WO2022113473A1 - 溶接継手およびその製造方法 - Google Patents
溶接継手およびその製造方法 Download PDFInfo
- Publication number
- WO2022113473A1 WO2022113473A1 PCT/JP2021/033208 JP2021033208W WO2022113473A1 WO 2022113473 A1 WO2022113473 A1 WO 2022113473A1 JP 2021033208 W JP2021033208 W JP 2021033208W WO 2022113473 A1 WO2022113473 A1 WO 2022113473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- weld metal
- steel sheet
- metal part
- welded
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000002184 metal Substances 0.000 claims abstract description 133
- 229910052751 metal Inorganic materials 0.000 claims abstract description 133
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 91
- 239000010959 steel Substances 0.000 claims abstract description 91
- 238000003466 welding Methods 0.000 claims abstract description 59
- 239000000203 mixture Substances 0.000 claims abstract description 50
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 22
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 16
- 239000012535 impurity Substances 0.000 claims description 18
- 229910052758 niobium Inorganic materials 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- 229910052698 phosphorus Inorganic materials 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 15
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910001566 austenite Inorganic materials 0.000 abstract description 21
- 229910052748 manganese Inorganic materials 0.000 abstract description 8
- 239000000463 material Substances 0.000 description 31
- 230000000694 effects Effects 0.000 description 21
- 238000005336 cracking Methods 0.000 description 20
- 238000009863 impact test Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 230000004907 flux Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000012071 phase Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000010953 base metal Substances 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000036544 posture Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to welded structures used in extremely low temperature environments, such as tanks for storing liquefied gas, and in particular, the strength and strength of welded joints using high Ni steel sheets containing 6.5 to 10.0% by mass of Ni. Regarding improvement of ultra-low temperature toughness.
- 9% Ni steel is often used for storage tanks for liquefied natural gas (LNG), liquid nitrogen, liquid oxygen, etc.
- LNG liquefied natural gas
- a Ni-based alloy containing 50% or more of Ni as a welding material. This is because when welding is performed using a welding material (co-gold-based welding material) consisting of a component (co-gold-based) similar to 9% Ni steel as the welding material, it remains welded at the welded joint 9 This is because it is not possible to secure low temperature toughness (ultra-low temperature toughness) at an extremely low temperature of -196 ° C, which is equivalent to that of% Ni steel base metal.
- Patent Document 1 proposes "a wire containing flux for 9% Ni steel welding".
- the wire described in Patent Document 1 is a flux-containing wire formed by filling a Ni-based alloy outer skin with flux, and is a mass% based on the total weight of the wire, and the total of the Ni-based alloy outer skin and the flux is Mn: 2.0 to 4.5%.
- the total Ti oxide: TiO 2 conversion value is 3.0 to 7.0%, and the total Si oxide: SiO 2 conversion value is in the flux.
- slag forming agents consisting of: 6-12% is adjusted to contain the components in the flux-filled wire. If a 9% Ni steel welded joint is manufactured using this wire, a weld metal with high strength and excellent toughness can be obtained, and it has excellent crack resistance and defect resistance such as blowholes, and is welded in all postures. It is said that high-efficiency and high-quality weld metal can be obtained, such as excellent workability.
- Patent Document 2 describes "welding material for low temperature steel".
- the welding material described in Patent Document 2 is a welding material in which the amount of Ni is reduced and austenite is stabilized by Mn.
- Welding material containing: 0.05 to 0.5%, Si: 0.15 to 0.75%, Mn: 20 to 50%, Cr: 4 to 17%, N: 0.005 to 0.5%, with the balance consisting of Fe and unavoidable impurities. Is.
- W and Ta may be contained up to 4% each, or Ni and Mo may be contained up to 10% each.
- the tensile properties of the weld metal and the impact toughness at a test temperature of -196 ° C are said to be comparable to those of Inconel-based alloys.
- Patent Document 3 describes "flux cored arc welding wire".
- the wire described in Patent Document 3 is by weight%, C: 0.15 to 0.8%, Si: 0.2 to 1.2%, Mn: 15 to 34%, Cr: 6% or less, Mo: 1.5 to 4%, S: Of 0.02% or less, P: 0.02% or less, B: 0.01% or less, Ti: 0.09 to 0.5%, N: 0.001 to 0.3%, TiO 2 : 4 to 15%, SiO 2 , ZrO 2 and Al 2 O 3 Total of one or more selected from: 0.01-9%, total of one or more selected from K, Na and Li: 0.5-1.7%, one or more of F and Ca: 0.2 It is characterized by containing ⁇ 1.5%, balance Fe and other unavoidable impurities.
- Patent Document 4 describes "solid wire for gas metal arc welding".
- the solid wire described in Patent Document 4 has a mass% of C: 0.2 to 0.8%, Si: 0.15 to 0.90%, Mn: 17.0 to 28.0%, P: 0.03% or less, S: 0.03% or less, Ni: A wire containing 0.01 to 10.00%, Cr: 0.4 to 4.0%, Mo: 0.01 to 3.50%, B: less than 0.0010%, N: 0.12% or less, and having a composition consisting of the balance Fe and unavoidable impurities.
- gas metal arc welding is performed by abutting steel plates having a composition of 0.5% C-0.4% Si-25% Mn-3% Cr-residue Fe in mass%. It is said that a weld metal having a high strength with a room temperature yield strength of 400 MPa or more and an excellent ultra-low temperature toughness with an absorption energy vE -196 of 28 J or more at a test temperature of -196 ° C can be obtained.
- the welding material described in Patent Document 1 is a Ni-based alloy-based welding material containing 50% or more of Ni, and has a problem of being expensive. Further, according to the study by the present inventors, when a welded joint made of 9% Ni steel is manufactured from the high Mn steel-based welding material described in Patent Document 2, there is a problem that high-temperature cracking occurs, and there is also a problem.
- the high Mn steel wire described in Patent Documents 3 and 4 is applied to the welding of 9% Ni steel, the boundary portion between the base metal portion and the weld metal portion (hereinafter referred to as a weld bond portion (molten boundary portion)). Therefore, it was found that there is a problem that the absorbed energy vE -196 of the steel impact test at the test temperature: -196 ° C cannot always secure 27J.
- the present invention solves the problem of the prior art and is a welded joint formed by welding and joining high Ni steel plates containing 6.5 to 10.0% of Ni by mass%, and the weld metal portion has high temperature crack resistance. It is an object of the present invention to provide a welded joint having excellent, high strength, excellent low temperature toughness, and excellent low temperature toughness of a welded bond portion.
- the "high strength" of the weld metal portion referred to here means a case where the normal temperature yield strength (0.2% proof stress) WYS is 400 MPa or more and the normal temperature tensile strength WTS is 660 MPa or more.
- excellent in low temperature toughness of the weld metal part and the welded bond part here means the case where the absorption energy vE -196 of the Charpy impact test at the test temperature: ⁇ 196 ° C. is 27J or more.
- the present inventors first prepare a weld metal having a weld metal composition of 13% by mass or more and having an austenite structure even at an extremely low temperature, and then crack the weld metal at a high temperature.
- the weld metal contains more than 4.0% by mass of Cr, carbides (Cr 23 C 6 ) will precipitate at the austenite grain boundaries and the grain boundaries will become brittle. , Found that high temperature cracking occurs.
- the present invention has been completed with further studies based on the above findings.
- the gist of the present invention is as follows. [1] A welded joint in which steel plates are welded together via a weld metal portion.
- the steel sheet is divided into% by mass.
- the weld metal part is by mass% C: 0.10 to 0.80%, Si: 0.10 to 1.00%, Mn: 13.0-25.0%, P: 0.030% or less, S: 0.030% or less, Ni: 1.0 to 12.0%, Cr: 0.4-3.8%, Mo: 0.1-5.0%, N: 0.080% or less, O: 0.100% or less, weld metal part composition consisting of balance Fe and unavoidable impurities, 0.2% proof stress WPS: 400MPa or more, and tensile strength WTS: 660MPa or more.
- WPS 0.2% proof stress (MPa) of the weld metal part
- BYS yield strength of the steel sheet (MPa)
- WTS tensile strength of the weld metal part (MPa)
- BTS tensile strength of the steel plate (MPa)
- the steel sheet is divided into% by mass.
- the solid wire in% by mass C: 0.15 to 1.00%, Si: 0.15 to 1.10%, Mn: 17.0 to 30.0%, P: 0.030% or less, S: 0.030% or less, Ni: 0.2-13.0%, Cr: 0.4-3.8%, Mo: 0.1-5.0%, N: 0.060% or less, O: 0.020% or less, and the wire has a wire composition consisting of the balance Fe and unavoidable impurities.
- the weld metal part is by mass% C: 0.10 to 0.80%, Si: 0.10 to 1.00%, Mn: 13.0-25.0%, P: 0.030% or less, S: 0.030% or less, Ni: 1.0 to 12.0%, Cr: 0.4-3.8%, Mo: 0.1-5.0%, N: 0.080% or less, O: 0.100% or less, weld metal part composition consisting of balance Fe and unavoidable impurities, 0.2% proof stress WPS: 400MPa or more, and tensile strength WTS: 660MPa or more.
- WPS 0.2% proof stress (MPa) of weld metal part
- BYS yield strength of steel plate (MPa)
- WTS tensile strength of weld metal part (MPa)
- BTS tensile strength of steel plate (MPa)
- Manufacture of welded joints with excellent low temperature toughness characterized in that the welding conditions of the gas metal arc welding are adjusted so that the heat input for 1-pass welding is 0.5 to 6.0 kJ / mm so as to satisfy each of the above.
- the present invention it is possible to easily manufacture a welded joint having high strength and excellent low-temperature toughness without using an expensive Ni-based welding material and without causing high-temperature cracking, which is extremely effective in industry. Play. Further, according to the present invention, it is possible to provide a welded joint having high strength and excellent low temperature toughness.
- the welded joint of the present invention is a welded metal made of high Ni steel sheets having a basic composition of C: 0.02 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.10 to 1.80%, Ni: 6.5 to 10.0% in mass%. It is a welded joint made by welding and joining through a portion.
- the number of high Ni steel sheets to be welded may be two or more. In the following, the mass% in the composition is simply expressed as%.
- the high Ni steel sheet used as the base material (welded material) is C: 0.02 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.10 to 1.80%, P: 0.030%, S: 0.030% or less in mass%. , Ni: 6.5 to 10.0%, N: 0.010% or less, O: 0.010% or less, and has a steel sheet composition in which the balance consists of Fe and unavoidable impurities. If necessary, an alloying element may be added as a selective element in addition to the above-mentioned components.
- improvement of strength and toughness can be expected, Cu: 0.5% or less, Al: 0.1% or less, Cr: 1.0% or less, Mo: 1.0% or less, V: 0.2% or less, Nb: 0.2% or less and One or more selected from the group consisting of Ti: 0.2% or less, and / or the group consisting of B: 0.005% or less, Ca: 0.005% or less and REM: 0.020% or less, which can be expected to improve toughness.
- One or more selected from the above can be exemplified.
- the weld metal portion in the welded joint of the present invention is C: 0.10 to 0.80%, Si: 0.10 to 1.00%, Mn: 13.0 to 25.0%, P: 0.030% or less, S: 0.030% or less, in terms of mass%.
- C 0.10 to 0.80%
- C is an element that stabilizes austenite, and is an element that has the effect of increasing the strength of the weld metal by strengthening the solid solution.
- the content of 0.10% or more is required.
- C was limited to the range of 0.10 to 0.80%. It should be noted that it is preferably 0.15% or more. Further, it is preferably 0.60% or less.
- Si 0.10-1.00% Si suppresses the precipitation of carbides, thereby dissolving C in austenite and stabilizing austenite. In order to obtain such an effect, a content of 0.10% or more is required. However, if it is contained in excess of 1.00%, Si segregates during solidification and forms a liquid phase at the interface of the solidified cell, which lowers the high temperature crack resistance. Therefore, Si was limited to the range of 0.10 to 1.00%. It should be noted that it is preferably 0.20% or more. Further, it is preferably 0.90% or less.
- Mn 13.0-25.0%
- Mn is an element that stabilizes the austenite phase at low cost, and the content of Mn is required to be 13.0% or more in the present invention. If the Mn is less than 13.0%, the stability of austenite will be insufficient, and a hard martensite phase will be formed in the weld metal, resulting in a decrease in toughness. On the other hand, when Mn exceeds 25.0%, excessive Mn segregation occurs during solidification, inducing high-temperature cracking. Therefore, Mn was limited to the range of 13.0 to 25.0%. It is preferably 15.0% or more. Further, it is preferably 22.0% or less.
- P 0.030% or less
- P is an element that segregates at grain boundaries and induces high-temperature cracking. In the present invention, it is preferable to reduce it as much as possible, but 0.030% or less is acceptable. Therefore, P was limited to 0.030% or less. Excessive reduction leads to an increase in refining cost. Therefore, it is preferable to adjust P to 0.002% or more.
- S 0.030% or less S is an element that segregates at grain boundaries and induces high-temperature cracking. In the present invention, it is preferable to reduce it as much as possible, but 0.030% or less is acceptable. Therefore, S was limited to 0.030% or less. Excessive reduction leads to an increase in refining cost. Therefore, it is preferable to adjust S to 0.001% or more.
- Ni 1.0-12.0%
- Ni is an element that strengthens austenite grain boundaries, and suppresses the embrittlement of grain boundaries, thereby suppressing the occurrence of high-temperature cracking. In order to obtain such an effect, the content of 1.0% or more is required. Ni also has the effect of stabilizing the austenite phase. However, Ni is an expensive element, and a content of more than 12.0% is economically disadvantageous. Therefore, Ni was limited to the range of 1.0 to 12.0%. It is preferably 2.0% or more. Further, it is preferably 11.0% or less.
- Cr 0.4-3.8% Cr acts as an element that stabilizes the austenite phase at cryogenic temperatures and improves the low temperature toughness (cryogenic toughness) of the weld metal. Cr also has the effect of improving the strength of the weld metal. In addition, Cr works effectively to reduce the solid-liquid coexistence temperature range and suppress the occurrence of high-temperature cracking. Furthermore, Cr also works effectively to enhance the corrosion resistance of the weld metal. In order to obtain such an effect, a content of 0.4% or more is required. If Cr is less than 0.4%, the above effect cannot be ensured.
- Cr was limited to the range of 0.4 to 3.8%. It should be noted that it is preferably 0.6% or more. Further, it is preferably 3.5% or less.
- Mo 0.1-5.0%
- Mo is an element that strengthens austenite grain boundaries, and suppresses the occurrence of high-temperature cracking by suppressing embrittlement of grain boundaries. Mo also has the effect of improving wear resistance by curing the weld metal. In order to obtain such an effect, a content of 0.1% or more is required. On the other hand, if it is contained in excess of 5.0%, the inside of the grain is too hardened, the grain boundary is relatively weakened, and high temperature cracking occurs. Therefore, Mo was limited to the range of 0.1 to 5.0%. It should be noted that it is preferably 0.5% or more. Further, it is preferably 4.0% or less.
- O 0.100% or less
- O (oxygen) is an element that is inevitably mixed, but it forms Al-based oxides and Si-based oxides in the weld metal and contributes to the suppression of coarsening of the solidified structure. Since such an effect becomes remarkable when the content is 0.003% or more, it is preferable to contain 0.003% or more, but when it is contained in a large amount exceeding 0.100%, the coarsening of the oxide becomes remarkable. Therefore, O (oxygen) was limited to 0.100% or less. It is preferably 0.003% or more. Further, it is preferably 0.060% or less.
- N 0.080% or less
- N is an element that is inevitably mixed, but like C, it effectively contributes to improving the strength of weld metal, stabilizes the austenite phase, and stably improves ultra-low temperature toughness. It is an element. Since such an effect becomes remarkable when the content is 0.003% or more, it is preferable to contain 0.003% or more. However, if it is contained in excess of 0.080%, a nitride is formed and the low temperature toughness is lowered. Therefore, N was limited to 0.080% or less. It is more preferably 0.004% or more. Further, it is preferably 0.060% or less.
- the above-mentioned components are the basic components in the weld metal portion of the welded joint of the present invention, but in the present invention, in addition to the above-mentioned basic components, as an optional optional component, V: 1.0% or less, if necessary. , Ti: 1.0% or less, Nb: 1.0% or less and W: 1.0% or less, one or more selected from the group, and / or Cu: 2.0% or less, Al: 1.0% or less, Ca: It can contain one or more selected from the group consisting of 0.010% or less and REM: 0.020% or less.
- V 1.0% or less
- Ti 1.0% or less
- Nb 1.0% or less
- W 1.0% or less
- V, Ti, Nb and W are all carbide forming elements. It is an element that contributes to an increase in the strength of the weld metal by precipitating fine carbides in the austenite grains, and can be selected and contained in one or more types as necessary.
- V is a carbide-forming element that precipitates fine carbides in austenite grains and contributes to improving the strength of the weld metal. In order to obtain such an effect, it is preferable that V is contained in an amount of 0.001% or more. However, if it is contained in excess of 1.0%, the excess carbide becomes the starting point of fracture, and thus the low temperature toughness is lowered. Therefore, when it is contained, it is preferable to limit V to 1.0% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.600% or less.
- Ti is a carbide-forming element that precipitates fine carbides and contributes to improving the strength of the weld metal.
- Ti is contained in an amount of 0.001% or more. However, if it is contained in excess of 1.0%, the excess carbide becomes the starting point of fracture, and thus the low temperature toughness is lowered. Therefore, when it is contained, it is preferable to limit Ti to 1.0% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.600% or less.
- Nb like V and Ti, is a carbide-forming element that precipitates fine carbides and contributes to improving the strength of the weld metal.
- Nb is contained in an amount of 0.001% or more. However, if it is contained in excess of 1.0%, the excess carbide becomes the starting point of fracture, and thus the low temperature toughness is lowered. Therefore, when it is contained, it is preferable to limit Nb to 1.0% or less. It is more preferably 0.002% or more. Further, it is more preferably 0.600% or less.
- W is a carbide-forming element that precipitates fine carbides and contributes to improving the strength of the weld metal.
- W is preferably contained in an amount of 0.001% or more. However, if it is contained in excess of 1.0%, the excess carbide becomes the starting point of fracture, and thus the low temperature toughness is lowered. Therefore, when it is contained, it is preferable to limit W to 1.0% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.600% or less.
- Cu is an element that contributes to austenite stabilization
- Al is an element. It is an element that acts as a deoxidizing agent
- Ca and REM are elements that contribute to the suppression of high-temperature cracking, and can be selected and contained as necessary.
- Cu is an element that stabilizes the austenite phase, and in order to obtain such an effect, it is preferably contained in 0.01% or more. However, if it is contained in a large amount exceeding 2.0%, a liquid phase having a low melting point is formed at the austenite grain boundaries, so that high-temperature cracking occurs. Therefore, when it is contained, it is preferable to limit Cu to 2.0% or less. It should be noted that it is more preferably 0.02% or more. Further, it is more preferably 1.6% or less.
- Al acts as a deoxidizing agent, increases the viscosity of the molten metal, stably maintains the bead shape, and has an important effect of reducing the occurrence of spatter.
- Al reduces the solid-liquid coexistence temperature range and contributes to suppressing the occurrence of high-temperature cracking in the weld metal. Since such an effect becomes remarkable when the content is 0.001% or more, it is preferable to contain 0.001% or more. However, if it is contained in excess of 1.0%, the viscosity of the molten metal becomes too high, and conversely, defects such as an increase in spatter and defects such as poor fusion due to the bead not spreading increase. Therefore, when it is contained, it is preferable to limit Al to the range of 1.0% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.8% or less.
- Ca and REM are both elements that contribute to the suppression of high temperature cracking.
- Ca binds to S in the molten metal to form a high melting point sulfide CaS, thereby suppressing high temperature cracking. Such an effect becomes remarkable when the content is 0.001% or more.
- the content exceeds 0.010%, the arc is disturbed during welding, which makes stable welding difficult. Therefore, when it is contained, it is preferable to limit Ca to 0.010% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.008% or less.
- REM is a powerful deoxidizer and exists in the form of REM oxide in weld metals.
- the REM oxide becomes a nucleation site during solidification, which changes the solidification form of the weld metal and contributes to the suppression of high-temperature cracking. Such an effect becomes remarkable when the content is 0.001% or more.
- it is contained in excess of 0.020%, the stability of the arc will decrease. Therefore, when it is contained, it is preferable to limit the REM to 0.020% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.016% or less.
- the rest other than the above components consist of Fe and unavoidable impurities.
- unavoidable impurities include Bi, Sn, Sb, etc., and 0.2% or less in total is acceptable.
- the weld metal part having the above composition is a weld metal part having high strength and excellent low temperature toughness having a tensile property of 0.2% proof stress WPS: 400 MPa or more and tensile strength WTS: 660 MPa or more.
- the weld metal portion satisfies both the above equations (1) and (2), the progress of fracture in the weld bond portion is on the weld metal portion side, exhibits high absorption energy, and has low temperature toughness (ultra-low temperature toughness). It becomes an excellent welded bond part.
- the material to be welded two or more high Ni steel sheets having a desired plate thickness and the above-mentioned steel sheet composition are prepared. Then, groove processing is performed so that the prepared steel plates form a predetermined groove shape.
- the groove shape to be formed is not particularly limited, and examples of the welded structure include a normal weld groove and a V groove.
- the grooved steel plates are butted against each other, welded using a welding material (solid wire), and welded and joined through the formation of a multi-layer welded metal part to manufacture a welded joint.
- a welding material solid wire
- the welding method to be used is not particularly limited as long as it can form a weld metal portion (multilayer) having desired characteristics, but it is necessary to form a weld metal portion and a bond portion having desired strength and excellent low temperature toughness.
- 1-pass heat input 0.5 to 6.0 kJ / mm
- multi-layered gas metal arc welding is preferable.
- the welding material to be used may be any welding material that can form the above-mentioned weld metal portion, and is not particularly limited.
- any of the usual methods for manufacturing a solid wire for welding can be applied.
- the solid wire used is C: 0.15 to 1.00%, Si: 0.15 to 1.10%, Mn: 17.0 to 30.0%, P: 0.030% or less, S: 0.030% or less, so that the above-mentioned weld metal part can be formed.
- Ni: 0.2 to 13.0%, Cr: 0.4 to 3.8%, Mo: 0.1 to 5.0%, N: 0.060% or less, O: 0.020% or less are included as basic elements, or V: 1.0% or less, Ti: One or more selected from the group consisting of 1.0% or less, Nb: 1.0% or less and W: 1.0% or less, and / or Cu: 2.0% or less, Al: 1.0% or less, Ca: 0.010% or less.
- REM one or more selected from the group consisting of 0.020% or less may be contained as an arbitrary alloying element, and a wire having a wire composition consisting of the balance Fe and unavoidable impurities is preferable. ..
- the annealing is preferably performed at an annealing temperature of 1000 to 1200 ° C.
- a high Ni steel sheet having the steel sheet composition shown in Table 1 and having a plate thickness of 30 mm was prepared.
- a tensile test was conducted at room temperature using a No. 10 test piece specified in JIS Z2241 collected from the center of the thickness of the steel sheet.
- the tensile properties (yield strength BYS, tensile strength BTS) of the obtained steel sheet are also shown in Table 1.
- the molten steel having the composition (wire composition) shown in Table 2 was melted in a vacuum melting furnace and cast to obtain a steel ingot (100 kgf). The obtained ingot was heated to 1200 ° C. and then hot-rolled to obtain a rod-shaped steel material. Then, the obtained rod-shaped steel material was further subjected to cold rolling (cold wire drawing) a plurality of times with annealing sandwiched between them to obtain a 1.2 mm ⁇ solid wire for welding.
- the prepared test plate (high Ni steel plate: plate thickness 30 mm ⁇ width 150 mm ⁇ length 400 mm) was subjected to groove processing so that a groove (groove angle: 45 °) could be formed.
- gas metal arc welding was performed in a shield gas to form a multi-layered weld metal portion, and a welded joint was obtained.
- Welding conditions are downward posture, current: 150-450A (DCEP), voltage: 20-40V, welding speed: 15-60cm / min, inter-pass temperature: 100-200 ° C, shield gas: 80% Ar. The condition consisted of -20% CO 2 .
- the welding heat input of one pass was adjusted to the range of 0.5 to 6.0 kJ / mm (see Table 3).
- the temperature at the time of welding was 18 ° C and the humidity was 40%.
- weld metal part and the weld heat-affected zone of the obtained welded joint were observed using an optical microscope (magnification: 100 times), and the presence or absence of weld cracks (high temperature cracks) was investigated. If cracks were found in the weld metal part, it was evaluated as “presence”, and if no cracks were found, it was evaluated as “no cracks”.
- a No. 14A tensile test piece (parallel part diameter 12.5 mm ⁇ ) was sampled from the thickness and center position of the weld metal part of the obtained welded joint in accordance with JIS Z2241, and a tensile test was performed at room temperature. Was carried out, and the strength of the weld metal part (0.2% proof stress WPS, tensile strength WTS) was determined. In addition, three tensile tests were carried out, and the average value was taken as the strength of the weld metal part.
- a Charpy impact test piece (V notch: 10 mm thick) was collected from the obtained welded joint, and a Charpy impact test was conducted at a test temperature of -196 ° C in accordance with JIS Z 2242. The absorbed energy E -196 (J) at 196 ° C was determined. Three test pieces were used for measuring the weld metal part and three for measuring the weld bond part, and the average value thereof was the absorbed energy E- 196 of each of the weld metal part and the weld bond part of the welded joint. Both Charpy impact test pieces were collected so that the center position of the test piece thickness was 7 mm in the plate thickness direction from the surface of the steel plate. Then, the notch positions of the Charpy impact test pieces for measuring the weld metal portion and measuring the weld bond portion were collected so as to be the center position in the width direction of the weld metal portion and the weld bond portion, respectively.
- the weld crack is generated, the strength of the weld metal portion is insufficient, the low temperature toughness of the weld metal portion is lowered, or the weld bond is formed. The low temperature toughness of the part is reduced, or the desired welded joint is not obtained.
- the crack propagation path (crack growth position) is thermal. It becomes an affected zone (HAZ portion), and the low temperature toughness is reduced.
- HZ portion affected zone
- the propagation path of the crack is the weld metal portion.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Arc Welding In General (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
[WPS] ≦ [BYS] - 100MPa ……(1)
(ここで、WPS:溶接金属部の0.2%耐力(MPa)、BYS:鋼板(母材部)の降伏強さ(MPa))
を満足し、かつ溶接金属部の引張強さWTSと鋼板(母材部)の引張強さBTSとが次(2)式
[WTS] ≦ [BTS] + 100MPa ……(2)
(ここで、WTS:溶接金属の引張強さ(MPa)、BTS:鋼板(母材部)の引張強さ(MPa))を満足するように、溶接入熱を0.5~6.0kJ/mmとし、溶接金属の強度を調整することが有効であることを知見した。
[1]鋼板同士が溶接金属部を介して溶接接合された溶接継手であって、
前記鋼板を、質量%で、
C:0.02~0.20%、 Si:0.05~0.50%、
Mn:0.10~1.80%、 P:0.030%以下、
S:0.030%以下、 Ni:6.5~10.0%、
N:0.010%以下、 O:0.010%以下
を含み、残部Feおよび不可避的不純物からなる鋼板組成を有する鋼板とし、
前記溶接金属部が、質量%で、
C:0.10~0.80%、 Si:0.10~1.00%、
Mn:13.0~25.0%、 P:0.030%以下、
S:0.030%以下、 Ni:1.0~12.0%、
Cr:0.4~3.8%、 Mo:0.1~5.0%、
N:0.080%以下、 O:0.100%以下
を含み、残部Feおよび不可避的不純物からなる溶接金属部組成と、0.2%耐力WPS:400MPa以上、かつ引張強さWTS:660MPa以上の引張特性と、を有し、かつ
前記鋼板の降伏強さBYSと前記溶接金属部の0.2%耐力WPSとが次(1)式
[WPS] ≦ [BYS] -100MPa ……(1)
ここで、WPS:溶接金属部の0.2%耐力(MPa)、BYS:鋼板の降伏強さ(MPa)、
を、また、前記鋼板の引張強さBTSと前記溶接金属部の引張強さWTSとが次(2)式
[WTS] ≦ [BTS] +100MPa ……(2)
ここで、WTS:溶接金属部の引張強さ(MPa)、BTS:鋼板の引張強さ(MPa)、
を満足することを特徴とする溶接継手。
[2]前記溶接金属部組成に加えてさらに、質量%で、次の(i)および(ii)から選ばれる1種以上:(i)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(ii)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する溶接金属部組成とすることを特徴とする[1]に記載の溶接継手。
[3]前記鋼板組成に加えてさらに、質量%で、次の(iii)および(iv)から選ばれる1種以上:(iii)Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下のうちの1種または2種以上;および(iv)B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する鋼板組成とすることを特徴とする[1]または[2]に記載の溶接継手。
[4]鋼板同士をソリッドワイヤを用いたガスメタルアーク溶接し、溶接金属部を形成して溶接継手とする溶接継手の製造方法であって、
前記鋼板を、質量%で、
C:0.02~0.20%、 Si:0.05~0.50%、
Mn:0.10~1.80%、 P:0.030%以下、
S:0.030%以下、 Ni:6.5~10.0%、
N:0.010%以下、 O:0.010%以下
を含み、残部Feおよび不可避的不純物からなる鋼板組成を有する鋼板とし、
前記ソリッドワイヤを、質量%で、
C:0.15~1.00%、 Si:0.15~1.10%、
Mn:17.0~30.0%、 P:0.030%以下、
S:0.030%以下、 Ni:0.2~13.0%、
Cr:0.4~3.8%、 Mo:0.1~5.0%、
N:0.060%以下、 O:0.020%以下
を含み、残部Feおよび不可避的不純物からなるワイヤ組成を有するワイヤとし、
前記溶接金属部が、質量%で、
C:0.10~0.80%、 Si:0.10~1.00%、
Mn:13.0~25.0%、 P:0.030%以下、
S:0.030%以下、 Ni:1.0~12.0%、
Cr:0.4~3.8%、 Mo:0.1~5.0%、
N:0.080%以下、 O:0.100%以下
を含み、残部Feおよび不可避的不純物からなる溶接金属部組成と、0.2%耐力WPS:400MPa以上、かつ引張強さWTS:660MPa以上の引張特性と、を有し、かつ前記溶接金属部の0.2%耐力WPSが、前記鋼板の降伏強さBYSとの関係で次(1)式
[WPS] ≦ [BYS] -100MPa ……(1)
(ここで、WPS:溶接金属部の0.2%耐力(MPa)、BYS:鋼板の降伏強さ(MPa))、
を、かつ、前記溶接金属部の引張強さWTSが、前記鋼板の引張強さBTSとの関係で次(2)式
[WTS] ≦ [BTS] +100MPa ……(2)
(ここで、WTS:溶接金属部の引張強さ(MPa)、BTS:鋼板の引張強さ(MPa))、
を、それぞれ満足するように、前記ガスメタルアーク溶接の溶接条件を、1パス溶接入熱が0.5~6.0kJ/mmとなるように調整することを特徴とする低温靭性に優れた溶接継手の製造方法。
[5]前記ワイヤ組成に加えてさらに、質量%で、次の(v)および(vi)から選ばれる1種以上:(v)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(vi)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有するワイヤ組成とし、かつ、前記溶接金属部組成に加えてさらに、質量%で、次の(i)および(ii)から選ばれる1種以上:(i)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(ii)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する溶接金属部組成とすることを特徴とする[4]に記載の溶接継手の製造方法。
[6]前記鋼板組成に加えてさらに、質量%で、次の(iii)および(iv)から選ばれる1種以上:(iii)Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下のうちの1種または2種以上;および(iv)B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する鋼板組成とすることを特徴とする[4]または[5]に記載の溶接継手の製造方法。
また、本発明によれば、高強度と優れた低温靭性とを有する溶接継手を提供することができる。
本発明の溶接継手は、質量%で、C:0.02~0.20%、Si:0.05~0.50%、Mn:0.10~1.80%、Ni:6.5~10.0%を基本組成とする高Ni鋼板同士を溶接金属部を介して溶接接合してなる溶接継手である。溶接接合される高Ni鋼板は2枚又はそれ以上の複数枚とすることができる。なお、以下、組成における質量%は、単に%で記す。
母材(被溶接材)として使用する高Ni鋼板は、質量%で、C:0.02~0.20%、Si:0.05~0.50%、Mn:0.10~1.80%、P:0.030%、S:0.030%以下、Ni:6.5~10.0%、N:0.010%以下、O:0.010%以下を含み、残部がFeおよび不可避的不純物からなる鋼板組成を有する。なお、必要に応じて、上記した成分以外に選択元素として合金元素を添加してもよい。選択元素としては、強度、靭性の向上が期待できる、Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下からなる群より選択される1種または2種以上、および/または、靭性の向上が期待できる、B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下からなる群より選択される1種または2種以上、が例示できる。
そして、本発明の溶接継手における溶接金属部は、質量%で、C:0.10~0.80%、Si:0.10~1.00%、Mn:13.0~25.0%、P:0.030%以下、S:0.030%以下、Ni:1.0~12.0%、Cr:0.4~3.8%、Mo:0.1~5.0%、N:0.080%以下、O:0.100%以下を含み、残部Feおよび不可避的不純物からなる組成(溶接金属部組成)を有する。
Cは、オーステナイトを安定化させる元素であり、また、固溶強化により、溶接金属の強度を上昇させる作用を有する元素である。このような効果を得るためには、0.10%以上の含有を必要とする。しかし、0.80%を超えて含有すると、溶接時の高温割れが生じやすくなる。そのため、Cは0.10~0.80%の範囲に限定した。なお、好ましくは、0.15%以上である。また好ましくは0.60%以下である。
Siは、炭化物の析出を抑制することで、Cをオーステナイトに固溶させ、オーステナイトを安定化させる。そのような効果を得るためには、0.10%以上の含有を必要とする。しかし、1.00%を超えて含有すると、Siは、凝固時に偏析し、凝固セル界面に液相を生成して、耐高温割れ性を低下させる。そのため、Siは0.10~1.00%の範囲に限定した。なお、好ましくは0.20%以上である。また好ましくは0.90%以下である。
Mnは、安価に、オーステナイト相を安定化する元素であり、本発明では13.0%以上の含有を必要とする。Mnが13.0%未満では、オーステナイトの安定度が不足するため、溶接金属中に硬質のマルテンサイト相が生成し、靭性が低下する。一方、Mnが25.0%を超えると、凝固時に過度のMn偏析が発生し、高温割れを誘発する。そのため、Mnは13.0~25.0%の範囲に制限した。なお、好ましくは15.0%以上である。また好ましくは22.0%以下である。
Pは、結晶粒界に偏析し、高温割れを誘発する元素であり、本発明では、できるだけ低減することが好ましいが、0.030%以下であれば、許容できる。そのため、Pは0.030%以下に限定した。なお、過度の低減は、精練コストの高騰を招く。そのため、Pは0.002%以上に調整することが好ましい。
Sは、結晶粒界に偏析し、高温割れを誘発する元素であり、本発明では、できるだけ低減することが好ましいが、0.030%以下であれば、許容できる。そのため、Sは0.030%以下に限定した。なお、過度の低減は、精練コストの高騰を招く。そのため、Sは0.001%以上に調整することが好ましい。
Niは、オーステナイト粒界を強化する元素であり、粒界の脆化を抑制することで、高温割れの発生を抑制する。このような効果を得るためには、1.0%以上の含有を必要とする。また、Niは、オーステナイト相を安定化させる効果もある。しかし、Niは高価な元素であり、12.0%を超える含有は、経済的に不利となる。そのため、Niは1.0~12.0%の範囲に限定した。なお、好ましくは2.0%以上である。また好ましくは11.0%以下である。
Crは、極低温ではオーステナイト相を安定化させる元素として働き、溶接金属の低温靭性(極低温靭性)を向上させる。また、Crは、溶接金属の強度を向上させる作用も有する。また、Crは、固液共存温度範囲を小さくして、高温割れの発生を抑制するのに有効に作用する。さらに、Crは、溶接金属の耐食性を高めるのにも有効に作用する。このような効果を得るためには0.4%以上の含有を必要とする。Crが0.4%未満では、上記した効果を確保できない。一方、3.8%を超えて含有すると、粒界にCr炭化物を析出するために粒界が脆化し、これが溶接時に導入される熱ひずみで開口し、高温割れが発生する。そのため、Crは0.4~3.8%の範囲に限定した。なお、好ましくは、0.6%以上である。また好ましくは3.5%以下である。
Moは、オーステナイト粒界を強化する元素であり、粒界の脆化を抑制することで、高温割れの発生を抑制する。なお、Moは溶接金属を硬化させることで耐摩耗性を向上させる作用も有する。このような効果を得るためには、0.1%以上の含有を必要とする。一方、5.0%を超えて含有すると、粒内が硬化しすぎて、相対的に粒界が弱くなり、高温割れが発生する。そのため、Moは0.1~5.0%の範囲に限定した。なお、好ましくは0.5%以上である。また好ましくは4.0%以下である。
O(酸素)は、不可避的に混入する元素であるが、溶接金属中で、Al系酸化物や、Si系酸化物を形成し、凝固組織の粗大化抑制に寄与する。このような効果は、0.003%以上の含有で著しくなるため、0.003%以上含有することが好ましいが、0.100%を超えて多量に含有すると、酸化物の粗大化が著しくなる。そのため、O(酸素)は0.100%以下に限定した。なお、好ましくは0.003%以上である。また好ましくは0.060%以下である。
Nは、不可避的に混入する元素であるが、Cと同様に、溶接金属の強度向上に有効に寄与するとともに、オーステナイト相を安定化し、極低温靱性を安定的に向上させる元素である。このような効果は、0.003%以上の含有で顕著となるため、0.003%以上含有することが好ましい。しかし、0.080%を超えて含有すると、窒化物を形成し、低温靱性が低下する。そのため、Nは0.080%以下に限定した。なお、より好ましくは0.004%以上である。また好ましくは0.060%以下である。
V、Ti、NbおよびWはいずれも、炭化物形成元素で、オーステナイト粒内に微細な炭化物を析出させて溶接金属の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上含有できる。
Cuはオーステナイト安定化に寄与する元素であり、Alは脱酸剤として作用する元素であり、また、Ca、REMは高温割れの抑制に寄与する元素であり、必要に応じて選択して含有できる。
Cuは、オーステナイト相を安定化する元素であり、このような効果を得るためには、0.01%以上含有することが好ましい。しかし、2.0%を超えて多量に含有すると、オーステナイト粒界で低融点の液相が生成するため、高温割れが発生する。そのため、含有する場合には、Cuは2.0%以下に限定することが好ましい。なお、より好ましくは0.02%以上である。また、より好ましくは1.6%以下である。
Alは、脱酸剤として作用し、溶融金属の粘性を高め、ビード形状を安定的に保持し、スパッタの発生を低減する重要な作用を有する。また、Alは、固液共存温度範囲を小さくして、溶接金属の高温割れ発生の抑制に寄与する。このような効果は、0.001%以上の含有で顕著となるため、0.001%以上含有することが好ましい。しかし、1.0%を超えて含有すると、溶融金属の粘性が高くなりすぎて、逆に、スパッタの増加や、ビードが広がらず融合不良などの欠陥が増加する。そのため、含有する場合には、Alは1.0%以下の範囲に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.8%以下である。
Ca、REMはいずれも、高温割れの抑制に寄与する元素である。Caは、溶融金属中でSと結合し、高融点の硫化物CaSを形成することで、高温割れを抑制する。このような効果は0.001%以上の含有で顕著となる。一方、0.010%を超えて含有すると、溶接時にアークに乱れが生じ、安定な溶接が困難となる。そのため、含有する場合には、Caは0.010%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.008%以下である。
[WPS] ≦ [BYS] -100MPa ……(1)
を、さらに、溶接金属の引張強さWTSが鋼板の引張強さBTSとの関係で次(2)式
[WTS] ≦ [BTS] +100MPa ……(2)
を、満足するように、溶接条件を調整する。具体的には、1パスの溶接入熱が0.5~6.0kJ/mmとなるように、溶接条件を調整する。
つぎに、本発明の溶接継手の好ましい製造方法について説明する。
使用する溶接法は、所望の特性を有する溶接金属部(多層)を形成できればよく、とくに限定する必要はないが、所望の強度、優れた低温靭性を有する溶接金属部およびボンド部を形成するためには、1パス入熱量:0.5~6.0kJ/mmの多層盛ガスメタルアーク溶接が好ましい。また、使用する溶接材料としては、上記した溶接金属部が形成できる溶接材料であればよく、とくに限定する必要はない。
また、使用する溶接材料(ソリッドワイヤ)の好ましい製造方法について説明する。
Claims (6)
- 鋼板同士が溶接金属部を介して溶接接合された溶接継手であって、
前記鋼板を、質量%で、
C:0.02~0.20%、 Si:0.05~0.50%、
Mn:0.10~1.80%、 P:0.030%以下、
S:0.030%以下、 Ni:6.5~10.0%、
N:0.010%以下、 O:0.010%以下
を含み、残部Feおよび不可避的不純物からなる鋼板組成を有する鋼板とし、
前記溶接金属部が、質量%で、
C:0.10~0.80%、 Si:0.10~1.00%、
Mn:13.0~25.0%、 P:0.030%以下、
S:0.030%以下、 Ni:1.0~12.0%、
Cr:0.4~3.8%、 Mo:0.1~5.0%、
N:0.080%以下、 O:0.100%以下
を含み、残部Feおよび不可避的不純物からなる溶接金属部組成と、0.2%耐力WPS:400MPa以上、かつ引張強さWTS:660MPa以上の引張特性と、を有し、かつ
前記鋼板の降伏強さBYSと前記溶接金属部の0.2%耐力WPSとが下記(1)式を、また、前記鋼板の引張強さBTSと前記溶接金属部の引張強さWTSとが下記(2)式を満足することを特徴とする溶接継手。
記
[WPS] ≦ [BYS] -100MPa ……(1)
[WTS] ≦ [BTS] +100MPa ……(2)
ここで、WPS:溶接金属部の0.2%耐力(MPa)、WTS:溶接金属部の引張強さ(MPa)、
BYS:鋼板の降伏強さ(MPa)、BTS:鋼板の引張強さ(MPa) - 前記溶接金属部組成に加えてさらに、質量%で、次の(i)および(ii)から選ばれる1種以上:(i)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(ii)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する溶接金属部組成とすることを特徴とする請求項1に記載の溶接継手。
- 前記鋼板組成に加えてさらに、質量%で、次の(iii)および(iv)から選ばれる1種以上:(iii)Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下のうちの1種または2種以上;および(iv)B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する鋼板組成とすることを特徴とする請求項1または2に記載の溶接継手。
- 鋼板同士をソリッドワイヤを用いたガスメタルアーク溶接し、溶接金属部を形成して溶接継手とする溶接継手の製造方法であって、
前記鋼板を、質量%で、
C:0.02~0.20%、 Si:0.05~0.50%、
Mn:0.10~1.80%、 P:0.030%以下、
S:0.030%以下、 Ni:6.5~10.0%、
N:0.010%以下、 O:0.010%以下
を含み、残部Feおよび不可避的不純物からなる鋼板組成を有する鋼板とし、
前記ソリッドワイヤを、質量%で、
C:0.15~1.00%、 Si:0.15~1.10%、
Mn:17.0~30.0%、 P:0.030%以下、
S:0.030%以下、 Ni:0.2~13.0%、
Cr:0.4~3.8%、 Mo:0.1~5.0%、
N:0.060%以下、 O:0.020%以下
を含み、残部Feおよび不可避的不純物からなるワイヤ組成を有するワイヤとし、
前記溶接金属部が、質量%で、
C:0.10~0.80%、 Si:0.10~1.00%、
Mn:13.0~25.0%、 P:0.030%以下、
S:0.030%以下、 Ni:1.0~12.0%、
Cr:0.4~3.8%、 Mo:0.1~5.0%、
N:0.080%以下、 O:0.100%以下
を含み、残部Feおよび不可避的不純物からなる溶接金属部組成と、0.2%耐力WPS:400MPa以上、かつ引張強さWTS:660MPa以上の引張特性と、を有し、かつ前記溶接金属部の0.2%耐力WPSが、前記鋼板の降伏強さBYSとの関係で下記(1)式を、かつ前記溶接金属部の引張強さWTSが、前記鋼板の引張強さBTSとの関係で下記(2)式を、それぞれ満足するように、前記ガスメタルアーク溶接の溶接条件を、1パス溶接入熱が0.5~6.0kJ/mmとなるように調整することを特徴とする低温靭性に優れた溶接継手の製造方法。
記
[WPS] ≦ [BYS] -100MPa ……(1)
[WTS] ≦ [BTS] +100MPa ……(2)
ここで、WPS:溶接金属部の0.2%耐力(MPa)、WTS:溶接金属部の引張強さ(MPa)、
BYS:鋼板の降伏強さ(MPa)、BTS:鋼板の引張強さ(MPa) - 前記ワイヤ組成に加えてさらに、質量%で、次の(v)および(vi)から選ばれる1種以上:(v)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(vi)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有するワイヤ組成とし、かつ、前記溶接金属部組成に加えてさらに、質量%で、次の(i)および(ii)から選ばれる1種以上:(i)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(ii)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する溶接金属部組成とすることを特徴とする請求項4に記載の溶接継手の製造方法。
- 前記鋼板組成に加えてさらに、質量%で、次の(iii)および(iv)から選ばれる1種以上:(iii)Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下のうちの1種または2種以上;および(iv)B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する鋼板組成とすることを特徴とする請求項4または5に記載の溶接継手の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021576763A JP7029034B1 (ja) | 2020-11-26 | 2021-09-09 | 溶接継手およびその製造方法 |
EP21897451.7A EP4252959A1 (en) | 2020-11-26 | 2021-09-09 | Welded joint and production method therefor |
US18/253,839 US20240003367A1 (en) | 2020-11-26 | 2021-09-09 | Weld joint and production method therefor |
CN202180079377.9A CN116529407A (zh) | 2020-11-26 | 2021-09-09 | 焊接接头及其制造方法 |
KR1020237013486A KR20230070296A (ko) | 2020-11-26 | 2021-09-09 | 용접 이음매 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020195753 | 2020-11-26 | ||
JP2020-195753 | 2020-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022113473A1 true WO2022113473A1 (ja) | 2022-06-02 |
Family
ID=81754519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/033208 WO2022113473A1 (ja) | 2020-11-26 | 2021-09-09 | 溶接継手およびその製造方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI775607B (ja) |
WO (1) | WO2022113473A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024069986A1 (ja) * | 2022-09-30 | 2024-04-04 | 日本製鉄株式会社 | 溶接金属、溶接継手、及び溶接構造物 |
WO2024111595A1 (ja) * | 2022-11-24 | 2024-05-30 | 日本製鉄株式会社 | 鋼材、ソリッドワイヤ、及び鋼製外皮 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4952737A (ja) | 1972-09-25 | 1974-05-22 | ||
JPH0321572B2 (ja) | 1983-12-27 | 1991-03-25 | Ube Industries | |
JP2017502842A (ja) | 2013-12-06 | 2017-01-26 | ポスコPosco | 極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ |
JP2018144045A (ja) | 2017-03-01 | 2018-09-20 | 日鐵住金溶接工業株式会社 | 9%Ni鋼溶接用フラックス入りワイヤ |
JP2019519675A (ja) * | 2016-05-02 | 2019-07-11 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | 強化された耐摩耗性高マンガン鋼のための現場での異種金属溶接技術 |
WO2020203335A1 (ja) * | 2019-03-29 | 2020-10-08 | Jfeスチール株式会社 | 極低温用高強度溶接継手の製造方法 |
WO2020203334A1 (ja) * | 2019-03-29 | 2020-10-08 | Jfeスチール株式会社 | Tig溶接用溶加材 |
WO2020208735A1 (ja) * | 2019-04-10 | 2020-10-15 | 日本製鉄株式会社 | ソリッドワイヤ及び溶接継手の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2567776B1 (en) * | 2010-06-07 | 2015-01-21 | Nippon Steel & Sumitomo Metal Corporation | Ultra high-strength welded joint and method for producing same |
CN107186382B (zh) * | 2017-06-09 | 2019-12-31 | 南京钢铁股份有限公司 | 一种高锰超低温钢焊丝及其焊接工艺 |
-
2021
- 2021-09-09 WO PCT/JP2021/033208 patent/WO2022113473A1/ja active Application Filing
- 2021-09-16 TW TW110134656A patent/TWI775607B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4952737A (ja) | 1972-09-25 | 1974-05-22 | ||
JPH0321572B2 (ja) | 1983-12-27 | 1991-03-25 | Ube Industries | |
JP2017502842A (ja) | 2013-12-06 | 2017-01-26 | ポスコPosco | 極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ |
JP2019519675A (ja) * | 2016-05-02 | 2019-07-11 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | 強化された耐摩耗性高マンガン鋼のための現場での異種金属溶接技術 |
JP2018144045A (ja) | 2017-03-01 | 2018-09-20 | 日鐵住金溶接工業株式会社 | 9%Ni鋼溶接用フラックス入りワイヤ |
WO2020203335A1 (ja) * | 2019-03-29 | 2020-10-08 | Jfeスチール株式会社 | 極低温用高強度溶接継手の製造方法 |
WO2020203334A1 (ja) * | 2019-03-29 | 2020-10-08 | Jfeスチール株式会社 | Tig溶接用溶加材 |
WO2020208735A1 (ja) * | 2019-04-10 | 2020-10-15 | 日本製鉄株式会社 | ソリッドワイヤ及び溶接継手の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024069986A1 (ja) * | 2022-09-30 | 2024-04-04 | 日本製鉄株式会社 | 溶接金属、溶接継手、及び溶接構造物 |
JP7510104B1 (ja) | 2022-09-30 | 2024-07-03 | 日本製鉄株式会社 | 溶接金属、溶接継手、及び溶接構造物 |
WO2024111595A1 (ja) * | 2022-11-24 | 2024-05-30 | 日本製鉄株式会社 | 鋼材、ソリッドワイヤ、及び鋼製外皮 |
Also Published As
Publication number | Publication date |
---|---|
TW202220779A (zh) | 2022-06-01 |
TWI775607B (zh) | 2022-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6978613B2 (ja) | 極低温用高強度溶接継手の製造方法 | |
EP1500457A1 (en) | Method for producing an ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal | |
JP6978615B2 (ja) | Tig溶接用溶加材 | |
WO2020039643A1 (ja) | ガスメタルアーク溶接用ソリッドワイヤ | |
KR102639546B1 (ko) | 가스 메탈 아크 용접용 솔리드 와이어 및 가스 메탈 아크 용접 방법 | |
JPWO2020039643A1 (ja) | ガスメタルアーク溶接用ソリッドワイヤ | |
JP7024931B1 (ja) | ガスメタルアーク溶接用ソリッドワイヤ | |
JP7188646B1 (ja) | サブマージアーク溶接継手 | |
WO2022113473A1 (ja) | 溶接継手およびその製造方法 | |
JP7276597B2 (ja) | サブマージアーク溶接用ワイヤおよびそれを用いた溶接継手部の製造方法 | |
JP7029034B1 (ja) | 溶接継手およびその製造方法 | |
WO2022230615A1 (ja) | サブマージアーク溶接継手 | |
KR20230130122A (ko) | Tig 용접 이음매 | |
JP7414126B2 (ja) | Tig溶接用溶加材およびそれを用いた溶接継手部の製造方法 | |
JP7267521B1 (ja) | サブマージアーク溶接方法 | |
US20240351147A1 (en) | Metal-cored wire for submerged arc welding and submerged arc welding method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021576763 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21897451 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317027653 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20237013486 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18253839 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180079377.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021897451 Country of ref document: EP Effective date: 20230626 |