WO2022114027A1 - Film-attached glass substrate, and method for manufacturing same - Google Patents
Film-attached glass substrate, and method for manufacturing same Download PDFInfo
- Publication number
- WO2022114027A1 WO2022114027A1 PCT/JP2021/043066 JP2021043066W WO2022114027A1 WO 2022114027 A1 WO2022114027 A1 WO 2022114027A1 JP 2021043066 W JP2021043066 W JP 2021043066W WO 2022114027 A1 WO2022114027 A1 WO 2022114027A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- glass substrate
- layer
- sio
- glass
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 195
- 239000000758 substrate Substances 0.000 title claims abstract description 182
- 238000000034 method Methods 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 239000010410 layer Substances 0.000 claims description 147
- 239000000126 substance Substances 0.000 claims description 28
- 239000002994 raw material Substances 0.000 claims description 27
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- 239000002344 surface layer Substances 0.000 claims description 18
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 18
- 239000007800 oxidant agent Substances 0.000 claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 11
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 8
- 239000005977 Ethylene Substances 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229910000077 silane Inorganic materials 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 abstract 3
- 239000007789 gas Substances 0.000 description 27
- 239000000203 mixture Substances 0.000 description 23
- 238000002834 transmittance Methods 0.000 description 21
- 238000005229 chemical vapour deposition Methods 0.000 description 19
- 239000002019 doping agent Substances 0.000 description 16
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 14
- 229910004613 CdTe Inorganic materials 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000005357 flat glass Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- YMLFYGFCXGNERH-UHFFFAOYSA-K butyltin trichloride Chemical compound CCCC[Sn](Cl)(Cl)Cl YMLFYGFCXGNERH-UHFFFAOYSA-K 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- -1 monosilane (SiH 4 ) Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000000391 spectroscopic ellipsometry Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000005344 low-emissivity glass Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical class F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
Definitions
- the present invention relates to a glass substrate with a film and a method for manufacturing the same, and particularly to a transparent electrode substrate used for a solar cell or a glass substrate with a film to be Low-E glass.
- the glass substrate with a film has properties such as transparency, chemical stability, high hardness, heat resistance, insulation, and excellent optical properties, it is not only a window glass material that is a building member, but also an optical component. It is used in various fields such as electrical parts and electronic parts.
- a glass substrate with a film is used as a transparent electrode substrate having a transparent conductive film formed on the surface of the glass substrate.
- low emissivity glass Low-E glass
- heat insulating properties and heat shielding properties by forming an oxide film or a metal film on the surface of a glass substrate is used.
- a functional transparent film In a glass substrate with a film having a transparent conductive film or a metal oxide film (hereinafter referred to as a functional transparent film), alkali metal ions diffuse from the glass substrate to the functional transparent film to form a functional transparent film. Performance may deteriorate. In order to suppress this, it is considered to provide an undercoat layer between the functional transparent film and the glass substrate.
- the undercoat layer for example, SiO 2 or the like is known to be used (for example, Patent Document 1).
- SiO 2 is used as the undercoat layer, the reflection of light in the glass substrate with a film due to the difference in refractive index between the undercoat layer and the functional transparent film cannot be sufficiently suppressed, and the light transmittance of the glass substrate with a film cannot be sufficiently suppressed. Cannot be sufficiently improved.
- Patent Document 2 discloses a glass plate with a transparent conductive film including a base film containing silicon, oxygen, and carbon.
- the glass substrate with a film may be placed in a high temperature environment of 600 ° C. or higher.
- an object of the present invention is to provide a glass substrate with a film, which can be used as a transparent electrode substrate for a solar cell or Low-E glass, has excellent heat resistance, and is also excellent in light transmission.
- the present invention relates to the following [1] to [9].
- the undercoat layer is a SiO x Cy layer
- the undercoat layer is a SiO x Cy layer.
- the undercoat layer is a SiO x Cy layer, and is
- the gaseous raw material contains a silicon-containing substance, an oxidizing agent and an unsaturated hydrocarbon, and contains The volume ratio of the oxidizing agent to the silicon-containing substance is 8.5 to 50, and the volume ratio is 8.5 to 50.
- the volume ratio of the unsaturated hydrocarbon to the silicon-containing substance is 0.5 to 3.5.
- the composition of the undercoat layer is adjusted to a specific range, so that it has excellent heat resistance when used as a transparent electrode substrate for a solar cell or Low-E glass. It also has excellent light transmission.
- FIG. 1 is a schematic cross-sectional view illustrating the configuration of a glass substrate with a film.
- FIG. 2 is a schematic cross-sectional view illustrating the configuration of a CdTe solar cell.
- FIG. 3 is a diagram showing the relationship between the value of y and the resistance change ratio.
- FIG. 1 is a schematic cross-sectional view illustrating the configuration of a glass substrate with a film according to the present embodiment.
- the glass substrate 1 with a film according to the present embodiment includes a glass substrate 10, an undercoat layer 20, and a functional transparent film 30 in this order.
- the undercoat layer 20 is a SiO x Cy layer, and the value of x is 1.59 to 1.90 and the value of y is 0.10 in SiO x Cy constituting the SiO x Cy layer . It is about 0.40.
- the undercoat layer is a SiO x Cy layer.
- the SiO x Cy layer is a layer substantially composed of SiO x Cy , but may contain impurities inevitably contained at the time of production or the like.
- the value of x is 1.59 to 1.90
- the value of y is 0.10 to 0.40.
- the value of x represents the degree of oxidation of Si. When the degree of oxidation is low, the light absorption rate increases and the light transmittance decreases. Therefore, from the viewpoint of transmittance, the value of x is 1.59 or more, preferably 1.65 or more, and more preferably 1.70 or more. Further, the sum of the value of x and the value of y generally takes a value smaller than 2. Therefore, from the viewpoint of introducing the required C, x is 1.90 or less, more preferably 1.85 or less.
- the value of y represents the content of C and correlates with the refractive index. From the viewpoint of improving the refractive index, the value of y is 0.10 or more, more preferably 0.15 or more. The value of y is 0.40 or less, preferably 0.35 or less, more preferably 0.30 or less, still more preferably 0.25 or less, from the viewpoint of improving heat resistance.
- the carbon content ratio in the SiO x Cy layer that is, the value of y is set. It is possible to make it smaller. However, if the value of y becomes too small, the refractive index of the SiO x Cy layer changes, the difference in refractive index from the functional transparent film increases, and the light transmittance of the glass substrate with a film decreases. Therefore, when the undercoat layer is a SiO x Cy layer, there is a trade-off relationship between heat resistance in a high temperature environment and light transmission.
- the present invention has found that by adjusting the value of x and the value of y within the above range, a glass substrate with a film having both excellent heat resistance and light transmittance can be obtained. be.
- the refractive index of the glass substrate is about 1.4 to 1.5.
- the refractive index of the functional transparent film varies depending on its composition, but is about 2 in the case of a film containing a metal oxide as a main component.
- the refractive index of the SiO x Cy layer is about 1.54 to 1.75, and the difference in refractive index between the glass substrate and the functional transparent film is small, which is an intermediate value. It is possible to suppress the reflection of light in the glass substrate. Therefore, the glass substrate with a film according to this embodiment has excellent light transmission.
- the refractive index of the SiO x Cy layer changes by adjusting the composition ratio.
- the refractive index can be lowered by reducing the ratio represented by y / x.
- the refractive index can be increased by increasing the ratio represented by y / x. Therefore, while keeping the value of x and the value of y within the above ranges, the composition of the SiO x Cy layer is further adjusted according to the specific refractive indexes of the glass substrate and the functional transparent film in order to improve the light transmission. It is also preferable to do so.
- the composition of the SiO x Cy layer can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS).
- the composition is identified after the upper layer is etched and removed with hydrochloric acid or the like. By performing XPS measurement while performing ion sputtering, the composition can be identified more accurately.
- the average light transmittance at a wavelength of 400 to 800 nm is preferably 80% or more, more preferably 80.5% or more, still more preferably 81% or more.
- the glass substrate with a film is used as a transparent electrode of a solar cell, the loss of light energy when light passes through the transparent electrode can be reduced and the battery efficiency can be improved when the light transmittance is in the above range. Therefore, it is preferable.
- Low-E glass is also preferable because it may require high light transmittance, and it is also preferable because it is possible to adjust the appearance such as color tint and color unevenness. The higher the light transmittance, the more preferable, but generally the upper limit is about 85%. Since the glass substrate with a film according to the present embodiment suppresses light reflection at the interface between the film and the glass substrate, it is excellent in light transmission.
- the thickness of the SiO x Cy layer is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 25 nm or more from the viewpoint of sufficient coverage. Further, from the viewpoint of suppressing the absorption of light by the SiO x Cy layer, the thickness is preferably 90 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less.
- the thickness of the SiO x Cy layer can be determined by X-ray photoelectron spectroscopy (XPS) or spectroscopic ellipsometry.
- the functional transparent film may have at least one of conductivity and low radiation characteristics depending on the application.
- the functional transparent film having low radiation characteristics corresponds to a metal film such as silver or a metal oxide film such as SnO 2 or ZnO 2 , it generally has conductivity.
- the specific resistance of the functional transparent film is preferably 0.001 ⁇ cm or less, more preferably 0.0008 ⁇ cm or less, still more preferably 0.0006 ⁇ cm or less. Further, the lower the specific resistance of the functional transparent film, the more preferable, but 0.0001 ⁇ cm or more is practical.
- the specific resistance (R t ) of the functional transparent film can be measured by a method using a Hall effect measuring device with respect to a glass substrate with a film.
- the emissivity value of the functional transparent film is preferably 0.25 or less, more preferably 0.20 or less. Further, the lower the emissivity of the functional transparent film, the more preferable, but 0.05 or more is practical.
- the film thickness of the functional transparent film is preferably 800 nm or less, more preferably 600 nm or less, from the viewpoint of ensuring high transmittance. Further, from the viewpoint of not increasing the resistance too much, 300 nm or more is preferable, and 400 nm or more is more preferable.
- the film thickness of the functional transparent film can be measured by using a stylus type step meter or a fluorescent X-ray analyzer.
- sheet resistance is important as an electrical characteristic of the functional transparent film. This is the electrical resistance as a substantial electrode film defined by specific resistance / film thickness.
- the sheet resistance can be set to a preferable value. In this case, the sheet resistance is preferably 20 ⁇ / ⁇ or less, and more preferably 12 ⁇ / ⁇ or less, from the viewpoint of reducing the voltage loss in wiring.
- the carbon of the SiO x Cy layer diffuses into the functional transparent film, and the carbon reduces the conductive substances and low-radiative substances in the functional transparent film.
- the sheet resistance of the functional transparent film increases and the conductivity decreases. The decrease in conductivity is a factor that deteriorates the battery characteristics of the solar cell.
- the reduction of the low-emissivity substance causes the inferiority of the low-emissivity characteristics.
- the resistance change ratio is 20 or less. Is preferable, 5 or less is more preferable, and 2 or less is further preferable. The smaller the resistance change ratio is, the more preferable it is, but it is usually 1 or more.
- the resistance change ratio is within the above range, it is preferable because the deterioration of the performance of the functional transparent film can be suppressed especially when the glass substrate with a film is placed in a high temperature environment of 600 ° C. or higher.
- a glass substrate with a film is used as a transparent electrode of a solar cell such as a CdTe solar cell that requires a process at a high temperature during its manufacture, or a glass substrate with a film is used as Low-E glass.
- the Low-E glass is heat-strengthened in a high temperature environment and the like can be mentioned.
- a conventionally known functional transparent film exhibiting conductivity and translucency can be used.
- the main component of the functional transparent film SnO 2 , ZnO, and In 2 O 3 are preferable, SnO 2 or ZnO is more preferable, and SnO 2 is further preferable.
- the main component means that the content of the component is 50% by weight or more with respect to all the components constituting the film, and is 70% by weight or more. Is preferable, and 85% by weight or more is more preferable.
- the upper limit is not particularly limited, but when the dopant is doped in the main component, 99.9% by weight or less is preferable.
- Examples of the dopant include fluorine, boron, tin and the like.
- Examples of the doped film include fluorine-doped SnO 2 , Sn-doped In 2 O 3 , fluorine-doped In 2 O 3 , antimony-doped SnO 2 , Al-doped ZnO, and Ga-doped. ZnO and the like can be mentioned. It is preferable to dope the dopant because conductive carriers are generated and the resistance is low.
- the functional transparent film may be composed of only one layer exhibiting at least one of conductive and low radiation properties and a translucent layer, and may further have another layer having other functions. It may be, and is not particularly limited.
- the functional transparent film has a configuration in which a conductive layer and a surface layer are included in this order from the glass substrate side.
- N-type layer that is, electrons taken out in the direction of the cathode are trapped at the impurity level on the cathode surface, that is, the surface of the transparent electrode substrate, and a phenomenon (carrier recombination) occurs in which the electrons are recombined with the holes in the battery. , Battery efficiency may decrease.
- a dopant when a dopant is doped in the main component of the functional transparent film, carrier recombination may occur due to the dopant level. From the viewpoint of suppressing this, it is preferable to provide a surface layer having a small dopant level on the surface of the transparent electrode substrate.
- the surface layer is not particularly limited as long as it has translucency as a transparent electrode substrate and can suppress carrier recombination, but an oxide is preferable, and a metal oxide is more preferable. Specifically, SnO 2 , ZnO, In 2 O 3 , TIO 2 , CdO and the like are preferable, and a layer containing these as a main component is more preferable.
- the main component of the surface layer means that it is 50% by weight or more of the components constituting the surface layer, preferably 70% by weight or more, and 85% by weight or more with respect to the entire surface layer. Is more preferable. Further, the upper limit is not particularly limited.
- the main component of the surface layer is more preferably SnO 2 or ZnO, and even more preferably SnO 2 .
- the layer does not contain a dopant. That is, SnO 2 or ZnO containing no dopant is more preferable, and SnO 2 containing no dopant is particularly preferable.
- the composition of the surface layer can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS).
- the thickness of the surface layer is preferably 80 nm or less, more preferably 60 nm or less, because if it is too thick, the resistance increases and there is a risk of hindering electron transfer, which is a function of the electrode.
- the thickness of the surface layer is preferably 10 nm or more, more preferably 20 nm or more.
- the thickness of the surface layer can be measured by a stylus type step meter, a fluorescent X-ray analyzer, X-ray photoelectron spectroscopy (XPS), or secondary ion mass spectrometry (SIMS).
- the preferable component constituting the conductive layer is the same as the above-mentioned functional transparent film when used as a transparent electrode substrate for a solar cell. Further, the preferable dopant when the dopant is doped, the preferable configuration of the doped film, and the like are the same as described above.
- the film thickness of the conductive layer is preferably 220 nm or more, more preferably 300 nm or more.
- the film thickness of the conductive layer is preferably 790 nm or less, more preferably 700 nm or less.
- fluorine-doped SnO 2 is used as the conductive layer and the dopant is doped.
- SnO 2 which is not used is used as a surface layer.
- a conventionally known functional transparent film exhibiting low radiation characteristics and translucency can be used.
- it is preferably composed of a metal film and a protective film for protecting the metal film, or a metal oxide film.
- the metal film for example, a film such as Ag is preferable.
- the protective film in that case is preferably ZnO, SnO 2 , or the like.
- the main components are preferably SnO 2 , ZnO, and In 2 O 3 , more preferably SnO 2 or ZnO, further preferably SnO 2 , and these may be doped with a dopant. ..
- the main component of the film means the same as the main component of the functional transparent film when the glass substrate with a film is used as a transparent electrode substrate for a solar cell.
- the dopant when the dopant is doped the same dopant as that used for the functional transparent film when the glass substrate with a film is used as a transparent electrode substrate for a solar cell can be used, but for example, fluorine at a high concentration can be used. Examples thereof include doped SnO 2 and antimony-doped SnO 2 .
- the composition of the functional transparent film can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS).
- Glass substrate As the glass substrate, a glass substrate for a transparent electrode substrate for a solar cell or a glass substrate similar to that used for Low-E glass can be used.
- a glass substrate containing SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O and K 2 O as a matrix composition can be mentioned. More specifically, in the oxide-based molar percentage display, SiO 2 is 60 to 75%, Al 2 O 3 is 1 to 7.5%, B 2 O 3 is 0 to 1%, and MgO is 8.5.
- the glass substrate preferably has an average transmittance of 90.3% or more in terms of 2 mm thickness for light having a wavelength of 500 to 800 nm, 90.4. % Or more is more preferable, and 90.5% or more is further preferable.
- the glass substrate has good heat resistance because it may be exposed to a high temperature environment or heat-treated when manufacturing a solar cell or Low-E glass.
- the glass transition temperature (Tg) is preferably 640 ° C. or higher, more preferably 660 ° C. or higher, and even more preferably 680 ° C. or higher.
- the glass transition temperature is preferably 850 ° C. or lower, more preferably 800 ° C. or lower, and even more preferably 780 ° C. or lower so as not to increase the viscosity at the time of melting too much.
- the average coefficient of thermal expansion of the glass substrate at 50 to 350 ° C. is preferably 70 ⁇ 10 -7 / ° C. or higher, preferably 80 ⁇ 10 -7 / ° C. or higher, from the viewpoint of suppressing warping of the module during modularization. Is more preferable.
- 90 ⁇ 10 -7 / ° C. or less is preferable, and 85 ⁇ 10 -7 / ° C. or less is more preferable.
- the thickness of the glass substrate is not particularly limited, but is preferably 0.7 mm or more, more preferably 1.1 mm or more, preferably 6.0 mm or less, and preferably 4.0 mm or less from the viewpoint of strength and light transmittance. More preferred.
- the glass substrate 1 with a film is obtained by laminating a SiO x Cy layer as an undercoat layer 20 and a functional transparent film 30 in order on the glass substrate 10. At this time, if the value of x is 1.59 to 1.90 and the value of y is 0.10 to 0.40 in SiO x Cy of the SiO x Cy layer, the manufacturing method is not particularly limited.
- the following method is preferable. That is, the glass substrate heated to a temperature of 500 to 800 ° C. is reacted with the gas raw material to form an undercoat layer on the glass substrate (undercoat layer forming step).
- a manufacturing method including forming a functional transparent film on the undercoat layer (functional transparent film forming step) is preferable.
- the undercoat layer is a SiO x Cy layer
- the gas raw material contains a silicon-containing substance, an oxidizing agent, and an unsaturated hydrocarbon
- the volume ratio of the oxidizing agent to the silicon-containing substance is 8.5 to. It is preferably 50
- the volume ratio of the unsaturated hydrocarbon to the silicon-containing substance is preferably 0.5 to 3.5.
- a method for manufacturing a glass substrate with a film according to the present embodiment will be specifically described.
- the glass substrate for example, a melting step of heating a glass raw material to obtain molten glass, a clarification step of removing bubbles from the molten glass, a molding step of forming a molten glass into a plate to obtain a glass ribbon, and slowly cooling the glass ribbon to a room temperature state. It is obtained by a slow cooling step.
- the molten glass may be formed into a block shape, slowly cooled, and then cut and polished to produce a glass substrate.
- the SiO x Cy layer as the undercoat layer can be formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, a chemical plating method, a wet coating method, or the like.
- the sputtering method is a method of forming a film on a plate-made glass substrate, and the chemical plating method is also used when making a mirror.
- the CVD method is preferable, and the online CVD method described later is more preferable.
- the temperature of the glass substrate is preferably 500 ° C. or higher, more preferably 600 ° C. or higher, and even more preferably 700 ° C. or higher from the viewpoint of improving the reaction rate of the CVD method. Further, the temperature of the glass substrate is more preferably 800 ° C. or lower, further preferably 760 ° C. or lower, from the viewpoint of glass softening.
- the gas raw material preferably contains a silicon-containing substance, an oxidizing agent and an unsaturated hydrocarbon.
- Silicon-containing substances include silanes such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), silane trioxide (SiHCl 3 ), and tetramethylsilane ((CH 3 ) 4 ).
- silanes such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), silane trioxide (SiHCl 3 ), and tetramethylsilane ((CH 3 ) 4 ).
- Alkylated silanes such as Si), silicon tetrafluoride (SiF 4 ), silicon tetrachloride (SiCl 4 ) and the like can be mentioned, with silanes being preferred, and monosilanes being more preferred.
- oxidizing agent examples include compounds containing oxygen elements such as carbon dioxide (CO 2 ), carbon monoxide (CO), oxygen (O 2 ), and water vapor (H 2 O), and carbon dioxide is preferable.
- the unsaturated hydrocarbon examples include an ethylene-based unsaturated hydrocarbon (olefin), an acetylene-based unsaturated hydrocarbon, and an aromatic compound, and a compound that is a gas at normal temperature and pressure is preferable.
- olefin ethylene-based unsaturated hydrocarbon
- acetylene-based unsaturated hydrocarbon an acetylene-based unsaturated hydrocarbon
- aromatic compound a compound that is a gas at normal temperature and pressure is preferable.
- a compound that is a gas at normal temperature and pressure is preferable.
- an olefin is preferable, an olefin having 2 to 4 carbon atoms is more preferable, and ethylene is further preferable.
- the silicon-containing substance contains silane
- the oxidizing agent contains carbon dioxide
- the unsaturated hydrocarbon contains ethylene
- the composition of SiO x Cy in the SiO x Cy layer can be adjusted.
- the volume ratio of the oxidizing agent to the silicon-containing substance is preferably 8.5 or more, more preferably 12 or more, and even more preferably 20 or more.
- the volume ratio of the oxidizing agent to the silicon-containing substance is preferably 50 or less.
- the volume ratio of unsaturated hydrocarbon to silicon-containing substance is preferably 0.5 or more, more preferably 1.0 or more.
- the volume ratio of unsaturated hydrocarbons to silicon-containing substances is preferably 3.5 or less, more preferably 2.7 or less.
- composition of SiO x Cy changes due to the interaction of the above-mentioned oxidizing agent and unsaturated hydrocarbon. Therefore, in order to adjust the composition of SiO x Cy to a preferable range, a combination of both the volume ratio of the oxidizing agent to the silicon-containing substance and the volume ratio of the unsaturated hydrocarbon is important, and both are preferable as described above. The range is particularly preferable.
- the thickness of the SiO x Cy layer is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 25 nm or more from the viewpoint of sufficient coverage. Further, from the viewpoint of suppressing the absorption of light by the SiO x Cy layer, the thickness is preferably 90 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less.
- the thickness of the SiO x Cy layer can be controlled by the type of raw material, the concentration of raw material gas, the flow rate of blowing the raw material gas onto the glass ribbon or the glass substrate, the substrate temperature, the residence time of the reaction gas derived from the coating beam structure, and the like.
- the production method according to the present embodiment includes forming a functional transparent film on the above-mentioned undercoat layer.
- the formation of the functional transparent film may be made by using conventionally known methods, and is not particularly limited. Similar to the SiO x Cy layer, the functional transparent film can be formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, a chemical plating method, a wet coating method, or the like. Among them, the CVD method is preferable, and the online CVD method described later is more preferable.
- the functional transparent film includes a conductive layer and a surface layer, the conductive layer and the surface layer may be formed on the SiO x Cy layer in this order.
- the online CVD method is a kind of CVD method, and is a method of forming a film directly on the surface of glass during the manufacturing process of a glass substrate on a float line. That is, instead of forming the undercoat layer and the functional transparent film after obtaining the cut glass substrate, the undercoat layer and the functional transparent film are formed in the middle of the process of obtaining the glass substrate. Specifically, when the glass substrate is manufactured, the glass ribbon moves on the molten tin bath and then is slowly cooled to continuously manufacture the glass substrate. During the movement of the glass ribbon, the glass substrate is continuously manufactured. , The process of forming an undercoat layer and a functional transparent film is continuously carried out on the upper surface of the glass ribbon.
- a gas raw material is sprayed onto the glass surface and reacted while the glass is still hot between the float line of the molding process and the slow cooling process.
- a glass substrate with a film can be obtained by forming a coat layer and a functional transparent film.
- the online CVD method is preferable because the undercoat layer and the functional transparent film can be formed in a series of steps for manufacturing the glass substrate, and thus the manufacturing cost can be kept low. In this case, since the film is formed online, the composition of the layer to be formed is limited.
- the undercoat layer is a SiO x Cy layer
- the functional transparent film is a film containing fluorinated SnO 2 as a main component.
- the glass substrate with a film is used as Low-E glass
- the undercoat layer is a SiO x Cy layer
- the functional transparent film is a high-concentration fluorine-doped SnO 2 or an antimon-doped SnO 2 .
- a preferred embodiment is to use a film as a main component.
- the offline CVD method is also a kind of CVD method, and is different from the online CVD method while transporting a glass substrate once manufactured by a glass manufacturing process and cut to an appropriate size into an electric furnace again.
- it is a method of forming an undercoat layer and a functional transparent film by utilizing the reaction of a gas raw material.
- the sputtering method When the sputtering method is used, a very small amount of special gas is injected into a vacuumed container and a voltage is applied to a suitable sputtering target to form an undercoat layer and a functional transparent film on a glass substrate. A glass substrate with a film can be obtained. Since the sputtering method forms a layer on a glass substrate once made into a plate, it is possible to form a layer having various desired compositions, although the manufacturing cost is high.
- the thickness of the undercoat layer and the functional transparent film is the type of raw material, the concentration of raw material gas, the moving speed of the glass ribbon or the glass substrate itself, the flow rate of spraying the raw material gas onto it, the substrate temperature, and the coating. It can be controlled by the residence time of the reaction gas derived from the beam structure. Further, in the case of the sputtering method, the thickness can be controlled by the sputtering time, voltage and the like.
- the above-mentioned manufacturing method is not limited to the embodiment, and can be appropriately modified or improved as long as the object of the present invention can be achieved.
- the present invention relates to a solar cell having the glass substrate with a film as a transparent electrode substrate.
- the glass substrate with a film according to the present embodiment described above is particularly suitable for a wide range of the transparent electrode substrates for solar cells of the super straight type.
- the configuration and preferred embodiment of the transparent electrode substrate are the same as those described in the above ⁇ Glass substrate with film>.
- the solar cell of the present invention is preferably a super straight type solar cell, more preferably a solar cell that undergoes heat treatment at a high temperature such as annealing treatment or high temperature film formation in the manufacturing process thereof, and examples thereof include a CdTe solar cell. However, it does not exclude the application to other solar cells. As shown in FIG.
- the CdTe solar cell 2 has an n-type layer 40, a p-type layer 50, and a back surface electrode (anode) 60 on the surface of a functional transparent film 30 of a glass substrate with a film to be a transparent electrode substrate.
- a functional transparent film 30 of a glass substrate with a film to be a transparent electrode substrate.
- an n-type layer is formed on the surface opposite to the undercoat layer in the functional transparent film of the transparent electrode substrate, but a conventionally known n-type layer can be used.
- a conventionally known n-type layer can be used.
- CdS, CdSe and the like can be mentioned, and CdS is preferable.
- the thickness of the n-type layer is preferably 30 nm or more, and preferably 100 nm or less.
- the n-type layer can be formed by the proximity sublimation method, and its thickness and film quality can be adjusted by changing the sublimation rate or the substrate temperature.
- CdTe is generally used for the p-type layer.
- the thickness of the p-type layer is preferably 3 ⁇ m or more, and preferably 15 ⁇ m or less.
- the p-type layer can be formed by the proximity sublimation method, and its thickness and film quality can be adjusted by changing the sublimation rate or the substrate temperature.
- the back electrode acts as an anode.
- the back surface electrode conventionally known ones can be used. For example, an electrode having a structure in which a metal material film such as silver (Ag) or molybdenum (Mo) is laminated, a carbon electrode doped with Cu, and the like can be mentioned.
- the back plate glass may be further provided on the back surface electrode.
- the back plate glass may have water resistance and oxygen permeability resistance, and a back film made of resin may be used instead of the back plate glass.
- the back surface electrode and the back plate glass or the back film are bonded with a resin for encapsulation or adhesion.
- the thickness of the back surface electrode is preferably 100 nm or more, and preferably 1000 nm or less.
- the thickness of the back plate glass or the back film is preferably 1 mm or more, and preferably 3 mm or less.
- the end of the p-type layer made of CdTe or the end of the CdTe solar cell may be sealed.
- the material for sealing include glass having the same composition as the glass substrate in the transparent electrode substrate, glass having another composition, resin and the like.
- the present invention relates to Low-E glass made of the above-mentioned glass substrate with a film.
- the configuration and preferred embodiment of the Low-E glass are the same as those described in the above ⁇ Glass substrate with film>. That is, a SiO x Cy layer and a functional transparent film are formed on the surface of the glass substrate in this order.
- a conventionally known material can be used, for example, a metal film and a protective film thereof. It may be composed of a protective film and a metal oxide film.
- Examples 1 to 6 are examples, and examples 7 to 9 are comparative examples.
- Example 1 As shown below, a glass substrate with a film was obtained by producing a glass substrate by the float method and at the same time forming an undercoat layer and a functional transparent film by the online atmospheric pressure CVD (chemical vapor deposition) method.
- CVD chemical vapor deposition
- Fused glass having a soda lime silica glass composition was poured into a float bath at 1500 to 1600 ° C., and a plate-shaped glass was formed while continuously flowing a glass ribbon.
- Formation of SiO x Cy layer From the first coating beam located on the most upstream side where the temperature of the glass ribbon is 760 ° C, monosilane (SiH 4 ) 0.364 kg / hour, ethylene 0.25 kg / hour, CO 2 gas 12.5 kg / hour as a gas raw material For hours, 1.0 kg / hour of nitrogen gas was supplied, and a SiO x Cy layer having a film thickness of 50 nm was formed on the glass ribbon.
- C 2 H 4 ratio The volume ratio of ethylene to monosilane
- CO 2 ratio the volume ratio of CO 2 gas to monosilane
- a mixed gas consisting of monobutyltin trichloride, air, water, nitrogen, nitrate and trifluoroacetic acid is supplied from a second coating beam located on the downstream side where the glass ribbon reaches 615 ° C., and the film thickness is 430 nm.
- SnO 2 A functional transparent film (fluorine-doped tin oxide film) containing F as a main component was formed. In the mixed gas, each substance was supplied to a mixer in a liquid phase state or a gas phase state, and mixed while being heated and vaporized there to obtain a mixed gas.
- the amount of each raw material supplied from the second coating beam was monobutyltin trichloride 25.2 L / hour (liquid phase), air 171.7 Nm 3 / hour, water 96.0 kg / hour, nitrogen 60.3 Nm 3 / hour. , 22.3 L / hour (liquid phase) of an aqueous nitrogen solution having a concentration of 66.5 wt%, and 5.3 L / hour (liquid phase) of trifluoroacetic acid.
- the thickness of the glass substrate with a film was 3.2 mm.
- Example 2 to 8 The amount of each raw material supplied from the first coating beam was changed so that the C2H4 ratio and the CO2 ratio were the values shown in Table 1, and SiO was formed on the glass ribbon with the film thickness shown in Table 1.
- a glass substrate with a film was obtained in the same manner as in Example 1 except that the xCy layer was formed.
- the values of x and y of the obtained SiO x Cy layer are shown in Table 1.
- monosilane (SiH 4 ) 0.425 kg / hour, ethylene 0.56 kg / hour, O 2 gas 35.3 kg / hour, nitrogen gas 60.9 kg / hour are supplied as gas raw materials, and a glass ribbon is supplied.
- a SiO x Cy layer (SiO 2 layer) having a film thickness of 30 nm was formed on the film.
- the O 2 gas was sprayed from a slit different from that of the other raw materials so as to be mixed with the other raw materials directly on the substrate to form a film of the SiO x Cy layer.
- a glass substrate with a film was obtained in the same manner as in Example 1 except for the above.
- the column of "CO 2 ratio" in Table 1 shows the volume ratio (O 2 ratio) of O 2 gas to monosilane in the gas raw material for Example 9.
- x and y were identified and the light transmittance and the heat resistance at 650 ° C. were evaluated under the following conditions.
- the composition of the SiO x Cy layer was identified by an X-ray photoelectron spectrometer (XPS) PHI5000 VersaProbe (manufactured by ULVAC-PHI). The specific measurement procedure is shown below. First, the glass substrate with a film was melt-etched using an aqueous hydrochloric acid solution and zinc powder to remove the functional transparent film.
- X-ray photoelectron spectroscopy measurement was performed by the XPS at an X-ray output under the conditions of 100 ⁇ m ⁇ , 25 W, and 15 kV.
- the photoelectron intensities of C1s, O1s, and Si2s in the film thickness direction were detected, and a composition distribution profile in the thickness direction was obtained.
- the data is based on the obtained composition distribution profile, from the surface to the point where the C / Si (atomic number ratio) value decreases to 0.02 or less, in the range where the SiO x Cy layer is formed.
- Table 1 shows the calculated average value of the entire layer with O / Si (atomic number ratio) as the value of x and C / Si (atomic number ratio) as the value of y.
- the value to be obtained was determined as 650 ° C. heat resistance (resistance change ratio).
- the value of heat resistance (resistance change ratio) at 650 ° C. is usually 1 or more, but the smaller the value and the closer to 1, it means that the glass substrate with a film has excellent heat resistance. On the other hand, if this value exceeds 20, the performance in each application is significantly deteriorated, which is very unfavorable.
- Table 1 Further, for Examples 1 to 9, the relationship between the value of y and the resistance change ratio is shown in FIG.
- the film-coated glass substrates of Examples 1 to 6 having a SiO x Cy layer in which the x value and the y value are adjusted to a specific range as the undercoat layer are 80% or more high. It was possible to achieve both light transmittance and excellent heat resistance.
- the glass substrates with a film of Examples 7 and 8 were inferior in heat resistance because the value of y was too large. Further, the glass substrate with a film of Example 9 was inferior in light transmittance because the value of y was too small.
- the glass substrate with a film according to the present invention has excellent heat resistance and light transmission, and is therefore very useful as a transparent electrode substrate for solar cells and Low-E glass. Since the glass substrate with a film according to the present invention can suppress deterioration of the performance of the functional transparent film, particularly when placed in a high temperature environment of 600 ° C. or higher, a process at a high temperature is required at the time of manufacturing the CdTe solar cell or the like. It is particularly suitable for transparent electrodes for solar cells and Low-E glass when heat-strengthening treatment is performed in a high temperature environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
本発明は膜付きガラス基板とその製造方法に関し、特に太陽電池に用いられる透明電極基板又はLow-Eガラスとなる膜付きガラス基板に関する。 The present invention relates to a glass substrate with a film and a method for manufacturing the same, and particularly to a transparent electrode substrate used for a solar cell or a glass substrate with a film to be Low-E glass.
膜付きガラス基板は、透明性や化学的安定性、高硬度、耐熱性、絶縁性、優れた光学的性質等の性質を有することから、建築部材である窓ガラス材料以外にも、光学部品、電気部品、電子部品等の様々な分野で用いられている。 Since the glass substrate with a film has properties such as transparency, chemical stability, high hardness, heat resistance, insulation, and excellent optical properties, it is not only a window glass material that is a building member, but also an optical component. It is used in various fields such as electrical parts and electronic parts.
例えば太陽電池においては、ガラス基板の表面に透明導電膜を形成した透明電極基板として膜付きガラス基板が用いられている。また、建築分野においては、ガラス基板の表面に酸化物膜や金属膜を形成することで断熱性や遮熱性を付与した低放射ガラス(Low-Eガラス)が用いられている。 For example, in a solar cell, a glass substrate with a film is used as a transparent electrode substrate having a transparent conductive film formed on the surface of the glass substrate. Further, in the field of construction, low emissivity glass (Low-E glass) having heat insulating properties and heat shielding properties by forming an oxide film or a metal film on the surface of a glass substrate is used.
このように透明導電膜や金属酸化物膜(以下、機能性透明膜と称する。)を有する膜付きガラス基板において、ガラス基板から機能性透明膜へアルカリ金属イオンが拡散して機能性透明膜の性能が劣化することがある。これを抑制するために、機能性透明膜とガラス基板の間にアンダーコート層を設けることが検討されている。 In a glass substrate with a film having a transparent conductive film or a metal oxide film (hereinafter referred to as a functional transparent film), alkali metal ions diffuse from the glass substrate to the functional transparent film to form a functional transparent film. Performance may deteriorate. In order to suppress this, it is considered to provide an undercoat layer between the functional transparent film and the glass substrate.
アンダーコート層としては、例えば、SiO2等を用いることが知られている(例えば、特許文献1)。しかし、SiO2をアンダーコート層とすると、アンダーコート層と機能性透明膜との屈折率差による膜付きガラス基板内での光の反射が十分に抑制できず、膜付きガラス基板の光透過率を十分に向上させることができない。 As the undercoat layer, for example, SiO 2 or the like is known to be used (for example, Patent Document 1). However, when SiO 2 is used as the undercoat layer, the reflection of light in the glass substrate with a film due to the difference in refractive index between the undercoat layer and the functional transparent film cannot be sufficiently suppressed, and the light transmittance of the glass substrate with a film cannot be sufficiently suppressed. Cannot be sufficiently improved.
そこで、機能性透明膜やガラス板との屈折率差が比較的小さいアンダーコート層として、SiOxCyを用いることが検討されている。例えば、特許文献2には、珪素、酸素および炭素を含む下地膜を含む透明導電膜付きガラス板が開示されている。
Therefore, it has been studied to use SiO x Cy as an undercoat layer having a relatively small difference in refractive index from a functional transparent film or a glass plate. For example,
CdTe太陽電池等の特定の太陽電池の製造や、Low-Eガラスを熱強化処理する場合等において、膜付きガラス基板が600℃以上の高温環境下に置かれることがある。 When manufacturing a specific solar cell such as a CdTe solar cell or heat-strengthening Low-E glass, the glass substrate with a film may be placed in a high temperature environment of 600 ° C. or higher.
しかしながら、特許文献2等に開示されるSiOxCyをアンダーコート層に用いた場合、特に600℃以上の高温環境下では、SiOxCyの炭素が機能性透明膜中に拡散しやすいことが分かってきた。機能性透明膜中に炭素が拡散すると、かかる炭素により機能性透明膜中の導電性物質や低放射物質が還元され、機能性透明膜の導電性や熱放射性といった性能が低下してしまう。
However, when SiO x Cy disclosed in
このような事情から、優れた光透過性を有しつつ、さらに高温環境下での耐熱性にも優れる膜付きガラス基板が求められている。
そこで本発明は、太陽電池用透明電極基板やLow-Eガラスとして使用可能であり、耐熱性に優れ、かつ光透過性にも優れた膜付きガラス基板を提供することを目的とする。
Under these circumstances, there is a demand for a glass substrate with a film having excellent light transmittance and also excellent heat resistance in a high temperature environment.
Therefore, an object of the present invention is to provide a glass substrate with a film, which can be used as a transparent electrode substrate for a solar cell or Low-E glass, has excellent heat resistance, and is also excellent in light transmission.
本発明者らは、上記の課題について検討した結果、アンダーコート層を構成するSiOxCyの組成を特定の範囲に調整することで、優れた耐熱性と光透過率とを両立できることを見出した。 As a result of studying the above problems, the present inventors have found that excellent heat resistance and light transmittance can be achieved at the same time by adjusting the composition of SiO x Cy constituting the undercoat layer to a specific range. rice field.
すなわち、本発明は、以下の[1]~[9]に関する。
[1]ガラス基板と、アンダーコート層と、機能性透明膜とをこの順に含む膜付きガラス基板であって、
前記アンダーコート層がSiOxCy層であり、
前記SiOxCy層を構成するSiOxCyにおいて、xの値が1.59~1.90であり、yの値が0.10~0.40である、膜付きガラス基板。
[2]前記アンダーコート層の厚さが10~90nmである、前記[1]に記載の膜付きガラス基板。
[3]前記機能性透明膜の主成分がSnO2である、前記[1]又は[2]に記載の膜付きガラス基板。
[4]前記機能性透明膜が、ガラス基板側から導電層と表面層をこの順に含む、前記[1]~[3]のいずれか1に記載の膜付きガラス基板。
[5]前記[1]~[4]のいずれか1に記載の膜付きガラス基板を透明電極基板として有する太陽電池。
[6]前記[1]~[3]のいずれか1に記載の膜付きガラス基板からなるLow-Eガラス。
[7]膜付きガラス基板の製造方法であって、
温度500~800℃に加熱されたガラス基板と気体原料とを反応させ、前記ガラス基板上にアンダーコート層を形成することと、
前記アンダーコート層上に機能性透明膜を形成することと、を含み、
前記アンダーコート層はSiOxCy層であり、
前記気体原料はケイ素含有物質、酸化剤及び不飽和炭化水素を含み、
前記ケイ素含有物質に対する前記酸化剤の体積比が8.5~50であり、
前記ケイ素含有物質に対する前記不飽和炭化水素の体積比が0.5~3.5である、
膜付きガラス基板の製造方法。
[8]前記ケイ素含有物質がシランを含み、前記酸化剤が二酸化炭素を含み、前記不飽和炭化水素がエチレンを含む、前記[7]に記載の膜付きガラス基板の製造方法。
[9]前記アンダーコート層の厚さが10~90nmである、前記[7]又は[8]に記載の膜付きガラス基板の製造方法。
That is, the present invention relates to the following [1] to [9].
[1] A glass substrate with a film containing a glass substrate, an undercoat layer, and a functional transparent film in this order.
The undercoat layer is a SiO x Cy layer, and the undercoat layer is a SiO x Cy layer.
A glass substrate with a film having a value of x of 1.59 to 1.90 and a value of y of 0.10 to 0.40 in SiO x Cy constituting the SiO x Cy layer .
[2] The glass substrate with a film according to the above [1], wherein the undercoat layer has a thickness of 10 to 90 nm.
[3] The glass substrate with a film according to the above [1] or [2], wherein the main component of the functional transparent film is SnO 2 .
[4] The glass substrate with a film according to any one of [1] to [3], wherein the functional transparent film includes a conductive layer and a surface layer in this order from the glass substrate side.
[5] A solar cell having the glass substrate with a film according to any one of [1] to [4] as a transparent electrode substrate.
[6] Low-E glass comprising the glass substrate with a film according to any one of [1] to [3] above.
[7] A method for manufacturing a glass substrate with a film.
By reacting a glass substrate heated to a temperature of 500 to 800 ° C. with a gas raw material to form an undercoat layer on the glass substrate,
Including forming a functional transparent film on the undercoat layer.
The undercoat layer is a SiO x Cy layer, and is
The gaseous raw material contains a silicon-containing substance, an oxidizing agent and an unsaturated hydrocarbon, and contains
The volume ratio of the oxidizing agent to the silicon-containing substance is 8.5 to 50, and the volume ratio is 8.5 to 50.
The volume ratio of the unsaturated hydrocarbon to the silicon-containing substance is 0.5 to 3.5.
A method for manufacturing a glass substrate with a film.
[8] The method for producing a glass substrate with a film according to the above [7], wherein the silicon-containing substance contains silane, the oxidizing agent contains carbon dioxide, and the unsaturated hydrocarbon contains ethylene.
[9] The method for producing a glass substrate with a film according to the above [7] or [8], wherein the undercoat layer has a thickness of 10 to 90 nm.
本発明に係る膜付きガラス基板によれば、アンダーコート層の組成が特定の範囲に調整されていることで、太陽電池用透明電極基板やLow-Eガラスとして用いた場合に耐熱性に優れ、かつ光透過性にも優れる。 According to the glass substrate with a film according to the present invention, the composition of the undercoat layer is adjusted to a specific range, so that it has excellent heat resistance when used as a transparent electrode substrate for a solar cell or Low-E glass. It also has excellent light transmission.
以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。本明細書において、重量基準の割合(百分率など)は、質量基準の割合(百分率など)と同じである。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out without departing from the gist of the present invention. Further, "-" indicating a numerical range is used in the sense that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value. In the present specification, the weight-based ratio (percentage, etc.) is the same as the mass-based ratio (percentage, etc.).
<膜付きガラス基板>
図1は、本実施形態に係る膜付きガラス基板の構成を例示する模式断面図である。本実施形態に係る膜付きガラス基板1は、ガラス基板10と、アンダーコート層20と、機能性透明膜30とをこの順に含む。前記アンダーコート層20はSiOxCy層であり、前記SiOxCy層を構成するSiOxCyにおいて、xの値は1.59~1.90であり、yの値は0.10~0.40である。
<Glass substrate with film>
FIG. 1 is a schematic cross-sectional view illustrating the configuration of a glass substrate with a film according to the present embodiment. The
(アンダーコート層)
本実施形態において、アンダーコート層はSiOxCy層である。SiOxCy層は、実質的にSiOxCyから構成される層であるが、製造時等に不可避的に含有される不純物を含んでいてもよい。ここで、SiOxCy層を構成するSiOxCyにおいて、xの値は1.59~1.90であり、yの値は0.10~0.40である。
xの値およびyの値が上記範囲であることで、本実施形態に係る膜付きガラス基板は高温環境下における耐熱性に優れ、かつ光透過性にも優れる。
(Undercoat layer)
In the present embodiment, the undercoat layer is a SiO x Cy layer. The SiO x Cy layer is a layer substantially composed of SiO x Cy , but may contain impurities inevitably contained at the time of production or the like. Here, in SiO x Cy constituting the SiO x Cy layer, the value of x is 1.59 to 1.90, and the value of y is 0.10 to 0.40.
When the value of x and the value of y are in the above ranges, the glass substrate with a film according to the present embodiment is excellent in heat resistance in a high temperature environment and also excellent in light transmission.
xの値は、Siの酸化の程度を表している。酸化の程度が低い場合は、光の吸収率が上昇し、光透過率が低下することになる。従って、透過率の観点から、xの値は1.59以上であり、1.65以上が好ましく、1.70以上がより好ましい。また、xの値とyの値の合計は、一般に、2より小さい値をとる。従って、必要なCを導入する観点から、xは、1.90以下であり、1.85以下がより好ましい。
yの値は、Cの含有率を表しており、屈折率と相関する。屈折率向上の観点から、yの値は0.10以上であり、0.15以上がより好ましい。また、yの値は耐熱性向上の観点から0.40以下であり、0.35以下が好ましく、0.30以下がより好ましく、0.25以下がさらに好ましい。
The value of x represents the degree of oxidation of Si. When the degree of oxidation is low, the light absorption rate increases and the light transmittance decreases. Therefore, from the viewpoint of transmittance, the value of x is 1.59 or more, preferably 1.65 or more, and more preferably 1.70 or more. Further, the sum of the value of x and the value of y generally takes a value smaller than 2. Therefore, from the viewpoint of introducing the required C, x is 1.90 or less, more preferably 1.85 or less.
The value of y represents the content of C and correlates with the refractive index. From the viewpoint of improving the refractive index, the value of y is 0.10 or more, more preferably 0.15 or more. The value of y is 0.40 or less, preferably 0.35 or less, more preferably 0.30 or less, still more preferably 0.25 or less, from the viewpoint of improving heat resistance.
SiOxCy層において、高温環境下での機能性透明膜への炭素の拡散を抑制し、耐熱性を向上するためには、SiOxCy層における炭素の含有比率、すなわちyの値を小さくすることが考えられる。しかしながら、yの値が小さくなり過ぎると、SiOxCy層の屈折率が変化し、機能性透明膜との屈折率差が大きくなり、膜付きガラス基板の光透過率が減少してしまう。そのため、アンダーコート層をSiOxCy層とする場合において、高温環境下での耐熱性と、光透過性とはトレードオフの関係にあった。 In the SiO x Cy layer, in order to suppress the diffusion of carbon into the functional transparent film in a high temperature environment and improve the heat resistance, the carbon content ratio in the SiO x Cy layer, that is, the value of y is set. It is possible to make it smaller. However, if the value of y becomes too small, the refractive index of the SiO x Cy layer changes, the difference in refractive index from the functional transparent film increases, and the light transmittance of the glass substrate with a film decreases. Therefore, when the undercoat layer is a SiO x Cy layer, there is a trade-off relationship between heat resistance in a high temperature environment and light transmission.
これに対し、本発明は、xの値とyの値を上記の範囲に調整することで、優れた耐熱性と光透過性とを両立した膜付きガラス基板が得られることを見出したものである。 On the other hand, the present invention has found that by adjusting the value of x and the value of y within the above range, a glass substrate with a film having both excellent heat resistance and light transmittance can be obtained. be.
ガラス基板の屈折率は1.4~1.5程度である。これに対し、機能性透明膜の屈折率は、その組成によっても異なるものの、金属酸化物を主成分とする膜である場合にはおよそ2前後である。本実施形態において、SiOxCy層の屈折率は1.54~1.75程度であり、ガラス基板及び機能性透明膜のいずれとも屈折率差が小さく、中間的な値であるため、膜付きガラス基板内での光の反射を抑制できる。そのため、本実施形態に係る膜付きガラス基板は光透過性に優れる。 The refractive index of the glass substrate is about 1.4 to 1.5. On the other hand, the refractive index of the functional transparent film varies depending on its composition, but is about 2 in the case of a film containing a metal oxide as a main component. In the present embodiment, the refractive index of the SiO x Cy layer is about 1.54 to 1.75, and the difference in refractive index between the glass substrate and the functional transparent film is small, which is an intermediate value. It is possible to suppress the reflection of light in the glass substrate. Therefore, the glass substrate with a film according to this embodiment has excellent light transmission.
また、SiOxCy層は、組成比を調整することでその屈折率が変化する。ここで、y/xで表される比を小さくすることで屈折率を低くできる。反対に、y/xで表される比を大きくすることで屈折率を高くできる。したがって、xの値とyの値を上述の範囲としつつ、光透過性の向上のため、ガラス基板と機能性透明膜の具体的な屈折率に合わせてSiOxCy層の組成をさらに調整することも好ましい。なお、SiOxCy層の組成は、X線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定できる。SiOxCy層上に機能性透明膜やさらに他の層が形成されている状態では、塩酸などで上層をエッチング除去してから組成を同定する。イオンスパッタリングを行いながらXPS測定を行うことで、より精度良くその組成を同定できる。 Further, the refractive index of the SiO x Cy layer changes by adjusting the composition ratio. Here, the refractive index can be lowered by reducing the ratio represented by y / x. On the contrary, the refractive index can be increased by increasing the ratio represented by y / x. Therefore, while keeping the value of x and the value of y within the above ranges, the composition of the SiO x Cy layer is further adjusted according to the specific refractive indexes of the glass substrate and the functional transparent film in order to improve the light transmission. It is also preferable to do so. The composition of the SiO x Cy layer can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS). In a state where a functional transparent film or another layer is formed on the SiO x Cy layer, the composition is identified after the upper layer is etched and removed with hydrochloric acid or the like. By performing XPS measurement while performing ion sputtering, the composition can be identified more accurately.
本実施形態に係る膜付きガラス基板において、波長400~800nmの平均の光透過率は80%以上が好ましく、80.5%以上がより好ましく、81%以上がさらに好ましい。光透過率が上記範囲であることで、膜付きガラス基板を太陽電池の透明電極として用いる場合には、光が該透明電極を透過する際の光エネルギーの損失を少なくでき、電池効率を向上できるため好ましい。Low-Eガラスにおいても高い光透過率が求められる場合があるため好ましく、また、色味、色ムラなどの外観調整が可能となるため好ましい。光透過率は高い程好ましいが、一般的に上限は85%程度である。本実施形態に係る膜付きガラス基板は膜とガラス基板との界面での光反射が抑制されているので、光透過性に優れる。 In the glass substrate with a film according to the present embodiment, the average light transmittance at a wavelength of 400 to 800 nm is preferably 80% or more, more preferably 80.5% or more, still more preferably 81% or more. When the glass substrate with a film is used as a transparent electrode of a solar cell, the loss of light energy when light passes through the transparent electrode can be reduced and the battery efficiency can be improved when the light transmittance is in the above range. Therefore, it is preferable. Low-E glass is also preferable because it may require high light transmittance, and it is also preferable because it is possible to adjust the appearance such as color tint and color unevenness. The higher the light transmittance, the more preferable, but generally the upper limit is about 85%. Since the glass substrate with a film according to the present embodiment suppresses light reflection at the interface between the film and the glass substrate, it is excellent in light transmission.
SiOxCy層の厚さは十分な被覆性の点から10nm以上が好ましく、20nm以上がより好ましく、25nm以上がさらに好ましい。また、SiOxCy層による光の吸収を抑制する観点からは、厚さは90nm以下が好ましく、80nm以下がより好ましく、70nm以下がさらに好ましい。
SiOxCy層の厚さはX線光電子分光法(XPS)や分光エリプソメトリーにより求められる。
The thickness of the SiO x Cy layer is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 25 nm or more from the viewpoint of sufficient coverage. Further, from the viewpoint of suppressing the absorption of light by the SiO x Cy layer, the thickness is preferably 90 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less.
The thickness of the SiO x Cy layer can be determined by X-ray photoelectron spectroscopy (XPS) or spectroscopic ellipsometry.
(機能性透明膜)
機能性透明膜は、用途に応じて、導電性及び低放射特性の少なくともいずれか一方の性質を有していればよい。ただし、低放射特性を有する機能性透明膜とは、銀等の金属膜やSnO2やZnO2等の金属酸化物膜が該当することから、一般的には導電性も有することとなる。
機能性透明膜の比抵抗は、膜付きガラス基板を太陽電池用の透明電極として用いる場合には、0.001Ωcm以下が好ましく、0.0008Ωcm以下がより好ましく、0.0006Ωcm以下がさらに好ましい。また、機能性透明膜の比抵抗は低いほど好ましいが、0.0001Ωcm以上が実際的である。なお、本明細書において、機能性透明膜の比抵抗(Rt)は、膜付きガラス基板に対してホール効果測定装置を用いる方法で測定できる。
(Functional transparent film)
The functional transparent film may have at least one of conductivity and low radiation characteristics depending on the application. However, since the functional transparent film having low radiation characteristics corresponds to a metal film such as silver or a metal oxide film such as SnO 2 or ZnO 2 , it generally has conductivity.
When the glass substrate with a film is used as a transparent electrode for a solar cell, the specific resistance of the functional transparent film is preferably 0.001 Ωcm or less, more preferably 0.0008 Ωcm or less, still more preferably 0.0006 Ωcm or less. Further, the lower the specific resistance of the functional transparent film, the more preferable, but 0.0001 Ωcm or more is practical. In the present specification, the specific resistance (R t ) of the functional transparent film can be measured by a method using a Hall effect measuring device with respect to a glass substrate with a film.
膜付きガラス基板をLow-Eガラスとして用いる場合、機能性透明膜の放射率の値は、0.25以下が好ましく、0.20以下がより好ましい。また、機能性透明膜の放射率は低いほど好ましいが、0.05以上が実際的である。 When a glass substrate with a film is used as Low-E glass, the emissivity value of the functional transparent film is preferably 0.25 or less, more preferably 0.20 or less. Further, the lower the emissivity of the functional transparent film, the more preferable, but 0.05 or more is practical.
機能性透明膜の膜厚は、高透過率を確保する観点から800nm以下が好ましく、600nm以下がより好ましい。また、抵抗を高くしすぎない観点から300nm以上が好ましく、400nm以上がより好ましい。なお機能性透明膜の膜厚は、触針式段差計や蛍光X線分析装置を用いて測定できる。 The film thickness of the functional transparent film is preferably 800 nm or less, more preferably 600 nm or less, from the viewpoint of ensuring high transmittance. Further, from the viewpoint of not increasing the resistance too much, 300 nm or more is preferable, and 400 nm or more is more preferable. The film thickness of the functional transparent film can be measured by using a stylus type step meter or a fluorescent X-ray analyzer.
また、膜付きガラス基板を太陽電池用の透明電極基板として用いる場合には、機能性透明膜の電気特性としては、シート抵抗が重要となる。これは、比抵抗/膜厚で定義される実質的な電極膜としての電気抵抗である。前述の比抵抗と膜厚を調整することにより、シート抵抗を好ましい値にできる。この場合のシート抵抗は、配線での電圧ロスを下げる観点から20Ω/□以下が好ましく、12Ω/□以下が更に好ましい。 Further, when a glass substrate with a film is used as a transparent electrode substrate for a solar cell, sheet resistance is important as an electrical characteristic of the functional transparent film. This is the electrical resistance as a substantial electrode film defined by specific resistance / film thickness. By adjusting the above-mentioned specific resistance and film thickness, the sheet resistance can be set to a preferable value. In this case, the sheet resistance is preferably 20Ω / □ or less, and more preferably 12Ω / □ or less, from the viewpoint of reducing the voltage loss in wiring.
膜付きガラス基板が高温環境下に置かれ、SiOxCy層の炭素が機能性透明膜に拡散し、かかる炭素により機能性透明膜中の導電性物質や低放射物質が還元されてしまうと、典型的には機能性透明膜のシート抵抗が大きくなって導電性が低下する。導電性の低下は、太陽電池の電池特性を低下させる要因となる。また、膜付きガラス基板をLow-Eガラスとする場合には、低放射物質が還元されることは低放射特性が劣る要因となる。 When the glass substrate with a film is placed in a high temperature environment, the carbon of the SiO x Cy layer diffuses into the functional transparent film, and the carbon reduces the conductive substances and low-radiative substances in the functional transparent film. Typically, the sheet resistance of the functional transparent film increases and the conductivity decreases. The decrease in conductivity is a factor that deteriorates the battery characteristics of the solar cell. Further, when the glass substrate with a film is made of Low-E glass, the reduction of the low-emissivity substance causes the inferiority of the low-emissivity characteristics.
すなわち、(加熱後のシート抵抗値)/(加熱前のシート抵抗値)を加熱前後の抵抗変化比とし、加熱条件を窒素雰囲気下、650℃、116分とした場合、抵抗変化比は20以下が好ましく、5以下がより好ましく、2以下がさらに好ましい。なお、抵抗変化比は小さい程好ましいが、通常1以上である。 That is, when (sheet resistance value after heating) / (sheet resistance value before heating) is the resistance change ratio before and after heating, and the heating conditions are 650 ° C. for 116 minutes under a nitrogen atmosphere, the resistance change ratio is 20 or less. Is preferable, 5 or less is more preferable, and 2 or less is further preferable. The smaller the resistance change ratio is, the more preferable it is, but it is usually 1 or more.
抵抗変化比が上記範囲であると、特に膜付きガラス基板が600℃以上の高温環境下に置かれる場合において、機能性透明膜の性能低下を抑制できるため好ましい。このような場合としては、例えば膜付きガラス基板がCdTe太陽電池等、その製造時に高温での工程を要する太陽電池の透明電極として用いられる場合や、膜付きガラス基板がLow-Eガラスとして用いられ、該Low-Eガラスに高温環境下で熱強化処理がなされる場合等が挙げられる。 When the resistance change ratio is within the above range, it is preferable because the deterioration of the performance of the functional transparent film can be suppressed especially when the glass substrate with a film is placed in a high temperature environment of 600 ° C. or higher. In such cases, for example, a glass substrate with a film is used as a transparent electrode of a solar cell such as a CdTe solar cell that requires a process at a high temperature during its manufacture, or a glass substrate with a film is used as Low-E glass. , The case where the Low-E glass is heat-strengthened in a high temperature environment and the like can be mentioned.
膜付きガラス基板を太陽電池用の透明電極基板として用いる場合には、導電性及び透光性を示す機能性透明膜として従来公知のものを使用できる。例えば機能性透明膜の主成分としては、SnO2、ZnO、In2O3が好ましく、SnO2又はZnOがより好ましく、SnO2がさらに好ましい。なお、当該機能性透明膜において、主成分であるとは、当該成分の含有量が、膜を構成する全成分に対して50重量%以上であることを意味し、70重量%以上であることが好ましく、85重量%以上であることがより好ましい。また、上限は特に限定されないが、主成分にドーパントがドープされる場合には、99.9重量%以下が好ましい。 When a glass substrate with a film is used as a transparent electrode substrate for a solar cell, a conventionally known functional transparent film exhibiting conductivity and translucency can be used. For example, as the main component of the functional transparent film, SnO 2 , ZnO, and In 2 O 3 are preferable, SnO 2 or ZnO is more preferable, and SnO 2 is further preferable. In the functional transparent film, the main component means that the content of the component is 50% by weight or more with respect to all the components constituting the film, and is 70% by weight or more. Is preferable, and 85% by weight or more is more preferable. The upper limit is not particularly limited, but when the dopant is doped in the main component, 99.9% by weight or less is preferable.
ドーパントとしては、フッ素やホウ素、錫等が挙げられる。ドープされた膜としては、例えば、フッ素ドープされたSnO2やSnドープされたIn2O3、フッ素ドープされたIn2O3、アンチモンドープされたSnO2、AlドープされたZnO、GaドープされたZnO等が挙げられる。ドーパントがドープされることにより、導電キャリアが生成し低抵抗となることから好ましい。 Examples of the dopant include fluorine, boron, tin and the like. Examples of the doped film include fluorine-doped SnO 2 , Sn-doped In 2 O 3 , fluorine-doped In 2 O 3 , antimony-doped SnO 2 , Al-doped ZnO, and Ga-doped. ZnO and the like can be mentioned. It is preferable to dope the dopant because conductive carriers are generated and the resistance is low.
機能性透明膜は、導電性及び低放射特性の少なくともいずれか一方と透光性とを示す層の一層のみから構成されていてもよいし、さらに、他の機能を有する別の層を有していてもよく、特に限定されない。例えば、膜付きガラス基板を太陽電池用の透明電極基板として用いる場合、機能性透明膜が、ガラス基板側から導電層と表面層とをこの順に含む構成であることも好ましい。 The functional transparent film may be composed of only one layer exhibiting at least one of conductive and low radiation properties and a translucent layer, and may further have another layer having other functions. It may be, and is not particularly limited. For example, when a glass substrate with a film is used as a transparent electrode substrate for a solar cell, it is also preferable that the functional transparent film has a configuration in which a conductive layer and a surface layer are included in this order from the glass substrate side.
一例として、CdTe太陽電池の発電原理は、太陽光等の光エネルギーが透明電極基板の側から入射し、p型層で光が吸収されて、電子やホール(正孔)といったキャリアが生成されることによる。すなわち、生成されたキャリアがp型層、n型層にそれぞれ移動して流れることで、電気エネルギーとして取り出される。 As an example, in the power generation principle of a CdTe solar cell, light energy such as sunlight is incident from the transparent electrode substrate side, light is absorbed by the p-type layer, and carriers such as electrons and holes (holes) are generated. It depends. That is, the generated carriers move to the p-type layer and the n-type layer and flow, so that they are taken out as electrical energy.
しかしながら、上記のような、透明基板上に透明導電膜、発電層(電池層)、裏面電極が順に形成され、太陽光が透明基板側から入射するタイプの太陽電池(スーパーストレート型太陽電池)において、n型層すなわち陰極の方向に取り出された電子が、陰極表面、すなわち透明電極基板表面の不純物準位でトラップされ、電池内でホールと再結合してしまう現象(キャリア再結合)が発生し、電池効率が低下する場合がある。
具体的には例えば、機能性透明膜の主成分にドーパントがドープされる場合、かかるドーパント準位によりキャリア再結合が生じることがある。これを抑制する観点からは、透明電極基板表面にドーパント準位の少ない表面層が設けられることが好ましい。
However, in the above-mentioned type of solar cell (super straight type solar cell) in which a transparent conductive film, a power generation layer (battery layer), and a back surface electrode are formed in order on the transparent substrate and sunlight is incident from the transparent substrate side. , N-type layer, that is, electrons taken out in the direction of the cathode are trapped at the impurity level on the cathode surface, that is, the surface of the transparent electrode substrate, and a phenomenon (carrier recombination) occurs in which the electrons are recombined with the holes in the battery. , Battery efficiency may decrease.
Specifically, for example, when a dopant is doped in the main component of the functional transparent film, carrier recombination may occur due to the dopant level. From the viewpoint of suppressing this, it is preferable to provide a surface layer having a small dopant level on the surface of the transparent electrode substrate.
表面層は、透明電極基板としての透光性を有し、キャリア再結合を抑制できるものであれば特に限定されないが、酸化物が好ましく、金属酸化物がより好ましい。具体的には、SnO2、ZnO、In2O3、TiO2、CdO等が好ましく、これらを主成分とする層であることがより好ましい。表面層の主成分であるとは、表面層を構成する成分のうち、50重量%以上であることを意味し、表面層全体に対して70重量%以上であることが好ましく、85重量%以上であることがより好ましい。また、上限は特に限定されない。 The surface layer is not particularly limited as long as it has translucency as a transparent electrode substrate and can suppress carrier recombination, but an oxide is preferable, and a metal oxide is more preferable. Specifically, SnO 2 , ZnO, In 2 O 3 , TIO 2 , CdO and the like are preferable, and a layer containing these as a main component is more preferable. The main component of the surface layer means that it is 50% by weight or more of the components constituting the surface layer, preferably 70% by weight or more, and 85% by weight or more with respect to the entire surface layer. Is more preferable. Further, the upper limit is not particularly limited.
表面層の主成分は、SnO2又はZnOがより好ましく、SnO2がさらに好ましい。表面層として導電層の主成分と同じ酸化物を用いることも可能であるが、ドーパントを含有しない層であることが好ましい。すなわち、ドーパントを含有しないSnO2又はZnOがよりさらに好ましく、ドーパントを含有しないSnO2が特に好ましい。
表面層の組成はX線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定できる。
The main component of the surface layer is more preferably SnO 2 or ZnO, and even more preferably SnO 2 . Although it is possible to use the same oxide as the main component of the conductive layer as the surface layer, it is preferable that the layer does not contain a dopant. That is, SnO 2 or ZnO containing no dopant is more preferable, and SnO 2 containing no dopant is particularly preferable.
The composition of the surface layer can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS).
表面層の厚さは、厚過ぎると抵抗が大きくなり電極の機能である電子移動を妨げるおそれがあることから、80nm以下が好ましく、60nm以下がより好ましい。一方、キャリアの再結合を防ぐ効果を十分に得る観点から、表面層の厚さは10nm以上が好ましく、20nm以上がより好ましい。なお表面層の厚さは、触針式段差計や蛍光X線分析装置、X線光電子分光法(XPS)もしくは、二次イオン質量分析法(SIMS)により測定できる。 The thickness of the surface layer is preferably 80 nm or less, more preferably 60 nm or less, because if it is too thick, the resistance increases and there is a risk of hindering electron transfer, which is a function of the electrode. On the other hand, from the viewpoint of sufficiently obtaining the effect of preventing carrier recombination, the thickness of the surface layer is preferably 10 nm or more, more preferably 20 nm or more. The thickness of the surface layer can be measured by a stylus type step meter, a fluorescent X-ray analyzer, X-ray photoelectron spectroscopy (XPS), or secondary ion mass spectrometry (SIMS).
導電層を構成する好ましい成分は、上述した、太陽電池用の透明電極基板として用いる場合の機能性透明膜と同様である。また、ドーパントがドープされる場合の好ましいドーパントやドープされた膜の好ましい構成等も上述と同様である。導電層の膜厚は220nm以上が好ましく、300nm以上がより好ましい。また、導電層の膜厚は790nm以下が好ましく、700nm以下がより好ましい。 The preferable component constituting the conductive layer is the same as the above-mentioned functional transparent film when used as a transparent electrode substrate for a solar cell. Further, the preferable dopant when the dopant is doped, the preferable configuration of the doped film, and the like are the same as described above. The film thickness of the conductive layer is preferably 220 nm or more, more preferably 300 nm or more. The film thickness of the conductive layer is preferably 790 nm or less, more preferably 700 nm or less.
機能性透明膜が、ガラス基板側から導電層と表面層とをこの順に有する構成である場合の具体的な好ましい構成の一例としては、フッ素ドープされたSnO2を導電層とし、ドーパントがドープされていないSnO2を表面層とする構成が挙げられる。 As an example of a specific preferable configuration in which the functional transparent film has a conductive layer and a surface layer in this order from the glass substrate side, fluorine-doped SnO 2 is used as the conductive layer and the dopant is doped. An example is a configuration in which SnO 2 which is not used is used as a surface layer.
膜付きガラス基板をLow-Eガラスとして用いる場合には、低放射特性及び透光性を示す機能性透明膜として従来公知のものを使用できる。例えば、金属膜及びそれを保護する保護膜、又は金属酸化物膜から構成されることが好ましい。金属膜としては、例えば、Ag等の膜であることが好ましい。また、その場合の保護膜はZnOやSnO2等が好ましい。金属酸化物膜としては、例えば主成分がSnO2、ZnO、In2O3であることが好ましく、SnO2又はZnOがより好ましく、SnO2がさらに好ましく、これらにドーパントがドープされていてもよい。当該膜の主成分とは、膜付きガラス基板を太陽電池用の透明電極基板として用いる場合の機能性透明膜における主成分と同様のことを意味する。
また、ドーパントがドープされる際のドーパントは、膜付きガラス基板を太陽電池用の透明電極基板として用いる場合の機能性透明膜に用いられるドーパントと同様のものを使用できるが、例えば高濃度にフッ素ドープされたSnO2やアンチモンドープされたSnO2等が挙げられる。
なお、機能性透明膜の組成はX線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定できる。
When a glass substrate with a film is used as Low-E glass, a conventionally known functional transparent film exhibiting low radiation characteristics and translucency can be used. For example, it is preferably composed of a metal film and a protective film for protecting the metal film, or a metal oxide film. As the metal film, for example, a film such as Ag is preferable. Further, the protective film in that case is preferably ZnO, SnO 2 , or the like. As the metal oxide film, for example, the main components are preferably SnO 2 , ZnO, and In 2 O 3 , more preferably SnO 2 or ZnO, further preferably SnO 2 , and these may be doped with a dopant. .. The main component of the film means the same as the main component of the functional transparent film when the glass substrate with a film is used as a transparent electrode substrate for a solar cell.
Further, as the dopant when the dopant is doped, the same dopant as that used for the functional transparent film when the glass substrate with a film is used as a transparent electrode substrate for a solar cell can be used, but for example, fluorine at a high concentration can be used. Examples thereof include doped SnO 2 and antimony-doped SnO 2 .
The composition of the functional transparent film can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS).
(ガラス基板)
ガラス基板は、従来から太陽電池用透明電極基板のガラス基板や、Low-Eガラスに用いられているものと同様のものを使用できる。例えば、SiO2、Al2O3、B2O3、MgO、CaO、SrO、BaO、ZrO2、Na2OおよびK2Oを母組成として含むガラス基板が挙げられる。より具体的には、酸化物基準のモル百分率表示で、SiO2を60~75%、Al2O3を1~7.5%、B2O3を0~1%、MgOを8.5~12.5%、CaOを1~6.5%、SrOを0~3%、BaOを0~3%、ZrO2を0~3%、Na2Oを1~8%、K2Oを2~12%含有するガラス基板が挙げられる。ただし、これら組成に限定されるものではない。
(Glass substrate)
As the glass substrate, a glass substrate for a transparent electrode substrate for a solar cell or a glass substrate similar to that used for Low-E glass can be used. For example, a glass substrate containing SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O and K 2 O as a matrix composition can be mentioned. More specifically, in the oxide-based molar percentage display, SiO 2 is 60 to 75%, Al 2 O 3 is 1 to 7.5%, B 2 O 3 is 0 to 1%, and MgO is 8.5. ~ 12.5%, CaO ~ 1 ~ 6.5%, SrO 0 ~ 3%, BaO 0 ~ 3%, ZrO 2 0 ~ 3%, Na 2 O 1 ~ 8%, K 2 O Examples thereof include a glass substrate containing 2 to 12%. However, the composition is not limited to these.
ガラス基板は、太陽電池の発電効率やLow-Eガラスの透光性を考慮すると、波長500~800nmの光に対する平均透過率が、2mm厚さ換算で90.3%以上が好ましく、90.4%以上がより好ましく、90.5%以上がさらに好ましい。 Considering the power generation efficiency of the solar cell and the translucency of the Low-E glass, the glass substrate preferably has an average transmittance of 90.3% or more in terms of 2 mm thickness for light having a wavelength of 500 to 800 nm, 90.4. % Or more is more preferable, and 90.5% or more is further preferable.
また、太陽電池を作製する際やLow-Eガラスを製造する際に、高温環境に晒したり、熱処理を行ったりする場合があることから、ガラス基板は良好な耐熱性を有することが好ましい。
具体的には、ガラス転移温度(Tg)は640℃以上が好ましく、660℃以上がより好ましく、680℃以上がさらに好ましい。一方、溶解時の粘性を上げすぎないようにするため、ガラス転移温度は850℃以下が好ましく、800℃以下がより好ましく、780℃以下がさらに好ましい。
Further, it is preferable that the glass substrate has good heat resistance because it may be exposed to a high temperature environment or heat-treated when manufacturing a solar cell or Low-E glass.
Specifically, the glass transition temperature (Tg) is preferably 640 ° C. or higher, more preferably 660 ° C. or higher, and even more preferably 680 ° C. or higher. On the other hand, the glass transition temperature is preferably 850 ° C. or lower, more preferably 800 ° C. or lower, and even more preferably 780 ° C. or lower so as not to increase the viscosity at the time of melting too much.
また、ガラス基板の50~350℃における平均熱膨張係数は、モジュール化する際にモジュールが反るのを抑制する点から70×10-7/℃以上が好ましく、80×10-7/℃以上がより好ましい。一方、剥がれ等を抑制する点から、90×10-7/℃以下が好ましく、85×10-7/℃以下がより好ましい。 The average coefficient of thermal expansion of the glass substrate at 50 to 350 ° C. is preferably 70 × 10 -7 / ° C. or higher, preferably 80 × 10 -7 / ° C. or higher, from the viewpoint of suppressing warping of the module during modularization. Is more preferable. On the other hand, from the viewpoint of suppressing peeling and the like, 90 × 10 -7 / ° C. or less is preferable, and 85 × 10 -7 / ° C. or less is more preferable.
ガラス基板の厚さは、特に限定されないが、強度と光透過率の観点から、0.7mm以上が好ましく、1.1mm以上がより好ましく、また、6.0mm以下が好ましく、4.0mm以下がより好ましい。 The thickness of the glass substrate is not particularly limited, but is preferably 0.7 mm or more, more preferably 1.1 mm or more, preferably 6.0 mm or less, and preferably 4.0 mm or less from the viewpoint of strength and light transmittance. More preferred.
<膜付きガラス基板の製造方法>
膜付きガラス基板1は、ガラス基板10上に、アンダーコート層20としてSiOxCy層、及び機能性透明膜30を順に積層して得られる。このとき、SiOxCy層のSiOxCyにおいて、xの値が1.59~1.90、yの値が0.10~0.40となれば、その製造方法は特に限定されない。
<Manufacturing method of glass substrate with film>
The
本実施形態に係る膜付きガラス基板の製造方法は、例えば次の方法が好ましい。
すなわち、温度500~800℃に加熱されたガラス基板と気体原料とを反応させ、前記ガラス基板上にアンダーコート層を形成すること(アンダーコート層形成工程)と、
前記アンダーコート層上に機能性透明膜を形成すること(機能性透明膜形成工程)を含む製造方法が好ましい。
ここで、前記アンダーコート層はSiOxCy層であり、前記気体原料はケイ素含有物質、酸化剤及び不飽和炭化水素を含み、前記ケイ素含有物質に対する前記酸化剤の体積比が8.5~50であり、なおかつ、前記ケイ素含有物質に対する前記不飽和炭化水素の体積比が0.5~3.5であることが好ましい。
As the method for manufacturing the glass substrate with a film according to the present embodiment, for example, the following method is preferable.
That is, the glass substrate heated to a temperature of 500 to 800 ° C. is reacted with the gas raw material to form an undercoat layer on the glass substrate (undercoat layer forming step).
A manufacturing method including forming a functional transparent film on the undercoat layer (functional transparent film forming step) is preferable.
Here, the undercoat layer is a SiO x Cy layer, the gas raw material contains a silicon-containing substance, an oxidizing agent, and an unsaturated hydrocarbon, and the volume ratio of the oxidizing agent to the silicon-containing substance is 8.5 to. It is preferably 50, and the volume ratio of the unsaturated hydrocarbon to the silicon-containing substance is preferably 0.5 to 3.5.
以下、本実施形態に係る膜付きガラス基板の製造方法について具体的に説明する。
ガラス基板は例えば、ガラス原料を加熱して溶融ガラスを得る溶解工程、溶融ガラスから泡を除く清澄工程、溶融ガラスを板状にしてガラスリボンを得る成形工程、およびガラスリボンを室温状態まで徐冷する徐冷工程により得られる。また、溶融ガラスをブロック状に成形し、徐冷した後に、切断、研磨を経てガラス基板を製造してもよい。
Hereinafter, a method for manufacturing a glass substrate with a film according to the present embodiment will be specifically described.
For the glass substrate, for example, a melting step of heating a glass raw material to obtain molten glass, a clarification step of removing bubbles from the molten glass, a molding step of forming a molten glass into a plate to obtain a glass ribbon, and slowly cooling the glass ribbon to a room temperature state. It is obtained by a slow cooling step. Further, the molten glass may be formed into a block shape, slowly cooled, and then cut and polished to produce a glass substrate.
(アンダーコート層形成工程)
アンダーコート層としてのSiOxCy層は、CVD(Chemical Vapor Deposition:化学気相蒸着)法やスパッタリング法、化学メッキ法、湿式塗布法等により形成できる。スパッタリング法は製板されたガラス基板上に製膜する方法であり、化学メッキ法は鏡を作る時などにも用いられる方法である。中でもCVD法が好ましく、後述するオンラインCVD法がより好ましい。
(Undercoat layer forming process)
The SiO x Cy layer as the undercoat layer can be formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, a chemical plating method, a wet coating method, or the like. The sputtering method is a method of forming a film on a plate-made glass substrate, and the chemical plating method is also used when making a mirror. Among them, the CVD method is preferable, and the online CVD method described later is more preferable.
CVD法において、例えば温度500~800℃に加熱されたガラス基板と気体原料とを反応させ、前記ガラス基板上にSiOxCy層を形成することが好ましい。
ガラス基板の温度は、CVD法の反応速度を向上させる観点から500℃以上が好ましく、600℃以上がより好ましく、700℃以上がさらに好ましい。また、ガラス基板の温度は、ガラス軟化の観点から800℃以下がより好ましく、760℃以下がさらに好ましい。
In the CVD method, for example, it is preferable to react a glass substrate heated to a temperature of 500 to 800 ° C. with a gas raw material to form a SiO x Cy layer on the glass substrate.
The temperature of the glass substrate is preferably 500 ° C. or higher, more preferably 600 ° C. or higher, and even more preferably 700 ° C. or higher from the viewpoint of improving the reaction rate of the CVD method. Further, the temperature of the glass substrate is more preferably 800 ° C. or lower, further preferably 760 ° C. or lower, from the viewpoint of glass softening.
気体原料はケイ素含有物質、酸化剤及び不飽和炭化水素を含むことが好ましい。 The gas raw material preferably contains a silicon-containing substance, an oxidizing agent and an unsaturated hydrocarbon.
ケイ素含有物質としては、モノシラン(SiH4)、ジシラン(Si2H6)、ジクロロシラン(SiH2Cl2)、三酸化シラン(SiHCl3)等のシラン類、テトラメチルシラン((CH3)4Si)等のアルキル化シラン、四フッ化ケイ素(SiF4)、四塩化ケイ素(SiCl4)等が挙げられ、シラン類が好ましく、モノシランがより好ましい。 Silicon-containing substances include silanes such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), silane trioxide (SiHCl 3 ), and tetramethylsilane ((CH 3 ) 4 ). Alkylated silanes such as Si), silicon tetrafluoride (SiF 4 ), silicon tetrachloride (SiCl 4 ) and the like can be mentioned, with silanes being preferred, and monosilanes being more preferred.
酸化剤としては二酸化炭素(CO2)、一酸化炭素(CO)、酸素(O2)、水蒸気(H2O)等の酸素元素を含む化合物が挙げられ、二酸化炭素が好ましい。 Examples of the oxidizing agent include compounds containing oxygen elements such as carbon dioxide (CO 2 ), carbon monoxide (CO), oxygen (O 2 ), and water vapor (H 2 O), and carbon dioxide is preferable.
不飽和炭化水素としてはエチレン系不飽和炭化水素(オレフィン)、アセチレン系不飽和炭化水素、芳香族化合物等が挙げられ、常温常圧で気体である化合物が好適である。
不飽和炭化水素としては、オレフィンが好ましく、炭素数2~4のオレフィンがより好ましく、エチレンがさらに好ましい。
Examples of the unsaturated hydrocarbon include an ethylene-based unsaturated hydrocarbon (olefin), an acetylene-based unsaturated hydrocarbon, and an aromatic compound, and a compound that is a gas at normal temperature and pressure is preferable.
As the unsaturated hydrocarbon, an olefin is preferable, an olefin having 2 to 4 carbon atoms is more preferable, and ethylene is further preferable.
例えば、気体原料において、ケイ素含有物質がシランを含み、酸化剤が二酸化炭素を含み、不飽和炭化水素がエチレンを含むことが好ましい。 For example, in a gaseous raw material, it is preferable that the silicon-containing substance contains silane, the oxidizing agent contains carbon dioxide, and the unsaturated hydrocarbon contains ethylene.
気体原料の混合比を調節することで、SiOxCy層におけるSiOxCyの組成を調節できる。
具体的には、ケイ素含有物質に対する酸化剤の体積比は、8.5以上が好ましく、12以上がより好ましく、20以上がさらに好ましい。また、ケイ素含有物質に対する酸化剤の体積比は、50以下が好ましい。
By adjusting the mixing ratio of the gas raw material, the composition of SiO x Cy in the SiO x Cy layer can be adjusted.
Specifically, the volume ratio of the oxidizing agent to the silicon-containing substance is preferably 8.5 or more, more preferably 12 or more, and even more preferably 20 or more. The volume ratio of the oxidizing agent to the silicon-containing substance is preferably 50 or less.
ケイ素含有物質に対する不飽和炭化水素の体積比は、0.5以上が好ましく、1.0以上がより好ましい。また、ケイ素含有物質に対する不飽和炭化水素の体積比は、3.5以下が好ましく、2.7以下がより好ましい。 The volume ratio of unsaturated hydrocarbon to silicon-containing substance is preferably 0.5 or more, more preferably 1.0 or more. The volume ratio of unsaturated hydrocarbons to silicon-containing substances is preferably 3.5 or less, more preferably 2.7 or less.
SiOxCyの組成は、上述の酸化剤と不飽和炭化水素とが相互に作用することで変化する。したがって、SiOxCyの組成を好ましい範囲に調整するには、ケイ素含有物質に対する酸化剤の体積比及び不飽和炭化水素の体積比は、両方の組み合わせが重要であり、両方ともを上述の好ましい範囲とすることが特に好ましい。 The composition of SiO x Cy changes due to the interaction of the above-mentioned oxidizing agent and unsaturated hydrocarbon. Therefore, in order to adjust the composition of SiO x Cy to a preferable range, a combination of both the volume ratio of the oxidizing agent to the silicon-containing substance and the volume ratio of the unsaturated hydrocarbon is important, and both are preferable as described above. The range is particularly preferable.
SiOxCy層の厚さは十分な被覆性の点から10nm以上が好ましく、20nm以上がより好ましく、25nm以上がさらに好ましい。また、SiOxCy層による光の吸収を抑制する観点からは、厚さは90nm以下が好ましく、80nm以下がより好ましく、70nm以下がさらに好ましい。SiOxCy層の厚さは、原料の種類、原料ガス濃度、ガラスリボン又はガラス基板への原料ガスの吹き付け流速、基板温度、コーティングビーム構造由来の反応ガス滞留時間等により制御できる。 The thickness of the SiO x Cy layer is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 25 nm or more from the viewpoint of sufficient coverage. Further, from the viewpoint of suppressing the absorption of light by the SiO x Cy layer, the thickness is preferably 90 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less. The thickness of the SiO x Cy layer can be controlled by the type of raw material, the concentration of raw material gas, the flow rate of blowing the raw material gas onto the glass ribbon or the glass substrate, the substrate temperature, the residence time of the reaction gas derived from the coating beam structure, and the like.
(機能性透明膜形成工程)
本実施形態に係る製造方法は、上記のアンダーコート層上に機能性透明膜を形成することを含む。機能性透明膜の形成は従来公知の各方法を用いればよく、特に限定されない。機能性透明膜は、SiOxCy層と同様、CVD(Chemical Vapor Deposition:化学気相蒸着)法やスパッタリング法、化学メッキ法、湿式塗布法等により形成できる。中でもCVD法が好ましく、後述するオンラインCVD法がより好ましい。機能性透明膜が導電層と表面層とを含む構成である時は、SiOxCy層上に導電層と表面層とをこの順に形成すればよい。
(Functional transparent film forming process)
The production method according to the present embodiment includes forming a functional transparent film on the above-mentioned undercoat layer. The formation of the functional transparent film may be made by using conventionally known methods, and is not particularly limited. Similar to the SiO x Cy layer, the functional transparent film can be formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, a chemical plating method, a wet coating method, or the like. Among them, the CVD method is preferable, and the online CVD method described later is more preferable. When the functional transparent film includes a conductive layer and a surface layer, the conductive layer and the surface layer may be formed on the SiO x Cy layer in this order.
オンラインCVD法とはCVD法の一種であり、フロートライン上でガラス基板の製造過程中に、ガラスの表面に直接、膜を製膜する方法である。すなわち、切断したガラス基板を得た後にアンダーコート層及び機能性透明膜を製膜するのではなく、ガラス基板を得る工程の途中でアンダーコート層及び機能性透明膜を製膜する。
具体的には、ガラス基板の製造の際、ガラスリボンが溶融錫浴の上を移動した後、徐冷されることで、連続的にガラス基板が製造されるが、このガラスリボンの移動中に、ガラスリボンの上面に、アンダーコート層及び機能性透明膜の製膜工程を連続的に実施するものである。
The online CVD method is a kind of CVD method, and is a method of forming a film directly on the surface of glass during the manufacturing process of a glass substrate on a float line. That is, instead of forming the undercoat layer and the functional transparent film after obtaining the cut glass substrate, the undercoat layer and the functional transparent film are formed in the middle of the process of obtaining the glass substrate.
Specifically, when the glass substrate is manufactured, the glass ribbon moves on the molten tin bath and then is slowly cooled to continuously manufacture the glass substrate. During the movement of the glass ribbon, the glass substrate is continuously manufactured. , The process of forming an undercoat layer and a functional transparent film is continuously carried out on the upper surface of the glass ribbon.
より具体的には、上記ガラス基板の製造方法において、成形工程のフロートラインと徐冷工程の間で、ガラスがまだ熱い状態のうちに、気体原料をガラス表面に吹き付けて、反応させながら、アンダーコート層及び機能性透明膜を製膜することで膜付きガラス基板が得られる。
オンラインCVD法はガラス基板を製造する一連の工程の中で、アンダーコート層及び機能性透明膜を形成できることから、製造コストを低く抑えられるため好ましい。この場合、オンラインでの製膜となることから、製膜する層の組成は限定される。例えば、膜付きガラス基板を太陽電池の透明電極基板として用いる場合には、アンダーコート層をSiOxCy層とし、機能性透明膜をフッ素ドープされたSnO2を主成分とする膜とすることが好ましい態様として挙げられる。また、膜付きガラス基板をLow-Eガラスとして用いる場合には、アンダーコート層をSiOxCy層とし、機能性透明膜を高濃度にフッ素ドープされたSnO2やアンチモンドープされたSnO2を主成分とする膜とすることが好ましい態様として挙げられる。
More specifically, in the above-mentioned method for manufacturing a glass substrate, a gas raw material is sprayed onto the glass surface and reacted while the glass is still hot between the float line of the molding process and the slow cooling process. A glass substrate with a film can be obtained by forming a coat layer and a functional transparent film.
The online CVD method is preferable because the undercoat layer and the functional transparent film can be formed in a series of steps for manufacturing the glass substrate, and thus the manufacturing cost can be kept low. In this case, since the film is formed online, the composition of the layer to be formed is limited. For example, when a glass substrate with a film is used as a transparent electrode substrate for a solar cell, the undercoat layer is a SiO x Cy layer, and the functional transparent film is a film containing fluorinated SnO 2 as a main component. Is mentioned as a preferable embodiment. When the glass substrate with a film is used as Low-E glass, the undercoat layer is a SiO x Cy layer, and the functional transparent film is a high-concentration fluorine-doped SnO 2 or an antimon-doped SnO 2 . A preferred embodiment is to use a film as a main component.
一方で、オフラインCVD法もCVD法の一種であり、一旦、ガラス製造工程により製造され、適当なサイズに切断されたガラス基板を、改めて電気炉に投入して搬送しながら、前記オンラインCVD法と同様に気体原料の反応を利用して、アンダーコート層及び機能性透明膜を製膜する方法である。搬送速度や基板温度を製膜に合わせて設定できる利点がある反面、製造コストは、オンラインCVD法に比べて高くなる。 On the other hand, the offline CVD method is also a kind of CVD method, and is different from the online CVD method while transporting a glass substrate once manufactured by a glass manufacturing process and cut to an appropriate size into an electric furnace again. Similarly, it is a method of forming an undercoat layer and a functional transparent film by utilizing the reaction of a gas raw material. Although there is an advantage that the transfer speed and the substrate temperature can be set according to the film formation, the manufacturing cost is higher than that of the online CVD method.
スパッタリング法を用いる場合には、真空にした容器の中に特殊ガスを極微量注入し、適したスパッタリングターゲットに電圧をかけることによって、ガラス基板上にアンダーコート層及び機能性透明膜が形成され、膜付きガラス基板が得られる。
スパッタリング法は一度製板されたガラス基板上に層を形成することから、製造コストはかかるものの、所望する様々な組成の層を形成できる。
When the sputtering method is used, a very small amount of special gas is injected into a vacuumed container and a voltage is applied to a suitable sputtering target to form an undercoat layer and a functional transparent film on a glass substrate. A glass substrate with a film can be obtained.
Since the sputtering method forms a layer on a glass substrate once made into a plate, it is possible to form a layer having various desired compositions, although the manufacturing cost is high.
アンダーコート層及び機能性透明膜の厚さは、CVD法の場合、原料の種類、原料ガス濃度、ガラスリボン又はガラス基板自体の移動速度、その上への原料ガスの吹き付け流速、基板温度、コーティングビーム構造由来の反応ガス滞留時間等により制御できる。またスパッタリング法の場合には、スパッタ時間や電圧等により厚さを制御できる。
なお上述した製造方法は、実施形態に限定されず、本発明の目的を達成できる範囲で適宜変形や改良等が可能である。
In the case of the CVD method, the thickness of the undercoat layer and the functional transparent film is the type of raw material, the concentration of raw material gas, the moving speed of the glass ribbon or the glass substrate itself, the flow rate of spraying the raw material gas onto it, the substrate temperature, and the coating. It can be controlled by the residence time of the reaction gas derived from the beam structure. Further, in the case of the sputtering method, the thickness can be controlled by the sputtering time, voltage and the like.
The above-mentioned manufacturing method is not limited to the embodiment, and can be appropriately modified or improved as long as the object of the present invention can be achieved.
<太陽電池>
本発明は、上記膜付きガラス基板を透明電極基板として有する太陽電池に関する。上記した本実施形態に係る膜付きガラス基板は特に、前記スーパーストレート型の太陽電池用透明電極基板に幅広く適している。当該透明電極基板としての構成や好ましい態様は、上記<膜付きガラス基板>で記載したものと同様である。
本発明の太陽電池とは、スーパーストレート型の太陽電池が好ましく、その製造工程においてアニール処理や高温製膜等、高温で熱処理を行う太陽電池がより好ましく、例えばCdTe太陽電池が挙げられる。ただし、他の太陽電池に適用することを何ら排除するものではない。
図2に示すように、CdTe太陽電池2は、透明電極基板となる膜付きガラス基板の機能性透明膜30の表面上に、n型層40、p型層50、及び裏面電極(陽極)60が順に積層された構成である。
<Solar cell>
The present invention relates to a solar cell having the glass substrate with a film as a transparent electrode substrate. The glass substrate with a film according to the present embodiment described above is particularly suitable for a wide range of the transparent electrode substrates for solar cells of the super straight type. The configuration and preferred embodiment of the transparent electrode substrate are the same as those described in the above <Glass substrate with film>.
The solar cell of the present invention is preferably a super straight type solar cell, more preferably a solar cell that undergoes heat treatment at a high temperature such as annealing treatment or high temperature film formation in the manufacturing process thereof, and examples thereof include a CdTe solar cell. However, it does not exclude the application to other solar cells.
As shown in FIG. 2, the CdTe
CdTe太陽電池の場合、透明電極基板の機能性透明膜において、アンダーコート層と反対側の表面上にはn型層が形成されるが、n型層としては、従来公知のものを使用でき、例えばCdS、CdSe等が挙げられ、CdSが好ましい。
n型層の厚さは30nm以上が好ましく、また、100nm以下が好ましい。
n型層は近接昇華法により形成でき、昇華速度を変更したり、基板温度を変更することにより、その厚さや膜質を調整できる。
In the case of a CdTe solar cell, an n-type layer is formed on the surface opposite to the undercoat layer in the functional transparent film of the transparent electrode substrate, but a conventionally known n-type layer can be used. For example, CdS, CdSe and the like can be mentioned, and CdS is preferable.
The thickness of the n-type layer is preferably 30 nm or more, and preferably 100 nm or less.
The n-type layer can be formed by the proximity sublimation method, and its thickness and film quality can be adjusted by changing the sublimation rate or the substrate temperature.
p型層はCdTeが一般的である。p型層の厚さは3μm以上が好ましく、また、15μm以下が好ましい。
p型層は近接昇華法により形成でき、昇華速度を変更したり、基板温度を変更することにより、その厚さや膜質を調整できる。
CdTe is generally used for the p-type layer. The thickness of the p-type layer is preferably 3 μm or more, and preferably 15 μm or less.
The p-type layer can be formed by the proximity sublimation method, and its thickness and film quality can be adjusted by changing the sublimation rate or the substrate temperature.
裏面電極は陽極として作用する。裏面電極としては、従来公知のものを使用できる。例えば、銀(Ag)やモリブデン(Mo)等の金属材料膜が積層された構造の電極や、Cuをドープしたカーボン電極、等が挙げられる。また、裏面電極上にさらに裏板ガラスを有していてもよい。裏板ガラスは耐水性や耐酸素透過性を有していればよく、裏板ガラスに代えて樹脂からなるバックフィルムを用いてもよい。
裏面電極と裏板ガラス又はバックフィルムとの間は、樹脂封入や接着用の樹脂により接着される。
裏面電極の厚さは100nm以上が好ましく、また、1000nm以下が好ましい。裏板ガラス又はバックフィルムの厚さは1mm以上が好ましく、また、3mm以下が好ましい。
The back electrode acts as an anode. As the back surface electrode, conventionally known ones can be used. For example, an electrode having a structure in which a metal material film such as silver (Ag) or molybdenum (Mo) is laminated, a carbon electrode doped with Cu, and the like can be mentioned. Further, the back plate glass may be further provided on the back surface electrode. The back plate glass may have water resistance and oxygen permeability resistance, and a back film made of resin may be used instead of the back plate glass.
The back surface electrode and the back plate glass or the back film are bonded with a resin for encapsulation or adhesion.
The thickness of the back surface electrode is preferably 100 nm or more, and preferably 1000 nm or less. The thickness of the back plate glass or the back film is preferably 1 mm or more, and preferably 3 mm or less.
CdTeからなるp型層の端部又はCdTe太陽電池の端部は封止されていてもよい。封止するための材料としては、例えば、前記透明電極基板におけるガラス基板と同じ組成を有するガラスや、その他の組成のガラス、樹脂等が挙げられる。 The end of the p-type layer made of CdTe or the end of the CdTe solar cell may be sealed. Examples of the material for sealing include glass having the same composition as the glass substrate in the transparent electrode substrate, glass having another composition, resin and the like.
<Low-Eガラス>
本発明は、上記膜付きガラス基板からなるLow-Eガラスに関する。Low-Eガラスとしての構成や好ましい態様は、上記<膜付きガラス基板>で記載したものと同様である。
すなわち、ガラス基板表面に、SiOxCy層及び機能性透明膜がこの順に形成されたものであるが、機能性透明膜は、従来公知の物を使用でき、例えば、金属膜とそれを保護する保護膜とから構成されていてもよく、また、金属酸化物膜から構成されていてもよい。
<Low-E glass>
The present invention relates to Low-E glass made of the above-mentioned glass substrate with a film. The configuration and preferred embodiment of the Low-E glass are the same as those described in the above <Glass substrate with film>.
That is, a SiO x Cy layer and a functional transparent film are formed on the surface of the glass substrate in this order. As the functional transparent film, a conventionally known material can be used, for example, a metal film and a protective film thereof. It may be composed of a protective film and a metal oxide film.
以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。例1~例6は実施例であり、例7~例9は比較例である。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Examples 1 to 6 are examples, and examples 7 to 9 are comparative examples.
[例1]
以下に示すように、フロート法によりガラス基板を製造すると同時に、オンライン常圧CVD(化学気相)法によりアンダーコート層及び機能性透明膜を形成することで、膜付きガラス基板を得た。
[Example 1]
As shown below, a glass substrate with a film was obtained by producing a glass substrate by the float method and at the same time forming an undercoat layer and a functional transparent film by the online atmospheric pressure CVD (chemical vapor deposition) method.
ソーダライムシリカガラス組成からなる溶融ガラスを1500~1600℃のフロートバス中に流し込み、連続的にガラスリボンを流しながら板状ガラスの成形を行った。
(SiOxCy層の形成)
ガラスリボンの温度が760℃となる最上流側に位置する第1のコーティングビームから、気体原料としてモノシラン(SiH4)0.364kg/時間、エチレン0.25kg/時間、CO2ガス12.5kg/時間、窒素ガス1.0kg/時間を供給し、ガラスリボン上に膜厚が50nmのSiOxCy層を製膜した。気体原料における、モノシランに対するエチレンの体積比(以下、「C2H4比」)及びモノシランに対するCO2ガスの体積比(以下、「CO2比」)、並びに得られたSiOxCy層のxの値及びyの値を表1に示す。
Fused glass having a soda lime silica glass composition was poured into a float bath at 1500 to 1600 ° C., and a plate-shaped glass was formed while continuously flowing a glass ribbon.
(Formation of SiO x Cy layer)
From the first coating beam located on the most upstream side where the temperature of the glass ribbon is 760 ° C, monosilane (SiH 4 ) 0.364 kg / hour, ethylene 0.25 kg / hour, CO 2 gas 12.5 kg / hour as a gas raw material For hours, 1.0 kg / hour of nitrogen gas was supplied, and a SiO x Cy layer having a film thickness of 50 nm was formed on the glass ribbon. The volume ratio of ethylene to monosilane (hereinafter, "C 2 H 4 ratio") and the volume ratio of CO 2 gas to monosilane (hereinafter, "CO 2 ratio") in the gas raw material, and the obtained SiO x Cy layer. The values of x and y are shown in Table 1.
(機能性透明膜の形成)
続いて、ガラスリボンが615℃となる下流側に位置する第2のコーティングビームから、モノブチル錫トリクロライド、空気、水、窒素、硝酸およびトリフロロ酢酸からなる混合ガスを供給し、膜厚が430nmのSnO2:Fを主成分とする機能性透明膜(フッ素ドープ酸化錫膜)を製膜した。なお、前記混合ガスは、各物質を液相状態又は気相状態でミキサーに供給し、そこで加熱気化しながら混合して、混合ガスとした。第2のコーティングビームから供給した各原料の量は、モノブチル錫トリクロライド25.2L/時間(液相)、空気171.7Nm3/時間、水96.0kg/時間、窒素60.3Nm3/時間、濃度66.5重量%の硝酸水溶液22.3L/時間(液相)、トリフロロ酢酸5.3L/時間(液相)であった。なお、膜付きガラス基板の板厚は3.2mmであった。
(Formation of functional transparent film)
Subsequently, a mixed gas consisting of monobutyltin trichloride, air, water, nitrogen, nitrate and trifluoroacetic acid is supplied from a second coating beam located on the downstream side where the glass ribbon reaches 615 ° C., and the film thickness is 430 nm. SnO 2 : A functional transparent film (fluorine-doped tin oxide film) containing F as a main component was formed. In the mixed gas, each substance was supplied to a mixer in a liquid phase state or a gas phase state, and mixed while being heated and vaporized there to obtain a mixed gas. The amount of each raw material supplied from the second coating beam was monobutyltin trichloride 25.2 L / hour (liquid phase), air 171.7 Nm 3 / hour, water 96.0 kg / hour, nitrogen 60.3 Nm 3 / hour. , 22.3 L / hour (liquid phase) of an aqueous nitrogen solution having a concentration of 66.5 wt%, and 5.3 L / hour (liquid phase) of trifluoroacetic acid. The thickness of the glass substrate with a film was 3.2 mm.
[例2~例8]
第1のコーティングビームから供給した各原料の量を、C2H4比及びCO2比が表1に記載の値となるように変更し、ガラスリボン上に表1に記載の膜厚でSiOxCy層を製膜した以外は例1と同様にして、膜付きガラス基板を得た。
各例において、得られたSiOxCy層のxの値及びyの値を表1に示す。
[Examples 2 to 8]
The amount of each raw material supplied from the first coating beam was changed so that the C2H4 ratio and the CO2 ratio were the values shown in Table 1, and SiO was formed on the glass ribbon with the film thickness shown in Table 1. A glass substrate with a film was obtained in the same manner as in Example 1 except that the xCy layer was formed.
In each example, the values of x and y of the obtained SiO x Cy layer are shown in Table 1.
[例9]
例9において、SiOxCy層は、x=2、y=0のSiO2層とした。第1のコーティングビームから、気体原料としてモノシラン(SiH4)0.425kg/時間、エチレン0.56kg/時間、O2ガス35.3kg/時間、窒素ガス60.9kg/時間を供給し、ガラスリボン上に膜厚が30nmのSiOxCy層(SiO2層)を製膜した。
ただし、この時、O2ガスは、他の原料とは、異なるスリットから吹き付けて、基板直上で他の原料と混合するようにして、SiOxCy層を製膜した。
それ以外は、例1と同様にして、膜付きガラス基板を得た。なお、表1の「CO2比」の列は、例9については、気体原料におけるモノシランに対するO2ガスの体積比(O2比)を示す。
[Example 9]
In Example 9, the SiO x Cy layer is a SiO 2 layer having x = 2 and y = 0. From the first coating beam, monosilane (SiH 4 ) 0.425 kg / hour, ethylene 0.56 kg / hour, O 2 gas 35.3 kg / hour, nitrogen gas 60.9 kg / hour are supplied as gas raw materials, and a glass ribbon is supplied. A SiO x Cy layer (SiO 2 layer) having a film thickness of 30 nm was formed on the film.
However, at this time, the O 2 gas was sprayed from a slit different from that of the other raw materials so as to be mixed with the other raw materials directly on the substrate to form a film of the SiO x Cy layer.
A glass substrate with a film was obtained in the same manner as in Example 1 except for the above. The column of "CO 2 ratio" in Table 1 shows the volume ratio (O 2 ratio) of O 2 gas to monosilane in the gas raw material for Example 9.
各例の膜付きガラス基板に対して、以下の条件にて、x、yの同定並びに光透過率及び650℃耐熱性についての評価を行った。
(x、yの同定)
SiOxCy層の組成はX線光電子分光装置(XPS)PHI5000 VersaProbe(アルバック・ファイ社製)により同定した。
具体的な測定手順を以下に示す。まず、膜付きガラス基板を塩酸水溶液と亜鉛粉を用いて、溶解エッチングを行い、機能性透明膜を除去した。超音波洗浄機にて水洗し、乾燥した後に、前記XPSによって、100μmφ、25W、15kVの条件のX線出力で、X線光電子分光測定を行った。測定は、入射角45°でArイオンスパッタを行いながら、膜厚方向のC1s、O1s、Si2sの光電子強度検出を行い、厚み方向の組成分布プロファイルを得た。データは、得られた組成分布プロファイルをもとに、表面から、C/Si(原子数比)の値が0.02以下まで減少する点までを、SiOxCy層が形成されている範囲(膜厚)として処理した。O/Si(原子数比)をxの値として、C/Si(原子数比)をyの値として、層全体の平均値を算出したものを表1に示す。
For the glass substrate with a film of each example, x and y were identified and the light transmittance and the heat resistance at 650 ° C. were evaluated under the following conditions.
(Identification of x and y)
The composition of the SiO x Cy layer was identified by an X-ray photoelectron spectrometer (XPS) PHI5000 VersaProbe (manufactured by ULVAC-PHI).
The specific measurement procedure is shown below. First, the glass substrate with a film was melt-etched using an aqueous hydrochloric acid solution and zinc powder to remove the functional transparent film. After washing with water with an ultrasonic cleaner and drying, X-ray photoelectron spectroscopy measurement was performed by the XPS at an X-ray output under the conditions of 100 μmφ, 25 W, and 15 kV. In the measurement, while performing Ar ion sputtering at an incident angle of 45 °, the photoelectron intensities of C1s, O1s, and Si2s in the film thickness direction were detected, and a composition distribution profile in the thickness direction was obtained. The data is based on the obtained composition distribution profile, from the surface to the point where the C / Si (atomic number ratio) value decreases to 0.02 or less, in the range where the SiO x Cy layer is formed. Treated as (film thickness). Table 1 shows the calculated average value of the entire layer with O / Si (atomic number ratio) as the value of x and C / Si (atomic number ratio) as the value of y.
(SiOxCy層の膜厚)
膜付きガラス基板を塩酸水溶液と亜鉛粉を用いて、溶解エッチングを行い、機能性透明膜を除去した。超音波洗浄機にて水洗し、乾燥した後に、分光エリプソメトリーM-200I(J.A.Woollam社製)を用いて、SiOxCy層の膜厚を測定した。
(Film thickness of SiO x Cy layer)
The glass substrate with a film was melt-etched using an aqueous hydrochloric acid solution and zinc powder to remove the functional transparent film. After washing with water with an ultrasonic cleaner and drying, the film thickness of the SiO x Cy layer was measured using spectroscopic ellipsometry M-200I (manufactured by JA Woollam ).
(光透過率)
分光光度計Lambda950(パーキンエルマー社製)を用いて、膜付きガラス基板に対し、ガラス基板側から測定光を入射させ、波長300~1280nmの範囲で、2nmごとに透過率を測定し、波長400~800nmの範囲の各透過率の平均値を透過率の代表値とした。結果を表1に示す。
(Light transmittance)
Using a spectrophotometer Lambda950 (manufactured by Parkin Elmer), the measured light is incident on the glass substrate with a film from the glass substrate side, and the transmittance is measured every 2 nm in the wavelength range of 300 to 1280 nm, and the wavelength is 400. The average value of each transmittance in the range of about 800 nm was used as the representative value of the transmittance. The results are shown in Table 1.
(650℃耐熱性(抵抗変化比))
膜付きガラス基板を1cm角の大きさに切断して、ホール効果測定装置(アクセントオプティカルテクノロジーズ社製、HL5500PC)を用い、まず、加熱前のシート抵抗値を測定した。次に、搬送式ベルトコンベア炉(DENKO社製)を650℃に設定し、11.2mm/分の速度で搬送しながら116分間加熱した。なお、炉内は、窒素を連続的に供給し、酸素濃度10ppm以下の雰囲気に保った。加熱後に、再び、前記と同様の方法でシート抵抗値(加熱後のシート抵抗値)を測定し、それらの結果から、(加熱後のシート抵抗値)/(加熱前のシート抵抗値)で表される値を、650℃耐熱性(抵抗変化比)として求めた。650℃耐熱性(抵抗変化比)の値は通常1以上であるが、その値が小さく、1に近いほど、膜付きガラス基板が耐熱性に優れることを意味する。一方、この値が20を超えることは、各用途での性能を著しく悪化させ、非常に好ましくない。結果を表1に示す。また、例1~9について、yの値と抵抗変化比の関係を図3に示す。
(650 ° C heat resistance (resistance change ratio))
A glass substrate with a film was cut into a size of 1 cm square, and a Hall effect measuring device (HL5500PC manufactured by Accent Optical Technologies) was used to first measure the sheet resistance value before heating. Next, a conveyor belt conveyor furnace (manufactured by DENKO) was set at 650 ° C. and heated at a speed of 11.2 mm / min for 116 minutes. In the furnace, nitrogen was continuously supplied to maintain an atmosphere having an oxygen concentration of 10 ppm or less. After heating, the sheet resistance value (sheet resistance value after heating) is measured again by the same method as described above, and from those results, the table is expressed as (sheet resistance value after heating) / (sheet resistance value before heating). The value to be obtained was determined as 650 ° C. heat resistance (resistance change ratio). The value of heat resistance (resistance change ratio) at 650 ° C. is usually 1 or more, but the smaller the value and the closer to 1, it means that the glass substrate with a film has excellent heat resistance. On the other hand, if this value exceeds 20, the performance in each application is significantly deteriorated, which is very unfavorable. The results are shown in Table 1. Further, for Examples 1 to 9, the relationship between the value of y and the resistance change ratio is shown in FIG.
表1に示すように、アンダーコート層としてxの値及びyの値が特定の範囲に調整されたSiOxCy層を有する例1~例6の膜付きガラス基板は、80%以上の高い光透過率と優れた耐熱性とを両立できた。一方で、例7及び例8の膜付きガラス基板は、yの値が大きすぎるために耐熱性に劣る結果となった。また、例9の膜付きガラス基板は、yの値が小さすぎるために光透過率に劣る結果となった。 As shown in Table 1, the film-coated glass substrates of Examples 1 to 6 having a SiO x Cy layer in which the x value and the y value are adjusted to a specific range as the undercoat layer are 80% or more high. It was possible to achieve both light transmittance and excellent heat resistance. On the other hand, the glass substrates with a film of Examples 7 and 8 were inferior in heat resistance because the value of y was too large. Further, the glass substrate with a film of Example 9 was inferior in light transmittance because the value of y was too small.
本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2020年11月30日出願の日本特許出願(特願2020-198863)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on November 30, 2020 (Japanese Patent Application No. 2020-198863), the contents of which are incorporated herein by reference.
本発明に係る膜付きガラス基板は、耐熱性に優れ、かつ光透過性にも優れるので、太陽電池用透明電極基板やLow-Eガラスとして非常に有用である。本発明に係る膜付きガラス基板は、特に600℃以上の高温環境下に置かれる場合において、機能性透明膜の性能低下を抑制できるため、CdTe太陽電池等、その製造時に高温での工程を要する太陽電池用透明電極や、高温環境下で熱強化処理がなされる場合のLow-Eガラスに特に好適である。 The glass substrate with a film according to the present invention has excellent heat resistance and light transmission, and is therefore very useful as a transparent electrode substrate for solar cells and Low-E glass. Since the glass substrate with a film according to the present invention can suppress deterioration of the performance of the functional transparent film, particularly when placed in a high temperature environment of 600 ° C. or higher, a process at a high temperature is required at the time of manufacturing the CdTe solar cell or the like. It is particularly suitable for transparent electrodes for solar cells and Low-E glass when heat-strengthening treatment is performed in a high temperature environment.
1 膜付きガラス基板
2 CdTe太陽電池
10 ガラス基板
20 アンダーコート層
30 機能性透明膜
40 n型層
50 p型層
60 裏面電極
1 Glass substrate with
Claims (9)
前記アンダーコート層がSiOxCy層であり、
前記SiOxCy層を構成するSiOxCyにおいて、xの値が1.59~1.90であり、yの値が0.10~0.40である、膜付きガラス基板。 A glass substrate with a film containing a glass substrate, an undercoat layer, and a functional transparent film in this order.
The undercoat layer is a SiO x Cy layer, and the undercoat layer is a SiO x Cy layer.
A glass substrate with a film having a value of x of 1.59 to 1.90 and a value of y of 0.10 to 0.40 in SiO x Cy constituting the SiO x Cy layer .
温度500~800℃に加熱されたガラス基板と気体原料とを反応させ、前記ガラス基板上にアンダーコート層を形成することと、
前記アンダーコート層上に機能性透明膜を形成することと、を含み、
前記アンダーコート層はSiOxCy層であり、
前記気体原料はケイ素含有物質、酸化剤及び不飽和炭化水素を含み、
前記ケイ素含有物質に対する前記酸化剤の体積比が8.5~50であり、
前記ケイ素含有物質に対する前記不飽和炭化水素の体積比が0.5~3.5である、
膜付きガラス基板の製造方法。 It is a method of manufacturing a glass substrate with a film.
By reacting a glass substrate heated to a temperature of 500 to 800 ° C. with a gas raw material to form an undercoat layer on the glass substrate,
Including forming a functional transparent film on the undercoat layer.
The undercoat layer is a SiO x Cy layer, and is
The gaseous raw material contains a silicon-containing substance, an oxidizing agent and an unsaturated hydrocarbon, and contains
The volume ratio of the oxidizing agent to the silicon-containing substance is 8.5 to 50, and the volume ratio is 8.5 to 50.
The volume ratio of the unsaturated hydrocarbon to the silicon-containing substance is 0.5 to 3.5.
A method for manufacturing a glass substrate with a film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022565388A JPWO2022114027A1 (en) | 2020-11-30 | 2021-11-24 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020198863 | 2020-11-30 | ||
JP2020-198863 | 2020-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022114027A1 true WO2022114027A1 (en) | 2022-06-02 |
Family
ID=81755561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/043066 WO2022114027A1 (en) | 2020-11-30 | 2021-11-24 | Film-attached glass substrate, and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022114027A1 (en) |
WO (1) | WO2022114027A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005029464A (en) * | 2003-06-20 | 2005-02-03 | Nippon Sheet Glass Co Ltd | Glass plate with thin film, its production method, and photoelectric conversion device using the glass plate |
JP2015506890A (en) * | 2011-11-16 | 2015-03-05 | サン−ゴバン グラス フランス | SiOC barrier layer against alkali metal |
JP2021014384A (en) * | 2019-07-12 | 2021-02-12 | Agc株式会社 | Glass substrate with film and its manufacturing method |
-
2021
- 2021-11-24 WO PCT/JP2021/043066 patent/WO2022114027A1/en active Application Filing
- 2021-11-24 JP JP2022565388A patent/JPWO2022114027A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005029464A (en) * | 2003-06-20 | 2005-02-03 | Nippon Sheet Glass Co Ltd | Glass plate with thin film, its production method, and photoelectric conversion device using the glass plate |
JP2015506890A (en) * | 2011-11-16 | 2015-03-05 | サン−ゴバン グラス フランス | SiOC barrier layer against alkali metal |
JP2021014384A (en) * | 2019-07-12 | 2021-02-12 | Agc株式会社 | Glass substrate with film and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022114027A1 (en) | 2022-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101567615B1 (en) | Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same | |
US7087307B2 (en) | Glass sheet and glass sheet photoelectric converter device | |
EP1056136B1 (en) | Conductive substrate for a photoelectric conversion device and its manufacturing method | |
EP1471541B1 (en) | Glass substrate coated with a transparent conductive film and photoelectric conversion device including said glass substrate | |
CN114927590A (en) | Glass substrate for solar cell and solar cell | |
JP4468894B2 (en) | Transparent conductive substrate, manufacturing method thereof, and photoelectric conversion element | |
JP7020458B2 (en) | Glass substrate with film and its manufacturing method | |
JP4467707B2 (en) | Glass plate with conductive film, method for producing the same, and photoelectric conversion device using the same | |
WO2022114027A1 (en) | Film-attached glass substrate, and method for manufacturing same | |
JP7306502B2 (en) | Film-coated glass substrate and manufacturing method thereof | |
JP7160232B1 (en) | Transparent electrode substrate and solar cell | |
JP7396416B2 (en) | Glass substrate with transparent conductive film and method for manufacturing the same | |
JP2005029464A (en) | Glass plate with thin film, its production method, and photoelectric conversion device using the glass plate | |
JP2021012948A (en) | Transparent electrode substrate and solar cell | |
JP2004142998A (en) | Glass article having thin film and method for producing the same | |
WO2022114028A1 (en) | Glass substrate with transparent conductive film and solar cell | |
JP2005029463A (en) | Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate | |
JP2014160689A (en) | Base material with transparent conductive oxide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21897999 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022565388 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21897999 Country of ref document: EP Kind code of ref document: A1 |