[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022128479A1 - Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit - Google Patents

Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit Download PDF

Info

Publication number
WO2022128479A1
WO2022128479A1 PCT/EP2021/083799 EP2021083799W WO2022128479A1 WO 2022128479 A1 WO2022128479 A1 WO 2022128479A1 EP 2021083799 W EP2021083799 W EP 2021083799W WO 2022128479 A1 WO2022128479 A1 WO 2022128479A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
adhesive
electrode unit
frame structure
gas diffusion
Prior art date
Application number
PCT/EP2021/083799
Other languages
English (en)
French (fr)
Inventor
Anton Ringel
Martin Gerlach
David Thomann
Andreas RINGK
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022128479A1 publication Critical patent/WO2022128479A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Membrane-electrode assembly for an electrochemical cell and method for producing a membrane-electrode assembly
  • a fuel cell is an electrochemical cell that has two electrodes that are separated from one another by means of an ion-conducting electrolyte.
  • the fuel cell converts the energy of a chemical reaction of a fuel with an oxidant directly into electricity.
  • a special type of fuel cell is the polymer electrolyte membrane fuel cell (PEM-FC).
  • PEM-FC polymer electrolyte membrane fuel cell
  • the PEM-FC also includes gas diffusion layers (GDL) in the active area, which delimit the polymer electrolyte membrane (PEM) and the two porous electrodes with a catalyst layer on both sides.
  • GDL gas diffusion layers
  • the PEM, the two electrodes with the catalyst layer and optionally also the two GDLs can form a so-called membrane-electrode unit (MEA) in the active area of the PEM-FC.
  • MEA membrane-electrode unit
  • Two opposing bipolar plates (halves) delimit the MEA on both sides.
  • a fuel cell stack is made up of MEA and bipolar plates arranged alternately one above the other.
  • the fuel in particular hydrogen
  • the oxidizing agent in particular air/oxygen
  • the MEA are enclosed in a frame-like opening of two foils arranged next to one another.
  • the two films of this frame structure are usually made of the same material, for example polyethylene naphthalate (PEN).
  • PEN polyethylene naphthalate
  • the two foils formed from the same material can dispensably have redundant properties, for example electrical insulating ability (electrically insulating) and/or oxygen impermeability of each of the two foils.
  • DE 101 40 684 A1 discloses a membrane-electrode unit for a fuel cell containing a layered arrangement of an anode electrode, a cathode electrode and a membrane arranged between them, with a polymer material on a top and bottom side of the layered arrangement is applied.
  • the object of the present invention is to advantageously connect the gas diffusion layers for the stacking process to the membrane-electrode unit, preferably in such a way that slipping is prevented.
  • the membrane-electrode assembly includes a frame structure for accommodating a membrane coated with electrodes.
  • the frame structure has a first film and a second film with an interposed adhesive.
  • a gas diffusion layer is arranged on the frame structure. At least one recess is formed in at least one of the two films, with the adhesive penetrating through the recess and interacting adhesively with the gas diffusion layer.
  • the gas diffusion layer is attached to the frame structure and thus to the membrane-electrode unit in a non-slip manner. This is particularly important for the process of stacking the individual electrochemical cells into a cell stack very advantageous. Furthermore, even a further adhesive, which is usually applied between the foil and the gas diffusion layer, can thereby be saved.
  • the membrane-electrode unit can include a membrane, in particular a polymer electrolyte membrane (PEM).
  • PEM polymer electrolyte membrane
  • the membrane-electrode unit can further comprise two porous electrodes, each with a catalyst layer, these being arranged in particular on the PEM and delimiting it on both sides.
  • the membrane electrode assembly preferably comprises two gas diffusion layers. In particular, these can delimit the MEA-3 on both sides.
  • the electrochemical cell can be, for example, a fuel cell, an electrolytic cell or a battery cell.
  • the fuel cell is in particular a PEM-FC (polymer electrolyte membrane fuel cell).
  • a cell stack comprises, in particular, a multiplicity of electrochemical cells arranged one above the other.
  • the frame structure has a frame shape.
  • the frame structure is preferably designed to be circumferential.
  • a membrane and the two electrodes can thus be enclosed in the frame structure in a particularly advantageous manner.
  • the cross section of the frame structure is in particular U-shaped or Y-shaped to accommodate the membrane and the two electrodes between the legs of the U-shape or Y-shape.
  • the adhesive preferably seals the membrane-electrode unit from the outside, glues the two foils together and fixes the membrane with the two electrodes in the frame structure.
  • the adhesive can also preferably be electrically insulating.
  • the frame structure can thus be particularly advantageously electrically insulating and an undesired flow of current in an inactive region of the electrochemical cell can be particularly advantageously kept low, in particular prevented.
  • two gas diffusion layers ie one gas diffusion layer on both sides of the membrane-electrode unit, are connected to the frame structure in such a way that they interact adhesively with the adhesive penetrating through the recess of the respective foils. Of course, this can also be done with a plurality of recesses in the foils.
  • the one or more recesses in the first film are arranged offset to the one or more recesses in the second film.
  • the two gas diffusion layers can be glued to the two foils independently of one another or the adhesive can be activated independently of one another by means of a hot stamp.
  • the adhesive can be thermally activated, in particular by means of a hot stamp.
  • the invention also includes a method for producing a membrane electrode assembly according to one of the above statements.
  • the process has the following process steps:
  • the method has the following additional method step:
  • the adhesive is preferably activated by means of a hot stamp.
  • This is a simple, inexpensive and at the same time geometrically very variable process for the thermal activation of adhesive properties. Further measures improving the invention result from the following description of some exemplary embodiments of the invention, which are shown schematically in the figures. All of the features and/or advantages resulting from the claims, the description or the drawings, including structural details, spatial arrangements and method steps, can be essential to the invention both on their own and in various combinations. It should be noted that the figures are only descriptive and are not intended to limit the invention in any way.
  • FIG. 1 shows a membrane-electrode unit from the prior art, only the essential areas being shown.
  • FIG. 2 shows a membrane-electrode unit according to the invention, only the essential areas being shown.
  • FIG. 3 shows the section A-A of FIG. 2 in a further exemplary embodiment, only the essential areas being shown.
  • FIG. 1 shows a section of a membrane-electrode unit 1 of an electrochemical cell 100, in particular a fuel cell, from the prior art in a vertical section, only the essential areas being shown.
  • the membrane-electrode unit 1 has a membrane 2, for example a polymer electrolyte membrane (PEM), and two porous electrodes 3 and 4, each with a catalyst layer, the electrodes 3 and 4 being arranged on one side of the membrane 2 in each case. Furthermore, the electrochemical cell 100 has, in particular, two gas diffusion layers 5 and 6, which can also belong to the membrane-electrode unit 1, depending on the design.
  • the membrane-electrode unit 1 is surrounded on its periphery by a frame structure 10, which is also referred to as a subgasket.
  • the frame structure 10 is used for rigidity and tightness of the membrane-electrode unit 1 and is a non-active area of the electrochemical cell 100.
  • the frame structure 10 is particularly U-shaped or Y-shaped in section, with a first leg of the U-shaped frame section being formed by a first film 11 made of a first material W1 and a second leg of the U-shaped frame section being formed by a second Foil 12 is formed from a second material W2.
  • the first film 11 and the second film 12 are glued together by means of an adhesive 13 made of a third material W3.
  • the first material W1 and the second material W2 are often identical, preferably PEN.
  • the two gas diffusion layers 5 and 6 are in turn each arranged on one side of the frame structure 10 by means of a further adhesive 14, usually in such a way that they are in contact with one electrode 3, 4 each over the active surface of the electrochemical cell 100.
  • the gas diffusion layers 5, 6 are porous—for example, as a fleece—embodied so that reaction media can be fed to the electrodes 3, 4 through them.
  • the two gas diffusion layers 5 , 6 - or at least one of the two gas diffusion layers 5 , 6 - are then tacked or glued to the frame structure 10 by means of the adhesive 13 .
  • FIG. 2 shows a vertical section through a membrane-electrode unit 1 according to the invention of an electrochemical cell 100, in particular a fuel cell, only the essential areas being shown.
  • recesses 15 are formed in the form of bores, which are filled with the adhesive 13.
  • the gas diffusion layers 5, 6 are each in direct contact with the film 11, 12 adjacent to them, so that the adhesive 13 protruding through the recesses in this area is in contact with the respective gas diffusion layer 5, 6 is glued.
  • the additional adhesive 14 from the prior art in the embodiment of FIG. 1 can thus be saved.
  • the thickness of the membrane-electrode unit 1 in the stacking direction z is smaller and clearly defined; the overall height of the cell stack in the stacking direction z can thus be more tightly tolerated.
  • gas diffusion layers 5, 6 are effectively prevented from slipping relative to the frame structure 10 or relative to the membrane 2 coated with the electrodes 3, 4, so that the corresponding functional surfaces remain optimally positioned relative to one another.
  • FIG. 3 shows the section A-A of FIG. 2 in a further embodiment in a partially transparent view.
  • the membrane-electrode unit 1 has only the membrane 2 coated with the electrodes 3, 4 and the gas diffusion layer 5 lying behind it.
  • the frame structure 10 usually characterizes the non-active area of the electrochemical cell 100.
  • the adhesive 13 can be seen, or the first transparent film 11 can be seen behind it.
  • a plurality of recesses 15a through which the adhesive 13 is pressed in order to bond to the gas diffusion layer 5 are formed in the first film 11 .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Membran-Elektroden-Einheit (1) für eine elektrochemische Zelle (100), wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist. Die Rahmenstruktur (10) umfasst eine erste Folie (11) und eine zweite Folie (12) unter Zwischenlage eines Klebemittels (13). Eine Gasdiffusionslage (5, 6) ist an der Rahmenstruktur (10) angeordnet. Zumindest in einer der beiden Folien (11, 12) ist zumindest eine Ausnehmung (15) ausgebildet, wobei das Klebemittel (13) durch die Ausnehmung (15) dringt und mit der Gasdiffusionslage (5, 6) adhäsiv zusammenwirkt.

Description

Beschreibung
Titel
Membran- Elektroden- Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
Stand der Technik
Eine Brennstoffzelle ist eine elektrochemische Zelle, wobei diese zwei Elektroden, welche mittels eines ionenleitenden Elektrolyten voneinander separiert sind, aufweist. Die Brennstoffzelle wandelt die Energie einer chemischen Reaktion eines Brennstoffes mit einem Oxidationsmittel direkt in Elektrizität um. Es existieren verschiedene Typen von Brennstoffzellen.
Ein spezieller Brennstoffzellentyp ist die Polymerelektrolytmembran- Brennstoffzelle (PEM-FC). In einem aktiven Bereich einer PEM-FC grenzen an eine Polymerelektrolytmembran (PEM) zwei poröse Elektroden mit einer Katalysatorschicht an. Weiter umfasst die PEM-FC im aktiven Bereich Gasdiffusionslagen (GDL), welche die Polymerelektrolytmembran (PEM) und die zwei porösen Elektroden mit einer Katalysatorschicht beidseitig begrenzen. Die PEM, die beiden Elektroden mit der Katalysatorschicht und optional auch die beiden GDL können eine sog. Membran-Elektroden-Einheit (MEA) in dem aktiven Bereich der PEM-FC bilden. Zwei sich gegenüberliegende Bipolarplatten(-hälften) wiederum begrenzen beidseitig die MEA. Ein Brennstoffzellenstapel ist aus abwechselnd übereinander angeordneten MEA und Bipolarplatten aufgebaut. Mit einer Anodenplatte einer Bipolarplatte findet eine Verteilung des Brennstoffes, insbesondere Wasserstoff, und mit einer Kathodenplatte der Bipolarplatte eine Verteilung des Oxidationsmittels, insbesondere Luft/Sauerstoff, statt. Zur elektrischen Isolierung benachbarter Bipolarplatten, zur Formstabilisierung der MEA und zum Verhindern von einem ungewollten Entweichen des Brennstoffes bzw. des Oxidationsmittels kann die MEA in einer rahmenartigen Öffnung zweier aneinander angeordneten Folien eingefasst werden. Üblicherweise sind die beiden Folien dieser Rahmenstruktur aus dem gleichen Werkstoff, bspw. Polyethylennaphthalat (PEN), gebildet. Die aus dem gleichen Werkstoff gebildeten, beiden Folien können verzichtbar redundante Eigenschaften, bspw. wie eine elektrische Isolierfähigkeit (elektrisch isolierend) und/oder eine Sauerstoffdichtigkeit jeder der beiden Folien, aufweisen.
In der DE 101 40 684 Al ist eine Membran-Elektroden-Einheit für eine Brennstoffzelle, enthaltend eine Schichtanordnung aus einer Anoden- Elektrode, einer Kathoden- Elektrode und einer dazwischen angeordneten Membran, offenbart, wobei auf eine Ober- und Unterseite der Schichtanordnung ein Polymermaterial aufgebracht wird.
Die DE 10 2018 131 092 Al weist eine Membran-Elektroden-Einheit mit einer Rahmenstruktur auf.
Aufgabe der vorliegenden Erfindung ist es die Gasdiffusionslagen für den Stapelprozess mit der Membran-Elektroden-Einheit zu vorteilhaft zu verbinden, bevorzugt derart, dass ein Verrutschen verhindert wird.
Offenbarung der Erfindung
Dazu umfasst die Membran-Elektroden-Einheit eine Rahmenstruktur zur Aufnahme einer mit Elektroden beschichteten Membran. Die Rahmenstruktur weist eine erste Folie und eine zweite Folie unter Zwischenlage eines Klebemittels auf. Eine Gasdiffusionslage ist an der Rahmenstruktur angeordnet. Zumindest in einer der beiden Folien ist zumindest eine Ausnehmung ausgebildet, wobei das Klebemittel durch die Ausnehmung dringt und mit der Gasdiffusionslage adhäsiv zusammenwirkt.
Dadurch ist die Gasdiffusionslage rutschfest an der Rahmenstruktur und somit an der Membran- Elektroden- Einheit angebunden. Dies ist insbesondere für den Stapelprozess der einzelnen elektrochemischen Zellen zu einem Zellenstapel sehr vorteilhaft. Weiterhin kann dadurch sogar ein weiteres Klebemittel, welches üblicherweise zwischen der Folie und der Gasdiffusionslage aufgetragen wird, eingespart werden.
Die Membran- Elektroden- Einheit kann eine Membran, insbesondere eine Polymerelektrolytmembran (PEM) umfassen. Die Membran-Elektroden-Einheit kann weiter zwei poröse Elektroden mit jeweils einer Katalysatorschicht umfassen, wobei diese insbesondere an die PEM angeordnet sind und beidseitig begrenzen. Man kann hier insbesondere von einer MEA-3 sprechen. Bevorzugt umfasst die Membran-Elektroden-Einheit zwei Gasdiffusionslagen. Diese können insbesondere die MEA-3 beidseitig begrenzen. Man kann hier insbesondere von einer MEA-5 sprechen.
Die elektrochemische Zelle kann beispielsweise eine Brennstoffzelle, eine Elektrolysezelle oder eine Batteriezelle sein. Die Brennstoffzelle ist insbesondere eine PEM-FC (Polymer- Elektrolyt- Membran Brennstoffzelle). Ein Zellenstapel umfasst insbesondere eine Vielzahl an übereinander angeordneten elektrochemischen Zellen.
Die Rahmenstruktur weist insbesondere eine Rahmenform auf. Die Rahmenstruktur ist vorzugsweise umlaufend ausgeführt. Somit können eine Membran und die beiden Elektroden besonders vorteilhaft in der Rahmenstruktur eingefasst sein. Des Weiteren ist die Rahmenstruktur im Querschnitt insbesondere U-förmig oder Y-förmig zur Aufnahme der Membran und der beiden Elektroden zwischen den Schenkeln der U-Form bzw. Y-Form ausgebildet.
Das Klebemittel dichtet bevorzugt die Membran-Elektroden-Einheit nach außen ab, verklebt die beiden Folien zueinander und fixiert die Membran mit den beiden Elektroden in der Rahmenstruktur.
Das Klebemittel kann ferner vorzugsweise elektrisch isolierend sein. Somit kann die Rahmenstruktur besonders vorteilhaft elektrisch isolierend sein und ein ungewollter Stromfluss in einem inaktiven Bereich der elektrochemischen Zelle besonders vorteilhaft geringgehalten, insbesondere verhindert, werden. Bevorzugt werden zwei Gasdiffusionslagen, also zu beiden Seiten der Membran- Elektroden- Einheit jeweils eine Gasdiffusionslage, derartig an die Rahmenstruktur angebunden, dass sie mit dem durch die Ausnehmung der jeweiligen Folien dringenden Klebemittel adhäsiv Zusammenwirken. Dies kann selbstverständlich auch mit einer Mehrzahl von Ausnehmungen in den Folien erfolgen.
In vorteilhaften Weiterbildungen sind dann die eine oder mehrere Ausnehmungen in der ersten Folie - in einer Fläche senkrecht zu einer Stapelrichtung betrachtet - versetzt zu der einen oder mehreren Ausnehmungen der zweiten Folie angeordnet. Dadurch können die beiden Gasdiffusionslagen an den beiden Folien unabhängig voneinander verklebt werden bzw. das Klebemittel mittels Heißstempel unabhängig voneinander aktiviert werden.
In vorteilhaften Ausführungen ist das Klebemittel thermisch aktivierbar, insbesondere mittels Heißstempel.
Dementsprechend umfasst die Erfindung auch ein Verfahren zur Herstellung einer Membran-Elektroden-Einheit nach einer der obigen Ausführungen. Das Verfahren weist dabei folgende Verfahrensschritte auf:
• Anordnen einer Gasdiffusionslage an einer der Folien mit Ausnehmung.
• Aktivieren des Klebemittels im Bereich der Ausnehmung.
In vorteilhaften Weiterbildungen weist das Verfahren den folgenden weiteren Verfahrensschritt auf:
• Aushärten des Klebemittels in der Ausnehmung unter Zusammenpressen der Gasdiffusionslage mit der Rahmenstruktur.
Bevorzugt wird dabei das Klebemittel mittels Heißstempel aktiviert. Dies ist ein einfaches, kostengünstiges und zugleich aber auch geometrisch sehr variables Verfahren zur thermischen Aktivierung von Klebeeigenschaften. Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus der nachfolgenden Beschreibung zu einigen Ausführungsbeispielen der Erfindung, welche in den Figuren schematisch dargestellt sind. Sämtliche aus den Ansprüchen, der Beschreibung oder den Zeichnungen hervorgehende Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten, räumliche Anordnungen und Verfahrensschritte, können sowohl für sich als auch in den verschiedenen Kombinationen erfindungswesentlich sein. Dabei ist zu beachten, dass die Figuren nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken.
Es zeigen schematisch:
Fig. 1 eine Membran-Elektroden-Einheit aus dem Stand der Technik, wobei nur die wesentlichen Bereiche dargestellt sind.
Fig. 2 eine erfindungsgemäße Membran-Elektroden-Einheit, wobei nur die wesentlichen Bereiche dargestellt sind.
Fig. 3 den Schnitt A-A der Fig.2 in einem weiteren Ausführungsbeispiel, wobei nur die wesentlichen Bereiche dargestellt sind.
Figur 1 zeigt in einem Vertikalschnitt einen Ausschnitt einer Membran- Elektroden-Einheit 1 einer elektrochemischen Zelle 100, insbesondere einer Brennstoffzelle, aus dem Stand der Technik, wobei nur die wesentlichen Bereiche dargestellt sind.
Die Membran-Elektroden-Einheit 1 weist eine Membran 2, beispielhaft eine Polymerelektrolytmembran (PEM), und zwei poröse Elektroden 3 bzw. 4 mit jeweils einer Katalysatorschicht auf, wobei die Elektroden 3 bzw. 4 jeweils an eine Seite der Membran 2 angeordnet sind. Weiter weist die elektrochemische Zelle 100 insbesondere zwei Gasdiffusionslagen 5 bzw. 6 auf, welche je nach Ausführung auch zur Membran-Elektroden-Einheit 1 gehören können. Die Membran- Elektroden- Einheit 1 ist an ihrem Umfang von einer Rahmenstruktur 10 umgeben, hier spricht man auch von einem Subgasket. Die Rahmenstruktur 10 dient der Steifigkeit und der Dichtheit der Membran- Elektroden- Einheit 1 und ist ein nicht-aktiver Bereich der elektrochemischen Zelle 100.
Die Rahmenstruktur 10 ist im Schnitt insbesondere U-förmig bzw. Y-förmig ausgebildet, wobei ein erster Schenkel des U-förmigen Rahmenabschnitts durch eine erste Folie 11 aus einem ersten Werkstoff W1 gebildet ist und ein zweiter Schenkel des U-förmigen Rahmenabschnitts durch eine zweite Folie 12 aus einem zweiten Werkstoff W2 gebildet ist. Zusätzlich sind die erste Folie 11 und die zweite Folie 12 mittels eines Klebemittels 13 aus einem dritten Werkstoff W3 zusammengeklebt. Häufig sind der erste Werkstoff W1 und der zweite Werkstoff W2 identisch, bevorzugt PEN.
Die beiden Gasdiffusionslagen 5 bzw. 6 sind mittels eines weiteren Klebemittels 14 wiederum jeweils an einer Seite der Rahmenstruktur 10 angeordnet, üblicherweise so, dass sie über der aktiven Fläche der elektrochemischen Zelle 100 mit je einer Elektrode 3, 4 in Kontakt sind. Die Gasdiffusionslagen 5, 6 sind porös - beispielsweise als Vlies - ausgeführt, so dass durch sie Reaktionsmedien an die Elektroden 3, 4 zugeführt werden können.
Erfindungsgemäß werden nun die beiden Gasdiffusionslagen 5, 6 - oder zumindest eine der beiden Gasdiffusionslagen 5, 6 mittels des Klebemittels 13 an die Rahmenstruktur 10 geheftet bzw. geklebt.
Dazu zeigt Figur 2 in einem Vertikalschnitt eine erfindungsgemäße Membran- Elektroden- Einheit 1 einer elektrochemischen Zelle 100, insbesondere einer Brennstoffzelle, wobei nur die wesentlichen Bereiche dargestellt sind. In den beiden Folien 11, 12 sind Ausnehmungen 15 in Form von Bohrungen ausgebildet, welche mit dem Klebemittel 13 gefüllt sind. Die Gasdiffusionslagen 5, 6 sind in der Stapelrichtung z jeweils in direktem Kontakt zu der ihnen benachbarten Folie 11, 12, so dass das durch die Ausnehmungen ragende Klebemittel 13 in diesem Bereich mit der jeweiligen Gasdiffusionslage 5, 6 verklebt ist. Das weitere Klebemittel 14 aus dem Stand der Technik in der Ausführung der Figur 1 kann somit eingespart werden.
Dadurch werden Nachteile, welche durch den Einsatz des weiteren Klebemittels 14 aus dem Stand der Technik entstehen, behoben:
- Die Rahmenstruktur 10 verzieht sich nicht mehr.
- Die Fertigungszeiten für Aufbringen und Aushärten des weiteren Klebemittels 14 entfallen.
- Die Poren der Gasdiffusionslagen 5, 6 im Bereich der Rahmenstruktur 10 werden deutlich weniger verstopft.
- Die Dicke der Membran- Elektroden- Einheit 1 in Stapelrichtung z ist geringer und deutlich definierter; die Gesamthöhe des Zellenstapels in Stapelrichtung z kann somit enger toleriert werden.
Trotzdem wird ein Verrutschen der Gasdiffusionslagen 5, 6 gegenüber der Rahmenstruktur 10 bzw. gegenüber der mit den Elektroden 3, 4 beschichteten Membran 2 wirkungsvoll verhindert, so dass entsprechende Funktionsflächen optimal zueinander positioniert bleiben.
Figur 3 zeigt den Schnitt A-A der Figur 2 in einem weiteren Ausführungsbeispiel in teilweise transparenter Ansicht. In einem aktiven Bereich 9 weist die Membran- Elektroden- Einheit 1 lediglich die mit den Elektroden 3, 4 beschichtete Membran 2 und die dahinterliegende Gasdiffusionslage 5 auf. Die Rahmenstruktur 10 kennzeichnet üblicherweise den nicht-aktiven Bereich der elektrochemischen Zelle 100. In dem Schnitt A-A ist dabei das Klebemittel 13 bzw. transparent dahinter die erste Folie 11 zu sehen. In der ersten Folie 11 sind eine Mehrzahl von Ausnehmungen 15a ausgebildet, durch die das Klebemittel 13 gedrückt wird, um mit der Gasdiffusionslage 5 zu verkleben.
Transparent - und genau genommen außerhalb der Ansicht des Schnitts A-A - sind strichiert auch mehrere Ausnehmungen 15b in der zweiten Folie 12 angedeutet, welche in dieser Ausführung versetzt zu den Ausnehmungen 15a angeordnet sind, so dass die entsprechenden Klebemittel 13 dort besser unabhängig voneinander aktiviert werden können. Perspektivisch skizziert sind weiterhin beispielhaft zwei Heißstempel 40, welche das Klebemittel 13 in den Ausnehmungen 15, 15a, 15b lokal aufschmelzen und dadurch thermisch aktivieren. Das Klebemittel 13 wird somit also mit der Gasdiffusionslage 5 verschmolzen, wobei sich bevorzugt die Polymerketten ineinander quasi verknoten.

Claims

- 9 - Ansprüche
1. Membran-Elektroden-Einheit (1) für eine elektrochemische Zelle (100), wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist, wobei die Rahmenstruktur (10) eine erste Folie (11) und eine zweite Folie (12) unter Zwischenlage eines Klebemittels (13) umfasst, wobei eine Gasdiffusionslage (5, 6) an der Rahmenstruktur (10) angeordnet ist, dadurch gekennzeichnet, dass zumindest in einer der beiden Folien (11, 12) zumindest eine Ausnehmung (15) ausgebildet ist, wobei das Klebemittel (13) durch die Ausnehmung (15) dringt und mit der Gasdiffusionslage (5, 6) adhäsiv zusammenwirkt.
2. Membran-Elektroden-Einheit (1) nach Anspruch 1, dadurch gekennzeichnet, dass je eine Gasdiffusionslage (5, 6) zu beiden Seiten der Rahmenstruktur (10) angeordnet ist, wobei in beiden Folien (11, 12) jeweils zumindest eine Ausnehmung (15, 15a, 15b) ausgebildet ist, wobei das Klebemittel (13) durch die Ausnehmungen (15, 15a, 15b) dringt und mit der jeweiligen Gasdiffusionslage (5, 6) adhäsiv zusammenwirkt.
3. Membran-Elektroden-Einheit (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Ausnehmung (15a) in der ersten Folie (11) in einer Fläche senkrecht zu einer Stapelrichtung (z) versetzt zu der Ausnehmung (15b) der zweiten Folie (12) angeordnet ist.
4. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Klebemittel (13) temperaturaktivierbar ist.
5. Verfahren zum Herstellen einer Membran- Elektroden- Einheit (1) nach einem der Ansprüche 1 bis 4, wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist, wobei die Rahmenstruktur (10) eine erste Folie (11) und eine zweite Folie (12) unter Zwischenlage eines Klebemittels (13) umfasst, wobei in einer der beiden Folien (11, 12) zumindest eine Ausnehmung (15) ausgebildet ist, durch folgende Verfahrensschritte gekennzeichnet:
• Anordnen einer Gasdiffusionslage (5, 6) an einer der Folien (11, 12) mit Ausnehmung (15).
• Aktivieren des Klebemittels (13) im Bereich der Ausnehmung (15).
6. Verfahren zum Herstellen einer Membran-Elektroden-Einheit (1) nach Anspruch 5, durch folgenden weiteren Verfahrensschritt gekennzeichnet:
• Aushärten des Klebemittels (13) in der Ausnehmung (15) unter Zusammenpressen der Gasdiffusionslage (5, 6) mit der Rahmenstruktur (10).
7. Verfahren zum Herstellen einer Membran-Elektroden-Einheit (1) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Klebemittel (13) mittels Heißstempel (40) aktiviert wird.
PCT/EP2021/083799 2020-12-17 2021-12-01 Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit WO2022128479A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020216093.7A DE102020216093A1 (de) 2020-12-17 2020-12-17 Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
DE102020216093.7 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022128479A1 true WO2022128479A1 (de) 2022-06-23

Family

ID=78824787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/083799 WO2022128479A1 (de) 2020-12-17 2021-12-01 Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit

Country Status (2)

Country Link
DE (1) DE102020216093A1 (de)
WO (1) WO2022128479A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078819A3 (de) * 2021-11-03 2023-11-16 Robert Bosch Gmbh Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zum herstellen einer membran-elektroden-einheit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3132394B3 (fr) * 2022-07-25 2024-03-22 Symbio France Assemblage membrane-électrode de pile à combustible, procédé de fabrication d’un tel assemblage et pile à combustible comprenant au moins un tel assemblage
FR3143884A1 (fr) * 2022-12-14 2024-06-21 Symbio France Sous-ensemble pour empilement de pile à combustible, pile à combustible comprenant un tel sous-ensemble et procédé de fabrication d’un tel sous-ensemble

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
US20090162734A1 (en) * 2007-12-21 2009-06-25 3M Innovative Properties Company Manufacturing of fuel cell membrane electrode assemblies incorporating photocurable cationic crosslinkable resin gasket
US20100000679A1 (en) * 2008-07-04 2010-01-07 Hyundai Motor Company Method for bonding mea and gdl of fuel cell stack
US20110177423A1 (en) * 2010-01-21 2011-07-21 Anton Nachtmann Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same
US20130040228A1 (en) * 2003-08-22 2013-02-14 Johnson Matthey Public Limited Company Sealing of a membrane electrode assembly
DE102018131092A1 (de) 2018-09-04 2020-03-05 Hyundai Motor Company Membranelektrodeneinrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
US20130040228A1 (en) * 2003-08-22 2013-02-14 Johnson Matthey Public Limited Company Sealing of a membrane electrode assembly
US20090162734A1 (en) * 2007-12-21 2009-06-25 3M Innovative Properties Company Manufacturing of fuel cell membrane electrode assemblies incorporating photocurable cationic crosslinkable resin gasket
US20100000679A1 (en) * 2008-07-04 2010-01-07 Hyundai Motor Company Method for bonding mea and gdl of fuel cell stack
US20110177423A1 (en) * 2010-01-21 2011-07-21 Anton Nachtmann Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same
DE102018131092A1 (de) 2018-09-04 2020-03-05 Hyundai Motor Company Membranelektrodeneinrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078819A3 (de) * 2021-11-03 2023-11-16 Robert Bosch Gmbh Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zum herstellen einer membran-elektroden-einheit

Also Published As

Publication number Publication date
DE102020216093A1 (de) 2022-06-23

Similar Documents

Publication Publication Date Title
EP1654776B1 (de) Membran-elektroden-einheit für elektrochemische vorrichtungen
DE19502391C1 (de) Membranelektrodeneinheit gebildet durch die Zusammenfassung von flächigen Einzelzellen und deren Verwendung
WO2022128479A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
EP3545579B1 (de) Bipolarplatten-dichtungsanordnung sowie brennstoffzellenstapel mit einer solchen
EP1759434B2 (de) Membran-elektroden-modul (mea) für eine brennstoffzelle
WO2022089788A1 (de) Bipolarplatte, brennstoffzelle sowie brennstoffzellenstapel
WO2022084014A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
WO2022084028A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
WO2022084121A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
DE102010054305A1 (de) Brennstoffzellenstapel mit mehreren Brennstoffzellen
EP3736894B1 (de) Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel
WO2022129279A1 (de) Brennstoffzellenstapel und verfahren zur herstellung
WO2022129533A1 (de) Anordnung elektrochemischer zellen, fahrzeug umfassend die anordnung und verfahren zur herstellung der anordnung
DE102021105029A1 (de) Elektrochemische Einheit für eine elektrochemische Vorrichtung und Verfahren zum Herstellen einer elektrochemischen Einheit für eine elektrochemische Vorrichtung
WO2020207754A1 (de) Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel
WO2022084026A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
DE102021211884A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer Membran-Elektroden-Einheit
DE102021212398A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle
DE102021210509A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer elektrochemischen Zelle
DE102022205356A1 (de) Anordnung, Gasket-MEA-System, Brennstoffzellenstapel sowie Verfahren zum Herstellen einer Anordnung
DE102022202113A1 (de) Membranelektrodenanordnung, elektrochemische Zelle und Verfahren zur Herstellung von Membranelektrodenanordnungen
DE102022213475A1 (de) Membran-Elektroden-Einheit und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
DE102016122584A1 (de) Verfahren zum Herstellen einer Bipolarplatte und Bipolarplatte
WO2023078819A2 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zum herstellen einer membran-elektroden-einheit
DE102020215019A1 (de) Anordnung elektrochemischer Zellen und Verfahren zum Betrieb einer Anordnung elektrochemischer Zellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21820600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21820600

Country of ref document: EP

Kind code of ref document: A1