[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022102742A1 - 骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカーおよびその利用 - Google Patents

骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカーおよびその利用 Download PDF

Info

Publication number
WO2022102742A1
WO2022102742A1 PCT/JP2021/041709 JP2021041709W WO2022102742A1 WO 2022102742 A1 WO2022102742 A1 WO 2022102742A1 JP 2021041709 W JP2021041709 W JP 2021041709W WO 2022102742 A1 WO2022102742 A1 WO 2022102742A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
skeletal muscle
cell
positive
cdh13
Prior art date
Application number
PCT/JP2021/041709
Other languages
English (en)
French (fr)
Inventor
英俊 櫻井
ハルチウン ミナス ナルバンディアン
明明 趙
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2022562200A priority Critical patent/JPWO2022102742A1/ja
Publication of WO2022102742A1 publication Critical patent/WO2022102742A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • iPS cells have greater proliferative and differentiating potential and are therefore considered to be a very attractive cell source for generating various cell lines for cell therapy.
  • Non-Patent Document 1 a method for inducing skeletal muscle stem cells capable of muscle regeneration from human iPS cells (Non-Patent Document 1), focusing on the MYF5 gene known as a satellite cell marker, and MYF5 positive.
  • MYF5-negative cells When cells and MYF5-negative cells were transplanted into the shin muscles of immunodeficient mice, it was suggested that Myf5-positive cells had a higher degree of muscle fiber formation after transplantation and had higher muscle regeneration ability.
  • the present invention provides a biomarker for obtaining a highly pure skeletal muscle lineage cell population and a skeletal muscle stem cell population, and provides a method for improving the purity of skeletal muscle lineage cells and skeletal muscle stem cells using the biomarker and a method for producing the same.
  • the challenge is to provide.
  • the present invention includes the following inventions in order to solve the above problems.
  • a method for improving the purity of skeletal muscle lineage cells in a cell population which comprises recovering cell surface marker CDH13-positive cells in the cell population.
  • the cell population is a cell population in the process of inducing differentiation from pluripotent stem cells to skeletal muscle cells.
  • the pluripotent stem cell is an iPS cell.
  • a method for producing skeletal muscle stem cells which is (1) a step of initiating differentiation induction from pluripotent stem cells to skeletal muscle cells, and (2) positive for the cell surface marker FGFR4 from a cell population in the process of inducing differentiation.
  • a production method comprising the steps of recovering cells, CDH13-positive cells or FGFR4-positive and CDH13-positive cells.
  • step (1) is a step of inducing differentiation of skeletal muscle lineage cells from pluripotent stem cells so as to mimic the developmental process of a fetus.
  • step (1) is a step of inducing differentiation of skeletal muscle lineage cells from pluripotent stem cells so as to mimic the developmental process of a fetus.
  • the pluripotent stem cell is an iPS cell.
  • the skeletal muscle stem cells are for living-donor transplantation.
  • Human iPS cells (201B7) were used to induce differentiation into skeletal muscle stem cells, and on day 84, the cells were collected and stained with anti-FGFR4 antibody, and FGFR4 positive cells and FGFR4 negative cells were sorted by FACS, respectively. It is a figure which shows the result of staining with the CDH13 antibody and analyzing the CDH13 positive rate by FACS.
  • Human iPS cells (201B7) were used to induce differentiation into skeletal muscle stem cells, cells were harvested on day 84, CDH13-positive cells and FGFR4-positive cells were sorted by FACS, and CDH13-positive cells, FGFR4-positive cells and non-CDH13-positive cells were sorted.
  • Human iPS cells were used to induce differentiation into skeletal muscle stem cells, cells were harvested on day 84, CDH13-positive and FGFR4-positive cells were sorted by FACS, and CDH13-positive, FGFR4-positive and non-CDH13-positive cells were sorted. It is a figure which shows the result of having measured the expression level of MYF5, PAX7, MYOD1 in a sorting cell.
  • Human iPS cells (201B7, CKI and DMD) were used to induce differentiation into skeletal muscle stem cells, and on day 84, the cells were collected and stained with anti-CDH13 antibody, and CDH13-positive cells and CDH13-negative cells were isolated by FACS, respectively.
  • FIG. 1 It is a figure which shows the result of having examined the expression of myosin heavy chain (MHC) by sorting and further inducing the differentiation of CDH13 positive cell and CDH13 negative cell into skeletal muscle cells, and (A) is the result of immunostaining MHC (A).
  • B) is a diagram showing the results of calculating the differentiation index (MHC positive cell rate) by image analysis.
  • Human iPS cells (201B7, CKI and DMD) were used to induce differentiation into skeletal muscle stem cells, and on day 84, the cells were collected and stained with anti-FGFR4 antibody, and FGFR4 positive cells and FGFR4 negative cells were separated by FACS, respectively.
  • the transplantation site was collected, stained with anti-histopeclin antibody, anti-laminin ⁇ 2 antibody, anti-human nuclear antibody and DAPI, and observed under a confocal microscope. It is a figure which shows the result. It is a figure which shows the result of having measured the number of engraftment cells in the transplantation site collected from the above-mentioned NOG-mdx mouse 4 weeks after transplantation.
  • the above-mentioned transplantation site collected from NOG-mdx mice 4 weeks after transplantation was stained with anti-PAX7 antibody, anti-MYOD antibody, anti-h-LAMIN A / C antibody and DAPI, and observed with a confocal microscope. be.
  • Human iPS cells (DMD, CKI) were used to induce differentiation into skeletal muscle stem cells, cells were collected on day 84, and CD56-positive cell rate, CD82-positive cell rate, and NGFR-positive cell rate were used using FACS.
  • the present invention provides a method for improving the purity of skeletal muscle lineage cells.
  • Skeletal muscle lineage cells are a broad concept that includes cells capable of skeletal muscle differentiation and cells that have finally differentiated into skeletal muscle, and are skeletal muscle stem cells, myoblasts, myotube cells, mature myotube cells, and skeletal muscle cells ( Includes all muscle fibers).
  • the present inventors have found that skeletal muscle lineage cells express CDH13 on the cell surface, and have found that a high-purity skeletal muscle lineage cell population can be obtained by using the cell surface marker CDH13. Therefore, the method for improving the purity of skeletal muscle lineage cells of the present invention is characterized by using the cell surface marker CDH13.
  • CDH13 is also referred to as cadherin-13, T-cadherin, and H-cadherin.
  • the method for improving the purity of skeletal muscle lineage cells of the present invention may be any method including a step of recovering cell surface marker CDH13-positive cells from a cell population.
  • the cell population is not particularly limited as long as it is a cell population that may contain skeletal muscle lineage cells.
  • a cell suspension prepared from a surgical specimen containing skeletal muscle can be mentioned.
  • the cell population may be a human cell population or a cell population of a non-human organism.
  • Organisms other than humans are not particularly limited and may be, for example, mammals. Examples of mammals include monkeys, chimpanzees, dogs, cats, cows, horses, pigs, rabbits, mice, rats and the like.
  • the cell population may be a cell population in the process of inducing differentiation from pluripotent stem cells to skeletal muscle cells.
  • a known method for inducing differentiation from pluripotent stem cells to skeletal muscle cells is appropriately selected to initiate differentiation induction, and before the final differentiation is reached.
  • Cell population can be used.
  • a known method for inducing differentiation of pluripotent stem cells into skeletal muscle cells for example, the method described in Non-Patent Document 1 (Zhao et al., Stem Cell Reports, Vol. 15 1-15 July 14, 2020.). , International release WO2016 / 108288 The method described in A1, Hicks et al. (Nat Cell Biol. 2018 Jan; 20 (1): 46-57.), Etc. can be mentioned.
  • the method for recovering CDH13-positive cells from the cell population is not particularly limited, and examples thereof include a method using a cell sorter and a method using affinity chromatography.
  • a cell sorter for example, a cell suspension of a cell population is prepared, an anti-CDH13 antibody is added to the cell suspension, the anti-CDH13 antibody is bound to the CDH13-positive cells, and the cells are subjected to the cell sorter to obtain the CDH13-positive cells. Can be sorted and collected.
  • a cell suspension of a cell population is prepared, and the CDH13-positive cells are bound to the anti-CDH13 antibody by passing the cell suspension through a column filled with a carrier to which the anti-CDH13 antibody is bound. After that, CDH13-positive cells can be recovered by dissociating the binding with the anti-CDH13 antibody.
  • the method for improving the purity of skeletal muscle lineage cells of the present invention reduces the proportion of CDH13-negative cells in the original cell population and increases the proportion of CDH13-positive cells, so that the resulting cell population improves the purity of skeletal muscle lineage cells. It is a cell population.
  • the pluripotent stem cell that can be used in the present invention is not particularly limited as long as it is a stem cell that has pluripotency capable of differentiating into all cells existing in a living body and also has proliferative ability.
  • embryonic stem (ES) cells embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transplantation
  • sperm stem (GS) cells embryonic reproductive (EG) cells
  • artificial pluripotent stem (iPS) cells derived from cultured fibroblasts and bone marrow stem cells.
  • Pluripotent cells are ES cells, ntES cells, and iPS cells.
  • Embryonic stem cells ES cells are pluripotent and self-replicating stem cells established from the inner cell mass of early embryos (eg, blastocysts) of mammals such as humans and mice.
  • ES cells are embryo-derived stem cells derived from the inner cell mass of the scutellum vesicle, which is the embryo after the morula at the 8-cell stage of the fertilized egg, and have the ability to differentiate into all the cells that make up the adult, so-called polymorphism. It has the ability and the ability to proliferate by self-replication.
  • ES cells were discovered in mice in 1981 (M.J. Evans and M.H. Kaufman (1981), Nature 292: 154-156), and then ES cell lines were established in primates such as humans and monkeys (J.A. Thomson et). al. (1998), Science 282: 1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci.
  • ES cells For the establishment of ES cells, a method known in this field is used. For example, it can be established by removing the inner cell mass from the blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder. For cell maintenance by subculture, use a culture medium supplemented with substances such as leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF). It can be carried out.
  • LIF leukemia inhibitory factor
  • bFGF basic fibroblast growth factor
  • a culture method for producing ES cells a method known in the art is used.
  • the culture medium use DMEM / F-12 culture medium supplemented with, for example, 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid, 2 mM L-glutamic acid, 20% KSR (KnockOut Serum Replacement, Invitrogen) and 4 ng / ml bFGF.
  • human ES cells can be maintained in a moist atmosphere of 37 ° C, 2% CO 2 / 98% air (O. Fumitaka et al. (2008), Nat. Biotechnol., 26: 215-224).
  • ES cells may be passaged every 3-4 days, using 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing, for example, 1 mM CaCl 2 and 20% KSR. Can be done.
  • ES cells can generally be selected by the Real-Time PCR method using the expression of gene markers such as alkaline phosphatase, Oct-3 / 4, and Nanog as an index.
  • gene markers such as alkaline phosphatase, Oct-3 / 4, and Nanog as an index.
  • the expression of gene markers such as OCT-3 / 4, NANOG, and ECAD can be used as an index (E. Croon et al. (2008), Nat. Biotechnol., 26: 443. -452).
  • mouse ES cells various mouse ES cell lines established by inGenious, RIKEN (RIKEN), etc. can be used.
  • human ES cells various human ES cell lines established by the National Institutes of Health (NIH), RIKEN, Kyoto University, and Cellartis can be used.
  • ES cell lines NIH CHB-1 to CHB-12 strains, RUES1 strains, RUES2 strains, HUES1 to HUES28 strains, etc.
  • WisCell Research Institute WA01 (H1) strains, WA09 (H9) strains, RIKEN KhES- One strain, KhES-2 strain, KhES-3 strain, KhES-4 strain, KhES-5 strain, SSES1 strain, SSES2 strain, SSES3 strain and the like can be used.
  • the KhES-1, KhES-2, KhES-3 and KthES11 strains are available from the Institute for Frontier Life and Medical Sciences, Kyoto University (Kyoto, Japan).
  • sperm stem cells are pluripotent stem cells derived from the testis and are the origin cells for spermatogenesis. Similar to ES cells, these cells can be induced to differentiate into various lineages of cells, and have properties such as the ability to produce chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. (M. Kanatsu-Shinohara et al.). 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012).
  • GDNF glial cell line-derived neurotrophic factor
  • Embryonic germ cells are cells with pluripotency similar to ES cells, which are established from primordial germ cells in the embryonic period, such as LIF, bFGF, and stem cell factor. It can be established by culturing primordial germ cells in the presence of the substance of (Y. Matsui et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550. -551).
  • Induced pluripotent stem cells are similar to ES cells, which can be produced by introducing specific reprogramming factors into somatic cells in the form of DNA or protein.
  • Reprogramming factors are genes that are specifically expressed in ES cells, their gene products or non-cording RNAs, or genes that play an important role in maintaining undifferentiated ES cells, their gene products or non-cording RNAs, or It may be composed of low molecular weight compounds.
  • Genes included in the reprogramming factors include, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15. -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, Glis1, etc.
  • initialization factors include WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, WO2009 / 057831, WO2009 / 075119, WO2009 / 079007, WO2009 / 091659, WO2009 / 101084, WO2009 / 101407, WO2009 / 102983, WO2009 / 114949, WO2009 / 117439, WO2009 / 126250, WO2009 / 126251, WO2009 / 126655, WO2009 / 157593, WO2010 / 009015, WO2010 / 033906, WO2010 / 033920, WO2010 / 042800, WO2010 / 050626, WO 2010/056831, WO2010 / 068955,
  • the reprogramming factors include histone deacetylase (HDAC) inhibitors [eg, small molecule inhibitors such as valproic acid (VPA), tricostatin A, sodium butyrate, MC 1293, M344, siRNA against HDAC and shRNA (eg).
  • HDAC histone deacetylase
  • HDAC1 siRNA Smartpool (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene), etc.
  • MEK inhibitors eg PD184352, PD98059, U0126, SL327 and PD0325901
  • Glycogen synthase kinase- 3 Against small molecule inhibitors such as inhibitors (eg Bio and CHIR99021), DNA methyltransferase inhibitors (eg 5-azacytidine), histone methyltransferase inhibitors (eg BIX-01294), Suv39hl, Suv39h2, SetDBl and G9a Nucleic acid expression inhibitors such as siRNA and shRNA), L-channel calciumagonist (eg Bayk8644), butyric acid, TGF ⁇ inhibitors or ALK5 inhibitors (eg LY364947, SB431542, 616453 and A-83-01), p53 inhibition Agents (eg siRNA and shRNA for p53), ARID3
  • the reprogramming factor may be introduced into somatic cells by techniques such as lipofection, fusion with cell membrane permeable peptides (eg, HIV-derived TAT and polyarginine), and microinjection.
  • somatic cells by techniques such as lipofection, fusion with cell membrane permeable peptides (eg, HIV-derived TAT and polyarginine), and microinjection.
  • DNA morphology in the case of DNA morphology, it can be introduced into somatic cells by methods such as viruses, plasmids, vectors such as artificial chromosomes, lipofection, liposomes, and microinjection.
  • Viral vectors include retro viral vectors and lentiviral vectors (above, Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007. ), Adenovirus vector (Science, 322, 945-949, 2008), adeno-associated virus vector, Sendai virus vector (WO2010 / 008054) and the like.
  • the artificial chromosome vector includes, for example, a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC, PAC) and the like.
  • a plasmid a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that the nuclear reprogramming substance can be expressed, and further, if necessary, a drug resistance gene (drug resistance gene).
  • canamycin resistance gene for example, ampicillin resistance gene, puromycin resistance gene, etc.
  • thymidin kinase gene diphtheriatoxin gene and other selection marker sequences
  • green fluorescent protein (GFP) green fluorescent protein
  • GUS ⁇ -glucuronidase
  • FLAG FLAG and other reporter gene sequences, etc.
  • the above vector has LoxP sequences before and after introduction into somatic cells in order to excise both the gene encoding the reprogramming factor or the promoter and the gene encoding the reprogramming factor that binds to the promoter. You may.
  • RNA morphology it may be introduced into somatic cells by a method such as lipofection or microinjection, and in order to suppress degradation, RNA incorporating 5-methylcytidine and pseudouridine (TriLink Biotechnologies) is used. It may be (Warren L, (2010) Cell Stem Cell. 7: 618-630).
  • Cultures for iPS cell induction include, for example, DMEM, DMEM / F12 or DME cultures containing 10-15% FBS (these cultures also include LIF, penicillin / streptomycin, puromycin, L-glutamine). , Non-essential amino acids, ⁇ -mercaptoethanol, etc. can be appropriately contained.) Or mouse ES cell culture medium (TX-WES culture medium, Thrombo X), primate ES cell culture medium (primates). Commercially available cultures such as ES / iPS cell culture medium, Reprocell), serum-free pluripotent stem cell maintenance medium (for example, mTeSR (Stemcell Technology), Essential 8 (Life Technologies), StemFit AK03 (AJINOMOTO)) Illustrated.
  • mTeSR StemTeSR
  • Essential 8 Life Technologies
  • StemFit AK03 AJINOMOTO
  • the somatic cells are brought into contact with the reprogramming factor on a DMEM or DMEM / F12 culture medium containing 10% FBS and cultured for about 4 to 7 days. Then, the cells were re-seeded on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and about 10 days after the contact between the somatic cells and the reprogramming factor, the culture medium for bFGF-containing primate ES cell culture was used. It can be cultured and give rise to iPS-like colonies about 30-about 45 days or more after the contact.
  • feeder cells for example, mitomycin C-treated STO cells, SNL cells, etc.
  • DMEM culture medium containing 10% FBS for example, LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • FBS for example, LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • FBS for example, LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • FBS for example, LIF, penicillin / streptomycin, etc.
  • ES-like colonies can be generated after about 25 to about 30 days or more.
  • the reprogrammed somatic cells themselves are used (Takahashi K, et al. (2009), PLoS One. 4: e8067 or WO2010 / 137746), or extracellular matrix (eg, Laminin-). 5 (WO2009 / 123
  • iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less) (Yoshida Y, et al. (2009), Cell Stem Cell. 5: 237. -241 or WO2010 / 013845).
  • the fresh culture solution and the culture solution are exchanged once a day from the second day after the start of the culture.
  • the number of somatic cells used for nuclear reprogramming is not limited, but ranges from about 5 ⁇ 10 3 to about 5 ⁇ 10 6 cells per 100 cm 2 culture dish.
  • the iPS cells can be selected according to the shape of the formed colonies.
  • a drug resistance gene expressed in conjunction with a gene expressed when somatic cells are reprogrammed for example, Oct3 / 4, Nanog
  • a culture medium containing the corresponding drug selection.
  • Established iPS cells can be selected by culturing in a culture medium).
  • iPS cells are selected by observing with a fluorescence microscope when the marker gene is a fluorescent protein gene, by adding a luminescent substrate when it is a luminescent enzyme gene, and by adding a chromogenic substrate when it is a chromogenic enzyme gene. can do.
  • the term "somatic cell” refers to any animal cell (eg, mammalian cell including human) except germline cells such as eggs, egg mother cells, ES cells or totipotent cells. .. Somatic cells include, but are not limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells, as well as primary cultured cells. , Passed cells, and established cells are all included. Specifically, the somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, (3) lymphocytes, and epithelium.
  • tissue stem cells such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells
  • tissue precursor cells such as lymphocytes, and epithelium.
  • Endothelial cells muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (pancreatic exocrine cells, etc.), brain cells, lung cells, renal cells And differentiated cells such as fat cells are exemplified.
  • the HLA genotypes of the transplanted individuals are the same or substantially the same from the viewpoint that rejection does not occur. It is desirable to use cells.
  • substantially the same HLA type means that the HLA genotypes match to the extent that the transplanted cells can engraft when the cells are transplanted.
  • the main HLA HLA
  • HLA- It is a somatic cell having an HLA type that matches the 3 loci of A, HLA-B and HLA-DR or the 4 loci with HLA-C).
  • iPS cell lines established by NIH, RIKEN, Kyoto University, etc. may be used.
  • ES cells derived from cloned embryos obtained by nuclear transplantation ntES cells are ES cells derived from cloned embryos produced by nuclear transplantation technology and have almost the same characteristics as ES cells derived from fertilized eggs (T. Wakayama et al. (2001), Science, 292: 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72: 932-936; J. Byrne et al. (2007), Nature, 450: 497-502).
  • ES cells established from the inner cell mass of a blastocyst derived from a cloned embryo obtained by replacing the nucleus of an unfertilized egg with the nucleus of a somatic cell are ntES (nuclear transfer ES) cells.
  • ntES nuclear transfer ES
  • a combination of nuclear transplantation technology JB Cibelli et al. (1998), Nature Biotechnol., 16: 642-646) and ES cell production technology (above) is used (Seika Wakayama).
  • somatic cell nuclei can be injected into unenucleated unfertilized eggs of mammals and cultured for several hours to initialize them.
  • Muse cells are pluripotent stem cells produced by the method described in WO2011 / 007900, specifically fibroblasts or bone marrow stromal cells treated with long-term trypsin, preferably 8 hours or 16 hours. Pluripotent cells obtained by suspension culture after treatment and positive for SSEA-3 and CD105.
  • Skeletal muscle stem cells mean cells that have the ability to selectively differentiate into skeletal muscle cells and have both self-renewal ability and proliferative differentiation ability. Skeletal muscle stem cells in vivo are called satellite cells and usually exist between the basement membrane and plasma membrane of muscle fibers. As used herein, skeletal muscle stem cells include satellite cells.
  • Pax7, Hesr1, Hesr3, Myf5, CalcR, NGFR, ERBB3, CD56, CD82, etc. are known as marker genes for identifying skeletal muscle stem cells. It was found that FGFR4 (fibroblast growth factor receptor 4) was expressed in FGFR4 (fibroblast growth factor receptor 4), and it was found that a high-purity skeletal muscle stem cell population could be obtained by using the cell surface marker FGFR4. Therefore, the method for improving the purity of skeletal muscle stem cells of the present invention is characterized by using the cell surface marker FGFR4. FGFR4 is also referred to as CD334.
  • the method for improving the purity of skeletal muscle stem cells of the present invention may be any method including a step of recovering cell surface marker FGFR4-positive cells from a cell population.
  • the cell population is not particularly limited as long as it is a cell population that may contain skeletal muscle stem cells.
  • the cell population used in the method for improving the purity of skeletal muscle lineage cells of the present invention can also be used in the method for improving the purity of skeletal muscle stem cells of the present invention.
  • a cell suspension prepared from a surgical specimen containing skeletal muscle or a cell population in the process of inducing differentiation of pluripotent stem cells into skeletal muscle cells can be used.
  • the cell population may be a cell population with improved purity of skeletal muscle lineage cells obtained by the method for improving purity of skeletal muscle lineage cells of the present invention.
  • the cell population with improved purity of skeletal muscle lineage cells is preferably a cell population with improved purity from a cell population in the process of inducing differentiation from pluripotent stem cells to skeletal muscle cells.
  • a cell population containing high-purity CDH13-positive and FGFR4-positive skeletal muscle stem cells is useful as skeletal muscle stem cells for living body transplantation.
  • the method for recovering FGFR4-positive cells is not particularly limited, and examples thereof include a method using a cell sorter and a method using affinity chromatography.
  • a cell sorter for example, a cell suspension of a cell population is prepared, an anti-FGFR4 antibody is added to the cell suspension, the anti-FGFR4 antibody is bound to the FGFR4-positive cells, and the cells are subjected to the cell sorter to obtain FGFR4-positive cells. Can be sorted and collected.
  • affinity chromatography for example, a cell suspension of a cell population is prepared, and the FGFR4 positive cells are bound to the anti-FGFR4 antibody by passing the cell suspension through a column filled with a carrier to which the anti-FGFR4 antibody is bound.
  • FGFR4-positive cells can be recovered by dissociating the binding with the anti-FGFR4 antibody.
  • the proportion of FGFR4 negative cells in the original cell population decreases and the proportion of FGFR4 positive cells increases. It is a group.
  • the present invention provides a method for producing skeletal muscle lineage cells.
  • the method for producing skeletal muscle lineage cells of the present invention may include the following steps (1) and (2). (1) Step of initiating differentiation induction from pluripotent stem cells to skeletal muscle cells (2) Step of recovering cell surface marker CDH13-positive cells from cell population in the process of differentiation induction
  • the method for producing skeletal muscle lineage cells of the present invention can be carried out in the same manner as in the embodiment of the method for producing skeletal muscle stem cells described below.
  • the time to recover the cell surface marker CDH13-positive cells is not limited to the same time as the method for producing skeletal muscle stem cells described below, and the induction of differentiation from pluripotent stem cells to skeletal muscle cells is not limited to the same time. It may be the time when CDH13-positive cells appear in the developing cell population.
  • the differentiation induction method from pluripotent stem cells to skeletal muscle cells is induced using the differentiation induction method described in "Experimental Materials and Methods" (2) of the Examples of the present application, 2 weeks to 24 from the start of differentiation induction.
  • CDH13-positive cells can be recovered weekly.
  • preliminary studies can be performed as appropriate to determine the recovery time of CDH13-positive cells.
  • the present invention provides a method for producing skeletal muscle stem cells.
  • the method for producing skeletal muscle stem cells of the present invention may include the following steps (1) and (2). (1) Step of initiating differentiation induction from pluripotent stem cells to skeletal muscle cells (2) Step of recovering cell surface marker FGFR4-positive cells, CDH13-positive cells or FGFR4-positive and CDH13-positive cells from a cell population in the process of inducing differentiation
  • Step of initiating differentiation induction from pluripotent stem cells to skeletal muscle cells (2) Step of recovering cell surface marker FGFR4-positive cells, CDH13-positive cells or FGFR4-positive and CDH13-positive cells from a cell population in the process of inducing differentiation
  • FGFR4-positive cells cell surface marker FGFR4-positive cells, CDH13-positive cells or FGFR4-positive and CDH13-positive cells from a cell population in the process of inducing differentiation
  • step (1) the induction of differentiation from pluripotent stem cells to skeletal muscle cells is started.
  • pluripotent stem cells include embryonic stem (ES) cells, embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transplantation, sperm stem (GS) cells, embryonic reproduction (EG) cells, and induced pluripotent cells.
  • Examples include pluripotent stem (iPS) cells, cultured fibroblasts and pluripotent cells (Muse cells) derived from bone marrow stem cells.
  • the pluripotent stem cells used in the present invention may be iPS cells, ES cells, ntES cells, or iPS cells.
  • the method for inducing differentiation of pluripotent stem cells into skeletal muscle cells is not particularly limited, and can be appropriately selected from known methods for inducing differentiation of pluripotent stem cells into skeletal muscle cells.
  • the method for inducing differentiation of pluripotent stem cells into skeletal muscle cells is a differentiation medium to which various compounds and physiologically active substances are added without introducing an exogenous skeletal muscle inducing gene into the pluripotent stem cells. It may be a method using.
  • the compounds contained in the differentiation medium include ROCK (Rho-associated coiled-coil forming kinase) inhibitor, GSK3 (Glycogen synthase kinase 3) inhibitor, TGF- ⁇ (Transforming Growth Factor- ⁇ ) inhibitor, and BMP (Bone morphogenetic). protein) Inhibitors and the like.
  • the physiologically active substance include IGF-1 (Insulin-like Growth Factor 1), bFGF (basic Fibroblast Growth Factor), HGF (Hepatocyte Growth Factor), and retinoic acid.
  • the method for inducing the differentiation of pluripotent stem cells into skeletal muscle cells is to use a differentiation medium supplemented with the above-mentioned various compounds and physiologically active substances to mature skeletal muscle cells in a manner that mimics the developmental process of the fetus. It may be a method of inducing differentiation of a skeletal muscle lineage cell population including skeletal muscle stem cells.
  • the form that mimics the developmental process of the fetus means a method of inducing differentiation of skeletal muscle lineage cells via paraxial mesoderm cells, somites cells, and cutaneous musculoskeletal cells.
  • Examples of such a differentiation-inducing method include the method described in Non-Patent Document 1 (Zhao et al., Stem Cell Reports, Vol. 15 1-15 July 14, 2020.), And described in International Publication WO2016 / 108288 A1. , And the method described in Hicks et al. (Nat Cell Biol. 2018 Jan; 20 (1): 46-57.).
  • step (2) cell surface marker FGFR4-positive cells, CDH13-positive cells or FGFR4-positive and CDH13-positive cells are collected from the cell population in the process of inducing differentiation.
  • the method for recovering each cell surface marker-positive cell is not particularly limited, and examples thereof include a method using a cell sorter and a method using affinity chromatography.
  • FGFR4 positive cells using a cell sorter prepare a cell suspension of the cell population, add the anti-FGFR4 antibody to the cell suspension, bind the anti-FGFR4 antibody to the FGFR4 positive cells, and supply the cells to the cell sorter.
  • FGFR4 positive cells can be selected and recovered.
  • CDH13-positive cells When collecting CDH13-positive cells using a cell sorter, prepare a cell suspension of the cell population, add the anti-CDH13 antibody to the cell suspension, bind the anti-CDH13 antibody to the CDH13-positive cells, and supply the cells to the cell sorter. CDH13-positive cells can be selected and recovered.
  • CDH13-positive cells When recovering FGFR4-positive and CDH13-positive cells using a cell sorter, prepare a cell suspension of the cell population, add anti-FGFR4 antibody and anti-CDH13 antibody to the cell suspension, and add anti-FGFR4 antibody to FGFR4-positive cells. By binding anti-CDH13 antibodies to CDH13-positive cells and subjecting them to a cell sorter, FGFR4-positive and CDH13-positive cells can be selected and recovered.
  • FGFR4 positive cells When recovering FGFR4 positive cells using affinity chromatography, prepare a cell suspension of the cell population and pass the cell suspension through a column filled with a carrier to which an anti-FGFR4 antibody is bound to turn the FGFR4 positive cells into an anti-FGFR4 antibody. FGFR4-positive cells can be recovered by binding and then dissociating the binding to the anti-FGFR4 antibody.
  • CDH13-positive cells When recovering CDH13-positive cells using affinity chromatography, prepare a cell suspension of the cell population and pass the cell suspension through a column filled with a carrier bound to the anti-CDH13 antibody to turn the CDH13-positive cells into anti-CDH13 antibody. CDH13-positive cells can be recovered by binding and then dissociating the binding to the anti-CDH13 antibody.
  • the CDH13-positive cells are recovered by passing the cell suspension of the cell population through a column filled with a carrier to which the anti-CDH13 antibody is bound by the above procedure, and then anti-CDH13.
  • FGFR4-positive and CDH13-positive cells can be recovered through the recovered CDH13-positive cells in a column filled with a carrier to which the FGFR4 antibody is bound.
  • FGFR4-positive cells are collected through a cell suspension of a cell population in a column previously filled with a carrier bound with an anti-FGFR4 antibody, and then the recovered FGFR4-positive cells are passed through a column filled with a carrier bound with an anti-CDH13 antibody.
  • FGFR4-positive and CDH13-positive cells may be recovered.
  • step (2) the time to recover the cell surface marker FGFR4-positive cells, CDH13-positive cells or FGFR4-positive and CDH13-positive cell skeletal muscle stem cells from the cell population in the process of inducing differentiation from pluripotent stem cells to skeletal muscle cells is determined. It may be after the time when a part of pluripotent stem cells differentiates into skeletal muscle stem cells. For example, when the differentiation induction method from pluripotent stem cells to skeletal muscle cells is induced using the differentiation induction method described in "Experimental Materials and Methods" (2) of the Examples of the present application, 3 weeks to 24 weeks from the start of differentiation induction.
  • Skeletal muscle stem cells can be recovered by recovering FGFR4-positive cells, CDH13-positive cells or FGFR4-positive and CDH13-positive cells per week.
  • the recovery time may be 10 to 16 weeks, 11 to 13 weeks, or 12 weeks from the start of differentiation induction.
  • the inventors of the present application have confirmed that the skeletal muscle stem cells recovered 12 weeks after the start of the induction of differentiation have a high engraftment rate after transplantation.
  • preliminary studies can be appropriately performed to determine the recovery time of skeletal muscle stem cells.
  • the skeletal muscle stem cells produced by the method for producing skeletal muscle stem cells of the present invention can be used for living body transplantation.
  • the present inventors transplanted skeletal muscle stem cells (CDH13-positive cells and FGFR4-positive cells) produced by the method for producing skeletal muscle stem cells of the present invention into a low-temperature injured tibialis anterior muscle of a muscular dystrophy model, and as a result, transplanted them into a living body. It has been confirmed that it efficiently differentiates into skeletal muscle cells and engrafts (see Examples).
  • transplanted cells were positive for PAX7, which is a marker specific to satellite cells, and engrafted in the place where satellite cells exist, inside LAMININ, and it was confirmed that they exist as satellite cells in vivo. ing. This means that the ability to regenerate skeletal muscle is sustained for a long period of time after transplantation, and that the effect of cell therapy may be sustained.
  • PAX7 which is a marker specific to satellite cells
  • the present invention includes a cell surface marker for purifying or detecting skeletal muscle lineage cells consisting of CDH13.
  • the present invention also includes cell surface markers for purification or detection of skeletal muscle stem cells consisting of FGFR4.
  • Pluripotent stem cells Human iPS cell line 201B7 (hereinafter referred to as "201B7") was established by transduction with a retrovirus from commercially available healthy human fibroblasts (Takahashi et al., Cell, 131; 861-872, 2007).
  • the DMD (Duchenne muscular dystrophy) iPS cell line (clone ID: CiRA00111, hereinafter referred to as "DMD”) was established by the episomal vector system from the skin fibroblasts of DMD patients lacking the dystrophin gene exxon 44. (Okita et al., Stem Cells, 31; 458-466, 2012).
  • the DMD repair iPS cell line (hereinafter referred to as "CKI") was established by knocking in exon 44 of the dystrophin gene into DMD (Li et al., Stem Cell Reports, 4; 143-154, 2015).
  • the DMD was established with the approval of the Kyoto University graduate School and the Institutional Review Board of the Faculty of Medicine (approval numbers # R0091 and # G259) and with written consent.
  • the stock iPS cell line Ff-WJ14s01 (hereinafter referred to as "S01”) for regenerative medicine was established from the cord blood of a healthy donor with a homozygous HLA refrequency allele in Japan.
  • CDMi medium is a 1: 1 mixture of IMDM (Iscove's Modified Dulbecco's Medium, Invitrogen, 12440053) containing L-glutamine, 25 mM HEPES and Ham's F-12 Nutrient Mix (Invitrogen, 11765054) at 1% BSA. (Sigma), 1% penicillin streptomycin mixed solution (Nacalai), 1% CD lipid concentrate (Invitrogen), 1% insulin-transferase-selenium (Invitrogen) and 450 ⁇ M 1-thioglycerol (Sigma).
  • BSA bovine serum albumin
  • 2-ME 2-mercaptoethanol
  • 10 ng / ml recombinant human IGF-1 PeproTech
  • 10 ng / ml recombinant human bFGF Oriental yeast
  • 10 ng / ml recombinant human HGF PeproTech
  • medium was 0.5% penicillin streptomycin mixed solution (Nacalai), 2 mM L-glutamine (Nacalai), 0.1 mM 2-ME, 2% horse serum (HS, Sigma), 5 ⁇ M SB431542 and 10 ng / ml. It was changed to DMEM (Invitrogen, 11960069) to which IGF-1 was added. After that, the medium was changed every 2 to 3 days. Cells were cultured in this medium until used in the experiment. Cells on day 84 of differentiation were subjected to analysis.
  • the cells were then shaded and incubated with the corresponding antibody for 20 minutes on ice. After incubation, cells were washed twice again with HBSS buffer (1000 rpm, 4 ° C., centrifuge for 5 minutes). Finally, cells were resuspended in HBSS buffer containing 1% Hoechst and filtered through a 40 nm mesh. Cells were stored on ice until FACS sorting. FACS sorting and analysis of living cells was performed by Aria II (BD Biosciences).
  • the cells were fixed with 2% PFA (paraformaldehyde) for 10 minutes and washed 3 times at 4 ° C for 10 minutes using PBS. The cells were then blocked with Blocking one (Nacalai) for 1 hour. Following blocking, cells were incubated overnight with primary antibody diluted in PBS containing 10% Blocking one. The cells were subsequently washed 3 times with PBS (PBS-T) containing 0.2% Triton X100 (Sigma-Aldrich) and the corresponding secondary antibody and DAPI (1: 5000) and cells were incubated for 1 hour at room temperature. .. Cells stained with antibody were observed under a BZ-X700 microscope (Keyence) and analyzed with BZ-X analyzer software (Keyence). The antibodies used are shown in Table 2.
  • PFA paraformaldehyde
  • Example 1 Examination of specific cell surface markers in Myf5-positive cells obtained by inducing differentiation from iPS cells to skeletal muscle stem cells.
  • Differentiation into skeletal muscle stem cells was induced using 201B7 as human iPS cells, and the cells were collected on day 84 and Myf5 positive cells and Myf5 negative cells were sorted by FACS.
  • RNA-seqing analysis was performed on Myf5-positive cells and Myf5-negative cells, respectively, and CDH13 and FGFR4 were identified as surface markers specifically highly expressed in Myf5-positive cells.
  • FIG. 1 shows the results of analysis of the expression patterns of CDH13 and FGFR4 using the mouse single-cell RNA sequencing database "Tabula Muris". Both CDH13 and FGFR4 were confirmed to be strongly expressed in the Limb Muscle surrounded by the dotted line.
  • CDH13 is weak in the results of analysis of the expression patterns of CDH13 and FGFR4 using a database of single-cell RNA sequencing of differentiated skeletal muscle cells from human fetal muscle tissue and human iPS cells.
  • FGFR4 was strongly expressed from Embryonic 5 weeks to Fetal 6 weeks, and was also strongly expressed in the iPS cell differentiation system.
  • FIG. 2 shows the results of analysis of the expression patterns of CDH13 and FGFR4 using a gene expression database in human fetal-derived tissues.
  • A is the result of CDH13
  • B is the result of FGFR4. Both CDH13 and FGFR4 were found to be highly expressed in the tissues of the skeletal muscle system shown in black.
  • FIG. 3 shows the results of analysis of the expression patterns of CDH13 and FGFR4 using a gene expression database in adult human tissues.
  • A) is the result of CDH13
  • (B) is the result of FGFR4. Both CDH13 and FGFR4 were confirmed to be highly expressed in muscle.
  • Example 2 Expression analysis of CDH13 and FGFR4 in cells induced to differentiate from iPS cells to skeletal muscle stem cells.
  • Differentiation into skeletal muscle stem cells was induced using 201B7 and S01 as human iPS cells, and on day 84, the cells were collected and Myf5-positive cells and Myf5-negative cells were sorted by FACS. Was measured by quantitative real-time PCR.
  • the results are shown in FIG. (A) is the result of CDH13, and (B) is the result of FGFR4.
  • the expression level was expressed as a relative expression level when the expression level of Myf5-negative cells was 1.
  • Both CDH13 and FGFR4 showed specifically high expression in Myf5-positive cells (*; p ⁇ 0.05, **; p ⁇ 0.01, ***; p ⁇ 0.001).
  • FIG. (A) is the result of CDH13
  • (B) is the result of FGFR4. It was shown that CDH13-positive cells and FGFR4-positive cells were present in a certain proportion in the cells induced to differentiate from CKI to skeletal muscle stem cells.
  • Example 3 Expression analysis of skeletal muscle stem cell-related genes in CDH13-positive cells and FGFR4-positive cells obtained by inducing differentiation from iPS cells to skeletal muscle stem cells.
  • Differentiation into skeletal muscle stem cells was induced using 201B7, CKI and DMD as human iPS cells, the cells were recovered on day 84, and CDH13-positive cells and FGFR4-positive cells were sorted by FACS.
  • the expression levels of skeletal muscle stem cell-related genes MYF5 and PAX7 and myoblast-related gene MYOD1 were measured by quantitative real-time PCR in CDH13-positive cells, FGFR4-positive cells and non-sorting cells (controls).
  • Fig. 7 shows the result of 201B7
  • Fig. 8 shows the result of CKI
  • Fig. 9 shows the result of DMD.
  • the expression level was expressed as the relative expression level when the expression level of the non-sorting cells (control) was 1.
  • FIGS. 7, 8 and 9 FGFR4-positive cells highly expressed the skeletal muscle stem cell-related genes MYF5 and PAX7.
  • CDH13-positive cells also had higher expression of MYF5 and PAX7 compared to controls, but lower expression levels than FGFR4-positive cells.
  • CDH13-positive cells highly expressed the myoblast-related gene MYOD1 (*; p ⁇ 0.05, **; p ⁇ 0.01, ***; p ⁇ 0.001, ****; p ⁇ 0.0001. ).
  • Example 4 Examination of in vitro differentiation potential of CDH13-positive cells and FGFR4-positive cells into skeletal muscle cells obtained by inducing differentiation from iPS cells to skeletal muscle stem cells]
  • (1) In vitro differentiation ability of CDH13-positive cells into skeletal muscle cells Induction of differentiation into skeletal muscle stem cells using 201B7, CKI and DMD as human iPS cells was performed, and on the 84th day, the cells were recovered and used with anti-CDH13 antibody. Staining was performed and CDH13-positive cells and CDH13-negative cells were sorted by FACS, respectively.
  • CDH13-positive cells and CDH13-negative cells were further induced to differentiate into skeletal muscle cells, and the ability to differentiate into skeletal muscle cells was examined using the expression of myosin heavy chain (hereinafter referred to as "MHC") as an index.
  • MHC myosin heavy chain
  • FIG. (A) is the result of immunostaining MHC
  • (B) is the result of calculating the differentiation index (MHC positive cell rate) by image analysis.
  • differentiation index MHC positive cell rate
  • FIG. (A) is the result of immunostaining MHC
  • (B) is the result of calculating the differentiation index (MHC positive cell rate) by image analysis. Differentiation into MHC-positive skeletal muscle cells was observed with a high efficiency of 80% or more in FGFR4-positive cells, but differentiation of MHC-positive skeletal muscle cells was also observed from FGFR4-negative cells. (**; p ⁇ 0.01, ***; p ⁇ 0.001).
  • Example 5 Transplantation experiment of CDH13-positive cells and FGFR4-positive cells obtained by inducing differentiation from iPS cells to skeletal muscle stem cells into mice] (1) Confirmation of engraftment of transplanted cells CKI and DMD were used as human iPS cells to induce differentiation into skeletal muscle stem cells, cells were collected on day 84, and CDH13-positive cells and CDH13-negative cells were used using FACS. , FGFR4 positive cells and FGFR4 negative cells were sorted respectively.
  • Each sorted cell was transplanted into NOG-mdx mice by the method described in (4) of the above [Experimental Materials and Methods], and after 4 weeks, the transplanted site was collected for histochemical analysis and measurement of the number of engrafted cells. Was done.
  • the transplanted tissue 4 weeks after transplantation was stained with anti-PAX7 antibody, anti-LAMININ ⁇ 2 antibody, anti-h-LAMIN A / C antibody and DAPI, and co-focused. Observed with a microscope. The results are shown in FIG. Human nucleus-positive and PAX7-positive cells located inside laminin were observed from both CDH13-positive cells and FGFR4-positive cells (arrowhead), confirming that the transplanted cells differentiated into satellite cells in the post-transplant muscle tissue. rice field.
  • Example 6 Comparison with known skeletal muscle lineage cell surface markers
  • FACS analysis Inducing differentiation into skeletal muscle stem cells using DMD and CKI as human iPS cells, and collecting the cells on the 84th day, CD56-positive cell rate, CD82-positive cell rate, and NGFR-positive cell by FACS. The rate, ERBB3-positive cell rate, CDH13-positive cell rate and FGFR4-positive cell rate were confirmed.
  • the results are shown in FIG. (A) is the result of DMD, and (B) is the result of CKI. It was shown that the proportion of CD56-positive cells and NGFR-positive cells was higher than that of other marker-positive cells.
  • FIG. 17 The results are shown in Fig. 17.
  • (A) is the result of DMD
  • (B) is the result of CKI.
  • the expression level was expressed as the relative expression level when the expression level of unsorted cells (not shown) was 1.
  • Expression of MYF5 is high in FGFR4-positive cells.
  • the expression of PAX7 is high in FGFR4-positive cells, and in CKI-derived cells, CDH13-positive cells also have high PAX7 expression.
  • the expression of MYOD1 is high in ERBB3-positive cells and CDH13-positive cells in CKI, suggesting that the fraction contains a large amount of myoblasts.
  • the expression of MYOD1 is low in FGFR4-positive cells, suggesting that the fraction is closer to that of skeletal muscle stem cells (*; p ⁇ 0.05, **; p ⁇ 0.01, ***; p ⁇ 0.001).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本発明は、細胞集団中の細胞表面マーカーCDH13陽性細胞を回収することを特徴とする骨格筋系譜細胞の純度向上方法、多能性幹細胞を骨格筋細胞へ分化誘導する工程と分化誘導過程の細胞集団から細胞表面マーカーCDH13陽性細胞を回収する工程とを含む骨格筋系譜細胞の製造方法、細胞集団中の細胞表面マーカーFGFR4陽性細胞を回収することを特徴とする骨格筋系譜細胞の純度向上方法、ならびに、多能性幹細胞を骨格筋細胞へ分化誘導する工程と分化誘導過程の細胞集団から細胞表面マーカーFGFR4陽性細胞、CDH13陽性細胞またはFGFR4陽性かつCDH13陽性細胞を回収する工程とを含む骨格筋幹細胞の製造方法を提供する。

Description

骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカーおよびその利用
 本発明は、骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカー、ならびに、それを用いた骨格筋系譜細胞および骨格筋幹細胞の純度向上方法および製造方法に関するものである。
 骨格筋は特別な内因性再生能に関する柔軟性を有している。骨格筋の再生を通して、サテライト細胞と呼ばれる局所常在幹細胞集団が、組織の維持と修復に基本的な役割を果たす。サテライト細胞は、恒常性状態では基底膜の下で休止状態にあり、筋肉損傷に応答して活性化され、増殖を開始する。活性化したサテライト細胞は損傷部位に移動し、筋芽細胞と筋管に分化し、後に他の繊維と融合して損傷を修復する。一方、サテライト細胞の別のサブセットは、サテライト細胞プールの自己複製のために休止状態に戻る。これらの特性のため、健康なサテライト細胞の移植は、骨格筋疾患における再生医療のための有望な戦略として研究されてきた。
 しかし、サテライト細胞はわずかしか単離できず、インビトロで増殖すると再生能力を失って老化するため、細胞療法の魅力がなくなっている。一方、ヒトiPS細胞は、より大きな増殖能と分化能を持っているため、細胞療法のためのさまざまな細胞系列を生成するための非常に魅力的な細胞源と考えられる。
 最近、いくつかのグループがヒトiPS細胞に由来する骨格筋前駆細胞を得るためのインビトロ分化システムを開発している。これらの方法の多くは、分化を誘導するために筋形成因子(myogenic factors)を人工的に過剰発現させているが、腫瘍形成の可能性があるため、臨床での安全性が低くなる。導入遺伝子を使用しない方法は、ヒトiPS細胞から骨格筋幹細胞を分化誘導するために発生段階を繰り返すことを試みており、健康に関連するリスクが少ないため、臨床適用により魅力的である。
 導入遺伝子を使用しない方法で作られた骨格筋幹細胞は筋形成能を示すが、非常に不均一性が高い細胞集団であり、すべての細胞が筋形成能を示すわけではない。したがって、ヒトiPS細胞から導入遺伝子を使用しない方法で分化誘導した骨格筋幹細胞を細胞療法に使用するためには、ヒトiPS細胞から骨格筋幹細胞へ分化誘導した不均一な細胞集団から、骨格筋幹細胞を効率よく選別して、純度の高い骨格筋幹細胞集団を取得するためのバイオマーカーが必要である。
 最近本発明者らは、ヒトiPS細胞から筋再生能のある骨格筋幹細胞を誘導する方法を確立し(非特許文献1)、サテライト細胞マーカーとして知られているMYF5遺伝子に着目して、MYF5陽性細胞とMYF5陰性細胞をそれぞれ免疫不全マウスの脛の筋肉に移植したところ、Myf5陽性細胞のほうが、移植後に筋線維を形成している度合いが高く、筋再生能が高いことが示唆された。
Mingming Zhao et al., Stem Cell Reports. 2020 Jul 14;15(1):80-94. doi: 10.1016/j.stemcr.2020.06.004. Epub 2020 Jul 2.
 本発明は、純度の高い骨格筋系譜細胞集団および骨格筋幹細胞集団を取得するためのバイオマーカーを提供すること、当該バイオマーカーを用いる骨格筋系譜細胞および骨格筋幹細胞の純度向上方法および製造方法を提供することを課題とする。
 本発明は、上記の課題を解決するために以下の各発明を包含する。
[1]細胞集団における骨格筋系譜細胞の純度を向上させる方法であって、前記細胞集団中の細胞表面マーカーCDH13陽性細胞を回収することを特徴とする方法。
[2]前記細胞集団が、多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団である、前記[1]に記載の方法。
[3]前記多能性幹細胞がiPS細胞である、前記[2]に記載の方法。
[4]前記[1]~[3]のいずれかの方法により得られた骨格筋系譜細胞の純度が向上した細胞集団における骨格筋幹細胞の純度を向上させる方法であって、前記細胞集団中の細胞表面マーカーFGFR4陽性細胞を回収することを特徴とする方法。
[5]細胞集団における骨格筋幹細胞の純度を向上させる方法であって、前記細胞集団中の細胞表面マーカーFGFR4陽性細胞を回収することを特徴とする方法。
[6]前記細胞集団が、多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団である、前記[5]に記載の方法。
[7]前記多能性幹細胞がiPS細胞である、前記[6]に記載の方法。
[8]骨格筋系譜細胞を製造する方法であって、(1)多能性幹細胞から骨格筋細胞への分化誘導を開始する工程、および(2)分化誘導途上の細胞集団から細胞表面マーカーCDH13陽性細胞を回収する工程、を含むことを特徴とする製造方法。
[9]骨格筋幹細胞を製造する方法であって、(1)多能性幹細胞から骨格筋細胞への分化誘導を開始する工程、および(2)分化誘導途上の細胞集団から細胞表面マーカーFGFR4陽性細胞、CDH13陽性細胞またはFGFR4陽性かつCDH13陽性細胞を回収する工程、を含むことを特徴とする製造方法。
[10]前記工程(1)が、多能性幹細胞に外来性の骨格筋誘導遺伝子を導入せずに、分化培地を用いて分化誘導する工程である、前記[9]に記載の製造方法。
[11]前記工程(1)が、多能性幹細胞から胎児の発生過程を模倣するように骨格筋系譜細胞を分化誘導する工程である、前記[9]または[10]に記載の製造方法。
[12]多能性幹細胞がiPS細胞である、前記[9]~[11]のいずれかに記載の製造方法。
[13]前記骨格筋幹細胞が生体移植用である、前記[9]~[12]のいずれかに記載の製造方法。
[14]CDH13からなる骨格筋系譜細胞の純化または検出用細胞表面マーカー。
[15]FGFR4からなる骨格筋幹細胞の純化または検出用細胞表面マーカー。
 本発明により、純度の高い骨格筋系譜細胞集団および骨格筋幹細胞集団を取得するためのバイオマーカーを提供することができる。本発明のバイオマーカーを用いることにより、骨格筋系譜細胞および骨格筋幹細胞の純度向上方法および製造方法を提供することができる。
マウスシングルセルRNAシーケンシングのデータベース「Tabula Muris」を用いて、CDH13およびFGFR4の発現パターンを解析した結果を示す図である。 ヒト胎児由来組織における遺伝子発現データベースを用いて、CDH13およびFGFR4の発現パターンを解析した結果を示す図であり、(A)がCDH13の結果、(B)がFGFR4の結果である。 ヒト成体由来組織における遺伝子発現データベースを用いて、CDH13およびFGFR4の発現パターンを解析した結果を示す図であり、(A)がCDH13の結果、(B)がFGFR4の結果である。 ヒトiPS細胞(201B7およびS01)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収し、FACSによりMyf5陽性細胞とMyf5陰性細胞をソーティングし、CDH13発現量とFGFR4発現量を測定した結果を示す図であり、(A)がCDH13の結果、(B)がFGFR4の結果である。 ヒトiPS細胞(CKI)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収し、CDH13陽性細胞およびFGFR4陽性細胞の存在をFACSで確認した結果を示す図であり、(A)がCDH13の結果、(B)がFGFR4の結果である。 ヒトiPS細胞(201B7)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して抗FGFR4抗体で染色し、FACSでFGFR4陽性細胞およびFGFR4陰性細胞をソーティングし、それぞれ抗CDH13抗体で染色してFACSでCDH13陽性率を分析した結果を示す図である。 ヒトiPS細胞(201B7)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収し、FACSでCDH13陽性細胞およびFGFR4陽性細胞をソーティングし、CDH13陽性細胞、FGFR4陽性細胞および非ソーティング細胞における、MYF5、PAX7、MYOD1の発現量を測定した結果を示す図である。 ヒトiPS細胞(CKI)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収し、FACSでCDH13陽性細胞およびFGFR4陽性細胞をソーティングし、CDH13陽性細胞、FGFR4陽性細胞および非ソーティング細胞における、MYF5、PAX7、MYOD1の発現量を測定した結果を示す図である。 ヒトiPS細胞(DMD)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収し、FACSでCDH13陽性細胞およびFGFR4陽性細胞をソーティングし、CDH13陽性細胞、FGFR4陽性細胞および非ソーティング細胞における、MYF5、PAX7、MYOD1の発現量を測定した結果を示す図である。 ヒトiPS細胞(201B7、CKIおよびDMD)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して抗CDH13抗体で染色し、FACSでCDH13陽性細胞とCDH13陰性細胞をそれぞれソーティングし、CDH13陽性細胞とCDH13陰性細胞をさらに骨格筋細胞へ分化誘導してミオシン重鎖(MHC)の発現を検討した結果を示す図であり、(A)がMHCを免疫染色した結果、(B)が分化インデックス(MHC陽性細胞率)を画像解析により算出した結果を示す図である。 ヒトiPS細胞(201B7、CKIおよびDMD)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して抗FGFR4抗体で染色し、FACSでFGFR4陽性細胞とFGFR4陰性細胞をそれぞれソーティングし、FGFR4陽性細胞とFGFR4陰性細胞をさらに骨格筋細胞へ分化誘導してMHCの発現を検討した結果を示す図であり、(A)がMHCを免疫染色した結果、(B)が分化インデックス(MHC陽性細胞率)を画像解析により算出した結果を示す図である。 ヒトiPS細胞(CKI、DMD)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して、FACSを用いてCDH13陽性細胞、CDH13陰性細胞、FGFR4陽性細胞、FGFR4陰性細胞をそれぞれソーティングし、各細胞をNOG-mdxマウスに移植して4週間後に移植部位を採取し、抗ヒストペクリン抗体、抗ラミニンα2抗体、抗ヒト核抗体およびDAPIで染色し、共焦点顕微鏡で観察した結果を示す図である。 上記の移植4週間後のNOG-mdxマウスから採取した移植部位における生着細胞数を測定した結果を示す図である。 上記の移植4週間後のNOG-mdxマウスから採取した移植部位を抗PAX7抗体、抗MYOD抗体、抗h-LAMIN A/C 抗体およびDAPIで染色し、共焦点顕微鏡で観察した結果を示す図である。 上記の移植4週間後のNOG-mdxマウスから採取した移植部位を抗PAX7抗体、抗LAMININα2抗体、抗h-LAMIN A/C 抗体およびDAPIで染色し、共焦点顕微鏡で観察した結果を示す図である。 ヒトiPS細胞(DMD、CKI)を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して、FACSを用いてCD56陽性細胞率、CD82陽性細胞率、NGFR陽性細胞率、ERBB3陽性細胞率、CDH13陽性細胞率およびFGFR4陽性細胞率を確認した結果を示す図であり、(A)がDMDの結果、(B)がCKIの結果である。 上記でソーティングしたDMDおよびCKI由来のCD56陽性細胞、CD82陽性細胞、NGFR陽性細胞、ERBB3陽性細胞、CDH13陽性細胞およびFGFR4陽性細胞おける、MYF5、PAX7、MYOD1の発現量を測定した結果を示す図であり、(A)がDMDの結果、(B)がCKIの結果である。 上記でソーティングしたDMDおよびCKI由来のCD56陽性細胞、CD82陽性細胞、NGFR陽性細胞、ERBB3陽性細胞、CDH13陽性細胞およびFGFR4陽性細胞を、さらに骨格筋細胞へ分化誘導し、MHCの発現を検討した結果を示す図であり、(A)がMHCを免疫染色した結果、(B)が分化インデックス(MHC陽性細胞率)を画像解析により算出した結果である。
〔骨格筋系譜細胞の純度向上方法〕
 本発明は、骨格筋系譜細胞の純度向上方法を提供する。骨格筋系譜細胞は、骨格筋分化能を有する細胞および骨格筋に最終分化した細胞を含む広義の概念であり、骨格筋幹細胞、筋芽細胞、筋管細胞、成熟筋管細胞、骨格筋細胞(筋線維)の全てを含む。本発明者らは、骨格筋系譜細胞がその細胞表面にCDH13を発現していることを見出し、細胞表面マーカーCDH13を用いることにより、高純度の骨格筋系譜細胞集団を取得できることを見出した。したがって、本発明の骨格筋系譜細胞の純度向上方法は、細胞表面マーカーCDH13を用いることを特徴とする方法である。なお、CDH13はカドヘリン-13、T-カドヘリン、H-カドヘリンとも称される。
 本発明の骨格筋系譜細胞の純度向上方法は、細胞集団から細胞表面マーカーCDH13陽性細胞を回収する工程を含む方法であればよい。細胞集団は骨格筋系譜細胞が含まれている可能性がある細胞集団であれば特に限定されない。例えば、骨格筋を含む手術検体から調製した細胞懸濁液などが挙げられる。細胞集団は、ヒト細胞集団でもよく、ヒト以外の生物の細胞集団でもよい。ヒト以外の生物は特に限定されず、例えば、哺乳動物であってもよい。哺乳動物としては、例えば、サル、チンパンジー、イヌ、ネコ、ウシ、ウマ、ブタ、ウサギ、マウス、ラット等が挙げられる。
 一実施形態において、細胞集団は多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団であってもよい。多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団としては、多能性幹細胞から骨格筋細胞への公知の分化誘導方法を適宜選択して分化誘導を開始し、最終分化に至る前の細胞集団を用いることができる。多能性幹細胞から骨格筋細胞への公知の分化誘導方法としては、例えば、非特許文献1(Zhao et al., Stem Cell Reports, Vol. 15 1-15 July 14, 2020.)に記載の方法、国際公開WO2016/108288 A1に記載の方法、Hicksら(Nat Cell Biol. 2018 Jan;20(1):46-57.)に記載の方法などが挙げられる。
 細胞集団からCDH13陽性細胞を回収する方法は、特に限定されないが、例えば、セルソーターを用いる方法、アフィニティークロマトグラフィーを用いる方法などが挙げられる。セルソーターを用いる場合、例えば、細胞集団の細胞懸濁液を調製し、細胞懸濁液に抗CDH13抗体を添加してCDH13陽性細胞に抗CDH13抗体を結合させてセルソーターに供することによりCDH13陽性細胞を選別し、回収することができる。また、アフィニティークロマトグラフィーを用いる場合、例えば、細胞集団の細胞懸濁液を調製し、抗CDH13抗体を結合した担体を充てんしたカラムに細胞懸濁液を通してCDH13陽性細胞を抗CDH13抗体に結合させ、その後抗CDH13抗体との結合を解離することによりCDH13陽性細胞を回収することができる。本発明の骨格筋系譜細胞の純度向上方法により、元の細胞集団におけるCDH13陰性細胞の割合が減少し、CDH13陽性細胞の割合が増加するため、得られる細胞集団は骨格筋系譜細胞の純度が向上した細胞集団である。
 本発明に使用可能な多能性幹細胞は、生体に存在するすべての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であればよく、特に限定されない。例えば胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹(GS)細胞、胚性生殖(EG)細胞、人工多能性幹(iPS)細胞、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)などが含まれる。好ましい多能性幹細胞は、ES細胞、ntES細胞、およびiPS細胞である。
(A) 胚性幹細胞
 ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。
 ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され (M.J. Evans and M.H. Kaufman (1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された (J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)。
 ES細胞の樹立は、当分野で知られた方法が用いられる。例えば、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor (LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor (bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al. (1998), Science. 282:1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222:273-279;H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al. (2006), Nature. 444:481-485などに記載されている。
 ES細胞作製のための培養方法は、当分野で知られた方法が用いられる。培養液として、例えば0.1mM 2-メルカプトエタノール、0.1mM 非必須アミノ酸、2mM L-グルタミン酸、20% KSR(KnockOut Serum Replacement, Invitrogen)および4ng/ml bFGFを補充したDMEM/F-12培養液を使用し、37℃、2% CO2/98% 空気の湿潤雰囲気下でヒトES細胞を維持することができる(O. Fumitaka et al. (2008), Nat. Biotechnol., 26:215-224)。ES細胞は、3~4日おきに継代してもよく、このとき、継代は、例えば1mM CaCl2および20% KSRを含有するPBS中の0.25% トリプシンおよび0.1mg/mlコラゲナーゼIVを用いて行うことができる。
 ES細胞の選択は、一般に、アルカリホスファターゼ、Oct-3/4、Nanogなどの遺伝子マーカーの発現を指標にしてReal-Time PCR法で行うことができる。特に、ヒトES細胞の選択では、OCT-3/4、NANOG、ECADなどの遺伝子マーカーの発現を指標とすることができる(E. Kroon et al. (2008), Nat. Biotechnol., 26:443-452)。
 マウスES細胞としては、inGenious社、理化学研究所(理研)等が樹立した各種マウスES細胞株が利用可能である。ヒトES細胞としては、米国国立衛生研究所(NIH)、理研、京都大学、Cellartis社が樹立した各種ヒトES細胞株が利用可能である。たとえばES細胞株としては、NIHのCHB-1~CHB-12株、RUES1株、RUES2株、HUES1~HUES28株等、WisCell Research InstituteのWA01(H1)株、WA09(H9)株、理研のKhES-1株、KhES-2株、KhES-3株、KhES-4株、KhES-5株、SSES1株、SSES2株、SSES3株等を利用することができる。また、KhES-1株、KhES-2株、KhES-3株およびKthES11株は、京都大学ウイルス・再生医科学研究所(京都、日本)から入手可能である。
(B) 精子幹細胞
 精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor (GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、精子幹細胞を得ることができる(竹林正則ら(2008),実験医学,26巻,5号(増刊),41~46頁,羊土社(東京、日本))。
(C) 胚性生殖細胞
 胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)。
(D) 人工多能性幹細胞
 人工多能性幹(iPS)細胞は、特定の初期化因子を、DNAまたはタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);国際公開WO 2007/069666)。初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-cording RNAまたはES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-cording RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO 2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO 2010/111409、WO 2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、Huangfu D, et al. (2008), Nat. Biotechnol., 26: 795-797、Shi Y, et al. (2008), Cell Stem Cell, 2: 525-528、Eminli S, et al. (2008), Stem Cells. 26:2467-2474、Huangfu D, et al. (2008), Nat Biotechnol. 26:1269-1275、Shi Y, et al. (2008), Cell Stem Cell, 3, 568-574、Zhao Y, et al. (2008), Cell Stem Cell, 3:475-479、Marson A, (2008), Cell Stem Cell, 3, 132-135、Feng B, et al. (2009), Nat Cell Biol. 11:197-203、R.L. Judson et al., (2009), Nat. Biotech., 27:459-461、Lyssiotis CA, et al. (2009), Proc Natl Acad Sci U S A. 106:8912-8917、Kim JB, et al. (2009), Nature. 461:649-643、Ichida JK, et al. (2009), Cell Stem Cell. 5:491-503、Heng JC, et al. (2010), Cell Stem Cell. 6:167-74、Han J, et al. (2010), Nature. 463:1096-100、Mali P, et al. (2010), Stem Cells. 28:713-720、Maekawa M, et al. (2011), Nature. 474:225-9.に記載の組み合わせが例示される。
 上記初期化因子には、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸 (VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool (Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327およびPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、BioおよびCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294 等の低分子阻害剤、Suv39hl、Suv39h2、SetDBlおよびG9aに対するsiRNAおよびshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist (例えばBayk8644)、酪酸、TGFβ阻害剤またはALK5阻害剤(例えば、LY364947、SB431542、616453およびA-83-01)、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNAおよびshRNA)、miR-291-3p、miR-294、miR-295およびmir-302などのmiRNA、Wnt Signaling(例えばsoluble Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2およびプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれており、本明細書においては、これらの樹立効率の改善目的にて用いられた因子についても初期化因子と別段の区別をしないものとする。
 初期化因子は、タンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTATおよびポリアルギニン)との融合、マイクロインジェクションなどの手法によって体細胞内に導入してもよい。
 一方、DNAの形態の場合、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウイルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(WO 2010/008054)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、初期化因子をコードする遺伝子もしくはプロモーターとそれに結合する初期化因子をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。
 また、RNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入しても良く、分解を抑制するため、5-メチルシチジンおよびpseudouridine(TriLink Biotechnologies)を取り込ませたRNAを用いても良い(Warren L, (2010) Cell Stem Cell. 7:618-630)。
 iPS細胞誘導のための培養液としては、例えば、10~15%FBSを含有するDMEM、DMEM/F12またはDME培養液(これらの培養液にはさらに、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)またはマウスES細胞培養用培養液(TX-WES培養液、トロンボX社)、霊長類ES細胞培養用培養液(霊長類ES/iPS細胞用培養液、リプロセル社)、無血清多能性幹細胞維持培地(例えば、mTeSR(Stemcell Technology社)、Essential 8(Life Technologies)、StemFit AK03(AJINOMOTO))などの市販の培養液が例示される。
 培養法の例としては、例えば、37℃、5%CO2存在下にて、10%FBS含有DMEMまたはDMEM/F12培養液上で体細胞と初期化因子とを接触させ約4~7日間培養し、その後、細胞をフィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上に播きなおし、体細胞と初期化因子の接触から約10日後からbFGF含有霊長類ES細胞培養用培養液で培養し、該接触から約30~約45日またはそれ以上ののちにiPS様コロニーを生じさせることができる。
 あるいは、37℃、5% CO2存在下にて、フィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上で10%FBS含有DMEM培養液(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日またはそれ以上後にES様コロニーを生じさせることができる。望ましくは、フィーダー細胞の代わりに、初期化される体細胞そのものを用いる(Takahashi K, et al. (2009), PLoS One. 4:e8067またはWO2010/137746)、もしくは細胞外マトリックス(例えば、Laminin-5(WO2009/123349)およびマトリゲル(BD社))を用いる方法が例示される。
 この他にも、血清を含有しない培地を用いて培養する方法も例示される(Sun N, et al. (2009), Proc Natl Acad Sci U S A. 106:15720-15725)。さらに、樹立効率を上げるため、低酸素条件(0.1%以上、15%以下の酸素濃度)によりiPS細胞を樹立しても良い(Yoshida Y, et al. (2009), Cell Stem Cell. 5:237-241またはWO2010/013845)。
 上記培養の間には、培養開始2日目以降から毎日1回新鮮な培養液と培養液交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cm2あたり約5×103~約5×106細胞の範囲である。
 iPS細胞は、形成したコロニーの形状により選択することが可能である。一方、体細胞が初期化された場合に発現する遺伝子(例えば、Oct3/4、Nanog)と連動して発現する薬剤耐性遺伝子をマーカー遺伝子として導入した場合は、対応する薬剤を含む培養液(選択培養液)で培養を行うことにより樹立したiPS細胞を選択することができる。また、マーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、iPS細胞を選択することができる。
 本明細書中で使用する「体細胞」なる用語は、卵子、卵母細胞、ES細胞などの生殖系列細胞または分化全能性細胞を除くあらゆる動物細胞(例えば、ヒトを含む哺乳動物細胞)をいう。体細胞には、非限定的に、胎児(仔)の体細胞、新生児(仔)の体細胞、および成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、および株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞および脂肪細胞等の分化した細胞などが例示される。
 また、iPS細胞および/またはそれらから分化誘導した細胞を移植用細胞の材料として用いる場合、拒絶反応が起こらないという観点から、移植先の個体のHLA遺伝子型が同一もしくは実質的に同一である体細胞を用いることが望ましい。ここで、HLAの型が「実質的に同一」とは、細胞を移植した場合に移植細胞が生着可能な程度にHLA遺伝子型が一致していることであり、例えば、主たるHLA(HLA-A、HLA-BおよびHLA-DRの3遺伝子座あるいはHLA-Cを加えた4遺伝子座)が一致するHLA型を有する体細胞である。
 人工多能性幹細胞株としては、NIH、理研、京都大学等が樹立した各種iPS細胞株を用いてもよい。例えば、ヒトiPS細胞株であれば、理研のHiPS-RIKEN-1A株、HiPS-RIKEN-2A株、HiPS-RIKEN-12A株、Nips-B2株等、京都大学のFf-WJ-18株、Ff-I01s01株、Ff-I01s02株、Ff-I01s04株、Ff-I01s06株、Ff-I14s03株、Ff-I14s04株、QHJI01s01株、QHJI01s04株、QHJI14s03株、QHJI14s04株、AK5株、TkDN-Sev2株、692D2株、253G1株、201B7株、409B2株、454E2株、606A1株、610B1株、648A1株、1231A3株、1390D4株および1390C1株等が挙げられる。あるいは、京都大学やCellular Dynamics International等から提供される臨床グレードの細胞株並びにそれらの細胞株を用いて作製された研究用および臨床用の細胞株等を用いてもよい。
(E) 核移植により得られたクローン胚由来のES細胞(ntES細胞)
 ntES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がntES(nuclear transfer ES)細胞である。ntES細胞の作製のためには、核移植技術(J.B. Cibelli et al. (1998), Nature Biotechnol., 16:642-646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
(F) Multilineage-differentiating Stress Enduring cells(Muse細胞)
 Muse細胞は、WO2011/007900に記載された方法にて製造された多能性幹細胞であり、詳細には、線維芽細胞または骨髄間質細胞を長時間トリプシン処理、好ましくは8時間または16時間トリプシン処理した後、浮遊培養することで得られる多能性を有した細胞であり、SSEA-3およびCD105が陽性である。
〔骨格筋幹細胞の純度向上方法〕
 本発明は、骨格筋幹細胞の純度向上方法を提供する。骨格筋幹細胞は、骨格筋細胞へ選択的に分化し得る能力を有し、自己複製能と増殖分化能を併せ持つ細胞を意味する。生体内の骨格筋幹細胞はサテライト細胞と称され、通常、筋線維の基底膜と形質膜の間に存在する。本明細書において、骨格筋幹細胞にはサテライト細胞が含まれる。
 骨格筋幹細胞を特定するためのマーカー遺伝子として、Pax7、Hesr1、Hesr3、Myf5、CalcR、NGFR、ERBB3、CD56、CD82などが知られているが、本発明者らは、骨格筋幹細胞がその細胞表面にFGFR4(fibroblast growth factor receptor 4、線維芽細胞増殖因子受容体4)を発現していることを見出し、細胞表面マーカーFGFR4を用いることにより、高純度の骨格筋幹細胞集団を取得できることを見出した。したがって、本発明の骨格筋幹細胞の純度向上方法は、細胞表面マーカーFGFR4を用いることを特徴とする方法である。なお、FGFR4はCD334とも称される。
 本発明の骨格筋幹細胞の純度向上方法は、細胞集団から細胞表面マーカーFGFR4陽性細胞を回収する工程を含む方法であればよい。細胞集団は骨格筋幹細胞が含まれている可能性がある細胞集団であれば特に限定されない。上記本発明の骨格筋系譜細胞の純度向上方法で用いられる細胞集団は、本発明の骨格筋幹細胞の純度向上方法においても用いることができる。例えば、骨格筋を含む手術検体から調製した細胞懸濁液や多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団を使用することができる。
 一実施形態において、細胞集団は、上記本発明の骨格筋系譜細胞の純度向上方法により得られた骨格筋系譜細胞の純度が向上した細胞集団であってもよい。骨格筋系譜細胞の純度が向上した細胞集団は、多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団から純度向上された細胞集団であることが好ましい。高純度のCDH13陽性かつFGFR4陽性骨格筋幹細胞を含む細胞集団は、生体移植用骨格筋幹細胞として有用である。
 FGFR4陽性細胞を回収する方法は、特に限定されないが、例えば、セルソーターを用いる方法、アフィニティークロマトグラフィーを用いる方法などが挙げられる。セルソーターを用いる場合、例えば、細胞集団の細胞懸濁液を調製し、細胞懸濁液に抗FGFR4抗体を添加してFGFR4陽性細胞に抗FGFR4抗体を結合させてセルソーターに供することによりFGFR4陽性細胞を選別し、回収することができる。また、アフィニティークロマトグラフィーを用いる場合、例えば、細胞集団の細胞懸濁液を調製し、抗FGFR4抗体を結合した担体を充てんしたカラムに細胞懸濁液を通してFGFR4陽性細胞を抗FGFR4抗体に結合させ、その後抗FGFR4抗体との結合を解離することによりFGFR4陽性細胞を回収することができる。本発明の骨格筋幹細胞の純度向上方法により、元の細胞集団におけるFGFR4陰性細胞の割合が減少し、FGFR4陽性細胞の割合が増加するため、得られる細胞集団は骨格筋幹細胞の純度が向上した細胞集団である。
〔骨格筋系譜細胞の製造方法〕
 本発明は、骨格筋系譜細胞の製造方法を提供する。本発明の骨格筋系譜細胞の製造方法は、以下の工程(1)および(2)を含むものであればよい。
(1)多能性幹細胞から骨格筋細胞への分化誘導を開始する工程
(2)分化誘導途上の細胞集団から細胞表面マーカーCDH13陽性細胞を回収する工程
 本発明の骨格筋系譜細胞の製造方法は、次に説明する骨格筋幹細胞の製造方法の実施形態と同様の形態で実施することができる。ただし、工程(2)において、細胞表面マーカーCDH13陽性細胞を回収する時期は、次に説明する骨格筋幹細胞の製造方法と同じ時期に限定されず、多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団中にCDH13陽性細胞が出現する時期であればよい。例えば、本願実施例の「実験材料および方法」(2)に記載の分化誘導方法を用いて、多能性幹細胞から骨格筋細胞への分化誘導を行った場合、分化誘導開始から2週~24週にCDH13陽性細胞を回収することができる。前記と異なる分化誘導方法を用いる場合は、適宜予備検討を行い、CDH13陽性細胞の回収時期を決定することができる。
〔骨格筋幹細胞の製造方法〕
 本発明は、骨格筋幹細胞の製造方法を提供する。本発明の骨格筋幹細胞の製造方法は、以下の工程(1)および(2)を含むものであればよい。
(1)多能性幹細胞から骨格筋細胞への分化誘導を開始する工程
(2)分化誘導途上の細胞集団から細胞表面マーカーFGFR4陽性細胞、CDH13陽性細胞またはFGFR4陽性かつCDH13陽性細胞を回収する工程
 以下の説明は、上記骨格筋系譜細胞の製造方法にも適用することができる。
 工程(1)では、多能性幹細胞から骨格筋細胞への分化誘導を開始する。多能性幹細胞としては、例えば胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹(GS)細胞、胚性生殖(EG)細胞、人工多能性幹(iPS)細胞、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)などが挙げられる。本発明に用いる多能性幹細胞は、iPS細胞、ES細胞またはntES細胞であってもよく、iPS細胞であってもよい。
 多能性幹細胞から骨格筋細胞への分化誘導方法は、特に限定されず、多能性幹細胞を骨格筋細胞へ分化誘導する公知の方法から適宜選択することができる。一実施形態において、多能性幹細胞から骨格筋細胞への分化誘導方法は、多能性幹細胞に外来性の骨格筋誘導遺伝子を導入せずに、様々な化合物や生理活性物質を添加した分化培地を用いる方法であってもよい。分化培地に含まれる化合物としては、ROCK(Rho-associated coiled-coil forming kinase)阻害剤、GSK3(Glycogen synthase kinase 3)阻害剤、TGF-β(Transforming Growth Factor-β)阻害剤、BMP(Bone morphogenetic protein)阻害剤などが挙げられる。生理活性物質としては、IGF-1(Insulin-like Growth Factor 1)、bFGF(basic Fibroblast Growth Factor)、HGF(Hepatocyte Growth Factor)、レチノイン酸などが挙げられる。
 さらに、多能性幹細胞を骨格筋細胞へ分化誘導する方法は、上記の様々な化合物や生理活性物質を添加した分化培地を用いて、胎児の発生過程を模倣する形で成熟した骨格筋細胞や骨格筋幹細胞を含む骨格筋系譜細胞集団を分化誘導する方法であってもよい。胎児の発生過程を模倣する形とは、沿軸中胚葉細胞、体節細胞、皮筋節細胞を経由して骨格筋系譜細胞を分化誘導する方法を意味する。このような分化誘導方法としては、例えば、非特許文献1(Zhao et al., Stem Cell Reports, Vol. 15 1-15 July 14, 2020.)に記載の方法、国際公開WO2016/108288 A1に記載の方法、Hicksら(Nat Cell Biol. 2018 Jan;20(1):46-57.)に記載の方法などが挙げられる。
 工程(2)では、分化誘導途上の細胞集団から細胞表面マーカーFGFR4陽性細胞、CDH13陽性細胞またはFGFR4陽性かつCDH13陽性細胞を回収する。各細胞表面マーカー陽性細胞を回収する方法は、特に限定されないが、例えば、セルソーターを用いる方法、アフィニティークロマトグラフィーを用いる方法などが挙げられる。セルソーターを用いてFGFR4陽性細胞を回収する場合、細胞集団の細胞懸濁液を調製し、細胞懸濁液に抗FGFR4抗体を添加してFGFR4陽性細胞に抗FGFR4抗体を結合させてセルソーターに供することによりFGFR4陽性細胞を選別し、回収することができる。セルソーターを用いてCDH13陽性細胞を回収する場合、細胞集団の細胞懸濁液を調製し、細胞懸濁液に抗CDH13抗体を添加してCDH13陽性細胞に抗CDH13抗体を結合させてセルソーターに供することによりCDH13陽性細胞を選別し、回収することができる。セルソーターを用いてFGFR4陽性かつCDH13陽性細胞を回収する場合、細胞集団の細胞懸濁液を調製し、細胞懸濁液に抗FGFR4抗体と抗CDH13抗体を添加してFGFR4陽性細胞に抗FGFR4抗体を、CDH13陽性細胞に抗CDH13抗体をそれぞれ結合させてセルソーターに供することによりFGFR4陽性かつCDH13陽性細胞を選別し、回収することができる。
 アフィニティークロマトグラフィーを用いてFGFR4陽性細胞を回収する場合、細胞集団の細胞懸濁液を調製し、抗FGFR4抗体を結合した担体を充てんしたカラムに細胞懸濁液を通してFGFR4陽性細胞を抗FGFR4抗体に結合させ、その後抗FGFR4抗体との結合を解離することによりFGFR4陽性細胞を回収することができる。アフィニティークロマトグラフィーを用いてCDH13陽性細胞を回収する場合、細胞集団の細胞懸濁液を調製し、抗CDH13抗体を結合した担体を充てんしたカラムに細胞懸濁液を通してCDH13陽性細胞を抗CDH13抗体に結合させ、その後抗CDH13抗体との結合を解離することによりCDH13陽性細胞を回収することができる。アフィニティークロマトグラフィーを用いてFGFR4陽性かつCDH13陽性細胞を回収する場合、上記の手順で抗CDH13抗体を結合した担体を充てんしたカラムに細胞集団の細胞懸濁液を通してCDH13陽性細胞を回収した後、抗FGFR4抗体を結合した担体を充てんしたカラムに回収したCDH13陽性細胞を通してFGFR4陽性かつCDH13陽性細胞を回収することができる。あるいは、先に抗FGFR4抗体を結合した担体を充てんしたカラムに細胞集団の細胞懸濁液を通してFGFR4陽性細胞を回収した後、抗CDH13抗体を結合した担体を充てんしたカラムに回収したFGFR4陽性細胞を通してFGFR4陽性かつCDH13陽性細胞を回収してもよい。
 工程(2)において、多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団から、細胞表面マーカーFGFR4陽性細胞、CDH13陽性細胞またはFGFR4陽性かつCDH13陽性細胞骨格筋幹細胞を回収する時期は、多能性幹細胞の一部が骨格筋幹細胞に分化した時期以降であればよい。例えば、本願実施例の「実験材料および方法」(2)に記載の分化誘導方法を用いて、多能性幹細胞から骨格筋細胞への分化誘導を行った場合、分化誘導開始から3週~24週にFGFR4陽性細胞、CDH13陽性細胞またはFGFR4陽性かつCDH13陽性細胞を回収することで骨格筋幹細胞を回収することができる。回収時期は分化誘導開始から10週~16週であってもよく、11週~13週であってもよく、12週であってもよい。この分化誘導方法において、分化誘導開始から12週に回収された骨格筋幹細胞は、移植後の生着率が高いことが本願発明者らにより確認されている。なお、前記と異なる分化誘導方法を用いる場合は、適宜予備検討を行い、骨格筋幹細胞の回収時期を決定することができる。
 本発明の骨格筋幹細胞の製造方法により製造された骨格筋幹細胞は、生体移植に用いることができる。本発明者らは、本発明の骨格筋幹細胞の製造方法により製造された骨格筋幹細胞(CDH13陽性細胞およびFGFR4陽性細胞)を、筋ジストロフィーモデルの低温損傷前脛骨筋に移植した結果、生体に移植した際に効率よく骨格筋細胞に分化して生着することを確認している(実施例参照)。また移植された細胞の一部はサテライト細胞特異的なマーカーであるPAX7陽性で、LAMININの内側というサテライト細胞の存在する場所に生着しており、生体内でサテライト細胞として存在することを確認している。このことは移植後長期間に合わって骨格筋再生能力が持続することを意味しており、細胞治療による効果が持続する可能性を意味する。
 本発明には、CDH13からなる骨格筋系譜細胞の純化または検出用細胞表面マーカーが含まれる。また、本発明には、FGFR4からなる骨格筋幹細胞の純化または検出用細胞表面マーカーが含まれる。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
〔実験材料および方法〕
(1)多能性幹細胞
 ヒトiPS細胞株201B7(以下「201B7」と記載する)は、市販の健常ヒト線維芽細胞からレトロウイルスによる形質導入によって樹立された(Takahashi et al.,Cell,131;861-872,2007)。DMD(デュシェンヌ型筋ジストロフィー)iPS細胞株(クローンID:CiRA00111、以下「DMD」と記載する)は、ジストロフィン遺伝子のエクソン44が欠失したDMD患者の皮膚線維芽細胞から、エピゾーマルベクターシステムによって樹立された(Okita et al., Stem Cells,31;458-466,2012)。DMD修復iPS細胞株(以下「CKI」と記載する)は、ジストロフィン遺伝子のエクソン44をDMDにノックインすることによって樹立された(Li et al., Stem Cell Reports,4;143-154,2015)。DMDは、京都大学大学院および医学部倫理委員会(承認番号#R0091および#G259)の承認を得て、書面による同意の下で樹立された。再生医療用ストックiPS細胞株Ff-WJ14s01(以下「S01」と記載する)は、日本のHLA再頻度アレルをホモで持つ健常人ドナーの臍帯血から樹立された。S01は京都大学大学院および医学部倫理委員会(承認番号#E1762および#G567)の承認を得て、書面による同意の下で樹立された。
 すべてのヒトiPS細胞は、フィーダーフリー条件で培養および維持された(Nakagawa et al., Scientific Reports 2014; 4: 3594.)。すなわち、細胞を週に1回継代し、iMatrix-511(Nippi)プレコートディッシュおよびStemFit AK02N培地(Ajinomoto、以下「StemFit」と記す)で培養した。
(2)ヒトiPS細胞から骨格筋幹細胞への分化誘導方法
 ヒトiPS細胞から骨格筋幹細胞への分化誘導は、非特許文献1(Zhao et al., Stem Cell Reports, Vol. 15 1-15 July 14, 2020.)に記載の方法に従って行った。マトリゲルプレコート6ウェルプレートに、1ウェルあたり1×104個の未分化iPS細胞を播種した。培地には、ROCK阻害剤(10μM, Y-27632, Sigma)を添加したStemFitを用いた。2日後、培地をROCK阻害剤を含まないStemFitに交換し、24時間培養した。次に、CHIR99021(Axon MedChem、Tocris)およびSB431542(Sigma)を添加したCDMi培地に交換した。CDMi培地は、L-グルタミン、25 mM HEPESを含有するIMDM(Iscove's Modified Dulbecco's Medium, Invitrogen, 12440053)およびHam's F-12 Nutrient Mix(Invitrogen, 11765054)を1:1で混合した培地に、1%BSA(Sigma)、1%ペニシリンストレプトマイシン混合溶液(Nacalai)、1%CD脂質濃縮物(Invitrogen)、1%インスリン-トランスフェリン-セレン(Invitrogen)および450μM 1-チオグリセロール(Sigma)を添加した培地である。
 7日後、細胞をAccutase(Nacalai)で解離し、マトリゲルプレコート6ウェルプレート(8×105個/ウェル)に単一細胞として継代した。培地には、CHIR99021、SB431542およびROCK阻害剤(10μM)を添加したCDMi培地を用いた。1週間後(分化14日目)、細胞を再びAccutaseで解離し、マトリゲルプレコート6ウェルプレート(8×105個/ウェル)にROCK阻害剤(10μM)を添加したCDMi培地を用いて継代した。3日後、0.2%ウシ血清アルブミン(BSA)、0.1 mM 2-メルカプトエタノール(2-ME)、10 ng/ml組換えヒトIGF-1(PeproTech)、10 ng/ml組換えヒトbFGF(オリエンタル酵母)および10 ng/ml組換えヒトHGF(PeproTech)を添加した無血清培地(SF-O3、三光純薬)に交換した。分化35日目まで週2回培地交換を行った。分化35日目から、培地を0.5%ペニシリンストレプトマイシン混合溶液(Nacalai)、2 mM L-グルタミン(Nacalai)、0.1 mM 2-ME、2%ウマ血清(HS、Sigma)、5μM SB431542および10 ng/ml IGF-1を添加したDMEM(Invitrogen、11960069)に変更した。その後、2~3日ごとに培地交換を行った。実験に使用するまでこの培地で細胞を培養した。分化84日目の細胞を分析に供した。
(3)生細胞のFACSソーティング
 骨格筋幹細胞分化誘導プロトコルの84日目に細胞を解離し、表面マーカーを用いてFACSでソーティングした。細胞を解離するために、コラゲナーゼG(500μg/mL)およびコラゲナーゼH(100μg/mL)(Meiji)を含むDMEM培地で7分間インキュベートした後、TrypLE(Glibco)で10分間、37℃でインキュベートした。次に、ピペッティングにより細胞を注意深く剥がし、50 μmメッシュでろ過し、HBSSバッファーで2回洗浄した(1000 rpm、4℃、5分間の遠心分離)。その後、遮光して細胞を対応する抗体と共に氷上で20分間インキュベートした。インキュベーション後、細胞をHBSSバッファーで再度2回洗浄した(1000 rpm、4℃、5分間の遠心分離)。最後に、細胞を、1%ヘキストを含むHBSSバッファーで再懸濁し、40 nmメッシュでろ過した。細胞は、FACSソーティングまで氷上に保存した。生細胞のFACSソーティングと分析は、Aria II(BD Biosciences)によって実施した。
(4)定量リアルタイムPCR
 細胞を回収し、ReliaPrep RNA Cell Miniprep system(Promega)を使用して細胞からRNAを取得した。ReverTra Ace qPCR RT kit(TOYOBO)を使用してcDNAを合成した。RT-qPCRは、Power SYBR Green Master Mix system(Applied Biosystems)とStepOne Plus リアルタイムPCRシステム(Applied Biosystems)を使用して実施した。各サンプルについて、2回測定または3回測定を行った。プライマーリストを表1に示す。
Figure JPOXMLDOC01-appb-T000001
(5)FACSソーティング細胞の骨格筋細胞への分化と免疫細胞化学分析
 FACSでソーティングした新鮮な細胞を、iMatrix-511でプレコートした48ウェルプレートに播種(1×104個/ウェル)した。最初の48時間の培養には、ROCK阻害剤を含有するStemFitを使用した。次に、ROCK阻害剤を含まないStemFitを用いて、細胞が約80%コンフルエントになるまでさらに3日間培養した。約5日目に、2%ウマ血清を含む培地(前記(1)を参照)に交換し、骨格筋細胞に分化するまで培養した(3~5日間)。骨格筋細胞に分化した後、細胞を2%PFA(パラホルムアルデヒド)で10分間固定し、PBSを用いて4℃10分間の洗浄を3回行った。次に、細胞をBlocking one(Nacalai)で1時間ブロッキングした。ブロッキングに続いて、10%Blocking oneを含むPBSで希釈した一次抗体と細胞を、一夜インキュベートした。続いて、0.2%Triton X100(Sigma-Aldrich)を含むPBS(PBS-T)で細胞を3回洗浄し、対応する二次抗体およびDAPI(1:5000)と細胞を、室温で1時間インキュベートした。抗体で染色した細胞をBZ-X700顕微鏡(Keyence)で観察し、BZ-Xアナライザーソフトウェア(Keyence)で分析した。使用した抗体を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(6)マウスへの移植実験
 10~16週齢のNOG-mdx(筋ジストロフィーモデル、実験動物中央研究所)雄マウスをすべての実験に使用した。移植実験のために、FACSでソーティングした新鮮な細胞をカウントし、DMEM培地に再懸濁した(3×105個/50μLまたは1×105個/50μL)。移植するまで、細胞を4℃で保存した。2%イソフルランでマウスを麻酔し、前脛骨筋に低温損傷を与えた。すなわち、予め液体窒素で冷却した鉗子の先端を、前脛骨筋に12秒間直接接触させることを3回行った。約2分後に前脛骨筋の色が正常に戻ってから、細胞を移植した。移植の4週間後、マウスを安楽死させ、前脛骨筋を摘出し、液体窒素で冷却したイソペンタンで凍結した。凍結した筋は、切片を作製するまで-80℃で保存し、LEICA(CM1950)を用いて20μmの切片を作製して、組織化学的分析に供した。
(7)免疫組織化学分析
 (6)で作製した凍結切片を4%PFAで20分間固定し、PBSで10分間の洗浄を3回行った。洗浄後、サンプルをBlocking one(Nacalai)で1時間ブロッキングした。次に、Can get Signal solution B(TOYOBO)で希釈した一次抗体とサンプルを、4℃で一夜インキュベートした。翌日、サンプルをPBS-Tで10分間の洗浄を3回行い、対応する二次抗体およびDAPI(1:5000)とサンプルを、室温で1時間インキュベートした。インキュベーション後、サンプルをPBS-Tで5分間の洗浄を1回、PBSで5分間の洗浄を2回行った。抗体で染色したサンプルを封入剤Aqua-Poly-Mount(Polyscience)で封入した。LSM700共焦点顕微鏡(Carl Zeiss)を使用してサンプルを観察した。
(8)RNAシーケンシング
 RNAシーケンシングを行う細胞から、ReliaPrep RNA Cell Miniprep system(Promega)を使用してトータルRNAを取得した。RNAの品質は、Agilent 2100 Bioanalyzer System(Agilent)を用いて評価した。mRNAのシーケンシングのために、AMpure XP(Beckman Coulter)を使用してpoly-A mRNAを選択および精製した。シーケンスライブラリは、これらのmRNAから、TruSeq RNA Sample Prep Kit(Illuminia)を用いて、製造元のプロトコルに従って作製した。シーケンスは、Illumina system(NextSeq 500)を使用して行った。シーケンスリードについて、Toolkit(バージョン0.0.14)を使用して品質処理を行い、品質スコアが30を超えるデータを分析に使用した。
(9)定量化と統計解析
(9-1)統計解析
 Mac OS X用のGraphPad Prism version 8.4.1(GraphPad Software)を使用して、すべての統計解析を行った。2つのグループ間の差は両側スチューデントt検定で解析し、3つ以上のグループ間の差はテューキーの多重比較範囲検定による分散分析によって解析した。p値が0.05以下の場合、有意差があるとみなした。
(9-2)分化インデックスの画像解析
 画像解析には、BZ-Xアナライザーソフトウェア(Keyence)を使用した。MYF5陽性細胞およびPAX7陽性細胞から骨格筋細胞への分化インデックス算出のために、各ウェルから5枚の写真を撮り、各条件で合計3回の独立した実験を行った。
(9-3)生着解析
 移植された細胞の数を定量化するために、移植後1ヶ月で前脛骨筋サンプルを免疫蛍光法で分析した。前脛骨筋を20μmずつの切片として染色した。1つのスライドで検出されたh-SPECTRIN陽性繊維の最大数を、生着した繊維の数として記録した。
(9-4)バイオインフォマティクス解析
 ヒトシングルセルRNAシーケンシングのデータベースであるヒト骨格筋アトラス(https://aprilpylelab.com/)、およびマウスシングルセルRNAシーケンシングのデータベースであるTabula Muris(https://tabula-muris.ds.czbiohub.org/)を用いて分析した。ヒト胎児のRNAシーケンスデータベースとしてFANTOM5(https://fantom.gsc.riken.jp/data/)を用い、ヒト骨格筋組織のRNAseqデータベースはaccession code: GSE106292として提供されているデータベースを利用した。
〔実施例1:iPS細胞から骨格筋幹細胞へ分化誘導して得られたMyf5陽性細胞における特異的細胞表面マーカーの検討〕
 ヒトiPS細胞として201B7を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収してFACSによりMyf5陽性細胞とMyf5陰性細胞をソーティングした。Myf5陽性細胞およびMyf5陰性細胞についてそれぞれRNAシーケンシング解析を行い、Myf5陽性細胞で特異的に高発現している表面マーカーとしてCDH13とFGFR4を同定した。
 図1に、マウスシングルセルRNAシーケンシングのデータベース「Tabula Muris」を用いて、CDH13およびFGFR4の発現パターンを解析した結果を示した。CDH13およびFGFR4のどちらも、点線で囲った四肢筋(Limb Muscle)に強く発現していることが確認された。
 また、図示していないが、ヒトの胎児筋組織およびヒトiPS細胞からの分化骨格筋細胞のシングルセルRNAシーケンシングのデータベースを用いて、CDH13およびFGFR4の発現パターンを解析した結果では、CDH13は弱いながらもEmbryonicからFetalまで発現し、FGFR4はEmbryonic 5weeksからFetal 6weeksに強く発現し、iPS細胞分化系にも強く発現していることが確認された。
 図2に、ヒト胎児由来組織における遺伝子発現データベースを用いて、CDH13およびFGFR4の発現パターンを解析した結果を示した。(A)がCDH13の結果、(B)がFGFR4の結果である。CDH13およびFGFR4のどちらも、黒で示された骨格筋系の組織において高い発現が確認された。
 図3に、ヒト成体由来組織における遺伝子発現データベースを用いて、CDH13およびFGFR4の発現パターンを解析した結果を示した。(A)がCDH13の結果、(B)がFGFR4の結果である。CDH13およびFGFR4のどちらも、筋(Muscle)において高い発現が確認された。
〔実施例2:iPS細胞から骨格筋幹細胞へ分化誘導した細胞におけるCDH13およびFGFR4の発現解析〕
 ヒトiPS細胞として201B7およびS01を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収してFACSによりMyf5陽性細胞とMyf5陰性細胞をソーティングし、それぞれCDH13発現量およびFGFR4発現量を定量リアルタイムPCRで測定した。
 結果を図4に示した。(A)がCDH13の結果、(B)がFGFR4の結果である。発現量は、Myf5陰性細胞の発現量を1としたときの相対発現量で表した。CDH13とFGFR4は、どちらもMyf5陽性細胞において特異的に高い発現を示した(*; p<0.05, **; p<0.01, ***; p<0.001)。
 ヒトiPS細胞としてCKIを用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収してCDH13陽性細胞およびFGFR4陽性細胞の存在をFACSで確認した。
 結果を図5に示した。(A)がCDH13の結果、(B)がFGFR4の結果である。CKIから骨格筋幹細胞へ分化誘導した細胞に、CDH13陽性細胞およびFGFR4陽性細胞がそれぞれ一定の割合で存在することが示された。
 ヒトiPS細胞として201B7を用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して抗FGFR4抗体で染色し、FACSでFGFR4陽性細胞およびFGFR4陰性細胞をそれぞれソーティングした。次に、FGFR4陽性細胞およびFGFR4陰性細胞を、それぞれ抗CDH13抗体で染色し、FACSでCDH13陽性率を分析した。結果を図6に示した。約10%のFGR4陽性細胞は、ほぼ全てがCDH13陽性細胞であることが示された。一方FGFR4陰性細胞にも35%程度のCDH13陽性細胞が存在することが示された。
〔実施例3:iPS細胞から骨格筋幹細胞へ分化誘導して得られたCDH13陽性細胞およびFGFR4陽性細胞における骨格筋幹細胞関連遺伝子の発現解析〕
 ヒトiPS細胞として201B7、CKIおよびDMDを用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して、FACSでCDH13陽性細胞およびFGFR4陽性細胞をソーティングした。CDH13陽性細胞、FGFR4陽性細胞および非ソーティング細胞(対照)について、骨格筋幹細胞関連遺伝子MYF5およびPAX7、筋芽細胞関連遺伝子MYOD1の発現量を、定量リアルタイムPCRで測定した。
 図7に201B7の結果を、図8にCKIの結果を、図9にDMDの結果をそれぞれ示した。いずれの図においても、発現量は非ソーティング細胞(対照)の発現量を1としたときの相対発現量で表した。図7、8および9とも、FGFR4陽性細胞は骨格筋幹細胞関連遺伝子であるMYF5およびPAX7を高発現していた。CDH13陽性細胞も対照と比較してMYF5およびPAX7を高発現していたが、FGFR4陽性細胞より発現量は低かった。また、CDH13陽性細胞は筋芽細胞関連遺伝子であるMYOD1を高発現していた(*; p<0.05, **; p<0.01, ***; p<0.001, ****; p<0.0001)。
〔実施例4:iPS細胞から骨格筋幹細胞へ分化誘導して得られたCDH13陽性細胞およびFGFR4陽性細胞の骨格筋細胞へのインビトロ分化能の検討〕
(1)CDH13陽性細胞の骨格筋細胞へのインビトロ分化能
 ヒトiPS細胞として201B7、CKIおよびDMDを用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して抗CDH13抗体で染色し、FACSでCDH13陽性細胞とCDH13陰性細胞をそれぞれソーティングした。得られたCDH13陽性細胞とCDH13陰性細胞をさらに骨格筋細胞へ分化誘導し、ミオシン重鎖(以下「MHC」と記載する)の発現を指標に骨格筋細胞への分化能を検討した。
 結果を図10に示した。(A)がMHCを免疫染色した結果、(B)が分化インデックス(MHC陽性細胞率)を画像解析により算出した結果である。201B7およびCKIでは、MHC陽性の骨格筋細胞への分化は、CDH13陽性細胞のみで観察され、CDH13陰性細胞からはほとんどMHC陽性の骨格筋細胞が分化しないことが示された(***; p<0.001, ****; p<0.0001)。
(2)FGFR4陽性細胞の骨格筋細胞へのインビトロ分化能
 上記(1)と同様に、201B7、CKIおよびDMDを用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して抗FGFR4抗体で染色し、FACSでFGFR4陽性細胞とFGFR4陰性細胞をそれぞれソーティングした。得られたFGFR4陽性細胞とFGFR4陰性細胞をさらに骨格筋細胞へ分化誘導し、MHCの発現を指標に骨格筋細胞への分化能を検討した。
 結果を図11に示した。(A)がMHCを免疫染色した結果、(B)が分化インデックス(MHC陽性細胞率)を画像解析により算出した結果である。MHC陽性の骨格筋細胞への分化は、FGFR4陽性細胞において80%以上の高い効率でMHC陽性骨格筋細胞への分化が観察されたが、FGFR4陰性細胞からもMHC陽性骨格筋細胞の分化が観察された(**; p<0.01, ***; p<0.001)。
〔実施例5:iPS細胞から骨格筋幹細胞へ分化誘導して得られたCDH13陽性細胞およびFGFR4陽性細胞のマウスへの移植実験〕
(1)移植細胞の生着確認
 ヒトiPS細胞としてCKIおよびDMDを用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して、FACSを用いてCDH13陽性細胞、CDH13陰性細胞、FGFR4陽性細胞、FGFR4陰性細胞をそれぞれソーティングした。上記〔実験材料および方法〕の(4)に記載の方法で、ソーティングした各細胞をNOG-mdxマウスに移植し、4週間後に移植部位を採取して組織化学的分析および生着細胞数の測定を行った。
 細胞移植から4週間後の移植部位を、抗ヒストペクリン抗体、抗ラミニンα2抗体、抗ヒト核抗体およびDAPIで染色し、共焦点顕微鏡で観察した結果を図12に示した。CDH13陽性細胞移植群およびFGFR4陽性細胞移植群において、ヒトスペクトリン陽性筋線維が多数観察され、移植した細胞が生体で骨格筋細胞に分化して生着していることが示された。
 生着解析の結果を図13に示した。FGFR4陽性細胞移植群における生着細胞数が有意に高いことが示された(*; p<0.05, ***; p<0.001, ****; p<0.0001)。
(2)移植後筋組織での分化能確認
 移植後筋組織での骨格筋系譜細胞への分化能を確認するために、移植4週間後の移植組織を抗PAX7抗体、抗MYOD抗体、抗h-LAMIN A/C 抗体およびDAPIで染色し、共焦点顕微鏡で観察した。結果を図14に示した。CDH13陽性細胞からもFGFR4陽性細胞からもヒト核陽性かつPAX7陽性またはMYOD陽性の細胞が観察され(矢頭)、移植後筋組織において移植細胞が骨格筋系譜細胞へ分化していることが確認された。
 移植後筋組織でのサテライト細胞への分化能を確認するために、移植4週間後の移植組織を抗PAX7抗体、抗LAMININα2抗体、抗h-LAMIN A/C 抗体およびDAPIで染色し、共焦点顕微鏡で観察した。結果を図15に示した。CDH13陽性細胞からもFGFR4陽性細胞からもヒト核陽性かつPAX7陽性でラミニンの内側に位置する細胞が観察され(矢頭)、移植後筋組織において移植細胞がサテライト細胞へ分化していることが確認された。
〔実施例6:既知の骨格筋系譜細胞表面マーカーとの比較〕
(1)FACS解析
 ヒトiPS細胞としてDMDおよびCKIを用いて骨格筋幹細胞への分化誘導を行い、84日目に細胞を回収して、FACSによりCD56陽性細胞率、CD82陽性細胞率、NGFR陽性細胞率、ERBB3陽性細胞率、CDH13陽性細胞率およびFGFR4陽性細胞率を確認した。
 結果を図16に示した。(A)がDMDの結果、(B)がCKIの結果である。CD56陽性細胞およびNGFR陽性細胞の割合が、他のマーカー陽性細胞の割合より高いことが示された。
(2)各マーカー陽性細胞における骨格筋関連遺伝子の発現解析
 上記でソーティングしたDMDおよびCKI由来のCD56陽性細胞、CD82陽性細胞、NGFR陽性細胞、ERBB3陽性細胞、CDH13陽性細胞およびFGFR4陽性細胞について、骨格筋幹細胞関連遺伝子であるMYF5およびPAX7、並びに、筋芽細胞関連遺伝子であるMYOD1の発現量を定量リアルタイムPCRで測定した。
 結果を図17に示した。(A)がDMDの結果、(B)がCKIの結果である。いずれの図においても、発現量は未ソーティング細胞の発現量(示していない)を1としたときの相対発現量で表した。MYF5の発現はFGFR4陽性細胞で高い。PAX7の発現はFGFR4陽性細胞で高く、CKI由来の細胞ではCDH13陽性細胞もPAX7の発現が高い。MYOD1の発現はCKIではERBB3陽性細胞とCDH13陽性細胞で高く、筋芽細胞を多く含む画分であることが示唆される。一方FGFR4陽性細胞ではMYOD1の発現は低く、より骨格筋幹細胞に近い画分であることが示唆される(*; p<0.05, **; p<0.01, ***; p<0.001)。
(3)各マーカー陽性細胞の骨格筋細胞へのインビトロ分化
 各マーカー陽性細胞をさらに骨格筋細胞へ分化誘導し、MHCの発現を指標に骨格筋細胞への分化能を検討した。
 結果を図18に示した。(A)がMHCを免疫染色した結果、(B)が分化インデックス(MHC陽性細胞率)を画像解析により算出した結果である。CDH13陽性細胞とFGFR4陽性細胞で高いMHC陽性の骨格筋細胞への分化能が確認された。
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。

Claims (15)

  1.  細胞集団における骨格筋系譜細胞の純度を向上させる方法であって、前記細胞集団中の細胞表面マーカーCDH13陽性細胞を回収することを特徴とする方法。
  2.  前記細胞集団が、多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団である、請求項1に記載の方法。
  3.  前記多能性幹細胞がiPS細胞である、請求項2に記載の方法。
  4.  請求項1~3のいずれかの方法により得られた骨格筋系譜細胞の純度が向上した細胞集団における骨格筋幹細胞の純度を向上させる方法であって、前記細胞集団中の細胞表面マーカーFGFR4陽性細胞を回収することを特徴とする方法。
  5.  細胞集団における骨格筋幹細胞の純度を向上させる方法であって、前記細胞集団中の細胞表面マーカーFGFR4陽性細胞を回収することを特徴とする方法。
  6.  前記細胞集団が、多能性幹細胞から骨格筋細胞への分化誘導途上の細胞集団である、請求項5に記載の方法。
  7.  前記多能性幹細胞がiPS細胞である、請求項6に記載の方法。
  8.  骨格筋系譜細胞を製造する方法であって、
    (1)多能性幹細胞から骨格筋細胞への分化誘導を開始する工程、および
    (2)分化誘導途上の細胞集団から細胞表面マーカーCDH13陽性細胞を回収する工程、
    を含む事を特徴とする製造方法。
  9.  骨格筋幹細胞を製造する方法であって、
    (1)多能性幹細胞から骨格筋細胞への分化誘導を開始する工程、および
    (2)分化誘導途上の細胞集団から細胞表面マーカーFGFR4陽性細胞、CDH13陽性細胞またはFGFR4陽性かつCDH13陽性細胞を回収する工程、
    を含むことを特徴とする製造方法。
  10.  前記工程(1)が、多能性幹細胞に外来性の骨格筋誘導遺伝子を導入せずに、分化培地を用いて分化誘導する工程である、請求項9に記載の製造方法。
  11.  前記工程(1)が、多能性幹細胞から胎児の発生過程を模倣するように骨格筋系譜細胞を分化誘導する工程である、請求項9または10に記載の製造方法。
  12.  多能性幹細胞がiPS細胞である、請求項9~11のいずれかに記載の製造方法。
  13.  前記骨格筋幹細胞が生体移植用である、請求項9~12のいずれかに記載の製造方法。
  14.  CDH13からなる骨格筋系譜細胞の純化または検出用細胞表面マーカー。
  15.  FGFR4からなる骨格筋幹細胞の純化または検出用細胞表面マーカー。
PCT/JP2021/041709 2020-11-16 2021-11-12 骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカーおよびその利用 WO2022102742A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022562200A JPWO2022102742A1 (ja) 2020-11-16 2021-11-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020190063 2020-11-16
JP2020-190063 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022102742A1 true WO2022102742A1 (ja) 2022-05-19

Family

ID=81602366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041709 WO2022102742A1 (ja) 2020-11-16 2021-11-12 骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカーおよびその利用

Country Status (2)

Country Link
JP (1) JPWO2022102742A1 (ja)
WO (1) WO2022102742A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506366A (ja) * 2004-05-14 2008-03-06 レセプター バイオロジックス インコーポレイテッド 細胞表面受容体アイソフォームならびにその同定および使用方法
JP2013527746A (ja) * 2010-04-22 2013-07-04 国立大学法人京都大学 多能性幹細胞から骨格筋または骨格筋前駆細胞への分化誘導法
WO2014038890A1 (ko) * 2012-09-07 2014-03-13 주식회사 마크로젠 Axl을 포함하는 융합 단백질 및 이를 포함하는 암 진단용 조성물
CN104745700A (zh) * 2015-03-27 2015-07-01 南京医科大学 一种食管癌相关甲基化生物标志物及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506366A (ja) * 2004-05-14 2008-03-06 レセプター バイオロジックス インコーポレイテッド 細胞表面受容体アイソフォームならびにその同定および使用方法
JP2013527746A (ja) * 2010-04-22 2013-07-04 国立大学法人京都大学 多能性幹細胞から骨格筋または骨格筋前駆細胞への分化誘導法
WO2014038890A1 (ko) * 2012-09-07 2014-03-13 주식회사 마크로젠 Axl을 포함하는 융합 단백질 및 이를 포함하는 암 진단용 조성물
CN104745700A (zh) * 2015-03-27 2015-07-01 南京医科大学 一种食管癌相关甲基化生物标志物及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NALBANDIAN MINAS, ZHAO MINGMING, SASAKI-HONDA MITSURU, JONOUCHI TATSUYA, LUCENA-CACACE ANTONIO, MIZUSAWA TAKUMA, YASUDA MASAHIKO, : "Characterization of hiPSC-Derived Muscle Progenitors Reveals Distinctive Markers for Myogenic Cell Purification Toward Cell Therapy", STEM CELL REPORTS, CELL PRESS, UNITED STATES, vol. 16, no. 4, 1 April 2021 (2021-04-01), United States , pages 883 - 898, XP055930092, ISSN: 2213-6711, DOI: 10.1016/j.stemcr.2021.03.004 *

Also Published As

Publication number Publication date
JPWO2022102742A1 (ja) 2022-05-19

Similar Documents

Publication Publication Date Title
JP7166631B2 (ja) 新規軟骨細胞誘導方法
US9121011B2 (en) Method for inducing differentiation of human pluripotent stem cell into intermediate mesoderm cell
US8883498B2 (en) Method for inducing differentiation of pluripotent stem cells into skeletal muscle or skeletal muscle progenitor cells
JP6429280B2 (ja) 効率的な心筋細胞の誘導方法
JP6612736B2 (ja) 心筋細胞の選別方法
JP6373253B2 (ja) 新規心筋細胞マーカー
JP5995247B2 (ja) 多能性幹細胞から樹状細胞を製造する方法
WO2016108288A1 (ja) 骨格筋前駆細胞の製造方法
JP6025067B2 (ja) 新規心筋細胞マーカー
JP6883791B2 (ja) 骨格筋前駆細胞の選択方法
JP6780197B2 (ja) 新規成熟心筋細胞マーカー
JP6708559B2 (ja) 多能性細胞識別化合物
JP5842289B2 (ja) 効率的な内皮細胞の誘導方法
WO2022102742A1 (ja) 骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカーおよびその利用
EP4180516A1 (en) Skeletal muscle precursor cells and method for purifying same, composition for treating myogenic diseases, and method for producing cell group containing skeletal muscle precursor cells
WO2022138593A1 (ja) 骨格筋細胞の製造方法
WO2021015086A1 (ja) 骨格筋幹細胞から成熟筋管細胞を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891987

Country of ref document: EP

Kind code of ref document: A1