WO2022121512A1 - 充电控制方法及装置、电子设备 - Google Patents
充电控制方法及装置、电子设备 Download PDFInfo
- Publication number
- WO2022121512A1 WO2022121512A1 PCT/CN2021/124700 CN2021124700W WO2022121512A1 WO 2022121512 A1 WO2022121512 A1 WO 2022121512A1 CN 2021124700 W CN2021124700 W CN 2021124700W WO 2022121512 A1 WO2022121512 A1 WO 2022121512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power management
- current
- charging
- chips
- management chips
- Prior art date
Links
- 238000007600 charging Methods 0.000 title claims abstract description 290
- 238000000034 method Methods 0.000 title claims abstract description 73
- 238000012937 correction Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 8
- 230000033228 biological regulation Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010277 constant-current charging Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000010280 constant potential charging Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000003571 electronic cigarette Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00309—Overheat or overtemperature protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
- H02J7/007194—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to the technical field of electronic equipment, and in particular, to a charging control method and device, and electronic equipment.
- the large charging speed is accompanied by an excessively rapid temperature rise.
- the charging speed will be limited for safety reasons. As a result, the charging speed cannot be further increased.
- the purpose of the present disclosure is to provide a charging control method and device, and an electronic device, so as to solve one or more problems caused by the defects of the related art at least to a certain extent.
- the present disclosure provides a charging control method applied to an electronic device;
- the electronic device includes a battery and a plurality of power management chips, and the plurality of power management chips jointly receive a total input current from a power supply device , and jointly output the total charging current to charge the battery;
- the method includes:
- the work efficiency is the ratio of the output power of the power management chips to the input power entering the power management chips
- the total current to be distributed is distributed according to the current distribution ratio, so as to determine the configuration current allocated to each of the power management chips; wherein, the total current to be distributed is the total input current, the total charging current At least one of them, the configuration current corresponds to at least one of an input current and a charging current;
- the plurality of power management chips are controlled to work according to their allocated configuration currents.
- a charging control apparatus which is applied to an electronic device;
- the electronic device includes a battery and a plurality of power management chips, and the plurality of power management chips jointly receive a total input current from an adapter, and jointly output a total input current.
- the charging current charges the battery;
- the charging control device includes:
- a work efficiency obtaining unit configured to obtain the respective work efficiencies of the plurality of power management chips, wherein the work efficiency is the ratio of the output power of the power management chip to the input power entering the power management chip;
- a current distribution ratio determination unit configured to determine the current distribution ratio of the multiple power management chips according to the respective work efficiencies of the multiple power management chips
- a configuration current unit configured to distribute the total current to be distributed according to the current distribution ratio, so as to determine the configuration current allocated to each of the power management chips; wherein the total current to be distributed is the total input current .
- At least one of the total charging current, and the configuration current corresponds to at least one of an input current and a charging current;
- the control unit is configured to control the plurality of power management chips to work according to their allocated configuration currents.
- an electronic device comprising:
- a storage unit storing a charging control program
- the processing unit is configured to execute the steps of the charging control method when the charging control program is executed.
- a computer storage medium where a charging control program is stored in the computer storage medium, and the charging control program is executed by at least one processor to implement the steps of the charging control method, or to implement the Steps of a charging control method.
- FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
- FIG. 2 is a block diagram of a circuit structure of an electronic device according to an embodiment of the present disclosure.
- FIG. 3 is a flowchart of a charging control method according to an embodiment of the present disclosure.
- FIG. 4 is a flowchart of a charging control method according to another embodiment of the present disclosure.
- FIG. 5 is a flowchart of step S211 in FIG. 4 according to an embodiment.
- FIG. 6 is a flowchart of step S22 in FIG. 3 according to an embodiment.
- FIG. 7 is a flowchart of step S222 in FIG. 6 according to an embodiment.
- FIG. 8 is a flowchart of step S22 in FIG. 3 according to an embodiment.
- FIG. 9 shows the steps further included in the charging control method before step S20 in FIG. 3 according to an embodiment.
- FIG. 10 is a structural block diagram of a charging control apparatus according to an embodiment.
- FIG. 11 is a system architecture diagram of an electronic device according to an embodiment.
- Example embodiments will now be described more fully with reference to the accompanying drawings.
- Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
- the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
- the same reference numerals in the drawings denote the same or similar parts, and thus their repeated descriptions will be omitted.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection It can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction relationship between the two elements.
- installed e.g., it may be a fixed connection or a detachable connection
- it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction relationship between the two elements.
- first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
- “plurality” means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
- the present disclosure proposes an electronic device, which may be an intelligent terminal or a mobile terminal device configured with a battery-powered system.
- a mobile terminal device configured with a battery-powered system.
- mobile phones such as mobile phones, tablets, laptops, e-book readers, smart wearable devices, mobile power sources (such as power banks, travel chargers), electronic cigarettes, wireless mice, wireless keyboards, wireless headphones, Bluetooth speakers, etc.
- mobile power sources such as power banks, travel chargers
- the adapter can work in a constant voltage mode, and the output voltage thereof is basically kept constant, such as 5V, 9V, 12V, or 20V.
- the output current can be a pulsating DC current (the direction does not change, and the magnitude changes with time), an AC current (both the direction and the magnitude change with time), or a constant DC current (the direction and amplitude do not change with time).
- the voltage output by the relevant adapter is not suitable to be directly loaded to both ends of the battery, but needs to be converted by a conversion circuit in the electronic device to obtain the expected charging voltage and/or charging current of the battery in the electronic device.
- the adapter can also work in a voltage-following manner. That is, the adapter communicates with the electronic device to be charged in two directions. The adapter feeds back the required charging voltage and charging current according to the electronic device, thereby adjusting the voltage and current output by itself, so that the output voltage and current can be directly loaded on the battery of the electronic device. , to charge the battery, the electronic device does not need to adjust the charging voltage and charging current again.
- the conversion circuit can control the charging voltage and/or charging current of the battery during different charging stages. For example, in the constant current charging stage, the conversion circuit can utilize the current feedback loop to make the magnitude of the current entering the battery meet the magnitude of the first charging current expected by the battery. In the constant voltage charging stage, the conversion circuit can make use of the voltage feedback loop to make the voltage applied to both ends of the battery meet the expected charging voltage of the battery. In the trickle charging stage, the conversion circuit can utilize the current feedback loop to make the current entering the battery meet the expected second charging current of the battery (the second charging current is smaller than the first charging current).
- the conversion circuit is used to perform step-down transformation processing on the voltage output by the relevant adapter, so that the size of the charging voltage obtained after the step-down conversion meets the expected charging voltage of the battery the size of the charging voltage.
- the normal charging mode means that the adapter outputs a relatively small current value (usually less than 2.5A) or charges the battery in the device to be charged with a relatively small power (usually less than 15W). It usually takes several hours to fully charge a larger capacity battery (such as a 3000mAh capacity battery) in normal charging mode.
- the fast charging mode means that the adapter can output a relatively large current (usually greater than 2.5A, such as 4.5A, 5A or even higher) or use a relatively large power (usually greater than or equal to 15W) to the battery in the device to be charged. Charge. Compared with the normal charging mode, the charging speed of the adapter in the fast charging mode is faster, and the charging time required to fully charge the battery of the same capacity can be significantly shortened.
- the wireless charging system and the wired charging system in the related art are respectively introduced below.
- a power supply device (such as an adapter) is generally connected to a wireless charging device (such as a wireless charging base), and the output power of the power supply device is wirelessly (such as electromagnetic signals or electromagnetic waves) through the wireless charging device. Transfer to electronic devices for wireless charging.
- wireless charging methods are mainly divided into three methods: magnetic coupling (or electromagnetic induction), magnetic resonance and radio waves.
- the mainstream wireless charging standards include the QI standard, the Power Matters Alliance (PMA) standard, and the Alliance for Wireless Power (A4WP). Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
- the A4WP standard uses magnetic resonance for wireless charging.
- a power supply device (such as an adapter) is generally connected to the electronic device through a cable, and the electrical energy provided by the power supply device is transmitted to the electronic device through the cable to charge the electronic device.
- CCCV constant current and constant voltage
- the charging process of the battery may include: a trickle charging stage (or mode), a constant current charging stage (or mode), a constant voltage charging stage (or mode) and a supplementary charging stage (or mode).
- the fully discharged battery is first precharged (ie, recovery charging).
- the trickle charging current is usually one-tenth of the constant current charging current.
- the battery In the constant current charging stage, the battery is charged with a constant current, and the charging voltage rises rapidly. When the charging voltage reaches the expected charging voltage threshold of the battery, the battery enters the constant voltage charging stage.
- the charging current is very small, just to ensure that the battery is fully charged.
- the constant current charging stage does not require the charging current to remain completely constant, for example, it may generally mean that the peak value or average value of the charging current remains unchanged for a period of time.
- the constant current charging stage can be charged in the way of multi-stage constant current charging.
- FIG. 1 is a schematic structural diagram of an embodiment of an electronic device of the present disclosure.
- the electronic device 10 may include a rear case 11, a display screen 12, a circuit board 13, and a battery. It should be noted that the electronic device 10 is not limited to include the above contents.
- the rear case 11 may form the outer contour of the electronic device 10 .
- the rear case 11 may be a metal rear case, such as magnesium alloy, stainless steel and other metals.
- the material of the rear shell 11 in the embodiment of the present application is not limited to this, and other methods may also be used, for example, the rear shell 11 may be a plastic rear shell, a ceramic rear shell, a glass rear shell, or the like.
- the display screen 12 is installed in the rear case 11 .
- the display screen 12 is electrically connected to the circuit board 13 to form a display surface of the electronic device.
- the display surface of the electronic device 10 may be provided with a non-display area, for example, the top or/and bottom end of the electronic device 10 may form a non-display area, that is, the electronic device 10 may be located at the upper or/and lower part of the display screen 12 A non-display area is formed, and the electronic device 10 may install devices such as cameras and receivers in the non-display area.
- the display surface of the electronic device 10 may not be provided with a non-display area, that is, the display screen 12 may be a full screen.
- the display screen can be laid on the entire display surface of the electronic device 10 , so that the display screen can be displayed in full screen on the display surface of the electronic device 10 .
- the electronic device is configured with a charging interface
- the charging interface 123 can be, for example, a USB 2.0 interface, a Micro USB interface or a USB TYPE-C interface.
- the charging interface may also be a lightning interface, or any other type of parallel port or serial port that can be used for charging.
- the charging interface is connected to the adapter through a data cable, and the adapter obtains electrical energy from the commercial power supply. After voltage conversion, it is transmitted to the charging circuit through the data cable and the charging interface. Therefore, the electrical energy can be charged into the cells to be charged through the charging circuit.
- the electronic device 10 also includes a charging circuit.
- the charging circuit may charge the battery cells 14 of the electronic device 10 .
- the charging circuit can be used to further regulate the charging voltage and/or charging current input from the adapter to meet the charging requirements of the battery.
- FIG. 2 is a block diagram of a circuit structure of an electronic device according to an embodiment of the present disclosure.
- the charging circuit includes a power management chip (PMIC) and a CPU 14 .
- PMIC power management chip
- the charging interface 13 of the electronic device is connected to the adapter or the wireless charging device to receive the input current and output the charging current to the battery 18 to charge the battery 18 .
- the battery 18 provides power of required specifications to various components in the electronic device through the power management chip.
- a power management chip is an integrated circuit that includes multiple power rails and power management functions in a single chip. PMICs are often used to power small form factor, battery powered devices because integrating multiple functions into a single chip provides greater space utilization and system power efficiency. Common functions integrated within a PMIC include voltage converters and regulators, battery18 chargers, battery18 fuel gauges, LED drivers, real-time clocks, power sequencers, and power control.
- the power management chip is integrated in an SOC (System on Chip, system-on-chip) of the electronic device.
- SOC System on Chip, system-on-chip
- a CPU is integrated in the SOC.
- two power management chips are integrated, which are the main power management chip (which may correspond to the first power management chip 15 in FIG. 2 ) and the secondary power management chip (which may correspond to the second power supply in FIG. 2 ).
- Management chip 16 both of which jointly supply power to the electronic device.
- the secondary power management chip when the electronic device is in a charging state, the secondary power management chip does not participate in the charging process, and only the main power management chip outputs the charging current to the battery 18 .
- the electronic device may further include one or more power management chips (which may correspond to the third power management chip 17 in FIG. 2 ) external to the SOC.
- power management chips which may correspond to the third power management chip 17 in FIG. 2
- the price of power management chips is not high, and it can be used in low-end devices without causing obvious cost problems.
- the low-end projects of thousand yuan phones are generally only equipped with the PD charging technology announced by the USB-IF organization and the QC fast charging technology of Qualcomm. Both PD and QC are high-voltage fast charging technologies.
- the power supported by the terminal project is generally 9V/2A, 18W.
- the voltage of the battery 18 is lower than 5V (the maximum is generally 4.45V), so the 9V PD and QC charging technology needs to go through a step-down circuit to reduce the voltage to charge the battery 18.
- a large amount of energy will be lost.
- the intuitive reflection is that the charging speed is slow, and the lost electric energy is converted into heat energy, which causes the mobile phone to heat up seriously.
- multiple power management chips are used to charge the battery 18 in parallel, and the dynamic adjustment of the charging current and/or the input current is realized, so that the temperature rise of the electronic device can be guaranteed to meet the enterprise standard and the national standard. Under the requirements of high temperature rise, the charging speed is further improved and the charging time is shortened.
- the electronic device includes a battery 18 and a plurality of power management chips.
- the plurality of power management chips jointly receive the total input current from the power supply device, and jointly output the total charging current to charge the battery 18 .
- the plurality of charge management chips include a first power management chip and a second power management chip; the first power management chip is a main power management chip on the mainboard of the electronic device; the second power management chip is on the mainboard A secondary power management chip, or an external power management chip external to the motherboard.
- the plurality of charge management chips include a first power management chip 15, a second power management chip 16 and a third power management chip 17;
- the first power management chip 15 is the main power management chip on the main board of the electronic device ;
- the second power management chip 16 is a secondary power management chip on the main board;
- the third power management chip 17 is an external power management chip externally placed on the main board.
- all the power management chips are controlled by the CPU of the electronic device, and the CPU distributes the input current and/or charging current of all the power management chips.
- FIG. 3 is a flowchart of a charging control method according to an embodiment of the present disclosure. Methods include:
- S20 Acquire respective work efficiencies of the multiple power management chips, where the work efficiency is a ratio of the output power of the power management chip to the input power entering the power management chip.
- S22 distribute the total current to be distributed according to the current distribution ratio to determine the configuration current allocated by each power management chip; wherein, the total current to be distributed is at least one of the total input current and the total charging current, and the configuration current corresponds to It is at least one of input current and charging current.
- the SOC or CPU of the electronic device performs handshake communication with the adapter to determine the required total input current and total charging current.
- the total input current and the total charging current are roughly equal, and the total input current is transmitted to the power management chip, except for the loss in the power management chip, a small part of the current output by the power management chip flows to the SOC
- Other components are used for power supply, and most of them flow to the battery 18 as a charging current to charge the battery 18 .
- step S22 There are three schemes in step S22.
- the current distribution ratio determined in step S21 can be applied to distribute the total input current to the input terminals of each power management chip, and the total charging current is not proportionally distributed at this time;
- the charging current is distributed to the output terminals of each power management chip according to the current distribution ratio.
- the total input current is not proportionally distributed; not only the total input current is distributed according to the current distribution ratio, but also the total charging current is distributed proportionally according to the current distribution ratio.
- the threshold value of the charging current of each power management chip can be set to a higher value. high. At this time, during the charging process, the ratio of the charging current output by each power management chip also generally tends to the current distribution ratio.
- the threshold value of the input current of the input current of each power management chip can be set. higher, at this time, during the charging process, the ratio of the input current output by each power management chip also generally tends to the current distribution ratio.
- step S the total current to be distributed is distributed according to the current distribution ratio, so as to determine the configuration current allocated by each power management chip, and the configuration current has a corresponding relationship with the total current to be distributed. If the total current to be distributed is The total input current, the configuration current corresponds to the input current of the power management chip. If the total current to be allocated is the total charging current, the configuration current is correspondingly the charging current output by the power management chip.
- step S22 it is assumed that the configuration current is the charging current as an example.
- the total charging current is allocated according to the current allocation ratio to determine the charging current allocated by each power management chip.
- the total charging current mentioned in step S22 is actually the maximum threshold of the total charging current
- the configuration current mentioned in step S is actually the maximum charging current threshold of the power management chip.
- the total charging current actually entering the battery 18 is the maximum threshold value of the total charging current.
- Each power management chip basically outputs according to the maximum charging current threshold.
- step S20 the charging efficiency is mainly affected by the characteristics of the power management chip itself and the ambient temperature.
- the work efficiencies of the first power management chip 15 , the second power management chip 16 and the third power management chip 17 are obtained respectively, corresponding to e1 , e2 , and e3 .
- the charging efficiency will change with the temperature of the power management chip.
- the working efficiency corresponding to the temperature of the power management chip is determined.
- the preset time period may be 1 to 5 minutes. For example, 1 minute.
- each power management chip can be tested for efficiency.
- the corresponding relationship between the temperature and the working efficiency of the power management chip preset by the power management is tested.
- the test relationship can be embodied as a table or a function formed by fitting.
- the temperature of the power management chip can be measured by a temperature sensor. Therefore, by reading the temperature value measured by the temperature sensor, corresponding to the measured temperature value, the work efficiency corresponding to the temperature value is found, so as to determine the current work efficiency of the power management chip. And, according to the preset duration, the work efficiency is updated in real time.
- a plurality of power management chips work in parallel to realize the charging of the battery 18 . Therefore, the total input current/total charging current is shared by multiple power management chips, thus effectively reducing the input current/charging current shared by each power management chip, thereby reducing the heat generation of the power management chip and improving The temperature rise of the power management chip is maintained below the set threshold for a period of time, thereby increasing the duration of fast charging, so the solution of the present disclosure improves the charging rate.
- the current distribution ratio of the multiple power management chips is obtained according to the respective working efficiencies of the multiple power management chips. Therefore, the solution of the present application can improve the utilization rate of electric energy, reduce the consumption of electric energy, and reduce the amount of heat generated under the premise that multiple power management chips work in parallel.
- FIG. 4 is a flowchart of a charging control method according to another embodiment of the present disclosure.
- the method in order to prevent the temperature of the power management chip from reaching a limit, the output charging current needs to be reduced. Therefore, the method also includes:
- the power management chip has an ADC channel dedicated to acquiring its own temperature, and the current temperature of the power management chip can be acquired in real time.
- the temperature rise rate of the power management chip can be calculated every 1 minute by setting in the software code.
- the temperature rate may increase or decrease. Therefore, in an embodiment, acquiring the temperature rise rate of each power management chip further includes:
- the temperature rise obtained for the power management chip for the first time is the initial temperature rise
- the ratio of the first difference to the preset duration is calculated as the temperature rise rate of the power management chip.
- the current distribution ratio of the multiple power management chips is obtained according to the respective work efficiencies and temperature rise rates of the multiple power management chips, so that the calculated current distribution ratio can take into account the work of the power management chips Efficiency and temperature rise rate, since the temperature rise rate reflects the withstand capability of the power management chip in the current working state, it can reflect the temperature rise of the power management chip in the future. Therefore, this embodiment improves the reliability that the temperature rise of the power management chip is maintained below the set threshold, and improves the temperature rise maintenance of the power management chip on the premise that the multiple power management chips maintain an overall high working efficiency. duration below the set threshold, thereby increasing the duration of fast charging.
- step S211 there are various current distribution ratios.
- FIG. 5 is a flowchart of step S211 in FIG. 4 according to an embodiment.
- the current distribution ratio of the multiple power management chips is determined, including:
- Step S2111 determining a first allocation ratio of the plurality of power management chips according to the respective work efficiencies of the at least two power management chips;
- Step S2112 determining a second allocation ratio of the plurality of power management chips according to the respective temperature rise rates of the at least two power management chips;
- Step S2113 Determine the current distribution ratio according to the first distribution ratio and the second distribution ratio.
- the work efficiencies of the first power management chip 15 , the second power management chip 16 and the third power management chip 17 are obtained respectively, corresponding to e1 , e2 , and e3 .
- the corresponding temperature rise rates are t1, t2, and t3.
- the proportional coefficient of the first power management chip 15 is: p1 ⁇ x +m1 ⁇ y
- the scaling factor of the second power management chip 16 is: p2 ⁇ x+m2 ⁇ y
- the scaling factor of the third power management chip 17 is: p3 ⁇ x+m3 ⁇ y.
- the current distribution ratio of the multiple power management chips is determined according to the respective work efficiencies of the multiple power management chips, including:
- the average value is taken as the proportional coefficient of the power management chip in the charging current distribution ratio.
- the proportional coefficient of the first power management chip 15 is: (p1+m1)/2; the proportional coefficient of the second power management chip 16 is: (p2+m2)/2; The proportional coefficient of the third power management chip 17 is: (p3+m3)/2.
- the total charging current/total input current is set to vary according to the temperature of the battery 18, and when the temperature of the battery 18 is low, the total charging current/total input current is increased to increase the charging speed. When the temperature of the battery 18 is high, the total charging current/total input current is appropriately reduced to ensure charging safety.
- the total current to be distributed is distributed according to the current distribution ratio to determine the configuration current allocated to each power management chip, including:
- Step S222 according to the temperature of the battery 18, determine the total current to be distributed
- Step S223 Allocate the determined total current to be allocated to each power management chip according to the current distribution ratio, so as to determine the configuration current allocated to each power management chip.
- the temperature of the battery 18 can be measured with a temperature sensor or a thermocouple.
- step S222 is a flowchart of step S222 in FIG. 6 according to an embodiment.
- the total current to be distributed is determined according to the temperature of the battery 18, including:
- Step S2221 in a plurality of preset first temperature range intervals, search for the first temperature range interval where the temperature of the battery 18 is located;
- Step S2222 based on the preset correspondence between the first temperature range interval and the total charging current, determine the total charging current corresponding to the found first temperature interval;
- Step S223 Allocate the determined total current to be allocated to each power management chip according to the current distribution ratio, so as to determine the configuration current allocated to each power management chip, including:
- Step S2231 Allocate the determined total charging current to each power management chip according to the current distribution ratio to determine the charging current allocated to each power management chip.
- the first temperature interval can be divided into finer divisions.
- a corresponding total charging current is preset.
- the temperature of the battery 18 may be detected every 1 to 10 minutes to adjust the total charging current.
- the total current to be distributed is determined, including:
- the determined total input current is distributed to each power management chip according to the current distribution ratio, so as to determine the input current allocated to each power management chip.
- the second temperature range can be set to be wider, for example, Td ⁇ 35°C, 35°C ⁇ Td ⁇ 37°C, and 37°C ⁇ Td.
- Td ⁇ 35°C the corresponding total input current is 2A
- 35°C ⁇ Td ⁇ 37°C the corresponding total input current is 1.8A
- 37°C ⁇ Td the corresponding total input current is 1.5A.
- Each power management chip has a current adjustment accuracy, that is, when the power management chip adjusts the input current/charging current, the current adjustment accuracy is used as a step for adjustment. For example, when the charging current allocated by a power management chip is 810mA, but its current regulation accuracy is 100mA, it will have a loss of 10mA of accuracy.
- the current adjustment accuracy of multiple power management chips may be inconsistent.
- the multiple power management chips are divided into other power management chips and the first power management chip 15 according to the current adjustment accuracy.
- the current regulation accuracy of the management chip 15 is the highest.
- the plurality of power management chips include other power management chips, and the first power management chip 15 with the highest current adjustment accuracy ;
- the total current to be distributed is distributed according to the current distribution ratio to determine the configuration current allocated by each power management chip, including:
- Step S224 determine the calculated value of the configuration current allocated by each power management chip
- Step S225 obtaining the current adjustment accuracy of each power management chip
- Step S226, according to the order of the current adjustment accuracy from low to high, determine the priority when allocating the configuration current
- Step S227 determining the actual value of the configuration current allocated by the other power management chips and the first power management chip 15;
- the actual value of the configuration current is determined to be the smallest difference from the calculated value of the configuration current allocated by the power management chip, and is the current adjustment of the power management chip.
- the actual charging current is determined as the difference between the total current to be allocated and the actual value of the configuration current that has been allocated to other power management chips.
- the total charging current is taken as an example for description.
- the accuracies of the charging current of the first power management chip 15, the second power management chip 16 and the third power management chip 17 are 25ma, 50ma and 100ma respectively, and the current distribution ratios are 45%, 25% and 30% respectively. is 1.8A.
- the priority when configuring the current is, the third power management chip 17 - the second power management chip 16 - the first power management chip 15 .
- the power management chip with the highest current regulation accuracy is used to bear the power loss, which effectively reduces the power loss in the process of distributing the input current/charging current, and improves the power utilization rate.
- some power management chips with lower current regulation precision can be selected to reduce product cost.
- the current adjustment accuracy of the main power management chip on the SOC is the highest, the current adjustment accuracy of the secondary power management chip on the SOC is second, and the current adjustment accuracy of the power management chip external to the SOC is the lowest.
- the current distribution correction ratio is set according to the ratio of the current adjustment accuracy of multiple power management chips
- the total current to be distributed is distributed to multiple power management chips, and the actual value of the configuration current distributed by each power management chip is determined.
- FIG. 9 shows the steps further included in the charging control method before step S20 in FIG. 3 according to an embodiment.
- the power supply device is an adapter, and before the step of acquiring the respective work efficiencies of the plurality of power management chips, the method further includes:
- Step S25 detecting the type of the adapter charging the electronic device
- the initial value of the total current to be distributed is set.
- step S25 whether the adapter is a PD adapter can be determined by the level of the CC pin of the Type-C interface of the electronic device.
- the DCP ((Dedicated Charging Port, dedicated charging port) interface can be detected and identified through the BC1.2 charging protocol, and then the HVDCP ((High Voltage Dedicated Charging Port, high-voltage DC transmission charging port)) interface can be identified twice to determine whether it is a QC adapter.
- the first charging voltage can be set to 9V, so when it is detected that the electronic device has the condition that the charging voltage increases from 5V to 9V, the above charging control method can be used to perform parallel charging of multiple charging power management chips.
- the initial value of the total current to be distributed is set according to the temperature of the battery 18 . values, including:
- Step S26 when the type of the inserted adapter is a PD adapter or a QC adapter, and the charging voltage allowed by the electronic device is greater than or equal to the first charging voltage, obtain the temperature of the battery 18;
- Step S27 according to the temperature of the battery 18, set the initial value of the total current to be distributed.
- step S27 according to the temperature range in which the temperature of the battery 18 is located, the initial value corresponding to the temperature range can be found through the corresponding relationship between the preset temperature range and the initial value.
- the charging control device includes a battery 18 and multiple power management chips, and the multiple power management chips jointly receive the total input current from the adapter, and jointly output the total charging current to charge the battery 18 .
- FIG. 10 is a structural block diagram of a charging control device 30 according to an embodiment; the charging control device includes:
- the working efficiency obtaining unit 31 is configured to obtain the respective working efficiencies of the plurality of power management chips, wherein the working efficiency is the ratio of the output power of the power management chip to the input power entering the power management chip;
- the current distribution ratio determination unit 32 is configured to determine the current distribution ratio of the multiple power management chips according to the respective work efficiencies of the multiple power management chips;
- the configuration current unit 33 is used to distribute the total current to be distributed according to the current distribution ratio, so as to determine the configuration current allocated to each power management chip; wherein, the total current to be distributed is at least one of the total input current and the total charging current. 1.
- the configuration current corresponds to at least one of the input current and the charging current;
- the control unit 34 is configured to control the plurality of power management chips to work according to their allocated configuration currents.
- FIG. 10 the block diagram shown in FIG. 10 above is a functional entity, and does not necessarily necessarily correspond to a physically or logically independent entity. These functional entities may be implemented in software, or in one or more hardware modules or integrated circuits, or in different networks and/or processor devices and/or microcontroller devices.
- FIG. 11 is a system architecture diagram of an electronic device according to an embodiment.
- This embodiment also proposes an electronic device 10, including a storage unit 41 and a processing unit 42; the storage unit 41 stores a charging control program; the processing unit 42 is configured to execute the above-mentioned charging control when running a short circuit detection program in the battery 18 steps of the method.
- the storage unit 41 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 411 and/or a cache storage unit 412 , and may further include a read-only storage unit (ROM) 413 .
- RAM random access storage unit
- ROM read-only storage unit
- the storage unit 41 may also include a program/utility 414 having a set (at least one) of program modules 415 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, An implementation of a network environment may be included in each or some combination of these examples.
- the bus 43 may be representative of one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any of a variety of bus structures bus.
- the electronic device 10 may also communicate with one or more external devices 50 (eg, keyboards, pointing devices, Bluetooth devices, etc.), with one or more devices that enable a user to interact with the electronic device 10, and/or with Any device (eg, router, modem, display unit 44, etc.) that enables the robot's electronics 10 to communicate with one or more other computing devices. Such communication may take place through input/output (I/O) interface 45 . Also, the robot's electronic device 10 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 46 . As shown in FIG.
- LAN local area network
- WAN wide area network
- public network such as the Internet
- the network adapter 46 communicates with other modules of the electronic device 10 of the robot via the bus 43 .
- other hardware and/or software modules may be used in conjunction with the robot's electronics 10, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems , tape drives, and data backup storage systems.
- the exemplary embodiments described herein may be implemented by software, or may be implemented by software combined with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure may be embodied in the form of software products, and the software products may be stored in a non-volatile storage medium (which may be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) to execute the method according to an embodiment of the present disclosure.
- a computing device which may be a personal computer, a server, a terminal device, or a network device, etc.
- the present disclosure also provides a schematic diagram of a computer-readable storage medium.
- the computer-readable storage medium may employ a portable compact disc read only memory (CD-ROM) and include program codes, and may be executed on a terminal device such as a personal computer.
- CD-ROM portable compact disc read only memory
- the program product of the present disclosure is not limited thereto, and in the present disclosure, a readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
- the computer-readable medium carries one or more programs, and when the one or more programs are executed by a device, the computer-readable medium implements the charging control method shown in FIG. 2 to FIG. 8 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本公开提供了一种充电控制方法及装置、电子设备、计算机存储介质。其中充电控制方法包括:获取多个电源管理芯片的各自的工作效率,其中,工作效率为电源管理芯片的输出功率与进入该电源管理芯片的输入功率的比值;根据多个电源管理芯片的各自的工作效率,确定多个电源管理芯片的电流分配比例;按照电流分配比例对待分配的总电流进行分配,以确定各个电源管理芯片所分配到的配置电流;其中,待分配的总电流为总输入电流、总充电电流至少其中之一;控制多个电源管理芯片按照各自所分配到的配置电流工作。本公开实现了在保证充电安全性的前提下,提高了充电速度。
Description
交叉引用
本公开要求于2020年12月10日提交的申请号为202011457772.X名称为“充电控制方法及装置、电子设备”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
本公开涉及电子设备技术领域,具体而言,涉及一种充电控制方法及装置、电子设备。
手机、平板等电子设备为人们的生活提供了极大的便利,与此同时,用户对充电速度提出了越来越高的要求。
然而,在充电过程中,伴随着大的充电速度而来的是过快的温升。当电子设备内的温度达到一定程度时,出于安全性考虑,会对充电速度进行限制。由此导致充电速度无法进一步提高。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于提供一种充电控制方法及装置、电子设备,进而至少一定程度上解决由于相关技术的缺陷而导致的一个或多个问题。
根据本公开的一个方面,本公开提供一种充电控制方法,应用于电子设备;所述电子设备包括电池以及多个电源管理芯片,所述多个电源管理芯片共同从电源提供装置接收总输入电流,并共同输出总充电电流为所述电池充电;所述方法包括:
获取所述多个电源管理芯片的各自的工作效率,其中,所述工作效率为所述电源管理芯片的输出功率与进入该电源管理芯片的输入功率的比值;
根据所述多个电源管理芯片的各自的所述工作效率,确定所述多个电源管理芯片的电流分配比例;
按照所述电流分配比例对待分配的总电流进行分配,以确定各个所述电源管理芯片所分配到的配置电流;其中,所述待分配的总电流为所述总输入电流、所述总充电电流至少其中之一,所述配置电流对应为输入电流、充电电流至少其中之一;
控制所述多个电源管理芯片按照各自所分配到的配置电流工作。
根据本公开另一方面提出一种充电控制装置,应用于电子设备;所述电子设备包括电池以及多个电源管理芯片,所述多个电源管理芯片共同从适配器接收总输入电流,并共同输出总充电电流为所述电池充电;所述充电控制装置包括:
工作效率获取单元,用于获取所述多个电源管理芯片的各自的工作效率,其中,所述工作效率为所述电源管理芯片的输出功率与进入该电源管理芯片的输入功率的比值;
电流分配比例确定单元,用于根据所述多个电源管理芯片的各自的所述工作效率,确定所述多个电源管理芯片的电流分配比例;
配置电流单元,用于按照所述电流分配比例对待分配的总电流进行分配,以确定各个所述电源管理芯片所分配到的配置电流;其中,所述待分配的总电流为所述总输入电流、所述总充电电流至少其中之一,所述配置电流对应为输入电流、充电电流至少其中之一;
控制单元,用于控制所述多个电源管理芯片按照各自所分配到的配置电流工作。
根据本公开另一方面提出一种电子设备,包括
存储单元,存储有充电控制程序;
处理单元,用于在运行所述充电控制程序时,执行所述充电控制方法的步骤。
根据本公开另一方面提出一种计算机存储介质,所述计算机存储介质存储有充电控制程序,所述充电控制程序被至少一个处理器执行时实现所述充电控制方法的步骤,或实现所述的充电控制方法的步骤。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。
图1是根据本公开一实施例示出的一种电子设备的结构示意图。
图2是根据本公开一实施例示出的一种电子设备的电路结构框图。
图3是根据本公开一实施例示出的一种充电控制方法的流程图。
图4是根据本公开另一实施例示出的一种充电控制方法的流程图。
图5是根据一实施例示出的图4中步骤S211的流程图。
图6是根据一实施例示出的图3中步骤S22的流程图。
图7是根据一实施例示出的图6中步骤S222的流程图。
图8是根据一实施例示出的图3中步骤S22的流程图。
图9是根据一实施例示出的图3中步骤S20之前,该充电控制方法还包括的步骤。
图10是根据一实施例示出的一种充电控制装置的结构框图。
图11是根据一实施例示出的一种电子设备的系统架构图。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现、材料或者操作以避免 喧宾夺主而使得本公开的各方面变得模糊。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
以下结合本说明书的附图,对本公开的较佳实施方式予以进一步地详尽阐述。
本公开提出一种电子设备,该电子设备可以是配置有电池供电系统的智能终端、移动终端设备。例如手机、平板电脑、笔记本电脑、电子书阅读器、智能穿戴设备、移动电源(如充电宝、旅充)、电子烟、无线鼠标、无线键盘、无线耳机、蓝牙音箱等具有充电功能的可充电电子设备。
下面描述一下相关技术中为电子设备充电的相关适配器。
相关技术中,适配器可以以恒压模式工作,其输出的电压基本维持恒定,比如5V、9V、12V或20V等。输出的电流可以为脉动直流电流(方向不变、幅值大小随时间变化)、交流电流(方向和幅值大小均随时间变化)或恒定直流电流(方向和幅值均不随时间变化)。相关适配器输出的电压并不适合直接加载到电池的两端,而是需要先经过电子设备内的变换电路进行变换,以得到电子设备内的电池所预期的充电电压和/或充电电流。
适配器还可以采用电压跟随的方式工作。即适配器和待充电的电子设备进行双向通信,适配器根据电子设备反馈所需的充电电压和充电电流,从而调整自身输出的电压和电流,使得输出的电压和电流可以直接加载到电子设备的电池上,为电池充电,电子设备无需再次再调整充电电压和充电电流。
变换电路可在不同的充电阶段控制电池的充电电压和/或充电电流。例如,在恒流充电阶段,变换电路可以利用电流反馈环使得进入到电池的电流大小满足电池所预期的第一充电电流的大小。在恒压充电阶段,变换电路可以利用电压反馈环使得加载到电池两端的电压的大小满足电池所预期的充电电压的大小。在涓流充电阶段,变换电路可以利用电流反馈环使得进入到电池的电流大小满足电池所预期的第二充电电流的大小(第二充电电流小于第一充电电流)。
比如,当相关适配器输出的电压大于电池所预期的充电电压时,变换电路用于对相关适配器输出的电压进行降压变换处理,以使经降压转换后得到的充电电压的大小满足电池所预期的充电电压的大小。
对电子设备的电池的充电模式大致有“普通充电模式”、“快速充电模式”。普通充电模式是指适配器输出相对较小的电流值(通常小于2.5A)或者以相对较小的功率(通常小于15W)来对待充电设备中的电池进行充电。在普通充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间。快速充电模式则是指适配器能够输出相对较大的电流(通常大于2.5A,比如4.5A,5A甚至更高)或者以相对较大的功率(通常大于等于15W)来对待充电设备中的电池进行充电。相较于普通充电模式而言,适配器在快速充电模式下的充电速度更快,完全充满相同容量电池所需要的充电时间能够明显缩短。
下面分别对相关技术中的无线充电系统与有线充电系统进行介绍。
无线充电过程中,一般将电源提供装置(如适配器)与无线充电装置(如无线充电底座)相连,并通过该无线充电装置将电源提供装置的输出功率以无线的方式(如电磁信号或电磁波)传输至电子设备,对电子设备进行无线充电。
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源实物联盟(Power Matters Alliance,PMA)标准、无线电源联盟(Alliance for Wireless Power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
有线充电过程中,一般将电源提供装置(如适配器)通过线缆与电子设备相连,通过电缆将电源提供装置提供的电能传输至电子设备,以为电子设备充电。
下面描述一下目前主流的恒流恒压(CCCV)充电方式,该充电方式适用于有线充电和无线充电。
电池的充电过程可以包括:涓流充电阶段(或模式)、恒流充电阶段(或模式)、恒压充电阶段(或模式)及补充充电阶段(或模式)。
在涓流充电阶段,先对完全放电的电池进行预充电(即恢复性充电),涓流充电电流通常是恒流充电电流的十分之一,当电池电压上升到涓流充电电压阈值以上时,提高充电电流进入恒流充电阶段。
在恒流充电阶段,以恒定电流对电池进行充电,充电电压快速上升,当充电电压达到电池所预期的充电电压阈值时转入恒压充电阶段。该恒定电流常用的是一额定的充电倍率电流,如大倍率3C电流,其中C为电池容量。假设电池容量为1700mAh,则该恒定电流为3*1700mA=5.1A。
在恒压充电阶段,以恒定电压对电池进行充电,充电电流逐渐减小,当充电电流降低至设定的电流阈值时,电池被充满电。在CCCV充电方式中,该电流阈值通常被设定为0.01C,其中C为电池容量。仍假设电池容量为1700mAh,则该电流阈值为0.01*1700mA=17mA。
电池被充满电后,由于电池自放电的影响,会产生部分电流损耗,此时转入补充充电阶段。在补充充电阶段,充电电流很小,仅仅为了保证电池在满电量状态。
需要说明的是恒流充电阶段并非要求充电电流保持完全恒定不变,例如可以是泛指充电电流的峰值或均值在一段时间内保持不变。实际中,恒流充电阶段可以采用分段恒流充电(Multi-stage constant current charging)的方式进行充电。
请参阅图1,图1是本公开电子设备一实施例的结构示意图。电子设备10可以包括后壳11、显示屏12、电路板13、电池。需要说明的是,电子设备10并不限于包括以上内容。其中,后壳11可以形成电子设备10的外部轮廓。在一些实施例中,后壳11可以为金属后壳,比如镁合金、不锈钢等金属。需要说明的是,本申请实施例后壳11的材料并不限于此,还可以采用其它方式,比如:后壳11可以为塑胶后壳、陶瓷后壳、玻璃后壳等。
其中,显示屏12安装在后壳11中。显示屏12电连接至电路板13上,以形成电子设备的显示面。在一些实施例中,电子设备10的显示面可以设置非显示区域,比如:电子设备10的顶端或/和底端可以形成非显示区域,即电子设备10在显示屏12的上部或/和下部形成非显示区域,电子设备10可以在非显示区域安装摄像头、受话器等器件。需要说明的是,电子设备10的显示面也可以不设置非显示区域,即显示屏12可以为全面屏。可以将显示屏铺设在电子设备10的整个显示面,以使得显示屏可以在电子设备10的显示面进行全屏显示。
电子设备配置有充电接口,充电接口123例如可以为USB 2.0接口、Micro USB接口或USB TYPE-C接口。在一些实施例中,充电接口还可以为lightning接口,或 者其他任意类型的能够用于充电的并口或串口。该充电接口通过数据线与适配器连接,适配器从市电获取电能,经过电压变换后,通过数据线传、充电接口传输至充电电路,因此电能通过充电电路得以充入待充电电芯中。
电子设备10还包括充电电路。充电电路可以为电子设备10的电芯14充电。充电电路可以用于进一步的调节自适配器输入的充电电压和/或充电电流,以满足电池的充电需求。
请参阅图2,图2是根据本公开一实施例示出的一种电子设备的电路结构框图。充电电路包括有电源管理芯片(PMIC)、CPU14。在充电过程中,电子设备的充电接口13与适配器或无线充电装置与连接,以接收的输入电流,并输出充电电流至电池18,实现为电池18充电。在非充电状态下,电池18通过电源管理芯片向电子设备内的各个部件提供所需要规格的电能。
电源管理芯片(PMIC)是在单片芯片内包括了多种电源轨和电源管理功能的集成电路。PMIC常用于为小尺寸、电池18供电设备供电,因为将多种功能集成到单片芯片内可提供更高的空间利用率和系统电源效率。PMIC内集成的常见功能包括电压转换器和调节器、电池18充电器、电池18电量计、LED驱动器、实时时钟、电源排序器和电源控制。
在一些实施例中,电源管理芯片集成在电子设备的SOC(System on Chip,系统级芯片)中。一般的,SOC内集成有CPU。在一些SOC中,集成有两个电源管理芯片,分别为主电源管理芯片(可以对应为图2中的第一电源管理芯片15)和副电源管理芯片(可以对应为图2中的第二电源管理芯片16),两者共同为电子设备供电。但是相关技术中,在电子设备处于充电状态下,副电源管理芯片并不参与充电过程,仅由主电源管理芯片向电池18输出充电电流。
在公开中,电子设备还可以包括外置于SOC的一个或多个电源管理芯片(可以对应为图2中的第三电源管理芯片17)。相对于MCU等处理级芯片来说,电源管理芯片的价格并不高,能够应用于中低端设备中,不会带来明显的成本困扰。
以手机为例,在相关技术中,千元机的低端项目,一般只搭载USB-IF组织公布的PD充电技术和高通的QC快充充电技术,PD和QC都是高压快充技术,低端项目支持的功率一般是9V/2A,18W。对于单电芯来说,电池18电压是低于5V(最大一般是4.45V),因此9V的PD和QC充电技术要给电池18充电需要经过降压电路进行降压。在降压过程中,会损失较大的能量,直观的反映是充电速度较慢,同时损失的电能转化成热能导致手机发热情况严重。
在本公开中,同时利用多个电源管理芯片并行工作以对电池18充电,并实现对充电电流和/或输入电流的动态调整,从而实现了在电子设备的温升能够保证满足企标和国标的温升要求下,更进一步提升充电速度,缩短充电时间。
在下述实施例中,将对本公开的充电控制方法的实施例进行说明。
在一实施例中,电子设备包括电池18以及多个电源管理芯片,多个电源管理芯片共同从电源提供装置接收总输入电流,并共同输出总充电电流为电池18充电。
在其中一示例中,多个充电管理芯片包括第一电源管理芯片和第二电源管理芯片;第一电源管理芯片为电子设备的主板上的主电源管理芯片;第二电源管理芯片为主板上的副电源管理芯片,或外置于主板的外置电源管理芯片。
请继续参阅图2。在另一示例中,多个充电管理芯片包括第一电源管理芯片15、第二电源管理芯片16和第三电源管理芯片17;第一电源管理芯片15为电子设备的主板上的主电源管理芯片;第二电源管理芯片16为主板上的副电源管理芯片;第三电源管理芯片17为外置于主板的外置电源管理芯片。
应当理解,还可以通过外置电源管理芯片的方式,设置多于三个电源管理芯片。
在此,所有的电源管理芯片受控于电子设备的CPU,由CPU来对所有的电源管理芯片的输入电流和/或充电电流进行分配。
请参阅图3,图3是根据本公开一实施例示出的一种充电控制方法的流程图。方法包括:
S20,获取多个电源管理芯片的各自的工作效率,其中,工作效率为电源管理芯片的输出功率与进入该电源管理芯片的输入功率的比值。
S21,根据多个电源管理芯片的各自的工作效率,确定多个电源管理芯片的电流分配比例。
S22,按照电流分配比例对待分配的总电流进行分配,以确定各个电源管理芯片所分配到的配置电流;其中,待分配的总电流为总输入电流、总充电电流至少其中之一,配置电流对应为输入电流、充电电流至少其中之一。
S23,控制多个电源管理芯片按照各自所分配到的配置电流工作。
示意性的,在充电过程中,电子设备的SOC或CPU与适配器进行握手通讯,以确定所需要的总输入电流和总充电电流。通常在实际充电过程中,总输入电流和总充电电流大体相等,总的输入电流传输至电源管理芯片内,除去在电源管理芯片内的损耗,电源管理芯片输出的电流中,一小部分流向SOC等部件用于供电,绝大部分作为充电电流流向电池18为电池18充电。
在步骤S22中有三种方案,经过步骤S21所确定的电流分配比例可以应用于将总输入电流分配至各个电源管理芯片的输入端,此时不对总充电电流进行比例分配;也可以应用于将总充电电流按照电流分配比例分配至各个电源管理芯片的输出端,此时不对总输入电流进行比例分配;不仅对总输入电流按照电流分配比例进行,也对总充电电流按照电流分配比例进行比例分配。
需要说明的是,当将总输入电流按照电流分配比例分配至各个电源管理芯片的输入端,此时不对总充电电流进行比例分配时,可以将各个电源管理芯片的充电电流的阈值设定的较高。此时,在充电过程中,各个电源管理芯片输出的充电电流比例也大致趋于电流分配比例。
类似的,当将总充电电流按照电流分配比例分配至各个电源管理芯片的输出端,此时不对总输入电流进行比例分配时,可以将各个电源管理芯片的输入电流的输入电流的阈值设定的较高,此时,在充电过程中,各个电源管理芯片输出的输入电流比例也大致趋于电流分配比例。
在步骤S中,照电流分配比例对待分配的总电流进行分配,以确定各个电源管理芯片所分配到的配置电流中,配置电流与待分配的总电流具有对应关系,若待分配的总电流为总输入电流,则配置电流相应为电源管理芯片的输入电流。若待分配的总电流为总充电电流,则配置电流相应为电源管理芯片输出的充电电流。
并且,在步骤S22中,以配置电流为充电电流为例。此时按照电流分配比例对总充电电流进行分配,以确定各个电源管理芯片所分配到的充电电流。实际充电过程中,步骤S22中所提到的总充电电流实际为总充电电流的最大阈值,步骤S中所提到的配置电流实际为电源管理芯片的最大充电电流阈值。通常,实际进入到电池18内的总充电电流即为总充电电流的最大阈值。各个电源管理芯片基本按照最大充电电流阈值进行输出。
在步骤S20中,充电效率主要由电源管理芯片本身特性和环境温度影响。示意性的,请参阅图2。分别获取第一电源管理芯片15、第二电源管理芯片16和第三电源管理芯片17的工作效率,对应为e1、e2、e3。
则电流分配比例中,第一电源管理芯片15的比例系数为p1=e1/(e1+e2+e3),第二电源管理芯片16的比例系数为p2=e2/(e1+e2+e3),第三电源管理芯片17的比例系 数为p3=e3/(e1+e2+e3)。
在充电过程中,充电效率会随着电源管理芯片的温度而改变,温度越高,对应充电效率会降低。因此为了获得当前真实的充电效率,在一示例中,获取多个电源管理芯片的各自的工作效率,包括:
每隔预设时长,获取多个电源管理芯片中每个电源管理芯片的温度;
对应于每个电源管理芯片,基于预设的电源管理芯片的温度与工作效率的对应关系,确定与该电源管理芯片的温度所对应的工作效率。
在此,预设时长可以为1~5分钟。例如为1分钟。
在实验室中,可以对每个电源管理芯片进行效率测试。测试出的电源管理预设的电源管理芯片的温度与工作效率的对应关系,测试关系可以体现为表格,也可以拟合形成的函数。
在充电过程中,电源管理芯片的温度可以通过温度传感器测得。因此通过读取温度传感器所测得的温度值,对应于测得的温度值,查找到与该温度值对应的工作效率,从而确定电源管理芯片当前的工作效率。并且,按照预设时长,实时对工作效率进行更新。
在相关技术中,在充电过程里,当电源管理芯片的温升达到设定阈值后,充电速度将被限制,或者被下调。
本申请中,一方面通过多个电源管理芯片并行工作,实现对电池18的充电。因此,总输入电流/总充电电流由多个电源管理芯片共同承担,因此有效的降低了每个电源管理芯片所分得的输入电流/充电电流,从而减小了电源管理芯片的发热量,提高了电源管理芯片的温升维持在在设定阈值之下的时长,从而提高了快速充电时长,因此本公开方案提高了充电速率。
并且,多个电源管理芯片的电流分配比例是根据多个电源管理芯片的各自的工作效率得出,工作效率越高的电源管理芯片所对应的比例系数越大,所承担的输入电流/充电电流相应越大,因此本申请方案能够在多电源管理芯片并行工作的前提下,提高电能的利用率,减小电能的损耗量,减小发热量。
请参阅图4,图4是根据本公开另一实施例示出的一种充电控制方法的流程图。在一实施例中,为了防止电源管理芯片的温度达到限值,而需要降低输出的充电电流。因此,方法还包括:
S24,获取各个电源管理芯片的温升速率;
S21,根据多个电源管理芯片的工作效率,确定多个电源管理芯片的充电电流分配比例,包括:
S211,根据多个电源管理芯片的各自的工作效率,以及各自的温升速度,确定多个电源管理芯片的电流分配比例。
在该实施例中,电源管理芯片内具有专门用于获取其自身温度的ADC通道,可以实时获取到电源管理芯片的当前温度。示意性的,可以通过软件代码里设定每1分钟计算一次电源管理芯片的温升速率。
受外界环境温度的影响,温度速率可能是上升的,也可以是下降的,因此在一实施例中,获取各个电源管理芯片的温升速率,还包括:
为多个电源管理芯片配置相等的温度基础值;
对于每个电源管理芯片,首次获取该电源管理芯片的温升为初始温升;
计算初始温升与温度基础值之间的差值,差值为第一差值;
计算第一差值与预设时长的比值,作为该电源管理芯片的温升速率。
示意性的,以预设时长为1分钟为例,设置温度基础值为T,第一次获取到的温升为ti,则电源管理芯片在当前时刻的温升速率为(T-ti)/1。
在该实施例中,多个电源管理芯片的电流分配比例是根据多个电源管理芯片的各自的工作效率和温升速率得出,从而使得所计算出的电流分配比例能够兼顾电源管理芯片的工作效率和温升速率,由于温升速率反应了该电源管理芯片在当前工作状态下的承受能力,因此能够反应对未来一段时间内的电源管理芯片的温升。因此本实施例提高了电源管理芯片的温升维持在在设定阈值之下的可靠性,在使多个电源管理芯片维持整体较高的工作效率前提下,提高了电源管理芯片的温升维持在在设定阈值之下的时长,从而提高了快速充电时长。
在步骤S211中,确定电流分配比例有多种,请参阅图5,图5是根据一实施例示出的图4中步骤S211的流程图。在一实施例中,根据多个电源管理芯片的各自的工作效率,以及各自的温升速度,确定多个电源管理芯片的电流分配比例,包括:
步骤S2111,根据至少两个电源管理芯片的各自的工作效率,确定多个电源管理芯片的第一分配比例;
步骤S2112,根据至少两个电源管理芯片的各自的温升速率,确定多个电源管理芯片的第二分配比例;
步骤S2113,根据第一分配比例和第二分配比例,确定电流分配比例。
在此,分别获取第一电源管理芯片15、第二电源管理芯片16和第三电源管理芯片17的工作效率,对应为e1、e2、e3。对应的温升速率为t1、t2、t3。
则第一分配比例中,第一电源管理芯片15的比例系数为p1=e1/(e1+e2+e3),第二电源管理芯片16的比例系数为p2=e2/(e1+e2+e3),第三电源管理芯片17的比例系数为p3=e3/(e1+e2+e3)。
则第二分配比例中,第二电源管理芯片16的比例系数为m1=t1/(t1+t2+t3),第二电源管理芯片16的比例系数为m2=t2/(t1+t2+t3),第三电源管理芯片17的比例系数为m3=t3/(t1+t2+t3)。
因此,可以以为第一分配比例中的比例系数设置加权至x,第二分配比例中的比例系数设置加权值y;则电流分配比例中,第一电源管理芯片15的比例系数为:p1×x+m1×y;第二电源管理芯片16的比例系数为:p2×x+m2×y;第三电源管理芯片17的比例系数为:p3×x+m3×y。
在另一实施例中,根据多个电源管理芯片的各自的工作效率,确定多个电源管理芯片的电流分配比例,包括:
对于每个电源管理芯片,计算该电源管理芯片在第一分配比例中对应的比例系数,与该电源管理芯片在第二分配比例中对应的分配系数的平均值;
将平均值作为该电源管理芯片在充电电流分配比例中的比例系数。
在该实施例中,则电流分配比例中,第一电源管理芯片15的比例系数为:(p1+m1)/2;第二电源管理芯片16的比例系数为:(p2+m2)/2;第三电源管理芯片17的比例系数为:(p3+m3)/2。
在整个充电过程中,总充电电流以及总输入电流大体维持不变。在一实施例中,设置总充电电流/总输入电流根据电池18的温度而变化,在电池18温度较低的情况下,增大总充电电流/总输入电流,以提高充电速度。当在电池18温度较高的情况下,适当减小总充电电流/总输入电流,以保证充电安全性。
请参阅图6,图6是根据一实施例示出的图3中步骤S22的流程图。具体的,在一实施例中,按照电流分配比例对待分配的总电流进行分配,以确定各个电源管理芯片所分配到的配置电流,包括:
步骤S221,获取电池18的温度;
步骤S222,根据电池18的温度,确定待分配的总电流;
步骤S223,将所确定的待分配的总电流按照电流分配比例分配至各个电源管理 芯片,以确定各个电源管理芯片所分配到的配置电流。
在此,电池18的温度可以用温度传感器或热电偶测得。
请参阅图7,图7是根据一实施例示出的图6中步骤S222的流程图。其中,步骤S222,根据电池18的温度,确定待分配的总电流,包括:
步骤S2221,在多个预设的第一温度范围区间中,查找电池18的温度所在的第一温度范围区间;
步骤S2222,基于预设的第一温度范围区间与总充电电流的对应关系,确定与查找到的第一温度区间对应的总充电电流;
步骤S223,将所确定的待分配的总电流按照电流分配比例分配至各个电源管理芯片,以确定各个电源管理芯片所分配到的配置电流,包括:
步骤S2231,将所确定的总充电电流按照电流分配比例分配至各个电源管理芯片,以确定各个电源管理芯片所分配到的充电电流。
在该实施例中,第一温度区间可以划分的较细。示意性的,Td<-2℃、-2℃<Td<0℃、0℃-5℃,5℃<Td<12℃,12℃<Td<16℃,16℃<Td<22℃,22℃<Td<26℃,26℃<Td<33℃,33℃<Td<37℃,37℃<Td<41℃,41℃<Td<45℃,45℃<Td<53℃,53℃<Td。
对应于每个第一温度区间,预设有相应的总充电电流。在此,可以每隔1分钟~10分钟检测一次电池18温度,以对总充电电流进行调整。
对于总输入电流也有类似的设置方式,具体的:
根据电池18的温度,确定待分配的总电流,包括:
在多个预设的第二温度范围区间中,查找电池18的温度所在的第二温度范围区间;
基于预设的第二温度范围区间与总输入电流的对应关系,确定与查找到的第二温度区间对应的总输入电流;
将所确定的待分配的总电流按照电流分配比例分配至各个电源管理芯片,以确定各个电源管理芯片所分配到的配置电流,包括:
将所确定的总输入电流按照电流分配比例分配至各个电源管理芯片,以确定各个电源管理芯片所分配到的输入电流。
在该实施例中,第二温度范围区间可以设置的较宽,例如Td<35℃,35℃<Td<37℃,以及37℃<Td。比如Td<35℃,对应的总输入电流为2A,35℃<Td<37℃对应的总输入电流为1.8A,37℃<Td,对应的总输入电流为1.5A。
每个电源管理芯片均具有电流调节精度,即电源管理芯片在调节输入电流/充电电流时,是以电流调节精度为步长进行调节的。例如当一电源管理芯片所分配到的充电电流为810mA,但是其电流调节精度为100mA,因此其会有10mA的精度损失。
在此,多个电源管理芯片的电流调节精度会有不一致的现象,在此按照电流调节精度将多个电源管理芯片分为其他电源管理芯片和第一电源管理芯片15两类,其中第一电源管理芯片15的电流调节精度最高。
请参阅图8,图8是根据一实施例示出的图3中步骤S22的流程图。为了减小在分配输入电流/充电电流时因电流调节精度所造成的电能损失,在一实施例中,多个电源管理芯片包括其他电源管理芯片,以及电流调节精度最高的第一电源管理芯片15;
按照电流分配比例对待分配的总电流进行分配,以确定各个电源管理芯片所分配到的配置电流,包括:
步骤S224,按照电流分配比例,确定各个电源管理芯片分配到的配置电流的计 算值;
步骤S225,获取每个电源管理芯片的电流调节精度;
步骤S226,按照电流调节精度由低到高的次序,确定分配配置电流时的优先级;
步骤S227,确定其他电源管理芯片和第一电源管理芯片15所分配到的配置电流的实际值;
其中,对于其他电源管理芯片中的任一电源管理芯片,配置电流的实际值确定为与该电源管理芯片所分配到的配置电流的计算值的差值最小,且为该电源管理芯片的电流调节精度的整数倍的值;
对于第一电源管理芯片15,实际充电电流确定为待分配的总电流与已分配至其他电源管理芯片中的配置电流的实际值之间的差值。
示意性的,以对总充电电流为例进行说明。第一电源管理芯片15、第二电源管理芯片16和第三电源管理芯片17充电电流的精度分别是25ma,50ma和100ma,电流分配比例分别是45%,25%,30%,总充电电流的为1.8A。三个电源管理芯片分配到的充电电流的计算值分别是810ma,450ma,540ma。考虑到每个电源管理芯片的电流调节精度,若按照该电流分配比例进行分配,则第一电源管理芯片15损失10ma的充电电流(810/25=32余10),第三电源管理芯片17损失40ma(540/100=5余40ma)。
在此,配置电流时的优先级为,第三电源管理芯片17-第二电源管理芯片16-第一电源管理芯片15。
因此,第三电源管理芯片17所配置到的充电电流的实际值为:540ma/100ma=5余40ma;此时待分配的总充电电流剩余量为1300ma。其次第二电源管理芯片16所配置到的充电电流的实际值为:450ma/50ma=9,此时待分配的总充电电流剩余量为850ma。最后第三电源管理芯片17所配置到的充电电流的实际值为:850ma/25ma=34,此时刚好将总充电的电流分配完全,无电量损失。
本实施例的方案中,利用电流调节精度最高的电源管理芯片来承担电量损失,有效的降低了在分配输入电流/充电电流过程中的电能损耗,提高了电能利用率。
并且,基于本实施例的方案,从而可以选择采用一些电流调节精度较低的电源管理芯片,以降低产品成本。
示意性的,在电子设备中,SOC上的主电源管理芯片的电流调节精度最高,SOC上的副电源管理芯片的电流调节精度次之,外置于SOC的电源管理芯片的电流调节精度最低。
在另一实施例中,还可以设置控制多个电源管理芯片按照各自所分配到的充电电流对电池18充电,包括:
比对电流分配比例与预设的多组电流分配矫正比例;其中,电流分配矫正比例根据多个电源管理芯片的电流调节精度的比例设定;
确定与电流分配比例最为匹配的电流分配矫正比例;
按照电流分配矫正比例,将待分配的总电流分配至多个电源管理芯片,确定各个电源管理芯片所分配到的配置电流实际值。
请参阅图9,图9是根据一实施例示出的图3中步骤S20之前,该充电控制方法还包括的步骤。在本公开充电控制方法中,电源提供装置为适配器,获取多个电源管理芯片的各自的工作效率的步骤之前,方法还包括:
步骤S25,检测为电子设备充电的适配器的类型;
当插入的适配器类型为PD适配器或QC适配器,且电子设备所允许的充电电压大于或等于第一充电电压时,设定待分配的总电流的初始值。
具体的,在步骤S25中,可以通过电子设备Type-C接口的CC脚的电平确定适 配器是否为PD适配器。可以通过BC1.2充电协议检测识别到DCP((Dedicated Charging Port,专用充电端口)接口,然后做HVDCP((High Voltage Dedicated Charging Port,高压直流输电充电端口))接口二次识别,以确定是否为QC适配器。
这是考虑到,在一些设定场景中,只能以低电压对电子设备进行充电,此时仅需要使用主电源管理芯片对电池18充电即可。第一充电电压可以设定为9V,所以当检测到电子设备具有充电电压从5V升至9V的条件时,可以用上述充电控制方法进行多充电电源管理芯片并联充电。
在一实施例中,当插入的适配器类型为PD适配器或QC适配器,且电子设备所允许的充电功率大于或等于第一充电功率时,根据电池18的温度,设定待分配的总电流的初始值,包括:
步骤S26,当插入的适配器类型为PD适配器或QC适配器,且电子设备所允许的充电电压大于或等于第一充电电压时,获取电池18的温度;
步骤S27,根据电池18的温度,设定待分配的总电流的初始值。
在步骤S27中,可以根据电池18的温度所处的温度区间,通过预设的温度区间与初始值的对应关系,查找到与该温度区间对应的初始值。
在下述实施例中,将对本公开充电控制装置的实施例进行说明。关于充电控制装置的实施例可以参考上述充电控制方法的实施例。应用于电子设备;电子设备包括电池18以及多个电源管理芯片,多个电源管理芯片共同从适配器接收总输入电流,并共同输出总充电电流为电池18充电。
请参阅图10,图10是根据一实施例示出的一种充电控制装置30的结构框图;充电控制装置包括:
工作效率获取单元31,用于获取多个电源管理芯片的各自的工作效率,其中,工作效率为电源管理芯片的输出功率与进入该电源管理芯片的输入功率的比值;
电流分配比例确定单元32,用于根据多个电源管理芯片的各自的工作效率,确定多个电源管理芯片的电流分配比例;
配置电流单元33,用于按照电流分配比例对待分配的总电流进行分配,以确定各个电源管理芯片所分配到的配置电流;其中,待分配的总电流为总输入电流、总充电电流至少其中之一,配置电流对应为输入电流、充电电流至少其中之一;
控制单元34,用于控制多个电源管理芯片按照各自所分配到的配置电流工作。
需要注意的是,上述附图10中所示的框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
请参阅图11,图11是根据一实施例示出的一种电子设备的系统架构图。本实施例还提出一种电子设备10,包括存储单元41、处理单元42;存储单元41上存储有充电控制程序;处理单元42用于在运行电池18内短路的检测程序时,执行上述充电控制方法的步骤。
具体的,存储单元41可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)411和/或高速缓存存储单元412,还可以进一步包括只读存储单元(ROM)413。
存储单元41还可以包括具有一组(至少一个)程序模块415的程序/实用工具414,这样的程序模块415包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线43可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备10也可以与一个或多个外部设备50(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备10交互的设备通信,和/或与使得该机器人的电子设备10能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器、显示单元44等等)通信。这种通信可以通过输入/输出(I/O)接口45进行。并且,机器人的电子设备10还可以通过网络适配器46与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图11所示,网络适配器46通过总线43与机器人的电子设备10的其它模块通信。应当明白,尽管图11中未示出,可以结合机器人的电子设备10使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
本公开还提出一种计算机可读存储介质的示意图。计算机可读存储介质可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本公开中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该计算机可读介质实现如图2至图8所示的充电控制方法。
虽然已参照几个典型实施方式描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
Claims (20)
- 一种充电控制方法,应用于电子设备;所述电子设备包括电池以及多个电源管理芯片,所述多个电源管理芯片共同从电源提供装置接收总输入电流,并共同输出总充电电流为所述电池充电;所述方法包括:获取所述多个电源管理芯片的各自的工作效率,其中,所述工作效率为所述电源管理芯片的输出功率与进入该电源管理芯片的输入功率的比值;根据所述多个电源管理芯片的各自的所述工作效率,确定所述多个电源管理芯片的电流分配比例;按照所述电流分配比例对待分配的总电流进行分配,以确定各个所述电源管理芯片所分配到的配置电流;其中,所述待分配的总电流为所述总输入电流、所述总充电电流至少其中之一,所述配置电流对应为输入电流、充电电流至少其中之一;控制所述多个电源管理芯片按照各自所分配到的配置电流工作。
- 根据权利要求1所述的充电控制方法,所述获取所述多个电源管理芯片的各自的工作效率,包括:每隔预设时长,获取所述多个电源管理芯片中每个电源管理芯片的温度;对应于每个所述电源管理芯片,基于预设的电源管理芯片的温度与工作效率的对应关系,确定与该电源管理芯片的温度所对应的工作效率。
- 根据权利要求1所述的充电控制方法,所述方法还包括:获取各个所述电源管理芯片的温升速率;所述根据所述多个电源管理芯片的工作效率,确定所述多个电源管理芯片的充电电流分配比例,包括:根据所述多个电源管理芯片的各自的所述工作效率,以及各自的温升速度,确定所述多个电源管理芯片的电流分配比例。
- 根据权利要求3所述的充电控制方法,所述获取各个所述电源管理芯片的温升速率,包括:每隔预设时长,获取每个所述电源管理芯片的温升;对于每个所述电源管理芯片,计算该电源管理芯片的温升与所述预设时长的比值,作为该电源管理芯片的温升速率。
- 根据权利要求4所述的充电控制方法,所述获取各个所述电源管理芯片的温升速率,还包括:为所述多个电源管理芯片配置相等的温度基础值;对于每个所述电源管理芯片,首次获取该电源管理芯片的温升为初始温升;计算所述初始温升与所述温度基础值之间的差值,所述差值为第一差值;计算所述第一差值与所述预设时长的比值,作为该电源管理芯片的温升速率。
- 根据权利要求4所述的充电控制方法,所述根据所述多个电源管理芯片的各自的所述工作效率,以及各自的温升速度,确定所述多个电源管理芯片的电流分配比例,包括:根据所述至少两个电源管理芯片的各自的所述工作效率,确定所述多个电源管理芯片的第一分配比例;根据所述至少两个电源管理芯片的各自的所述温升速率,确定所述多个电源管理芯片的第二分配比例;根据所述第一分配比例和所述第二分配比例,确定所述电流分配比例。
- 根据权利要求6所述的充电控制方法,所述根据所述多个电源管理芯片的各自的所述工作效率,确定所述多个电源管理芯片的电流分配比例,包括:对于每个所述电源管理芯片,计算该电源管理芯片在所述第一分配比例中对应的比例系数,与该电源管理芯片在所述第二分配比例中对应的分配系数的平均值;将所述平均值作为该电源管理芯片在所述充电电流分配比例中的比例系数。
- 根据权利要求1所述的充电控制方法,所述按照所述电流分配比例对待分配的总电流进行分配,以确定各个所述电源管理芯片所分配到的配置电流,包括:获取所述电池的温度;根据所述电池的温度,确定所述待分配的总电流;将所确定的所述待分配的总电流按照所述电流分配比例分配至各个所述电源管理芯片,以确定各个所述电源管理芯片所分配到的配置电流。
- 根据权利要求8所述的充电控制方法,所述根据所述电池的温度,确定所述待分配的总电流,包括:在多个预设的第一温度范围区间中,查找所述电池的温度所在的第一温度范围区间;基于预设的第一温度范围区间与总充电电流的对应关系,确定与查找到的所述第一温度区间对应的总充电电流;所述将所确定的所述待分配的总电流按照所述电流分配比例分配至各个所述电源管理芯片,以确定各个所述电源管理芯片所分配到的配置电流,包括:将所确定的所述总充电电流按照所述电流分配比例分配至各个所述电源管理芯片,以确定各个所述电源管理芯片所分配到的充电电流。
- 根据权利要求8所述的充电控制方法,所述根据所述电池的温度,确定所述待分配的总电流,包括:在多个预设的第二温度范围区间中,查找所述电池的温度所在的第二温度范围区间;基于预设的第二温度范围区间与总输入电流的对应关系,确定与查找到的所述第二温度区间对应的总输入电流;所述将所确定的所述待分配的总电流按照所述电流分配比例分配至各个所述电源管理芯片,以确定各个所述电源管理芯片所分配到的配置电流,包括:将所确定的所述总输入电流按照所述电流分配比例分配至各个所述电源管理芯片,以确定各个所述电源管理芯片所分配到的输入电流。
- 根据权利要求1所述的充电控制方法,所述多个电源管理芯片包括其他电源管理芯片,以及电流调节精度最高的第一电源管理芯片;所述按照所述电流分配比例对待分配的总电流进行分配,以确定各个所述电源管理芯片所分配到的配置电流,包括:按照所述电流分配比例,确定各个所述电源管理芯片分配到的配置电流的计算值;获取每个所述电源管理芯片的电流调节精度;按照电流调节精度由低到高的次序,确定分配所述配置电流时的优先级;确定所述其他电源管理芯片和所述第一电源管理芯片所分配到的所述配置电流的实际值;其中,对于所述其他电源管理芯片中的任一所述电源管理芯片,所述配置电流的实际值确定为与该电源管理芯片所分配到的配置电流的计算值的差值最小,且为该电源管理芯片的电流调节精度的整数倍的值;对于所述第一电源管理芯片,所述实际充电电流确定为所述待分配的总电流与已分配至所述其他电源管理芯片中的配置电流的实际值之间的差值。
- 根据权利要求1所述的充电控制方法,所述控制所述电源管理芯片按照各自所分配到的充电电流对所述电池充电,包括:比对电流分配比例与预设的多组电流分配矫正比例;其中,所述电流分配矫正比例根据多个所述电源管理芯片的电流调节精度的比例设定;确定与所述电流分配比例最为匹配的所述电流分配矫正比例;按照所述电流分配矫正比例,将所述待分配的总电流分配至所述多个电源管理芯片,确定各个电源管理芯片所分配到的配置电流实际值。
- 根据权利要求1所述的充电控制方法,所述电源提供装置为适配器,所述获取所述多个电源管理芯片的各自的工作效率的步骤之前,所述方法还包括:检测为所述电子设备充电的适配器的类型;当所述适配器类型为PD适配器或QC适配器,且所述电子设备所允许的充电电压大于或等于第一充电电压时,设定所述待分配的总电流的初始值。
- 根据权利要求13所述的充电控制方法,所述当所述适配器类型为PD适配器或QC适配器,且所述电子设备所允许的充电功率大于或等于第一充电功率时,根据所述电池的温度,设定所述待分配的总电流的初始值,包括:当所述适配器类型为PD适配器或QC适配器,且所述电子设备所允许的充电电压大于或等于第一充电电压时,获取电池的温度;根据所述电池的温度,设定所述待分配的总电流的初始值。
- 根据权利要求14所述的充电控制方法,所述根据所述电池的温度,设定所述待分配的总电流的初始值,包括:根据所述电池的温度所处的温度区间,通过预设的温度区间与初始值的对应关系,查找到与该温度区间对应的初始值。
- 根据权利要求1所述的充电控制方法,所述多个充电管理芯片包括第一电源管理芯片和第二电源管理芯片;所述第一电源管理芯片为电子设备的主板上的主电源管理芯片;所述第二电源管理芯片为所述主板上的副电源管理芯片,或外置于所述主板的外置电源管理芯片。
- 根据权利要求1所述的充电控制方法,所述多个充电管理芯片包括第一电源管理芯片、第二电源管理芯片和第三电源管理芯片;所述第一电源管理芯片为电子设备的主板上的主电源管理芯片;所述第二电源管理芯片为所述主板上的副电源管理芯片;所述第三电源管理芯片为外置于所述主板的外置电源管理芯片。
- 一种充电控制装置,应用于电子设备;所述电子设备包括电池以及多个电源管理芯片,所述多个电源管理芯片共同从适配器接收总输入电流,并共同输出总充电电流为所述电池充电;所述充电控制装置包括:工作效率获取单元,用于获取所述多个电源管理芯片的各自的工作效率,其中,所述工作效率为所述电源管理芯片的输出功率与进入该电源管理芯片的输入功率的比值;电流分配比例确定单元,用于根据所述多个电源管理芯片的各自的所述工作效率,确定所述多个电源管理芯片的电流分配比例;配置电流单元,用于按照所述电流分配比例对待分配的总电流进行分配,以确定各个所述电源管理芯片所分配到的配置电流;其中,所述待分配的总电流为所述总输入电流、所述总充电电流至少其中之一,所述配置电流对应为输入电流、充电电流至少其中之一;控制单元,用于控制所述多个电源管理芯片按照各自所分配到的配置电流工作。
- 一种电子设备,包括:存储单元,存储有充电控制程序;处理单元,用于在运行所述充电控制程序时,执行权利要求1至17任一项所述充电控制方法的步骤。
- 一种计算机存储介质,所述计算机存储介质存储有充电控制程序,所述充电控制程序被至少一个处理器执行时实现权利要求1至17任一项所述充电控制方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011457772.X | 2020-12-10 | ||
CN202011457772.XA CN114629187B (zh) | 2020-12-10 | 2020-12-10 | 充电控制方法及装置、电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022121512A1 true WO2022121512A1 (zh) | 2022-06-16 |
Family
ID=81896466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/124700 WO2022121512A1 (zh) | 2020-12-10 | 2021-10-19 | 充电控制方法及装置、电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114629187B (zh) |
WO (1) | WO2022121512A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114967903B (zh) * | 2022-07-26 | 2022-11-04 | 南京芯驰半导体科技有限公司 | 电源管理方法、系统、电子设备及储存介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130063076A1 (en) * | 2010-05-12 | 2013-03-14 | Zte Corporation | Charger of mobile terminal and mobile terminal |
CN104300630A (zh) * | 2014-10-17 | 2015-01-21 | 广东欧珀移动通信有限公司 | 充电控制装置及方法 |
CN105656115A (zh) * | 2015-11-30 | 2016-06-08 | 东莞酷派软件技术有限公司 | 一种双通道充电方法、系统和终端 |
US20170040817A1 (en) * | 2015-08-05 | 2017-02-09 | Hisense Mobile Communications Technology Co., Ltd. | Mobile terminal and charging method |
CN106856339A (zh) * | 2015-12-09 | 2017-06-16 | 小米科技有限责任公司 | 充电方法、装置及电子设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100844806B1 (ko) * | 2005-03-31 | 2008-07-07 | 주식회사 엘지화학 | 복수의 검출 저항을 이용하여 배터리 셀의 전류량을측정하는 장치 및 방법 |
CN105098882B (zh) * | 2015-06-30 | 2017-10-20 | 小米科技有限责任公司 | 输入电流分配方法及装置 |
CN108365657B (zh) * | 2018-03-20 | 2020-06-19 | 北京小米移动软件有限公司 | 充电电流的控制方法、装置和存储介质 |
-
2020
- 2020-12-10 CN CN202011457772.XA patent/CN114629187B/zh active Active
-
2021
- 2021-10-19 WO PCT/CN2021/124700 patent/WO2022121512A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130063076A1 (en) * | 2010-05-12 | 2013-03-14 | Zte Corporation | Charger of mobile terminal and mobile terminal |
CN104300630A (zh) * | 2014-10-17 | 2015-01-21 | 广东欧珀移动通信有限公司 | 充电控制装置及方法 |
US20170040817A1 (en) * | 2015-08-05 | 2017-02-09 | Hisense Mobile Communications Technology Co., Ltd. | Mobile terminal and charging method |
CN105656115A (zh) * | 2015-11-30 | 2016-06-08 | 东莞酷派软件技术有限公司 | 一种双通道充电方法、系统和终端 |
CN106856339A (zh) * | 2015-12-09 | 2017-06-16 | 小米科技有限责任公司 | 充电方法、装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN114629187B (zh) | 2025-04-18 |
CN114629187A (zh) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10491003B2 (en) | Multiple input single inductor multiple output regulator | |
CN114174844B (zh) | 充电控制方法及装置、充电测试方法及系统、电子设备 | |
US20130328399A1 (en) | Method for reducing the number of power terminal connectors | |
TW201115316A (en) | Efficient systems and method for consuming and providing power | |
CN104798005A (zh) | 总平台功率控制 | |
US20090309419A1 (en) | Method for Prioritizing Load Consumption Within a Notebook Computer | |
EP3193179B1 (en) | Electric quantity detection method and apparatus, terminal and storage medium | |
US10811895B2 (en) | Wireless charging with power flux boost in an information handling system | |
TWI874519B (zh) | 充電方法、行動運算裝置及用於充電之機器可讀儲存媒體 | |
CN110474387A (zh) | 充电控制方法、电子设备及计算机存储介质 | |
EP4184287A1 (en) | Role detection for usb-based charging | |
WO2020124563A1 (zh) | 无线充电方法、待充电设备、无线充电装置及存储介质 | |
KR20160142875A (ko) | 모듈식 모바일 전자 디바이스의 전력 관리를 위한 시스템들 및 방법들 | |
WO2022121512A1 (zh) | 充电控制方法及装置、电子设备 | |
CN108702019B (zh) | 一种为计算设备的电池充电的方法和系统 | |
US10942556B2 (en) | Early pre-charge enablement for peak power application in net zero energy devices | |
US10996731B2 (en) | Buck-boost conversion in an information handling system | |
EP4227768A1 (en) | Role detection for usb-based charging | |
TWM381101U (en) | Power saving device and all-in-one pc having the same | |
CN216489913U (zh) | 温控器、温控设备和空调系统 | |
CN106505698B (zh) | 供电方法及供电装置 | |
US20120074910A1 (en) | Battery charge management | |
KR20130063374A (ko) | 이동 단말기 및 그 제어 방법 | |
TW202226016A (zh) | 安全的裝置電力啟動設備及方法 | |
TW201512828A (zh) | 電子裝置及其電源管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21902219 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21902219 Country of ref document: EP Kind code of ref document: A1 |