[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022114170A1 - Method for producing non-enveloped virus utilizing bivalent positive ion - Google Patents

Method for producing non-enveloped virus utilizing bivalent positive ion Download PDF

Info

Publication number
WO2022114170A1
WO2022114170A1 PCT/JP2021/043575 JP2021043575W WO2022114170A1 WO 2022114170 A1 WO2022114170 A1 WO 2022114170A1 JP 2021043575 W JP2021043575 W JP 2021043575W WO 2022114170 A1 WO2022114170 A1 WO 2022114170A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
virus
vector
manufactured
minutes
Prior art date
Application number
PCT/JP2021/043575
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 成木
佳典 田中
敏和 西江
幸子 岡本
Original Assignee
タカラバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカラバイオ株式会社 filed Critical タカラバイオ株式会社
Publication of WO2022114170A1 publication Critical patent/WO2022114170A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/864Parvoviral vectors, e.g. parvovirus, densovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof

Definitions

  • the present invention relates to a method for producing an envelopeless virus (hereinafter, non-enveloped virus), preferably an adeno-associated virus (hereinafter, AAV).
  • non-enveloped virus preferably an adeno-associated virus (hereinafter, AAV).
  • AAV adeno-associated virus
  • a viral vector is a vector obtained by modifying a naturally occurring virus so that a desired gene or the like can be transferred into a target cell, and technological development has been progressing in recent years.
  • a virus vector prepared by using gene recombination technology is called a recombinant virus vector
  • the virus from which such a recombinant virus vector is derived includes retrovirus, lentivirus, Sendai virus, herpes virus and the like.
  • Encapsulated viruses, as well as adenoviruses, and non-enveloped viruses such as AAV are well known.
  • AAV can infect a wide variety of cells including humans, it also infects non-dividing cells that have completed differentiation such as blood cells, muscles, and nerve cells, and since it is not pathogenic to humans, there is little concern about side effects. Since the virus particles are physicochemically stable, it is useful as a vector for gene transfer used in gene therapy for the treatment of congenital gene diseases as well as cancer and infectious diseases. It has been attracting attention in recent years.
  • a method for producing a recombinant virus vector generally, among the elements essential for virus particle formation, those that require cis supply and those that can be trans-supplied are separated and introduced into cells that can be used as a host. Therefore, a method is taken to prevent the production of wild-type virus and the self-sustaining replication of the recombinant virus at the infected destination.
  • the essential element for virus particle formation is introduced into a cell in the form of a nucleic acid construct to produce a cell having the ability to produce a virus (hereinafter referred to as a virus-producing cell).
  • a virus-producing cell When the cells are cultured and all the essential elements for virus particle formation are expressed in the cells, a viral vector is generated.
  • the virus-producing cells in which virus production has been achieved are then collected and disrupted, and the cell disruption solution containing the obtained recombinant AAV (rAAV) vector is appropriately filtered, ultra-centrifuged, chromatographed, ultrafiltered, or the like. By subjecting to the process, the rAAV vector is purified and becomes the final product.
  • rAAV recombinant AAV
  • Examples of the method for treating virus-producing cells include freeze-thaw, ultrasonic treatment, mechanical crushing, crushing with a dairy pot / nipple, addition of a surfactant, etc., but in general, freeze-thawing may be performed. many. That is, a crude extract containing a virus vector is obtained by crushing the cells by freezing and thawing the solution containing the virus-producing cells, and then centrifuging or filtering the cells.
  • Non-Patent Document 1 lysis buffer (50 mM Tris, 150 mM NaCl, pH 8.5) is added to pellets of Expi293F cells or BHK cells which are AAV-producing cells, freeze-thawed three times, and then subjected to Benzonase treatment. Then, the solution is clarified by centrifugation. Further, in Non-Patent Document 2, pellets of HEK293 cells or HeLaS3 cells, which are AAV-producing cells, are suspended in lysis buffer (20 mM Tris [pH 7.5], 150 mM NaCl, 10 mM MgCl 2 ), and freeze-thaw is performed three times. is doing.
  • lysis buffer 50 mM Tris, 150 mM NaCl, pH 8.5
  • the present inventors have the ability to produce a non-enveloped virus.
  • a solution containing divalent cations By freezing and thawing a solution containing divalent cations and obtaining a non-enveloped virus from the solution, it was found that the non-enveloped virus can be efficiently obtained without complicated operations, and the present invention has been completed.
  • the present invention [1] A method for producing an adeno-associated virus.
  • A a step of freezing and thawing a solution containing cells capable of producing an adeno-associated virus and a divalent cation of 5 mM or more, and
  • the method according to [1] or [2], wherein the solution is a medium.
  • the medium is a medium containing amino acids, sugars, and lipids.
  • a manufacturing method for efficiently obtaining a non-enveloped virus solution without complicated operations is provided. Further provided is a solution containing divalent cations used in the production method and a non-enveloped virus produced using the production method.
  • the crude virus extract obtained by using the solution containing the divalent cation of the present invention can also be applied to a conventional non-enveloped virus purification method.
  • FIG. 1 It is a figure which shows the viral load of each crude extract by the difference in the number of times of freezing and thawing using MgCl 2 medium or PBS in Example 1.
  • FIG. It is a figure which shows the viral load of each crude extract by freeze-thaw using H2O containing magnesium chloride or sodium chloride in Example 2.
  • FIG. It is a figure which shows the viral load of each crude extract by freeze-thaw using DMEM containing magnesium chloride or sodium chloride in Example 3.
  • FIG. It is a figure which shows the viral load of each crude extract by freeze-thaw using the culture medium containing various divalent cations in Example 4.
  • FIG. It is a figure which shows the viral load of each crude extract by freeze-thaw using various solvents containing magnesium chloride in Example 5.
  • FIG. 1 shows the viral load of each crude extract by the difference in the number of times of freezing and thawing using MgCl 2 medium or PBS in Example 1.
  • FIG. It is a figure which shows the viral
  • non-enveloped virus refers to a virus other than the enveloped virus.
  • the enveloped virus refers to a virus having a lipid layer or a lipid bilayer on the surface of the virus.
  • Typical non-enveloped viruses include adenovirus, parvovirus, papovavirus, human papillomavirus, etc. for viruses whose genome is DNA, and rotavirus, coxsackie virus, enterovirus, and sapovirus for viruses whose genome is RNA.
  • Norovirus, poliovirus, echovirus, hepatitis A virus, hepatitis E virus, rhinovirus, astrovirus and the like are exemplified.
  • the non-enveloped virus to which the production method of the present invention is applied is not particularly limited, and even a non-enveloped virus whose production method is already known is a non-enveloped virus newly obtained from nature or a gene recombination derived from them. It may be a virus vector.
  • Preferred examples of the non-enveloped virus produced by the production method of the present invention include adenovirus, AAV of the Parvoviridae family, and bocavirus.
  • AAV refers to a small virus belonging to the family Parvoviridae, Dependoparvovirus, which infects primate animals including humans and other vertebrates.
  • AAV has an envelopeless icosahedron outer shell and a single single-stranded DNA inside it.
  • AAV includes wild-type viruses and derivatives thereof, including all serotypes and clades unless otherwise noted.
  • the production method of the present invention is applicable to any known serotype of AAV, for example, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, and AAV13. It can be used to produce at least one AAV selected from the group consisting of.
  • the production method of the present invention is preferably applied to AAV1, AAV2, AAV5, and AAV6, and more preferably to AAV2.
  • the serotype from which the capsid is derived is used as a reference.
  • the serotype of the rAAV shall be determined according to the origin of the cap gene used at the time of rAAV preparation, and shall not depend on the origin of the serotype of the AAV genome encapsulated in the rAAV particles.
  • the rAAV is referred to as serotype 6 herein.
  • the production method of the present invention can also be applied to the production of AAV containing a variant of the capsid of AAV of each of the above serotypes.
  • a cell having an ability to produce a virus refers to a cell that expresses an element necessary for virus production and produces virus particles.
  • the virus-producing cells used in the production method of the present invention are not particularly limited, and may be virus-producing cells obtained in the environment or from clinical specimens of patients with infectious diseases, or may be artificially produced virus-producing cells.
  • artificially produced virus-producing cells are used in the present invention, for example, a nucleic acid that supplies essential elements for particle formation of a desired non-enveloped virus, and a nucleic acid encapsulated in particles of a non-enveloped virus.
  • Virus-producing cells produced by introduction into arbitrary cells, and virus-producing cells in which the cells are artificially infected with a non-enveloped virus and, if necessary, a helper virus necessary for producing the virus are used. Virus.
  • the cells for producing virus-producing cells are not particularly limited, and mammalian cells such as humans, monkeys, and rodents can be used.
  • artificially established cell lines such as 293 cells (ATCC CRL-1573), 293T cells (ATCC CRL-3216), 293T / 17 cells (ATCC CRL-11268), 293F cells, which have high transfection efficiency.
  • 293FT cells all manufactured by Life Technologies
  • G3T-hi cells International Publication No. 2006/035829
  • commercially available cell lines for virus production and AAV293 cells (manufactured by Stratagene).
  • arthropod cells insect cells
  • Sf9 cells ATCC CRL-1711
  • the 293 cells and the like constitutively express the adenovirus E1 protein, and one or some of the proteins necessary for rAAV production are modified to transiently or constitutively express. It may be a cell.
  • the following elements necessary for virus formation can be introduced into these various cells using a known method or a commercially available kit to obtain virus-producing cells.
  • the cells can be cultured under known culture conditions. For example, culture at a temperature of 30 to 37 ° C., a humidity of 95% RH, and a CO 2 concentration of 5 to 10% (v / v) is exemplified, but the present invention is not limited to such conditions. If the desired proliferation of virus-producing cells and the production of virus can be achieved, the temperature, humidity, and CO 2 concentration other than the above ranges may be used.
  • the culture period is not particularly limited, and is, for example, 12 to 150 hours, preferably 48 to 120 hours.
  • rAAV-producing cells as an example as virus-producing cells, as essential elements for rAAV formation, (A) nucleic acids encapsulated in rAAV particles, (B) AAV-derived elements such as Rep protein and Cap protein, and the like. In addition, (C) elements that exert a helper function, such as E1a protein, E1b protein, E2 protein, E4 protein, and VARNA derived from adenovirus can be mentioned. By introducing these elements into any cell, rAAV-producing cells can be produced.
  • (A) nucleic acid encapsulated in rAAV particles is composed of an AAV-derived ITR sequence and a nucleic acid desired to be mounted on rAAV particles.
  • Nucleic acids that are desired to be loaded on rAAV particles include arbitrary foreign genes such as polypeptides (enzymes, growth factors, cytokines, receptors, structural proteins, etc.), antisense RNA, ribozyme, decoy, RNA that causes RNA interference, and the like. Nucleic acid to supply is exemplified.
  • nucleic acid encapsulated in the rAAV particles may be introduced into cells in the form of a plasmid as a nucleic acid construct.
  • the above-mentioned plasmid can be constructed, for example, by a known method using a commercially available or known plasmid. Examples of the plasmid include pAAV-ZsGreen1 Vector and pAAV-CMV Vector (both manufactured by Takara Bio Inc.).
  • each element can be directly introduced into a cell as a protein, and each element can be supplied 1.
  • it can be loaded into a plasmid or viral vector as a plurality of nucleic acid constructs and introduced into cells. Introduction of these nucleic acids into cells can be performed, for example, by a known method using a commercially available or known plasmid or viral vector.
  • plasmids capable of supplying Rep protein and Cap protein include pRC1 Vector, pRC2-mi342 Vector, pRC5-Vector, and pRC6 Vector (all manufactured by Takara Bio Inc.).
  • each element can be directly introduced into a cell as a protein, or one or more nucleic acid constructs capable of supplying each element. It can be loaded into a plasmid or viral vector and introduced into cells. Introduction of these nucleic acids into cells can be performed, for example, by a known method using a commercially available or known plasmid or viral vector.
  • An example of the plasmid is pHelper Vector (manufactured by Takara Bio Inc.).
  • the above-mentioned object can also be achieved by directly infecting cells with a virus that exerts a helper function, such as adenovirus, instead of a plasmid or viral vector.
  • a transient introduction method As a method for introducing a nucleic acid construct, a transient introduction method is exemplified.
  • the method for transient introduction is not particularly limited, and known transient introduction methods such as calcium phosphate method, lipofection method, DEAE dextran method, polyethyleneimine (PEI) method, electroporation method and the like can be used. ..
  • commercially available reagents such as TransIT (registered trademark) -293 Reagent, TransIT (registered trademark) -2020 (hereinafter, manufactured by Mirus), Lipofectamine 2000 Reagent, Lipofectamine 2000CD Reagent (hereinafter, manufactured by Life Technologies), FuGene (registered trademark). ) Transfection Reagent (manufactured by Promega) or the like may be used.
  • an introduction method using baculovirus can also be used.
  • non-enveloped virus-producing cells can also be produced by a known method.
  • the virus-producing cells thus produced are cultured.
  • the virus-producing cells can be cultured under known culture conditions. For example, culture at a temperature of 30 to 37 ° C., a humidity of 95% RH, and a CO 2 concentration of 5 to 10% is exemplified, but the present invention is not limited to such conditions. If the desired proliferation of virus-producing cells and the production of non-enveloped virus can be achieved, the temperature, humidity, and CO 2 concentration other than the above ranges may be used.
  • the culture period is not particularly limited, and in the case of rAAV-producing cells, it is, for example, 12 to 150 hours, preferably 48 to 120 hours.
  • the medium used for culturing virus-producing cells may contain components necessary for culturing cells, and for example, DMEM, IMDM, DMEM: F-12, RPMI1640, Ham's F-12, EMEM, etc.
  • Basic synthetic medium (sold from Thermo Fisher, etc.), and if necessary, bovine fetal serum, growth factors, peptides are added to these basic synthetic media, and amino acids are increased. Can be mentioned.
  • the virus-producing cells cultured as described above are brought into contact with a solution containing divalent cations.
  • the contact is an operation in which the pellets of virus-producing cells collected by removing the culture medium by centrifugation or filtration after culturing are suspended in a solution containing divalent cations, or the culture medium of virus-producing cells (that is, that is, It is carried out by one of the operations of adding "a component capable of supplying divalent cations" to the medium after culturing the virus-producing cells). Therefore, in the present invention, the term "solution containing divalent cations" refers to a solution obtained by mixing a solvent described below with a "component capable of supplying divalent cations" and a solution, unless otherwise specified.
  • virus-producing cells includes both solutions obtained by adding "a component capable of supplying divalent cations" to a culture solution of virus-producing cells.
  • the virus-producing cells at the time of contact with the solution containing divalent cations are in a state where virus production has already been achieved, and are basically in a state of being in contact with the solution containing divalent cations. In some cases, virus production or cell proliferation may not be seen.
  • the "solution containing divalent cations" in the case of suspending the pellet of virus-producing cells in a solution containing divalent cations is higher than the concentration of divalent cations when the virus-producing cells are cultured.
  • a solution containing divalent cations having a concentration and which can obtain a crude extract containing a non-enveloped virus after freeze-thaw.
  • a solution containing divalent cations is prepared by appropriately mixing a "component capable of supplying divalent cations" and a “solvent".
  • the "divalent cation" used in the present invention is not particularly limited, and is, for example, magnesium ion, calcium ion, strontium ion, barium ion, cadmium ion, nickel (II) ion, zinc ion, copper (II). Examples thereof include an ion, a mercury (II) ion, an iron (II) ion, a cobalt (II) ion, a tin (II) ion, a lead (II) ion, and a manganese (II) ion.
  • magnesium ions are preferably used in the present invention.
  • the "component capable of supplying divalent cations" of the present invention is not particularly limited, and when magnesium ions are used, magnesium chloride (MgCl 2 ) and magnesium sulfate ( ⁇ 4 ) are exemplified. Although not particularly limited, magnesium chloride is preferably used in the present invention.
  • the "solvent" of the present invention is not particularly limited, and water, buffer solution, phosphate buffered saline (PBS), Tris buffered saline (TBS), and medium are exemplified and can be appropriately selected.
  • Medium means a solution containing nutrients or components that nourish cells. Typically, nutrients include essential and non-essential amino acids, vitamins, energy sources, lipids, and trace elements that cells need for minimal growth and / or survival.
  • the medium is not limited as long as it can be used for culturing virus-producing cells, and media for culturing vertebrate (mammalian) cells, preferably DMEM, IMDM, RPMI1640, Ham's F-12 and DMEM: Basic synthetic media such as F-12 and EMEM are exemplified. Further, the medium may be a medium containing serum, a serum-free medium containing no serum, or a medium having a specified chemical composition. Although not particularly limited, DMEM is particularly preferably used in the present invention.
  • the concentration of the divalent cation contained in the "solution containing the divalent cation" is not particularly limited, but for example, 5 to 200 mM is exemplified.
  • the concentration of the divalent cation is not particularly limited, but is 20 to 100 mM, preferably 30 to 80 mM, and more preferably 40 to 80 mM.
  • the concentration of the divalent cation is not particularly limited, but is 5 to 100 mM, preferably 5 to 80 mM, and more preferably 10 to 40 mM. Particularly preferably, it is 15 to 20 mM.
  • the concentration of the divalent cation is the final concentration of the divalent cation added to the solvent.
  • the concentration of divalent cations can be appropriately set according to the content of the nuclease treatment step described later. That is, it is preferable to use a solution containing divalent cations prepared at an appropriate concentration according to the nuclease.
  • a high salt concentration resistant nuclease can be preferably used.
  • the cryobacterial Shewanella sp the cryobacterial Shewanella sp.
  • the optimum concentration of magnesium ion of the derived endonuclease (Cryonase Cold-active Nuclease (manufactured by Takara Bio Inc.)) is higher than the optimum concentration of other nucleases such as DNaseI, DNaseII, and Benzonase®. ..
  • Solutions containing divalent cations may contain other components, such as buffer components, sugars such as glucose and sucrose, and monovalent or plural cations or anions. good.
  • the pH of the solution containing divalent cations is not limited, and examples thereof include pH 5.5 to 8.5, preferably pH 6.0 to 8.0, and more preferably pH 6.5 to 7.5. Will be done.
  • the amount of the component added is a crude extract containing a non-enveloped virus after freezing and thawing.
  • the amount is not particularly limited as long as it can be used, and examples thereof include an amount at which the concentration of divalent cations in the culture solution of virus-producing cells becomes the concentration in the above-mentioned "solution containing divalent cations".
  • Freezing is carried out using liquid nitrogen, dry ice, ultra-low temperature freezer, etc.
  • the freezing temperature and freezing time are not particularly limited, and examples of the temperature are, for example, ⁇ 200 to ⁇ 20 ° C., preferably ⁇ 90 to ⁇ 70 ° C.
  • the freezing time may be appropriately set according to the freezing temperature and the method, but may be selected in the range of, for example, 3 minutes to 1 hour. When ethanol dry ice is used, a freezing operation for 5 to 10 minutes is exemplified.
  • the melting temperature and melting time are not particularly limited, and examples thereof include a temperature of, for example, 30 to 45 ° C., preferably 35 to 40 ° C., and a time of, for example, 3 minutes to 1 hour, preferably 5 to 10 minutes.
  • the number of times of freezing and thawing is not particularly limited, and examples thereof include 0 times, 1 time, 2 times, 3 times, 4 times, 5 times and more.
  • the length of the interval is not limited, and after the freeze-thaw is completed or while the frozen product is being thawed, it is re-used using an ultra-low temperature freezer at -80 ° C. Can be frozen.
  • one freeze-thaw is sufficient. Performing freeze-thaw once by the method of the present invention is more efficient than performing freeze-thaw three times using a divalent cation-free lysis buffer, and / / cell disruption solution containing non-enveloped virus. Alternatively, a crude extract can be obtained.
  • the method of the present invention may or may not further include cell crushing methods such as ultrasonic crushing, enzyme treatment, and osmotic pressure treatment, which are generally used as conventional methods.
  • the cell disruption solution obtained through the above steps is used for obtaining a non-enveloped virus.
  • the cell disruption solution perform solid-liquid separation, for example, physical separation method such as centrifugation or filter filtration to obtain a supernatant or filtrate to prepare a crude extract separated from cells and their residues. Allows the acquisition of non-enveloped viruses.
  • acquisition of the non-enveloped virus is performed by centrifugation.
  • the supernatant can be collected to obtain a crude extract containing a non-enveloped virus.
  • the crude extract containing the non-enveloped virus thus obtained can be obtained by carrying out any "measurement method for the non-enveloped virus” described later, whereby the "amount of viral vector” and "capsid protein” in the sample can be obtained. Desirable values such as “amount”, "ratio of viral vector particles to empty capsid of virus” can be measured.
  • a crude extract containing a non-enveloped virus can be obtained with high efficiency of fold, 9 times, or 10 times or more.
  • the crude extract is subsequently subjected to nuclease treatment, further subjected to ultracentrifugation, chromatography, ultrafiltration, precipitant treatment, and purification by other known methods to finalize the concentrated or purified non-enveloped virus. It can be obtained as a product.
  • Commercially available reagents and kits can be used for purification.
  • purifying rAAV for example, AAVpro (registered trademark) Purification Kit (manufactured by Takara Bio Inc.) can be used without particular limitation.
  • AAVpro registered trademark
  • Purification Kit first, (1) 1/100 amount of Cryonase Cold-active Nuclearase (final concentration 200U) was added to the crude extract containing AAV vector. / Ml) Add and react at 37 ° C. for 1 hour. By this reaction, the contaminated cell genome, free plasmid, etc. are cleaved.
  • Cryonase is a cryobacterial Shewanella sp.
  • the derived endonuclease is expressed and purified in recombinant Escherichia coli, and can cleave any DNA and RNA substrate (single-stranded, double-stranded, linear, cyclic) at low temperature.
  • Precipitator A 1/10 amount is added to the above solution, mixed with vortex for 10 seconds, reacted at 37 ° C. for 30 minutes, and mixed again with vortex for 10 seconds.
  • Precipitator B 1/20 amount is added to the solution (3), immediately mixed with vortex for 10 seconds, and centrifuged at 5000 to 9000 ⁇ g at 4 ° C. for 5 minutes.
  • the supernatant is filtered using Millex-HV 0.45 ⁇ m.
  • the non-enveloped virus obtained by the method of the present invention can be stored for a long period of time in a suitable solution.
  • a suitable solution for example, when the rAAV vector is replaced with phosphate buffered saline (pH 7.4), under the condition of -80 ° C, for example, 12 hours or more, 1 day or more, 3 days or more, 1 week or more, 2 weeks. It can be stored for 1 month or more, 2 months or more, 3 months or more, or 6 months or more.
  • the method for measuring the non-enveloped virus is not particularly limited, but for example, (a) the amount of the non-enveloped virus vector in a certain amount of sample, for example, the amount of the virus genome, or (b) the protein constituting the non-enveloped virus. Examples include methods for measuring the amount, eg, the amount of capsid protein.
  • the method (a) above a method of measuring the number of copies of the virus genome in the sample by the PCR method is exemplified.
  • the amount of AAV genome can be calculated by using the AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) and the method described in the instruction manual.
  • Examples of the method (b) above include a method of analyzing the protein by SDS-PAGE or a method of quantifying the protein by an immunological method (ELISA method or the like).
  • the ratio of the virus vector particles contained in the sample to the empty capsid of the virus can be calculated. That is, the viral vector particles contain both the capsid protein and the viral genome, whereas the empty capsid of the virus contains the capsid protein but not the viral genome. Thus, for example, when a sample is measured, a small amount of viral genome per fixed amount of capsid protein indicates that the sample is high in empty capsids.
  • Another method for determining the ratio of the virus vector particles contained in the sample to the empty capsid of the virus is (c) a method of observing with an electron microscope.
  • a method for measuring whether or not the viral vector particles contained in the sample are functional that is, whether or not they have the ability to infect target cells
  • (d) the ability of the viral vector particles to infect cells experimentally can be mentioned. More specifically, for example, a method of infecting a suitable target cell such as HeLa cells with a serial diluted solution of a sample containing a virus vector particle to detect a change in cell shape (cell degeneration), and a method of detecting the expression of an introduced gene. Examples thereof include a method and a method for measuring the number of copies of a viral genome introduced into a cell.
  • the present invention also provides a solution containing a divalent cation used in the production method, and a non-enveloped virus produced by the production method.
  • a pharmaceutical composition containing a non-enveloped virus obtained by using the production method of the present invention as an active ingredient is also provided.
  • the pharmaceutical composition can be appropriately prepared according to a technique for producing a viral vector preparation for gene therapy.
  • the non-enveloped virus obtained by further concentrating, purifying, and processing the non-enveloped virus from the crude extract obtained by the production method of the present invention by a known method can be used as a pharmaceutical composition.
  • the pharmaceutical composition can be used in vitro to cells of patient origin or can be administered directly to the patient.
  • kits for producing a non-enveloped virus contains a solution containing divalent cations or a component capable of supplying divalent cations as an essential component, but also contains a nucleic acid that supplies an essential component for particle formation of a non-enveloped virus. It may contain a vector, a vector containing nucleic acid encapsulated in non-enveloped virus particles, a nuclease, a filtration filter, and the like.
  • the kit may include a solution containing divalent cations, a virus purification column, and various buffer solutions used in the column purification operation.
  • Example 1 Comparison with freeze-thaw using a lysis buffer containing no MgCl 2
  • Example 2- (2) plasmid transfection
  • the cells obtained in Example 1- (1) were subjected to medium exchange in 10 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • PEI polyethyleneimine
  • N 2.3
  • the cell pellet obtained in Example 1- (3) is loosened using a vortex mixer for about 15 seconds, and does not contain MgCl 2 medium or MgCl 2 prepared in Example 1- (4).
  • 500 ⁇ l of PBS was added as a lysis buffer and mixed using a vortex mixer.
  • the cells were allowed to stand in ethanol dry ice for about 5 to 10 minutes to freeze the cell suspension, and then thawed in a water bath at 37 ° C. for about 5 to 10 minutes.
  • the thawed cell disruption solution was mixed using a vortex mixer. This freeze-thaw cycle was performed 3 times.
  • reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
  • 20 ⁇ l of this DNase I-treated solution 20 ⁇ l of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After heat insulation, this solution was diluted 100-fold with EASY dilution, and 5 ⁇ l of this diluted solution was used for genomic titer measurement.
  • the reaction solution was prepared as follows according to the instructions (per reaction).
  • Example 2 About the effect of increasing AAV extraction efficiency by freezing and thawing using H2O supplemented with MgCl 2
  • Seeding of cells for rAAV vector preparation T225 flask for cell culture 10% 40 ml of DMEM High-glucose (manufactured by Thermo Fisher) containing FBS (manufactured by BioWest) was added, and 293T cells were seeded in 4 ⁇ 10 6 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • Example 2- (1) plasmid transfection
  • the cells obtained in Example 2- (1) were subjected to medium exchange in 40 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • PEI polyethyleneimine
  • Example 2- (3) Acquisition of crude extract of rAAV vector by various "extraction solutions"
  • the cell pellet obtained in Example 2- (3) is loosened for about 15 seconds using a vortex mixer, and in Example 2- (4).
  • the cell suspension was frozen at ⁇ 80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
  • the thawed sample was mixed using a vortex mixer, centrifuged at 9000 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
  • Genome titer measurement of "crude extract” The genomic titer of the crude extract of the rAAV vector prepared in Example 2- (5) was measured.
  • An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
  • reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
  • 20 ⁇ l of this DNase I-treated solution 20 ⁇ l of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 ⁇ l of this diluted solution was used for genomic titer measurement.
  • the reaction solution was prepared as follows according to the instructions (per reaction).
  • Example 3 Effect of increasing AAV extraction efficiency by freezing and thawing using DMEM supplemented with MgCl 2
  • Example 3- (1) (2) plasmid transfection
  • the cells obtained in Example 3- (1) were subjected to medium exchange in 40 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • PEI polyethyleneimine
  • Example 3- (3) Acquisition of crude extract of rAAV vector by various "extraction solutions”
  • the cell pellet obtained in Example 3- (3) is loosened using a vortex mixer for about 15 seconds, and in Example 3- (4).
  • the cell suspension was frozen at ⁇ 80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
  • the thawed sample was mixed using a vortex mixer, centrifuged at 9000 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
  • Genome titer measurement of "crude extract” The genomic titer of the crude extract of the rAAV vector prepared in Example 3- (5) was measured.
  • An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
  • reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
  • 20 ⁇ l of this DNase I-treated solution 20 ⁇ l of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 ⁇ l of this diluted solution was used for genomic titer measurement.
  • the reaction solution was prepared as follows according to the instructions (per reaction).
  • Example 4 AAV extraction efficiency using divalent cations other than magnesium ion (1) Seeding of cells for rAAV vector preparation 10% FBS (BioWest) per well in 6-well plate (manufactured by Corning) for cell culture 2 ml of DMEM High-glucose (manufactured by Thermo Fisher) containing (manufactured by The Company) was put therein, and 293T cells were seeded therein with 1.5 ⁇ 10 5 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • Example 4- (1) (2) plasmid transfection
  • the cells obtained in Example 4- (1) were subjected to medium exchange in 2 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • PEI polyethyleneimine
  • Example 4- (2) Recovery of rAAV vector-producing cells
  • the cells obtained in Example 4- (2) were stripped by pipetting. Then, the cell suspension was collected, centrifuged at 1700 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
  • Example 4- (3) Acquisition of crude extract of rAAV vector by various "extraction solutions"
  • the cell pellet obtained in Example 4- (3) was loosened for about 15 seconds using a vortex mixer, and in Example 4- (4).
  • the cell suspension was frozen at ⁇ 80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
  • the thawed sample was mixed using a vortex mixer, centrifuged at 9000 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
  • Genome titer measurement of "crude extract” The genomic titer of the crude extract of the rAAV vector prepared in Example 4- (5) was measured.
  • An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
  • reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
  • 20 ⁇ l of this DNase I-treated solution 20 ⁇ l of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 ⁇ l of this diluted solution was used for genomic titer measurement.
  • the reaction solution was prepared as follows according to the instructions (per reaction).
  • Example 5 AAV extraction efficiency using a solvent other than DMEM
  • Cell culture 6-well plate (manufactured by Corning) contains 10% FBS (manufactured by BioWest) per well.
  • FBS manufactured by BioWest
  • 2 ml of DMEM High-glucose manufactured by Thermo Fisher
  • 293T cells were seeded in 1.5 ⁇ 10 5 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • Example 5- (1) (2) plasmid transfection
  • the cells obtained in Example 5- (1) were subjected to medium exchange in 2 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • PEI polyethyleneimine
  • Example 5- (2) Recovery of rAAV vector-producing cells
  • the cells obtained in Example 5- (2) were stripped by pipetting. Then, the cell suspension was collected, centrifuged at 1700 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
  • DMEM manufactured by Thermo Fisher
  • RPMI-1640 manufactured by Thermo Fisher
  • DMEM / F-12 manufactured by Thermo Fisher
  • EMEM manufactured by Fujifilm Wako Junyaku Co., Ltd.
  • IMDM MgCl 2 was added to TBS (manufactured by Nippon Gene) or PBS (manufactured by PromoCell) to 20 mM to prepare various extraction solutions.
  • Example 5- (3) Acquisition of crude extract of rAAV vector by various "extraction solutions"
  • the cell pellet obtained in Example 5- (3) was loosened for about 15 seconds using a vortex mixer, and in Example 5- (4).
  • the cell suspension was frozen at ⁇ 80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
  • the thawed sample was mixed using a vortex mixer, centrifuged at 9000 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
  • Genome titer measurement of "crude extract” The genomic titer of the crude extract of the rAAV vector prepared in Example 5- (5) was measured.
  • An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
  • reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
  • 20 ⁇ l of this DNase I-treated solution 20 ⁇ l of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 ⁇ l of this diluted solution was used for genomic titer measurement.
  • the reaction solution was prepared as follows according to the instructions (per reaction).
  • Example 6 About the effect of increasing AAV extraction efficiency by freezing and thawing using H2O to which MgCl 2 is added
  • Example 6- (1) (2) plasmid transfection
  • the cells obtained in Example 6- (1) were subjected to medium exchange in 2 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • PEI polyethyleneimine
  • Example 6- (2) Recovery of rAAV vector-producing cells
  • the cells obtained in Example 6- (2) were stripped by pipetting. Then, the cell suspension was collected, centrifuged at 1700 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
  • Example 6- (3) Acquisition of crude extract of rAAV vector by various "extraction solutions"
  • the cell pellet obtained in Example 6- (3) was loosened for about 15 seconds using a vortex mixer, and in Example 6- (4).
  • the cell suspension was frozen at ⁇ 80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
  • the thawed sample was mixed using a vortex mixer, centrifuged at 9000 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
  • Genome titer measurement of "crude extract” The genomic titer of the crude extract of the rAAV vector prepared in Example 6- (5) was measured.
  • An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
  • reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
  • 20 ⁇ l of this DNase I-treated solution 20 ⁇ l of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 ⁇ l of this diluted solution was used for genomic titer measurement.
  • the reaction solution was prepared as follows according to the instructions (per reaction).
  • Example 7 Extraction efficiency of AAV of serotypes other than AAV2
  • DMEM High containing 10% FBS manufactured by BioWest
  • T225 flask manufactured by Corning
  • -Glucose manufactured by Thermo Fisher
  • 40 ml was put therein, and 293T cells were seeded in 4 ⁇ 10 6 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • Example 7- (1) plasmid transfection
  • the cells obtained in Example 7- (1) were subjected to medium exchange in 40 ml of DMEM High-glucose (manufactured by Thermo Fisher).
  • AAV1 is pRC1 Vector (manufactured by Takara Bio)
  • pHelper Vector manufactured by Takara Bio
  • pAAV-ZsGreen1 Vector manufactured by Takara Bio
  • AAV2 is pRC2-mi342 Vector (manufactured by Takara Bio).
  • AAV5 is pRC5 Vector (manufactured by Takara Bio), pHelper Vector (manufactured by Takara Bio), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio).
  • AAV6 was transfected with pRC6 Vector (manufactured by Takara Bio) and pHelper Vector (manufactured by Takara Bio and pAAV-ZsGreen1 Vector (manufactured by Takara Bio)) by the polyethyleneimin (PEI) method. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
  • Example 7- (3) Acquisition of crude extract of rAAV vector using extraction solution
  • the cell pellet obtained in Example 7- (3) was loosened using a vortex mixer for about 15 seconds, and MgCl produced in Example 7- (4) was used.
  • the cells were allowed to stand in ethanol dry ice for about 5 to 10 minutes to freeze the cell suspension, and then thawed for about 5 to 10 minutes using a water bath at 37 ° C.
  • the thawed sample was mixed using a vortex mixer, centrifuged at 9000 ⁇ g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
  • Genome titer measurement of "crude extract” The genomic titer of the crude extract of the rAAV vector prepared in Example 7- (5) was measured.
  • An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
  • reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
  • 20 ⁇ l of this DNase I-treated solution 20 ⁇ l of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 ⁇ l of this diluted solution was used for genomic titer measurement.
  • the reaction solution was prepared as follows according to the instructions (per reaction).
  • a non-enveloped virus solution can be efficiently obtained without complicated operations.
  • the non-enveloped virus produced by the method of the present invention or a composition containing the non-enveloped virus as an active ingredient is very useful as a gene transfer method in the field of basic research or clinical application of gene therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides a method for producing an adeno-associated virus, the method comprising (a) a step for freezing and thawing a culture medium containing cells capable of producing an adeno-associated virus and 5 mM or more of a bivalent positive ion and (b) a step for obtaining the adeno-associated virus from the culture medium obtained in step (a).

Description

二価の陽イオンを利用した非エンベロープウイルスの製造方法Method for producing non-enveloped virus using divalent cations
 本発明は、エンベロープを持たないウイルス(以下、非エンベロープウイルス)、好適には、アデノ随伴ウイルス(以下、AAV)を製造するための方法に関する。 The present invention relates to a method for producing an envelopeless virus (hereinafter, non-enveloped virus), preferably an adeno-associated virus (hereinafter, AAV).
 現在、遺伝子組換え分野や医療分野においては、ヒトを含む哺乳動物細胞に遺伝子を導入する方法として、電気穿孔や金属微粒子を用いる物理的方法、核酸、ポリカチオン、もしくはリポソームを用いる化学的方法等に加えて、生物学的方法としてウイルス由来の遺伝子導入用のベクター(以下、ウイルスベクター)を用いる方法がある。ウイルスベクターとは、天然由来のウイルスを改変し、所望の遺伝子等を標的細胞に移入することができるようにしたベクターのことで、近年技術開発が進んでいる。一般に、遺伝子組換え技術を用いて作製したウイルスベクターは、組換えウイルスベクターと呼ばれるが、そういった組換えウイルスベクターの由来となるウイルスとしては、レトロウイルスやレンチウイルス、センダイウイルス、及びヘルペスウイルス等のエンベロープを持つウイルス、並びにアデノウイルス、及びAAV等の非エンベロープウイルスがよく知られている。 Currently, in the field of gene recombination and medical field, as a method for introducing a gene into mammalian cells including humans, a physical method using electric perforation or metal fine particles, a chemical method using nucleic acid, polycation, or liposome, etc. In addition, as a biological method, there is a method using a vector for introducing a gene derived from a virus (hereinafter referred to as a virus vector). A viral vector is a vector obtained by modifying a naturally occurring virus so that a desired gene or the like can be transferred into a target cell, and technological development has been progressing in recent years. Generally, a virus vector prepared by using gene recombination technology is called a recombinant virus vector, and the virus from which such a recombinant virus vector is derived includes retrovirus, lentivirus, Sendai virus, herpes virus and the like. Encapsulated viruses, as well as adenoviruses, and non-enveloped viruses such as AAV are well known.
 特にAAVはヒトを含む広範な種の細胞に感染可能で、血球、筋、神経細胞等の分化を終えた非分裂細胞にも感染すること、ヒトに対する病原性がないため副作用の心配が低いこと、ウイルス粒子が物理化学的に安定であること等から、先天性遺伝子疾患の治療の他、癌や感染症の治療を目的とした遺伝子治療法に用いる遺伝子導入用のベクターとしての利用価値が、近年注目されている。 In particular, AAV can infect a wide variety of cells including humans, it also infects non-dividing cells that have completed differentiation such as blood cells, muscles, and nerve cells, and since it is not pathogenic to humans, there is little concern about side effects. Since the virus particles are physicochemically stable, it is useful as a vector for gene transfer used in gene therapy for the treatment of congenital gene diseases as well as cancer and infectious diseases. It has been attracting attention in recent years.
 組換えウイルスベクターの製造方法としては、一般的には、ウイルス粒子形成に必須な要素のうち、シス供給を要するものとトランス供給可能なものを分離して宿主として使用可能な細胞に導入することで、野生型ウイルスの産生、及び遺伝子組換えウイルスの感染先での自立複製を防ぐ方法が取られる。通常、前記ウイルス粒子形成に必須な要素を核酸構築物の形で細胞に導入し、ウイルスを産生する能力を有する細胞(以下、ウイルス産生細胞)が作製される。当該細胞を培養してウイルス粒子形成に必須なすべての要素が当該細胞内で発現されると、ウイルスベクターが生成される。 As a method for producing a recombinant virus vector, generally, among the elements essential for virus particle formation, those that require cis supply and those that can be trans-supplied are separated and introduced into cells that can be used as a host. Therefore, a method is taken to prevent the production of wild-type virus and the self-sustaining replication of the recombinant virus at the infected destination. Usually, the essential element for virus particle formation is introduced into a cell in the form of a nucleic acid construct to produce a cell having the ability to produce a virus (hereinafter referred to as a virus-producing cell). When the cells are cultured and all the essential elements for virus particle formation are expressed in the cells, a viral vector is generated.
 ウイルス産生が達成されたウイルス産生細胞は、その後、回収、破砕され、得られた組換えAAV(rAAV)ベクターを含む細胞破砕液を適宜フィルターろ過、超遠心、クロマトグラフィー、又は限外ろ過等の工程に供することによってrAAVベクターが精製され、最終製造物となる。 The virus-producing cells in which virus production has been achieved are then collected and disrupted, and the cell disruption solution containing the obtained recombinant AAV (rAAV) vector is appropriately filtered, ultra-centrifuged, chromatographed, ultrafiltered, or the like. By subjecting to the process, the rAAV vector is purified and becomes the final product.
 現在、rAAVベクターの利用が遺伝子治療の基礎研究、又は臨床応用の分野に広がるにつれ、より高力価、高純度のrAAVベクターを、大規模にかつ簡易に取得する方法が必要とされ、各種の改良方法が開示されている。しかし、当該開示された改良方法の多くは、細胞破砕液から非エンベロープウイルスを精製する工程についての工夫であり、非エンベロープウイルスを精製に供する前に実施される「ウイルス産生細胞の処理方法」についての改良は少ない。 Currently, as the use of rAAV vectors spreads to the fields of basic research on gene therapy or clinical application, there is a need for a large-scale and easy method for obtaining rAAV vectors with higher titers and higher purity. The improvement method is disclosed. However, many of the disclosed improved methods are devised for the step of purifying the non-enveloped virus from the cell disruption solution, and the "method for treating virus-producing cells" carried out before the non-enveloped virus is subjected to purification. There are few improvements.
 ウイルス産生細胞の処理方法として、凍結融解、超音波処理、機械的破砕、乳鉢・乳棒での破砕、界面活性剤の添加、等が挙げられるが、一般的には、凍結融解が行われることが多い。すなわち、ウイルス産生細胞を含む溶液を凍結融解することにより、細胞を破砕した後、遠心やろ過を行うことにより、ウイルスベクターを含む粗抽出液を取得する。例えば、非特許文献1では、AAV産生細胞であるExpi293F細胞またはBHK細胞のペレットにlysis buffer(50mM Tris、150mM NaCl、pH8.5)を添加し、凍結融解を3回実施した後に、Benzonase処理をし、更に遠心によって溶解物を清澄化している。また、非特許文献2では、AAV産生細胞であるHEK293細胞またはHeLaS3細胞のペレットをlysis buffer(20mM Tris[pH7.5]、150mM NaCl、10mM MgCl)中で懸濁し、凍結融解を3回実施している。 Examples of the method for treating virus-producing cells include freeze-thaw, ultrasonic treatment, mechanical crushing, crushing with a dairy pot / nipple, addition of a surfactant, etc., but in general, freeze-thawing may be performed. many. That is, a crude extract containing a virus vector is obtained by crushing the cells by freezing and thawing the solution containing the virus-producing cells, and then centrifuging or filtering the cells. For example, in Non-Patent Document 1, lysis buffer (50 mM Tris, 150 mM NaCl, pH 8.5) is added to pellets of Expi293F cells or BHK cells which are AAV-producing cells, freeze-thawed three times, and then subjected to Benzonase treatment. Then, the solution is clarified by centrifugation. Further, in Non-Patent Document 2, pellets of HEK293 cells or HeLaS3 cells, which are AAV-producing cells, are suspended in lysis buffer (20 mM Tris [pH 7.5], 150 mM NaCl, 10 mM MgCl 2 ), and freeze-thaw is performed three times. is doing.
 上述したように、非エンベロープウイルスを精製に供する前に実施される「ウイルス産生細胞の処理方法」についての改良は少なく、依然改善の余地が残されている。 As mentioned above, there are few improvements in the "method for treating virus-producing cells" that is carried out before the non-enveloped virus is subjected to purification, and there is still room for improvement.
 本発明者らは、煩雑な操作なく効率よく非エンベロープウイルスを得ることができる「ウイルス産生細胞の処理方法」を提供することを目的に鋭意研究した結果、非エンベロープウイルスを産生する能力を有する細胞と二価の陽イオンとを含む溶液を凍結融解し、当該溶液から非エンベロープウイルスを取得することにより、煩雑な操作なく効率よく非エンベロープウイルスを取得できることを見出し、本発明を完成させた。 As a result of diligent research for the purpose of providing a "method for treating virus-producing cells" capable of efficiently obtaining a non-enveloped virus without complicated operations, the present inventors have the ability to produce a non-enveloped virus. By freezing and thawing a solution containing divalent cations and obtaining a non-enveloped virus from the solution, it was found that the non-enveloped virus can be efficiently obtained without complicated operations, and the present invention has been completed.
 すなわち、本発明は、
[1]アデノ随伴ウイルスの製造方法であって、
(a)アデノ随伴ウイルスを産生する能力を有する細胞と5mM以上の二価の陽イオンとを含む溶液を凍結融解する工程、及び
(b)(a)の溶液からアデノ随伴ウイルスを取得する工程、
を含む、方法、
[2]二価の陽イオンが、マグネシウムイオンである[1]に記載の方法、
[3]溶液が、培地である[1]又は[2]に記載の方法、
[4]培地が、アミノ酸、糖類、及び脂質を含む培地である[3]に記載の方法、
[5]培地が、DMEM、IMDM、RPMI1640、Ham‘s F-12、EMEM及びこれらの混合物からなる群から選択される培地である[4]に記載の方法、
[6](b)の工程が、固液分離により実施される[1]~[5]のいずれかに記載の方法、
[7]固液分離が、遠心により実施される[6]に記載の方法、
に関する。
That is, the present invention
[1] A method for producing an adeno-associated virus.
(A) a step of freezing and thawing a solution containing cells capable of producing an adeno-associated virus and a divalent cation of 5 mM or more, and (b) a step of obtaining an adeno-associated virus from the solution of (a).
Including, method,
[2] The method according to [1], wherein the divalent cation is a magnesium ion.
[3] The method according to [1] or [2], wherein the solution is a medium.
[4] The method according to [3], wherein the medium is a medium containing amino acids, sugars, and lipids.
[5] The method according to [4], wherein the medium is a medium selected from the group consisting of DMEM, IMDM, RPMI1640, Ham's F-12, EMEM and a mixture thereof.
[6] The method according to any one of [1] to [5], wherein the step (b) is carried out by solid-liquid separation.
[7] The method according to [6], wherein the solid-liquid separation is carried out by centrifugation.
Regarding.
 本発明により、煩雑な操作なく効率的に非エンベロープウイルス液を得るための製造方法が提供される。更に、当該製造方法に使用される二価の陽イオンを含む溶液、及び当該製造方法を用いて製造した非エンベロープウイルスが提供される。本発明の二価の陽イオンを含む溶液を用いて得られたウイルス粗抽出液は、従来の非エンベロープウイルス精製方法にも適用可能である。 INDUSTRIAL APPLICABILITY According to the present invention, a manufacturing method for efficiently obtaining a non-enveloped virus solution without complicated operations is provided. Further provided is a solution containing divalent cations used in the production method and a non-enveloped virus produced using the production method. The crude virus extract obtained by using the solution containing the divalent cation of the present invention can also be applied to a conventional non-enveloped virus purification method.
実施例1における、MgCl培地またはPBSを使用した、凍結融解回数の違いによる各粗抽出液のウイルス量を示す図である。It is a figure which shows the viral load of each crude extract by the difference in the number of times of freezing and thawing using MgCl 2 medium or PBS in Example 1. FIG. 実施例2における、塩化マグネシウムまたは塩化ナトリウムを含むHOを使用した、凍結融解による各粗抽出液のウイルス量を示す図である。It is a figure which shows the viral load of each crude extract by freeze-thaw using H2O containing magnesium chloride or sodium chloride in Example 2. FIG. 実施例3における、塩化マグネシウムまたは塩化ナトリウムを含むDMEMを使用した、凍結融解による各粗抽出液のウイルス量を示す図である。It is a figure which shows the viral load of each crude extract by freeze-thaw using DMEM containing magnesium chloride or sodium chloride in Example 3. FIG. 実施例4における、種々の二価の陽イオンを含む培地を使用した、凍結融解による各粗抽出液のウイルス量を示す図である。It is a figure which shows the viral load of each crude extract by freeze-thaw using the culture medium containing various divalent cations in Example 4. FIG. 実施例5における、塩化マグネシウムを含む種々の溶媒を使用した、凍結融解による各粗抽出液のウイルス量を示す図である。It is a figure which shows the viral load of each crude extract by freeze-thaw using various solvents containing magnesium chloride in Example 5. FIG. 実施例6における、塩化マグネシウムを含むHOを使用した、凍結融解による各粗抽出液のウイルス量を示す図である。It is a figure which shows the viral load of each crude extract by freeze-thaw using H2O containing magnesium chloride in Example 6. 実施例7における、塩化マグネシウムを含む培地を使用した、凍結融解による種々の血清型AAVの粗抽出液のウイルス量を示す図である。It is a figure which shows the viral load of the crude extract of various serotype AAV by freeze-thaw using the medium containing magnesium chloride in Example 7. FIG.
 以下に本発明について詳細に説明する。
<定義>
The present invention will be described in detail below.
<Definition>
 本明細書において「非エンベロープウイルス」という用語は、エンベロープウイルス以外のウイルスを指す。ここでエンベロープウイルスとは、ウイルス表面に脂質層もしくは脂質2重層を持つウイルスを指す。非エンベロープウイルスの代表的なものとしては、DNAをゲノムとするウイルスについては、アデノウイルス、パルボウイルス、パポバウイルス、ヒトパピローマウイルス等、RNAをゲノムとするウイルスについては、ロタウイルス、コクサッキーウイルス、エンテロウイルス、サポウイルス、ノロウイルス、ポリオウイルス、エコーウイルス、A型肝炎ウイルス、E型肝炎ウイルス、ライノウイルス、アストロウイルス等が例示される。 In the present specification, the term "non-enveloped virus" refers to a virus other than the enveloped virus. Here, the enveloped virus refers to a virus having a lipid layer or a lipid bilayer on the surface of the virus. Typical non-enveloped viruses include adenovirus, parvovirus, papovavirus, human papillomavirus, etc. for viruses whose genome is DNA, and rotavirus, coxsackie virus, enterovirus, and sapovirus for viruses whose genome is RNA. , Norovirus, poliovirus, echovirus, hepatitis A virus, hepatitis E virus, rhinovirus, astrovirus and the like are exemplified.
 本発明の製造方法が適用される非エンベロープウイルスに特に限定はなく、既に産生方法が知られた非エンベロープウイルスでも、天然から新たに取得された非エンベロープウイルス、又はそれらを由来とする遺伝子組換えウイルスベクターでもよい。本発明の製造方法で製造される非エンベロープウイルスには、好適にはアデノウイルス、又はパルボウイルス科のAAVやボカウイルスが例示される。 The non-enveloped virus to which the production method of the present invention is applied is not particularly limited, and even a non-enveloped virus whose production method is already known is a non-enveloped virus newly obtained from nature or a gene recombination derived from them. It may be a virus vector. Preferred examples of the non-enveloped virus produced by the production method of the present invention include adenovirus, AAV of the Parvoviridae family, and bocavirus.
 本明細書においてAAVとは、パルボウイルス科、ディペンドウイルス属に属する、ヒトを含む霊長目の動物やその他の脊椎動物に感染する小型のウイルスを示す。AAVはエンベロープを持たない正20面体の外殻とその内部に1本の1本鎖DNAを有する。本明細書において、AAVは野生型ウイルス及びその派生物を含み、特に記載する場合を除き全ての血清型及びクレードを含む。 As used herein, AAV refers to a small virus belonging to the family Parvoviridae, Dependoparvovirus, which infects primate animals including humans and other vertebrates. AAV has an envelopeless icosahedron outer shell and a single single-stranded DNA inside it. As used herein, AAV includes wild-type viruses and derivatives thereof, including all serotypes and clades unless otherwise noted.
 本発明の製造方法は、公知のいずれの血清型のAAVにも適用可能であり、例えば、AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、及びAAV13からなる群より選択された少なくとも1種のAAVの製造に利用することができる。本発明の製造方法は、好適にはAAV1、AAV2、AAV5、AAV6に適用され、さらに好適にはAAV2に適用される。なお、本明細書においてrAAVの血清型について述べる場合、キャプシド(capsid)の由来となる血清型を基準とする。すなわち、rAAV調製時に使用されるcap遺伝子の由来に応じてそのrAAVの血清型を決定するものとし、rAAV粒子中に封入されているAAVゲノムの血清型の由来には依存しないものとする。例えば、キャプシドがAAV6由来で、rAAV粒子中に封入されているAAVゲノム中のITRがAAV2由来の場合は、本明細書中では当該rAAVは血清型6とする。さらに、前記の各血清型のAAVのキャプシドの変異体を含むAAVの製造にも、本発明の製造方法を適用することができる。 The production method of the present invention is applicable to any known serotype of AAV, for example, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, and AAV13. It can be used to produce at least one AAV selected from the group consisting of. The production method of the present invention is preferably applied to AAV1, AAV2, AAV5, and AAV6, and more preferably to AAV2. When describing the serotype of rAAV in the present specification, the serotype from which the capsid is derived is used as a reference. That is, the serotype of the rAAV shall be determined according to the origin of the cap gene used at the time of rAAV preparation, and shall not depend on the origin of the serotype of the AAV genome encapsulated in the rAAV particles. For example, if the capsid is derived from AAV6 and the ITR in the AAV genome encapsulated in the rAAV particles is derived from AAV2, the rAAV is referred to as serotype 6 herein. Furthermore, the production method of the present invention can also be applied to the production of AAV containing a variant of the capsid of AAV of each of the above serotypes.
 本明細書においてウイルスを産生する能力を有する細胞(以下、ウイルス産生細胞)とは、ウイルス産生に必要な要素を発現し、ウイルス粒子を産生する細胞のことを指す。本発明の製造方法で用いられるウイルス産生細胞に特に限定はなく、環境中や、感染症の患者の臨床検体等から得られたウイルス産生細胞でもよく、人為的に作製したウイルス産生細胞でもよい。好適には、本発明には人為的に作製したウイルス産生細胞が使用され、例えば所望の非エンベロープウイルスの粒子形成に必須な要素を供給する核酸、及び非エンベロープウイルスの粒子に封入される核酸を任意の細胞に導入することにより作製したウイルス産生細胞や、細胞に人為的に非エンベロープウイルス、さらに必要に応じて当該ウイルスを産生させるために必要なヘルパーウイルスを感染させたウイルス産生細胞が使用される。 In the present specification, a cell having an ability to produce a virus (hereinafter referred to as a virus-producing cell) refers to a cell that expresses an element necessary for virus production and produces virus particles. The virus-producing cells used in the production method of the present invention are not particularly limited, and may be virus-producing cells obtained in the environment or from clinical specimens of patients with infectious diseases, or may be artificially produced virus-producing cells. Preferably, artificially produced virus-producing cells are used in the present invention, for example, a nucleic acid that supplies essential elements for particle formation of a desired non-enveloped virus, and a nucleic acid encapsulated in particles of a non-enveloped virus. Virus-producing cells produced by introduction into arbitrary cells, and virus-producing cells in which the cells are artificially infected with a non-enveloped virus and, if necessary, a helper virus necessary for producing the virus are used. Virus.
 ウイルス産生細胞製造用の細胞としては、特に限定はなく、ヒト、サル、げっ歯類等の哺乳動物細胞を使用することができる。好適には人為的に樹立された細胞株、例えばトランスフェクション効率が高い293細胞(ATCC CRL-1573)、293T細胞(ATCC CRL-3216)、293T/17細胞(ATCC CRL-11268)、293F細胞、293FT細胞(いずれもライフテクノロジーズ社製)、G3T-hi細胞(国際公開第2006/035829号パンフレット)、市販のウイルス産生用細胞株、AAV293細胞(Stratagene社製)が例示される。また、Sf9細胞(ATCC CRL-1711)などの節足動物細胞(昆虫細胞)が例示される。例えば、前記293細胞等はアデノウイルスE1タンパク質を恒常的に発現するが、このような、rAAV産生に必要なタンパク質の1つ、又はいくつかを一過的もしくは恒常的に発現するように改変した細胞であってもよい。これらの種々の細胞に対して、公知の方法や市販のキットを用いて以下に挙げるウイルス形成に必要な要素を導入し、ウイルス産生細胞とすることができる。また、当該細胞の培養は、公知の培養条件で行うことができる。例えば温度30~37℃、湿度95%RH、CO濃度5~10%(v/v)での培養が例示されるが、本発明はこのような条件に限定されるものではない。所望のウイルス産生細胞の増殖やウイルスの産生が達成できるのであれば前記の範囲以外の温度、湿度、CO濃度で実施してもよい。また、培養期間は特に限定はなく、例えば12~150時間、好適には48~120時間である。 The cells for producing virus-producing cells are not particularly limited, and mammalian cells such as humans, monkeys, and rodents can be used. Preferably, artificially established cell lines, such as 293 cells (ATCC CRL-1573), 293T cells (ATCC CRL-3216), 293T / 17 cells (ATCC CRL-11268), 293F cells, which have high transfection efficiency. Examples thereof include 293FT cells (all manufactured by Life Technologies), G3T-hi cells (International Publication No. 2006/035829), commercially available cell lines for virus production, and AAV293 cells (manufactured by Stratagene). Further, arthropod cells (insect cells) such as Sf9 cells (ATCC CRL-1711) are exemplified. For example, the 293 cells and the like constitutively express the adenovirus E1 protein, and one or some of the proteins necessary for rAAV production are modified to transiently or constitutively express. It may be a cell. The following elements necessary for virus formation can be introduced into these various cells using a known method or a commercially available kit to obtain virus-producing cells. In addition, the cells can be cultured under known culture conditions. For example, culture at a temperature of 30 to 37 ° C., a humidity of 95% RH, and a CO 2 concentration of 5 to 10% (v / v) is exemplified, but the present invention is not limited to such conditions. If the desired proliferation of virus-producing cells and the production of virus can be achieved, the temperature, humidity, and CO 2 concentration other than the above ranges may be used. The culture period is not particularly limited, and is, for example, 12 to 150 hours, preferably 48 to 120 hours.
 ウイルス産生細胞として、rAAV産生細胞を例に挙げて説明すると、rAAV形成に必須な要素として、(A)rAAV粒子に封入される核酸、(B)AAV由来の要素、例えばRepタンパク質及びCapタンパク質、並びに(C)ヘルパー機能を発揮する要素、例えばアデノウイルス由来のE1aタンパク質、E1bタンパク質、E2タンパク質、E4タンパク質及びVARNA、が挙げられる。これらの要素を任意の細胞に導入することにより、rAAV産生細胞を作製することができる。 Taking rAAV-producing cells as an example as virus-producing cells, as essential elements for rAAV formation, (A) nucleic acids encapsulated in rAAV particles, (B) AAV-derived elements such as Rep protein and Cap protein, and the like. In addition, (C) elements that exert a helper function, such as E1a protein, E1b protein, E2 protein, E4 protein, and VARNA derived from adenovirus can be mentioned. By introducing these elements into any cell, rAAV-producing cells can be produced.
 前記の「(A)rAAV粒子に封入される核酸」は、AAV由来のITR配列とrAAV粒子に搭載することが望まれる核酸とで構成される。rAAV粒子に搭載することが望まれる核酸としては、任意の外来遺伝子、例えばポリペプチド(酵素、成長因子、サイトカイン、レセプター、構造タンパク質等)、アンチセンスRNA、リボザイム、デコイ、RNA干渉を起こすRNA等を供給する核酸が例示される。加えて外来遺伝子の発現の制御のため、適当なプロモーター、エンハンサー、ターミネーターやその他の転写調節要素の1以上がrAAV粒子に封入される核酸に挿入されていてもよい。rAAV粒子に封入される核酸は核酸構築物として、プラスミドの形態で細胞に導入することができる。前記のプラスミドは、例えば、市販又は公知のプラスミドを用いて公知の方法により構築することができる。当該プラスミドの例として、pAAV-ZsGreen1 Vector及びpAAV-CMV Vector(いずれもタカラバイオ社製)が挙げられる。 The above-mentioned "(A) nucleic acid encapsulated in rAAV particles" is composed of an AAV-derived ITR sequence and a nucleic acid desired to be mounted on rAAV particles. Nucleic acids that are desired to be loaded on rAAV particles include arbitrary foreign genes such as polypeptides (enzymes, growth factors, cytokines, receptors, structural proteins, etc.), antisense RNA, ribozyme, decoy, RNA that causes RNA interference, and the like. Nucleic acid to supply is exemplified. In addition, one or more of the appropriate promoters, enhancers, terminators and other transcriptional regulatory elements may be inserted into the nucleic acid encapsulated in the rAAV particles to control the expression of foreign genes. The nucleic acid encapsulated in the rAAV particles can be introduced into cells in the form of a plasmid as a nucleic acid construct. The above-mentioned plasmid can be constructed, for example, by a known method using a commercially available or known plasmid. Examples of the plasmid include pAAV-ZsGreen1 Vector and pAAV-CMV Vector (both manufactured by Takara Bio Inc.).
 前記の「(B)AAV由来の要素、例えばRepタンパク質及びCapタンパク質」の形態には限定はなく、それぞれの要素をタンパク質として直接細胞に導入することもできるし、それぞれの要素を供給可能な1又は複数の核酸構築物として、プラスミドやウイルスベクターに搭載して、細胞に導入することもできる。これらの核酸の細胞への導入は、例えば、市販又は公知のプラスミド又はウイルスベクターを用いて公知の方法により行うことができる。Repタンパク質及びCapタンパク質を供給可能なプラスミドの例として、pRC1 Vector、pRC2-mi342 Vector、pRC5- Vector、及びpRC6 Vector(いずれもタカラバイオ社製)が挙げられる。 The form of the above-mentioned "(B) AAV-derived element, for example, Rep protein and Cap protein" is not limited, and each element can be directly introduced into a cell as a protein, and each element can be supplied 1. Alternatively, it can be loaded into a plasmid or viral vector as a plurality of nucleic acid constructs and introduced into cells. Introduction of these nucleic acids into cells can be performed, for example, by a known method using a commercially available or known plasmid or viral vector. Examples of plasmids capable of supplying Rep protein and Cap protein include pRC1 Vector, pRC2-mi342 Vector, pRC5-Vector, and pRC6 Vector (all manufactured by Takara Bio Inc.).
 前記の「(C)ヘルパー機能を発揮する要素」の形態には限定はなく、それぞれの要素を直接タンパク質として細胞に導入することもできるし、それぞれの要素を供給可能な1又は複数の核酸構築物として、プラスミドやウイルスベクターに搭載して、細胞に導入することができる。これらの核酸の細胞への導入は、例えば、市販又は公知のプラスミド又はウイルスベクターを用いて公知の方法により行うことができる。当該プラスミドの例として、pHelper Vector(タカラバイオ社製)が挙げられ。また、プラスミドやウイルスベクターの代わりに、アデノウイルスのようなヘルパー機能を発揮するウイルスを直接細胞に感染させることによっても、上述の目的を達成することができる。 The form of the above-mentioned "(C) element exhibiting helper function" is not limited, and each element can be directly introduced into a cell as a protein, or one or more nucleic acid constructs capable of supplying each element. It can be loaded into a plasmid or viral vector and introduced into cells. Introduction of these nucleic acids into cells can be performed, for example, by a known method using a commercially available or known plasmid or viral vector. An example of the plasmid is pHelper Vector (manufactured by Takara Bio Inc.). The above-mentioned object can also be achieved by directly infecting cells with a virus that exerts a helper function, such as adenovirus, instead of a plasmid or viral vector.
 核酸構築物の導入の方法としては、一過性の導入方法が例示される。
 一過性に導入する方法には特に限定はなく、公知の一過性導入方法、例えばリン酸カルシウム法、リポフェクション法、DEAEデキストラン法、ポリエチレンイミン(PEI)法、エレクトロポレーション法等が使用可能である。また市販の試薬、例えばTransIT(登録商標)-293 Reagent、TransIT(登録商標)-2020(以上、Mirus社製)、Lipofectamine 2000 Reagent、Lipofectamine 2000CD Reagent(以上、ライフテクノロジーズ社製)、FuGene(登録商標)Transfection Reagent(プロメガ社製)等を用いてもよい。また、昆虫細胞をウイルス産生細胞とする場合はバキュロウイルスを用いた導入法を利用することもできる。
As a method for introducing a nucleic acid construct, a transient introduction method is exemplified.
The method for transient introduction is not particularly limited, and known transient introduction methods such as calcium phosphate method, lipofection method, DEAE dextran method, polyethyleneimine (PEI) method, electroporation method and the like can be used. .. Also, commercially available reagents such as TransIT (registered trademark) -293 Reagent, TransIT (registered trademark) -2020 (hereinafter, manufactured by Mirus), Lipofectamine 2000 Reagent, Lipofectamine 2000CD Reagent (hereinafter, manufactured by Life Technologies), FuGene (registered trademark). ) Transfection Reagent (manufactured by Promega) or the like may be used. Further, when insect cells are used as virus-producing cells, an introduction method using baculovirus can also be used.
 以上、rAAV産生細胞を例に挙げて説明したが、他の非エンベロープウイルスの産生細胞も公知の方法で作製することができる。このようにして作製されたウイルス産生細胞を培養する。ウイルス産生細胞の培養は公知の培養条件で行うことができる。例えば温度30~37℃、湿度95%RH、CO濃度5~10%での培養が例示されるが、本発明はこのような条件に限定されるものではない。所望のウイルス産生細胞の増殖、及び非エンベロープウイルスの産生が達成できるのであれば前記の範囲以外の温度、湿度、CO濃度で実施してもよい。また、培養期間は特に限定はなく、rAAV産生細胞の場合は例えば12~150時間、好適には48~120時間である。ウイルス産生細胞の培養に使用される培地としては、細胞の培養に必要な成分を含んでいればよく、例えば、DMEM、IMDM、DMEM:F-12、RPMI1640、Ham‘s F-12、EMEM等の基本合成培地(以上、Thermo Fisher社などから販売)、また必要に応じてこれらの基本合成培地にウシ胎児血清、成長因子類、ペプチド類を添加したり、アミノ酸類を増量したりしたものが挙げられる。 Although the rAAV-producing cells have been described above as an example, other non-enveloped virus-producing cells can also be produced by a known method. The virus-producing cells thus produced are cultured. The virus-producing cells can be cultured under known culture conditions. For example, culture at a temperature of 30 to 37 ° C., a humidity of 95% RH, and a CO 2 concentration of 5 to 10% is exemplified, but the present invention is not limited to such conditions. If the desired proliferation of virus-producing cells and the production of non-enveloped virus can be achieved, the temperature, humidity, and CO 2 concentration other than the above ranges may be used. The culture period is not particularly limited, and in the case of rAAV-producing cells, it is, for example, 12 to 150 hours, preferably 48 to 120 hours. The medium used for culturing virus-producing cells may contain components necessary for culturing cells, and for example, DMEM, IMDM, DMEM: F-12, RPMI1640, Ham's F-12, EMEM, etc. Basic synthetic medium (sold from Thermo Fisher, etc.), and if necessary, bovine fetal serum, growth factors, peptides are added to these basic synthetic media, and amino acids are increased. Can be mentioned.
<非エンベロープウイルスの製造方法> <Manufacturing method of non-enveloped virus>
 上記のように培養されたウイルス産生細胞を、二価の陽イオンを含む溶液と接触させる。当該接触は、培養後に遠心分離やろ過によって培養液を除去して回収されたウイルス産生細胞のペレットを二価の陽イオンを含む溶液に懸濁する操作、もしくはウイルス産生細胞の培養液(すなわち、ウイルス産生細胞の培養後の培地)に「二価の陽イオンを供給可能な成分」を添加する操作、のいずれかにより実施される。したがって、本発明において「二価の陽イオンを含む溶液」とは、特に明記しないかぎり、後記する溶媒と「二価の陽イオンを供給可能な成分」とを混合することによって得られる溶液、およびウイルス産生細胞の培養液に「二価の陽イオンを供給可能な成分」を添加して得られる溶液の両方を包含する。なお、二価の陽イオンを含む溶液と接触させる時点でのウイルス産生細胞は、既にウイルス産生が達成された状態であり、二価の陽イオンを含む溶液と接触している間には、基本的にはウイルスの産生や細胞の増殖は見られないこともある。 The virus-producing cells cultured as described above are brought into contact with a solution containing divalent cations. The contact is an operation in which the pellets of virus-producing cells collected by removing the culture medium by centrifugation or filtration after culturing are suspended in a solution containing divalent cations, or the culture medium of virus-producing cells (that is, that is, It is carried out by one of the operations of adding "a component capable of supplying divalent cations" to the medium after culturing the virus-producing cells). Therefore, in the present invention, the term "solution containing divalent cations" refers to a solution obtained by mixing a solvent described below with a "component capable of supplying divalent cations" and a solution, unless otherwise specified. It includes both solutions obtained by adding "a component capable of supplying divalent cations" to a culture solution of virus-producing cells. The virus-producing cells at the time of contact with the solution containing divalent cations are in a state where virus production has already been achieved, and are basically in a state of being in contact with the solution containing divalent cations. In some cases, virus production or cell proliferation may not be seen.
 ウイルス産生細胞のペレットを二価の陽イオンを含む溶液に懸濁する操作を行う場合における「二価の陽イオンを含む溶液」は、ウイルス産生細胞の培養時の二価の陽イオン濃度より高い濃度の二価の陽イオンを含み、かつ、凍結融解した後に非エンベロープウイルスを含む粗抽出液を取得できる溶液であれば限定はない。 The "solution containing divalent cations" in the case of suspending the pellet of virus-producing cells in a solution containing divalent cations is higher than the concentration of divalent cations when the virus-producing cells are cultured. There is no limitation as long as it is a solution containing divalent cations having a concentration and which can obtain a crude extract containing a non-enveloped virus after freeze-thaw.
 二価の陽イオンを含む溶液は、「二価の陽イオンを供給可能な成分」及び「溶媒」を適宜混合することにより調製される。 A solution containing divalent cations is prepared by appropriately mixing a "component capable of supplying divalent cations" and a "solvent".
 本発明に使用される「二価の陽イオン」には特に限定はなく、例えば、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン、カドミウムイオン、ニッケル(II)イオン、亜鉛イオン、銅(II)イオン、水銀(II)イオン、鉄(II)イオン、コバルト(II)イオン、スズ(II)イオン、鉛(II)イオン、及びマンガン(II)イオンが例示される。特に限定されないが、本発明には、好適にはマグネシウムイオンが使用される。 The "divalent cation" used in the present invention is not particularly limited, and is, for example, magnesium ion, calcium ion, strontium ion, barium ion, cadmium ion, nickel (II) ion, zinc ion, copper (II). Examples thereof include an ion, a mercury (II) ion, an iron (II) ion, a cobalt (II) ion, a tin (II) ion, a lead (II) ion, and a manganese (II) ion. Although not particularly limited, magnesium ions are preferably used in the present invention.
 本発明の「二価の陽イオンを供給可能な成分」には特に限定はなく、マグネシウムイオンを使用する場合、塩化マグネシウム(MgCl)、及び硫酸マグネシウム(MgSO)、が例示される。特に限定されないが、本発明には、好適には塩化マグネシウムが使用される。 The "component capable of supplying divalent cations" of the present invention is not particularly limited, and when magnesium ions are used, magnesium chloride (MgCl 2 ) and magnesium sulfate (ו 4 ) are exemplified. Although not particularly limited, magnesium chloride is preferably used in the present invention.
 本発明の「溶媒」には特に限定はなく、水、緩衝液、リン酸緩衝生理食塩水(PBS)、トリス緩衝生理食塩水(TBS)、及び培地、が例示され、適宜選択可能である。培地とは、細胞に栄養を供給する栄養分またはコンポーネントを含有する溶液を意味する。典型的には、栄養分としては、細胞が最小限の増殖および/または生存するのに必要な必須アミノ酸および非必須アミノ酸、ビタミン、エネルギー源、脂質、ならびに微量元素がある。これらの溶液は、ホルモンおよび/または他の増殖因子、特定イオン(ナトリウム、塩化物、カルシウム、マグネシウム、およびリン酸など)、緩衝液、ビタミン、ヌクレオシド、もしくはヌクレオチド、無機化合物、アミノ酸、脂質、および/もしくは糖類(グルコースなど)、または他のエネルギー源を含めた増殖および/または生存を増強するさらなる栄養分または追加のコンポーネントを含有してもよい。培地としてはウイルス産生細胞の培養に使用可能なものであれば限定はなく、脊椎動物(哺乳動物)細胞培養用の培地、好適にはDMEM、IMDM、RPMI1640、Ham‘s F-12及びDMEM:F-12、EMEM等の基本合成培地が例示される。さらに、培地は血清を含む培地でもよく、血清を含まない無血清培地、さらに規定された化学組成を有する培地でもよい。特に限定されないが、本発明には、特に好適にはDMEMが使用される。 The "solvent" of the present invention is not particularly limited, and water, buffer solution, phosphate buffered saline (PBS), Tris buffered saline (TBS), and medium are exemplified and can be appropriately selected. Medium means a solution containing nutrients or components that nourish cells. Typically, nutrients include essential and non-essential amino acids, vitamins, energy sources, lipids, and trace elements that cells need for minimal growth and / or survival. These solutions include hormones and / or other growth factors, specific ions (such as sodium, chloride, calcium, magnesium, and phosphate), buffers, vitamins, nucleosides, or nucleotides, inorganic compounds, amino acids, lipids, and / Or sugars (such as glucose), or additional nutrients or additional components that enhance growth and / or survival, including other energy sources. The medium is not limited as long as it can be used for culturing virus-producing cells, and media for culturing vertebrate (mammalian) cells, preferably DMEM, IMDM, RPMI1640, Ham's F-12 and DMEM: Basic synthetic media such as F-12 and EMEM are exemplified. Further, the medium may be a medium containing serum, a serum-free medium containing no serum, or a medium having a specified chemical composition. Although not particularly limited, DMEM is particularly preferably used in the present invention.
 「二価の陽イオンを含む溶液」の中に含まれる、二価の陽イオンの濃度としては、特に限定はないが、例えば、5~200mMが例示される。溶媒が水の場合、二価の陽イオンの濃度は、特に限定はされないが、20~100mMであり、好適には30~80mM、さらに好適には40~80mMである。一方、溶媒がDMEMなどの培地の場合、二価の陽イオンの濃度は、特に限定はされないが、5~100mMであり、好適には5~80mMであり、さらに好適には10~40mMであり、特に好適には15~20mMである。なお、前記の二価の陽イオンの濃度は、溶媒に添加した二価の陽イオンの最終濃度である。 The concentration of the divalent cation contained in the "solution containing the divalent cation" is not particularly limited, but for example, 5 to 200 mM is exemplified. When the solvent is water, the concentration of the divalent cation is not particularly limited, but is 20 to 100 mM, preferably 30 to 80 mM, and more preferably 40 to 80 mM. On the other hand, when the solvent is a medium such as DMEM, the concentration of the divalent cation is not particularly limited, but is 5 to 100 mM, preferably 5 to 80 mM, and more preferably 10 to 40 mM. Particularly preferably, it is 15 to 20 mM. The concentration of the divalent cation is the final concentration of the divalent cation added to the solvent.
 なお、二価の陽イオンの濃度については、後述するヌクレアーゼ処理の工程の実施内容に応じて適宜設定することが可能である。すなわち、ヌクレアーゼにあわせて、適切な濃度に調製された二価の陽イオンを含む溶液を使用することが好ましい。本発明においては、好適には、高塩濃度耐性ヌクレアーゼを使用することができる。例えば、低温菌Shewanella sp.由来のエンドヌクレアーゼ(Cryonase Cold-active Nuclease(タカラバイオ社製))のマグネシウムイオンの至適濃度は、DNaseI、DNaseII、Benzonase(登録商標)などの他のヌクレアーゼの至適濃度と比較して、高い。すなわち、Cryonase等の高塩濃度耐性ヌクレアーゼで処理する場合、比較的高濃度のマグネシウムイオンを含む溶液を用いて凍結融解を行った後、溶液を希釈することなく、そのまま当該高塩濃度耐性ヌクレアーゼで処理することができる。 The concentration of divalent cations can be appropriately set according to the content of the nuclease treatment step described later. That is, it is preferable to use a solution containing divalent cations prepared at an appropriate concentration according to the nuclease. In the present invention, a high salt concentration resistant nuclease can be preferably used. For example, the cryobacterial Shewanella sp. The optimum concentration of magnesium ion of the derived endonuclease (Cryonase Cold-active Nuclease (manufactured by Takara Bio Inc.)) is higher than the optimum concentration of other nucleases such as DNaseI, DNaseII, and Benzonase®. .. That is, when treating with a high salt concentration resistance nuclease such as Cryonase, freeze-thaw using a solution containing a relatively high concentration magnesium ion, and then use the high salt concentration resistance nuclease as it is without diluting the solution. Can be processed.
 二価の陽イオンを含む溶液は、その他の成分を含んでいてもよく、例えば、緩衝成分、ブドウ糖やショ糖などの糖類、及び一価または複数価の陽イオンまたは陰イオンを含んでいてもよい。なお、二価の陽イオンを含む溶液のpHには限定はなく、例えば、pH5.5~8.5、好ましくはpH6.0~8.0、更に好ましくはpH6.5~7.5が例示される。 Solutions containing divalent cations may contain other components, such as buffer components, sugars such as glucose and sucrose, and monovalent or plural cations or anions. good. The pH of the solution containing divalent cations is not limited, and examples thereof include pH 5.5 to 8.5, preferably pH 6.0 to 8.0, and more preferably pH 6.5 to 7.5. Will be done.
 一方、ウイルス産生細胞の培養液に「二価の陽イオンを供給可能な成分」を添加する操作を行う場合、成分の添加量としては、凍結融解した後に非エンベロープウイルスを含む粗抽出液を取得できる量であれば特に限定されず、ウイルス産生細胞の培養液における二価の陽イオン濃度が前記の「二価の陽イオンを含む溶液」における濃度となる量が例示される。 On the other hand, when performing an operation of adding a "component capable of supplying divalent cations" to the culture solution of virus-producing cells, the amount of the component added is a crude extract containing a non-enveloped virus after freezing and thawing. The amount is not particularly limited as long as it can be used, and examples thereof include an amount at which the concentration of divalent cations in the culture solution of virus-producing cells becomes the concentration in the above-mentioned "solution containing divalent cations".
 ウイルス産生細胞と、二価の陽イオンを含む溶液との接触において、細胞濃度および接触時間には特に限定は無い。 There are no particular restrictions on the cell concentration and contact time in contact between the virus-producing cells and the solution containing divalent cations.
 上記のようにして得られた、ウイルス産生細胞と二価の陽イオンとを含む溶液を凍結融解する。 Freeze and thaw the solution containing the virus-producing cells and divalent cations obtained as described above.
 凍結は、液体窒素、ドライアイス、超低温フリーザー等を用いて実施される。凍結温度と凍結時間は特に限定はなく、温度としては例えば-200~-20℃、好適には-90~-70℃が例示される。凍結時間は、凍結温度、方法に応じて適宜設定すればよいが、例えば3分間~1時間の範囲で選択すればよい。エタノールドライアイスを使用する場合、5~10分間の凍結操作が例示される。 Freezing is carried out using liquid nitrogen, dry ice, ultra-low temperature freezer, etc. The freezing temperature and freezing time are not particularly limited, and examples of the temperature are, for example, −200 to −20 ° C., preferably −90 to −70 ° C. The freezing time may be appropriately set according to the freezing temperature and the method, but may be selected in the range of, for example, 3 minutes to 1 hour. When ethanol dry ice is used, a freezing operation for 5 to 10 minutes is exemplified.
 融解は、インキュベーターやウォーターバス等を用いて実施される。融解温度と融解時間は特に限定はなく、温度としては例えば30~45℃、好適には35~40℃、時間としては例えば3分間~1時間、好適には5~10分間が例示される。 Melting is carried out using an incubator, a water bath, etc. The melting temperature and melting time are not particularly limited, and examples thereof include a temperature of, for example, 30 to 45 ° C., preferably 35 to 40 ° C., and a time of, for example, 3 minutes to 1 hour, preferably 5 to 10 minutes.
 凍結融解の回数に特に限定は無く、例えば、0回、1回、2回、3回、4回、5回以上が例示される。また、凍結融解を複数回実施する場合において、インターバルの長さには制限はなく、凍結融解が終了した後、または、凍結物を融解する途中に、-80℃の超低温フリーザー等を用いて再凍結させることができる。本発明において、凍結融解は1回の実施で十分である。本発明の方法で凍結融解を1回行うことにより、二価の陽イオンを含まない溶解バッファーを用いて凍結融解を3回行うよりも、高効率で、非エンベロープウイルスを含む細胞破砕液および/または粗抽出液を取得できる。 The number of times of freezing and thawing is not particularly limited, and examples thereof include 0 times, 1 time, 2 times, 3 times, 4 times, 5 times and more. In addition, when freeze-thawing is carried out multiple times, the length of the interval is not limited, and after the freeze-thaw is completed or while the frozen product is being thawed, it is re-used using an ultra-low temperature freezer at -80 ° C. Can be frozen. In the present invention, one freeze-thaw is sufficient. Performing freeze-thaw once by the method of the present invention is more efficient than performing freeze-thaw three times using a divalent cation-free lysis buffer, and / / cell disruption solution containing non-enveloped virus. Alternatively, a crude extract can be obtained.
 上記の凍結融解操作により、ウイルス産生細胞は破砕され、非エンベロープウイルスは細胞外に放出される。なお、本発明の方法は、従来法として一般的な超音波破砕、酵素処理、浸透圧処理等の細胞破砕方法を更に含んでもよいし、含まなくてもよい。 By the above freeze-thaw operation, virus-producing cells are crushed and non-enveloped virus is released extracellularly. The method of the present invention may or may not further include cell crushing methods such as ultrasonic crushing, enzyme treatment, and osmotic pressure treatment, which are generally used as conventional methods.
 上記の工程を経て得られた、細胞破砕液は、非エンベロープウイルスの取得に供される。細胞破砕液について固液分離、例えば遠心分離やフィルターろ過などの物理的分離方法を実施して上清又はろ液を取得して、細胞やその残渣とは分離された粗抽出液を調製することにより、非エンベロープウイルスを取得することができる。好適には、非エンベロープウイルスの取得は、遠心分離により実施される。特に限定されないが、細胞破砕液を9000×g、4℃、10分間遠心後、その上清を回収して非エンベロープウイルスを含む粗抽出液を取得することができる。 The cell disruption solution obtained through the above steps is used for obtaining a non-enveloped virus. For the cell disruption solution, perform solid-liquid separation, for example, physical separation method such as centrifugation or filter filtration to obtain a supernatant or filtrate to prepare a crude extract separated from cells and their residues. Allows the acquisition of non-enveloped viruses. Preferably, acquisition of the non-enveloped virus is performed by centrifugation. Although not particularly limited, after centrifuging the cell disruption solution at 9000 × g at 4 ° C. for 10 minutes, the supernatant can be collected to obtain a crude extract containing a non-enveloped virus.
 このようにして取得された非エンベロープウイルスを含む粗抽出液は、後述する任意の「非エンベロープウイルスの測定方法」を実施することにより、その試料における、「ウイルスベクターの量」、「キャプシドタンパク質の量」、「ウイルスベクター粒子とウイルスの空キャプシドとの比率」など、所望の値を測定することができる。 The crude extract containing the non-enveloped virus thus obtained can be obtained by carrying out any "measurement method for the non-enveloped virus" described later, whereby the "amount of viral vector" and "capsid protein" in the sample can be obtained. Desirable values such as "amount", "ratio of viral vector particles to empty capsid of virus" can be measured.
 本発明の方法により、二価の陽イオンを含まない溶解バッファーを用いて凍結融解を行うよりも、1.5倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍または10倍以上の高効率で、非エンベロープウイルスを含む粗抽出液を取得できる。 According to the method of the present invention, 1.5 times, 2 times, 3 times, 4 times, 5 times, 6 times, 7 times, and 8 times, as compared with the case of freeze-thawing using a thawing buffer containing no divalent cation. A crude extract containing a non-enveloped virus can be obtained with high efficiency of fold, 9 times, or 10 times or more.
 本発明の方法においては、引き続き前記粗抽出物をヌクレアーゼ処理し、さらに超遠心、クロマトグラフィー、限外ろ過、沈殿剤処理、その他公知の方法による精製に供し、濃縮もしくは精製した非エンベロープウイルスを最終製造物として取得することができる。精製には、市販の試薬やキットを使用することができる。rAAVを精製する場合、特に限定されないが、例えば、AAVpro(登録商標) Purification Kit(タカラバイオ社製)を用いることができる。 In the method of the present invention, the crude extract is subsequently subjected to nuclease treatment, further subjected to ultracentrifugation, chromatography, ultrafiltration, precipitant treatment, and purification by other known methods to finalize the concentrated or purified non-enveloped virus. It can be obtained as a product. Commercially available reagents and kits can be used for purification. When purifying rAAV, for example, AAVpro (registered trademark) Purification Kit (manufactured by Takara Bio Inc.) can be used without particular limitation.
 AAVpro(登録商標) Purification Kitを用いたAAVベクターの精製をより具体的に説明すると、まずは、(1)AAVベクターを含む粗抽出物に、Cryonase Cold-active Nucleaseを1/100量(終濃度200U/ml)添加し、37℃で1時間反応させる。この反応により、夾雑している細胞ゲノムや遊離プラスミド等が切断される。Cryonaseは低温菌Shewanella sp.由来のエンドヌクレアーゼを組換え大腸菌で発現・精製したものであり、あらゆるDNAおよびRNA基質(一本鎖、二本鎖、直鎖状、環状)を低温で切断可能である。次に、(2)上記溶液に、Precipitator Aを1/10量添加し、ボルテックスで10秒間混和後、37℃で30分間反応させ、再度ボルテックスで10秒間混和する。さらに、(3)溶液に1/20量のPrecipitator Bを添加し、速やかにボルテックスで10秒間混和し、5000~9000×g、4℃で5分間遠心する。(4)上清をMillex-HV 0.45μmを用いてろ過する。(5)ろ過したAAVベクター溶液をAmicon Ultra-15,100kDaに添加し、2000×g、15℃で5分間遠心し、AAVベクター溶液が1.5ml以下になったことを確認する。(6)ろ液を除去後、5ml のSuspension Bufferをカップ内に添加し、ピペッティングで溶液を均一化し、2000×g、15℃で5分間遠心する。AAVベクター溶液が1.5ml以下になったことを確認する。(7)上記6の操作を4回(計5回)繰り返し、最終的に任意の容量まで濃縮する。(8)ろ液を除去後、ボルテックスで30秒間、もしくはピペッティングで十分に懸濁し、Amicon Ultra-15,100kDaカップ内のAAVベクター溶液をチューブに移す。 To explain more specifically the purification of AAV vector using AAVpro (registered trademark) Purification Kit, first, (1) 1/100 amount of Cryonase Cold-active Nuclearase (final concentration 200U) was added to the crude extract containing AAV vector. / Ml) Add and react at 37 ° C. for 1 hour. By this reaction, the contaminated cell genome, free plasmid, etc. are cleaved. Cryonase is a cryobacterial Shewanella sp. The derived endonuclease is expressed and purified in recombinant Escherichia coli, and can cleave any DNA and RNA substrate (single-stranded, double-stranded, linear, cyclic) at low temperature. Next, (2) 1/10 amount of Precipitator A is added to the above solution, mixed with vortex for 10 seconds, reacted at 37 ° C. for 30 minutes, and mixed again with vortex for 10 seconds. Further, 1/20 amount of Precipitator B is added to the solution (3), immediately mixed with vortex for 10 seconds, and centrifuged at 5000 to 9000 × g at 4 ° C. for 5 minutes. (4) The supernatant is filtered using Millex-HV 0.45 μm. (5) Add the filtered AAV vector solution to Amicon Ultra-15,100 kDa and centrifuge at 2000 × g at 15 ° C. for 5 minutes to confirm that the AAV vector solution is 1.5 ml or less. (6) After removing the filtrate, add 5 ml of Suspension Buffer into the cup, homogenize the solution by pipetting, and centrifuge at 2000 × g at 15 ° C. for 5 minutes. Confirm that the AAV vector solution is 1.5 ml or less. (7) The above operation 6 is repeated 4 times (5 times in total), and finally concentrated to an arbitrary volume. (8) After removing the filtrate, suspend it sufficiently with vortex for 30 seconds or by pipetting, and transfer the AAV vector solution in the Amicon Ultra-15,100 kDa cup to a tube.
 本発明の方法により得られた非エンベロープウイルスは、適切な溶液中で、長期間保存することが可能である。例えば、rAAVベクターは、リン酸緩衝生理食塩水(pH7.4)に置換した場合、-80℃の条件下で、例えば、12時間以上、1日以上、3日以上、1週間以上、2週間以上、1か月以上、2か月以上、3か月以上、又は6か月以上保存することができる。 The non-enveloped virus obtained by the method of the present invention can be stored for a long period of time in a suitable solution. For example, when the rAAV vector is replaced with phosphate buffered saline (pH 7.4), under the condition of -80 ° C, for example, 12 hours or more, 1 day or more, 3 days or more, 1 week or more, 2 weeks. It can be stored for 1 month or more, 2 months or more, 3 months or more, or 6 months or more.
<非エンベロープウイルスの測定方法>
 非エンベロープウイルスの測定方法として、特に限定はないが、例えば、一定量の試料中の(a)非エンベロープウイルスベクターの量、例えばウイルスゲノムの量、または(b)非エンベロープウイルスを構成するタンパク質の量、例えばキャプシドタンパク質の量を測定する方法が挙げられる。
<Measurement method for non-enveloped virus>
The method for measuring the non-enveloped virus is not particularly limited, but for example, (a) the amount of the non-enveloped virus vector in a certain amount of sample, for example, the amount of the virus genome, or (b) the protein constituting the non-enveloped virus. Examples include methods for measuring the amount, eg, the amount of capsid protein.
 上記(a)の方法としては、試料中のウイルスゲノムのコピー数をPCR法で測定する方法が例示される。特に限定はされないが、例えば、AAV qPCR迅速タイタ―測定キット(タカラバイオ社製)を使用し、取扱説明書に記載された方法で、AAVゲノムの量を算出することができる。 As the method (a) above, a method of measuring the number of copies of the virus genome in the sample by the PCR method is exemplified. Although not particularly limited, for example, the amount of AAV genome can be calculated by using the AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) and the method described in the instruction manual.
 上記(b)の方法としては、例えば当該タンパク質をSDS-PAGEで解析する方法あるいは免疫的手法(ELISA法など)で定量する方法等が例示される。 Examples of the method (b) above include a method of analyzing the protein by SDS-PAGE or a method of quantifying the protein by an immunological method (ELISA method or the like).
 上記(a)及び(b)を組み合わせることにより、試料中に含まれるウイルスベクター粒子とウイルスの空キャプシドとの比率について計算することができる。すなわち、ウイルスベクター粒子はキャプシドタンパク質及びウイルスゲノムの両方を含むのに対して、ウイルスの空キャプシドはキャプシドタンパク質を含むがウイルスゲノムを含まない。したがって、例えば、ある試料を測定した時に、一定量のキャプシドタンパク質あたりのウイルスゲノムの量が少ない場合、その試料は空キャプシドを多く含むことを示す。 By combining the above (a) and (b), the ratio of the virus vector particles contained in the sample to the empty capsid of the virus can be calculated. That is, the viral vector particles contain both the capsid protein and the viral genome, whereas the empty capsid of the virus contains the capsid protein but not the viral genome. Thus, for example, when a sample is measured, a small amount of viral genome per fixed amount of capsid protein indicates that the sample is high in empty capsids.
 試料中に含まれるウイルスベクター粒子とウイルスの空キャプシドとの比率を求める方法としては、他にも、(c)電子顕微鏡で観察する方法、が挙げられる。 Another method for determining the ratio of the virus vector particles contained in the sample to the empty capsid of the virus is (c) a method of observing with an electron microscope.
 また、試料中に含まれるウイルスベクター粒子が機能的であるかどうか、すなわち標的細胞に感染する能力を有するかどうかを測定する方法として、(d)実験的にウイルスベクター粒子の細胞への感染能力(感染力価)を測定する方法が挙げられる。より具体的には、例えばウイルスベクター粒子を含む試料の系列希釈液をHeLa細胞などの適当な標的細胞に感染させ、細胞の形状変化(細胞変性)を検出する方法、導入遺伝子の発現を検出する方法、または、細胞に導入されたウイルスゲノムのコピー数を測定する方法等が例示される。 In addition, as a method for measuring whether or not the viral vector particles contained in the sample are functional, that is, whether or not they have the ability to infect target cells, (d) the ability of the viral vector particles to infect cells experimentally. A method of measuring (infectious titer) can be mentioned. More specifically, for example, a method of infecting a suitable target cell such as HeLa cells with a serial diluted solution of a sample containing a virus vector particle to detect a change in cell shape (cell degeneration), and a method of detecting the expression of an introduced gene. Examples thereof include a method and a method for measuring the number of copies of a viral genome introduced into a cell.
<その他の発明> <Other inventions>
 本発明により、非エンベロープウイルスの製造方法の他、当該製造方法に使用される二価の陽イオンを含む溶液、及び当該製造方法で製造した非エンベロープウイルスも提供される。また、本発明の製造方法を用いて取得した非エンベロープウイルスを有効成分とする医薬組成物も提供される。当該医薬組成物は、遺伝子治療用のウイルスベクター製剤の製造技術に従って適宜調製することができる。例えば、本発明の製造方法により得られた粗抽出液より非エンベロープウイルスを公知の方法で更に濃縮、精製、加工して得られた非エンベロープウイルスを医薬組成物とすることができる。当該医薬組成物は、患者由来の細胞に体外で使用するか、もしくは患者へ直接投与することもできる。 INDUSTRIAL APPLICABILITY In addition to the method for producing a non-enveloped virus, the present invention also provides a solution containing a divalent cation used in the production method, and a non-enveloped virus produced by the production method. Further, a pharmaceutical composition containing a non-enveloped virus obtained by using the production method of the present invention as an active ingredient is also provided. The pharmaceutical composition can be appropriately prepared according to a technique for producing a viral vector preparation for gene therapy. For example, the non-enveloped virus obtained by further concentrating, purifying, and processing the non-enveloped virus from the crude extract obtained by the production method of the present invention by a known method can be used as a pharmaceutical composition. The pharmaceutical composition can be used in vitro to cells of patient origin or can be administered directly to the patient.
 さらに、本発明の一の態様として、非エンベロープウイルスを製造するためのキットが提供される。本発明のキットは二価の陽イオンを含む溶液または二価の陽イオンを供給可能な成分を必須の構成要素として含むが、さらに非エンベロープウイルスの粒子形成に必須な要素を供給する核酸を含むベクター、非エンベロープウイルスの粒子に封入される核酸を含むベクター、ヌクレアーゼ、ろ過フィルター等を含んでもよい。 Further, as one aspect of the present invention, a kit for producing a non-enveloped virus is provided. The kit of the present invention contains a solution containing divalent cations or a component capable of supplying divalent cations as an essential component, but also contains a nucleic acid that supplies an essential component for particle formation of a non-enveloped virus. It may contain a vector, a vector containing nucleic acid encapsulated in non-enveloped virus particles, a nuclease, a filtration filter, and the like.
 さらに別態様として、二価の陽イオンを含む溶液、ウイルス精製用カラム、およびカラム精製操作に使用される各種の緩衝液、を含むキットであってもよい。 As yet another embodiment, the kit may include a solution containing divalent cations, a virus purification column, and various buffer solutions used in the column purification operation.
 以下の実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例によって限定されない。 The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to these examples.
実施例1 MgClを含まない溶解バッファーを用いた凍結融解との比較
(1)rAAVベクター作製用細胞の播種
 細胞培養用100mm culture dish(イワキ社製)8枚それぞれに、10%FBS(BioWest社製)を含むDMEM High-glucose(Thermo Fisher社製)10mlを入れ、そこに293T細胞を1×10cells播種した。その後、37℃のCOインキュベーターで3日間培養した。
Example 1 Comparison with freeze-thaw using a lysis buffer containing no MgCl 2 (1) Seeding of cells for rAAV vector preparation 100 mm culture dish (manufactured by Iwaki) for cell culture 8 sheets, 10% FBS (BioWest) DMEM High-glucose (manufactured by Thermo Fisher) containing 10 ml was put therein, and 293T cells were seeded therein in 1 × 10 6 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(2)プラスミドトランスフェクション
 実施例1-(1)で得られた細胞は10mlのDMEM High-glucose(Thermo Fisher社製)に培地交換を行った。その後、293T細胞に、3種のプラスミド(pRC2-mi342 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製))をポリエチレンイミン(PEI)法で、トランスフェクションした。トランスフェクション後、293T細胞を37℃のCOインキュベーターで3日間培養した。
(2) plasmid transfection The cells obtained in Example 1- (1) were subjected to medium exchange in 10 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(3)rAAVベクター産生細胞の回収
 実施例1-(2)で得られた100mm culture dishに0.5mM EDTA 125μl添加し、室温で10分間保温することで細胞を剥離させた。その後、細胞懸濁液を回収し、1700×g、4℃、10分間遠心後、上清を除去して細胞ペレットを得た。
(3) Recovery of rAAV vector-producing cells 125 μl of 0.5 mM EDTA was added to the 100 mm culture dish obtained in Example 1- (2), and the cells were detached by keeping the cells warm at room temperature for 10 minutes. Then, the cell suspension was collected, centrifuged at 1700 × g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
(4)抽出用溶液の作製
 DMEM(Thermo Fisher社製)にMgClを20mMになるように添加し、「MgCl培地」を調製した。
(4) Preparation of extraction solution MgCl 2 was added to DMEM (manufactured by Thermo Fisher) so as to have a concentration of 20 mM to prepare "MgCl 2 medium".
(5)「MgCl培地」によるrAAVベクターの粗抽出液の取得
凍結融解を1回行う場合
 実施例1-(3)で得られた細胞ペレットを15秒間程度ボルテックスミキサーを用いてほぐし、実施例1-(4)で作製したMgCl培地もしくはMgClを含まない溶解バッファーとしてPBSを各々500μl添加しボルテックスミキサーを用いて混合した。その後、エタノールドライアイス中で5~10分間程度静置して細胞懸濁液を凍結させたのち、37℃のウォーターバス5~10分間程度融解操作を行った。融解後の細胞破砕液をボルテックスミキサーを用いて混合し、9000×g、4℃、10分間遠心後、その上清を回収してrAAVベクターの粗抽出液とした(各条件N=2で行った)。
凍結融解を3回する場合
 実施例1-(3)で得られた細胞ペレットを15秒間程度ボルテックスミキサーを用いてほぐし、実施例1-(4)で作製したMgCl培地もしくはMgClを含まない溶解バッファーとしてPBSを500μl添加しボルテックスミキサーを用いて混合した。その後、エタノールドライアイス中で5~10分間程度静置して細胞懸濁液を凍結させたのち、37℃のウォーターバスで5~10分間程度融解操作を行った。融解後の細胞破砕液をボルテックスミキサーを用いて混合した。この凍結融解サイクルを3回行った。そして、細胞破砕液を9000×g、4℃、10分間遠心後、その上清を回収してrAAVベクターの粗抽出液とした(各条件N=2で行った)。
(5) Acquisition of crude extract of rAAV vector using "MgCl 2 medium" When performing freeze-thaw once Example 1-The cell pellet obtained in (3) is loosened using a vortex mixer for about 15 seconds, and is an example. 500 μl of PBS was added as the MgCl 2 medium prepared in 1- (4) or a dissolution buffer containing no MgCl 2 , and the mixture was mixed using a vortex mixer. Then, the cells were allowed to stand in ethanol dry ice for about 5 to 10 minutes to freeze the cell suspension, and then thawed in a water bath at 37 ° C. for about 5 to 10 minutes. The cell disruption solution after thawing was mixed using a vortex mixer, centrifuged at 9000 × g at 4 ° C. for 10 minutes, and the supernatant was recovered to obtain a crude extract of rAAV vector (performed under each condition N = 2). rice field).
When freeze-thawing 3 times The cell pellet obtained in Example 1- (3) is loosened using a vortex mixer for about 15 seconds, and does not contain MgCl 2 medium or MgCl 2 prepared in Example 1- (4). 500 μl of PBS was added as a lysis buffer and mixed using a vortex mixer. Then, the cells were allowed to stand in ethanol dry ice for about 5 to 10 minutes to freeze the cell suspension, and then thawed in a water bath at 37 ° C. for about 5 to 10 minutes. The thawed cell disruption solution was mixed using a vortex mixer. This freeze-thaw cycle was performed 3 times. Then, the cell disruption solution was centrifuged at 9000 × g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector (performed under each condition N = 2).
(6)粗抽出液のゲノム力価測定
 実施例1-(5)で調製したrAAVベクターの粗抽出液のゲノム力価を測定した。ゲノム力価測定にはAAV qPCR迅速タイタ―測定キット(タカラバイオ社製)を使用した。説明書に従い、粗抽出液をDNaseI処理し、遊離のゲノムDNAやプラスミドDNAを除去した。
(6) Measurement of Genome Titer of Crude Extract The genomic titer of the crude extract of the rAAV vector prepared in Example 1- (5) was measured. An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
上記の反応液を37℃、30分間で保温した後、DNaseIを不活化するために95℃、10分間の熱処理を行った。
 このDNaseI処理済みの溶液20μlに、Lysis Buffer 20μlを添加し、70℃、10分間保温した。保温後、この溶液をEASY dilutionで100倍希釈し、この希釈液5μlをゲノム力価測定に使用した。キット付属のプライマー(AAV Forward Titer Primer、AAV Reverse Titer Primer)を用いて50×プライマーミックスを調製した後、反応液は説明書に従い下記のように調製した(1反応当たり)。
The above reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
To 20 μl of this DNase I-treated solution, 20 μl of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After heat insulation, this solution was diluted 100-fold with EASY dilution, and 5 μl of this diluted solution was used for genomic titer measurement. After preparing a 50 × primer mix using the primers (AAV Forward Titter Primer, AAV Reverse Titter Primer) included in the kit, the reaction solution was prepared as follows according to the instructions (per reaction).
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 リアルタイムPCRとして、初期変性95℃、2分間行った後、「95℃、5秒間」、「60℃、30秒間」の2ステップサイクルを35サイクル行った。その後、融解曲線分析を行った。標準品はキット付属のポジティブコントロールを使用した。得られた値及び粗抽出液量から、ベクターゲノム(vg)を求めた。結果を表1及び図1に示す。 As real-time PCR, initial denaturation was performed at 95 ° C. for 2 minutes, and then a 2-step cycle of "95 ° C. for 5 seconds" and "60 ° C. for 30 seconds" was performed for 35 cycles. After that, melting curve analysis was performed. The standard product used the positive control included in the kit. The vector genome (vg) was determined from the obtained values and the amount of crude extract. The results are shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(7)
 表1及び図1より、MgCl培地によるrAAVベクターの抽出効率はPBSと比較して1回の凍結融解でも効率よく抽出可能であることが示された。
(7)
From Table 1 and FIG. 1, it was shown that the extraction efficiency of the rAAV vector by MgCl2 medium is higher than that of PBS, and it can be efficiently extracted even by one freeze-thaw.
実施例2 MgClを添加したHOを使用した凍結融解によるAAV抽出効率の上昇効果について
(1)rAAVベクター作製用細胞の播種
 細胞培養用T225フラスコ(コーニング社製)1枚に、10%FBS(BioWest社製)を含むDMEM High-glucose(Thermo Fisher社製)40mlを入れ、293T細胞を4×10cells播種した。その後、37℃のCOインキュベーターで3日間培養した。
Example 2 About the effect of increasing AAV extraction efficiency by freezing and thawing using H2O supplemented with MgCl 2 (1) Seeding of cells for rAAV vector preparation T225 flask for cell culture (manufactured by Corning) 10% 40 ml of DMEM High-glucose (manufactured by Thermo Fisher) containing FBS (manufactured by BioWest) was added, and 293T cells were seeded in 4 × 10 6 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(2)プラスミドトランスフェクション
 実施例2-(1)で得られた細胞は40mlのDMEM High-glucose(Thermo Fisher社製)に培地交換を行った。その後、293T細胞に、3種のプラスミド(pRC2-mi342 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製))をポリエチレンイミン(PEI)法で、トランスフェクションした。トランスフェクション後、293T細胞を37℃のCOインキュベーターで3日間培養した。
(2) plasmid transfection The cells obtained in Example 2- (1) were subjected to medium exchange in 40 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(3)rAAVべクター産生細胞の回収
 実施例2-(2)で得られたT225フラスコに0.5mM EDTA 500μlを添加し、室温で10分間保温することで細胞を剥離させた。その後、細胞懸濁液を26等分しチューブに分注した(1.5ml/チューブ)。細胞懸濁液それぞれを1700×g、4℃、10分間遠心後、上清を除去して細胞ペレットを得た。
(3) Recovery of rAAV vector-producing cells To the T225 flask obtained in Example 2- (2), 500 μl of 0.5 mM EDTA was added, and the cells were detached by keeping the cells warm at room temperature for 10 minutes. Then, the cell suspension was divided into 26 equal parts and dispensed into tubes (1.5 ml / tube). Each cell suspension was centrifuged at 1700 × g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
(4)抽出用溶液の作製
 1M MgCl又は1M NaClに注射用水(大塚製薬社製)を添加して下記の塩濃度の「抽出用溶液」を作製した。
(4) Preparation of Extraction Solution Water for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.) was added to 1M MgCl 2 or 1M NaCl to prepare an "extraction solution" having the following salt concentration.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
(5)各種「抽出用溶液」によるrAAVベクターの粗抽出液の取得
 実施例2-(3)で得られた細胞ペレットを15秒間程度ボルテックスミキサーを用いてほぐし、実施例2-(4)で作製した各種の抽出用溶液100μlを添加し、15秒間程度ボルテックスミキサーを用いて混合した(各条件N=2で行った)。その後、フリーザーを使用して-80℃で5~10分間程度静置して細胞懸濁液を凍結させたのち、37℃のインキュベーターを使用して5~10分間程度融解操作を行った。
 融解後のサンプルをボルテックスミキサーを用いて混合し、9000×g、4℃、10分間遠心後、その上清を回収してrAAVベクターの粗抽出液とした。
(5) Acquisition of crude extract of rAAV vector by various "extraction solutions" The cell pellet obtained in Example 2- (3) is loosened for about 15 seconds using a vortex mixer, and in Example 2- (4). 100 μl of the prepared various extraction solutions were added and mixed using a vortex mixer for about 15 seconds (performed under each condition N = 2). Then, the cell suspension was frozen at −80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
The thawed sample was mixed using a vortex mixer, centrifuged at 9000 × g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
(6)「粗抽出液」のゲノム力価測定
 実施例2-(5)で調製したrAAVベクターの粗抽出液のゲノム力価を測定した。ゲノム力価測定にはAAV qPCR迅速タイタ―測定キット(タカラバイオ社製)を使用した。説明書に従い、粗抽出液をDNaseI処理し、遊離のゲノムDNAやプラスミドDNAを除去した。
(6) Genome titer measurement of "crude extract" The genomic titer of the crude extract of the rAAV vector prepared in Example 2- (5) was measured. An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 上記の反応液を37℃、30分間保温した後、DNaseIを不活化するために95℃、10分間の熱処理を行った。
 このDNaseI処理済みの溶液20μlに、Lysis Buffer 20μlを添加し、70℃、10分間保温した。保温終了後、この溶液をEASY dilutionで100倍希釈し、この希釈液5μlをゲノム力価測定に使用した。キット付属のプライマー(AAV Forward Titer Primer、AAV Reverse Titer Primer)を用いて50×プライマーミックスを調製した後、反応液は説明書に従い下記のように調製した(1反応当たり)。
The above reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
To 20 μl of this DNase I-treated solution, 20 μl of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 μl of this diluted solution was used for genomic titer measurement. After preparing a 50 × primer mix using the primers (AAV Forward Titter Primer, AAV Reverse Titter Primer) included in the kit, the reaction solution was prepared as follows according to the instructions (per reaction).
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 リアルタイムPCRとして、初期変性95℃、2分間行った後、「95℃、5秒間」、「60℃、30秒間」の2ステップサイクルを35サイクル行った。その後、融解曲線分析を行った。標準品はキット付属のポジティブコントロールを使用した。得られた値及び粗抽出液量から、ベクターゲノム(vg)を求めた。結果を表2及び図2に示す。 As real-time PCR, initial denaturation was performed at 95 ° C. for 2 minutes, and then a 2-step cycle of "95 ° C. for 5 seconds" and "60 ° C. for 30 seconds" was performed for 35 cycles. After that, melting curve analysis was performed. The standard product used the positive control included in the kit. The vector genome (vg) was determined from the obtained values and the amount of crude extract. The results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(7)
 表2及び図2より、MgClの塩濃度が40mM、80mMの場合、他の条件と比較して高効率にrAAVベクターが抽出されることが示された。
(7)
From Table 2 and FIG. 2, it was shown that when the salt concentration of MgCl 2 was 40 mM or 80 mM, the rAAV vector was extracted with high efficiency as compared with other conditions.
実施例3 MgClを添加したDMEMを使用した凍結融解によるAAV抽出効率の上昇効果について
(1)rAAVベクター作製用細胞の播種
 細胞培養用T225フラスコ(コーニング社製)1枚に、10%FBS(BioWest社製)を含むDMEM High-glucose(Thermo Fisher社製)40mlを入れ、そこに293T細胞を4×10cells播種した。その後、37℃のCOインキュベーターで3日間培養した。
Example 3 Effect of increasing AAV extraction efficiency by freezing and thawing using DMEM supplemented with MgCl 2 (1) Seeding of cells for rAAV vector preparation T225 flask for cell culture (manufactured by Corning) 10% FBS (1) 40 ml of DMEM High-glucose (manufactured by Thermo Fisher) containing (manufactured by BioWest) was put therein, and 293T cells were seeded therein with 4 × 10 6 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(2)プラスミドトランスフェクション
 実施例3-(1)で得られた細胞は40mlのDMEM High-glucose(Thermo Fisher社製)に培地交換を行った。その後、293T細胞に、3種のプラスミド(pRC2-mi342 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製))をポリエチレンイミン(PEI)法で、トランスフェクションした。トランスフェクション後、293T細胞を37℃のCOインキュベーターで3日間培養した。
(2) plasmid transfection The cells obtained in Example 3- (1) were subjected to medium exchange in 40 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(3)rAAVベクター産生細胞の回収
 実施例3-(2)で得られたT225フラスコに0.5mM EDTA 500μlを添加し、室温で10分間保温することで細胞を剥離させた。その後、細胞懸濁液を26等分しチューブに分注した(1.5ml/チューブ)。細胞懸濁液それぞれを1700×g、4℃、10分間遠心後、上清を除去して細胞ペレットを得た。
(3) Recovery of rAAV vector-producing cells 500 μl of 0.5 mM EDTA was added to the T225 flask obtained in Example 3- (2), and the cells were detached by keeping the cells warm at room temperature for 10 minutes. Then, the cell suspension was divided into 26 equal parts and dispensed into tubes (1.5 ml / tube). Each cell suspension was centrifuged at 1700 × g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
(4)抽出用溶液の作製
 1M MgCl又は1M NaClにDMEM(Thermo Fisher社製)を添加して下記の塩濃度の「抽出用溶液」を作製した。
(4) Preparation of extraction solution DMEM (manufactured by Thermo Fisher) was added to 1M MgCl 2 or 1M NaCl to prepare an "extraction solution" having the following salt concentration.
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
(5)各種「抽出用溶液」によるrAAVベクターの粗抽出液の取得
 実施例3-(3)で得られた細胞ペレットを15秒間程度ボルテックスミキサーを用いてほぐし、実施例3-(4)で作製した各種の抽出用溶液100μlを添加し、15秒間程度ボルテックスミキサーを用いて混合した(各条件N=2で行った)。その後、フリーザーを使用して-80℃で5~10分間程度静置して細胞懸濁液を凍結させたのち、37℃のインキュベーターを使用して5~10分間程度融解操作を行った。
 融解後のサンプルをボルテックスミキサーを用いて混合し、9000×g、4℃、10分間遠心後、その上清を回収してrAAVベクターの粗抽出液とした。
(5) Acquisition of crude extract of rAAV vector by various "extraction solutions" The cell pellet obtained in Example 3- (3) is loosened using a vortex mixer for about 15 seconds, and in Example 3- (4). 100 μl of the prepared various extraction solutions were added and mixed using a vortex mixer for about 15 seconds (performed under each condition N = 2). Then, the cell suspension was frozen at −80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
The thawed sample was mixed using a vortex mixer, centrifuged at 9000 × g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
(6)「粗抽出液」のゲノム力価測定
 実施例3-(5)で調製したrAAVベクターの粗抽出液のゲノム力価を測定した。ゲノム力価測定にはAAV qPCR迅速タイタ―測定キット(タカラバイオ社製)を使用した。説明書に従い、粗抽出液をDNaseI処理し、遊離のゲノムDNAやプラスミドDNAを除去した。
(6) Genome titer measurement of "crude extract" The genomic titer of the crude extract of the rAAV vector prepared in Example 3- (5) was measured. An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
 上記の反応液を37℃、30分間保温した後、DNaseIを不活化するために95℃、10分間の熱処理を行った。
 このDNaseI処理済みの溶液20μlに、Lysis Buffer 20μlを添加し、70℃、10分間保温した。保温終了後、この溶液をEASY dilutionで100倍希釈し、この希釈液5μlをゲノム力価測定に使用した。キット付属のプライマー(AAV Forward Titer Primer、AAV Reverse Titer Primer)を用いて50×プライマーミックスを調製した後、反応液は説明書に従い下記のように調製した(1反応当たり)。
The above reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
To 20 μl of this DNase I-treated solution, 20 μl of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 μl of this diluted solution was used for genomic titer measurement. After preparing a 50 × primer mix using the primers (AAV Forward Titter Primer, AAV Reverse Titter Primer) included in the kit, the reaction solution was prepared as follows according to the instructions (per reaction).
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
 リアルタイムPCRとして、初期変性95℃、2分間行った後、「95℃、5秒間」、「60℃、30秒間」の2ステップサイクルを35サイクル行った。その後、融解曲線分析を行った。標準品はキット付属のポジティブコントロールを使用した。得られた値及び粗抽出液量から、ベクターゲノム(vg)を求めた。結果を表3及び図3に示す。 As real-time PCR, initial denaturation was performed at 95 ° C. for 2 minutes, and then a 2-step cycle of "95 ° C. for 5 seconds" and "60 ° C. for 30 seconds" was performed for 35 cycles. After that, melting curve analysis was performed. The standard product used the positive control included in the kit. The vector genome (vg) was determined from the obtained values and the amount of crude extract. The results are shown in Table 3 and FIG.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(7)
 表3及び図3より、低イオン強度(15~60mM)条件において、MgClを添加した条件の方がNaClを添加した条件より高効率で抽出できることが示された。
(7)
From Table 3 and FIG. 3, it was shown that under the condition of low ionic strength (15 to 60 mM), the condition to which MgCl 2 was added was more efficient than the condition to which NaCl was added.
実施例4 マグネシウムイオン以外の2価の陽イオンを使用したAAV抽出効率について
(1)rAAVベクター作製用細胞の播種
 細胞培養用6 well plate(コーニング社製)に1ウェルにつき、10%FBS(BioWest社製)を含むDMEM High-glucose(Thermo Fisher社製)2mlを入れ、そこに293T細胞を1.5×10cells播種した。その後、37℃のCOインキュベーターで3日間培養した。
Example 4 AAV extraction efficiency using divalent cations other than magnesium ion (1) Seeding of cells for rAAV vector preparation 10% FBS (BioWest) per well in 6-well plate (manufactured by Corning) for cell culture 2 ml of DMEM High-glucose (manufactured by Thermo Fisher) containing (manufactured by The Company) was put therein, and 293T cells were seeded therein with 1.5 × 10 5 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(2)プラスミドトランスフェクション
 実施例4-(1)で得られた細胞は2mlのDMEM High-glucose(Thermo Fisher社製)に培地交換を行った。その後、293T細胞に、3種のプラスミド(pRC2-mi342 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製))をポリエチレンイミン(PEI)法で、トランスフェクションした。トランスフェクション後、293T細胞を37℃のCOインキュベーターで3日間培養した。
(2) plasmid transfection The cells obtained in Example 4- (1) were subjected to medium exchange in 2 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(3)rAAVベクター産生細胞の回収
 実施例4-(2)で得られた細胞をピペッティングで剥離させた。その後、細胞懸濁液を回収し、1700×g、4℃、10分間遠心後、上清を除去して細胞ペレットを得た。
(3) Recovery of rAAV vector-producing cells The cells obtained in Example 4- (2) were stripped by pipetting. Then, the cell suspension was collected, centrifuged at 1700 × g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
(4)抽出用溶液の作製
 DMEM(Thermo Fisher社製)にMgCl、MnCl、もしくはCaClを20mMになるように添加し、「MgCl培地」、「MnCl培地」、「CaCl培地」を作製した。また、何も添加していないDMEMを「培地(-)」とした。
(4) Preparation of extraction solution Add MgCl 2 , MnCl 2 , or CaCl 2 to DMEM (manufactured by Thermo Fisher) so as to be 20 mM, and add "MgCl 2 medium", "MnCl 2 medium", and "CaCl 2 medium". Was produced. Moreover, DMEM to which nothing was added was defined as "medium (-)".
(5)各種「抽出用溶液」によるrAAVベクターの粗抽出液の取得
 実施例4-(3)で得られた細胞ペレットを15秒間程度ボルテックスミキサーを用いてほぐし、実施例4-(4)で作製した各種の抽出用溶液100μlを添加し、15秒間程度ボルテックスミキサーを用いて混合した(各条件N=2で行った)。その後、フリーザーを使用して-80℃で5~10分間程度静置して細胞懸濁液を凍結させたのち、37℃のインキュベーターを使用して5~10分間程度融解操作を行った。
 融解後のサンプルをボルテックスミキサーを用いて混合し、9000×g、4℃、10分間遠心後、その上清を回収してrAAVベクターの粗抽出液とした。
(5) Acquisition of crude extract of rAAV vector by various "extraction solutions" The cell pellet obtained in Example 4- (3) was loosened for about 15 seconds using a vortex mixer, and in Example 4- (4). 100 μl of the prepared various extraction solutions were added and mixed using a vortex mixer for about 15 seconds (performed under each condition N = 2). Then, the cell suspension was frozen at −80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
The thawed sample was mixed using a vortex mixer, centrifuged at 9000 × g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
(6)「粗抽出液」のゲノム力価測定
 実施例4-(5)で調製したrAAVベクターの粗抽出液のゲノム力価を測定した。ゲノム力価測定にはAAV qPCR迅速タイタ―測定キット(タカラバイオ社製)を使用した。説明書に従い、粗抽出液をDNaseI処理し、遊離のゲノムDNAやプラスミドDNAを除去した。
(6) Genome titer measurement of "crude extract" The genomic titer of the crude extract of the rAAV vector prepared in Example 4- (5) was measured. An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
 上記の反応液を37℃、30分間保温した後、DNaseIを不活化するために95℃、10分間の熱処理を行った。
 このDNaseI処理済みの溶液20μlに、Lysis Buffer 20μlを添加し、70℃、10分間保温した。保温終了後、この溶液をEASY dilutionで100倍希釈し、この希釈液5μlをゲノム力価測定に使用した。キット付属のプライマー(AAV Forward Titer Primer、AAV Reverse Titer Primer)を用いて50×プライマーミックスを調製した後、反応液は説明書に従い下記のように調製した(1反応当たり)。
The above reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
To 20 μl of this DNase I-treated solution, 20 μl of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 μl of this diluted solution was used for genomic titer measurement. After preparing a 50 × primer mix using the primers (AAV Forward Titter Primer, AAV Reverse Titter Primer) included in the kit, the reaction solution was prepared as follows according to the instructions (per reaction).
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
 リアルタイムPCRとして、初期変性95℃、2分間行った後、「95℃、5秒間」、「60℃、30秒間」の2ステップサイクルを35サイクル行った。その後、融解曲線分析を行った。標準品はキット付属のポジティブコントロールを使用した。得られた値及び粗抽出液量から、ベクターゲノム(vg)を求めた。結果を表4及び図4に示す。 As real-time PCR, initial denaturation was performed at 95 ° C. for 2 minutes, and then a 2-step cycle of "95 ° C. for 5 seconds" and "60 ° C. for 30 seconds" was performed for 35 cycles. After that, melting curve analysis was performed. The standard product used the positive control included in the kit. The vector genome (vg) was determined from the obtained values and the amount of crude extract. The results are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(7)
 表4及び図4より、マグネシウムイオン以外の2価の陽イオンを用いた場合でもrAAVベクターを効率よく抽出可能であることが示された。
(7)
From Table 4 and FIG. 4, it was shown that the rAAV vector can be efficiently extracted even when a divalent cation other than magnesium ion is used.
実施例5 DMEM以外の溶媒を使用したAAV抽出効率について
(1)rAAVベクター作製用細胞の播種
 細胞培養用6 well plate(コーニング社製)に1ウェルにつき、10%FBS(BioWest社製)を含むDMEM High-glucose(Thermo Fisher社製)2mlを入れ、そこに293T細胞を1.5×10cells播種した。その後、37℃のCOインキュベーターで3日間培養した。
Example 5 AAV extraction efficiency using a solvent other than DMEM (1) Dissemination of cells for rAAV vector preparation Cell culture 6-well plate (manufactured by Corning) contains 10% FBS (manufactured by BioWest) per well. 2 ml of DMEM High-glucose (manufactured by Thermo Fisher) was put therein, and 293T cells were seeded in 1.5 × 10 5 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(2)プラスミドトランスフェクション
 実施例5-(1)で得られた細胞は2mlのDMEM High-glucose(Thermo Fisher社製)に培地交換を行った。その後、293T細胞に、3種のプラスミド(pRC2-mi342 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製))をポリエチレンイミン(PEI)法で、トランスフェクションした。トランスフェクション後、293T細胞を37℃のCOインキュベーターで3日間培養した。
(2) plasmid transfection The cells obtained in Example 5- (1) were subjected to medium exchange in 2 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(3)rAAVベクター産生細胞の回収
 実施例5-(2)で得られた細胞をピペッティングで剥離させた。その後、細胞懸濁液を回収し、1700×g、4℃、10分間遠心後、上清を除去して細胞ペレットを得た。
(3) Recovery of rAAV vector-producing cells The cells obtained in Example 5- (2) were stripped by pipetting. Then, the cell suspension was collected, centrifuged at 1700 × g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
(4)抽出用溶液の作製
 DMEM(Thermo Fisher社製)、RPMI-1640(Thermo Fisher社製)、DMEM/F-12(Thermo Fisher社製)、EMEM(富士フイルム和光純薬社製)、IMDM(メルク社製)、TBS(ニッポンジーン社製)、又はPBS(PromoCell社製)にMgClを20mMになるように添加し、各種の抽出用溶液を作製した
(4) Preparation of extraction solution DMEM (manufactured by Thermo Fisher), RPMI-1640 (manufactured by Thermo Fisher), DMEM / F-12 (manufactured by Thermo Fisher), EMEM (manufactured by Fujifilm Wako Junyaku Co., Ltd.), IMDM MgCl 2 was added to TBS (manufactured by Nippon Gene) or PBS (manufactured by PromoCell) to 20 mM to prepare various extraction solutions.
(5)各種「抽出用溶液」によるrAAVベクターの粗抽出液の取得
 実施例5-(3)で得られた細胞ペレットを15秒間程度ボルテックスミキサーを用いてほぐし、実施例5-(4)で作製した各種の抽出用溶液100μlを添加し、15秒間程度ボルテックスミキサーを用いて混合した(各条件N=2で行った)。その後、フリーザーを使用して-80℃で5~10分間程度静置して細胞懸濁液を凍結させたのち、37℃のインキュベーターを使用して5~10分間程度融解操作を行った。
 融解後のサンプルをボルテックスミキサーを用いて混合し、9000×g、4℃、10分間遠心後、その上清を回収してrAAVベクターの粗抽出液とした。
(5) Acquisition of crude extract of rAAV vector by various "extraction solutions" The cell pellet obtained in Example 5- (3) was loosened for about 15 seconds using a vortex mixer, and in Example 5- (4). 100 μl of the prepared various extraction solutions were added and mixed using a vortex mixer for about 15 seconds (performed under each condition N = 2). Then, the cell suspension was frozen at −80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
The thawed sample was mixed using a vortex mixer, centrifuged at 9000 × g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
(6)「粗抽出液」のゲノム力価測定
 実施例5-(5)で調製したrAAVベクターの粗抽出液のゲノム力価を測定した。ゲノム力価測定にはAAV qPCR迅速タイタ―測定キット(タカラバイオ社製)を使用した。説明書に従い、粗抽出液をDNaseI処理し、遊離のゲノムDNAやプラスミドDNAを除去した。
(6) Genome titer measurement of "crude extract" The genomic titer of the crude extract of the rAAV vector prepared in Example 5- (5) was measured. An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
 上記の反応液を37℃、30分間保温した後、DNaseIを不活化するために95℃、10分間の熱処理を行った。
 このDNaseI処理済みの溶液20μlに、Lysis Buffer 20μlを添加し、70℃、10分間保温した。保温終了後、この溶液をEASY dilutionで100倍希釈し、この希釈液5μlをゲノム力価測定に使用した。キット付属のプライマー(AAV Forward Titer Primer、AAV Reverse Titer Primer)を用いて50×プライマーミックスを調製した後、反応液は説明書に従い下記のように調製した(1反応当たり)。
The above reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
To 20 μl of this DNase I-treated solution, 20 μl of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 μl of this diluted solution was used for genomic titer measurement. After preparing a 50 × primer mix using the primers (AAV Forward Titter Primer, AAV Reverse Titter Primer) included in the kit, the reaction solution was prepared as follows according to the instructions (per reaction).
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
 リアルタイムPCRとして、初期変性95℃、2分間行った後、「95℃、5秒間」、「60℃、30秒間」の2ステップサイクルを35サイクル行った。その後、融解曲線分析を行った。標準品はキット付属のポジティブコントロールを使用した。得られた値及び粗抽出液量から、ベクターゲノム(vg)を求めた。結果を表5及び図5に示す。 As real-time PCR, initial denaturation was performed at 95 ° C. for 2 minutes, and then a 2-step cycle of "95 ° C. for 5 seconds" and "60 ° C. for 30 seconds" was performed for 35 cycles. After that, melting curve analysis was performed. The standard product used the positive control included in the kit. The vector genome (vg) was determined from the obtained values and the amount of crude extract. The results are shown in Table 5 and FIG.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
(7)
 表5及び図5よりマグネシウムイオンを添加した場合、DMEM以外の溶媒においてもrAAVベクターを効率よく抽出可能であることが示された。
(7)
From Table 5 and FIG. 5, it was shown that the rAAV vector can be efficiently extracted even in a solvent other than DMEM when magnesium ion is added.
実施例6 MgClを添加したHOを使用した凍結融解によるAAV抽出効率の上昇効果について
(1)rAAVベクター作製用細胞の播種
 細胞培養用6 well plate(コーニング社製)に1ウェルにつき、10%FBS(BioWest社製)を含むDMEM High-glucose(Thermo Fisher社製)2mlを入れ、そこに293T細胞を1.5×10cells播種した。その後、37℃のCOインキュベーターで3日間培養した。
Example 6 About the effect of increasing AAV extraction efficiency by freezing and thawing using H2O to which MgCl 2 is added (1) Seeding of cells for rAAV vector production 6 well plate (manufactured by Corning) for cell culture per well 2 ml of DMEM High-glucose (manufactured by Thermo Fisher) containing 10% FBS (manufactured by BioWest) was put therein, and 293T cells were seeded therein with 1.5 × 10 5 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(2)プラスミドトランスフェクション
 実施例6-(1)で得られた細胞は2mlのDMEM High-glucose(Thermo Fisher社製)に培地交換を行った。その後、293T細胞に、3種のプラスミド(pRC2-mi342 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製))をポリエチレンイミン(PEI)法で、トランスフェクションした。トランスフェクション後、293T細胞を37℃のCOインキュベーターで3日間培養した。
(2) plasmid transfection The cells obtained in Example 6- (1) were subjected to medium exchange in 2 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were applied to 293T cells by the polyethyleneimine (PEI) method. So, it was transfected. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(3)rAAVベクター産生細胞の回収
 実施例6-(2)で得られた細胞をピペッティングで剥離させた。その後、細胞懸濁液を回収し、1700×g、4℃、10分間遠心後、上清を除去して細胞ペレットを得た。
(3) Recovery of rAAV vector-producing cells The cells obtained in Example 6- (2) were stripped by pipetting. Then, the cell suspension was collected, centrifuged at 1700 × g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
(4)抽出用溶液の作製
 1M MgClに注射用水(大塚製薬社製)を添加して下記の塩濃度の「抽出用溶液」を作製した。
(4) Preparation of Extraction Solution Water for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.) was added to 1M MgCl 2 to prepare an "extraction solution" having the following salt concentration.
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
(5)各種「抽出用溶液」によるrAAVベクターの粗抽出液の取得
 実施例6-(3)で得られた細胞ペレットを15秒間程度ボルテックスミキサーを用いてほぐし、実施例6-(4)で作製した各種の抽出用溶液100μlを添加し、15秒間程度ボルテックスミキサーを用いて混合した(各条件N=2で行った)。その後、フリーザーを使用して-80℃で5~10分間程度静置して細胞懸濁液を凍結させたのち、37℃のインキュベーターを使用して5~10分間程度融解操作を行った。
 融解後のサンプルをボルテックスミキサーを用いて混合し、9000×g、4℃、10分間遠心後、その上清を回収してrAAVベクターの粗抽出液とした。
(5) Acquisition of crude extract of rAAV vector by various "extraction solutions" The cell pellet obtained in Example 6- (3) was loosened for about 15 seconds using a vortex mixer, and in Example 6- (4). 100 μl of the prepared various extraction solutions were added and mixed using a vortex mixer for about 15 seconds (performed under each condition N = 2). Then, the cell suspension was frozen at −80 ° C. for about 5 to 10 minutes using a freezer, and then thawed for about 5 to 10 minutes using an incubator at 37 ° C.
The thawed sample was mixed using a vortex mixer, centrifuged at 9000 × g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
(6)「粗抽出液」のゲノム力価測定
 実施例6-(5)で調製したrAAVベクターの粗抽出液のゲノム力価を測定した。ゲノム力価測定にはAAV qPCR迅速タイタ―測定キット(タカラバイオ社製)を使用した。説明書に従い、粗抽出液をDNaseI処理し、遊離のゲノムDNAやプラスミドDNAを除去した。
(6) Genome titer measurement of "crude extract" The genomic titer of the crude extract of the rAAV vector prepared in Example 6- (5) was measured. An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000019
 上記の反応液を37℃、30分間保温した後、DNaseIを不活化するために95℃、10分間の熱処理を行った。
 このDNaseI処理済みの溶液20μlに、Lysis Buffer 20μlを添加し、70℃、10分間保温した。保温終了後、この溶液をEASY dilutionで100倍希釈し、この希釈液5μlをゲノム力価測定に使用した。キット付属のプライマー(AAV Forward Titer Primer、AAV Reverse Titer Primer)を用いて50×プライマーミックスを調製した後、反応液は説明書に従い下記のように調製した(1反応当たり)。
The above reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
To 20 μl of this DNase I-treated solution, 20 μl of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 μl of this diluted solution was used for genomic titer measurement. After preparing a 50 × primer mix using the primers (AAV Forward Titter Primer, AAV Reverse Titter Primer) included in the kit, the reaction solution was prepared as follows according to the instructions (per reaction).
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
 リアルタイムPCRとして、初期変性95℃、2分間行った後、「95℃、5秒間」、「60℃、30秒間」の2ステップサイクルを35サイクル行った。その後、融解曲線分析を行った。標準品はキット付属のポジティブコントロールを使用した。得られた値及び粗抽出液量から、ベクターゲノム(vg)を求めた。結果を表6及び図6に示す。 As real-time PCR, initial denaturation was performed at 95 ° C. for 2 minutes, and then a 2-step cycle of "95 ° C. for 5 seconds" and "60 ° C. for 30 seconds" was performed for 35 cycles. After that, melting curve analysis was performed. The standard product used the positive control included in the kit. The vector genome (vg) was determined from the obtained values and the amount of crude extract. The results are shown in Table 6 and FIG.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
(7)
 表6及び図6より、HOにMgClを添加した場合、30mM以上の塩濃度で高効率にrAAVベクターが抽出されることが示された。
(7)
From Table 6 and FIG. 6, it was shown that when MgCl 2 was added to H 2 O, the rAAV vector was extracted with high efficiency at a salt concentration of 30 mM or more.
実施例7 AAV2以外の血清型のAAVの抽出効率について
(1)rAAVベクター作製用細胞の播種
 細胞培養用T225フラスコ(コーニング社製)1枚に、10%FBS(BioWest社製)を含むDMEM High-glucose(Thermo Fisher社製)40mlを入れ、そこに293T細胞を4×10cells播種した。その後、37℃のCOインキュベーターで3日間培養した。
Example 7 Extraction efficiency of AAV of serotypes other than AAV2 (1) DMEM High containing 10% FBS (manufactured by BioWest) in one T225 flask (manufactured by Corning) for seeding cells for producing rAAV vector. -Glucose (manufactured by Thermo Fisher) 40 ml was put therein, and 293T cells were seeded in 4 × 10 6 cells. Then, the cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(2)プラスミドトランスフェクション
 実施例7-(1)で得られた細胞は40mlのDMEM High-glucose(Thermo Fisher社製)に培地交換を行った。その後、293T細胞に、AAV1はpRC1 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製)、AAV2はpRC2-mi342 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製)、AAV5はpRC5 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製)、AAV6はpRC6 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製、およびpAAV-ZsGreen1 Vector(タカラバイオ社製))、をポリエチレンイミン(PEI)法で、トランスフェクションした。トランスフェクション後、293T細胞を37℃のCOインキュベーターで3日間培養した。
(2) plasmid transfection The cells obtained in Example 7- (1) were subjected to medium exchange in 40 ml of DMEM High-glucose (manufactured by Thermo Fisher). Then, in 293T cells, AAV1 is pRC1 Vector (manufactured by Takara Bio), pHelper Vector (manufactured by Takara Bio), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio), AAV2 is pRC2-mi342 Vector (manufactured by Takara Bio). , PHelper Vector (manufactured by Takara Bio), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio), AAV5 is pRC5 Vector (manufactured by Takara Bio), pHelper Vector (manufactured by Takara Bio), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio). , AAV6 was transfected with pRC6 Vector (manufactured by Takara Bio) and pHelper Vector (manufactured by Takara Bio and pAAV-ZsGreen1 Vector (manufactured by Takara Bio)) by the polyethyleneimin (PEI) method. After transfection, 293T cells were cultured in a CO 2 incubator at 37 ° C. for 3 days.
(3)rAAVベクター産生細胞の回収
 実施例7-(2)で得られたT225フラスコに0.5mM EDTA 500μlを添加し、室温で10分間保温することで細胞を剥離させた。その後、細胞懸濁液を回収し、1700×g、4℃、10分間遠心後、上清を除去して細胞ペレットを得た。
(3) Recovery of rAAV vector-producing cells 500 μl of 0.5 mM EDTA was added to the T225 flask obtained in Example 7- (2), and the cells were detached by keeping the cells warm at room temperature for 10 minutes. Then, the cell suspension was collected, centrifuged at 1700 × g at 4 ° C. for 10 minutes, and the supernatant was removed to obtain cell pellets.
(4)抽出用溶液の作製
 DMEM(Thermo Fisher社製)にMgClを20mMになるように添加し、「MgCl培地」を作製した。
(4) Preparation of extraction solution MgCl 2 was added to DMEM (manufactured by Thermo Fisher) so as to be 20 mM to prepare "MgCl 2 medium".
(5)抽出用溶液によるrAAVベクターの粗抽出液の取得
 実施例7-(3)で得られた細胞ペレットを15秒間程度ボルテックスミキサーを用いてほぐし、実施例7-(4)で作製したMgCl培地もしくはMgClを含まない溶媒としてPBS(PromoCell社製)を2ml添加し、15秒間程度ボルテックスミキサーを用いて混合した(各条件N=2で行った)。その後、エタノールドライアイス中で5~10分間程度静置して細胞懸濁液を凍結させたのち、37℃のウォーターバスを使用して5~10分間程度融解操作を行った。
 融解後のサンプルをボルテックスミキサーを用いて混合し、9000×g、4℃、10分間遠心後、その上清を回収してrAAVベクターの粗抽出液とした。
(5) Acquisition of crude extract of rAAV vector using extraction solution The cell pellet obtained in Example 7- (3) was loosened using a vortex mixer for about 15 seconds, and MgCl produced in Example 7- (4) was used. 2 ml of PBS (manufactured by PromoCell) was added as a solvent containing no medium or MgCl 2 , and the mixture was mixed using a vortex mixer for about 15 seconds (performed under each condition N = 2). Then, the cells were allowed to stand in ethanol dry ice for about 5 to 10 minutes to freeze the cell suspension, and then thawed for about 5 to 10 minutes using a water bath at 37 ° C.
The thawed sample was mixed using a vortex mixer, centrifuged at 9000 × g at 4 ° C. for 10 minutes, and the supernatant was collected to obtain a crude extract of rAAV vector.
(6)「粗抽出液」のゲノム力価測定
 実施例7-(5)で調製したrAAVベクターの粗抽出液のゲノム力価を測定した。ゲノム力価測定にはAAV qPCR迅速タイタ―測定キット(タカラバイオ社製)を使用した。説明書に従い、粗抽出液をDNaseI処理し、遊離のゲノムDNAやプラスミドDNAを除去した。
(6) Genome titer measurement of "crude extract" The genomic titer of the crude extract of the rAAV vector prepared in Example 7- (5) was measured. An AAV qPCR rapid titer measurement kit (manufactured by Takara Bio Inc.) was used for genome titer measurement. According to the instructions, the crude extract was treated with DNase I to remove free genomic DNA and plasmid DNA.
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000022
 上記の反応液を37℃、30分間保温した後、DNaseIを不活化するために95℃、10分間の熱処理を行った。
 このDNaseI処理済みの溶液20μlに、Lysis Buffer 20μlを添加し、70℃、10分間保温した。保温終了後、この溶液をEASY dilutionで100倍希釈し、この希釈液5μlをゲノム力価測定に使用した。キット付属のプライマー(AAV Forward Titer Primer、AAV Reverse Titer Primer)を用いて50×プライマーミックスを調製した後、反応液は説明書に従い下記のように調製した(1反応当たり)。
The above reaction solution was kept warm at 37 ° C. for 30 minutes, and then heat-treated at 95 ° C. for 10 minutes to inactivate DNase I.
To 20 μl of this DNase I-treated solution, 20 μl of Lysis Buffer was added, and the mixture was kept warm at 70 ° C. for 10 minutes. After the heat insulation was completed, this solution was diluted 100-fold with EASY dilution, and 5 μl of this diluted solution was used for genomic titer measurement. After preparing a 50 × primer mix using the primers (AAV Forward Titter Primer, AAV Reverse Titter Primer) included in the kit, the reaction solution was prepared as follows according to the instructions (per reaction).
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000023
 リアルタイムPCRとして、初期変性95℃、2分間行った後、「95℃、5秒間」、「60℃、30秒間」の2ステップサイクルを35サイクル行った。その後、融解曲線分析を行った。標準品はキット付属のポジティブコントロールを使用した。得られた値及び粗抽出液量から、ベクターゲノム(vg)を求めた。結果を表7及び図7に示す。 As real-time PCR, initial denaturation was performed at 95 ° C. for 2 minutes, and then a 2-step cycle of "95 ° C. for 5 seconds" and "60 ° C. for 30 seconds" was performed for 35 cycles. After that, melting curve analysis was performed. The standard product used the positive control included in the kit. The vector genome (vg) was determined from the obtained values and the amount of crude extract. The results are shown in Table 7 and FIG.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
(7)
 表7及び図7よりMgCl培地による抽出はAAV2以外の血清型のAAVにおいても、効率よく抽出可能であることが示された。
(7)
From Table 7 and FIG. 7, it was shown that extraction with MgCl 2 medium can be efficiently extracted even with serotypes of AAV other than AAV2.
 本発明の非エンベロープウイルスの製造方法により、煩雑な操作なく効率的に非エンベロープウイルス液を得ることができる。本発明の方法により製造された非エンベロープウイルスや当該非エンベロープウイルスを有効成分とする組成物は、遺伝子治療の基礎研究又は臨床応用の分野における遺伝子導入方法として非常に有用である。 According to the method for producing a non-enveloped virus of the present invention, a non-enveloped virus solution can be efficiently obtained without complicated operations. The non-enveloped virus produced by the method of the present invention or a composition containing the non-enveloped virus as an active ingredient is very useful as a gene transfer method in the field of basic research or clinical application of gene therapy.

Claims (6)

  1.  アデノ随伴ウイルスの製造方法であって、
    (a)アデノ随伴ウイルスを産生する能力を有する細胞と5mM以上の二価の陽イオンとを含む培地を凍結融解する工程、及び
    (b)(a)の培地からアデノ随伴ウイルスを取得する工程、
    を含む、方法。
    A method for producing adeno-associated virus
    (A) a step of freezing and thawing a medium containing cells capable of producing an adeno-associated virus and a divalent cation of 5 mM or more, and (b) a step of obtaining an adeno-associated virus from the medium of (a).
    Including the method.
  2.  二価の陽イオンが、マグネシウムイオンである請求項1に記載の方法。 The method according to claim 1, wherein the divalent cation is a magnesium ion.
  3.  培地が、アミノ酸、糖類、及び脂質を含む培地である請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the medium is a medium containing amino acids, sugars, and lipids.
  4.  培地が、DMEM、IMDM、RPMI1640、Ham‘s F-12、EMEM及びこれらの混合物からなる群から選択される培地である請求項3に記載の方法。 The method according to claim 3, wherein the medium is a medium selected from the group consisting of DMEM, IMDM, RPMI1640, Ham's F-12, EMEM and a mixture thereof.
  5.  (b)の工程が、固液分離により実施される請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the step (b) is carried out by solid-liquid separation.
  6.  固液分離が、遠心により実施される請求項5に記載の方法。 The method according to claim 5, wherein the solid-liquid separation is carried out by centrifugation.
PCT/JP2021/043575 2020-11-30 2021-11-29 Method for producing non-enveloped virus utilizing bivalent positive ion WO2022114170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020198715A JP2024016295A (en) 2020-11-30 2020-11-30 Method for producing non-enveloped virus utilizing bivalent positive ion
JP2020-198715 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022114170A1 true WO2022114170A1 (en) 2022-06-02

Family

ID=81754518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043575 WO2022114170A1 (en) 2020-11-30 2021-11-29 Method for producing non-enveloped virus utilizing bivalent positive ion

Country Status (2)

Country Link
JP (1) JP2024016295A (en)
WO (1) WO2022114170A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172349A (en) * 1999-08-09 2010-08-12 Targeted Genetics Corp Enhancement of expression of single-stranded heterologous nucleotide sequence from recombinant viral vector by designing sequence that forms intrastrand base pair
JP2010207244A (en) * 1995-08-30 2010-09-24 Genzyme Corp Purification of adenovirus and aav
WO2015005430A1 (en) * 2013-07-11 2015-01-15 タカラバイオ株式会社 Method for manufacturing non-enveloped virus
JP2019107037A (en) * 2010-04-23 2019-07-04 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド Raav-guanylate cyclase compositions and methods for treating leber's congenital amaurosis-1 (lca1)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207244A (en) * 1995-08-30 2010-09-24 Genzyme Corp Purification of adenovirus and aav
JP2010172349A (en) * 1999-08-09 2010-08-12 Targeted Genetics Corp Enhancement of expression of single-stranded heterologous nucleotide sequence from recombinant viral vector by designing sequence that forms intrastrand base pair
JP2019107037A (en) * 2010-04-23 2019-07-04 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド Raav-guanylate cyclase compositions and methods for treating leber's congenital amaurosis-1 (lca1)
WO2015005430A1 (en) * 2013-07-11 2015-01-15 タカラバイオ株式会社 Method for manufacturing non-enveloped virus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROAKI NARUKI ET AL: "Efficient extraction and purification of AAV with AAVpro® Freeze-Thaw Extraction Buffer.", PROGRAMS AND SUMMARY OF THE 43RD ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN., vol. 43, 19 November 2020 (2020-11-19), JP, pages 544 *

Also Published As

Publication number Publication date
JP2024016295A (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP7561788B2 (en) Scalable method for producing recombinant adeno-associated virus (AAV) vectors in a serum-free suspension cell culture system suitable for clinical use
EP3168298B1 (en) Production method for non-enveloped virus particles
EP2871239B1 (en) Cell capable of producing adeno-associated virus vector
JP5861001B2 (en) Method for producing non-enveloped virus
TW202116794A (en) Synthetic genetic elements for biomanufacture
WO2022114170A1 (en) Method for producing non-enveloped virus utilizing bivalent positive ion
EP4424705A1 (en) Composition for cell addition
KR102493350B1 (en) Method for producing non-enveloped virus particles
Feng et al. Optimization of transfection mediated by calcium phosphate for plasmid rAAV‐LacZ (recombinant adeno‐associated virus–β‐galactosidase reporter gene) production in suspension‐cultured HEK‐293 (human embryonic kidney 293) cells
WO2023034980A1 (en) Aav capsid compositions and methods for delivery
JP2024534888A (en) AAV Capsid Compositions and Delivery Methods
WO2023034990A1 (en) Aav capsid compositions and methods for delivery
JP2023546116A (en) Nucleic acid constructs for VA RNA transcription
WO2023085382A1 (en) Virus purification method
WO2024143440A1 (en) Method for producing adeno-associated virus, and vector set
US20240376495A1 (en) Aav capsid compositions and methods for delivery
WO2022045055A1 (en) METHOD FOR FORMULATING NON-ENVELOPED VIRAL VECTOR PARTICLES BY CHANGE IN pH
JP2022032850A (en) Method for producing non-enveloped virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP