WO2022128479A1 - Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit - Google Patents
Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit Download PDFInfo
- Publication number
- WO2022128479A1 WO2022128479A1 PCT/EP2021/083799 EP2021083799W WO2022128479A1 WO 2022128479 A1 WO2022128479 A1 WO 2022128479A1 EP 2021083799 W EP2021083799 W EP 2021083799W WO 2022128479 A1 WO2022128479 A1 WO 2022128479A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- adhesive
- electrode unit
- frame structure
- gas diffusion
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 230000001070 adhesive effect Effects 0.000 claims abstract description 35
- 239000000853 adhesive Substances 0.000 claims abstract description 34
- 238000009792 diffusion process Methods 0.000 claims abstract description 32
- 239000012528 membrane Substances 0.000 claims abstract description 24
- 230000000149 penetrating effect Effects 0.000 claims abstract description 5
- 239000011888 foil Substances 0.000 claims description 11
- 230000003213 activating effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 24
- 239000000446 fuel Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 7
- 239000005518 polymer electrolyte Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Membrane-electrode assembly for an electrochemical cell and method for producing a membrane-electrode assembly
- a fuel cell is an electrochemical cell that has two electrodes that are separated from one another by means of an ion-conducting electrolyte.
- the fuel cell converts the energy of a chemical reaction of a fuel with an oxidant directly into electricity.
- a special type of fuel cell is the polymer electrolyte membrane fuel cell (PEM-FC).
- PEM-FC polymer electrolyte membrane fuel cell
- the PEM-FC also includes gas diffusion layers (GDL) in the active area, which delimit the polymer electrolyte membrane (PEM) and the two porous electrodes with a catalyst layer on both sides.
- GDL gas diffusion layers
- the PEM, the two electrodes with the catalyst layer and optionally also the two GDLs can form a so-called membrane-electrode unit (MEA) in the active area of the PEM-FC.
- MEA membrane-electrode unit
- Two opposing bipolar plates (halves) delimit the MEA on both sides.
- a fuel cell stack is made up of MEA and bipolar plates arranged alternately one above the other.
- the fuel in particular hydrogen
- the oxidizing agent in particular air/oxygen
- the MEA are enclosed in a frame-like opening of two foils arranged next to one another.
- the two films of this frame structure are usually made of the same material, for example polyethylene naphthalate (PEN).
- PEN polyethylene naphthalate
- the two foils formed from the same material can dispensably have redundant properties, for example electrical insulating ability (electrically insulating) and/or oxygen impermeability of each of the two foils.
- DE 101 40 684 A1 discloses a membrane-electrode unit for a fuel cell containing a layered arrangement of an anode electrode, a cathode electrode and a membrane arranged between them, with a polymer material on a top and bottom side of the layered arrangement is applied.
- the object of the present invention is to advantageously connect the gas diffusion layers for the stacking process to the membrane-electrode unit, preferably in such a way that slipping is prevented.
- the membrane-electrode assembly includes a frame structure for accommodating a membrane coated with electrodes.
- the frame structure has a first film and a second film with an interposed adhesive.
- a gas diffusion layer is arranged on the frame structure. At least one recess is formed in at least one of the two films, with the adhesive penetrating through the recess and interacting adhesively with the gas diffusion layer.
- the gas diffusion layer is attached to the frame structure and thus to the membrane-electrode unit in a non-slip manner. This is particularly important for the process of stacking the individual electrochemical cells into a cell stack very advantageous. Furthermore, even a further adhesive, which is usually applied between the foil and the gas diffusion layer, can thereby be saved.
- the membrane-electrode unit can include a membrane, in particular a polymer electrolyte membrane (PEM).
- PEM polymer electrolyte membrane
- the membrane-electrode unit can further comprise two porous electrodes, each with a catalyst layer, these being arranged in particular on the PEM and delimiting it on both sides.
- the membrane electrode assembly preferably comprises two gas diffusion layers. In particular, these can delimit the MEA-3 on both sides.
- the electrochemical cell can be, for example, a fuel cell, an electrolytic cell or a battery cell.
- the fuel cell is in particular a PEM-FC (polymer electrolyte membrane fuel cell).
- a cell stack comprises, in particular, a multiplicity of electrochemical cells arranged one above the other.
- the frame structure has a frame shape.
- the frame structure is preferably designed to be circumferential.
- a membrane and the two electrodes can thus be enclosed in the frame structure in a particularly advantageous manner.
- the cross section of the frame structure is in particular U-shaped or Y-shaped to accommodate the membrane and the two electrodes between the legs of the U-shape or Y-shape.
- the adhesive preferably seals the membrane-electrode unit from the outside, glues the two foils together and fixes the membrane with the two electrodes in the frame structure.
- the adhesive can also preferably be electrically insulating.
- the frame structure can thus be particularly advantageously electrically insulating and an undesired flow of current in an inactive region of the electrochemical cell can be particularly advantageously kept low, in particular prevented.
- two gas diffusion layers ie one gas diffusion layer on both sides of the membrane-electrode unit, are connected to the frame structure in such a way that they interact adhesively with the adhesive penetrating through the recess of the respective foils. Of course, this can also be done with a plurality of recesses in the foils.
- the one or more recesses in the first film are arranged offset to the one or more recesses in the second film.
- the two gas diffusion layers can be glued to the two foils independently of one another or the adhesive can be activated independently of one another by means of a hot stamp.
- the adhesive can be thermally activated, in particular by means of a hot stamp.
- the invention also includes a method for producing a membrane electrode assembly according to one of the above statements.
- the process has the following process steps:
- the method has the following additional method step:
- the adhesive is preferably activated by means of a hot stamp.
- This is a simple, inexpensive and at the same time geometrically very variable process for the thermal activation of adhesive properties. Further measures improving the invention result from the following description of some exemplary embodiments of the invention, which are shown schematically in the figures. All of the features and/or advantages resulting from the claims, the description or the drawings, including structural details, spatial arrangements and method steps, can be essential to the invention both on their own and in various combinations. It should be noted that the figures are only descriptive and are not intended to limit the invention in any way.
- FIG. 1 shows a membrane-electrode unit from the prior art, only the essential areas being shown.
- FIG. 2 shows a membrane-electrode unit according to the invention, only the essential areas being shown.
- FIG. 3 shows the section A-A of FIG. 2 in a further exemplary embodiment, only the essential areas being shown.
- FIG. 1 shows a section of a membrane-electrode unit 1 of an electrochemical cell 100, in particular a fuel cell, from the prior art in a vertical section, only the essential areas being shown.
- the membrane-electrode unit 1 has a membrane 2, for example a polymer electrolyte membrane (PEM), and two porous electrodes 3 and 4, each with a catalyst layer, the electrodes 3 and 4 being arranged on one side of the membrane 2 in each case. Furthermore, the electrochemical cell 100 has, in particular, two gas diffusion layers 5 and 6, which can also belong to the membrane-electrode unit 1, depending on the design.
- the membrane-electrode unit 1 is surrounded on its periphery by a frame structure 10, which is also referred to as a subgasket.
- the frame structure 10 is used for rigidity and tightness of the membrane-electrode unit 1 and is a non-active area of the electrochemical cell 100.
- the frame structure 10 is particularly U-shaped or Y-shaped in section, with a first leg of the U-shaped frame section being formed by a first film 11 made of a first material W1 and a second leg of the U-shaped frame section being formed by a second Foil 12 is formed from a second material W2.
- the first film 11 and the second film 12 are glued together by means of an adhesive 13 made of a third material W3.
- the first material W1 and the second material W2 are often identical, preferably PEN.
- the two gas diffusion layers 5 and 6 are in turn each arranged on one side of the frame structure 10 by means of a further adhesive 14, usually in such a way that they are in contact with one electrode 3, 4 each over the active surface of the electrochemical cell 100.
- the gas diffusion layers 5, 6 are porous—for example, as a fleece—embodied so that reaction media can be fed to the electrodes 3, 4 through them.
- the two gas diffusion layers 5 , 6 - or at least one of the two gas diffusion layers 5 , 6 - are then tacked or glued to the frame structure 10 by means of the adhesive 13 .
- FIG. 2 shows a vertical section through a membrane-electrode unit 1 according to the invention of an electrochemical cell 100, in particular a fuel cell, only the essential areas being shown.
- recesses 15 are formed in the form of bores, which are filled with the adhesive 13.
- the gas diffusion layers 5, 6 are each in direct contact with the film 11, 12 adjacent to them, so that the adhesive 13 protruding through the recesses in this area is in contact with the respective gas diffusion layer 5, 6 is glued.
- the additional adhesive 14 from the prior art in the embodiment of FIG. 1 can thus be saved.
- the thickness of the membrane-electrode unit 1 in the stacking direction z is smaller and clearly defined; the overall height of the cell stack in the stacking direction z can thus be more tightly tolerated.
- gas diffusion layers 5, 6 are effectively prevented from slipping relative to the frame structure 10 or relative to the membrane 2 coated with the electrodes 3, 4, so that the corresponding functional surfaces remain optimally positioned relative to one another.
- FIG. 3 shows the section A-A of FIG. 2 in a further embodiment in a partially transparent view.
- the membrane-electrode unit 1 has only the membrane 2 coated with the electrodes 3, 4 and the gas diffusion layer 5 lying behind it.
- the frame structure 10 usually characterizes the non-active area of the electrochemical cell 100.
- the adhesive 13 can be seen, or the first transparent film 11 can be seen behind it.
- a plurality of recesses 15a through which the adhesive 13 is pressed in order to bond to the gas diffusion layer 5 are formed in the first film 11 .
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Membran-Elektroden-Einheit (1) für eine elektrochemische Zelle (100), wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist. Die Rahmenstruktur (10) umfasst eine erste Folie (11) und eine zweite Folie (12) unter Zwischenlage eines Klebemittels (13). Eine Gasdiffusionslage (5, 6) ist an der Rahmenstruktur (10) angeordnet. Zumindest in einer der beiden Folien (11, 12) ist zumindest eine Ausnehmung (15) ausgebildet, wobei das Klebemittel (13) durch die Ausnehmung (15) dringt und mit der Gasdiffusionslage (5, 6) adhäsiv zusammenwirkt.
Description
Beschreibung
Titel
Membran- Elektroden- Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
Stand der Technik
Eine Brennstoffzelle ist eine elektrochemische Zelle, wobei diese zwei Elektroden, welche mittels eines ionenleitenden Elektrolyten voneinander separiert sind, aufweist. Die Brennstoffzelle wandelt die Energie einer chemischen Reaktion eines Brennstoffes mit einem Oxidationsmittel direkt in Elektrizität um. Es existieren verschiedene Typen von Brennstoffzellen.
Ein spezieller Brennstoffzellentyp ist die Polymerelektrolytmembran- Brennstoffzelle (PEM-FC). In einem aktiven Bereich einer PEM-FC grenzen an eine Polymerelektrolytmembran (PEM) zwei poröse Elektroden mit einer Katalysatorschicht an. Weiter umfasst die PEM-FC im aktiven Bereich Gasdiffusionslagen (GDL), welche die Polymerelektrolytmembran (PEM) und die zwei porösen Elektroden mit einer Katalysatorschicht beidseitig begrenzen. Die PEM, die beiden Elektroden mit der Katalysatorschicht und optional auch die beiden GDL können eine sog. Membran-Elektroden-Einheit (MEA) in dem aktiven Bereich der PEM-FC bilden. Zwei sich gegenüberliegende Bipolarplatten(-hälften) wiederum begrenzen beidseitig die MEA. Ein Brennstoffzellenstapel ist aus abwechselnd übereinander angeordneten MEA und Bipolarplatten aufgebaut. Mit einer Anodenplatte einer Bipolarplatte findet eine Verteilung des Brennstoffes, insbesondere Wasserstoff, und mit einer Kathodenplatte der Bipolarplatte eine Verteilung des Oxidationsmittels, insbesondere Luft/Sauerstoff, statt. Zur elektrischen Isolierung benachbarter Bipolarplatten, zur Formstabilisierung der MEA und zum Verhindern von einem ungewollten Entweichen des Brennstoffes bzw. des Oxidationsmittels kann die
MEA in einer rahmenartigen Öffnung zweier aneinander angeordneten Folien eingefasst werden. Üblicherweise sind die beiden Folien dieser Rahmenstruktur aus dem gleichen Werkstoff, bspw. Polyethylennaphthalat (PEN), gebildet. Die aus dem gleichen Werkstoff gebildeten, beiden Folien können verzichtbar redundante Eigenschaften, bspw. wie eine elektrische Isolierfähigkeit (elektrisch isolierend) und/oder eine Sauerstoffdichtigkeit jeder der beiden Folien, aufweisen.
In der DE 101 40 684 Al ist eine Membran-Elektroden-Einheit für eine Brennstoffzelle, enthaltend eine Schichtanordnung aus einer Anoden- Elektrode, einer Kathoden- Elektrode und einer dazwischen angeordneten Membran, offenbart, wobei auf eine Ober- und Unterseite der Schichtanordnung ein Polymermaterial aufgebracht wird.
Die DE 10 2018 131 092 Al weist eine Membran-Elektroden-Einheit mit einer Rahmenstruktur auf.
Aufgabe der vorliegenden Erfindung ist es die Gasdiffusionslagen für den Stapelprozess mit der Membran-Elektroden-Einheit zu vorteilhaft zu verbinden, bevorzugt derart, dass ein Verrutschen verhindert wird.
Offenbarung der Erfindung
Dazu umfasst die Membran-Elektroden-Einheit eine Rahmenstruktur zur Aufnahme einer mit Elektroden beschichteten Membran. Die Rahmenstruktur weist eine erste Folie und eine zweite Folie unter Zwischenlage eines Klebemittels auf. Eine Gasdiffusionslage ist an der Rahmenstruktur angeordnet. Zumindest in einer der beiden Folien ist zumindest eine Ausnehmung ausgebildet, wobei das Klebemittel durch die Ausnehmung dringt und mit der Gasdiffusionslage adhäsiv zusammenwirkt.
Dadurch ist die Gasdiffusionslage rutschfest an der Rahmenstruktur und somit an der Membran- Elektroden- Einheit angebunden. Dies ist insbesondere für den Stapelprozess der einzelnen elektrochemischen Zellen zu einem Zellenstapel
sehr vorteilhaft. Weiterhin kann dadurch sogar ein weiteres Klebemittel, welches üblicherweise zwischen der Folie und der Gasdiffusionslage aufgetragen wird, eingespart werden.
Die Membran- Elektroden- Einheit kann eine Membran, insbesondere eine Polymerelektrolytmembran (PEM) umfassen. Die Membran-Elektroden-Einheit kann weiter zwei poröse Elektroden mit jeweils einer Katalysatorschicht umfassen, wobei diese insbesondere an die PEM angeordnet sind und beidseitig begrenzen. Man kann hier insbesondere von einer MEA-3 sprechen. Bevorzugt umfasst die Membran-Elektroden-Einheit zwei Gasdiffusionslagen. Diese können insbesondere die MEA-3 beidseitig begrenzen. Man kann hier insbesondere von einer MEA-5 sprechen.
Die elektrochemische Zelle kann beispielsweise eine Brennstoffzelle, eine Elektrolysezelle oder eine Batteriezelle sein. Die Brennstoffzelle ist insbesondere eine PEM-FC (Polymer- Elektrolyt- Membran Brennstoffzelle). Ein Zellenstapel umfasst insbesondere eine Vielzahl an übereinander angeordneten elektrochemischen Zellen.
Die Rahmenstruktur weist insbesondere eine Rahmenform auf. Die Rahmenstruktur ist vorzugsweise umlaufend ausgeführt. Somit können eine Membran und die beiden Elektroden besonders vorteilhaft in der Rahmenstruktur eingefasst sein. Des Weiteren ist die Rahmenstruktur im Querschnitt insbesondere U-förmig oder Y-förmig zur Aufnahme der Membran und der beiden Elektroden zwischen den Schenkeln der U-Form bzw. Y-Form ausgebildet.
Das Klebemittel dichtet bevorzugt die Membran-Elektroden-Einheit nach außen ab, verklebt die beiden Folien zueinander und fixiert die Membran mit den beiden Elektroden in der Rahmenstruktur.
Das Klebemittel kann ferner vorzugsweise elektrisch isolierend sein. Somit kann die Rahmenstruktur besonders vorteilhaft elektrisch isolierend sein und ein ungewollter Stromfluss in einem inaktiven Bereich der elektrochemischen Zelle besonders vorteilhaft geringgehalten, insbesondere verhindert, werden.
Bevorzugt werden zwei Gasdiffusionslagen, also zu beiden Seiten der Membran- Elektroden- Einheit jeweils eine Gasdiffusionslage, derartig an die Rahmenstruktur angebunden, dass sie mit dem durch die Ausnehmung der jeweiligen Folien dringenden Klebemittel adhäsiv Zusammenwirken. Dies kann selbstverständlich auch mit einer Mehrzahl von Ausnehmungen in den Folien erfolgen.
In vorteilhaften Weiterbildungen sind dann die eine oder mehrere Ausnehmungen in der ersten Folie - in einer Fläche senkrecht zu einer Stapelrichtung betrachtet - versetzt zu der einen oder mehreren Ausnehmungen der zweiten Folie angeordnet. Dadurch können die beiden Gasdiffusionslagen an den beiden Folien unabhängig voneinander verklebt werden bzw. das Klebemittel mittels Heißstempel unabhängig voneinander aktiviert werden.
In vorteilhaften Ausführungen ist das Klebemittel thermisch aktivierbar, insbesondere mittels Heißstempel.
Dementsprechend umfasst die Erfindung auch ein Verfahren zur Herstellung einer Membran-Elektroden-Einheit nach einer der obigen Ausführungen. Das Verfahren weist dabei folgende Verfahrensschritte auf:
• Anordnen einer Gasdiffusionslage an einer der Folien mit Ausnehmung.
• Aktivieren des Klebemittels im Bereich der Ausnehmung.
In vorteilhaften Weiterbildungen weist das Verfahren den folgenden weiteren Verfahrensschritt auf:
• Aushärten des Klebemittels in der Ausnehmung unter Zusammenpressen der Gasdiffusionslage mit der Rahmenstruktur.
Bevorzugt wird dabei das Klebemittel mittels Heißstempel aktiviert. Dies ist ein einfaches, kostengünstiges und zugleich aber auch geometrisch sehr variables Verfahren zur thermischen Aktivierung von Klebeeigenschaften.
Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus der nachfolgenden Beschreibung zu einigen Ausführungsbeispielen der Erfindung, welche in den Figuren schematisch dargestellt sind. Sämtliche aus den Ansprüchen, der Beschreibung oder den Zeichnungen hervorgehende Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten, räumliche Anordnungen und Verfahrensschritte, können sowohl für sich als auch in den verschiedenen Kombinationen erfindungswesentlich sein. Dabei ist zu beachten, dass die Figuren nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken.
Es zeigen schematisch:
Fig. 1 eine Membran-Elektroden-Einheit aus dem Stand der Technik, wobei nur die wesentlichen Bereiche dargestellt sind.
Fig. 2 eine erfindungsgemäße Membran-Elektroden-Einheit, wobei nur die wesentlichen Bereiche dargestellt sind.
Fig. 3 den Schnitt A-A der Fig.2 in einem weiteren Ausführungsbeispiel, wobei nur die wesentlichen Bereiche dargestellt sind.
Figur 1 zeigt in einem Vertikalschnitt einen Ausschnitt einer Membran- Elektroden-Einheit 1 einer elektrochemischen Zelle 100, insbesondere einer Brennstoffzelle, aus dem Stand der Technik, wobei nur die wesentlichen Bereiche dargestellt sind.
Die Membran-Elektroden-Einheit 1 weist eine Membran 2, beispielhaft eine Polymerelektrolytmembran (PEM), und zwei poröse Elektroden 3 bzw. 4 mit jeweils einer Katalysatorschicht auf, wobei die Elektroden 3 bzw. 4 jeweils an eine Seite der Membran 2 angeordnet sind. Weiter weist die elektrochemische Zelle 100 insbesondere zwei Gasdiffusionslagen 5 bzw. 6 auf, welche je nach Ausführung auch zur Membran-Elektroden-Einheit 1 gehören können.
Die Membran- Elektroden- Einheit 1 ist an ihrem Umfang von einer Rahmenstruktur 10 umgeben, hier spricht man auch von einem Subgasket. Die Rahmenstruktur 10 dient der Steifigkeit und der Dichtheit der Membran- Elektroden- Einheit 1 und ist ein nicht-aktiver Bereich der elektrochemischen Zelle 100.
Die Rahmenstruktur 10 ist im Schnitt insbesondere U-förmig bzw. Y-förmig ausgebildet, wobei ein erster Schenkel des U-förmigen Rahmenabschnitts durch eine erste Folie 11 aus einem ersten Werkstoff W1 gebildet ist und ein zweiter Schenkel des U-förmigen Rahmenabschnitts durch eine zweite Folie 12 aus einem zweiten Werkstoff W2 gebildet ist. Zusätzlich sind die erste Folie 11 und die zweite Folie 12 mittels eines Klebemittels 13 aus einem dritten Werkstoff W3 zusammengeklebt. Häufig sind der erste Werkstoff W1 und der zweite Werkstoff W2 identisch, bevorzugt PEN.
Die beiden Gasdiffusionslagen 5 bzw. 6 sind mittels eines weiteren Klebemittels 14 wiederum jeweils an einer Seite der Rahmenstruktur 10 angeordnet, üblicherweise so, dass sie über der aktiven Fläche der elektrochemischen Zelle 100 mit je einer Elektrode 3, 4 in Kontakt sind. Die Gasdiffusionslagen 5, 6 sind porös - beispielsweise als Vlies - ausgeführt, so dass durch sie Reaktionsmedien an die Elektroden 3, 4 zugeführt werden können.
Erfindungsgemäß werden nun die beiden Gasdiffusionslagen 5, 6 - oder zumindest eine der beiden Gasdiffusionslagen 5, 6 mittels des Klebemittels 13 an die Rahmenstruktur 10 geheftet bzw. geklebt.
Dazu zeigt Figur 2 in einem Vertikalschnitt eine erfindungsgemäße Membran- Elektroden- Einheit 1 einer elektrochemischen Zelle 100, insbesondere einer Brennstoffzelle, wobei nur die wesentlichen Bereiche dargestellt sind. In den beiden Folien 11, 12 sind Ausnehmungen 15 in Form von Bohrungen ausgebildet, welche mit dem Klebemittel 13 gefüllt sind. Die Gasdiffusionslagen 5, 6 sind in der Stapelrichtung z jeweils in direktem Kontakt zu der ihnen benachbarten Folie 11, 12, so dass das durch die Ausnehmungen ragende Klebemittel 13 in diesem Bereich mit der jeweiligen Gasdiffusionslage 5, 6
verklebt ist. Das weitere Klebemittel 14 aus dem Stand der Technik in der Ausführung der Figur 1 kann somit eingespart werden.
Dadurch werden Nachteile, welche durch den Einsatz des weiteren Klebemittels 14 aus dem Stand der Technik entstehen, behoben:
- Die Rahmenstruktur 10 verzieht sich nicht mehr.
- Die Fertigungszeiten für Aufbringen und Aushärten des weiteren Klebemittels 14 entfallen.
- Die Poren der Gasdiffusionslagen 5, 6 im Bereich der Rahmenstruktur 10 werden deutlich weniger verstopft.
- Die Dicke der Membran- Elektroden- Einheit 1 in Stapelrichtung z ist geringer und deutlich definierter; die Gesamthöhe des Zellenstapels in Stapelrichtung z kann somit enger toleriert werden.
Trotzdem wird ein Verrutschen der Gasdiffusionslagen 5, 6 gegenüber der Rahmenstruktur 10 bzw. gegenüber der mit den Elektroden 3, 4 beschichteten Membran 2 wirkungsvoll verhindert, so dass entsprechende Funktionsflächen optimal zueinander positioniert bleiben.
Figur 3 zeigt den Schnitt A-A der Figur 2 in einem weiteren Ausführungsbeispiel in teilweise transparenter Ansicht. In einem aktiven Bereich 9 weist die Membran- Elektroden- Einheit 1 lediglich die mit den Elektroden 3, 4 beschichtete Membran 2 und die dahinterliegende Gasdiffusionslage 5 auf. Die Rahmenstruktur 10 kennzeichnet üblicherweise den nicht-aktiven Bereich der elektrochemischen Zelle 100. In dem Schnitt A-A ist dabei das Klebemittel 13 bzw. transparent dahinter die erste Folie 11 zu sehen. In der ersten Folie 11 sind eine Mehrzahl von Ausnehmungen 15a ausgebildet, durch die das Klebemittel 13 gedrückt wird, um mit der Gasdiffusionslage 5 zu verkleben.
Transparent - und genau genommen außerhalb der Ansicht des Schnitts A-A - sind strichiert auch mehrere Ausnehmungen 15b in der zweiten Folie 12 angedeutet, welche in dieser Ausführung versetzt zu den Ausnehmungen 15a angeordnet sind, so dass die entsprechenden Klebemittel 13 dort besser unabhängig voneinander aktiviert werden können. Perspektivisch skizziert sind weiterhin beispielhaft zwei Heißstempel 40, welche das Klebemittel 13 in den
Ausnehmungen 15, 15a, 15b lokal aufschmelzen und dadurch thermisch aktivieren. Das Klebemittel 13 wird somit also mit der Gasdiffusionslage 5 verschmolzen, wobei sich bevorzugt die Polymerketten ineinander quasi verknoten.
Claims
1. Membran-Elektroden-Einheit (1) für eine elektrochemische Zelle (100), wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist, wobei die Rahmenstruktur (10) eine erste Folie (11) und eine zweite Folie (12) unter Zwischenlage eines Klebemittels (13) umfasst, wobei eine Gasdiffusionslage (5, 6) an der Rahmenstruktur (10) angeordnet ist, dadurch gekennzeichnet, dass zumindest in einer der beiden Folien (11, 12) zumindest eine Ausnehmung (15) ausgebildet ist, wobei das Klebemittel (13) durch die Ausnehmung (15) dringt und mit der Gasdiffusionslage (5, 6) adhäsiv zusammenwirkt.
2. Membran-Elektroden-Einheit (1) nach Anspruch 1, dadurch gekennzeichnet, dass je eine Gasdiffusionslage (5, 6) zu beiden Seiten der Rahmenstruktur (10) angeordnet ist, wobei in beiden Folien (11, 12) jeweils zumindest eine Ausnehmung (15, 15a, 15b) ausgebildet ist, wobei das Klebemittel (13) durch die Ausnehmungen (15, 15a, 15b) dringt und mit der jeweiligen Gasdiffusionslage (5, 6) adhäsiv zusammenwirkt.
3. Membran-Elektroden-Einheit (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Ausnehmung (15a) in der ersten Folie (11) in einer Fläche senkrecht zu einer Stapelrichtung (z) versetzt zu der Ausnehmung (15b) der zweiten Folie (12) angeordnet ist.
4. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Klebemittel (13) temperaturaktivierbar ist.
5. Verfahren zum Herstellen einer Membran- Elektroden- Einheit (1) nach einem der Ansprüche 1 bis 4, wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist, wobei die Rahmenstruktur (10) eine erste Folie (11) und eine zweite Folie (12) unter Zwischenlage eines Klebemittels (13) umfasst, wobei in einer der beiden Folien (11, 12) zumindest eine Ausnehmung (15) ausgebildet ist, durch folgende Verfahrensschritte gekennzeichnet:
• Anordnen einer Gasdiffusionslage (5, 6) an einer der Folien (11, 12) mit Ausnehmung (15).
• Aktivieren des Klebemittels (13) im Bereich der Ausnehmung (15).
6. Verfahren zum Herstellen einer Membran-Elektroden-Einheit (1) nach Anspruch 5, durch folgenden weiteren Verfahrensschritt gekennzeichnet:
• Aushärten des Klebemittels (13) in der Ausnehmung (15) unter Zusammenpressen der Gasdiffusionslage (5, 6) mit der Rahmenstruktur (10).
7. Verfahren zum Herstellen einer Membran-Elektroden-Einheit (1) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Klebemittel (13) mittels Heißstempel (40) aktiviert wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020216093.7A DE102020216093A1 (de) | 2020-12-17 | 2020-12-17 | Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit |
DE102020216093.7 | 2020-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022128479A1 true WO2022128479A1 (de) | 2022-06-23 |
Family
ID=78824787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/083799 WO2022128479A1 (de) | 2020-12-17 | 2021-12-01 | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102020216093A1 (de) |
WO (1) | WO2022128479A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023078819A3 (de) * | 2021-11-03 | 2023-11-16 | Robert Bosch Gmbh | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zum herstellen einer membran-elektroden-einheit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3132394B3 (fr) * | 2022-07-25 | 2024-03-22 | Symbio France | Assemblage membrane-électrode de pile à combustible, procédé de fabrication d’un tel assemblage et pile à combustible comprenant au moins un tel assemblage |
FR3143884A1 (fr) * | 2022-12-14 | 2024-06-21 | Symbio France | Sous-ensemble pour empilement de pile à combustible, pile à combustible comprenant un tel sous-ensemble et procédé de fabrication d’un tel sous-ensemble |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10140684A1 (de) | 2001-08-24 | 2003-03-06 | Daimler Chrysler Ag | Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus |
US20090162734A1 (en) * | 2007-12-21 | 2009-06-25 | 3M Innovative Properties Company | Manufacturing of fuel cell membrane electrode assemblies incorporating photocurable cationic crosslinkable resin gasket |
US20100000679A1 (en) * | 2008-07-04 | 2010-01-07 | Hyundai Motor Company | Method for bonding mea and gdl of fuel cell stack |
US20110177423A1 (en) * | 2010-01-21 | 2011-07-21 | Anton Nachtmann | Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same |
US20130040228A1 (en) * | 2003-08-22 | 2013-02-14 | Johnson Matthey Public Limited Company | Sealing of a membrane electrode assembly |
DE102018131092A1 (de) | 2018-09-04 | 2020-03-05 | Hyundai Motor Company | Membranelektrodeneinrichtung |
-
2020
- 2020-12-17 DE DE102020216093.7A patent/DE102020216093A1/de active Pending
-
2021
- 2021-12-01 WO PCT/EP2021/083799 patent/WO2022128479A1/de active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10140684A1 (de) | 2001-08-24 | 2003-03-06 | Daimler Chrysler Ag | Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus |
US20130040228A1 (en) * | 2003-08-22 | 2013-02-14 | Johnson Matthey Public Limited Company | Sealing of a membrane electrode assembly |
US20090162734A1 (en) * | 2007-12-21 | 2009-06-25 | 3M Innovative Properties Company | Manufacturing of fuel cell membrane electrode assemblies incorporating photocurable cationic crosslinkable resin gasket |
US20100000679A1 (en) * | 2008-07-04 | 2010-01-07 | Hyundai Motor Company | Method for bonding mea and gdl of fuel cell stack |
US20110177423A1 (en) * | 2010-01-21 | 2011-07-21 | Anton Nachtmann | Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same |
DE102018131092A1 (de) | 2018-09-04 | 2020-03-05 | Hyundai Motor Company | Membranelektrodeneinrichtung |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023078819A3 (de) * | 2021-11-03 | 2023-11-16 | Robert Bosch Gmbh | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zum herstellen einer membran-elektroden-einheit |
Also Published As
Publication number | Publication date |
---|---|
DE102020216093A1 (de) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1654776B1 (de) | Membran-elektroden-einheit für elektrochemische vorrichtungen | |
DE19502391C1 (de) | Membranelektrodeneinheit gebildet durch die Zusammenfassung von flächigen Einzelzellen und deren Verwendung | |
WO2022128479A1 (de) | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit | |
EP3545579B1 (de) | Bipolarplatten-dichtungsanordnung sowie brennstoffzellenstapel mit einer solchen | |
EP1759434B2 (de) | Membran-elektroden-modul (mea) für eine brennstoffzelle | |
WO2022089788A1 (de) | Bipolarplatte, brennstoffzelle sowie brennstoffzellenstapel | |
WO2022084014A1 (de) | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit | |
WO2022084028A1 (de) | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit | |
WO2022084121A1 (de) | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit | |
DE102010054305A1 (de) | Brennstoffzellenstapel mit mehreren Brennstoffzellen | |
EP3736894B1 (de) | Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel | |
WO2022129279A1 (de) | Brennstoffzellenstapel und verfahren zur herstellung | |
WO2022129533A1 (de) | Anordnung elektrochemischer zellen, fahrzeug umfassend die anordnung und verfahren zur herstellung der anordnung | |
DE102021105029A1 (de) | Elektrochemische Einheit für eine elektrochemische Vorrichtung und Verfahren zum Herstellen einer elektrochemischen Einheit für eine elektrochemische Vorrichtung | |
WO2020207754A1 (de) | Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel | |
WO2022084026A1 (de) | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit | |
DE102021211884A1 (de) | Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer Membran-Elektroden-Einheit | |
DE102021212398A1 (de) | Membran-Elektroden-Einheit für eine elektrochemische Zelle | |
DE102021210509A1 (de) | Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer elektrochemischen Zelle | |
DE102022205356A1 (de) | Anordnung, Gasket-MEA-System, Brennstoffzellenstapel sowie Verfahren zum Herstellen einer Anordnung | |
DE102022202113A1 (de) | Membranelektrodenanordnung, elektrochemische Zelle und Verfahren zur Herstellung von Membranelektrodenanordnungen | |
DE102022213475A1 (de) | Membran-Elektroden-Einheit und Verfahren zur Herstellung einer Membran-Elektroden-Einheit | |
DE102016122584A1 (de) | Verfahren zum Herstellen einer Bipolarplatte und Bipolarplatte | |
WO2023078819A2 (de) | Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zum herstellen einer membran-elektroden-einheit | |
DE102020215019A1 (de) | Anordnung elektrochemischer Zellen und Verfahren zum Betrieb einer Anordnung elektrochemischer Zellen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21820600 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21820600 Country of ref document: EP Kind code of ref document: A1 |