre la branche (8) principale proximale et la branche (9) de liaison.
17 [Claim 9] Robot (1) according to any one of Claims 1 to 5, in which the proximal portion (5a) of the rotator arm (5) is provided with a secondary motor between the proximal main branch (8) and the connecting branch (9). 17
[Revendication 10] Robot (1) selon l’une quelconques des revendications précédentes, dans lequel la portion (4a, 5a) distale d’au moins un bras (4, 5) comprend un système à quadrilatère déformable à liaisons rotules.
[Claim 10] Robot (1) according to any one of the preceding claims, in which the distal portion (4a, 5a) of at least one arm (4, 5) comprises a deformable quadrilateral system with ball joints.
1/12 1/12
Art antérieur Prior art
wo 2022/128739 wo 2022/128739
3/12 3/12
5/12 5/12
FEUILLE DE REMPLACEMENT (RÈGLE 26)
6/12 SUBSTITUTE SHEET (RULE 26) 6/12
160 160
FEUILLE DE REMPLACEMENT (RÈGLE 26)
7/12 SUBSTITUTE SHEET (RULE 26) 7/12
160 160
FEUILLE DE REMPLACEMENT (RÈGLE 26)
8/12 SUBSTITUTE SHEET (RULE 26) 8/12
160 160
160 160
160 160
FEUILLE DE REMPLACEMENT (RÈGLE 26)
11/12 SUBSTITUTE SHEET (RULE 26) 11/12
FEUILLE DE REMPLACEMENT (RÈGLE 26)
12/12 SUBSTITUTE SHEET (RULE 26) 12/12
FEUILLE DE REMPLACEMENT (RÈGLE 26)
SUBSTITUTE SHEET (RULE 26)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2013606 | 2020-12-18 | ||
FR2013606A FR3117909B1 (en) | 2020-12-18 | 2020-12-18 | Tool robot comprising at least one rotator arm |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022128739A1 true WO2022128739A1 (en) | 2022-06-23 |
Family
ID=75690328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/085036 WO2022128739A1 (en) | 2020-12-18 | 2021-12-09 | Tool robot comprising at least one rotating arm |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3117909B1 (en) |
WO (1) | WO2022128739A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976582A (en) | 1985-12-16 | 1990-12-11 | Sogeva S.A. | Device for the movement and positioning of an element in space |
US20060245894A1 (en) * | 2005-03-21 | 2006-11-02 | Michael Merz | Parallel robot |
US20110129323A1 (en) * | 2005-03-18 | 2011-06-02 | Matthias Ehrat | Device for Moving and Positioning an Object in Space |
KR102108674B1 (en) * | 2019-01-15 | 2020-05-07 | 경남대학교 산학협력단 | Parallel robot having transmission mechanism of rotational motion |
-
2020
- 2020-12-18 FR FR2013606A patent/FR3117909B1/en active Active
-
2021
- 2021-12-09 WO PCT/EP2021/085036 patent/WO2022128739A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976582A (en) | 1985-12-16 | 1990-12-11 | Sogeva S.A. | Device for the movement and positioning of an element in space |
US20110129323A1 (en) * | 2005-03-18 | 2011-06-02 | Matthias Ehrat | Device for Moving and Positioning an Object in Space |
US20060245894A1 (en) * | 2005-03-21 | 2006-11-02 | Michael Merz | Parallel robot |
KR102108674B1 (en) * | 2019-01-15 | 2020-05-07 | 경남대학교 산학협력단 | Parallel robot having transmission mechanism of rotational motion |
Also Published As
Publication number | Publication date |
---|---|
FR3117909B1 (en) | 2023-01-06 |
FR3117909A1 (en) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1292431B1 (en) | Control arm with two parallel branches | |
WO2012069430A1 (en) | Parallel robot with two degrees of freedom having two kinematic chains with maximized flexure stiffness | |
EP0765992B1 (en) | Actuating system for variable stator vanes | |
FR2850599A1 (en) | DEVICE FOR MOVING AND ORIENTATION OF AN OBJECT IN SPACE AND USE IN FAST MACHINING | |
EP1282485A1 (en) | Parallel control arm with two branches | |
EP1015192B1 (en) | Robotized machine equipped with arm with symmetrical pantograph, for example for fruit picking or sorting diverse objects | |
WO2014108424A1 (en) | Pure translational serial manipulator robot having three degrees of freedom with a reduced space requirement | |
FR2822743A1 (en) | ASSEMBLY CLIPPERS WITH SELF-ADAPTIVE CALIBRATION AND BALANCING DEVICE | |
EP1468346B1 (en) | Control unit with three parallel branches | |
EP0740023A1 (en) | Implement arm with double lateral articulation | |
WO2022128739A1 (en) | Tool robot comprising at least one rotating arm | |
FR2539664A1 (en) | JOINT MECHANISM FOR AUTOMATIC ARC WELDING DEVICE DEVICE | |
FR2800659A1 (en) | The displacement device, for displacing object parallel to plane, consists of a five element kinematic chain with one fixed element, three pivots and two slides | |
EP0188164A1 (en) | Steering unit for an automotive vehicle with a fixed central cushion | |
EP0560645A1 (en) | Speed-change gear box control device, especially for automotive vehicles | |
FR2932081A1 (en) | SHOULDER MECHANISM FOR ORTHESIS. | |
EP1610930A2 (en) | Actuating device, particularly for an articulated arm | |
FR2698816A1 (en) | Holding clamp for robotic operations such as welding for vehicle construction - includes base with jack adapted to apply two opposing forces at its ends, with clamping lever which is pin jointed to rotate w.r.t frame and cranked lever pin jointed to one end of jack | |
FR2707912A1 (en) | Gripper device fixed to the end of a robot for gripping flat or not very curved motor vehicle components | |
EP0549473A1 (en) | Connecting rod to control a displacement mechanism, in particular for a pivoting damper | |
FR2694316A1 (en) | Loader-excavator-elevator vehicle implement - has arm at free end of shaft and tool mounted on arm | |
FR2747660A1 (en) | DEVICE FOR SEIZING AND HANDLING LOADS | |
FR2571289A1 (en) | Orientation device for a tool | |
EP1232831A1 (en) | Device for automatically assembling two half-cones on a valve stem | |
FR2788242A1 (en) | Vehicle with working unit, especially grinding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21840453 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21840453 Country of ref document: EP Kind code of ref document: A1 |