[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022127328A1 - 间接式热泵系统 - Google Patents

间接式热泵系统 Download PDF

Info

Publication number
WO2022127328A1
WO2022127328A1 PCT/CN2021/123810 CN2021123810W WO2022127328A1 WO 2022127328 A1 WO2022127328 A1 WO 2022127328A1 CN 2021123810 W CN2021123810 W CN 2021123810W WO 2022127328 A1 WO2022127328 A1 WO 2022127328A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
cold water
branch
way valve
inlet
Prior art date
Application number
PCT/CN2021/123810
Other languages
English (en)
French (fr)
Inventor
刘旗
余兆开
赵宇
吴铎
瞿晓华
穆景阳
洪光泽
Original Assignee
艾泰斯热系统研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾泰斯热系统研发(上海)有限公司 filed Critical 艾泰斯热系统研发(上海)有限公司
Priority to US18/257,008 priority Critical patent/US11987096B2/en
Priority to DE112021004594.6T priority patent/DE112021004594T5/de
Publication of WO2022127328A1 publication Critical patent/WO2022127328A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit

Definitions

  • the present application relates to the field of heat exchange technology, for example, to an indirect heat pump system.
  • heat pump air conditioners on new energy electric vehicles are direct heat pump systems, that is, the evaporator in the air conditioner box of the passenger compartment is used to cool the passenger compartment, the condenser in the air conditioner box is used to heat the passenger compartment, and the plate type is used for battery pack cooling.
  • Heat exchanger, refrigerant side components are connected to form a multi-heat exchanger system.
  • the heat pump system directly transports the refrigerant to the load, and this type of setting has high thermal efficiency and high system energy efficiency.
  • This kind of heat pump system directly causes the cost of the heat pump system to remain high and raises the threshold for users to use it; the complexity of the refrigerant pipeline aggravates the risks of refrigerant leakage, compressor oil return, and the cleanliness of impurities in the system, shortening the heat pump system.
  • the service life of the air conditioner increases the maintenance cost; the long size of the refrigerant pipeline and the large number of heat exchangers will cause the refrigerant charge in the system to be significantly larger than that of the traditional air conditioning system.
  • the safety of the system puts forward higher requirements and exacerbates the limitation of the choice of refrigerant types.
  • the present application discloses an indirect heat pump system.
  • the embodiment of the present application discloses an indirect heat pump system, including: a refrigerant unit, the refrigerant unit includes a compressor, a condenser, a throttle valve and an evaporator, and an outlet of the compressor is connected to an outlet of the condenser a first inlet, the first outlet of the condenser is communicated with the first inlet of the evaporator through the throttle valve, and the first outlet of the evaporator is communicated with the inlet of the compressor; the cold water conveying unit, The cold water inlet of the cold water conveying unit is connected to the second outlet of the evaporator, the cold water outlet of the cold water conveying unit is connected to the second inlet of the evaporator, and the cold water conveying unit is connected in parallel with a plurality of loads, so
  • the pipeline of the cold water conveying unit is provided with a plurality of cold water two-way valves, and the plurality of the cold water two-way valves are used to control the on-off of the cold water
  • FIG. 1 is a schematic diagram of an indirect heat pump system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a cooling mode of an indirect heat pump system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a first heating mode of an indirect heat pump system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a second heating mode of the indirect heat pump system provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a third heating mode of the indirect heat pump system provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fourth heating mode of the indirect heat pump system provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a cooling, heating and defogging mode of an indirect heat pump system provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a defrosting mode of a cooling water tank of an indirect heat pump system provided by an embodiment of the present application.
  • the main challenge for the application and promotion of the indirect heat pump system is the design of the coolant circuit. Since the whole vehicle puts forward many load requirements for the automobile heat pump air conditioner, the number of loads is large, and the model configuration (single air conditioner box, front and rear air conditioner box), air conditioner Flexible load matching such as box heating method (PTC heating body, warm core), special vehicle configuration (glove box cooling, vehicle refrigerator) and so on. In addition, different types of loads often have different requirements. For example, the passenger compartment and the battery pack require both cold source cooling and heat source heating, and the motor usually only needs to be cooled, which makes the coolant circuit extremely complex, the system stability is poor, and the application is difficult. .
  • the embodiment of the present application discloses an indirect heat pump system.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature is directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the direct heat pump system refers to a heat pump system in which the refrigerant exchanges heat directly with the load, for example, the air in the passenger compartment is directly cooled or heated by the refrigerant.
  • the refrigerant in the indirect heat pump system does not exchange heat directly with the load.
  • one type of indirect heat pump system is that heat exchange takes place through the medium of a refrigerant.
  • the indirect heat pump system can use the refrigerant to exchange heat with a refrigerant such as cooling liquid, and then use the refrigerant to cool or heat the air in the passenger compartment.
  • the indirect heat pump system includes a refrigerant unit, a cold water conveying unit 11 and a hot water conveying unit 13 .
  • the cooling capacity is provided to keep the cooling liquid in the cold water conveying unit 11 at a low temperature, and the refrigerant unit can provide heat to the cooling liquid in the hot water conveying unit 13 to keep the cooling liquid in the hot water conveying unit 13 at a high temperature.
  • the refrigerant unit includes a compressor 1, a condenser 2, a throttle valve 5 and an evaporator 6, the outlet of the compressor 1 is connected to the first inlet of the condenser 2, and the first outlet of the condenser 2 passes through
  • the throttle valve 5 is connected to the first inlet of the evaporator 6, the first outlet of the evaporator 6 is connected to the inlet of the compressor 1, and a refrigerant circulates in the pipeline of the refrigerant unit, which is convenient for the evaporator 6 of the refrigerant unit to
  • the cooling liquid in the cold water conveying unit 11 is cooled and the cooling liquid in the hot water conveying unit 13 is heated.
  • the cooling liquid in the cold water conveying unit 11 is cold water
  • the cooling liquid in the hot water conveying unit 13 is hot water.
  • the cooling liquid in this embodiment can also be other refrigerants, and those skilled in the art can choose according to the actual situation.
  • Cold water is a body of water that has a lower temperature than hot water.
  • the refrigerant unit further includes a supplemental air heat exchanger 4, the supplemental air heat exchanger 4 is connected between the throttle valve 5 and the condenser 2, and the supplemental air side outlet end of the supplemental air heat exchanger 4 is connected to the The air supply ports of the compressor 1 are communicated with each other.
  • the refrigerant unit further includes a drying liquid storage tank 3 , and the drying liquid storage tank 3 is communicated between the condenser 2 and the supplemental air heat exchanger 4 .
  • the cold water inlet 110 of the cold water conveying unit 11 is connected to the second outlet of the evaporator 6, and the cold water outlet 112 of the cold water conveying unit 11 is connected to the second inlet of the evaporator 6.
  • the evaporator 6 can be used as a cooling source as The cold water in the cold water delivery unit 11 supplements the cooling capacity.
  • the cold water delivery unit 11 is connected in parallel with multiple loads, and the pipelines of the cold water delivery unit 11 are provided with multiple cold water two-way valves. 11 can supply cold water to a plurality of loads respectively for cooling.
  • the hot water inlet 130 of the hot water delivery unit 13 is communicated with the second outlet of the condenser 2, and the hot water outlet 132 of the hot water delivery unit 13 is communicated with the second inlet of the condenser 2.
  • the condenser 2 can be used as a heat source for hot water delivery.
  • Hot water in unit 13 supplements the heat.
  • the hot water delivery unit 13 is connected in parallel with multiple loads, and the pipelines of the hot water delivery unit 13 are provided with multiple hot water two-way valves, which are used to control the on-off of the hot water in the multiple loads , so that the hot water delivery unit 13 can respectively provide hot water to a plurality of loads for heating.
  • the hot water two-way valve and the cold water two-way valve are set in one-to-one correspondence and the on-off state is interlocked, which can avoid the mixing of the cold source and the heat source in the indirect heat pump system, so that various loads can be safe and reliable. And quickly switch between cold and heat sources to meet customer needs.
  • the one-to-one arrangement of the hot water two-way valve and the cold water two-way valve refers to the arrangement of the positions of the hot water two-way valves in the hot water delivery unit 13 , and the arrangement of the cold water two-way valves in the cold water delivery unit 11 .
  • the deployment method is the same in the position of the center;
  • the interlocking of the on-off state of the hot water two-way valve and the cold water two-way valve refers to: a hot water two-way valve in a plurality of hot water two-way valves, and a hot water two-way valve corresponding to the one hot water two-way valve in a relative position.
  • the on-off state of a cold water two-way valve is interlocked.
  • On-off state interlock means that when one of the two two-way valves is connected, the other two-way valve must be disconnected; when one of the two two-way valves is connected, the other two-way valve must be disconnected; When the valve is disconnected, the other two-way valve of the two two-way valves must be connected.
  • the relative positions of a hot water two-way valve and a cold water two-way valve correspond to the relative positions of the hot water two-way valve in the hot water conveying unit 13 and the cold water two-way valve in the cold water conveying unit 11 .
  • the relative positions in the are the same.
  • the loads include a first load 12, a second load 10, a third load 14, a fourth load 15 and a fifth load 17, and the cooling water tank, drive motor, indoor cooler, indoor
  • the heater and the battery pack, as the first load 12 , the second load 10 , the third load 14 , the fourth load 15 and the fifth load 17 are respectively communicated with the cold water delivery unit 11 .
  • the refrigerant unit in this embodiment only includes a compressor 1, a condenser 2, an evaporator 6, a throttle valve 5, a supplemental air heat exchanger 4 and a drying liquid storage tank 3, the refrigerant unit can be extremely compact It can be completely isolated from the passenger compartment, which can greatly reduce the size of the refrigerant pipeline.
  • the cooling or heating in the passenger compartment can be done simultaneously with the room cooler and the room heater, both use the cooling liquid (cold water or hot water) as the refrigerant or heat carrier, so only the cooling liquid enters the passenger cabin , the refrigerant line is completely isolated from the passenger compartment.
  • the indirect heat pump system further includes a cold water pump 7, which is arranged between the cold water outlet 112 and the second inlet of the evaporator 6, and is used for conveying cold water to promote the cold water in the cold water conveying unit. 11 and circulates between multiple loads.
  • the indirect heat pump system further includes a PTC heating body 8, and the PTC heating body 8 is arranged between the cold water inlet 110 and the second outlet of the evaporator 6, and is used as a compensation heat source for heating the cold water, which is helpful for improving
  • the temperature of cold water in a low temperature environment can improve the energy efficiency of the indirect heat pump system, which is more effective than compensating heat on the hot water side, and can expand the operating low temperature range of the indirect heat pump system.
  • the cold water delivery unit 11 includes a plurality of cold water branches in communication with the cold water inlet 110 (ie, a plurality of inflow cold water branches) and a plurality of cold water branches in communication with the cold water outlet 112 (ie, a plurality of outgoing cold water branches) , the cold water branch is communicated with the load, and the cold water branch is used to pass cold water to the load.
  • Both ends of the first cold water branch 1101 are respectively connected to the cold water inlet 110 and the inlet of the first load 12 (heating water tank); one end of the second cold water branch 1102 is connected to the first cold water branch 1101 and the second cold water branch 1102 The other end is connected to the outlet of the first load 12 (cooling water tank) and the inlet of the second load 10 (driving motor); both ends of the third cold water branch 1103 are respectively connected to the cold water inlet 110 and the third load 14 (indoor cooling).
  • the two ends of the fourth cold water branch 1104 are respectively connected to the cold water inlet 110 and the inlet of the fourth load 15 (indoor heater);
  • the two ends of the fifth cold water branch 1105 are respectively connected to the cold water inlet 110 and the first The inlet of the fifth load 17 (battery pack);
  • the two ends of the sixth cold water branch 1106 are respectively connected to the cold water outlet 112 and the outlet of the second load 10 (driving motor); the two ends of the seventh cold water branch 1107 are respectively
  • the first cold water branch 1101 is provided with a first cold water two-way valve 1-L and a ninth cold water two-way valve 9-L, and the first cold water branch 1101 and the second cold water branch 1102 are connected It is located between the first cold water two-way valve 1-L and the ninth cold water two-way valve 9-L; the second cold water branch 1102 is provided with a tenth cold water two-way valve 10-L; the third cold water branch 1103 A second cold water two-way valve 2-L is provided; the fourth cold water branch 1104 is provided with a third cold water two-way valve 3-L; the fifth cold water branch 1105 is provided with a fourth cold water two-way valve 4-L;
  • the sixth cold water branch 1106 is provided with a fifth cold water two-way valve 5-L; the seventh cold water branch 1107 is provided with a sixth cold water two-way valve 6-L; the eighth cold water branch 1108 is provided with a seventh cold water Two-way valve 7-L; the ninth cold water branch 1109 is provided with an eighth cold water two--
  • the indirect heat pump system further includes a hot water pump 9, which is arranged between the hot water outlet 132 and the second inlet of the condenser 2, and is used for transporting hot water to promote the hot water in the
  • the hot water delivery unit 13 circulates and flows between a plurality of loads.
  • the hot water delivery unit 13 includes a plurality of hot water branches that communicate with the hot water inlet 130 (ie, a plurality of inflow hot water branches) and a plurality of hot water branches that communicate with the hot water outlet 132 (ie, A plurality of outflow hot water branches), the hot water branch communicates with the load, and the hot water branch is used to pass hot water to the load.
  • Both ends of the first hot water branch 1301 are connected to the hot water inlet 130 and the inlet of the first load 12 (heating water tank) respectively; one end of the second hot water branch 1302 is connected to the first hot water branch 1301, the second The other end of the hot water branch 1302 is connected to the outlet of the first load 12 (heating water tank) and the inlet of the second load 10 (driving motor); the two ends of the third hot water branch 1303 are respectively connected to the hot water inlet 130 and The inlet of the third load 14 (indoor cooler); the two ends of the fourth hot water branch 1304 are respectively connected to the hot water inlet 130 and the inlet of the fourth load 15 (indoor heater); Both ends are connected to the hot water inlet 130 and the inlet of the fifth load 17 (battery pack) respectively; both ends of the sixth hot water branch 1306 are respectively connected to the hot water outlet 132 and the outlet of the second load 10 (driving motor); Both ends of the seventh hot water branch 1307 are respectively connected to the hot water outlet 132 and the outlet
  • the first hot water branch 1301 is provided with a first hot water two-way valve 1-H and a ninth hot water two-way valve 9-H, and the first hot water branch 1301 and the second hot water
  • the connection of the branch 1302 is located between the first hot water two-way valve 1-H and the ninth hot water two-way valve 9-H;
  • the second hot water branch 1302 is provided with a tenth hot water two-way valve 10- H;
  • the third hot water branch 1303 is provided with a second hot water two-way valve 2-H;
  • the fourth hot water branch 1304 is provided with a third hot water two-way valve 3-H;
  • the fifth hot water branch 1305 is provided with a fourth hot water two-way valve 4-H;
  • the sixth hot water branch 1306 is provided with a fifth hot water two-way valve 5-H;
  • the seventh hot water branch 1307 is provided with a sixth hot water Two-way valve 6-H;
  • the seventh hot water two-way valve 7-H is provided on the eighth hot water branch 1308;
  • the cold source or heat source can be connected in parallel with the load to cool the battery pack and the passenger compartment at the same time; the cold source or heat source can be connected in series with the load, so that the cooling water tank as the first load 12 can be cooled sequentially as the second
  • the cold water delivery unit 11 can be flexibly increased or decreased according to the model configuration (single air-conditioning box, front and rear air-conditioning box), heating method of the air-conditioning box (PTC heating body 8, warm core), special vehicle configuration (glove box cooling, vehicle-mounted refrigerator), etc. Or the number of loads of the hot water delivery unit 13, which realizes the expansion of the indirect heat pump system.
  • the present application discloses an indirect heat pump system, which has a compact structure and can safely and reliably switch a cold source or a heat source for various loads, thereby realizing cooling and heating functions and satisfying customer needs.
  • the application provides an indirect heat pump system
  • the indirect heat pump system includes a refrigerant unit, a cold water conveying unit and a hot water conveying unit, the cold water inlet of the cold water conveying unit is communicated with the second outlet of the evaporator in the refrigerant unit, and the cold water
  • the cold water outlet of the delivery unit is communicated with the second inlet of the evaporator, and the cold water delivery unit is connected in parallel with multiple loads to provide cold sources for the multiple loads;
  • the hot water inlet of the hot water delivery unit is connected with the condenser in the refrigerant unit.
  • the second outlet is in communication, the hot water outlet of the hot water delivery unit is in communication with the second inlet of the condenser, and the hot water delivery unit is connected in parallel with a plurality of loads to provide a heat source to the plurality of loads.
  • the hot water two-way valve and the cold water two-way valve are set in one-to-one correspondence and the on-off state is interlocked.
  • the indirect heat pump system can provide a cold source or a heat source to the load according to the demand of the load, so that the load is at a suitable working temperature; and because the hot water two-way valve and the cold water two-way valve are set in one-to-one correspondence and the on-off state is interlocked, this indirect connection is avoided.
  • the mixture of cold source and heat source in the heat pump system enables various loads to switch between cold source and heat source safely, reliably and quickly to meet customer needs.
  • the indirect heat pump system can be set to the following working modes:
  • the cooling mode is as follows: the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 flows into one side of the pipeline in the condenser 2 for condensation and heat exchange, and reaches the other side of the pipeline in the heating condenser 2 .
  • the effect of the cooling liquid one side of the pipeline in the condenser 2 flows through the refrigerant, and the other side of the pipeline in the condenser 2 flows through the cooling liquid).
  • the condensed refrigerant flows out from the condenser 2 and enters the drying liquid storage tank 3 to realize gas-liquid separation, ensuring that all the refrigerant flowing out of the drying liquid storage tank 3 is liquid.
  • the refrigerant is divided into two parts at the outlet of the drying liquid storage tank 3: one refrigerant reaches the inlet of the supplementary air side of the supplemental air heat exchanger 4 along the branch, and flows into the supplementary air side of the supplementary air heat exchanger 4 after equal enthalpy throttling.
  • the refrigerant that absorbs heat and becomes the medium-pressure superheated state flows out from the supplemental air heat exchanger 4 to the supplementary air port of the compressor 1 and enters the compressor 1; the other refrigerant directly reaches the other side of the supplementary air heat exchanger 4 along the main road.
  • the cooling liquid circuit can be divided into two parts: high temperature and low temperature according to the cooling liquid temperature.
  • the high temperature cooling liquid heated by the condenser 2 passes through the hot water conveying unit 13 to the cooling water tank (the first load 12 ) and the driving motor respectively.
  • the second load 10 is connected to take away the heat released by the condensation of the refrigerant in the condenser 2 and the heat released by the drive motor;
  • the low-temperature cooling liquid cooled by the evaporator 6 is connected to the indoor cooler (third The load 14) is connected to the indoor heater (the fourth load 15) and the battery pack (the fifth load 17), and the cooling liquid cooled by the evaporator 6 is sent to the indoor cooler, the indoor heater and the battery pack to cool the passenger compartment. Effect of inner air and battery.
  • the cooling liquid is sent to the condenser 2 by the hot water pump 9 to absorb the condensation heat released by the refrigerant on the other side of the condenser 2 , and the heated cooling liquid flows from the hot water inlet of the hot water delivery unit 13 . 130 inflows.
  • the high-temperature coolant flows into the cooling water tank (the first load 12 ) after passing through the first two-way hot water valve 1-H and the ninth two-way hot water valve 9-H in the hot water delivery unit 13, and the cooling water tank (the first load 12 )
  • the cooled coolant reaches the inlet of the drive motor and flows out after cooling the drive motor.
  • the high-temperature coolant flowing out of the driving motor flows into the sixth hot water branch 1306 from the outlet of the second load 10 , flows out from the hot water outlet 132 after passing through the fifth hot water two-way valve 5-H, and returns to the inlet of the hot water pump 9 . next cycle.
  • the cooling liquid sent to the evaporator 6 by the cold water pump 7 is cooled by the refrigerant on the other side of the evaporator 6, and the cooled cooling liquid flows through the PTC heating body 8 to the cold water inlet 110.
  • This cooling mode The lower PTC heating body 8 does not work.
  • the cooling liquid is divided into three parts: the first cooling liquid flows into the indoor cooler from the inlet of the third load 14 through the second cold water two-way valve 2-L to cool the air in the cabin, and the second cooling liquid flows into the indoor cooler to cool the air in the cabin.
  • the cooling liquid flows from the inlet of the fourth load 15 through the third cold water two-way valve 3-L into the indoor heater to cool the air in the cabin, and the third cooling liquid flows from the inlet of the fifth load 17 through the fourth cold water two-way valve 4-L. It flows into the battery pack to cool the battery, and at this time, the battery water temperature regulating valve 18 controls the inlet water temperature of the battery pack by adjusting the bypass amount.
  • the cooling liquid from the indoor cooler, the indoor heater and the battery pack flows back to the cold water delivery unit 11 through the third load 14, the fourth load 15 and the fifth load 17 respectively, and then passes through the eighth cold water two-way valve 8-L respectively ,
  • the seventh cold water two-way valve 7-L and the sixth cold water two-way valve 6-L converge, flow out from the cold water outlet 112, and return to the inlet of the cold water pump 7 to start the next cycle.
  • the first heating mode is: the refrigerant unit is consistent with the refrigerant unit corresponding to the cooling mode, and only the cold water delivery unit 11 and the hot water delivery unit 13 need to be reorganized, for example, adjusting the cooling water delivery unit 11
  • the on-off state of the cold water two-way valve is adjusted, and the on-off state of the hot water two-way valve in the hot water delivery unit 13 is adjusted.
  • the cooling liquid sent into the one side pipeline in the condenser 2 through the hot water pump 9 absorbs the condensation heat of the refrigerant in the other side pipeline in the condenser 2, and the cooling after the temperature rises.
  • the liquid flows into the hot water delivery unit 13 through the hot water inlet 130 .
  • the cooling liquid in the hot water delivery unit 13 is divided into two parts: one cooling liquid flows through the second hot water two-way valve 2-H from the inlet of the third load 14 into the indoor cooler to heat the air in the cabin, and the other cooling liquid flows through the third hot water two-way valve 2-H.
  • the hot water two-way valve 3-H flows into the room heater 15 from the inlet of the fourth load 15 to heat the air in the cabin.
  • the cooling liquid flowing out from the indoor cooler and the indoor heater flows back to the hot water delivery unit 13 through the outlets of the third load 14 and the fourth load 15 respectively, and then passes through the eighth hot water two-way valve 8-H and the seventh hot water valve 8-H respectively. After the water two-way valve 7-H converges, the cooling liquid flows out from the hot water outlet 132, and finally returns to the inlet of the hot water pump 9 to start the next cycle.
  • the cooling liquid is sent to one side of the pipeline in the evaporator 6 through the cold water pump 7, the heat of the cooling liquid is absorbed by the refrigerant in the other side pipeline in the evaporator 6, and the temperature decreases, and the cooling liquid
  • the PTC heating body 8 flows into the cold water inlet 110 of the cold water delivery unit 11 through the PTC heating body 8, and the PTC heating body 8 does not work in the first heating mode.
  • the cooling liquid in the cold water delivery unit 11 is divided into two parts: one cooling liquid flows through the first cold water two-way valve 1-L and the ninth cold water two-way valve 9-L sequentially from the inlet of the first load 12 into the cooling water tank to absorb ambient heat , the cooling liquid flows into the cold water conveying unit 11 from the outlet of the first load 12, and flows out from the inlet of the second load 10, and the cooling liquid reaches the inlet of the driving motor to absorb the heat of the driving motor; the other cooling liquid passes through the fourth cold water two-way valve
  • the 4-L flows into the battery pack from the inlet of the fifth load 17, absorbing the heat of the battery pack.
  • the cooling liquid flowing out from the driving motor and the battery pack flows back to the cold water conveying unit 11 through the outlets of the second load 10 and the fifth load 17 respectively, and then passes through the fifth cold water two-way valve 5-L and the sixth cold water two-way valve 6 respectively. After -L, it converges, then flows out from the cold water outlet 112, and finally returns to the inlet of the cold water pump 7 to start the next cycle.
  • the second heating mode is: the refrigerant unit is consistent with the refrigerant unit corresponding to the first heating mode, only the load quantity of the cold water delivery unit 11 and the hot water delivery unit 13 is redistributed, and the cold water delivery unit
  • the unit 11 reduces one load (compared with FIG. 3, the cooling liquid in the cold water delivery unit 11 in FIG. 4 does not flow through the first load 12), and the hot water delivery unit 13 increases one load (compared with FIG. 3, the cooling liquid in FIG. 4
  • the cooling liquid in the hot water delivery unit 13 additionally flows through the fifth load 17), and the cold water delivery unit 11 and the hot water delivery unit 13 need to be reorganized.
  • the cooling liquid sent into the one side pipeline in the condenser 2 through the hot water pump 9 absorbs the condensation heat of the refrigerant in the other side pipeline in the condenser 2, and the heated cooling liquid is heated by the cooling liquid.
  • the water inlet 130 flows into the hot water delivery unit 13 .
  • the cooling liquid in the hot water delivery unit 13 is divided into three parts: the first cooling liquid flows from the inlet of the third load 14 through the second hot water two-way valve 2-H into the indoor cooler to heat the air in the cabin, and the second cooling liquid
  • the liquid flows from the inlet of the fourth load 15 through the third hot water two-way valve 3-H into the indoor heater to heat the air in the cabin, and the third-path coolant flows from the fifth load 17 through the fourth hot water two-way valve 4-H.
  • the inlet flows into the battery pack to heat the battery pack.
  • the cooling liquid flowing out from the indoor cooler, the indoor heater and the battery pack flows back to the hot water delivery unit 13 through the outlets of the third load 14, the fourth load 15 and the fifth load 17 respectively, and then passes through the eighth hot water two-way respectively
  • the valve 8-H, the seventh hot water two-way valve 7-H, and the sixth hot water two-way valve 6-H converge, then flow out from the hot water outlet 132, and return to the inlet of the hot water pump 9 to start the next cycle.
  • the heat of the cooling liquid sent into the one side pipeline in the evaporator 6 through the cold water pump 7 is absorbed by the refrigerant in the other side pipeline in the evaporator 6, and then the temperature decreases, and the cooling liquid is heated by the PTC.
  • the body 8 reaches the cold water inlet 110 of the cold water delivery unit 11 and flows in, and the PTC heating body 8 does not work in the second heating mode.
  • the cooling liquid in the cold water conveying unit 11 flows from the inlet of the second load 10 to the inlet of the driving motor through the first two-way cold water valve 1-L and the tenth two-way valve 10-L in turn to absorb the heat of the driving motor.
  • the cooling liquid flowing out from the driving motor flows back to the cold water conveying unit 11 through the outlet of the second load 10, and then flows out from the cold water outlet 112 through the fifth cold water two-way valve 5-L, and then returns to the inlet of the cold water pump 7 to start the next one. cycle.
  • the refrigerant unit is consistent with the refrigerant unit corresponding to the second heating mode, and only the load quantity corresponding to the cold water delivery unit 11 is redistributed.
  • the heat of the cooling liquid sent to the one side pipeline in the evaporator 6 through the cold water pump 7 is absorbed by the refrigerant in the other side pipeline in the evaporator 6, and then the temperature decreases, and is heated by the PTC heating body 8.
  • the cooling liquid temperature rises the cooling liquid reaches the cold water inlet 110 of the cold water conveying unit 11 and flows in.
  • the cooling liquid in the cold water conveying unit 11 directly flows out from the cold water outlet 112 through the eleventh cold water two-way valve 11-L, and returns to the inlet of the cold water pump 7 to start the next cycle.
  • the circulation path of the cooling liquid in the hot water delivery unit 13 in the third heating mode is similar to the circulation path of the cooling liquid in the hot water delivery unit 13 in the second heating mode, and will not be repeated here.
  • the fourth heating mode is to use the heat generated by the driving motor (the second load 10 ) to heat the battery pack, and at this time, the passenger compartment has no cooling or heating demand. At this time, both the refrigerant unit and the hot water delivery unit 13 are in a non-circulation state, and only the cold water delivery unit 11 works.
  • the cooling liquid heated by the driving motor flows out of the driving motor, and returns to the cold water conveying unit 11 from the outlet of the second load 10 .
  • the cooling liquid in the cold water delivery unit 11 passes through the twelfth cold water two-way valve 12-L and flows from the inlet of the fifth load 17 into the battery pack to heat the batteries in the battery pack.
  • the battery water temperature regulating valve 18 is controlled by adjusting the bypass amount. The inlet water temperature of the battery pack.
  • the cooling liquid flowing out of the battery pack returns to the cold water conveying unit 11 from the outlet of the fifth load 17, and then passes through the sixth cold water two-way valve 6-L, the eleventh cold water two-way valve 11-L, and the first cold water two-way valve 1 in turn. -L, the tenth cold water two-way valve 10-L flows back to the drive motor from the inlet of the second load 10 to start the next cycle.
  • the cooling, heating, and defogging mode is as follows: the refrigerant unit is consistent with the refrigerant unit corresponding to the cooling mode, and only the load quantities of the cold water delivery unit 11 and the hot water delivery unit 13 are redistributed, and the cold water delivery unit 11 reduces one load (compared with FIG. 2, the cooling liquid in the cold water delivery unit 11 in FIG. 7 does not flow through the fourth load 15), and the hot water delivery unit 13 increases one load (compared with FIG. The cooling liquid in the water delivery unit 13 additionally flows through the fourth load 15), and the cold water delivery unit 11 and the hot water delivery unit 13 need to be reorganized.
  • the cooling liquid is sent to one side of the pipeline in the condenser 2 by the hot water pump 9 to absorb the condensation heat released by the refrigerant in the other side of the pipeline in the condenser 2, and the heated cooling liquid is released from the condenser 2.
  • the hot water inlet 130 flows in.
  • the high-temperature cooling liquid is divided into two parts in the hot water delivery unit 13: one cooling liquid flows through the first hot water two-way valve 1-H and the ninth hot water two-way valve 9-H into the cooling water tank (the first load 12) , use the cooling liquid cooled by the cooling water tank (the first load 12) to reach the inlet of the driving motor (the second load 10), and then flow out after cooling the driving motor; the other cooling liquid passes through the third hot water two-way valve 3-H from the first The inlets of the four loads 15 flow into the room heater to heat the cabin air.
  • the cooling liquid flowing out from the driving motor and the indoor heater flows into the hot water delivery unit 13 from the outlets of the second load 10 and the fourth load 15 of the hot water delivery unit 13 respectively, and then passes through the fifth hot water two-way valve 5-H and the outlet of the fourth load 15 respectively.
  • the seventh hot water two-way valve 7-H then converges, flows out from the hot water outlet 132, and then returns to the inlet of the hot water pump 9 to start the next cycle.
  • the cooling liquid sent into the one side pipeline of the evaporator 6 through the cold water pump 7 is cooled by the refrigerant in the other side pipeline in the evaporator 6, and reaches the cold water transportation through the PTC heating body 8.
  • the cold water inlet 110 of the unit 11 flows in, and the PTC heating body 8 does not work in the cooling, heating and defogging mode.
  • the cooling liquid is divided into two parts: one cooling liquid flows into the indoor cooler from the inlet of the third load 14 through the second cold water two-way valve 2-L to cool the air in the cabin, and the other cooling liquid flows through the second cooling water two-way valve 2-L.
  • the fourth cold water two-way valve 4-L flows into the battery pack from the inlet of the fifth load 17 to cool the batteries in the battery pack.
  • the battery water temperature regulating valve 18 controls the inlet water temperature of the battery pack by adjusting the bypass amount.
  • the cooling liquid from the indoor cooler and the battery pack flows back to the cold water delivery unit 11 through the outlets of the third load 14 and the fifth load 17 respectively, and then passes through the eighth cold water two-way valve 8-L and the sixth cold water two-way valve respectively After 6-L, they converge, and then flow out from the cold water outlet 112, and finally return to the inlet of the cold water pump 7 to start the next cycle.
  • the cooling, heating and defogging mode is as follows: the refrigerant unit is consistent with the refrigerant unit corresponding to the first heating mode, and only the load quantities of the cold water delivery unit 11 and the hot water delivery unit 13 are redistributed,
  • the cold water conveying unit 11 reduces one load (compared to FIG. 3, the cooling liquid in the cold water conveying unit 11 in FIG. 8 does not flow through the first load 12 and the second load 10), and the hot water conveying unit 13 increases one load (compared to that 3, the cooling liquid in the hot water delivery unit 13 in FIG. 8 additionally flows through the first load 12, the second load 10), and the hot water delivery unit 13 and the cold water delivery unit 11 need to be reorganized.
  • the cooling liquid sent into the one side pipeline in the condenser 2 through the hot water pump 9 absorbs the condensation heat of the refrigerant in the other side pipeline in the condenser 2, and the heated cooling liquid It flows into the hot water delivery unit 13 through the hot water inlet 130 .
  • the cooling liquid in the hot water delivery unit 13 is divided into three parts: the first cooling liquid flows from the inlet of the third load 14 through the second hot water two-way valve 2-H into the indoor cooler to heat the air in the cabin, and the second cooling liquid The liquid flows through the third hot water two-way valve 3-H from the inlet of the fourth load 15 into the indoor heater to heat the air in the cabin, and the third-path cooling liquid passes through the first hot water two-way valve 1-H and the ninth hot water two.
  • the through valve 9-H flows into the radiating water tank from the inlet of the first load 12 to release heat to melt the frost layer on the fins of the radiating water tank, after which the cooling liquid reaches the inlet of the driving motor through the hot water delivery unit 13.
  • the cooling liquid flowing out from the indoor cooler, the indoor heater and the driving motor flows back to the hot water delivery unit 13 through the outlets of the third load 14, the fourth load 15 and the second load 10 respectively, and then passes through the eighth hot water two-way respectively
  • the valve 8-H, the seventh hot water two-way valve 7-H, and the fifth hot water two-way valve 5-H then converge, flow out from the hot water outlet 132, and finally return to the inlet of the hot water pump 9 to start the next cycle.
  • the heat of the cooling liquid sent to the one side pipeline in the evaporator 6 through the cold water pump 7 is absorbed by the refrigerant in the other side pipeline in the evaporator 6, and then the temperature decreases, and the cooling liquid passes through the evaporator 6.
  • the PTC heating body 8 flows into the cold water inlet 110 of the cold water unit, and the PTC heating body 8 does not work in the defrosting mode of the cooling water tank.
  • the cooling liquid in the cold water delivery unit 11 flows into the battery pack from the inlet of the fifth load 17 through the fourth cold water two-way valve 4-L, and absorbs the heat of the batteries in the battery pack.
  • the cooling liquid from the battery pack flows back to the cold water unit through the outlet of the fifth load 17, and then flows out from the cold water outlet 112 after passing through the sixth cold water two-way valve 6-L, and returns to the inlet of the cold water pump 7 to start the next cycle.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种间接式热泵系统,包括:制冷剂单元;冷水输送单元(11),其冷水入口(110)连通于蒸发器(6)的第二出口,其冷水出口(112)连通于蒸发器(6)的第二进口,该冷水输送单元(11)与多个负载并联,其管路中设有多个冷水两通阀,多个冷水两通阀用于控制多个负载中冷水的通断;热水输送单元(13),其热水入口(130)连通于冷凝器(2)的第二出口,其热水出口(132)连通于冷凝器(2)的第二进口,该热水输送单元(13)与多个负载并联,其管路中设有多个热水两通阀,多个热水两通阀用于控制多个负载中热水的通断;热水两通阀与冷水两通阀一一对应设置且通断状态互锁。

Description

间接式热泵系统
本申请要求在2020年12月18日提交中国专利局、申请号为202011507091.X的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及换热技术领域,例如涉及一种间接式热泵系统。
背景技术
传统的汽车的制冷依靠空调系统,传统的汽车的采暖依靠发动机冷却液散发的热量,但在新能源电动车上通常搭载热泵系统或PTC发热体来进行温度调节。然而,PTC发热体的效率始终小于1,耗损较多电池能量,会大大降低整车的续航里程,加剧客户的里程焦虑。
随着用户对汽车续航里程提出的要求越来越高,多种热泵系统应运而生,并因热泵系统高效节能的优点在新能源电动车上得到了越来越多的普及推广。
新能源汽车的热泵空调仍然存在诸多限制:
新能源电动车上的热泵空调以直接式热泵系统居多,即利用乘客舱空调箱内的蒸发器冷却乘客舱、空调箱内的冷凝器为乘客舱采暖,再加上用于电池包冷却的板式换热器,冷媒侧部件连成一个多换热器系统。该热泵系统将冷媒直接输送至负载处,该类设置方式具有较高的热效率,系统能效比较高。然而,该类直接式热泵系统由于换热器数量众多,导致冷媒回路模式多、冷媒管路走向复杂、管路尺寸长、冷媒回路电磁截止阀和节流阀数量多。
该种热泵系统直接造成热泵系统成本居高不下,提高了用户使用门槛;冷媒管路的复杂性加剧了制冷剂泄漏、压缩机回油、系统内杂质洁净度等问题的风险,缩短了热泵系统的使用寿命,增加了维护成本;冷媒管路尺寸长和换热器数量多会导致系统中的制冷剂充注量显著大于传统空调系统,一方面增加了制冷剂的采购成本,同时对制冷剂的安全性提出了更高的要求,并且加剧了制冷剂种类选择的局限性。
发明内容
本申请公开一种间接式热泵系统。
本申请实施例公开一种间接式热泵系统,包括:制冷剂单元,所述制冷剂单元包括压缩机、冷凝器、节流阀和蒸发器,所述压缩机的出口连通于所述冷 凝器的第一进口,所述冷凝器的第一出口通过所述节流阀连通于所述蒸发器的第一进口,所述蒸发器的第一出口连通于所述压缩机的进口;冷水输送单元,所述冷水输送单元的冷水入口连通于所述蒸发器的第二出口,所述冷水输送单元的冷水出口连通于所述蒸发器的第二进口,所述冷水输送单元与多个负载并联,所述冷水输送单元的管路中设有多个冷水两通阀,多个所述冷水两通阀用于控制多个所述负载中冷水的通断;热水输送单元,所述热水输送单元的热水入口连通于所述冷凝器的第二出口,所述热水输送单元的热水出口连通于所述冷凝器的第二进口,所述热水输送单元与多个所述负载并联,所述热水输送单元的管路中设有多个热水两通阀,多个所述热水两通阀用于控制多个所述负载中热水的通断;所述热水两通阀与所述冷水两通阀一一对应设置且通断状态互锁。
附图说明
图1是本申请实施例所提供的间接式热泵系统的示意图;
图2是本申请实施例所提供的间接式热泵系统的制冷模式的示意图;
图3是本申请实施例所提供的间接式热泵系统的第一制热模式的示意图;
图4是本申请实施例所提供的间接式热泵系统的第二制热模式的示意图;
图5是本申请实施例所提供的间接式热泵系统的第三制热模式的示意图;
图6是本申请实施例所提供的间接式热泵系统的第四制热模式的示意图;
图7是本申请实施例所提供的间接式热泵系统的制冷制热除雾模式的示意图;
图8是本申请实施例所提供的间接式热泵系统的散热水箱化霜模式的示意图。
图1-8中:
1、压缩机;2、冷凝器;5、节流阀;6、蒸发器;4、补气换热器;3、干燥储液罐;11、冷水输送单元;13、热水输送单元;12、第一负载;10、第二负载;14、第三负载;15、第四负载;17、第五负载;8、PTC加热体;7、冷水泵;9、热水泵;18、电池水温调节阀;
1-L、第一冷水两通阀;2-L、第二冷水两通阀;3-L、第三冷水两通阀;4-L、第四冷水两通阀;5-L、第五冷水两通阀;6-L、第六冷水两通阀;7-L、第七冷水两通阀;8-L、第八冷水两通阀;9-L、第九冷水两通阀;10-L、第十冷水两通阀;11-L、第十一冷水两通阀;12-L、第十二冷水两通阀;1-H、第一热水两通 阀;2-H、第二热水两通阀;3-H、第三热水两通阀;4-H、第四热水两通阀;5-H、第五热水两通阀;6-H、第六热水两通阀;7-H、第七热水两通阀;8-H、第八热水两通阀;9-H、第九热水两通阀;10-H、第十热水两通阀;11-H、第十一热水两通阀;12-H、第十二热水两通阀;
1101、第一冷水支路;1102、第二冷水支路;1103、第三冷水支路;1104、第四冷水支路;1105、第五冷水支路;1106、第六冷水支路;1107、第七冷水支路;1108、第八冷水支路;1109、第九冷水支路;1110、第十冷水支路;1111、第十一冷水支路;
1301、第一热水支路;1302、第二热水支路;1303、第三热水支路;1304、第四热水支路;1305、第五热水支路;1306、第六热水支路;1307、第七热水支路;1308、第八热水支路;1309、第九热水支路;1310、第十热水支路;1311、第十一热水支路;
110、冷水入口110;112、冷水出口;130、热水入口;132、热水出口。
具体实施方式
鉴于直接式热泵系统存在的诸多不足,虽已有对间接式热泵系统在汽车热泵空调领域应用可行性的探索,期望简化冷媒回路的设计,改善直接式热泵系统的不足,然而,绝大部分间接式热泵系统的研究仅限于将用于制热的室内冷凝器替换成水冷式冷凝器配合暖芯来实现乘客舱的间接式采暖,此类换热方式仍未解决前述直接式热泵系统的诸多不足。
此外,间接式热泵系统应用推广的主要挑战还在于冷却液回路的设计,由于整车对于汽车热泵空调提出了许多的负载需求,负载数量多,车型配置(单空调箱、前后空调箱)、空调箱采暖方式(PTC发热体、暖芯)、车辆特殊配置(手套箱冷却、车载冷藏箱)等灵活多变的负载搭配。再加上不同类型负载往往具有不同的需求,如乘客舱和电池包既需要冷源冷却,也需要热源加热,电机通常只需要冷却等,使得冷却液回路极其复杂,系统稳定性差,应用难度高。
为应对相关技术中存在的上述情况,本申请实施例公开了一种间接式热泵系统。
下面将结合附图对本申请实施例进行描述。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间 媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以结合实际情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面结合附图并通过具体实施方式来说明本申请所提供的间接式热泵系统。
一般地,直接式热泵系统是指制冷剂与负载直接发生热交换的热泵系统,例如,利用制冷剂直接给乘客舱的空气制冷或者加热。区别于直接式热泵系统,间接式热泵系统中的制冷剂与负载不是直接发生热交换。例如,间接式热泵系统的一类方式为,通过载冷剂为媒介发生热交换。还例如,间接式热泵系统可利用制冷剂与冷却液等载冷剂发生热交换,再利用载冷剂将乘客舱空气制冷或加热。
本申请提供一种间接式热泵系统,如图1所示,该间接式热泵系统包括制冷剂单元、冷水输送单元11和热水输送单元13,制冷剂单元能够对冷水输送单元11中的冷却液提供冷量,使冷水输送单元11中的冷却液保持低温,制冷剂单元能够对热水输送单元13中的冷却液提供热量,使热水输送单元13中的冷却液保持高温。
在本实施例中,制冷剂单元包括压缩机1、冷凝器2、节流阀5和蒸发器6,压缩机1的出口连通于冷凝器2的第一进口,冷凝器2的第一出口通过节流阀5连通于蒸发器6的第一进口,蒸发器6的第一出口连通于压缩机1的进口,制冷剂单元的管路中循环通有冷媒,便于制冷剂单元的蒸发器6对冷水输送单元11中的冷却液进行冷却以及对热水输送单元13中的冷却液进行加热,在本实施例中冷水输送单元11中的冷却液为冷水,热水输送单元13中的冷却液为热水。可以理解的是,本实施例中的冷却液还可以为其他冷媒,本领域技术人员可以根据实际情况进行选择。
冷水是指温度低于热水的水体。
在一实施例中,制冷剂单元还包括补气换热器4,补气换热器4连通于节流阀5和冷凝器2之间,补气换热器4的补气侧出口端与压缩机1的补气口相连通。在本实施例中,制冷剂单元还包括干燥储液罐3,干燥储液罐3连通于冷凝器2和补气换热器4之间。
在本实施例中,冷水输送单元11的冷水入口110连通于蒸发器6的第二出口,冷水输送单元11的冷水出口112连通于蒸发器6的第二进口,蒸发器6能够作为冷源为冷水输送单元11中冷水补充冷量。冷水输送单元11与多个负载并联,且冷水输送单元11的管路中设有多个冷水两通阀,多个冷水两通阀用于控制多个负载中冷水的通断,使得冷水输送单元11能够分别向多个负载提供冷水进行冷却。
热水输送单元13的热水入口130连通于冷凝器2的第二出口,热水输送单元13的热水出口132连通于冷凝器2的第二进口,冷凝器2能够作为热源为热水输送单元13中的热水补充热量。热水输送单元13与多个负载并联,且热水输送单元13的管路中设有多个热水两通阀,多个热水两通阀用于控制多个负载中热水的通断,使得热水输送单元13能够分别向多个负载提供热水进行加热。在一实施例中,热水两通阀与冷水两通阀一一对应设置且通断状态互锁,能够避免该间接式热泵系统中的冷源和热源发生混合,使得多种负载能够安全可靠且快捷地进行冷源和热源的切换,满足客户需求。
热水两通阀与冷水两通阀一一对应设置是指:多个热水两通阀在热水输送单元13中所处方位的部署方式,与多个冷水两通阀在冷水输送单元11中所处方位的部署方式相同;
热水两通阀与冷水两通阀通断状态互锁是指:多个热水两通阀中的一个热水两通阀、和与所述一个热水两通阀在相对位置上对应的一个冷水两通阀的通断状态互锁。
通断状态互锁是指,当两个两通阀中的一个两通阀连通时,两个两通阀中的另一个两通阀必然断开;当两个两通阀中的一个两通阀断开时,两个两通阀中的另一个两通阀必然连通。
一个热水两通阀与一个冷水两通阀在相对位置上对应,是指,该热水两通阀在热水输送单元13中所处的相对位置与该冷水两通阀在冷水输送单元11中所处的相对位置是相同的。
在本实施例中,负载包括第一负载12、第二负载10、第三负载14、第四负载15和第五负载17,新能源电动汽车中的散热水箱、驱动电机、室内冷却器、 室内加热器和电池包分别作为第一负载12、第二负载10、第三负载14、第四负载15和第五负载17,与冷水输送单元11分别连通。
由于本实施例中的制冷剂单元只包含压缩机1、冷凝器2、蒸发器6、节流阀5、补气换热器4和干燥储液罐3,从而能够实现制冷剂单元的极度紧凑化,并可完全隔绝于乘客舱之外,能够大幅度削减制冷剂管路的尺寸。乘客舱内的制冷或制热均可利用室内冷却器和室内加热器同时完成,均是利用冷却液(冷水或热水)当作载冷剂或载热剂,因此只有冷却液进入乘客舱内,制冷剂管路被完全隔绝于乘客舱外。
在一实施例中,该间接式热泵系统还包括冷水泵7,冷水泵7设置于冷水出口112和蒸发器6的第二进口之间,冷水泵7用于输送冷水,促进冷水在冷水输送单元11和多个负载之间循环流动。在一实施例中,该间接式热泵系统还包括PTC加热体8,PTC加热体8设置于冷水入口110和蒸发器6的第二出口之间,作为补偿热源用于加热冷水,有助于提升低温环境下冷水的温度,从而提升该间接式热泵系统的能效,这比在热水侧补偿热量更加有效,能够实现对该间接式热泵系统可运行低温范围的扩展。
例如,冷水输送单元11包括多个与冷水入口110连通的冷水支路(即,多个流入冷水支路)和多个与冷水出口112连通的冷水支路(即,多个流出冷水支路),冷水支路与负载连通,冷水支路用于向负载通入冷水。第一冷水支路1101的两端分别连通于冷水入口110和第一负载12(散热水箱)的入口;第二冷水支路1102的一端连通于第一冷水支路1101,第二冷水支路1102的另一端连通于第一负载12(散热水箱)的出口和第二负载10(驱动电机)的入口;第三冷水支路1103的两端分别连通于冷水入口110和第三负载14(室内冷却器)的入口;第四冷水支路1104的两端分别连通于冷水入口110和第四负载15(室内加热器)的入口;第五冷水支路1105的两端分别连通于冷水入口110和第五负载17(电池包)的入口;第六冷水支路1106的两端分别连通于冷水出口112和第二负载10(驱动电机)的出口;第七冷水支路1107的两端分别连通于冷水出口112和第五负载17(电池包)的出口;第八冷水支路1108的两端分别连通于冷水出口112和第四负载15(室内加热器)的出口;第九冷水支路1109的两端分别连通于冷水出口112和第三负载14(室内冷却器)的出口,使得每个负载中能够循环通入冷水。
在一实施例中,第一冷水支路1101上设有第一冷水两通阀1-L和第九冷水两通阀9-L,第一冷水支路1101与第二冷水支路1102的连接处位于第一冷水两 通阀1-L和第九冷水两通阀9-L之间;第二冷水支路1102上设有第十冷水两通阀10-L;第三冷水支路1103上设有第二冷水两通阀2-L;第四冷水支路1104上设有第三冷水两通阀3-L;第五冷水支路1105上设有第四冷水两通阀4-L;第六冷水支路1106上设有第五冷水两通阀5-L;第七冷水支路1107上设有第六冷水两通阀6-L;第八冷水支路1108上设有第七冷水两通阀7-L;第九冷水支路1109上设有第八冷水两通阀8-L;第五冷水支路1105和第六冷水支路1106通过第十冷水支路1110连通,且第十冷水支路1110上设有第十二冷水两通阀12-L;第一冷水支路1101和第九冷水支路1109通过第十一冷水支路1111连通,且第十一冷水支路1111上设有第十一冷水两通阀11-L。
在本实施例中,该间接式热泵系统还包括热水泵9,热水泵9设置于热水出口132和冷凝器2的第二进口之间,热水泵9用于输送热水,促进热水在热水输送单元13和多个负载之间循环流动。
同样地,热水输送单元13包括多个与热水入口130连通的热水支路(即,多个流入热水支路)和多个与热水出口132连通的热水支路(即,多个流出热水支路),热水支路与负载连通,热水支路用于向负载通入热水。第一热水支路1301的两端分别连通于热水入口130和第一负载12(散热水箱)的入口;第二热水支路1302的一端连通于第一热水支路1301,第二热水支路1302的另一端连通于第一负载12(散热水箱)的出口和第二负载10(驱动电机)的入口;第三热水支路1303的两端分别连通于热水入口130和第三负载14(室内冷却器)的入口;第四热水支路1304的两端分别连通于热水入口130和第四负载15(室内加热器)的入口;第五热水支路1305的两端分别连通于热水入口130和第五负载17(电池包)的入口;第六热水支路1306的两端分别连通于热水出口132和第二负载10(驱动电机)的出口;第七热水支路1307的两端分别连通于热水出口132和第五负载17(电池包)的出口;第八热水支路1308的两端分别连通于热水出口132和第四负载15(室内加热器)的出口;第九热水支路1309的两端分别连通于热水出口132和第三负载14(室内冷却器)的出口,使得每个负载中能够循环通入热水。
在一实施例中,第一热水支路1301上设有第一热水两通阀1-H和第九热水两通阀9-H,第一热水支路1301与第二热水支路1302的连接处位于第一热水两通阀1-H和第九热水两通阀9-H之间;第二热水支路1302上设有第十热水两通阀10-H;第三热水支路1303上设有第二热水两通阀2-H;第四热水支路1304上设有第三热水两通阀3-H;第五热水支路1305上设有第四热水两通阀4-H; 第六热水支路1306上设有第五热水两通阀5-H;第七热水支路1307上设有第六热水两通阀6-H;第八热水支路1308上设有第七热水两通阀7-H;第九热水支路1309上设有第八热水两通阀8-H;第五热水支路1305和第六热水支路1306通过第十热水支路1310连通,且第十热水支路1310上设有第十二热水两通阀12-H;第一热水支路1301和第九热水支路1309通过第十一热水支路1311连通,且第十一热水支路1311上设有第十一热水两通阀11-H。
本申请通过冷水输送单元11和热水输送单元13内的支路设计和水阀配置,实现了连通负载组合方式的多样性,满足了整车热管理的多样需求。其中,冷源或热源、与负载间能够并联连接,以同时冷却电池包和乘客舱;冷源或热源、与负载间能够串联连接,以使作为第一负载12的散热水箱依次冷却作为第二负载10的驱动电机和冷凝器2的冷媒;所有负载短路,则可实现冷水输送单元11的自循环;负载间串联成小循环,则可实现利用驱动电机产生的热量加热电池包或利用驱动电机产生的热量加热乘客舱的情况。
另外,本申请还实现了连通负载的数量的可扩展性,负载的配置具有极大的灵活性。可根据车型配置(单空调箱、前后空调箱)、空调箱采暖方式(PTC加热体8、暖芯)、车辆特殊配置(手套箱冷却、车载冷藏箱)等灵活地增加或减少冷水输送单元11或热水输送单元13的负载数量,实现了该间接式热泵系统的扩展。
本申请公开一种间接式热泵系统,该间接式热泵系统的结构紧凑,能够为多种负载安全可靠地切换冷源或热源,从而实现制冷和制热功能,满足客户需求。
本申请的有益效果:
本申请提供一种间接式热泵系统,该间接式热泵系统包括制冷剂单元、冷水输送单元和热水输送单元,冷水输送单元的冷水入口与制冷剂单元中的蒸发器的第二出口连通,冷水输送单元的冷水出口与蒸发器的第二进口连通,冷水输送单元与多个负载并联,用以向多个负载提供冷源;热水输送单元的热水入口与制冷剂单元中的冷凝器的第二出口连通,热水输送单元的热水出口与冷凝器的第二进口连通,热水输送单元与多个负载并联,用以向多个负载提供热源。冷水输送单元的管路中设有多个冷水两通阀,用以控制多个负载中冷水的通断;热水输送单元的管路中设有多个热水两通阀,用以控制多个负载中热水的通断,热水两通阀与冷水两通阀一一对应设置且通断状态互锁,通过热水两通阀和冷 水两通阀的通断,该间接式热泵系统能够根据负载的需求分别向负载提供冷源或热源,使负载处于适宜的工作温度中;而且由于热水两通阀与冷水两通阀一一对应设置且通断状态互锁,避免了该间接式热泵系统中冷源和热源的混合,使得多种负载能够安全可靠且快捷地进行冷源和热源的切换,满足客户需求。
在本实施例中,该间接式热泵系统可设置为如下工作模式:
一、制冷模式:
如图2所示,该制冷模式为:从压缩机1排出的高温高压气态制冷剂流入冷凝器2内的一侧管路进行冷凝换热,达到加热冷凝器2内的另一侧管路内的冷却液的效果(冷凝器2内的一侧管路流经制冷剂,冷凝器2内的另一侧管路流经冷却液)。冷凝后的制冷剂从冷凝器2流出并进入干燥储液罐3实现气液分离,确保流出干燥储液罐3的制冷剂全部为液体。制冷剂在干燥储液罐3的出口一分为二:一路制冷剂沿支路到达补气换热器4补气侧的入口,等焓节流后流入补气换热器4的补气侧吸热,变成中压过热态后的制冷剂从补气换热器4流出到达压缩机1的补气口进入压缩机1;另一路制冷剂沿主路直接到达补气换热器4的另一侧放热,变成高压过冷态的制冷剂从补气换热器4流出到达节流阀5的入口,等焓节流后流入蒸发器6内的一侧管道蒸发吸热,达到冷却蒸发器6内的另外一侧管道的冷却液的效果。最后,从蒸发器6流出的低压过热制冷剂回到压缩机1吸气口开始下一个循环。
在该制冷模式下,冷却液回路可依据冷却液温度分为高温和低温两部分,被冷凝器2加热的高温冷却液通过热水输送单元13分别与散热水箱(第一负载12)和驱动电机(第二负载10)连通,将冷凝器2中制冷剂冷凝放出的热量和驱动电机放出的热量带走;被蒸发器6冷却的低温冷却液通过冷水输送单元11分别与室内冷却器(第三负载14)和室内加热器(第四负载15)以及电池包(第五负载17)连接,将蒸发器6冷却后的冷却液输送到室内冷却器和室内加热器以及电池包中,达到冷却车厢内空气和电池的效果。
图2中,热水输送单元13内部、冷水输送单元11内部的连续箭头,表示冷却液的流通路径。
热水输送单元13中,冷却液被热水泵9送入冷凝器2中吸收冷凝器2中另一侧的制冷剂放出的冷凝热,升温后的冷却液从热水输送单元13的热水入口130流入。高温冷却液在热水输送单元13内经第一热水两通阀1-H和第九热水两通阀9-H后流入散热水箱(第一负载12),利用散热水箱(第一负载12)降温后 的冷却液到达驱动电机入口,冷却驱动电机后流出。从驱动电机流出的高温冷却液从第二负载10的出口流入第六热水支路1306,经第五热水两通阀5-H后从热水出口132流出,回到热水泵9入口开始下一个循环。
冷水输送单元11中,经冷水泵7送入蒸发器6的冷却液被蒸发器6中另一侧的制冷剂冷却,冷却后的冷却液经PTC加热体8到达冷水入口110流入,该制冷模式下PTC加热体8不工作。冷却液流入冷水输送单元11后,冷却液一分为三:第一路冷却液经第二冷水两通阀2-L从第三负载14的入口流入室内冷却器冷却车厢内空气,第二路冷却液经第三冷水两通阀3-L从第四负载15的入口流入室内加热器冷却车厢内空气,第三路冷却液经第四冷水两通阀4-L从第五负载17的入口流入电池包冷却电池,此时电池水温调节阀18通过调节旁通量控制电池包的进口水温。从室内冷却器、室内加热器和电池包流出的冷却液分别经第三负载14、第四负载15和第五负载17流回冷水输送单元11,再分别经过第八冷水两通阀8-L、第七冷水两通阀7-L和第六冷水两通阀6-L后汇合,从冷水出口112流出,回到冷水泵7的入口开始下一个循环。
二、第一制热模式:
如图3所示,该第一制热模式为:制冷剂单元与制冷模式对应的制冷剂单元保持一致,仅冷水输送单元11和热水输送单元13需要重新组织,例如调整冷水输送单元11中的冷水两通阀的通断状态、调整热水输送单元13中的热水两通阀的通断状态。
热水输送单元13中,经热水泵9送入冷凝器2内的一侧管路中的冷却液、吸收冷凝器2中的另一侧管路中的制冷剂的冷凝热,升温后的冷却液经热水入口130流入热水输送单元13。热水输送单元13内冷却液一分为二:一路冷却液经第二热水两通阀2-H从第三负载14的入口流入室内冷却器加热车厢内空气,另一路冷却液经第三热水两通阀3-H从第四负载15的入口流入室内加热器15加热车厢内空气。从室内冷却器、室内加热器流出的冷却液分别经第三负载14、第四负载15的出口流回热水输送单元13,再分别经过第八热水两通阀8-H、第七热水两通阀7-H后汇合,然后冷却液从热水出口132流出,最终回到热水泵9的入口开始下一个循环。
冷水输送单元11中,冷却液经冷水泵7送入蒸发器6内的一侧管路中,冷却液热量被蒸发器6内的另一侧管路中的制冷剂吸收后温度降低,冷却液经PTC加热体8到达冷水输送单元11的冷水入口110流入,该第一制热模式下PTC加热体8不工作。冷水输送单元11内的冷却液一分为二:一路冷却液依次经第一 冷水两通阀1-L和第九冷水两通阀9-L从第一负载12的入口流入散热水箱吸收环境热量,冷却液从第一负载12的出口流入冷水输送单元11,又从第二负载10的入口流出,冷却液到达驱动电机的入口吸收驱动电机的热量;另一路冷却液经第四冷水两通阀4-L从第五负载17的入口流入电池包,吸收电池包的热量。从驱动电机和电池包流出的冷却液分别经第二负载10、第五负载17的出口流回冷水输送单元11,再分别经过第五冷水两通阀5-L、第六冷水两通阀6-L后汇合,然后从冷水出口112流出,最终回到冷水泵7的入口开始下一个循环。
三、第二制热模式:
如图4所示,该第二制热模式为:制冷剂单元与第一制热模式对应的制冷剂单元保持一致,仅重新分配冷水输送单元11和热水输送单元13的负载数量,冷水输送单元11减少一路负载(比之图3,图4中的冷水输送单元11内的冷却液未流经第一负载12),热水输送单元13增加一路负载(比之图3,图4中的热水输送单元13内的冷却液额外流经第五负载17),冷水输送单元11和热水输送单元13需要重新组织。
热水输送单元13中,经热水泵9送入冷凝器2内的一侧管路的冷却液吸收冷凝器2内的另一侧管路的制冷剂的冷凝热,升温后的冷却液经热水入口130流入热水输送单元13。热水输送单元13内的冷却液一分为三:第一路冷却液经第二热水两通阀2-H从第三负载14的入口流入室内冷却器加热车厢内空气,第二路冷却液经第三热水两通阀3-H从第四负载15的入口流入室内加热器加热车厢内空气,第三路冷却液经第四热水两通阀4-H从第五负载17的入口流入电池包加热电池包。从室内冷却器、室内加热器和电池包流出的冷却液分别经第三负载14、第四负载15、第五负载17的出口流回热水输送单元13,再分别经过第八热水两通阀8-H、第七热水两通阀7-H、第六热水两通阀6-H后汇合,然后从热水出口132流出,回到热水泵9的入口开始下一个循环。
冷水输送单元11中,经冷水泵7送入蒸发器6内的一侧管路的冷却液的热量被蒸发器6内的另一侧管路的制冷剂吸收后温度降低,冷却液经PTC加热体8到达冷水输送单元11的冷水入口110流入,该第二制热模式下加PTC加热体8不工作。冷水输送单元11内的冷却液依次经第一冷水两通阀1-L和第十冷水两通阀10-L从第二负载10的入口流入驱动电机的入口吸收驱动电机的热量。从驱动电机流出的冷却液经第二负载10的出口流回冷水输送单元11,再经过第五冷水两通阀5-L从冷水出口112流出,然后回到冷水泵7的入口再开始下一个循环。
四、第三制热模式:
如图5所示,该第三制热模式为:制冷剂单元与第二制热模式对应的制冷剂单元保持一致,仅重新分配冷水输送单元11对应的负载数量。
冷水输送单元11中,经冷水泵7送入蒸发器6内的一侧管路的冷却液热量被蒸发器6内的另一侧管路的制冷剂吸收后温度降低,经PTC加热体8加热后冷却液温度上升,冷却液到达冷水输送单元11的冷水入口110流入。冷水输送单元11内的冷却液经第十一冷水两通阀11-L直接从冷水出口112流出,回到冷水泵7的入口开始下一个循环。
第三制热模式下热水输送单元13中冷却液的流通路径、与第二制热模式下热水输送单元13中冷却液的流通路径相近,此处不再赘述。
五、第四制热模式:
如图6所示,该第四制热模式为:利用驱动电机(第二负载10)产生的热量加热电池包,此时乘客舱无制冷或制热需求。此时制冷剂单元和热水输送单元13均处于非流通状态,仅冷水输送单元11工作。
冷水输送单元11中,经驱动电机加热的冷却液流出驱动电机,从第二负载10的出口回到冷水输送单元11。冷水输送单元11内的冷却液经第十二冷水两通阀12-L后从第五负载17的入口流入电池包加热电池包中的电池,此时电池水温调节阀18通过调节旁通量控制电池包的进口水温。流出电池包的冷却液从第五负载17出口回到冷水输送单元11,再依次经第六冷水两通阀6-L、第十一冷水两通阀11-L、第一冷水两通阀1-L、第十冷水两通阀10-L,从第二负载10的入口流回驱动电机,开始下一个循环。
六、制冷制热除雾模式:
如图7所示,该制冷制热除雾模式为:制冷剂单元与制冷模式对应的制冷剂单元保持一致,仅重新分配了冷水输送单元11和热水输送单元13的负载数量,冷水输送单元11减少一路负载(比之图2,图7中的冷水输送单元11内的冷却液未流经第四负载15),热水输送单元13增加一路负载(比之图2,图7中的热水输送单元13内的冷却液额外流经第四负载15),冷水输送单元11和热水输送单元13需要重新组织。
热水输送单元13中,冷却液被热水泵9送入冷凝器2内的一侧管路中吸收冷凝器2内的另一侧管路中制冷剂放出的冷凝热,升温后的冷却液从热水入口130流入。高温冷却液在热水输送单元13内一分为二:一路冷却液经第一热水两通阀1-H和第九热水两通阀9-H后流入散热水箱(第一负载12),利用散热 水箱(第一负载12)降温后的冷却液到达驱动电机(第二负载10)的入口,冷却驱动电机后流出;另一路冷却液经第三热水两通阀3-H从第四负载15的入口流入室内加热器加热车厢内空气。驱动电机和室内加热器流出的冷却液分别从热水输送单元13的第二负载10、第四负载15的出口流入热水输送单元13,再分别经第五热水两通阀5-H和第七热水两通阀7-H后汇合,从热水出口132流出,然后回到热水泵9的入口开始下一个循环。
冷水输送单元11中,经冷水泵7送入蒸发器6内的一侧管路中的冷却液被蒸发器6内的另一侧管路中的制冷剂冷却,经PTC加热体8到达冷水输送单元11的冷水入口110流入,该制冷制热除雾模式下PTC加热体8不工作。冷却液流入冷水输送单元11后,冷却液一分为二:一路冷却液经第二冷水两通阀2-L从第三负载14的入口流入室内冷却器冷却车厢内空气,另一路冷却液经第四冷水两通阀4-L从第五负载17的入口流入电池包冷却电池包中的电池,此时电池水温调节阀18通过调节旁通量控制电池包的进口水温。从室内冷却器和电池包流出的冷却液分别经第三负载14、第五负载17的出口流回冷水输送单元11,再分别经过第八冷水两通阀8-L、第六冷水两通阀6-L后汇合,然后从冷水出口112流出,最终回到冷水泵7的入口开始下一个循环。
七、散热水箱化霜模式:
如图8所示,该制冷制热除雾模式为:制冷剂单元与第一制热模式对应的制冷剂单元保持一致,仅重新分配了冷水输送单元11和热水输送单元13的负载数量,冷水输送单元11减少一路负载(比之图3,图8中的冷水输送单元11内的冷却液未流经第一负载12、第二负载10),热水输送单元13增加一路负载(比之图3,图8中的热水输送单元13内的冷却液额外流经第一负载12、第二负载10),热水输送单元13和冷水输送单元11需要重新组织。
热水输送单元13中,经热水泵9送入冷凝器2内的一侧管路中的冷却液吸收冷凝器2内的另一侧管路中的制冷剂的冷凝热,升温后的冷却液经热水入口130流入热水输送单元13。热水输送单元13内的冷却液一分为三:第一路冷却液经第二热水两通阀2-H从第三负载14的入口流入室内冷却器加热车厢内空气,第二路冷却液经第三热水两通阀3-H从第四负载15的入口流入室内加热器加热车厢内空气,第三路冷却液经第一热水两通阀1-H和第九热水两通阀9-H从第一负载12的入口流入散热水箱放热融化散热水箱的翅片上的霜层,此后冷却液经热水输送单元13达到驱动电机的入口。从室内冷却器、室内加热器和驱动电机流出的冷却液分别经第三负载14、第四负载15、第二负载10的出口流 回热水输送单元13,再分别经过第八热水两通阀8-H、第七热水两通阀7-H、第五热水两通阀5-H后汇合,从热水出口132流出,最终回到热水泵9的入口开始下一个循环。
冷水输送单元11中,经冷水泵7送入蒸发器6内的一侧管路中的冷却液的热量被蒸发器6内的另一侧管路中的制冷剂吸收后温度降低,冷却液经PTC加热体8到达冷水单元的冷水入口110流入,该散热水箱化霜模式下PTC加热体8不工作。冷水输送单元11内的冷却液经第四冷水两通阀4-L从第五负载17的入口流入电池包,吸收电池包中的电池的热量。从电池包流出的冷却液经第五负载17的出口流回冷水单元,再经过第六冷水两通阀6-L后从冷水出口112流出,回到冷水泵7的入口开始下一个循环。
对于所属领域的普通技术人员来说,能够进行多种变化、重新调整和替代而不会脱离本申请的保护范围。

Claims (10)

  1. 一种间接式热泵系统,包括:
    制冷剂单元,所述制冷剂单元包括压缩机(1)、冷凝器(2)、节流阀(5)和蒸发器(6),所述压缩机(1)的出口连通于所述冷凝器(2)的第一进口,所述冷凝器(2)的第一出口通过所述节流阀(5)连通于所述蒸发器(6)的第一进口,所述蒸发器(6)的第一出口连通于所述压缩机(1)的进口;
    冷水输送单元(11),所述冷水输送单元(11)的冷水入口(110)连通于所述蒸发器(6)的第二出口,所述冷水输送单元(11)的冷水出口(112)连通于所述蒸发器(6)的第二进口,所述冷水输送单元(11)与多个负载并联,所述冷水输送单元(11)的管路中设有多个冷水两通阀,多个所述冷水两通阀用于控制多个所述负载中冷水的通断;
    热水输送单元(13),所述热水输送单元(13)的热水入口(130)连通于所述冷凝器(2)的第二出口,所述热水输送单元(13)的热水出口(132)连通于所述冷凝器(2)的第二进口,所述热水输送单元(13)与多个所述负载并联,所述热水输送单元(13)的管路中设有多个热水两通阀,多个所述热水两通阀用于控制多个所述负载中热水的通断;
    所述热水两通阀与所述冷水两通阀一一对应设置且通断状态互锁。
  2. 根据权利要求1所述的间接式热泵系统,其中,所述冷水输送单元(11)包括与所述冷水入口(110)连通的多个流入冷水支路和与所述冷水出口(112)连通的多个流出冷水支路,所述多个流入冷水支路和所述多个流出冷水支路连通于所述多个负载,所述多个流入冷水支路和所述多个流出冷水支路用于向所述多个负载通入冷水。
  3. 根据权利要求2所述的间接式热泵系统,其中,所述多个流入冷水支路包括第一冷水支路(1101)、第二冷水支路(1102)、第三冷水支路(1103)、第四冷水支路(1104)和第五冷水支路(1105),所述第一冷水支路(1101)的两端分别连通于所述冷水入口(110)和第一负载(12)的入口;所述第二冷水支路(1102)的一端连通于所述第一冷水支路(1101),所述第二冷水支路(1102)的另一端连通于所述第一负载(12)的出口和第二负载(10)的入口;所述第三冷水支路(1103)的两端分别连通于所述冷水入口(110)和第三负载(14)的入口;所述第四冷水支路(1104)的两端分别连通于所述冷水入口(110)和第四负载(15)的入口;所述第五冷水支路(1105)的两端分别连通于所述冷水入口(110)和第五负载(17)的入口;
    所述多个流出冷水支路包括第六冷水支路(1106)、第七冷水支路(1107)、第八冷水支路(1108)和第九冷水支路(1109),所述第六冷水支路(1106)的两端分别连 通于所述冷水出口(112)和所述第二负载(10)的出口;所述第七冷水支路(1107)的两端分别连通于所述冷水出口(112)和所述第五负载(17)的出口;所述第八冷水支路(1108)的两端分别连通于所述冷水出口(112)和所述第四负载(15)的出口;所述第九冷水支路(1109)的两端分别连通于所述冷水出口(112)和所述第三负载(14)的出口。
  4. 根据权利要求3所述的间接式热泵系统,其中,所述第一冷水支路(1101)上设有第一冷水两通阀(1-L)和第九冷水两通阀(9-L),所述第一冷水支路(1101)与所述第二冷水支路(1102)的连接处位于所述第一冷水两通阀(1-L)和所述第九冷水两通阀(9-L)之间;所述第二冷水支路(1102)上设有第十冷水两通阀(10-L);所述第三冷水支路(1103)上设有第二冷水两通阀(2-L);所述第四冷水支路(1104)上设有第三冷水两通阀(3-L);所述第五冷水支路(1105)上设有第四冷水两通阀(4-L);所述第六冷水支路(1106)上设有第五冷水两通阀(5-L);所述第七冷水支路(1107)上设有第六冷水两通阀(6-L);所述第八冷水支路(1108)上设有第七冷水两通阀(7-L);所述第九冷水支路(1109)上设有第八冷水两通阀(8-L);所述第五冷水支路(1105)和所述第六冷水支路(1106)通过第十冷水支路(1110)连通,且所述第十冷水支路(1110)上设有第十二冷水两通阀(12-L);所述第一冷水支路(1101)和所述第九冷水支路(1109)通过第十一冷水支路(1111)连通,且所述第十一冷水支路(1111)上设有第十一冷水两通阀(11-L)。
  5. 根据权利要求1所述的间接式热泵系统,还包括PTC加热体(8),所述PTC加热体(8)设置于所述冷水入口(110)和所述蒸发器(6)的第二出口之间,所述PTC加热体(8)用于加热冷水。
  6. 根据权利要求1所述的间接式热泵系统,还包括冷水泵(7),所述冷水泵(7)设置于所述冷水出口(112)和所述蒸发器(6)的第二进口之间,所述冷水泵(7)用于输送冷水。
  7. 根据权利要求1所述的间接式热泵系统,其中,所述热水输送单元(13)包括与所述热水入口(130)连通的多个流入热水支路和与所述热水出口(132)连通的多个流出热水支路,所述多个流入热水支路和所述多个流出热水支路连通于所述多个负载,所述多个流入热水支路和所述多个流出热水支路用于向所述多个负载通入热水。
  8. 根据权利要求7所述的间接式热泵系统,其中,所述多个流入热水支路包括第一热水支路(1301)、第二热水支路(1302)、第三热水支路(1303)、第四热水支路(1304)和第五热水支路(1305),所述第一热水支路(1301)的两端分别连通于 所述热水入口(130)和第一负载(12)的入口;所述第二热水支路(1302)的一端连通于所述第一热水支路(1301),所述第二热水支路(1302)的另一端连通于所述第一负载(12)的出口和第二负载(10)的入口;所述第三热水支路(1303)的两端分别连通于所述热水入口(130)和第三负载(14)的入口;所述第四热水支路(1304)的两端分别连通于所述热水入口(130)和第四负载(15)的入口;所述第五热水支路(1305)的两端分别连通于所述热水入口(130)和第五负载(17)的入口;
    所述多个流出热水支路包括第六热水支路(1306)、第七热水支路(1307)、第八热水支路(1308)和第九热水支路(1309),所述第六热水支路(1306)的两端分别连通于所述热水出口(132)和所述第二负载(10)的出口;所述第七热水支路(1307)的两端分别连通于所述热水出口(132)和所述第五负载(17)的出口;所述第八热水支路(1308)的两端分别连通于所述热水出口(132)和所述第四负载(15)的出口;所述第九热水支路(1309)的两端分别连通于所述热水出口(132)和所述第三负载(14)的出口。
  9. 根据权利要求8所述的间接式热泵系统,其中,所述第一热水支路(1301)上设有第一热水两通阀(1-H)和第九热水两通阀(9-H),所述第一热水支路(1301)与所述第二热水支路(1302)的连接处位于所述第一热水两通阀(1-H)和所述第九热水两通阀(9-H)之间;所述第二热水支路(1302)上设有第十热水两通阀(10-H);所述第三热水支路(1303)上设有第二热水两通阀(2-H);所述第四热水支路(1304)上设有第三热水两通阀(3-H);所述第五热水支路(1305)上设有第四热水两通阀(4-H);所述第六热水支路(1306)上设有第五热水两通阀(5-H);所述第七热水支路(1307)上设有第六热水两通阀(6-H);所述第八热水支路(1308)上设有第七热水两通阀(7-H);所述第九热水支路(1309)上设有第八热水两通阀(8-H);所述第五热水支路(1305)和所述第六热水支路(1306)通过第十热水支路(1310)连通,且所述第十热水支路(1310)上设有第十二热水两通阀(12-H);所述第一热水支路(1301)和所述第九热水支路(1309)通过第十一热水支路(1311)连通,且所述第十一热水支路(1311)上设有第十一热水两通阀(11-H)。
  10. 根据权利要求1所述的间接式热泵系统,还包括热水泵(9),所述热水泵(9)设置于所述热水出口(132)和所述冷凝器(2)的第二进口之间,所述热水泵(9)用于输送热水。
PCT/CN2021/123810 2020-12-18 2021-10-14 间接式热泵系统 WO2022127328A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/257,008 US11987096B2 (en) 2020-12-18 2021-10-14 Indirect heat pump system
DE112021004594.6T DE112021004594T5 (de) 2020-12-18 2021-10-14 Indirektes Wärmepumpensystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011507091.XA CN112622563B (zh) 2020-12-18 2020-12-18 一种间接式热泵系统
CN202011507091.X 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022127328A1 true WO2022127328A1 (zh) 2022-06-23

Family

ID=75317317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123810 WO2022127328A1 (zh) 2020-12-18 2021-10-14 间接式热泵系统

Country Status (4)

Country Link
US (1) US11987096B2 (zh)
CN (1) CN112622563B (zh)
DE (1) DE112021004594T5 (zh)
WO (1) WO2022127328A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463119B2 (ja) * 2020-01-31 2024-04-08 三菱重工サーマルシステムズ株式会社 車両用空調装置
CN112622563B (zh) 2020-12-18 2022-05-27 艾泰斯热系统研发(上海)有限公司 一种间接式热泵系统
CN113883747B (zh) 2021-10-12 2023-03-28 艾泰斯热系统研发(上海)有限公司 冷媒换热装置及间接式热泵系统
WO2025019641A1 (en) * 2023-07-18 2025-01-23 Daimler Truck North America Llc Thermal management component, system, and method of operating the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159123A (ja) * 1986-12-22 1988-07-02 Toyo Radiator Kk 空調装置
CN2393048Y (zh) * 1999-11-09 2000-08-23 吴键 双壳管式冷温水空调机
US6751972B1 (en) * 2002-11-18 2004-06-22 Curtis A. Jungwirth Apparatus for simultaneous heating cooling and humidity removal
CN105757836A (zh) * 2016-03-28 2016-07-13 上海交通大学 基于除湿换热器的再生除湿热泵系统及其运行方法
CN207230983U (zh) * 2017-07-21 2018-04-13 青岛海尔空调电子有限公司 一种具有水垢清除功能的冷水机组
CN110006120A (zh) * 2019-04-11 2019-07-12 上海达人建设工程有限公司 办公建筑中循环式采暖制冷系统
CN111251832A (zh) * 2020-03-12 2020-06-09 奇瑞汽车股份有限公司 电动汽车热泵空调系统
CN111746218A (zh) * 2019-03-27 2020-10-09 长城汽车股份有限公司 电动汽车热管理系统
CN112622563A (zh) * 2020-12-18 2021-04-09 艾泰斯热系统研发(上海)有限公司 一种间接式热泵系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752899B2 (ja) * 1993-12-27 1998-05-18 サンデン株式会社 車両用空気調和装置
US6324860B1 (en) * 1997-10-24 2001-12-04 Ebara Corporation Dehumidifying air-conditioning system
FR2948990A1 (fr) * 2009-08-04 2011-02-11 Mobile Comfort Holding Dispositif thermodynamique multi-energie modulaire
JP5627713B2 (ja) * 2011-01-31 2014-11-19 三菱電機株式会社 空気調和装置
CN103129346B (zh) * 2011-11-29 2016-03-30 杭州三花研究院有限公司 一种电动汽车热管理系统
EP2808621B1 (en) * 2012-01-23 2020-02-26 Mitsubishi Electric Corporation Air-conditioning device
US10401038B2 (en) * 2015-03-19 2019-09-03 Mitsubishi Electric Corporation Heat pump system
WO2018146800A1 (ja) * 2017-02-10 2018-08-16 三菱電機株式会社 冷凍サイクル装置
US11313595B2 (en) * 2017-07-27 2022-04-26 Mitsubishi Electric Corporation Air-conditioning system and method of sealing heat medium
DE112018004425T5 (de) * 2017-10-06 2020-05-20 Dana Canada Corporation Aktives Aufheizsystem und Aufheizverfahren
CN108944332B (zh) * 2018-04-17 2021-04-30 上海理工大学 二次回路空调热泵系统
US11416013B2 (en) * 2019-08-26 2022-08-16 Conry Tech Holdings Pty. Ltd. Micro chiller-based heating, ventilation and air conditioning system
CN110497768A (zh) * 2019-08-26 2019-11-26 上海理工大学 集成三电热管理的新能源汽车热泵空调系统
CN110525168B (zh) * 2019-09-05 2022-11-01 上海理工大学 新能源汽车二次回路乘员舱及电池电机电控热管理系统
CN115989385A (zh) * 2021-03-05 2023-04-18 蔡恩诚 易按多用冷热机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159123A (ja) * 1986-12-22 1988-07-02 Toyo Radiator Kk 空調装置
CN2393048Y (zh) * 1999-11-09 2000-08-23 吴键 双壳管式冷温水空调机
US6751972B1 (en) * 2002-11-18 2004-06-22 Curtis A. Jungwirth Apparatus for simultaneous heating cooling and humidity removal
CN105757836A (zh) * 2016-03-28 2016-07-13 上海交通大学 基于除湿换热器的再生除湿热泵系统及其运行方法
CN207230983U (zh) * 2017-07-21 2018-04-13 青岛海尔空调电子有限公司 一种具有水垢清除功能的冷水机组
CN111746218A (zh) * 2019-03-27 2020-10-09 长城汽车股份有限公司 电动汽车热管理系统
CN110006120A (zh) * 2019-04-11 2019-07-12 上海达人建设工程有限公司 办公建筑中循环式采暖制冷系统
CN111251832A (zh) * 2020-03-12 2020-06-09 奇瑞汽车股份有限公司 电动汽车热泵空调系统
CN112622563A (zh) * 2020-12-18 2021-04-09 艾泰斯热系统研发(上海)有限公司 一种间接式热泵系统

Also Published As

Publication number Publication date
DE112021004594T5 (de) 2023-06-29
US11987096B2 (en) 2024-05-21
US20240042828A1 (en) 2024-02-08
CN112622563B (zh) 2022-05-27
CN112622563A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022127328A1 (zh) 间接式热泵系统
CN114056052B (zh) 一种电动汽车热管理回路、控制方法及纯电车辆
CN108790681B (zh) 一种用于电动汽车的水循环式热管理及空调系统
CN118046742A (zh) 车辆热管理系统及车辆
CN107351627B (zh) 汽车热管理系统和电动汽车
CN111251813B (zh) 车辆的热管理系统及车辆
CN113370748B (zh) 热管理系统和电动汽车
CN215153791U (zh) 热管理系统和电动汽车
CN113173050A (zh) 热管理系统
CN209641784U (zh) 一种电动汽车高效一体化主动热管理系统
CN113173049B (zh) 热管理系统
CN112297757B (zh) 一种冷却液集中循环的电动汽车热管理系统及其使用方法
CN207977431U (zh) 一种用于车辆的电池的温度控制系统
CN113415121A (zh) 热管理系统及其控制方法和电动汽车
CN116512864B (zh) 混合动力车辆热量管理系统和混合动力车辆
CN114388924A (zh) 电动车热管理系统及电动车
CN115891624B (zh) 热管理系统和具有其的车辆
CN215971011U (zh) 电动车能量流热管理系统
CN111845244B (zh) 热综合管理系统
CN111016582B (zh) 一种电动汽车热泵系统及电动汽车
CN115891578B (zh) 热管理系统和具有其的车辆
CN116061679B (zh) 车辆热管理系统和车辆
CN215892830U (zh) 一种间接式热泵系统
CN219277179U (zh) 一种集成电池热管理的车辆空调
CN222027075U (zh) 一种热泵空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18257008

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21905257

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21905257

Country of ref document: EP

Kind code of ref document: A1