[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022124580A1 - Microwave expanded bead, bead foam composite, and method for manufacturing same - Google Patents

Microwave expanded bead, bead foam composite, and method for manufacturing same Download PDF

Info

Publication number
WO2022124580A1
WO2022124580A1 PCT/KR2021/015765 KR2021015765W WO2022124580A1 WO 2022124580 A1 WO2022124580 A1 WO 2022124580A1 KR 2021015765 W KR2021015765 W KR 2021015765W WO 2022124580 A1 WO2022124580 A1 WO 2022124580A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
beads
microwave
conductive filler
foam composite
Prior art date
Application number
PCT/KR2021/015765
Other languages
French (fr)
Korean (ko)
Inventor
박현규
이동규
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Publication of WO2022124580A1 publication Critical patent/WO2022124580A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Definitions

  • the present invention relates to microwave expandable beads, a bead foam composite, and a method for manufacturing the same. More specifically, the present invention relates to microwave foamable beads moldable by microwaves, a bead foam composite, and a method for manufacturing the same.
  • Bead foam (BEAD FOAM) is used in various fields, and materials and manufacturing methods are also very diverse.
  • bead foam is formed by mixing a foaming agent, a flame retardant, etc. with a resin composition to form a bead, and then melt-bonding the beads through a steam chest molding (SCM) process.
  • SCM steam chest molding
  • SCM Steam Chest Molding
  • this SCM process has a limitation in the selection of plastics mainly applied to the steam temperature of 200 degrees or less.
  • plastics mainly applied to the steam temperature of 200 degrees or less.
  • general-purpose resins such as expanded polystyrene
  • composites can be molded into various shapes at a steam temperature of 180°C or less (required pressure 10 bar) in the SCM process, but engineering plastics have a steam temperature of 250°C ( Required pressure 40 Bar), super engineering plastics can be molded when the steam temperature is 330°C (required pressure 130 Bar).
  • MW bead adhesion using microwaves
  • Another object of the present invention is to provide a bead foam composite having excellent physical properties and a method for manufacturing the same.
  • One aspect of the present invention relates to microwave expandable beads.
  • the microwave foam bead is 100 parts by weight of the main material; and 20 to 60 parts by weight of a conductive filler; Microwave foaming beads comprising a, wherein the conductive filler is needle-shaped or fibrous, and is dispersed in the main material.
  • the main material may be any one or more of polyamide, polyphenylene sulfide, polyether ether ketone, polyether ketone ketone, polyaryl ether ketone, polyethylene terephthalate and polycarbonate.
  • the conductive filler may have a ratio of length to diameter of 1:100 to 1:290.
  • the conductive filler may be needle-shaped carbon fibers or carbon nanotubes.
  • Another aspect of the present invention relates to a bead foam composite.
  • the bead foam composite is formed from the beads according to any one of embodiments 1 to 4 above.
  • a bond between the beads may be formed by irradiating the beads with microwaves.
  • the bead foam composite may have an average thickness of 20 to 50 mm.
  • Another aspect of the present invention relates to a method for manufacturing a bead foam composite.
  • the bead foam composite manufacturing method comprises the steps of (a) injecting the beads of any one of the above 1 to 4 embodiments into a mold; and (b) bonding between beads by irradiating microwaves to the outside of the mold.
  • the frequency of the microwave may be 2.45 GHz to 300 GHz.
  • the present invention provides a microwave foamable bead mainly made of engineering plastic or super engineering plastic, which is difficult to form bead form.
  • Microwave foaming beads can bond engineering plastics without using high-temperature and high-pressure steam in the steam room molding process, including conductive fillers, and the amount of microwave foam can be adjusted to thermally bond only with microwave irradiation to form a bead foam composite. have.
  • the present invention provides a method for manufacturing a bead foam composite material capable of molding difficult-to-form engineering plastics through a process of irradiating microwaves as it is in a mold.
  • FIG. 1 is a process flow chart of a bead foam manufacturing method according to one embodiment of the present invention.
  • Figure 2 is a photograph of the bead foam composite according to Example 3 of the present invention.
  • Example 3 is a photograph of the bead foam composite according to Example 2 of the present invention.
  • the main material is a reference resin for manufacturing the bead foam composite, and is a high heat-resistant plastic such as engineering plastic or super engineering plastic having a melting point of 200° C. or higher.
  • SCM Steam chest molding
  • the main material contains a conductive filler and has foaming properties upon microwave irradiation
  • the high heat-resistance plastic may also be suitably used.
  • the main material is, polyamide (hereinafter 'PA'), polyphenylene sulfide (hereinafter 'PPS'), polyetheretherketone (hereinafter 'PEEK'), polyether ketone Any one of ketone (Polyetherketoneketone; hereinafter 'PEKK'), polyaryletherketone (hereinafter 'PAEK'), polyethylene terephthalate (hereinafter 'PET') and polycarbonate (Ppolycarbonate; hereinafter 'PC') More than that.
  • the conductive filler is dispersed in the continuous phase main material, and forms at least one contact point with the neighboring conductive filler. Accordingly, the conductive filler forms a conductive network between beads to generate thermal bonding on the bead surface when exposed to microwaves.
  • the conductive filler may preferably have an electrical conductivity of 5.2 to 20 S/cm.
  • the conductive filler is needle-shaped or fibrous. Due to this morphological specificity, heat can be uniformly transmitted to the inside through the conductive network connection, and even thick molded products can transmit microwaves to the inside of the product.
  • the conductive filler is in the form of granules, a conductive network is not formed, so that no other inter-bead bonding is generated by microwave irradiation.
  • the ratio of the length to the diameter of the conductive filler may be 1: 100 to 1: 290.
  • the conductive filler may form a conductive network.
  • the conductive filler may have a specific gravity of 1.2 to 1.6, for example, 1.5 to 1.6. In the above range, it is possible to effectively form a lightweight bead foam composite.
  • the conductive filler is a carbon fiber or a carbon nano tube.
  • the conductive filler may be graphene or graphite as carbon nanoparticles having a high aspect ratio.
  • the conductive filler is included in an amount of 20 to 60 parts by weight based on 100 parts by weight of the main material.
  • melting does not occur on the surface of the bead by microwave irradiation, so it is difficult to form a composite material by bonding the beads.
  • the conductive filler is included in an amount of 20 to 40 parts by weight based on 100 parts by weight of the main material.
  • the strength of the final composite material increases within the above range, has an electromagnetic wave shielding effect, and exhibits heat conduction and heat dissipation effects, so that it can be used as a heat shielding material in high-temperature electronic devices.
  • Microwave foaming beads may be prepared by extruding a mixed composition by adding additives as needed to the main material and conductive filler.
  • the microwave foamable beads are heated by microwave irradiation to enable foam molding.
  • the bead foam composite is a product in which bonding between beads is formed by irradiating microwaves to the microwave foamable beads.
  • the conductive filler not only imparts conductivity to the inside of the bead form, but also forms a conductive network between beads to uniformly transmit microwaves to the inside of the product, so that the melt adhesion deviation by product thickness / location can be reduced.
  • the bead foam composite may have an average thickness of 20 to 50 mm.
  • the bead foam composite reduces the amount of expensive engineering plastic used, reduces manufacturing cost by using a low-cost conductive filler, and improves physical properties by adding a conductive filler exhibiting high strength.
  • the bead foam composite exhibits an electromagnetic wave shielding effect while increasing strength, and may exhibit heat conduction and heat dissipation performance.
  • the bead foam composite has high strength and exhibits heat conduction and heat dissipation performance, so it can be used as a heat shield in a high temperature environment.
  • FIG. 1 is a process flow chart of a bead foam manufacturing method according to one embodiment of the present invention.
  • the microwave foaming beads are injected into the mold (S100).
  • additives may be added to the mold together.
  • the additive includes a lubricant, a heat-resisting agent, and a polar monomer, and is not limited thereto unless it is contrary to the purpose of the present invention.
  • the lubricant facilitates the separation of the surface of the final composite from the mold, and the heat resistant agent increases the stability of the polymer resin in the bead form molding process by microwave irradiation.
  • the bonding performance can be increased by increasing crosslinking.
  • the lubricant is stearic acid, wax, oil or sodium-based (Na-based) lubricant
  • the processing heat-resistant agent is barium-cadmium-based, and phenol-based, phosphorus-based, sulfur-based, or amine-based heat-resistant agent.
  • the additive may be added in an amount of 3 to 5 parts by weight based on 100 parts by weight of the main material.
  • the material is not limited.
  • the mold is predetermined according to the shape of the composite material.
  • the mold is irradiated with microwaves to bond the beads to each other (S200).
  • the frequency of the microwave may be 2.45 GHz to 300 GHz.
  • a bond between beads is formed through a conductive network connection between beads, and it is possible to transmit microwaves by penetrating into the inside of a thick composite material, thereby reducing melt adhesion deviation according to product thickness or location. If it is less than the above range, it is difficult to transmit sufficient microwaves into the mold, and if it exceeds the above range, unnecessary energy other than bonding between beads is consumed, resulting in a decrease in composite manufacturing efficiency.
  • the microwave may be irradiated for 2 to 10 minutes. When it is less than the above range, bonding between beads does not occur, and when it exceeds 10 minutes, unnecessary energy is consumed in addition to bonding, and there is a fear that the physical properties of the target composite material are changed.
  • PA DOMO
  • PEKK Arkema
  • PPS Sigma-Aldrich
  • wax lubricants and sulfur-based (Pentaerythrityl tetrakis (3-laurylthiopropionate)) processing heat-resistant agents were selected as additives.
  • microwave foamable beads were prepared.
  • a bead foam composite was prepared by filling the mold with the foamed beads prepared above, and applying a current to the electrode of the microwave irradiation device to generate an electric field to emit a frequency of 2.45 GHz.
  • the bead foam composite material was separated from the mold to confirm the presence or absence of bonding.
  • Example 1 Example 2 Reference Example 1 Example 3 Reference Example 2 residence PA PA PPS PPS PEKK Conductive filler addition amount (parts by weight) 0 20 0 20 0 Filler type CF CF CF CF CF with or without bonding partial joint join X join X Time required to join (t) 13 minutes 6 minutes X 12 minutes X CF : Carbon Fiber, CB : Carbon Black, GF : Glass Fiber
  • Table 1 shows the presence or absence of bonding between beads and the time required for bonding according to the standard resin, the amount and type of the conductive filler added.
  • Figure 2 is a photograph of the bead foam composite according to Example 3 of the present invention.
  • the left is a picture of the junction (PPS/CF), and the right is a cross-sectional picture of the junction.
  • Example 3 is a photograph of the bead foam composite according to Example 2 of the present invention.
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 residence pp pp pp PA PA PA PPS PPS PPS PEKK Filler addition amount (parts by weight) 0 20 20 0 20 40 0 20 20 40 Filler type - GF/CB CF - GF/CB CF - GF CF GF/CB with or without bonding ⁇ ⁇ partial joint partial joint partial joint join ⁇ ⁇ join ⁇ Time required to join (t) ⁇ ⁇ 8 minutes 13 minutes 10 minutes 3 minutes ⁇ ⁇ 12 minutes ⁇ CF : Carbon Fiber, CB : Carbon Black, GF : Glass Fiber
  • Comparative Examples 1 to 3 in the case of polypropylene (PP), which is not an engineering plastic, when even a part of the conductive filler is added, a bonding is partially formed, but a complete bonding is not formed.
  • PP polypropylene
  • the present invention prepares a wave-foaming bead by adding a conductive filler to engineering plastic, which is difficult to be molded by the conventional SCM process, and is a very efficient process in which a bond between beads is formed through microwave irradiation in a mold. Beads with high heat resistance and high strength Foam composites can be prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The microwave expanded bead according to the present invention comprises 100 parts by weight of a main material and 20-60 parts by weight of a conductive filler, wherein the conductive filler is acicular or fibrous and is dispersed in the main material.

Description

마이크로 웨이브 발포성 비드, 비드폼 복합재 및 이의 제조방법Microwave foaming beads, bead foam composites, and manufacturing method thereof
본 발명은 마이크로 웨이브 발포성 비드, 비드폼 복합재 및 이의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 마이크로 웨이브로 성형 가능한 마이크로 웨이브 발포성 비드, 비드폼 복합재 및 이의 제조방법에 관한 것이다. The present invention relates to microwave expandable beads, a bead foam composite, and a method for manufacturing the same. More specifically, the present invention relates to microwave foamable beads moldable by microwaves, a bead foam composite, and a method for manufacturing the same.
비드 폼(BEAD FOAM)은 다양한 분야에서 사용되고 있으며, 소재와 제조방법 또한 매우 다양하다. 비드 폼(BEAD FOAM)은 일반적으로 수지 조성물에 발포제, 난연제 등을 혼합하여, 비드 형태로 제조한 후, Steam Chest Molding(SCM) 공정을 통해 비드간 용융접합 시켜 성형되고 있다. Bead foam (BEAD FOAM) is used in various fields, and materials and manufacturing methods are also very diverse. In general, bead foam is formed by mixing a foaming agent, a flame retardant, etc. with a resin composition to form a bead, and then melt-bonding the beads through a steam chest molding (SCM) process.
Steam Chest Molding(이하, SCM) 공정은 몰드 내에 비드를 충전한 후 고온의 스팀을 주입하여 각 비드의 표면을 융착시켜 접착하는 공정이다. 그러나, 이러한 SCM 공정은 스팀온도가 통상 200 도 이하로 주재로 적용되는 플라스틱 선택에 한계가 있으며, 주재로 고내열성 플라스틱을 사용하는 경우 스팀의 압력을 매우 증가시켜야 한다. 예를 들면, 팽창 폴리스티렌 수지(Expanded Polystyrene)와 같은 범용 수지의 경우 SCM 공정에서 스팀온도 180℃ 이하 (필요압력 10 bar)에서 다양한 형태로 복합재의 성형이 가능하나, 엔지니어링 플라스틱은 스팀온도 250℃ (필요 압력 40 Bar), 슈퍼엔지니어링 플라스틱은 스팀온도 330℃ (필요 압력 130 Bar) 수준이 되어야 성형이 가능하다. Steam Chest Molding (hereinafter, SCM) process is a process of filling beads in a mold and then injecting high-temperature steam to fuse and bond the surfaces of each bead. However, this SCM process has a limitation in the selection of plastics mainly applied to the steam temperature of 200 degrees or less. For example, in the case of general-purpose resins such as expanded polystyrene, composites can be molded into various shapes at a steam temperature of 180°C or less (required pressure 10 bar) in the SCM process, but engineering plastics have a steam temperature of 250°C ( Required pressure 40 Bar), super engineering plastics can be molded when the steam temperature is 330℃ (required pressure 130 Bar).
이와 같이 스팀 압력을 높이기 위해서는 부대설비 투자가 증가할 수밖에 없으며, 취급 및 설비 위험성이 있는 문제점이 있다.As such, in order to increase the steam pressure, there is a problem in that the investment in auxiliary equipment is inevitably increased, and there is a risk of handling and equipment.
SCM 공정의 문제점을 해소하기 위해, 마이크로 웨이브(이하 MW)를 활용한 비드 접착이 개발되었다. 그러나, MW 공정의 경우 진동열 전달을 위해 극성기를 별도로 도입하여야 하는 단점이 있으며, 극성기가 도입되지 않은 일반 플라스틱의 경우 용융에 필요한 온도까지 장시간이 소요되는 문제가 있다. 또한, 두께가 두꺼운 제품의 성형시 MW가 제품 내부까지 침투하지 못하여 외부와 내부 용융접착의 편차가 발생하는 문제가 있다. To solve the problems of the SCM process, bead adhesion using microwaves (hereinafter referred to as MW) was developed. However, in the case of the MW process, there is a disadvantage that a polar group must be separately introduced for vibrational heat transfer, and in the case of a general plastic to which a polar group is not introduced, it takes a long time to reach the temperature required for melting. In addition, when forming thick products, there is a problem in that MW does not penetrate to the inside of the product, so that there is a problem of deviation between the external and internal melt adhesion.
따라서, 엔지니어링 플라스틱과 같은 고내열 플라스틱이 주재인 경우, 고압 스팀을 사용하거나 별도의 극성기를 도입하지 않고도, 제조공정이 용이하고 생산단가를 대폭 낮출 수 있는 비드폼을 포함하는 복합재 및 이의 제조방법의 개발이 시급하다. Therefore, when high heat-resistant plastics such as engineering plastics are the main material, without using high-pressure steam or introducing a separate polar group, the manufacturing process is easy and the production cost is greatly reduced development is urgent.
이에 대한 배경기술로 대한민국 공개특허공보 제10-2016-0065595호가 있다.As a background technology for this, there is Korean Patent Application Laid-Open No. 10-2016-0065595.
본 발명의 목적은 엔지니어링 플라스틱과 같은 고내열 플라스틱을 주재로 사용하더라도 고압 스팀을 사용하거나 별도의 극성기를 도입하지 않아서 제조공정이 용이하고 생산단가를 대폭 낮출 수 있는 마이크로 웨이브 발포성 비드를 제공하기 위한 것이다. It is an object of the present invention to provide a microwave foamable bead, which is easy to manufacture and can significantly reduce production cost by not using high-pressure steam or introducing a separate polar group, even if high-heat-resistant plastic such as engineering plastic is used as the main material. .
본 발명의 다른 목적은 물성이 우수한 비드폼 복합재 및 그 제조방법을 제공하기 위한 것이다. Another object of the present invention is to provide a bead foam composite having excellent physical properties and a method for manufacturing the same.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can all be achieved by the present invention described below.
1. 본 발명의 하나의 관점은 마이크로 웨이브 발포성 비드에 관한 것이다. 1. One aspect of the present invention relates to microwave expandable beads.
상기 마이크로 웨이브 발포성 비드는 주재 100 중량부; 및 전도성 필러 20 내지 60 중량부; 를 포함하는 마이크로 웨이브 발포성 비드이며, 상기 전도성 필러는 침상형 또는 섬유형이고, 상기 주재에 분산되어 있다.The microwave foam bead is 100 parts by weight of the main material; and 20 to 60 parts by weight of a conductive filler; Microwave foaming beads comprising a, wherein the conductive filler is needle-shaped or fibrous, and is dispersed in the main material.
2. 상기 1구체예에서, 상기 주재는 폴리아미드, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케토네케톤, 폴리아릴에테르케톤, 폴리에틸렌테레프탈레이트 및 폴리카보네이트 중 어느 1종 이상일 수 있다. 2. In the first embodiment, the main material may be any one or more of polyamide, polyphenylene sulfide, polyether ether ketone, polyether ketone ketone, polyaryl ether ketone, polyethylene terephthalate and polycarbonate.
3. 상기 1 또는 2 구체예에서, 상기 전도성 필러는 직경에 대한 길이의 비가 1: 100 내지 1: 290일 수 있다. 3. In embodiment 1 or 2, the conductive filler may have a ratio of length to diameter of 1:100 to 1:290.
4. 상기 1 내지 3 중 어느 하나의 구체예에서, 상기 전도성 필러는 침상형 카본 파이버 또는 카본 나노튜브일 수 있다. 4. In any one of 1 to 3 above, the conductive filler may be needle-shaped carbon fibers or carbon nanotubes.
5. 본 발명의 다른 관점은 비드폼 복합재에 관한 것이다. 5. Another aspect of the present invention relates to a bead foam composite.
상기 비드폼 복합재는 상기 1 내지 4 구체예 중 어느 하나의 구체예에 따른 비드로부터 형성된다.The bead foam composite is formed from the beads according to any one of embodiments 1 to 4 above.
6. 상기 5 구체예에서, 상기 비드폼 복합재는 복합재는 비드에 마이크로 웨이브를 조사하여 비드간 접합이 형성될 수 있다. 6. In the above 5 embodiments, in the bead foam composite, a bond between the beads may be formed by irradiating the beads with microwaves.
7. 상기 5 또는 6 구체에에서, 상기 비드폼 복합재는 평균 두께가 20 내지 50 mm일 수 있다. 7. In the above 5 or 6 embodiments, the bead foam composite may have an average thickness of 20 to 50 mm.
8. 본 발명의 또 다른 관점은 비드폼 복합재 제조방법에 관한 것이다. 8. Another aspect of the present invention relates to a method for manufacturing a bead foam composite.
상기 비드폼 복합재 제조방법은 (a) 상기 1 내지 4 구체예 중 어느 한 항의 비드를 몰드에 주입하는 단계; 및 (b) 상기 몰드 외부에 마이크로 웨이브를 조사하여 비드간 접합시키는 단계;를 포함한다. The bead foam composite manufacturing method comprises the steps of (a) injecting the beads of any one of the above 1 to 4 embodiments into a mold; and (b) bonding between beads by irradiating microwaves to the outside of the mold.
9. 상기 8구체예에서, 상기 마이크로 웨이브의 주파수는 2.45GHz 내지 300 GHz일 수 있다. 9. In the eighth embodiment, the frequency of the microwave may be 2.45 GHz to 300 GHz.
10. 상기 8 또는 9구체예에서, 상기 마이크로 웨이브는 2 내지 10분동안 조사될 수 있다. 10. The above 8 or 9 embodiments, wherein the microwave may be irradiated for 2 to 10 minutes.
본 발명은 비드폼 성형이 어려운 엔지니어링 플라스틱 또는 슈퍼엔지니어링 플라스틱을 주재로 하는 마이크로 웨이브 발포성 비드를 제공한다. The present invention provides a microwave foamable bead mainly made of engineering plastic or super engineering plastic, which is difficult to form bead form.
마이크로 웨이브 발포성 비드는 전도성 필러를 포함하여 증기실 조형 공정의 고온 및 고압의 스팀을 사용하지 않고도 엔지니어링 플라스틱을 접합할 수 있으며, 첨가량이 조절되어 마이크로 웨이브 조사 만으로 열적 접합되어 비드폼 복합재를 성형할 수 있다. Microwave foaming beads can bond engineering plastics without using high-temperature and high-pressure steam in the steam room molding process, including conductive fillers, and the amount of microwave foam can be adjusted to thermally bond only with microwave irradiation to form a bead foam composite. have.
본 발명은 몰드에서 그대로 마이크로 웨이브를 조사하는 공정을 통하여 성형이 어려운 엔지니어링 플라스틱 성형할 수 있는 비드폼 복합재 제조방법을 제공한다. The present invention provides a method for manufacturing a bead foam composite material capable of molding difficult-to-form engineering plastics through a process of irradiating microwaves as it is in a mold.
도 1은 본 발명의 하나의 구체예에 따른 비드폼 제조방법의 공정순서도이다. 1 is a process flow chart of a bead foam manufacturing method according to one embodiment of the present invention.
도 2는 본 발명의 실시예 3에 따른 비드폼 복합재의 사진이다.Figure 2 is a photograph of the bead foam composite according to Example 3 of the present invention.
도 3은 본 발명의 실시예 2에 따른 비드폼 복합재의 사진이다.3 is a photograph of the bead foam composite according to Example 2 of the present invention.
이하, 첨부된 도면을 참조하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 도면은 본 발명에 대한 이해를 돕기 위해 제공되는 것일 뿐, 본 발명이 하기 도면에 의해 한정되는 것은 아니다. 또한, 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. However, the following drawings are provided only to help the understanding of the present invention, and the present invention is not limited by the drawings. In addition, since the shape, size, ratio, angle, number, etc. disclosed in the drawings are exemplary, the present invention is not limited to the illustrated matters.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. Like reference numerals refer to like elements throughout. In addition, in describing the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.When 'including', 'having', 'consisting', etc. mentioned in this specification are used, other parts may be added unless 'only' is used. When a component is expressed in the singular, cases including the plural are included unless otherwise explicitly stated.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.In the present specification, "a to b" representing a numerical range is defined as "≥a and ≤b".
주재 residence
상기 주재는 비드폼 복합재를 제조하기 위한 기준 수지로서, 융점이 200℃ 이상의 엔지니어링 플라스틱이나 슈퍼엔지니어링 플리스틱과 같은 고내열성 플라스틱이다. The main material is a reference resin for manufacturing the bead foam composite, and is a high heat-resistant plastic such as engineering plastic or super engineering plastic having a melting point of 200° C. or higher.
Steam Chest Molding(이하, SCM)은 통상 스팀온도가 200 ℃ 이하로 운전되나, 상기 고내열성 플라스틱의 경우 400℃에서 300bar의 고압스팀이 요구되어 SCM을 통한 비드폼 성형이 제한된다.Steam chest molding (hereinafter, SCM) usually operates at a steam temperature of 200 ° C or less, but in the case of the high heat-resistant plastic, high-pressure steam of 300 bar at 400 ° C is required, so bead form molding through SCM is limited.
상기 주재는 전도성 필러가 포함되어 마이크로 웨이브 조사에 발포성이 있으므로 상기 고내열성 플라스틱도 적합하게 사용될 수 있다. Since the main material contains a conductive filler and has foaming properties upon microwave irradiation, the high heat-resistance plastic may also be suitably used.
구체예에서, 상기 주재는, 폴리아미드(Polyamide; 이하 'PA'), 폴리페닐렌설파이드(Polyphenylene sulfide; 이하 'PPS'), 폴리에테르에테르케톤(Polyetheretherketone; 이하 'PEEK'), 폴리에테르케토네케톤(Polyetherketoneketone; 이하 'PEKK'), 폴리아릴에테르케톤(Polyaryletherketone; 이하 'PAEK'), 폴리에틸렌테레프탈레이트(Polyethylene terephthalate; 이하 'PET') 및 폴리카보네이트(Ppolycarbonate; 이하 'PC') 중 어느 1종 이상이다. In an embodiment, the main material is, polyamide (hereinafter 'PA'), polyphenylene sulfide (hereinafter 'PPS'), polyetheretherketone (hereinafter 'PEEK'), polyether ketone Any one of ketone (Polyetherketoneketone; hereinafter 'PEKK'), polyaryletherketone (hereinafter 'PAEK'), polyethylene terephthalate (hereinafter 'PET') and polycarbonate (Ppolycarbonate; hereinafter 'PC') More than that.
전도성 필러conductive filler
상기 전도성 필러는 연속상인 주재에 분산되어 있으며, 이웃하는 전도성 필러와 최소한 1 이상의 접촉점을 형성한다. 이에 따라 상기 전도성 필러는 비드간 전도성 네트워크를 형성하여, 마이크로 웨이브에 노출되는 경우 비드 표면에서 열적 접합을 발생시킨다. The conductive filler is dispersed in the continuous phase main material, and forms at least one contact point with the neighboring conductive filler. Accordingly, the conductive filler forms a conductive network between beads to generate thermal bonding on the bead surface when exposed to microwaves.
구체예에서, 상기 전도성 필러는 전기 전도율이 5.2 내지 20 S/cm 인 것이 바람직하게 적용될 수 있다. In an embodiment, the conductive filler may preferably have an electrical conductivity of 5.2 to 20 S/cm.
상기 전도성 필러는 침상형 또는 섬유형이다. 이와 같은 형태적 특이성으로 인해 전도성 네트워크 연결을 통해 열을 내부까지 균일하게 전달할 수 있으며, 두꺼운 성형품이라도 제품 내부까지 마이크로 웨이브를 전달할 수 있다. 상기 전도성 필러가 입자형(Granule)인 경우에는 전도성 네트워크가 형성되지 않아서 마이크로 웨이브 조사에 다른 비드간 접합이 생성되지 않는다.The conductive filler is needle-shaped or fibrous. Due to this morphological specificity, heat can be uniformly transmitted to the inside through the conductive network connection, and even thick molded products can transmit microwaves to the inside of the product. When the conductive filler is in the form of granules, a conductive network is not formed, so that no other inter-bead bonding is generated by microwave irradiation.
구체예에서 상기 전도성 필러는 직경에 대한 길이의 비가 1: 100 내지 1: 290일 수 있다. In an embodiment, the ratio of the length to the diameter of the conductive filler may be 1: 100 to 1: 290.
상기 범위 내에서 전도성 필러는 전도성 네트워크를 형성할 수 있다. Within the above range, the conductive filler may form a conductive network.
구체예에서, 상기 전도성 필러는 비중이 1.2 내지 1.6, 예를 들면, 1.5 내지 1.6 일 수 있다. 상기 범위에서 경량형 비드폼 복합재를 효과적으로 형성할 수 있다.In an embodiment, the conductive filler may have a specific gravity of 1.2 to 1.6, for example, 1.5 to 1.6. In the above range, it is possible to effectively form a lightweight bead foam composite.
구체예에서, 상기 전도성 필러는 카본 파이버(Carbon Fiber) 또는 카본 나노튜브(Carbon Nano Tube)이다. In an embodiment, the conductive filler is a carbon fiber or a carbon nano tube.
상기 종류의 전도성 필러를 사용하는 경우 비드폼 복합재의 경량성을 유지할 수 있으며, 금속섬유는 경량성을 유지하기 힘들고, 고분자섬유는 전도성이 낮아서 목표로 하는 전도성 네트워크를 형성하기 어렵다.When the above type of conductive filler is used, it is possible to maintain the lightness of the bead foam composite, metal fibers are difficult to maintain lightness, and polymer fibers have low conductivity, so it is difficult to form a target conductive network.
구체예에서, 상기 전도성 필러는 높은 종횡비를 가지는 탄소나노입자로 그래핀, 또는 흑연도 가능하다. In an embodiment, the conductive filler may be graphene or graphite as carbon nanoparticles having a high aspect ratio.
상기 전도성 필러는 주재 100 중량부에 대해 20 내지 60 중량부로 포함된다. 전도성 필러가 상기 범위를 벗어날 경우에는 마이크로 웨이브 조사에 의해 비드 표면에서 용융이 발생되지 않아서, 비드를 접합하여 복합재를 형성하기 어렵다. The conductive filler is included in an amount of 20 to 60 parts by weight based on 100 parts by weight of the main material. When the conductive filler is out of the above range, melting does not occur on the surface of the bead by microwave irradiation, so it is difficult to form a composite material by bonding the beads.
구체적으로 상기 전도성 필러는 주재 100 중량부에 대해 20 내지 40 중량부로 포함된다. 상기 범위 내에서 최종 복합재의 강도가 증가하며, 전자파 차폐 효과가 있고, 또한 열전도 및 방열 효과를 나타내어, 고온의 전자기기 등에서 열차폐재로 활용이 가능하다.Specifically, the conductive filler is included in an amount of 20 to 40 parts by weight based on 100 parts by weight of the main material. The strength of the final composite material increases within the above range, has an electromagnetic wave shielding effect, and exhibits heat conduction and heat dissipation effects, so that it can be used as a heat shielding material in high-temperature electronic devices.
마이크로 웨이브 발포성 비드Microwave Effervescent Beads
마이크로 웨이브 발포성 비드는 주재 및 전도성 필러에 필요에 따라 첨가제를 부가하여 혼합된 조성물을 압출하여 제조될 수 있다. Microwave foaming beads may be prepared by extruding a mixed composition by adding additives as needed to the main material and conductive filler.
상기 마이크로 웨이브 발포성 비드는 마이크로 웨이브 조사에 의해 가열되어 발포 성형이 가능하다. The microwave foamable beads are heated by microwave irradiation to enable foam molding.
비드폼 복합재 Bead Foam Composite
상기 비드폼 복합재는 상기 마이크로 웨이브 발포성 비드에 마이크로 웨이브를 조사하여 비드간 접합이 형성된 제품이다. The bead foam composite is a product in which bonding between beads is formed by irradiating microwaves to the microwave foamable beads.
상기 비드폼 복합재는 전도성 필러가 비드폼 내부에 전도성을 부여할 뿐만 아니라, 비드간 전도성 네트워크를 형성하여 제품 내부까지 마이크로 웨이브를 균일하게 전달할 수 있어 제품 두께/위치별 용융접착 편차가 감소될 수 있다. In the bead form composite, the conductive filler not only imparts conductivity to the inside of the bead form, but also forms a conductive network between beads to uniformly transmit microwaves to the inside of the product, so that the melt adhesion deviation by product thickness / location can be reduced. .
따라서, 성형품 두께가 두꺼워도 제품 균일성을 유지할 수 있다. 구체예에서는 상기 비드폼 복합재는 평균 두께가 20 내지 50 mm일 수 있다.Therefore, even if the thickness of the molded product is thick, product uniformity can be maintained. In an embodiment, the bead foam composite may have an average thickness of 20 to 50 mm.
상기 비드폼 복합재는 고가의 엔지니어링 플라스틱의 사용량을 저감하고, 저가의 전도성 필러를 사용하여 제조 비용이 감소되며, 고강도를 나타내는 전도성 필러가 첨가되어 물성이 향상된다.The bead foam composite reduces the amount of expensive engineering plastic used, reduces manufacturing cost by using a low-cost conductive filler, and improves physical properties by adding a conductive filler exhibiting high strength.
상기 비드폼 복합재는 강도가 증가되면서 동시에 전자파 차폐 효능을 나타내며, 열전도 및 방열 성능을 나타낼 수 있다. The bead foam composite exhibits an electromagnetic wave shielding effect while increasing strength, and may exhibit heat conduction and heat dissipation performance.
상기 비드폼 복합재는 고강도이며 열전도 및 방열 성능을 나타내어 고온의 환경에서 열차폐재로 활용이 가능하다.The bead foam composite has high strength and exhibits heat conduction and heat dissipation performance, so it can be used as a heat shield in a high temperature environment.
비드폼 복합재 제조Bead Foam Composite Manufacturing
도 1은 본 발명의 하나의 구체예에 따른 비드폼 제조방법의 공정순서도이다. 우선 상기 마이크로 웨이브 발포성 비드를 몰드에 주입한다(S100). 1 is a process flow chart of a bead foam manufacturing method according to one embodiment of the present invention. First, the microwave foaming beads are injected into the mold (S100).
이때 상기 몰드에 첨가제를 함께 첨가할 수 있다.At this time, additives may be added to the mold together.
상기 첨가제는 활제, 가공내열제, 극성단량체를 포함하며, 본 발명의 목적에 반하지 않는 한 이에 제한되는 것은 아니다. The additive includes a lubricant, a heat-resisting agent, and a polar monomer, and is not limited thereto unless it is contrary to the purpose of the present invention.
상기 활제는 최종 복합재의 표면을 몰드에서 용이하게 분리하게 하며, 가공 내열제는 마이크로 웨이브 조사에 의한 비드폼 성형과정에서 고분자 수지의 안정성을 증가시킨다. The lubricant facilitates the separation of the surface of the final composite from the mold, and the heat resistant agent increases the stability of the polymer resin in the bead form molding process by microwave irradiation.
상기 극성단량체가 첨가되는 경우에는 가교결합을 증가시켜 접합성능을 증가시킬 수 있으므로 바람직하다. When the polar monomer is added, it is preferable because the bonding performance can be increased by increasing crosslinking.
구체예에서 상기 활제는 스테아릭산, 왁스, 오일 또는 나트륨계(Na 계) 활제이고, 상기 가공내열제는 바륨-카드늄계, 및 페놀계, 인계, 황계, 또는 아민계 내열제이다. In an embodiment, the lubricant is stearic acid, wax, oil or sodium-based (Na-based) lubricant, and the processing heat-resistant agent is barium-cadmium-based, and phenol-based, phosphorus-based, sulfur-based, or amine-based heat-resistant agent.
상기 첨가제는 주재 100 중량부에 대해 3 내지 5 중량부로 첨가될 수 있다.The additive may be added in an amount of 3 to 5 parts by weight based on 100 parts by weight of the main material.
상기 몰드는 마이크로 웨이브가 투과될 수 있는 것이면, 재질은 제한되지 않는다. As long as the mold can transmit microwaves, the material is not limited.
상기 몰드는 복합재의 형상에 따라 미리 결정된다. The mold is predetermined according to the shape of the composite material.
상기 몰드에 마이크로 웨이브를 조사하여 비드간 접합시킨다(S200). The mold is irradiated with microwaves to bond the beads to each other (S200).
상기 마이크로 웨이브의 주파수는 2.45GHz 내지 300 GHz일 수 있다. The frequency of the microwave may be 2.45 GHz to 300 GHz.
상기 범위에서 비드간 전도성 네트워크 연결을 통하여 비드간 접합이 형성되고, 두꺼운 복합재 내부까지 침투하여 마이크로 웨이브를 전달할 수 있어서 제품 두께나 위치에 따른 용융 접착 편차를 감소시킬 수 있다. 상기 범위 미만에서는 몰드 내로 충분한 마이크로 웨이브를 전달하기 어려우며, 상기 범위를 초과하는 경우 비드 간 접합 이외 불필요한 에너지가 소모되어 복합재 제조 효율이 감소되는 문제가 발생한다. In the above range, a bond between beads is formed through a conductive network connection between beads, and it is possible to transmit microwaves by penetrating into the inside of a thick composite material, thereby reducing melt adhesion deviation according to product thickness or location. If it is less than the above range, it is difficult to transmit sufficient microwaves into the mold, and if it exceeds the above range, unnecessary energy other than bonding between beads is consumed, resulting in a decrease in composite manufacturing efficiency.
상기 마이크로 웨이브는 2 분 내지 10분 동안 조사될 수 있다. 상기 범위 미만인 경우에는 비드간 접합이 발생되지 않으며, 10분을 초과하는 경우에는 접합 이외에 불필요한 에너지가 소모되며, 목표로 하는 복합재의 물성이 변경될 우려가 있다. The microwave may be irradiated for 2 to 10 minutes. When it is less than the above range, bonding between beads does not occur, and when it exceeds 10 minutes, unnecessary energy is consumed in addition to bonding, and there is a fear that the physical properties of the target composite material are changed.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are only illustrative of the present invention and the scope of the present invention is not limited to the following examples.
실시예 1 내지 5. 비드폼 복합재Examples 1 to 5. Bead foam composites
주재로 PA (DOMO사), PEKK (Arkema 사), PPS(Sigma-Aldrich 사)를 선택하고, 첨가제로 왁스 활제 및 황계(Pentaerythrityl tetrakis(3-laurylthiopropionate)) 가공내열제를 선택하였다. PA (DOMO), PEKK (Arkema), and PPS (Sigma-Aldrich) were selected as the main materials, and wax lubricants and sulfur-based (Pentaerythrityl tetrakis (3-laurylthiopropionate)) processing heat-resistant agents were selected as additives.
주재 100 중량부, 첨가제 5 중량부 및 전도성 필러가 하기 표 1의 종류 및 함량으로 이축압출기를 사용하여 컴파운딩 후 마이크로 웨이브 발포성 비드를 제작하였다. After compounding 100 parts by weight of the main material, 5 parts by weight of the additive, and the conductive filler using a twin-screw extruder with the types and contents shown in Table 1 below, microwave foamable beads were prepared.
몰드에 상기에서 제작된 발포성 비드를 충전하고, 마이크로 웨이브 조사 장치의 전극에 전류를 인가하여 2.45GHz의 주파수가 방출되도록 전기장을 발생시켜 비드폼 복합재를 제조하였다. A bead foam composite was prepared by filling the mold with the foamed beads prepared above, and applying a current to the electrode of the microwave irradiation device to generate an electric field to emit a frequency of 2.45 GHz.
비드폼 복합재를 몰드로부터 분리하여 접합유무를 확인하였다. The bead foam composite material was separated from the mold to confirm the presence or absence of bonding.
실험예 1.Experimental Example 1. 비드간 접합 생성 확인Confirm the creation of bead-to-bead junctions
실시예 1Example 1 실시예 2Example 2 참조예 1Reference Example 1 실시예3Example 3 참조예 2Reference Example 2
주재residence PAPA PAPA PPSPPS PPSPPS PEKKPEKK
전도성 필러 첨가량(중량부)Conductive filler addition amount (parts by weight) 00 2020 00 2020 00
필러 종류Filler type CFCF CFCF CFCF CFCF CFCF
접합 유무with or without bonding 부분접합partial joint 접합join XX 접합join XX
접합까지 소요 시간(t)Time required to join (t) 13 분13 minutes 6분6 minutes XX 12 분12 minutes XX
CF : Carbon Fiber, CB : Carbon Black, GF : Glass FiberCF : Carbon Fiber, CB : Carbon Black, GF : Glass Fiber
상기 표 1은 기준 수지, 전도성 필러 첨가량 및 종류에 따른 비드간 접합 유무 및 접합까지 소요시간을 나타낸 것이다. Table 1 shows the presence or absence of bonding between beads and the time required for bonding according to the standard resin, the amount and type of the conductive filler added.
도 2는 본 발명의 실시예 3에 따른 비드폼 복합재의 사진이다.Figure 2 is a photograph of the bead foam composite according to Example 3 of the present invention.
왼쪽은 접합부위(PPS/CF)의 사진이고, 오른쪽은 접합부위의 단면사진이다. The left is a picture of the junction (PPS/CF), and the right is a cross-sectional picture of the junction.
상기 표 1 및 도 2를 참조하면, 전도성 필러를 첨가하지 않는 경우 마이크로 웨이브 조사에 의해 비드간 접합이 형성되기 어렵고, 부분접합이라도 접합까지 소요시간이 증가되어 마이크로 웨이브 조사에 의한 접합으로 비드폼 복합재를 형성하기에 효율성이 매우 떨어지는 것을 확인하였다. Referring to Table 1 and FIG. 2, when a conductive filler is not added, it is difficult to form a bond between beads by microwave irradiation, and even for partial joining, the time required for joining is increased. It was confirmed that the efficiency to form is very low.
도 3은 본 발명의 실시예 2에 따른 비드폼 복합재의 사진이다.3 is a photograph of the bead foam composite according to Example 2 of the present invention.
전도성 필러를 첨가하는 경우에는 비드간 완전 접합이 일어났으며, 접합까지 소요되는 시간이 현저하게 단축되는 것을 확인하여 마이크로 웨이브 조사에 의한 비드폼 복합재 제조가 매우 효율적임을 확인하였다. When a conductive filler was added, it was confirmed that complete bonding between beads occurred, and the time required for bonding was significantly shortened, confirming that the bead foam composite production by microwave irradiation was very efficient.
특히 고내열성 엔지니어링 플라스틱인 PA, PPS의 경우에도 전도성 필러를 첨가하는 경우 효과적으로 비드간 접합으로 비드폼 복합재를 형성할 수 있는 것을 확인하였다. In particular, it was confirmed that even in the case of high heat-resistant engineering plastics such as PA and PPS, when a conductive filler is added, a bead foam composite can be effectively formed by bonding between beads.
비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6 비교예 7Comparative Example 7 비교예 8Comparative Example 8 비교예 9Comparative Example 9 비교예 10Comparative Example 10
주재residence PPpp PPpp PPpp PAPA PAPA PAPA PPSPPS PPSPPS PPSPPS PEKKPEKK
필러 첨가량(중량부)Filler addition amount (parts by weight) 00 2020 2020 00 2020 4040 00 2020 2020 4040
필러 종류Filler type -- GF/CBGF/CB CFCF -- GF/CBGF/CB CFCF -- GFGF CFCF GF/CBGF/CB
접합 유무with or without bonding ×× ×× 부분접합partial joint 부분접합partial joint 부분접합partial joint 접합join ×× ×× 접합join ××
접합까지 소요 시간(t)Time required to join (t) ×× ×× 8분8 minutes 13분13 minutes 10분10 minutes 3분3 minutes ×× ×× 12분12 minutes ××
CF : Carbon Fiber, CB : Carbon Black, GF : Glass FiberCF : Carbon Fiber, CB : Carbon Black, GF : Glass Fiber
마이크로 웨이브 조사후 접합 유무를 육안으로 확인하고 접합까지 소요시간을 측정하였다.After microwave irradiation, the presence or absence of bonding was visually checked and the time required for bonding was measured.
비교예 1 내지 3에서, 엔지니어링 플라스틱이 아닌 폴리프로필렌(PP)의 경우 전도성 필러가 일부라도 첨가되는 경우 부분적으로 접합이 형성되나, 완전접합이 형성되지 않았다. In Comparative Examples 1 to 3, in the case of polypropylene (PP), which is not an engineering plastic, when even a part of the conductive filler is added, a bonding is partially formed, but a complete bonding is not formed.
비교예 4 내지 6에서, PA의 경우 전도성 필러가 첨가되지 않거나, 침상형이 아닌 경우에는 열적 접합이 형성되지 않는 것을 확인하였으며, 침상형 또는 섬유형 전도성 필러가 일부라도 포함되는 경우(비교예 5) 비드간 접합이 형성되는 것을 확인하였다. In Comparative Examples 4 to 6, in the case of PA, it was confirmed that no conductive filler was added or thermal bonding was not formed when the conductive filler was not needle-shaped, and when at least some of the needle-type or fibrous conductive filler was included (Comparative Example 5 ) It was confirmed that a junction between beads was formed.
또한 첨가량이 증가되는 경우 접합 형성시간이 감소되는 것을 확인하였다. In addition, it was confirmed that the bonding formation time decreased when the addition amount was increased.
비교예 7 내지 9에서 PPS주재는 전도성 필러가 침상형 또는 섬유형이 아닌 경우 마이크로 웨이브 조사에 따른 접합이 형성되지 않는 것을 확인하였고, 비교예 10에서 필러의 첨가량을 증가시키는 경우에도 침상형 전도성 필러가 아닌 경우 접합이 형성되지 않는 것을 확인하였다. In Comparative Examples 7 to 9, it was confirmed that the PPS material did not form a bond due to microwave irradiation when the conductive filler was not needle-shaped or fibrous, and even when the amount of filler was increased in Comparative Example 10, needle-shaped conductive filler If not, it was confirmed that the junction was not formed.
따라서 본 발명은 종래 SCM공정으로 성형이 어려운 엔지니어링 플라스틱에 전도성 필러를 첨가하여 웨이브 발포성 비드를 준비하고, 이를 몰드 내에서 마이크로 웨이브 조사를 통한 비드간 접합이 형성되는 매우 효율적인 공정으로 내열성 고강도를 가지는 비드폼 복합재를 제조할 수 있다. Therefore, the present invention prepares a wave-foaming bead by adding a conductive filler to engineering plastic, which is difficult to be molded by the conventional SCM process, and is a very efficient process in which a bond between beads is formed through microwave irradiation in a mold. Beads with high heat resistance and high strength Foam composites can be prepared.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Up to now, the present invention has been mainly examined in the examples. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in modified forms without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (10)

  1. 주재 100 중량부; 및 전도성 필러 20 내지 60 중량부; 100 parts by weight of main material; and 20 to 60 parts by weight of a conductive filler;
    를 포함하는 마이크로 웨이브 발포성 비드이며,It is a microwave foaming bead comprising,
    상기 전도성 필러는 침상형 또는 섬유형이고, 상기 주재에 분산되어 있는 것을 특징으로 하는 마이크로 웨이브 발포성 비드. The conductive filler is needle-shaped or fibrous, and is dispersed in the main material.
  2. 제1항에 있어서, 상기 주재는 폴리아미드, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케토네케톤, 폴리아릴에테르케톤, 폴리에틸렌테레프탈레이트 및 폴리카보네이트 중 1종 이상을 포함하는 마이크로 웨이브 발포성 비드. The microwave foamable bead of claim 1, wherein the main material comprises at least one of polyamide, polyphenylene sulfide, polyether ether ketone, polyether ketone ketone, polyaryl ether ketone, polyethylene terephthalate, and polycarbonate. .
  3. 제1항에 있어서, 상기 전도성 필러는 직경에 대한 길이의 비가 1: 100 내지 1: 290인 마이크로 웨이브 발포성 비드. The microwave foamable bead of claim 1, wherein the conductive filler has a length to diameter ratio of 1: 100 to 1: 290.
  4. 제1항에 있어서, 상기 전도성 필러는 카본 파이버 또는 카본 나노튜브인 것을 특징으로 하는 마이크로 웨이브 발포성 비드. The microwave expandable bead according to claim 1, wherein the conductive filler is carbon fiber or carbon nanotube.
  5. 제1항 내지 제4항 중 어느 한 항의 비드로부터 형성된 비드폼 복합재.A bead foam composite formed from the beads of any one of claims 1 to 4.
  6. 제5항에 있어서, 상기 비드폼 복합재는 비드에 마이크로 웨이브를 조사하여 비드간 접합이 형성된 비드폼 복합재.The bead foam composite of claim 5, wherein the bead foam composite is formed by irradiating microwaves to the beads to form a bond between the beads.
  7. 제5항에 있어서, 상기 비드폼 복합재는 평균 두께가 20 내지 50 mm인 것을 특징으로 하는 비드폼 복합재. [Claim 6] The composite bead foam according to claim 5, wherein the bead foam composite has an average thickness of 20 to 50 mm.
  8. (a) 제1항 내지 제4항 중 어느 한 항의 비드를 몰드에 주입하는 단계; 및(a) injecting the beads of any one of claims 1 to 4 into a mold; and
    (b) 상기 몰드에 마이크로 웨이브를 조사하여 비드간 접합시키는 단계;(b) bonding between beads by irradiating microwaves to the mold;
    를 포함하는 비드폼 복합재 제조방법. A method for manufacturing a bead foam composite comprising a.
  9. 제8항에 있어서, 상기 마이크로 웨이브의 주파수는 2.45GHz내지 300 GHz 인 것을 특징으로 하는 비드폼 복합재 제조방법. The method of claim 8, wherein the frequency of the microwave is 2.45 GHz to 300 GHz.
  10. 제8항에 있어서, 상기 마이크로 웨이브는 2 내지 10분동안 조사되는 것을 특징으로 하는 비드폼 복합재 제조방법. The method of claim 8, wherein the microwave is irradiated for 2 to 10 minutes.
PCT/KR2021/015765 2020-12-09 2021-11-03 Microwave expanded bead, bead foam composite, and method for manufacturing same WO2022124580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0171528 2020-12-09
KR1020200171528A KR102562964B1 (en) 2020-12-09 2020-12-09 Expandable bead by microwave radiation, composite of bead foam therefrom and preparing method using the same

Publications (1)

Publication Number Publication Date
WO2022124580A1 true WO2022124580A1 (en) 2022-06-16

Family

ID=81973704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015765 WO2022124580A1 (en) 2020-12-09 2021-11-03 Microwave expanded bead, bead foam composite, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102562964B1 (en)
WO (1) WO2022124580A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024021853A (en) * 2022-08-04 2024-02-16 株式会社ジェイエスピー Polyamide-based resin foam particle and polyamide-based resin foam particle molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930004367A (en) * 1991-08-06 1993-03-22 이와 요시다 Process for producing foam having a continuous-bubble structure of crosslinked polyolefin
JPH07148851A (en) * 1993-11-30 1995-06-13 F Tatsukuru:Kk Production f foamed phenol frp molded product by microwave heating
JPH1058475A (en) * 1996-08-21 1998-03-03 Tosoh Corp In-mold molding method for thermoplastic resin foamed particles
KR20170129204A (en) * 2015-03-13 2017-11-24 바스프 에스이 Electroconductive particle foams based on thermoplastic elastomers
KR20200025595A (en) * 2018-08-31 2020-03-10 한국신발피혁연구원 Microwave heat moldable polymer composition and molding method of foam composition using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108187B2 (en) * 2018-12-27 2022-07-28 株式会社ジェイエスピー Foamed beads and foamed beads

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930004367A (en) * 1991-08-06 1993-03-22 이와 요시다 Process for producing foam having a continuous-bubble structure of crosslinked polyolefin
JPH07148851A (en) * 1993-11-30 1995-06-13 F Tatsukuru:Kk Production f foamed phenol frp molded product by microwave heating
JPH1058475A (en) * 1996-08-21 1998-03-03 Tosoh Corp In-mold molding method for thermoplastic resin foamed particles
KR20170129204A (en) * 2015-03-13 2017-11-24 바스프 에스이 Electroconductive particle foams based on thermoplastic elastomers
KR20200025595A (en) * 2018-08-31 2020-03-10 한국신발피혁연구원 Microwave heat moldable polymer composition and molding method of foam composition using the same

Also Published As

Publication number Publication date
KR102562964B1 (en) 2023-08-03
KR20220081721A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
CN103382301B (en) polyphenyl ether alloy material and preparation method thereof
WO2013066003A1 (en) Wholly aromatic liquid crystal polyester resin compound and product having antistatic properties
WO2012060662A2 (en) Insulating composition and electric cable comprising same
WO2022124580A1 (en) Microwave expanded bead, bead foam composite, and method for manufacturing same
CN101775213A (en) High thermal conducting composite material and preparation method thereof
WO2012115344A1 (en) Electrically conductive polymer/filler composite, and method for preparing same
CN101134846A (en) Antistatic reinforced polyphenylene sulfide composite material and method for making same
CN101831110A (en) Polypropylene composite material capable of being welded at high frequency and preparation method thereof
CN102876041B (en) Fibre cloth reinforced modified polyarylene sulfide sulfone composite material and preparation method thereof
CN110511429A (en) A kind of conductive additive and application, conducing composite material and its preparation method and application
WO2022102904A1 (en) Electromagnetic interference-shielding composite resin composition and high-voltage shielded wire comprising same
CN114716769A (en) Polypropylene insulated cable material and preparation method and application thereof
WO2020145500A1 (en) Thermoplastic resin composition having excellent heat resistance and electromagnetic wave shielding ability, method for manufacturing same and injection-molded article manufactured therefrom
KR20210061420A (en) Flame-retardant HIPS material and its manufacturing method
CN113321898A (en) High-temperature-resistant general polyether-ether-ketone heat-shrinkable sleeve and preparation method thereof
CN116120747A (en) Heat conduction ultralow linear expansion coefficient PPS composite material for plastic cavity filter and preparation method thereof
WO2018124482A2 (en) Resin composition and molded article produced therefrom
CN107498891A (en) A kind of polyether-ether-ketone electromagnetic shielding composite material based on sandwich structure and preparation method thereof
CN109251507B (en) Alloy antistatic material for wafer tray and preparation method thereof
CN113667245A (en) Flexible high-temperature-resistant sealing material and preparation method thereof
CN114456588B (en) High-strength high-heat-conductivity electromagnetic shielding nylon composite material and preparation method thereof
WO2023249281A1 (en) Polymer composite material for electromagnetic wave shielding and preparation method therefor
WO2024136152A1 (en) Method for compounding super engineering plastic resin, and super engineering plastic produced thereby
CN104725811A (en) Modified PC/PET alloy and preparation method thereof
CN109233242B (en) Polyphenyl ether resin composite material and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903627

Country of ref document: EP

Kind code of ref document: A1