WO2022102510A1 - Inverter control device - Google Patents
Inverter control device Download PDFInfo
- Publication number
- WO2022102510A1 WO2022102510A1 PCT/JP2021/040590 JP2021040590W WO2022102510A1 WO 2022102510 A1 WO2022102510 A1 WO 2022102510A1 JP 2021040590 W JP2021040590 W JP 2021040590W WO 2022102510 A1 WO2022102510 A1 WO 2022102510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- demagnetization
- control device
- inverter
- control
- determination unit
- Prior art date
Links
- 230000005347 demagnetization Effects 0.000 claims abstract description 98
- 238000010248 power generation Methods 0.000 claims description 2
- 230000003313 weakening effect Effects 0.000 claims 1
- 238000010992 reflux Methods 0.000 abstract description 7
- 239000003990 capacitor Substances 0.000 description 42
- 238000009499 grossing Methods 0.000 description 42
- 238000001514 detection method Methods 0.000 description 37
- 230000005856 abnormality Effects 0.000 description 35
- 238000000034 method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 12
- 230000004907 flux Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 230000001172 regenerating effect Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- This disclosure relates to an inverter control device.
- a system including a rotary electric machine and an inverter is known.
- the rotary electric machine includes a rotor having a permanent magnet and a stator having a plurality of phases of coils, and serves as a running power source for the vehicle.
- the inverter is provided with an upper and lower arm switch for each phase, and electrically connects the power storage unit and the coil.
- the upper and lower arm switches are switches in which external diodes are connected in antiparallel, or switches in which parasitic diodes are built-in.
- the inverter control device applied to this system controls the switching of the upper and lower arm switches.
- This problem can occur, for example, when the own vehicle is towed by another vehicle. As the traveling speed of the towed vehicle increases, the rotation speed of the rotor also increases and the counter electromotive voltage increases. As a result, the voltage of the power storage unit may become excessively high.
- Patent Document 1 describes a method of irreversibly demagnetizing a permanent magnet by heating the permanent magnet by alternately switching between positive and negative of the d-axis current and then flowing the d-axis current in the negative direction. This reduces the counter electromotive voltage.
- this method requires complicated control of the d-axis current.
- the above-mentioned problems can occur in the same way as long as the moving body is equipped with a rotating electric machine as a moving power source.
- the present disclosure has been made in view of the above circumstances, and its main purpose is to provide an inverter control device capable of demagnetizing a permanent magnet by a simple method.
- This disclosure describes the power storage unit and A rotary electric machine equipped with a rotor having a permanent magnet and a stator having a multi-phase coil, which is a moving power source for a moving body, and An inverter having upper and lower arm switches to which diodes are connected in antiparallel connection and electrically connecting the power storage unit and the coil.
- An inverter controller applied to a system equipped with A necessity determination unit for determining whether or not demagnetization of the permanent magnet is necessary, and When it is determined by the necessity determination unit that demagnetization is necessary, one of the upper and lower arm switches is turned on in all phases and the other arm switch is turned off in all phases.
- cutoff control unit that executes a short-circuit control in which a recirculation current is passed through the closed circuit including the arm switch and the coil that have been turned ON, and after the execution of the short-circuit control, the cutoff control is performed so that the recirculation current does not flow.
- the shunt control unit executes short-circuit control. As a result, the reflux current flows through the closed circuit including the arm switch and the coil that are turned on.
- the operating point specified by the d and q-axis current values in the dq coordinate system finally has the q-axis current value of 0 and the d-axis current value. Converges to the final arrival position where is a negative predetermined value. In this case, the operating point does not linearly move from the operating point at the start of the short-circuit control to the final arrival position, but draws a swirling trajectory around the final arrival position and heads toward the final arrival position. In the process toward the final arrival position, the d-axis current increases intermittently in the negative direction. By utilizing this d-axis current, the permanent magnet can be demagnetized.
- the reflux current will continue to flow.
- the d-axis current continues to flow, and the permanent magnet may be demagnetized too much.
- the current continues to flow in the arm switch that is turned on by the short-circuit control, and the arm switch in which the current continues to flow may fail.
- the cutoff control in which the recirculation current does not flow is executed. Therefore, it is possible to suppress the occurrence of a situation in which the permanent magnet is demagnetized too much or the arm switch to be turned on fails.
- the permanent magnet can be demagnetized while suppressing the occurrence of failure of the inverter or the like by simple control such as short circuit control and cutoff control.
- FIG. 1 is an overall configuration diagram of an in-vehicle control system according to the first embodiment.
- FIG. 2 is a diagram showing an inverter, a rotary electric machine, and their peripheral configurations.
- FIG. 3 is a functional block diagram of the inverter control device.
- FIG. 4 is a diagram showing the transition of the d and q-axis current values when the three-phase short-circuit control is continued.
- FIG. 5 is a diagram showing a necessity determination unit, a demagnetization execution unit, and their peripheral configurations.
- FIG. 6 is a flowchart showing the procedure of demagnetization control.
- FIG. 1 is an overall configuration diagram of an in-vehicle control system according to the first embodiment.
- FIG. 2 is a diagram showing an inverter, a rotary electric machine, and their peripheral configurations.
- FIG. 3 is a functional block diagram of the inverter control device.
- FIG. 4 is a diagram showing the transition of the d and q-axi
- FIG. 7 is a diagram showing the transition of the d and q-axis current values when the demagnetization control is executed.
- FIG. 8 is a time chart showing the transition of the duration of the three-phase short-circuit control and the shutdown control.
- FIG. 9 is a diagram showing the relationship between the magnet temperature and the duration of the three-phase short-circuit control according to the second embodiment.
- FIG. 10 is a flowchart showing the procedure of demagnetization control according to the third embodiment.
- FIG. 11 is a flowchart showing the procedure of demagnetization control according to the fourth embodiment.
- FIG. 12 is a flowchart showing the procedure of demagnetization control according to the fifth embodiment.
- FIG. 13 is a flowchart showing the procedure of demagnetization control according to the sixth embodiment.
- FIG. 14 is a diagram showing an inverter, a rotary electric machine, and their peripheral configurations according to other embodiments.
- the control device according to the present embodiment constitutes a control system together with a rotary electric machine as a traveling power source, and the control system is mounted on a vehicle.
- the vehicle 10 includes left and right front wheels 11a, left and right rear wheels 11b, and a high-voltage battery 20.
- the high voltage battery 20 is, for example, a lithium ion storage battery or a nickel hydrogen storage battery.
- the front wheels 11a and the rear wheels 11b may be simply referred to as drive wheels 11.
- the control system mounted on the vehicle 10 includes an inverter 40 that electrically connects the rotary electric machine 30, the high-pressure battery 20, and the rotary electric machine 30, an inverter control device 50 that controls the inverter 40, and a host control device 80 (FIG. 2) and.
- the rotary electric machine 30 is an on-board motor.
- the control system includes two sets of a rotary electric machine 30 and an inverter 40. Of the two sets of the rotary electric machine 30 and the inverter 40, one set constitutes a power system for applying a driving force to the front wheels 11a, and the other set constitutes a power system for applying a driving force to the rear wheels 11b. Configure the system.
- the rotary electric machine 30 is a synchronous machine, and more specifically, a permanent magnet synchronous machine.
- the configurations of the two sets of the rotary electric machine 30 and the inverter 40 are basically the same. Therefore, in the following, one of the two sets will be mainly described.
- FIG. 2 is a diagram showing the electrical configurations of the rotary electric machine 30 and the inverter 40.
- the rotary electric machine 30 includes a stator 32 and a rotor 33.
- the rotating shaft of the rotor 33 is connected to the drive wheels 11 via a transmission, a shaft 12, and the like (not shown).
- the stator 32 is provided with a three-phase coil 31.
- the rotor 33 is provided with a permanent magnet 34.
- the inverter 40 includes a series connection body of the upper arm switch SWp and the lower arm switch SWn for three phases.
- each switch SWp, SWn is a voltage-controlled semiconductor switching element, and more specifically, an IGBT.
- the upper and lower arm diodes Dp and Dn, which are freewheel diodes, are connected in antiparallel to the upper and lower arm switches SWp and SWp.
- the emitter which is the low potential side terminal of the upper arm switch SWp
- the collector which is the high potential side terminal of the lower arm switch SWn
- a conductive member Lm such as a bus bar.
- the second end of the coil 31 of each phase is connected at the neutral point. That is, the coils 31 of each phase are star-connected.
- the coils 31 of each phase are arranged so as to be offset by 120 ° from each other by the electric angle.
- each cutoff switch SWRp, SWRn is a relay (specifically, for example, a system main relay). Each cutoff switch SWRp, SWRn is operated by the inverter control device 50 or the host control device 80.
- the control system includes a smoothing capacitor 41 and an in-vehicle electric device 42.
- the smoothing capacitor 41 connects the high potential side path Lp and the low potential side path Ln.
- the electric device 42 is connected to the high potential side path Lp and the low potential side path Ln.
- the electrical device 42 includes, for example, at least one of an electric compressor and a DCDC converter.
- the electric compressor constitutes an air conditioner in the vehicle interior and is driven by being supplied with power from the high-pressure battery 20 in order to circulate the refrigerant in the in-vehicle refrigeration cycle.
- the DCDC converter steps down the output voltage of the high-voltage battery 20 and supplies it to the vehicle-mounted low-voltage load.
- Low voltage loads include low voltage batteries (not shown).
- the low voltage battery is a secondary battery whose output voltage (for example, rated voltage) is lower than the output voltage (rated voltage) of the high voltage battery 20, and is, for example, a lead storage battery.
- the high-voltage battery 20 and the smoothing capacitor 41 serve as storage units for the inverter 40 and the electric device 42.
- the smoothing capacitor 41 of the high-voltage battery 20 and the smoothing capacitor 41 serves as a storage unit for the inverter 40 and the electric device 42.
- the control system includes a phase current detection unit 43, an angle detection unit 44, and a voltage detection unit 45.
- the phase current detection unit 43 detects at least two phases of the currents of each phase flowing through the rotary electric machine 30.
- the angle detection unit 44 detects the electric angle of the rotor 33, and is, for example, a resolver.
- the voltage detection unit 45 detects the voltage between the terminals of the smoothing capacitor 41.
- the control system includes a first temperature detection unit 46 and a second temperature detection unit 47.
- the first temperature detection unit 46 detects the temperatures of the diodes Dp and Dn and the switches SWp and SWn constituting the inverter 40.
- the second temperature detection unit 47 detects the temperature of the permanent magnet 34.
- the control system is equipped with a direct current detection unit 48.
- the DC current detection unit 48 detects the current flowing in the high potential side path Lp.
- the detected values of the detection units 43 to 48 are input to the inverter control device 50.
- the inverter control device 50 is an ECU (electronic control unit) having a CPU, RAM, ROM, and the like.
- the inverter control device 50 performs power running drive control.
- the power running control is a switching control of the upper and lower arm switches SWp and SWn for converting the DC power output from the high voltage battery 20 into AC power and supplying it to the coil 31.
- the rotary electric machine 30 functions as an electric machine and generates a power running torque (> 0). Further, the inverter control device 50 performs regenerative drive control.
- the regenerative drive control is a switching control of the upper and lower arm switches SWp and SWn for converting the AC power generated by the rotary electric machine 30 into DC power and supplying it to the high-voltage battery 20.
- the rotary electric machine 30 functions as a generator and generates regenerative torque ( ⁇ 0).
- FIG. 3 is a block diagram of the processing executed by the inverter control device 50.
- the torque command unit 51 calculates the torque command value Trq * by receiving a command from the host control device 80.
- the current command unit 52 calculates the d-axis current command value Id * and the q-axis current command value Iq * based on the calculated torque command value Trq *.
- the dq conversion unit 53 has a d-axis current value Idr and a q-axis current value Iqr in the dq coordinate system based on the phase current detected by the phase current detection unit 43 and the electric angle ⁇ e detected by the angle detection unit 44. Is calculated.
- the deviation calculation unit 54 is the difference between the d-axis current deviation ⁇ Id, which is the difference between the d-axis current command value Id * and the d-axis current value Idr, and the q-axis current command value Iq *, and the q-axis current value Iqr.
- the shaft current deviation ⁇ Iq is calculated.
- the feedback control unit 55 calculates the d-axis voltage command value Vd * as an operation amount for feedback-controlling the d-axis current deviation ⁇ Id to 0, and q as an operation amount for feedback-controlling the q-axis current deviation ⁇ Iq to 0.
- the shaft voltage command value Vq * is calculated.
- the feedback control is, for example, proportional integral control.
- the modulator 56 is U, V based on the d, q-axis voltage command values Vd *, Vq *, the electric angle ⁇ e, and the power supply voltage Vb, which is the voltage between the terminals of the smoothing capacitor 41 detected by the voltage detection unit 45. , W phase voltage command values Vu *, Vv *, Vw * are calculated. More specifically, to explain by taking the U phase as an example, the modulator 56 is based on a magnitude comparison between a signal obtained by standardizing the U phase voltage command value Vu * with the power supply voltage Vb and a carrier signal such as a triangular wave signal. A U-phase drive signal to be supplied to the gates of the upper and lower arm switches SWp and SWn of the phase is generated.
- the modulator 56 supplies a V-phase drive signal supplied to the gates of the V-phase upper and lower arm switches SWp and SWn, and a W-phase drive signal supplied to the gates of the W-phase upper and lower arm switches SWp and SWn. Generate a signal.
- Each drive signal is an OFF command instructing the switch to be turned off or an ON command instructing the switch to be turned on.
- the inverter control device 50 includes a necessity determination unit 57 and a demagnetization execution unit 58.
- a necessity determination unit 57 and a demagnetization execution unit 58.
- the vehicle 10 may not be able to run on its own due to, for example, a breakdown.
- the vehicle 10 is a other vehicle (for example, a tow truck) with both the front wheels 11a and the rear wheels 11b in contact with the road surface, or with one of the front wheels 11a and the rear wheels 11b being lifted and the other in contact with the road surface. ) May be towed.
- the drive wheels 11 of the vehicle 10 rotate as the other vehicle travels.
- the rotor 33 rotates, and the magnetic flux of the permanent magnet 34 generates a counter electromotive voltage in the three-phase coil 31.
- shutoff switches SWRp and SMRn are turned off, and in the inverter 40, shutdown control is executed in which the upper and lower arm switches SWp and SWn of all phases are turned off.
- the countercurrent voltage exceeds the voltage between the terminals of the smoothing capacitor 41
- a current flows from each coil 31 to the smoothing capacitor 41 via the inverter 40, and the voltage between the terminals of the smoothing capacitor 41 becomes high.
- the counter electromotive voltage exceeds the withstand voltage of at least one of the diodes Dp, Dn, the upper and lower arm switches SWp, SWn, the smoothing capacitor 41, and the electric device 42, the device may fail.
- the traveling speed of another vehicle is high or the permanent magnet 34 has a high magnetic flux density in order to increase the torque of the rotary electric machine 30, the counter electromotive voltage tends to be high, and the above-mentioned failure occurs. Is likely to occur.
- the intrinsic coercive force is 400 [kA / m] or more, and the intrinsic coercive force is 400 [kA / m] or more.
- the demagnetization execution unit 58 performs demagnetization control to reduce the countercurrent voltage by irreversibly demagnetizing the permanent magnet 34 as necessary.
- irreversible demagnetization may be simply referred to as demagnetization.
- the demagnetization control is a control including a three-phase short circuit control and a shutdown control corresponding to a cutoff control.
- the three-phase short-circuit control of the present embodiment is a control in which the lower arm switch SWn of all phases is turned on and the upper arm switch SWp of all phases is turned off.
- the three-phase short-circuit control is also called ASC (Active Short Circuit) control.
- the shutdown control is executed after the execution of the three-phase short circuit control. The reason for this will be described below.
- FIG. 4 is a diagram of the dq coordinate system showing the transition of the d and q-axis current values Id and Iq when the three-phase short-circuit control is continued.
- the position specified by the d, q-axis current values Id, Iq in the dq coordinate system of the current value will be referred to as an operating point OP.
- the sign of the d-axis current Id when the field is strengthened is positive
- the sign of the d-axis current Id when the field is weakened is negative.
- the sign of the q-axis current Iq when the force running torque is generated in the first rotation direction of the rotor 33 by the force running control is positive, and the regenerative drive control regenerates in the second rotation direction opposite to the first rotation direction.
- the sign of the q-axis current Iq when generating torque is negative.
- This predetermined value is, for example, a value when the magnetic flux of the permanent magnet 34 and the magnetic flux generated in the coil 31 by the d-axis current value Id and in the direction of canceling the magnet magnetic flux are equal to each other.
- the operating point OP does not go straight from the start position Ps where the three-phase short-circuit control is started to the final arrival position M, but draws a trajectory that swirls clockwise around the final arrival position M. Head to the arrival position M.
- the locus of the operating point OP from the start position Ps to the final arrival position M is sandwiched between the second and third quadrants and the second and third quadrants in the dq coordinate system of the current value. It exists in the area of the d-axis.
- the second quadrant is a region where the q-axis current value Iq is a positive value and the d-axis current value Id is a negative value
- the third quadrant is a region where both the d and q-axis current values Id and Iq are negative. This is the area that becomes the value of.
- the d-axis current increases intermittently in the negative direction.
- the permanent magnet 34 can be demagnetized.
- the reflux current continues to flow.
- the d-axis current will continue to flow, and the permanent magnet 34 may be demagnetized too much, or the current may flow to the lower arm switch SWn that is turned on by the three-phase short-circuit control, causing the lower arm switch SWn to fail. There is.
- the shutdown control is executed after the execution of the three-phase short circuit control. As a result, the reflux current is prevented from flowing.
- FIG. 5 is a block diagram showing a necessity determination unit 57, a demagnetization execution unit 58, and their peripheral configurations.
- the host control device 80 determines whether or not an abnormality has occurred in the vehicle 10. For example, when it is determined that any of the following conditions (A1) to (A3) is satisfied, the host control device 80 determines that an abnormality has occurred in the vehicle 10.
- A1 Condition that the vehicle 10 collided and the airbag was activated
- A2 Condition that the vehicle 10 was towed by another vehicle
- A3 Condition that an abnormality occurred in the control system
- Abnormality of the control system Includes at least one abnormality in each rotary electric machine 30 and each inverter 40, and at least one abnormality in each of the detection units 43 to 48.
- the abnormality of the inverter 40 includes a short-circuit failure or an open failure of the upper and lower arm switches SWp and SWn.
- the inverter control device 50 is configured so that the drive signal of each phase output from the modulator 56 becomes an OFF command.
- This configuration can be realized, for example, by instructing the torque command unit 51 to stop the calculation of the torque command value Trq * from the host control device 80.
- the host control device 80 determines that an abnormality has occurred in the vehicle 10, it transmits an abnormality notification signal to the necessity determination unit 57.
- this abnormality includes the following abnormalities (B1) to (B4).
- the first condition is that the DC current value Ip detected by the DC current detection unit 48 is smaller than the current threshold value Is.
- the sign of the DC current value Ip when flowing through the high potential side path Lp from the high voltage battery 20 side toward the inverter 40 side is positive.
- the current threshold value Is is set to 0 or a value slightly smaller than 0.
- the first condition is a condition for determining whether or not the smoothing capacitor 41 is in a charged state.
- the necessity determination unit 57 determines that the DC current value Ip is equal to or greater than the current threshold value Is, it determines that the smoothing capacitor 41 is not in the charged state, and determines that demagnetization is unnecessary.
- the necessity determination unit 57 determines that the DC current value Ip is smaller than the current threshold value Is, it determines that the smoothing capacitor 41 is not in the charged state and determines that demagnetization is necessary.
- the smoothing capacitor 41 is charged by the charging current caused by the counter electromotive voltage, and the voltage between the terminals of the smoothing capacitor 41 rises. As a result, problems such as failure of the smoothing capacitor 41 and the electric device 42 may occur.
- the first condition is set to deal with this problem.
- the second condition is that the power supply voltage Vb is higher than the voltage threshold value Vth.
- the voltage threshold Vth has the same value as the lowest withstand voltage or slightly higher than the lowest withstand voltage among the withstand voltage of each of the high-voltage battery 20, the smoothing capacitor 41, and the electric device 42 when the cutoff switches SMRp and SMRn are turned on. Set to a low value. Further, for example, the voltage threshold Vth is set to the same value as the lowest withstand voltage or slightly lower than the lowest withstand voltage among the withstand voltage of each of the smoothing capacitor 41 and the electric device 42 when the cutoff switches SMRp and SMRn are turned off. Set.
- the necessity determination unit 57 determines that the power supply voltage Vb is equal to or less than the voltage threshold value Vth, it determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the power supply voltage Vb is higher than the voltage threshold value Vth, the necessity determination unit 57 determines that demagnetization is necessary. By setting the second condition, it can be determined that demagnetization is necessary before the power supply voltage Vb exceeds the withstand voltage of at least one of the high voltage battery 20, the smoothing capacitor 41, and the electric device 42.
- the third condition is that the element temperature Tdr, which is the temperature detected by the first temperature detection unit 46, is higher than the temperature threshold value Tds.
- the element temperature Tdr is, for example, the highest temperature (for example, the temperature of the diodes Dp and Dn) among the temperatures of the components to be detected by the first temperature detection unit 46.
- the third condition is a condition for suppressing the occurrence of a situation in which the components of the inverter 40 are overheated and fail.
- the necessity determination unit 57 determines that the element temperature Tdr is equal to or less than the temperature threshold value Tdt, it determines that demagnetization is unnecessary.
- the necessity determination unit 57 determines that the element temperature Tdr is higher than the temperature threshold value Tds, it determines that demagnetization is necessary. By demagnetizing, the counter electromotive voltage can be suppressed and the current flowing through the elements constituting the inverter 40 can be reduced.
- the logic of the demagnetization command output to the demagnetization execution unit 58 is set to L, and when it is determined that demagnetization is necessary, the demagnetization command is issued. Set the logic to H.
- the demagnetization execution unit 58 includes a shutdown determination unit 58a, a NOT circuit 58b, and an AND circuit 58c.
- a demagnetization command of the necessity determination unit 57 is input to the shutdown determination unit 58a.
- the shutdown determination unit 58a includes a timer that counts the elapsed time Ltr after the logic of the demagnetization command is switched to H.
- the shutdown determination unit 58a determines that it is not necessary to execute the shutdown control until the counted elapsed time Lth reaches the determination time Lth, and when it is determined that the counted elapsed time Ltr has reached the determination time Lth, the shutdown control is performed. Judge that it is necessary to execute.
- the logic of the shutdown command output to the NOT circuit 58b is set to L. In this case, the logic of the output signal from the NOT circuit 58b to the AND circuit 58c becomes H.
- the logic of the shutdown command output to the NOT circuit 58b is set to H. In this case, the logic of the output signal from the NOT circuit 58b to the AND circuit 58c becomes L.
- the AND circuit 58c sets the logic of the instruction signal Sig output to the modulator 56 to L regardless of the logic of the demagnetization command. In this case, all the drive signals output from the modulator 56 to the upper and lower arm switches SWp and SWn of each phase constituting the inverter 40 are set to OFF commands. As a result, shutdown control is executed.
- the AND circuit 58c sets the logic of the instruction signal Sig output to the modulator 56 to H.
- the drive signal output from the modulator 56 to the lower arm switch SWn of each phase is an ON command
- the drive signal output from the modulator 56 to the upper arm switch SWp of each phase is an OFF command. It is said that.
- three-phase short circuit control is executed.
- FIG. 6 is a flowchart showing the procedure of demagnetization control.
- step S10 the host control device 80 determines whether or not an abnormality has occurred in the vehicle 10.
- step S11 the necessity determination unit 57 determines whether or not there is an abnormality in the configuration necessary for executing the three-phase short-circuit control and the shutdown control. judge.
- step S12 determines whether or not demagnetization of the permanent magnet 34 is necessary. Specifically, the necessity determination unit 57 determines that demagnetization is necessary when any of the above-mentioned first to third conditions is satisfied, and reduces when any of the first to third conditions is not satisfied. It is determined that magnetism is unnecessary.
- the necessity determination unit 57 determines that none of the first to third conditions is satisfied, it determines that demagnetization is unnecessary, and sets the logic of the demagnetization command to L. Then, the demagnetization control is terminated. On the other hand, when it is determined that any of the first to third conditions is satisfied, the necessity determination unit 57 determines that demagnetization is necessary.
- step S13 the necessity determination unit 57 sets the logic of the demagnetization command to H.
- the shutdown determination unit 58a sets the logic of the shutdown command to be output to the NOT circuit 58b to L until the elapsed time Lth after the logic of the demagnetization command is switched to H becomes the determination time Lth.
- the logic of the output signal from the NOT circuit 58b to the AND circuit 58c becomes H
- the logic of the instruction signal Sig output from the AND circuit 58c becomes H.
- the three-phase short-circuit control is executed in the inverter 40.
- step S14 when the shutdown determination unit 58a determines that the elapsed time Lth has reached the determination time Lth, the process proceeds to step S15, and the logic of the shutdown command output to the NOT circuit 58b is set to H. As a result, the logic of the output signal from the NOT circuit 58b to the AND circuit 58c becomes L, and the logic of the instruction signal Sig output from the AND circuit 58c becomes L. As a result, shutdown control is executed in the inverter 40.
- the front wheels 11a and the rear wheels 11b are based on the detection values of the angle detection unit 44, for example. It is determined which of the drive wheels 11 is rotating.
- the rotary electric machine that applies the drive torque to the rotating drive wheel 11 is designated as the target rotary electric machine.
- the inverter control device 50 performs the processes of steps S11 to S15 for the inverter connected to the target rotary electric machine among the two inverters 40.
- the host control device 80 determines that at least one abnormality of each rotary electric machine 30 and each inverter 40 and at least one abnormality of each of the detection units 43 to 48 have occurred, two.
- a rotary electric machine capable of applying a drive torque to the drive wheels 11 is selected.
- the inverter control device 50 performs the processes of steps S11 to S15 for the inverter connected to the selected rotary electric machine, and power drive control or regeneration for the remaining inverters. Drive control is performed.
- the running of the vehicle 10 can be continued as much as possible.
- the host control device 80 transmits an abnormality notification signal to the necessity determination unit 57.
- the necessity determination unit 57 starts determining whether or not demagnetization is necessary.
- the drive wheel 11 in contact with the road surface does not rotate, so that a counter electromotive voltage is not generated in the coil 31. Therefore, the necessity determination unit 57 determines that the DC current value Ip is equal to or greater than the current threshold value Is, and sets the logic of the demagnetization command to L. In this case, the logic of the instruction signal Sig output from the AND circuit 58c becomes L. As a result, the execution of shutdown control is maintained.
- the vehicle 10 is towed and the drive wheels 11 in contact with the road surface rotate.
- a countercurrent voltage is generated in the coil 31, and when the countercurrent voltage exceeds the voltage between the terminals of the smoothing capacitor 41, a current flows from the inverter 40 side to the smoothing capacitor 41 side, and the DC current value Ip is negative. Becomes the value of.
- the necessity determination unit 57 switches the logic of the demagnetization command to H.
- the logic of the instruction signal Sigma is maintained at L until the elapsed time Ltr after the logic of the demagnetization command is switched to H reaches the determination time Lth.
- the logic of the instruction signal Sig is switched to H.
- the logic of the instruction signal Sig is switched to H.
- the operating point OP starts to move from the start position Ps in a swirling manner as in the case of FIG.
- the q-axis current value Iq that specifies the start position Ps is a negative value because the counter electromotive voltage exceeds the voltage between the terminals of the smoothing capacitor 41, so that the smoothing capacitor 41 is in a charged state. Because. Further, in the example shown in FIG. 7, the start position Ps exists in the third quadrant in which the d and q-axis current values Id and Iq are negative, but the start position Ps does not necessarily exist in the third quadrant. not.
- step S15 the shutdown control is started at the first operating point P1 by the process of step S15.
- step S10 an affirmative determination is made in step S10, a negative determination is made in step S11, and it is further determined that the first condition is satisfied in step S12. Therefore, the process of step S13 restarts the three-phase short-circuit control at the second operating point P2, and then restarts the shutdown control at the third operating point P3.
- step S12 the demagnetization control ends at the sixth operating point P6.
- the locus of the operating point OP drawn in the demagnetization control is contained in the third quadrant.
- the switching from the three-phase short-circuit control to the shutdown control is performed based on the elapsed time Ltr, the locus of the operating point OP does not fit in the third quadrant and may be in the second quadrant. possible. Even in this case, the permanent magnet 34 can be demagnetized by the negative d-axis current.
- the duration of the three-phase short-circuit control is shorter than the previous duration of the three-phase short-circuit control.
- the magnetic flux density of the permanent magnet 34 decreases each time the three-phase short-circuit control is performed. Therefore, by gradually shortening the duration, it is possible to suitably suppress the permanent magnet 34 from being demagnetized too much.
- FIG. 8 shows an example in which the duration Lsdn of the shutdown control is gradually shortened, the duration Lsdn of each time may be constant.
- the permanent magnet 34 can be irreversibly demagnetized while suppressing the occurrence of failure of the inverter 40 or the like by simple control such as three-phase short circuit control and shutdown control.
- the permanent magnet 34 When it is determined that the DC current value Ip is smaller than the current threshold value Is, it is determined that the permanent magnet 34 needs to be demagnetized. Therefore, the permanent magnet 34 can be demagnetized before the voltage between the terminals of the smoothing capacitor 41 rises excessively or the high voltage battery 20 becomes overcharged.
- the permanent magnet 34 needs to be demagnetized. Therefore, it can be understood that demagnetization is necessary before the withstand voltage of at least one of the high voltage battery 20, the smoothing capacitor 41, the electric device 42, and the inverter 40 is exceeded. Thereby, the high voltage battery 20, the smoothing capacitor 41, the electric device 42, and the inverter 40 can be protected.
- the three-phase short-circuit control is switched to the shutdown control.
- the start timing of the shutdown control can be properly determined.
- the three-phase short-circuit control and the shutdown control are executed, it is determined again whether or not the permanent magnet 34 needs to be demagnetized. Then, the three-phase short-circuit control and the shutdown control are repeated until it is determined that demagnetization is unnecessary. As a result, for example, even when it is difficult to accurately grasp how much the permanent magnet 34 needs to be demagnetized, the magnetic flux density of the permanent magnet 34 is reduced as much as possible until it reaches a desired density. It can be magnetized.
- the shutdown control is executed in the demagnetization control, it is possible to prevent the permanent magnet 34 from being demagnetized too much, and the components of the coil 31 and the inverter 40 are in an overheated state. Can be prevented. Therefore, the demagnetized rotary electric machine 30 and the inverter 40 can be sold in the aftermarket as relatively high-quality second-hand goods.
- the first condition may be a condition that the sign of the direct current value Ip is negative.
- the necessity determination unit 57 determines that the sign of the DC current value Ip is positive, it determines that the smoothing capacitor 41 is not in the charged state, and determines that demagnetization is unnecessary. Then, the necessity determination unit 57 sets the logic of the demagnetization command to L.
- the necessity determination unit 57 determines that the sign of the DC current value Ip is negative, it determines that the smoothing capacitor 41 is in a charged state, and determines that demagnetization is necessary. Then, the necessity determination unit 57 sets the logic of the demagnetization command to H.
- the sign of the DC current value Ip is negative, it is considered that the current is flowing in the high potential side path Lp in the direction in which the smoothing capacitor 41 is charged.
- the first condition may be a condition that the q-axis current value Iqr calculated by the dq conversion unit 53 is smaller than the q-axis current threshold value Iqth.
- the necessity determination unit 57 determines that the q-axis current value Iqr is equal to or greater than the q-axis current threshold value Iqth, it determines that the smoothing capacitor 41 is not in the charged state, and determines that demagnetization is unnecessary.
- the necessity determination unit 57 determines that the q-axis current value Iqr is smaller than the q-axis current threshold value Iqth, it determines that the smoothing capacitor 41 is in a charged state and determines that demagnetization is necessary.
- the q-axis current threshold Iqth is set to 0 or a value slightly smaller than 0. Therefore, when the q-axis current value Iqr is smaller than the q-axis current threshold value Iqth, it is considered that the smoothing capacitor 41 is charged.
- the abnormality of the configuration necessary for executing the three-phase short-circuit control and the shutdown control may include an abnormality that makes it impossible to acquire the electric angle ⁇ e and the phase current detection value.
- the abnormality that makes it impossible to acquire the electric angle ⁇ e includes an abnormality of the angle detection unit 44.
- the abnormality in which the phase current detection value cannot be acquired includes an abnormality in the phase current detection unit 43.
- the smoothing capacitor 41 is in the charged state. It may be determined that.
- the current value for determining whether or not the smoothing capacitor 41 is in the charged state is not limited to the current value in the rotating coordinate system (dq coordinate system), but the current value in the fixed coordinate system (UVW coordinate system) (for example).
- the detection value of the phase current detection unit 43 may be used.
- the first condition may be a condition that the counter electromotive voltage Vm generated in the coil 31 is higher than the electromotive voltage threshold value V ⁇ .
- the electromotive voltage threshold value V ⁇ is set to a value lower than, for example, the power supply voltage Vb.
- the necessity determination unit 57 determines that the counter electromotive voltage Vm is equal to or less than the electromotive voltage threshold V ⁇ , it determines that the smoothing capacitor 41 is not in the charged state, and determines that demagnetization is unnecessary.
- the necessity determination unit 57 determines that the counter electromotive voltage Vm is higher than the electromotive voltage threshold V ⁇ , it determines that the smoothing capacitor 41 is in a charged state and determines that demagnetization is necessary.
- the necessity determination unit 57 may calculate the counter electromotive voltage Vm based on, for example, the electric angular velocity ⁇ e of the rotor 33. In this case, the necessity determination unit 57 may calculate the electric angular velocity ⁇ e based on the electric angle ⁇ e.
- a fourth condition may be added in step S12 of FIG. 6 that the absolute value of the DC current value Ip is higher than the allowable current value (> 0).
- the necessity determination unit 57 determines that demagnetization is necessary when any of the first to fourth conditions is satisfied, and when none of the first to fourth conditions is satisfied, demagnetization is performed. Determined to be unnecessary.
- the inverter control device 50 sets the determination time Lth used in step S14 of FIG. 6 longer as the magnet temperature Tmag detected by the second temperature detection unit 47 becomes lower, as shown in FIG. This setting is based on the fact that the lower the temperature of the permanent magnet 34, the higher the magnetic flux density of the permanent magnet 34, and it is necessary to increase the degree of demagnetization.
- the inverter control device 50 may use the temperature estimation value of the permanent magnet 34 instead of the detection value of the first temperature detection unit 46 for setting the determination time Lth.
- the third embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment.
- the first condition is changed to the condition relating to the electric angular velocity ⁇ e.
- the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
- the first condition is that the electric angular velocity ⁇ e is higher than the velocity threshold value ⁇ th.
- This condition is a condition for determining whether or not the smoothing capacitor 41 is in a charged state.
- the velocity threshold ⁇ th is, for example, between terminals where the counter electromotive voltage of the coil 31 can be taken by a normal high-voltage battery 20 when the temperature of the permanent magnet 34 becomes the lower limit of the possible temperature range (for example, ⁇ 40 ° C.). It suffices if the electric angular velocity is set to be higher than the lower limit of the voltage range.
- the necessity determination unit 57 determines that the electric angular velocity ⁇ e is equal to or less than the velocity threshold value ⁇ th, it determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the electric angular velocity ⁇ e is higher than the velocity threshold value ⁇ th, it determines that demagnetization is necessary.
- the mechanical angular velocity of the rotor 33 may be used instead of the electric angular velocity ⁇ e.
- the first condition is that the magnet temperature Tmag is lower than the magnet threshold Tgth.
- This condition is a condition for determining whether or not the smoothing capacitor 41 is in a charged state.
- the magnet threshold Tgth is, for example, when the rotation speed of the rotor 33 becomes the upper limit value (maximum rotation speed) of the possible speed range, the countercurrent voltage of the coil 31 is the voltage between terminals that can be taken by the normal high-pressure battery 20. It suffices if the temperature of the permanent magnet 34 is set to be higher than the lower limit of the range.
- the necessity determination unit 57 determines that the magnet temperature Tmag is equal to or higher than the magnet threshold value Tgth, it determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the magnet temperature Tmag is lower than the magnet threshold value Tgth, it determines that demagnetization is necessary.
- the inverter control device 50 may use the temperature estimation value of the permanent magnet 34 instead of the detection value of the first temperature detection unit 46 as the temperature to be compared with the magnet threshold value Tgs.
- step S18 the necessity determination unit 57 sets the logic of the demagnetization command to H.
- the shutdown determination unit 58a acquires the d-axis current value Idr, the acquired d-axis current value Idr is a negative value, and the absolute value of the d-axis current value Idr is the d-axis current threshold Idth (>). It is determined whether or not it exceeds 0). If the shutdown determination unit 58a makes an affirmative determination in step S18, the shutdown determination unit 58a switches the logic of the shutdown command output to the NOT circuit 58b from H to L. As a result, shutdown control is executed in step S15.
- the permanent magnet 34 can be appropriately demagnetized.
- the d-axis current threshold value Idth may be reduced each time the three-phase short-circuit control and the shutdown control are repeated in the demagnetization control.
- step S19 the necessity determination unit 57 sets the logic of the demagnetization command to H.
- the shutdown determination unit 58a acquires the q-axis current value Iqr, and determines whether or not the acquired q-axis current value Iqr has switched from a negative value to a positive value.
- the shutdown determination unit 58a determines affirmatively in step S19, it determines that the rotary electric machine 30 has switched from the power generation state to the power running state, and switches the logic of the shutdown command output to the NOT circuit 58b from H to L.
- shutdown control is executed in step S15.
- the demagnetization control can be executed only during the period in which the voltage between the terminals of the smoothing capacitor 41 is expected to increase.
- the three-phase short-circuit control may be a control in which the upper arm switch SWp of all phases is turned on and the lower arm switch SWn of all phases is turned off.
- a connection switch SW ⁇ may be provided between the connection points of the upper and lower arm switches SWp and SWn and the first end of the coil 31.
- the inverter control device 50 may execute a control (corresponding to “cutoff control”) for turning off the connection switch SW ⁇ of each phase instead of the shutdown control.
- the demagnetization control is not limited to the one that irreversibly demagnetizes the permanent magnet 34.
- a negative d-axis current capable of reversibly demagnetizing the permanent magnet 34 may be passed.
- the switch constituting the inverter is not limited to the IGBT, and may be, for example, an N-channel MOSFET having a built-in body diode.
- the rotary electric machine and the inverter are not limited to three-phase ones, but may be two-phase ones or four-phase or more ones. Further, the rotary electric machine is not limited to the on-board motor, but may be an in-wheel motor built in the wheel.
- the vehicle is not limited to a four-wheel drive vehicle, and for example, any one of the front wheel 11a and the rear wheel 11b may be a drive wheel.
- the moving body on which the control system is mounted is not limited to a vehicle, but may be, for example, an aircraft or a ship.
- the rotating electric machine constituting the control system is the flight power source of the aircraft.
- the rotary electric machine constituting the control system becomes a navigation force source of the ship.
- the controls and methods thereof described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Inverter Devices (AREA)
Abstract
An inverter control device (50) can be adapted in a system including power storage units (20, 41), a rotary electric machine (30) as a mobile power source of a mobile body (10), and an inverter (40). The inverter control device determines whether a permanent magnet (34) of a rotor (33) constituting the rotary electric machine needs to be demagnetized. When it is determined that demagnetization is necessary, the inverter control device turns ON in all phases one arm switch (SWn) of upper and lower arm switches (SWp, SWn) of the inverter and turns OFF in all phases the other arm switch (SWp), thereby executing short-circuit control in which a reflux electric current is passed through a closed circuit including the arm switch that has been turned ON and a coil (31) of the rotary electric machine, and after the short-circuit control has been executed, performs cutoff control to reach a state in which the reflux electric current does not flow.
Description
本出願は、2020年11月10日に出願された日本出願番号2020-187330号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese application number 2020-18733 filed on November 10, 2020, and the contents of the description are incorporated herein by reference.
本開示は、インバータ制御装置に関する。
This disclosure relates to an inverter control device.
従来、特許文献1に記載されているように、回転電機及びインバータを備えるシステムが知られている。回転電機は、永久磁石を有するロータと、複数相のコイルを有するステータとを備え、車両の走行動力源となる。インバータは、各相毎に上,下アームスイッチを備え、蓄電部及びコイルを電気的に接続する。上,下アームスイッチは、外付けダイオードが逆並列接続されたスイッチ、又は寄生ダイオードが内蔵されたスイッチである。このシステムに適用されるインバータ制御装置は、上,下アームスイッチをスイッチング制御する。
Conventionally, as described in Patent Document 1, a system including a rotary electric machine and an inverter is known. The rotary electric machine includes a rotor having a permanent magnet and a stator having a plurality of phases of coils, and serves as a running power source for the vehicle. The inverter is provided with an upper and lower arm switch for each phase, and electrically connects the power storage unit and the coil. The upper and lower arm switches are switches in which external diodes are connected in antiparallel, or switches in which parasitic diodes are built-in. The inverter control device applied to this system controls the switching of the upper and lower arm switches.
車両の移動に伴い車両の駆動輪が回転すると、ロータが回転し、永久磁石の磁束によってコイルに逆起電圧が発生する。ロータの回転速度が高くなると、逆起電圧が高くなる。その結果、例えば上,下アームスイッチが全てOFFされている場合であっても、コイルからダイオードを介して蓄電部へと電流が流れ、蓄電部の電圧が過度に高くなり得る。この場合、蓄電部が故障するといった問題が生じ得る。また、例えば、システムメインリレー(SMR)をOFFに切り替えることにより蓄電部への充電は回避することができる。しかしながら、この場合、逆起電圧がそのままインバータや、インバータと並列接続される他の機器へ印加される。この場合において、逆起電圧がそれら構成部品の耐圧以上になると、それら構成部品が故障する可能性がある。
When the drive wheel of the vehicle rotates with the movement of the vehicle, the rotor rotates and the magnetic flux of the permanent magnet generates a counter electromotive voltage in the coil. As the rotation speed of the rotor increases, the counter electromotive voltage increases. As a result, for example, even when all the upper and lower arm switches are turned off, a current flows from the coil to the storage unit via the diode, and the voltage of the storage unit may become excessively high. In this case, a problem such as a failure of the power storage unit may occur. Further, for example, by switching the system main relay (SMR) to OFF, it is possible to avoid charging the power storage unit. However, in this case, the counter electromotive voltage is directly applied to the inverter and other devices connected in parallel with the inverter. In this case, if the counter electromotive voltage exceeds the withstand voltage of the components, the components may fail.
この問題は、例えば、自車両が他車両に牽引される場合に発生し得る。牽引される自車両の走行速度が高くなると、ロータの回転速度も高くなり、逆起電圧が高くなる。その結果、蓄電部の電圧が過度に高くなり得る。
This problem can occur, for example, when the own vehicle is towed by another vehicle. As the traveling speed of the towed vehicle increases, the rotation speed of the rotor also increases and the counter electromotive voltage increases. As a result, the voltage of the power storage unit may become excessively high.
特許文献1には、d軸電流の正負を交互に切り替えることにより永久磁石を加熱した後、d軸電流を負方向に流すことにより永久磁石を不可逆減磁させる方法が記載されている。これにより、逆起電圧を低減させる。しかしながら、この方法では、d軸電流の複雑な制御が必要となる。
Patent Document 1 describes a method of irreversibly demagnetizing a permanent magnet by heating the permanent magnet by alternately switching between positive and negative of the d-axis current and then flowing the d-axis current in the negative direction. This reduces the counter electromotive voltage. However, this method requires complicated control of the d-axis current.
なお、車両に限らず、移動動力源となる回転電機を備える移動体であれば、上述した問題は同様に生じ得る。
Not limited to vehicles, the above-mentioned problems can occur in the same way as long as the moving body is equipped with a rotating electric machine as a moving power source.
本開示は、上記事情に鑑みてなされたものであり、簡易な方法で永久磁石を減磁できるインバータ制御装置を提供することを主たる目的とする。
The present disclosure has been made in view of the above circumstances, and its main purpose is to provide an inverter control device capable of demagnetizing a permanent magnet by a simple method.
本開示は、蓄電部と、
永久磁石を有するロータ、及び複数相のコイルを有するステータを備え、移動体の移動動力源となる回転電機と、
ダイオードが逆並列接続された上,下アームスイッチを有し、前記蓄電部及び前記コイルを電気的に接続するインバータと、
を備えるシステムに適用されるインバータ制御装置において、
前記永久磁石の減磁が必要であるか否かを判定する要否判定部と、
前記要否判定部により減磁が必要であると判定された場合、前記上,下アームスイッチのうち、一方のアームスイッチを全相ONにし、かつ、他方のアームスイッチを全相OFFにすることにより、ONにした前記アームスイッチ及び前記コイルを含む閉回路に還流電流を流す短絡制御を実行し、前記短絡制御の実行後に、前記還流電流が流れない状態にする遮断制御を行う遮断制御部と、を備える。 This disclosure describes the power storage unit and
A rotary electric machine equipped with a rotor having a permanent magnet and a stator having a multi-phase coil, which is a moving power source for a moving body, and
An inverter having upper and lower arm switches to which diodes are connected in antiparallel connection and electrically connecting the power storage unit and the coil.
In an inverter controller applied to a system equipped with
A necessity determination unit for determining whether or not demagnetization of the permanent magnet is necessary, and
When it is determined by the necessity determination unit that demagnetization is necessary, one of the upper and lower arm switches is turned on in all phases and the other arm switch is turned off in all phases. With a cutoff control unit that executes a short-circuit control in which a recirculation current is passed through the closed circuit including the arm switch and the coil that have been turned ON, and after the execution of the short-circuit control, the cutoff control is performed so that the recirculation current does not flow. , Equipped with.
永久磁石を有するロータ、及び複数相のコイルを有するステータを備え、移動体の移動動力源となる回転電機と、
ダイオードが逆並列接続された上,下アームスイッチを有し、前記蓄電部及び前記コイルを電気的に接続するインバータと、
を備えるシステムに適用されるインバータ制御装置において、
前記永久磁石の減磁が必要であるか否かを判定する要否判定部と、
前記要否判定部により減磁が必要であると判定された場合、前記上,下アームスイッチのうち、一方のアームスイッチを全相ONにし、かつ、他方のアームスイッチを全相OFFにすることにより、ONにした前記アームスイッチ及び前記コイルを含む閉回路に還流電流を流す短絡制御を実行し、前記短絡制御の実行後に、前記還流電流が流れない状態にする遮断制御を行う遮断制御部と、を備える。 This disclosure describes the power storage unit and
A rotary electric machine equipped with a rotor having a permanent magnet and a stator having a multi-phase coil, which is a moving power source for a moving body, and
An inverter having upper and lower arm switches to which diodes are connected in antiparallel connection and electrically connecting the power storage unit and the coil.
In an inverter controller applied to a system equipped with
A necessity determination unit for determining whether or not demagnetization of the permanent magnet is necessary, and
When it is determined by the necessity determination unit that demagnetization is necessary, one of the upper and lower arm switches is turned on in all phases and the other arm switch is turned off in all phases. With a cutoff control unit that executes a short-circuit control in which a recirculation current is passed through the closed circuit including the arm switch and the coil that have been turned ON, and after the execution of the short-circuit control, the cutoff control is performed so that the recirculation current does not flow. , Equipped with.
本開示では、要否判定部により永久磁石の減磁が必要であると判定された場合、遮断制御部により短絡制御が実行される。これにより、ONにしたアームスイッチ及びコイルを含む閉回路に還流電流が流れるようになる。
In the present disclosure, when the necessity determination unit determines that demagnetization of the permanent magnet is necessary, the shunt control unit executes short-circuit control. As a result, the reflux current flows through the closed circuit including the arm switch and the coil that are turned on.
ここで、短絡制御が実行される場合、dq座標系においてd,q軸電流値で特定される動作点は、最終的には、q軸電流値が0であって、かつ、d軸電流値が負の所定値になる最終到達位置に収束する。この場合、動作点は、短絡制御の開始時における動作点から最終到達位置に直線的に向かうのではなく、最終到達位置を中心に渦を巻く軌跡を描いて最終到達位置に向かう。最終到達位置に向かう過程において、d軸電流は、負方向に断続的に大きくなる。このd軸電流を利用することにより、永久磁石を減磁させることができる。
Here, when the short-circuit control is executed, the operating point specified by the d and q-axis current values in the dq coordinate system finally has the q-axis current value of 0 and the d-axis current value. Converges to the final arrival position where is a negative predetermined value. In this case, the operating point does not linearly move from the operating point at the start of the short-circuit control to the final arrival position, but draws a swirling trajectory around the final arrival position and heads toward the final arrival position. In the process toward the final arrival position, the d-axis current increases intermittently in the negative direction. By utilizing this d-axis current, the permanent magnet can be demagnetized.
しかしながら、短絡制御が実行され続けると、還流電流が流れ続ける。この場合、d軸電流が流れ続けることとなり、永久磁石が減磁され過ぎるおそれがある。また、短絡制御によりONされているアームスイッチに電流が流れ続け、電流が流れ続けたアームスイッチが故障するおそれもある。
However, if the short circuit control continues to be executed, the reflux current will continue to flow. In this case, the d-axis current continues to flow, and the permanent magnet may be demagnetized too much. In addition, the current continues to flow in the arm switch that is turned on by the short-circuit control, and the arm switch in which the current continues to flow may fail.
そこで、本開示では、減磁用の還流電流を流す短絡制御の実行後に、還流電流が流れない状態にする遮断制御が実行される。このため、永久磁石が減磁され過ぎたり、ONされるアームスイッチが故障したりする事態の発生を抑制できる。
Therefore, in the present disclosure, after the short-circuit control in which the recirculation current for demagnetization is passed is executed, the cutoff control in which the recirculation current does not flow is executed. Therefore, it is possible to suppress the occurrence of a situation in which the permanent magnet is demagnetized too much or the arm switch to be turned on fails.
以上説明した本開示によれば、短絡制御及び遮断制御といった簡易な制御により、インバータ等の故障の発生を抑制しつつ、永久磁石を減磁させることができる。
According to the present disclosure described above, the permanent magnet can be demagnetized while suppressing the occurrence of failure of the inverter or the like by simple control such as short circuit control and cutoff control.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る車載制御システムの全体構成図であり、
図2は、インバータ、回転電機及びそれらの周辺構成を示す図であり、
図3は、インバータ制御装置の機能ブロック図であり、
図4は、3相短絡制御が継続された場合のd,q軸電流値の推移を示す図であり、
図5は、要否判定部、減磁実行部及びそれらの周辺構成を示す図であり、
図6は、減磁制御の手順を示すフローチャートであり、
図7は、減磁制御が実行された場合のd,q軸電流値の推移を示す図であり、
図8は、3相短絡制御及びシャットダウン制御の継続時間の推移を示すタイムチャートであり、
図9は、第2実施形態に係る磁石温度及び3相短絡制御の継続時間の関係を示す図であり、
図10は、第3実施形態に係る減磁制御の手順を示すフローチャートであり、
図11は、第4実施形態に係る減磁制御の手順を示すフローチャートであり、
図12は、第5実施形態に係る減磁制御の手順を示すフローチャートであり、
図13は、第6実施形態に係る減磁制御の手順を示すフローチャートであり、
図14は、その他の実施形態に係るインバータ、回転電機及びそれらの周辺構成を示す図である。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an overall configuration diagram of an in-vehicle control system according to the first embodiment. FIG. 2 is a diagram showing an inverter, a rotary electric machine, and their peripheral configurations. FIG. 3 is a functional block diagram of the inverter control device. FIG. 4 is a diagram showing the transition of the d and q-axis current values when the three-phase short-circuit control is continued. FIG. 5 is a diagram showing a necessity determination unit, a demagnetization execution unit, and their peripheral configurations. FIG. 6 is a flowchart showing the procedure of demagnetization control. FIG. 7 is a diagram showing the transition of the d and q-axis current values when the demagnetization control is executed. FIG. 8 is a time chart showing the transition of the duration of the three-phase short-circuit control and the shutdown control. FIG. 9 is a diagram showing the relationship between the magnet temperature and the duration of the three-phase short-circuit control according to the second embodiment. FIG. 10 is a flowchart showing the procedure of demagnetization control according to the third embodiment. FIG. 11 is a flowchart showing the procedure of demagnetization control according to the fourth embodiment. FIG. 12 is a flowchart showing the procedure of demagnetization control according to the fifth embodiment. FIG. 13 is a flowchart showing the procedure of demagnetization control according to the sixth embodiment. FIG. 14 is a diagram showing an inverter, a rotary electric machine, and their peripheral configurations according to other embodiments.
<第1実施形態>
以下、本開示に係る制御装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態に係る制御装置は、走行動力源としての回転電機とともに制御システムを構成し、制御システムは車両に搭載されている。 <First Embodiment>
Hereinafter, the first embodiment in which the control device according to the present disclosure is embodied will be described with reference to the drawings. The control device according to the present embodiment constitutes a control system together with a rotary electric machine as a traveling power source, and the control system is mounted on a vehicle.
以下、本開示に係る制御装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態に係る制御装置は、走行動力源としての回転電機とともに制御システムを構成し、制御システムは車両に搭載されている。 <First Embodiment>
Hereinafter, the first embodiment in which the control device according to the present disclosure is embodied will be described with reference to the drawings. The control device according to the present embodiment constitutes a control system together with a rotary electric machine as a traveling power source, and the control system is mounted on a vehicle.
図1に示すように、車両10は、左右の前輪11a、左右の後輪11b及び高圧バッテリ20を備えている。高圧バッテリ20は、例えばリチウムイオン蓄電池又はニッケル水素蓄電池である。なお、以下では、前輪11a及び後輪11bを単に駆動輪11と称すこともある。
As shown in FIG. 1, the vehicle 10 includes left and right front wheels 11a, left and right rear wheels 11b, and a high-voltage battery 20. The high voltage battery 20 is, for example, a lithium ion storage battery or a nickel hydrogen storage battery. In the following, the front wheels 11a and the rear wheels 11b may be simply referred to as drive wheels 11.
車両10に搭載される制御システムは、回転電機30と、高圧バッテリ20及び回転電機30とを電気的に接続するインバータ40と、インバータ40を制御するインバータ制御装置50と、上位制御装置80(図2参照)とを備えている。本実施形態において、回転電機30は、オンボード用のモータである。また、制御システムは、回転電機30及びインバータ40を2組備えている。2組の回転電機30及びインバータ40のうち、一方の組は、前輪11aに駆動力を付与するための動力システムを構成し、他方の組は、後輪11bに駆動力を付与するための動力システムを構成する。本実施形態において、回転電機30は、同期機であり、より具体的には永久磁石同期機である。本実施形態では、2組の回転電機30及びインバータ40それぞれの構成は基本的には同様である。このため、以下では、2組のうち一方の組について主に説明する。
The control system mounted on the vehicle 10 includes an inverter 40 that electrically connects the rotary electric machine 30, the high-pressure battery 20, and the rotary electric machine 30, an inverter control device 50 that controls the inverter 40, and a host control device 80 (FIG. 2) and. In the present embodiment, the rotary electric machine 30 is an on-board motor. Further, the control system includes two sets of a rotary electric machine 30 and an inverter 40. Of the two sets of the rotary electric machine 30 and the inverter 40, one set constitutes a power system for applying a driving force to the front wheels 11a, and the other set constitutes a power system for applying a driving force to the rear wheels 11b. Configure the system. In the present embodiment, the rotary electric machine 30 is a synchronous machine, and more specifically, a permanent magnet synchronous machine. In the present embodiment, the configurations of the two sets of the rotary electric machine 30 and the inverter 40 are basically the same. Therefore, in the following, one of the two sets will be mainly described.
図2は、回転電機30及びインバータ40の電気的な構成を示す図である。
FIG. 2 is a diagram showing the electrical configurations of the rotary electric machine 30 and the inverter 40.
回転電機30は、ステータ32及びロータ33を備えている。ロータ33の回転軸は、図示しない変速機及びシャフト12等を介して、駆動輪11に接続されている。ステータ32には、3相のコイル31が設けられている。ロータ33には、永久磁石34が設けられている。
The rotary electric machine 30 includes a stator 32 and a rotor 33. The rotating shaft of the rotor 33 is connected to the drive wheels 11 via a transmission, a shaft 12, and the like (not shown). The stator 32 is provided with a three-phase coil 31. The rotor 33 is provided with a permanent magnet 34.
インバータ40は、上アームスイッチSWpと下アームスイッチSWnとの直列接続体を3相分備えている。本実施形態において、各スイッチSWp,SWnは、電圧制御形の半導体スイッチング素子であり、より具体的にはIGBTである。上,下アームスイッチSWp,SWpには、フリーホイールダイオードである上,下アームダイオードDp,Dnが逆並列に接続されている。
The inverter 40 includes a series connection body of the upper arm switch SWp and the lower arm switch SWn for three phases. In the present embodiment, each switch SWp, SWn is a voltage-controlled semiconductor switching element, and more specifically, an IGBT. The upper and lower arm diodes Dp and Dn, which are freewheel diodes, are connected in antiparallel to the upper and lower arm switches SWp and SWp.
各相において、上アームスイッチSWpの低電位側端子であるエミッタと、下アームスイッチSWnの高電位側端子であるコレクタとには、バスバー等の導電部材Lmを介して、コイル31の第1端が接続されている。各相のコイル31の第2端は、中性点で接続されている。すなわち、各相のコイル31は、スター結線されている。各相のコイル31は、電気角で互いに120°ずらされて配置されている。
In each phase, the emitter, which is the low potential side terminal of the upper arm switch SWp, and the collector, which is the high potential side terminal of the lower arm switch SWn, are connected to the first end of the coil 31 via a conductive member Lm such as a bus bar. Is connected. The second end of the coil 31 of each phase is connected at the neutral point. That is, the coils 31 of each phase are star-connected. The coils 31 of each phase are arranged so as to be offset by 120 ° from each other by the electric angle.
各相の上アームスイッチSWpのコレクタには、高電位側経路Lpを介して、第1遮断スイッチSWRpの第1端が接続されている。各相の下アームスイッチSWnのエミッタには、低電位側経路Lnを介して、第2遮断スイッチSWRnの第1端が接続されている。第1遮断スイッチSWRpの第2端には、高圧バッテリ20の正極端子が接続され、第2遮断スイッチSWRnの第2端には、高圧バッテリ20の負極端子が接続されている。本実施形態において、各遮断スイッチSWRp,SWRnは、リレー(具体的には例えば、システムメインリレー)である。各遮断スイッチSWRp,SWRnは、インバータ制御装置50又は上位制御装置80により操作される。
The first end of the first cutoff switch SWRp is connected to the collector of the upper arm switch SWp of each phase via the high potential side path Lp. The first end of the second cutoff switch SWRn is connected to the emitter of the lower arm switch SWn of each phase via the low potential side path Ln. The positive electrode terminal of the high voltage battery 20 is connected to the second end of the first cutoff switch SWRp, and the negative electrode terminal of the high voltage battery 20 is connected to the second end of the second cutoff switch SWRn. In the present embodiment, each cutoff switch SWRp, SWRn is a relay (specifically, for example, a system main relay). Each cutoff switch SWRp, SWRn is operated by the inverter control device 50 or the host control device 80.
制御システムは、平滑コンデンサ41及び車載電気機器42を備えている。平滑コンデンサ41は、高電位側経路Lpと低電位側経路Lnとを接続している。電気機器42は、高電位側経路Lp及び低電位側経路Lnに接続されている。電気機器42は、例えば、電動コンプレッサ及びDCDCコンバータのうち少なくとも一方を含む。電動コンプレッサは、車室内空調装置を構成し、車載冷凍サイクルの冷媒を循環させるべく、高圧バッテリ20から給電されて駆動される。DCDCコンバータは、高圧バッテリ20の出力電圧を降圧して車載低圧負荷に供給する。低圧負荷は、図示しない低圧バッテリを含む。低圧バッテリは、出力電圧(例えば定格電圧)が高圧バッテリ20の出力電圧(定格電圧)よりも低い2次電池であり、例えば鉛蓄電池である。
The control system includes a smoothing capacitor 41 and an in-vehicle electric device 42. The smoothing capacitor 41 connects the high potential side path Lp and the low potential side path Ln. The electric device 42 is connected to the high potential side path Lp and the low potential side path Ln. The electrical device 42 includes, for example, at least one of an electric compressor and a DCDC converter. The electric compressor constitutes an air conditioner in the vehicle interior and is driven by being supplied with power from the high-pressure battery 20 in order to circulate the refrigerant in the in-vehicle refrigeration cycle. The DCDC converter steps down the output voltage of the high-voltage battery 20 and supplies it to the vehicle-mounted low-voltage load. Low voltage loads include low voltage batteries (not shown). The low voltage battery is a secondary battery whose output voltage (for example, rated voltage) is lower than the output voltage (rated voltage) of the high voltage battery 20, and is, for example, a lead storage battery.
各遮断スイッチSMRp,SMRnがONされている場合、高圧バッテリ20及び平滑コンデンサ41が、インバータ40及び電気機器42に対する蓄電部となる。一方、各遮断スイッチSMRp,SMRnがOFFされている場合、高圧バッテリ20及び平滑コンデンサ41のうち平滑コンデンサ41が、インバータ40及び電気機器42に対する蓄電部となる。
When the cutoff switches SMRp and SMRn are turned on, the high-voltage battery 20 and the smoothing capacitor 41 serve as storage units for the inverter 40 and the electric device 42. On the other hand, when the cutoff switches SMRp and SMRn are turned off, the smoothing capacitor 41 of the high-voltage battery 20 and the smoothing capacitor 41 serves as a storage unit for the inverter 40 and the electric device 42.
制御システムは、相電流検出部43、角度検出部44及び電圧検出部45を備えている。相電流検出部43は、回転電機30に流れる各相電流のうち、少なくとも2相分の電流を検出する。角度検出部44は、ロータ33の電気角を検出し、例えばレゾルバである。電圧検出部45は、平滑コンデンサ41の端子間電圧を検出する。
The control system includes a phase current detection unit 43, an angle detection unit 44, and a voltage detection unit 45. The phase current detection unit 43 detects at least two phases of the currents of each phase flowing through the rotary electric machine 30. The angle detection unit 44 detects the electric angle of the rotor 33, and is, for example, a resolver. The voltage detection unit 45 detects the voltage between the terminals of the smoothing capacitor 41.
制御システムは、第1温度検出部46及び第2温度検出部47を備えている。第1温度検出部46は、インバータ40を構成するダイオードDp,Dn及びスイッチSWp,SWnの温度を検出する。第2温度検出部47は、永久磁石34の温度を検出する。
The control system includes a first temperature detection unit 46 and a second temperature detection unit 47. The first temperature detection unit 46 detects the temperatures of the diodes Dp and Dn and the switches SWp and SWn constituting the inverter 40. The second temperature detection unit 47 detects the temperature of the permanent magnet 34.
制御システムは、直流電流検出部48を備えている。直流電流検出部48は、高電位側経路Lpに流れる電流を検出する。各検出部43~48の検出値は、インバータ制御装置50に入力される。
The control system is equipped with a direct current detection unit 48. The DC current detection unit 48 detects the current flowing in the high potential side path Lp. The detected values of the detection units 43 to 48 are input to the inverter control device 50.
インバータ制御装置50は、CPU、RAM,ROM等を有するECU(電子制御ユニット)である。インバータ制御装置50は、力行駆動制御を行う。力行駆動制御は、高圧バッテリ20から出力される直流電力を交流電力に変換してコイル31に供給するための上,下アームスイッチSWp,SWnのスイッチング制御である。この制御が行われる場合、回転電機30は、電動機として機能し、力行トルク(>0)を発生する。また、インバータ制御装置50は、回生駆動制御を行う。回生駆動制御は、回転電機30で発電される交流電力を直流電力に変換して高圧バッテリ20に供給するための上,下アームスイッチSWp,SWnのスイッチング制御である。この制御が行われる場合、回転電機30は、発電機として機能し、回生トルク(<0)を発生する。
The inverter control device 50 is an ECU (electronic control unit) having a CPU, RAM, ROM, and the like. The inverter control device 50 performs power running drive control. The power running control is a switching control of the upper and lower arm switches SWp and SWn for converting the DC power output from the high voltage battery 20 into AC power and supplying it to the coil 31. When this control is performed, the rotary electric machine 30 functions as an electric machine and generates a power running torque (> 0). Further, the inverter control device 50 performs regenerative drive control. The regenerative drive control is a switching control of the upper and lower arm switches SWp and SWn for converting the AC power generated by the rotary electric machine 30 into DC power and supplying it to the high-voltage battery 20. When this control is performed, the rotary electric machine 30 functions as a generator and generates regenerative torque (<0).
図3は、インバータ制御装置50が実行する処理のブロック図である。インバータ制御装置50において、トルク指令部51は、上位制御装置80からの指令を受けることにより、トルク指令値Trq*を算出する。電流指令部52は、算出されたトルク指令値Trq*に基づいて、d軸電流指令値Id*及びq軸電流指令値Iq*を算出する。
FIG. 3 is a block diagram of the processing executed by the inverter control device 50. In the inverter control device 50, the torque command unit 51 calculates the torque command value Trq * by receiving a command from the host control device 80. The current command unit 52 calculates the d-axis current command value Id * and the q-axis current command value Iq * based on the calculated torque command value Trq *.
dq変換部53は、相電流検出部43により検出された相電流と、角度検出部44により検出された電気角θeとに基づいて、dq座標系におけるd軸電流値Idr及びq軸電流値Iqrを算出する。
The dq conversion unit 53 has a d-axis current value Idr and a q-axis current value Iqr in the dq coordinate system based on the phase current detected by the phase current detection unit 43 and the electric angle θe detected by the angle detection unit 44. Is calculated.
偏差演算部54は、d軸電流指令値Id*とd軸電流値Idrとの差であるd軸電流偏差ΔIdと、q軸電流指令値Iq*とq軸電流値Iqrとの差であるq軸電流偏差ΔIqとを算出する。
The deviation calculation unit 54 is the difference between the d-axis current deviation ΔId, which is the difference between the d-axis current command value Id * and the d-axis current value Idr, and the q-axis current command value Iq *, and the q-axis current value Iqr. The shaft current deviation ΔIq is calculated.
フィードバック制御部55は、d軸電流偏差ΔIdを0にフィードバック制御するための操作量としてd軸電圧指令値Vd*を算出し、q軸電流偏差ΔIqを0にフィードバック制御するための操作量としてq軸電圧指令値Vq*を算出する。フィードバック制御は、例えば、比例積分制御である。
The feedback control unit 55 calculates the d-axis voltage command value Vd * as an operation amount for feedback-controlling the d-axis current deviation ΔId to 0, and q as an operation amount for feedback-controlling the q-axis current deviation ΔIq to 0. The shaft voltage command value Vq * is calculated. The feedback control is, for example, proportional integral control.
変調器56は、d,q軸電圧指令値Vd*,Vq*、電気角θe、及び電圧検出部45により検出された平滑コンデンサ41の端子間電圧である電源電圧Vbに基づいて、U,V,W相電圧指令値Vu*,Vv*,Vw*を算出する。詳しくは、U相を例にして説明すると、変調器56は、U相電圧指令値Vu*を電源電圧Vbで規格化した信号と、三角波信号等のキャリア信号との大小比較に基づいて、U相の上,下アームスイッチSWp,SWnのゲートに供給するU相駆動信号を生成する。同様にして、変調器56は、V相の上,下アームスイッチSWp,SWnのゲートに供給するV相駆動信号と、W相の上,下アームスイッチSWp,SWnのゲートに供給するW相駆動信号とを生成する。各駆動信号は、スイッチのOFFを指示するOFF指令又はスイッチのONを指示するON指令である。各駆動信号が上,下アームスイッチSWp,SWnのゲートに供給されることにより、各相の上,下アームスイッチSWp,SWnがスイッチング制御される。
The modulator 56 is U, V based on the d, q-axis voltage command values Vd *, Vq *, the electric angle θe, and the power supply voltage Vb, which is the voltage between the terminals of the smoothing capacitor 41 detected by the voltage detection unit 45. , W phase voltage command values Vu *, Vv *, Vw * are calculated. More specifically, to explain by taking the U phase as an example, the modulator 56 is based on a magnitude comparison between a signal obtained by standardizing the U phase voltage command value Vu * with the power supply voltage Vb and a carrier signal such as a triangular wave signal. A U-phase drive signal to be supplied to the gates of the upper and lower arm switches SWp and SWn of the phase is generated. Similarly, the modulator 56 supplies a V-phase drive signal supplied to the gates of the V-phase upper and lower arm switches SWp and SWn, and a W-phase drive signal supplied to the gates of the W-phase upper and lower arm switches SWp and SWn. Generate a signal. Each drive signal is an OFF command instructing the switch to be turned off or an ON command instructing the switch to be turned on. By supplying each drive signal to the gates of the upper and lower arm switches SWp and SWn, the upper and lower arm switches SWp and SWn of each phase are switched and controlled.
インバータ制御装置50は、要否判定部57及び減磁実行部58を備えている。以下、要否判定部57及び減磁実行部58が備えられる理由について説明する。
The inverter control device 50 includes a necessity determination unit 57 and a demagnetization execution unit 58. Hereinafter, the reason why the necessity determination unit 57 and the demagnetization execution unit 58 are provided will be described.
車両10が例えば故障等により自走できなくなることがある。この場合、前輪11a及び後輪11bの双方が路面に接した状態、又は前輪11a及び後輪11bのうち、一方が持ち上げられるとともに他方が路面に接した状態で、車両10が他車両(例えばレッカー車)に牽引されることがある。この場合、他車両の走行に伴い車両10の駆動輪11が回転する。その回転に伴い、ロータ33が回転し、永久磁石34の磁束によって3相のコイル31に逆起電圧が発生する。
The vehicle 10 may not be able to run on its own due to, for example, a breakdown. In this case, the vehicle 10 is a other vehicle (for example, a tow truck) with both the front wheels 11a and the rear wheels 11b in contact with the road surface, or with one of the front wheels 11a and the rear wheels 11b being lifted and the other in contact with the road surface. ) May be towed. In this case, the drive wheels 11 of the vehicle 10 rotate as the other vehicle travels. Along with the rotation, the rotor 33 rotates, and the magnetic flux of the permanent magnet 34 generates a counter electromotive voltage in the three-phase coil 31.
車両10の牽引時には、通常、各遮断スイッチSWRp,SMRnはOFFにされ、インバータ40では、全相の上,下アームスイッチSWp,SWnがOFFにされるシャットダウン制御が実行される。この場合、逆起電圧が平滑コンデンサ41の端子間電圧を上回ると、各コイル31からインバータ40を介して平滑コンデンサ41へと電流が流れ、平滑コンデンサ41の端子間電圧が高くなる。その結果、逆起電圧が、ダイオードDp,Dn、上,下アームスイッチSWp,SWn、平滑コンデンサ41及び電気機器42のうち少なくとも1つの機器の耐圧を上回ると、その機器が故障するおそれもある。
When the vehicle 10 is towed, normally, the shutoff switches SWRp and SMRn are turned off, and in the inverter 40, shutdown control is executed in which the upper and lower arm switches SWp and SWn of all phases are turned off. In this case, when the countercurrent voltage exceeds the voltage between the terminals of the smoothing capacitor 41, a current flows from each coil 31 to the smoothing capacitor 41 via the inverter 40, and the voltage between the terminals of the smoothing capacitor 41 becomes high. As a result, if the counter electromotive voltage exceeds the withstand voltage of at least one of the diodes Dp, Dn, the upper and lower arm switches SWp, SWn, the smoothing capacitor 41, and the electric device 42, the device may fail.
特に、他車両の走行速度が高かったり、回転電機30の高トルク化を図るために、永久磁石34が高磁束密度を有するものであったりする場合、逆起電圧が高くなりやすく、上述した故障が発生しやすい。なお、高トルク化が図られた回転電機としては、具体的には例えば、特開2019-106866号公報に記載されているように、固有保磁力が400[kA/m]以上であり、かつ、残留磁束密度が1.0T以上の永久磁石を有するスロットレス構造のものがある。
In particular, when the traveling speed of another vehicle is high or the permanent magnet 34 has a high magnetic flux density in order to increase the torque of the rotary electric machine 30, the counter electromotive voltage tends to be high, and the above-mentioned failure occurs. Is likely to occur. As a rotary electric machine with high torque, specifically, as described in Japanese Patent Application Laid-Open No. 2019-106866, the intrinsic coercive force is 400 [kA / m] or more, and the intrinsic coercive force is 400 [kA / m] or more. There is a slotless structure having a permanent magnet having a residual magnetic flux density of 1.0 T or more.
また、車両10の牽引時以外においても、2つの回転電機30のうち一方の力行駆動が実施できない場合において、他方の力行駆動により車両10の走行を継続させるときにも同様の問題が発生し得る。
Further, even when the vehicle 10 is not towed, the same problem may occur when the power running drive of one of the two rotary electric machines 30 cannot be carried out and the running of the vehicle 10 is continued by the power running drive of the other. ..
このような問題に対処すべく、減磁実行部58は、必要に応じて永久磁石34を不可逆減磁させて逆起電圧を低減する減磁制御を行う。以下では、不可逆減磁を単に減磁と称すこともある。減磁制御は、3相短絡制御、及び遮断制御に相当するシャットダウン制御を含む制御である。本実施形態の3相短絡制御は、全相の下アームスイッチSWnをONするとともに、全相の上アームスイッチSWpをOFFする制御である。なお、3相短絡制御は、ASC(Active Short Circuit)制御とも呼ばれる。
In order to deal with such a problem, the demagnetization execution unit 58 performs demagnetization control to reduce the countercurrent voltage by irreversibly demagnetizing the permanent magnet 34 as necessary. In the following, irreversible demagnetization may be simply referred to as demagnetization. The demagnetization control is a control including a three-phase short circuit control and a shutdown control corresponding to a cutoff control. The three-phase short-circuit control of the present embodiment is a control in which the lower arm switch SWn of all phases is turned on and the upper arm switch SWp of all phases is turned off. The three-phase short-circuit control is also called ASC (Active Short Circuit) control.
減磁制御においては、3相短絡制御の実行後に、シャットダウン制御が実行される。以下、この理由について説明する。
In the demagnetization control, the shutdown control is executed after the execution of the three-phase short circuit control. The reason for this will be described below.
図4は、3相短絡制御を継続した場合におけるd,q軸電流値Id,Iqの推移を示すdq座標系の図である。以下では、電流値のdq座標系においてd,q軸電流値Id,Iqで特定される位置を動作点OPと称すこととする。また、本実施形態では、強め界磁を行う場合のd軸電流Idの符号を正とし、弱め界磁を行う場合のd軸電流Idの符号を負とする。また、力行駆動制御によりロータ33の第1回転方向に力行トルクを発生させる場合のq軸電流Iqの符号を正とし、回生駆動制御により第1回転方向とは逆方向の第2回転方向に回生トルクを発生させる場合におけるq軸電流Iqの符号を負とする。
FIG. 4 is a diagram of the dq coordinate system showing the transition of the d and q-axis current values Id and Iq when the three-phase short-circuit control is continued. In the following, the position specified by the d, q-axis current values Id, Iq in the dq coordinate system of the current value will be referred to as an operating point OP. Further, in the present embodiment, the sign of the d-axis current Id when the field is strengthened is positive, and the sign of the d-axis current Id when the field is weakened is negative. Further, the sign of the q-axis current Iq when the force running torque is generated in the first rotation direction of the rotor 33 by the force running control is positive, and the regenerative drive control regenerates in the second rotation direction opposite to the first rotation direction. The sign of the q-axis current Iq when generating torque is negative.
3相短絡制御が実行されると、インバータ40及びコイル31に還流電流が流れるようになる。この場合、図4に示すように、動作点OPは、最終的には、q軸電流値Iqが0であって、かつ、d軸電流値Idが負の所定値になる最終到達位置Mに収束する。この所定値は、例えば、永久磁石34の磁石磁束と、d軸電流値Idによりコイル31に発生する磁束であって磁石磁束を打ち消す方向の磁束とが等しくなる場合の値である。
When the three-phase short circuit control is executed, a reflux current flows through the inverter 40 and the coil 31. In this case, as shown in FIG. 4, the operating point OP finally reaches the final arrival position M where the q-axis current value Iq is 0 and the d-axis current value Id becomes a negative predetermined value. Converge. This predetermined value is, for example, a value when the magnetic flux of the permanent magnet 34 and the magnetic flux generated in the coil 31 by the d-axis current value Id and in the direction of canceling the magnet magnetic flux are equal to each other.
動作点OPは、3相短絡制御が開始される開始位置Psから最終到達位置Mに直線的に向かうのではなく、最終到達位置Mを中心に時計回りに渦を巻くような軌跡を描いて最終到達位置Mに向かう。図4に示す例では、開始位置Psから最終到達位置Mに向かうまでの動作点OPの軌跡が、電流値のdq座標系において第2,第3象限及び第2,第3象限に挟まれたd軸の領域に存在している。第2象限とは、q軸電流値Iqが正の値となり、d軸電流値Idが負の値となる領域であり、第3象限とは、d,q軸電流値Id,Iqがともに負の値となる領域である。
The operating point OP does not go straight from the start position Ps where the three-phase short-circuit control is started to the final arrival position M, but draws a trajectory that swirls clockwise around the final arrival position M. Head to the arrival position M. In the example shown in FIG. 4, the locus of the operating point OP from the start position Ps to the final arrival position M is sandwiched between the second and third quadrants and the second and third quadrants in the dq coordinate system of the current value. It exists in the area of the d-axis. The second quadrant is a region where the q-axis current value Iq is a positive value and the d-axis current value Id is a negative value, and the third quadrant is a region where both the d and q-axis current values Id and Iq are negative. This is the area that becomes the value of.
動作点OPが最終到達位置Mに向かう過程において、d軸電流は、負方向に断続的に大きくなる。このd軸電流を利用することにより、永久磁石34を減磁させることができる。しかしながら、3相短絡制御が実行され続けると、還流電流が流れ続ける。この場合、d軸電流が流れ続けることとなり、永久磁石34が減磁され過ぎたり、3相短絡制御によりONされている下アームスイッチSWnに電流が流れて下アームスイッチSWnが故障したりするおそれがある。
In the process of the operating point OP moving toward the final arrival position M, the d-axis current increases intermittently in the negative direction. By utilizing this d-axis current, the permanent magnet 34 can be demagnetized. However, if the three-phase short circuit control continues to be executed, the reflux current continues to flow. In this case, the d-axis current will continue to flow, and the permanent magnet 34 may be demagnetized too much, or the current may flow to the lower arm switch SWn that is turned on by the three-phase short-circuit control, causing the lower arm switch SWn to fail. There is.
そこで、本実施形態では、3相短絡制御の実行後にシャットダウン制御が実行される。これにより、還流電流が流れない状態にする。
Therefore, in the present embodiment, the shutdown control is executed after the execution of the three-phase short circuit control. As a result, the reflux current is prevented from flowing.
図5は、要否判定部57、減磁実行部58及びそれらの周辺構成を示すブロック図である。
FIG. 5 is a block diagram showing a necessity determination unit 57, a demagnetization execution unit 58, and their peripheral configurations.
上位制御装置80は、車両10に異常が発生したか否かを判定する。上位制御装置80は、例えば、以下(A1)~(A3)のいずれかの条件が成立したと判定した場合、車両10に異常が発生したと判定する。
The host control device 80 determines whether or not an abnormality has occurred in the vehicle 10. For example, when it is determined that any of the following conditions (A1) to (A3) is satisfied, the host control device 80 determines that an abnormality has occurred in the vehicle 10.
(A1)車両10が衝突してエアバックが作動したとの条件
(A2)車両10が他車両に牽引されているとの条件
(A3)制御システムに異常が発生したとの条件
制御システムの異常には、各回転電機30及び各インバータ40のうち少なくとも1つの異常、及び各検出部43~48のうち少なくとも1つの異常が含まれる。インバータ40の異常には、上,下アームスイッチSWp,SWnのショート故障又はオープン故障が含まれる。 (A1) Condition that thevehicle 10 collided and the airbag was activated (A2) Condition that the vehicle 10 was towed by another vehicle (A3) Condition that an abnormality occurred in the control system Abnormality of the control system Includes at least one abnormality in each rotary electric machine 30 and each inverter 40, and at least one abnormality in each of the detection units 43 to 48. The abnormality of the inverter 40 includes a short-circuit failure or an open failure of the upper and lower arm switches SWp and SWn.
(A2)車両10が他車両に牽引されているとの条件
(A3)制御システムに異常が発生したとの条件
制御システムの異常には、各回転電機30及び各インバータ40のうち少なくとも1つの異常、及び各検出部43~48のうち少なくとも1つの異常が含まれる。インバータ40の異常には、上,下アームスイッチSWp,SWnのショート故障又はオープン故障が含まれる。 (A1) Condition that the
上位制御装置80により車両10に異常が発生したと判定された場合、インバータ制御装置50において、変調器56から出力される各相の駆動信号がOFF指令になるように構成されている。この構成は、例えば、上位制御装置80からトルク指令部51に対してトルク指令値Trq*の算出の停止を指示することにより実現できる。
When the host control device 80 determines that an abnormality has occurred in the vehicle 10, the inverter control device 50 is configured so that the drive signal of each phase output from the modulator 56 becomes an OFF command. This configuration can be realized, for example, by instructing the torque command unit 51 to stop the calculation of the torque command value Trq * from the host control device 80.
また、上位制御装置80は、車両10に異常が発生したと判定した場合、要否判定部57に対して異常通知信号を送信する。
Further, when the host control device 80 determines that an abnormality has occurred in the vehicle 10, it transmits an abnormality notification signal to the necessity determination unit 57.
要否判定部57は、上位制御装置80から異常通知信号を受信した場合、インバータ40及びインバータ制御装置50のうち、3相短絡制御及びシャットダウン制御の実行に必要な構成に異常があるか否かを判定する。本実施形態において、この異常には、以下(B1)~(B4)の異常が含まれる。
When the necessity determination unit 57 receives the abnormality notification signal from the host control device 80, whether or not there is an abnormality in the configurations of the inverter 40 and the inverter control device 50 necessary for executing the three-phase short-circuit control and the shutdown control. Is determined. In the present embodiment, this abnormality includes the following abnormalities (B1) to (B4).
(B1)下アームスイッチSWnのスイッチング状態を切り替えられなくなる異常
(B2)上アームスイッチSWpのショート故障
(B3)インバータ制御装置50において3相短絡制御及びシャットダウン制御を実行するための各相の駆動信号を生成する機能、及び生成した駆動信号を各スイッチSWp,SWnのゲートまで伝達する機能の異常
(B4)後述するステップS12で用いられる値を検出する各検出部(具体的には、直流電流検出部48、電圧検出部45及び第1温度検出部46)のうち少なくとも1つの異常
要否判定部57は、3相短絡制御及びシャットダウン制御の実行に必要な構成に異常がないと判定した場合、永久磁石34の減磁が必要であるか否かを判定する。本実施形態において、要否判定部57は、第1~第3条件のいずれかが成立する場合、減磁が必要であると判定し、第1~第3条件のいずれも成立しない場合、減磁が不要であると判定する。 (B1) Abnormality in which the switching state of the lower arm switch SWn cannot be switched (B2) Short-circuit failure of the upper arm switch SWp (B3) Drive signal of each phase for executing three-phase short-circuit control and shutdown control in the inverter control device 50 (B4) Abnormality of the function of generating the above and the function of transmitting the generated drive signal to the gates of the switches SWp and SWn When it is determined that there is no abnormality in the configuration necessary for executing the three-phase short-circuit control and the shutdown control, the abnormalitynecessity determination unit 57 of at least one of the unit 48, the voltage detection unit 45 and the first temperature detection unit 46) determines that there is no abnormality. It is determined whether or not demagnetization of the permanent magnet 34 is necessary. In the present embodiment, the necessity determination unit 57 determines that demagnetization is necessary when any of the first to third conditions is satisfied, and reduces when any of the first to third conditions is not satisfied. It is determined that magnetism is unnecessary.
(B2)上アームスイッチSWpのショート故障
(B3)インバータ制御装置50において3相短絡制御及びシャットダウン制御を実行するための各相の駆動信号を生成する機能、及び生成した駆動信号を各スイッチSWp,SWnのゲートまで伝達する機能の異常
(B4)後述するステップS12で用いられる値を検出する各検出部(具体的には、直流電流検出部48、電圧検出部45及び第1温度検出部46)のうち少なくとも1つの異常
要否判定部57は、3相短絡制御及びシャットダウン制御の実行に必要な構成に異常がないと判定した場合、永久磁石34の減磁が必要であるか否かを判定する。本実施形態において、要否判定部57は、第1~第3条件のいずれかが成立する場合、減磁が必要であると判定し、第1~第3条件のいずれも成立しない場合、減磁が不要であると判定する。 (B1) Abnormality in which the switching state of the lower arm switch SWn cannot be switched (B2) Short-circuit failure of the upper arm switch SWp (B3) Drive signal of each phase for executing three-phase short-circuit control and shutdown control in the inverter control device 50 (B4) Abnormality of the function of generating the above and the function of transmitting the generated drive signal to the gates of the switches SWp and SWn When it is determined that there is no abnormality in the configuration necessary for executing the three-phase short-circuit control and the shutdown control, the abnormality
ここで、第1条件は、直流電流検出部48により検出された直流電流値Ipが電流閾値Ithよりも小さいとの条件である。本実施形態では、高圧バッテリ20側からインバータ40側に向かって高電位側経路Lpを流れる場合の直流電流値Ipの符号を正とする。また、電流閾値Ithは、0又は0よりもやや小さい値に設定されている。
Here, the first condition is that the DC current value Ip detected by the DC current detection unit 48 is smaller than the current threshold value Is. In the present embodiment, the sign of the DC current value Ip when flowing through the high potential side path Lp from the high voltage battery 20 side toward the inverter 40 side is positive. Further, the current threshold value Is is set to 0 or a value slightly smaller than 0.
第1条件は、平滑コンデンサ41が充電状態であるか否かを判定するための条件である。要否判定部57は、直流電流値Ipが電流閾値Ith以上であると判定した場合、平滑コンデンサ41が充電状態でないと判定し、減磁が不要であると判定する。一方、要否判定部57は、直流電流値Ipが電流閾値Ithよりも小さいと判定した場合、平滑コンデンサ41が充電状態でないと判定し、減磁が必要であると判定する。直流電流値Ipが0未満である場合、逆起電圧に起因した充電電流によって平滑コンデンサ41が充電され、平滑コンデンサ41の端子間電圧が上昇する。その結果、平滑コンデンサ41及び電気機器42等が故障するといった問題が発生し得る。この問題に対処すべく、第1条件が設定されている。
The first condition is a condition for determining whether or not the smoothing capacitor 41 is in a charged state. When the necessity determination unit 57 determines that the DC current value Ip is equal to or greater than the current threshold value Is, it determines that the smoothing capacitor 41 is not in the charged state, and determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the DC current value Ip is smaller than the current threshold value Is, it determines that the smoothing capacitor 41 is not in the charged state and determines that demagnetization is necessary. When the DC current value Ip is less than 0, the smoothing capacitor 41 is charged by the charging current caused by the counter electromotive voltage, and the voltage between the terminals of the smoothing capacitor 41 rises. As a result, problems such as failure of the smoothing capacitor 41 and the electric device 42 may occur. The first condition is set to deal with this problem.
第2条件は、電源電圧Vbが電圧閾値Vthよりも高いとの条件である。例えば、電圧閾値Vthは、各遮断スイッチSMRp,SMRnがONされている場合、高圧バッテリ20、平滑コンデンサ41及び電気機器42それぞれの耐圧のうち、最も低い耐圧と同じ値又は最も低い耐圧よりもやや低い値に設定される。また例えば、電圧閾値Vthは、各遮断スイッチSMRp,SMRnがOFFされている場合、平滑コンデンサ41及び電気機器42それぞれの耐圧のうち、最も低い耐圧と同じ値又は最も低い耐圧よりもやや低い値に設定される。
The second condition is that the power supply voltage Vb is higher than the voltage threshold value Vth. For example, the voltage threshold Vth has the same value as the lowest withstand voltage or slightly higher than the lowest withstand voltage among the withstand voltage of each of the high-voltage battery 20, the smoothing capacitor 41, and the electric device 42 when the cutoff switches SMRp and SMRn are turned on. Set to a low value. Further, for example, the voltage threshold Vth is set to the same value as the lowest withstand voltage or slightly lower than the lowest withstand voltage among the withstand voltage of each of the smoothing capacitor 41 and the electric device 42 when the cutoff switches SMRp and SMRn are turned off. Set.
要否判定部57は、電源電圧Vbが電圧閾値Vth以下であると判定した場合、減磁が不要であると判定する。一方、要否判定部57は、電源電圧Vbが電圧閾値Vthよりも高いと判定した場合、減磁が必要であると判定する。第2条件が設定されていることにより、電源電圧Vbが高圧バッテリ20、平滑コンデンサ41及び電気機器42のうち少なくとも1つの耐圧を超える前に、減磁が必要であると判定できる。
When the necessity determination unit 57 determines that the power supply voltage Vb is equal to or less than the voltage threshold value Vth, it determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the power supply voltage Vb is higher than the voltage threshold value Vth, the necessity determination unit 57 determines that demagnetization is necessary. By setting the second condition, it can be determined that demagnetization is necessary before the power supply voltage Vb exceeds the withstand voltage of at least one of the high voltage battery 20, the smoothing capacitor 41, and the electric device 42.
第3条件は、第1温度検出部46により検出された温度である素子温度Tdrが温度閾値Tdthよりも高いとの条件である。素子温度Tdrは、例えば、第1温度検出部46の検出対象となる部品の温度のうち、最も高い温度(例えば、ダイオードDp,Dnの温度)である。第3条件は、インバータ40の構成部品が過熱されて故障する事態の発生を抑制するための条件である。要否判定部57は、素子温度Tdrが温度閾値Tdth以下であると判定した場合、減磁が不要であると判定する。一方、要否判定部57は、素子温度Tdrが温度閾値Tdthよりも高いと判定した場合、減磁が必要であると判定する。減磁させることによって逆起電圧を抑制し、インバータ40を構成する素子を介して流れる電流を低減することができる。
The third condition is that the element temperature Tdr, which is the temperature detected by the first temperature detection unit 46, is higher than the temperature threshold value Tds. The element temperature Tdr is, for example, the highest temperature (for example, the temperature of the diodes Dp and Dn) among the temperatures of the components to be detected by the first temperature detection unit 46. The third condition is a condition for suppressing the occurrence of a situation in which the components of the inverter 40 are overheated and fail. When the necessity determination unit 57 determines that the element temperature Tdr is equal to or less than the temperature threshold value Tdt, it determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the element temperature Tdr is higher than the temperature threshold value Tds, it determines that demagnetization is necessary. By demagnetizing, the counter electromotive voltage can be suppressed and the current flowing through the elements constituting the inverter 40 can be reduced.
要否判定部57は、減磁が不要であると判定した場合、減磁実行部58に出力する減磁指令の論理をLにし、減磁が必要であると判定した場合、減磁指令の論理をHにする。
When the necessity determination unit 57 determines that demagnetization is unnecessary, the logic of the demagnetization command output to the demagnetization execution unit 58 is set to L, and when it is determined that demagnetization is necessary, the demagnetization command is issued. Set the logic to H.
減磁実行部58は、シャットダウン判定部58a、NOT回路58b及びAND回路58cを備えている。シャットダウン判定部58aには、要否判定部57の減磁指令が入力される。シャットダウン判定部58aは、減磁指令の論理がHに切り替わってからの経過時間Ltrをカウントするタイマを備えている。シャットダウン判定部58aは、カウントした経過時間Ltrが判定時間Lthになるまではシャットダウン制御の実行が不要であると判定し、カウントした経過時間Ltrが判定時間Lthに到達したと判定した場合にシャットダウン制御の実行が必要であると判定する。シャットダウン判定部58aは、シャットダウン制御の実行が不要であると判定した場合、NOT回路58bに出力するシャットダウン指令の論理をLにする。この場合、NOT回路58bからAND回路58cへの出力信号の論理がHになる。一方、シャットダウン判定部58aは、シャットダウン制御の実行が必要であると判定した場合、NOT回路58bに出力するシャットダウン指令の論理をHにする。この場合、NOT回路58bからAND回路58cへの出力信号の論理がLになる。
The demagnetization execution unit 58 includes a shutdown determination unit 58a, a NOT circuit 58b, and an AND circuit 58c. A demagnetization command of the necessity determination unit 57 is input to the shutdown determination unit 58a. The shutdown determination unit 58a includes a timer that counts the elapsed time Ltr after the logic of the demagnetization command is switched to H. The shutdown determination unit 58a determines that it is not necessary to execute the shutdown control until the counted elapsed time Lth reaches the determination time Lth, and when it is determined that the counted elapsed time Ltr has reached the determination time Lth, the shutdown control is performed. Judge that it is necessary to execute. When the shutdown determination unit 58a determines that the execution of the shutdown control is unnecessary, the logic of the shutdown command output to the NOT circuit 58b is set to L. In this case, the logic of the output signal from the NOT circuit 58b to the AND circuit 58c becomes H. On the other hand, when the shutdown determination unit 58a determines that it is necessary to execute the shutdown control, the logic of the shutdown command output to the NOT circuit 58b is set to H. In this case, the logic of the output signal from the NOT circuit 58b to the AND circuit 58c becomes L.
AND回路58cは、NOT回路58bの出力信号の論理がLの場合、減磁指令の論理にかかわらず、変調器56に出力する指示信号Sigの論理をLにする。この場合、変調器56からインバータ40を構成する各相の上,下アームスイッチSWp,SWnに対して出力される駆動信号が全てOFF指令とされる。その結果、シャットダウン制御が実行される。
When the logic of the output signal of the NOT circuit 58b is L, the AND circuit 58c sets the logic of the instruction signal Sig output to the modulator 56 to L regardless of the logic of the demagnetization command. In this case, all the drive signals output from the modulator 56 to the upper and lower arm switches SWp and SWn of each phase constituting the inverter 40 are set to OFF commands. As a result, shutdown control is executed.
AND回路58cは、NOT回路58bの出力信号及び減磁指令それぞれの論理がHの場合、変調器56に出力する指示信号Sigの論理をHにする。この場合、変調器56から各相の下アームスイッチSWnに対して出力される駆動信号がON指令とされ、変調器56から各相の上アームスイッチSWpに対して出力される駆動信号がOFF指令とされる。その結果、3相短絡制御が実行される。
When the logic of each of the output signal and the demagnetization command of the NOT circuit 58b is H, the AND circuit 58c sets the logic of the instruction signal Sig output to the modulator 56 to H. In this case, the drive signal output from the modulator 56 to the lower arm switch SWn of each phase is an ON command, and the drive signal output from the modulator 56 to the upper arm switch SWp of each phase is an OFF command. It is said that. As a result, three-phase short circuit control is executed.
図6は、減磁制御の手順を示すフローチャートである。
FIG. 6 is a flowchart showing the procedure of demagnetization control.
ステップS10において、上位制御装置80は、車両10に異常が発生したか否かを判定する。
In step S10, the host control device 80 determines whether or not an abnormality has occurred in the vehicle 10.
上位制御装置80により車両10に異常が発生したと判定された場合、ステップS11において、要否判定部57は、3相短絡制御及びシャットダウン制御の実行に必要な構成に異常があるか否かを判定する。
When it is determined by the host control device 80 that an abnormality has occurred in the vehicle 10, in step S11, the necessity determination unit 57 determines whether or not there is an abnormality in the configuration necessary for executing the three-phase short-circuit control and the shutdown control. judge.
要否判定部57は、この構成に異常がないと判定した場合には、ステップS12に進み、永久磁石34の減磁が必要であるか否かを判定する。詳しくは、要否判定部57は、上述した第1~第3条件のいずれかが成立する場合、減磁が必要であると判定し、第1~第3条件のいずれも成立しない場合、減磁が不要であると判定する。
If the necessity determination unit 57 determines that there is no abnormality in this configuration, it proceeds to step S12 and determines whether or not demagnetization of the permanent magnet 34 is necessary. Specifically, the necessity determination unit 57 determines that demagnetization is necessary when any of the above-mentioned first to third conditions is satisfied, and reduces when any of the first to third conditions is not satisfied. It is determined that magnetism is unnecessary.
要否判定部57は、第1~第3条件のいずれも成立していないと判定した場合、減磁が不要であると判定し、減磁指令の論理をLにする。そして、減磁制御を終了する。一方、要否判定部57は、第1~第3条件のいずれかが成立していると判定した場合、減磁が必要であると判定する。
When the necessity determination unit 57 determines that none of the first to third conditions is satisfied, it determines that demagnetization is unnecessary, and sets the logic of the demagnetization command to L. Then, the demagnetization control is terminated. On the other hand, when it is determined that any of the first to third conditions is satisfied, the necessity determination unit 57 determines that demagnetization is necessary.
ステップS13では、要否判定部57は、減磁指令の論理をHにする。その後、シャットダウン判定部58aは、減磁指令の論理がHに切り替わってからの経過時間Ltrが判定時間Lthになるまでは、NOT回路58bに出力するシャットダウン指令の論理をLにする。これにより、NOT回路58bからAND回路58cへの出力信号の論理がHになり、AND回路58cから出力される指示信号Sigの論理がHになる。その結果、インバータ40において3相短絡制御が実行される。
In step S13, the necessity determination unit 57 sets the logic of the demagnetization command to H. After that, the shutdown determination unit 58a sets the logic of the shutdown command to be output to the NOT circuit 58b to L until the elapsed time Lth after the logic of the demagnetization command is switched to H becomes the determination time Lth. As a result, the logic of the output signal from the NOT circuit 58b to the AND circuit 58c becomes H, and the logic of the instruction signal Sig output from the AND circuit 58c becomes H. As a result, the three-phase short-circuit control is executed in the inverter 40.
ステップS14において、シャットダウン判定部58aは、経過時間Ltrが判定時間Lthに到達したと判定した場合、ステップS15に進み、NOT回路58bに出力するシャットダウン指令の論理をHにする。これにより、NOT回路58bからAND回路58cへの出力信号の論理がLになり、AND回路58cから出力される指示信号Sigの論理がLになる。その結果、インバータ40においてシャットダウン制御が実行される。
In step S14, when the shutdown determination unit 58a determines that the elapsed time Lth has reached the determination time Lth, the process proceeds to step S15, and the logic of the shutdown command output to the NOT circuit 58b is set to H. As a result, the logic of the output signal from the NOT circuit 58b to the AND circuit 58c becomes L, and the logic of the instruction signal Sig output from the AND circuit 58c becomes L. As a result, shutdown control is executed in the inverter 40.
図6に示した処理において、例えば、上位制御装置80は、車両10が他車両に牽引されていると判定した場合、例えば角度検出部44の検出値に基づいて、前輪11a及び後輪11bのうちいずれの駆動輪11が回転しているかを判定する。ここで、2つの回転電機30のうち、回転している駆動輪11に駆動トルクを付与する回転電機を対象回転電機とする。インバータ制御装置50は、2つのインバータ40のうち、対象回転電機に接続されたインバータに対して、ステップS11~S15の処理を行う。
In the process shown in FIG. 6, for example, when the host control device 80 determines that the vehicle 10 is being towed by another vehicle, the front wheels 11a and the rear wheels 11b are based on the detection values of the angle detection unit 44, for example. It is determined which of the drive wheels 11 is rotating. Here, of the two rotary electric machines 30, the rotary electric machine that applies the drive torque to the rotating drive wheel 11 is designated as the target rotary electric machine. The inverter control device 50 performs the processes of steps S11 to S15 for the inverter connected to the target rotary electric machine among the two inverters 40.
また例えば、上位制御装置80は、各回転電機30及び各インバータ40のうち少なくとも1つの異常、及び各検出部43~48のうち少なくとも1つの異常のいずれかが発生したと判定した場合、2つの回転電機30のうち、駆動輪11に駆動トルクを付与可能な回転電機を選択する。インバータ制御装置50は、2つのインバータ40のうち、選択された回転電機に接続されたインバータに対しては、ステップS11~S15の処理を行い、残りのインバータに対しては、力行駆動制御又は回生駆動制御を行う。これにより、車両10の走行を極力継続させることができる。
Further, for example, when the host control device 80 determines that at least one abnormality of each rotary electric machine 30 and each inverter 40 and at least one abnormality of each of the detection units 43 to 48 have occurred, two. Among the rotary electric machines 30, a rotary electric machine capable of applying a drive torque to the drive wheels 11 is selected. Of the two inverters 40, the inverter control device 50 performs the processes of steps S11 to S15 for the inverter connected to the selected rotary electric machine, and power drive control or regeneration for the remaining inverters. Drive control is performed. As a result, the running of the vehicle 10 can be continued as much as possible.
続いて、減磁制御の実行態様の一例について説明する。ここでは、車両10に異常が発生し、車両10が他車両に牽引される場合について説明する。
Next, an example of an execution mode of demagnetization control will be described. Here, a case where an abnormality occurs in the vehicle 10 and the vehicle 10 is towed by another vehicle will be described.
まず、上位制御装置80により車両10に異常が発生したと判定される。これにより、上位制御装置80からトルク指令部51に対する指令が停止され、インバータ40においてシャットダウン制御が実行される。
First, it is determined by the host control device 80 that an abnormality has occurred in the vehicle 10. As a result, the command from the host control device 80 to the torque command unit 51 is stopped, and the shutdown control is executed in the inverter 40.
上位制御装置80は、異常通知信号を要否判定部57に送信する。これにより、要否判定部57は、減磁が必要であるか否かの判定を開始する。車両10が牽引される前においては、路面に接している駆動輪11が回転していないため、コイル31に逆起電圧が発生しない。このため、要否判定部57は、直流電流値Ipが電流閾値Ith以上であると判定し、減磁指令の論理をLにする。この場合、AND回路58cから出力される指示信号Sigの論理がLになる。その結果、シャットダウン制御の実行が維持される。
The host control device 80 transmits an abnormality notification signal to the necessity determination unit 57. As a result, the necessity determination unit 57 starts determining whether or not demagnetization is necessary. Before the vehicle 10 is towed, the drive wheel 11 in contact with the road surface does not rotate, so that a counter electromotive voltage is not generated in the coil 31. Therefore, the necessity determination unit 57 determines that the DC current value Ip is equal to or greater than the current threshold value Is, and sets the logic of the demagnetization command to L. In this case, the logic of the instruction signal Sig output from the AND circuit 58c becomes L. As a result, the execution of shutdown control is maintained.
その後、車両10が牽引され、路面に接している駆動輪11が回転する。これにより、コイル31に逆起電圧が発生し、逆起電圧が平滑コンデンサ41の端子間電圧を上回ると、インバータ40側から平滑コンデンサ41側に電流が流れるようになり、直流電流値Ipが負の値になる。直流電流値Ipが電流閾値Ithを下回ると、要否判定部57は、減磁指令の論理をHに切り替える。減磁指令の論理がHに切り替えられてからの経過時間Ltrが判定時間Lthに到達するまでは、指示信号Sigの論理がLに維持される。その後、経過時間Ltrが判定時間Lthに到達すると、指示信号Sigの論理がHに切り替えられる。その結果、3相短絡制御が開始される。これにより、図7に示すように、動作点OPは、開始位置Psから、図4の場合と同様に、渦を巻くように移動し始める。なお、開始位置Psを特定するq軸電流値Iqが負の値になっているのは、逆起電圧が平滑コンデンサ41の端子間電圧を上回ることにより、平滑コンデンサ41が充電状態になっているからである。また、図7に示す例では、開始位置Psが、d,q軸電流値Id,Iqが負となる第3象限に存在しているが、開始位置Psは必ずしも第3象限に存在するとは限らない。
After that, the vehicle 10 is towed and the drive wheels 11 in contact with the road surface rotate. As a result, a countercurrent voltage is generated in the coil 31, and when the countercurrent voltage exceeds the voltage between the terminals of the smoothing capacitor 41, a current flows from the inverter 40 side to the smoothing capacitor 41 side, and the DC current value Ip is negative. Becomes the value of. When the DC current value Ip is lower than the current threshold value Is, the necessity determination unit 57 switches the logic of the demagnetization command to H. The logic of the instruction signal Sigma is maintained at L until the elapsed time Ltr after the logic of the demagnetization command is switched to H reaches the determination time Lth. After that, when the elapsed time Ltr reaches the determination time Lth, the logic of the instruction signal Sig is switched to H. As a result, three-phase short-circuit control is started. As a result, as shown in FIG. 7, the operating point OP starts to move from the start position Ps in a swirling manner as in the case of FIG. The q-axis current value Iq that specifies the start position Ps is a negative value because the counter electromotive voltage exceeds the voltage between the terminals of the smoothing capacitor 41, so that the smoothing capacitor 41 is in a charged state. Because. Further, in the example shown in FIG. 7, the start position Ps exists in the third quadrant in which the d and q-axis current values Id and Iq are negative, but the start position Ps does not necessarily exist in the third quadrant. not.
その後、経過時間Ltrが判定時間Lthに到達するため、ステップS15の処理により、第1動作点P1においてシャットダウン制御が開始される。その後、ステップS10において肯定判定され、ステップS11において否定判定され、さらにステップS12において第1条件が成立していると判定される。このため、ステップS13の処理により、第2動作点P2において3相短絡制御が再度開始され、その後、第3動作点P3においてシャットダウン制御が再度開始される。
After that, since the elapsed time Ltr reaches the determination time Lth, the shutdown control is started at the first operating point P1 by the process of step S15. After that, an affirmative determination is made in step S10, a negative determination is made in step S11, and it is further determined that the first condition is satisfied in step S12. Therefore, the process of step S13 restarts the three-phase short-circuit control at the second operating point P2, and then restarts the shutdown control at the third operating point P3.
その後、第4動作点P4において3相短絡制御が開始され、その後、第5動作点P5においてシャットダウン制御が開始される。そして、ステップS12において否定判定され、減磁制御は、第6動作点P6において終了する。
After that, the three-phase short-circuit control is started at the fourth operating point P4, and then the shutdown control is started at the fifth operating point P5. Then, a negative determination is made in step S12, and the demagnetization control ends at the sixth operating point P6.
図7に示す例では、3相短絡制御及びシャットダウン制御が繰り返される。これら制御の繰り替し回数が多くなるほど、3相短絡制御の終了タイミングにおける負のd軸電流Idの絶対値が小さくなっていく。
In the example shown in FIG. 7, three-phase short-circuit control and shutdown control are repeated. As the number of repetitions of these controls increases, the absolute value of the negative d-axis current Id at the end timing of the three-phase short-circuit control becomes smaller.
なお、図7に示す例では、減磁制御において描かれる動作点OPの軌跡が第3象限に収まっている。ただし、本実施形態では、経過時間Ltrに基づいて3相短絡制御からシャットダウン制御への切り替えが実施されるため、動作点OPの軌跡は、第3象限に収まらず、第2象限になることもあり得る。この場合であっても、負のd軸電流により、永久磁石34を減磁させることができる。
In the example shown in FIG. 7, the locus of the operating point OP drawn in the demagnetization control is contained in the third quadrant. However, in the present embodiment, since the switching from the three-phase short-circuit control to the shutdown control is performed based on the elapsed time Ltr, the locus of the operating point OP does not fit in the third quadrant and may be in the second quadrant. possible. Even in this case, the permanent magnet 34 can be demagnetized by the negative d-axis current.
また、減磁制御において、3相短絡制御及びシャットダウン制御が繰り返される場合、図8に示すように、経過時間Ltrと比較される判定時間Lthが、前回の判定時間Lthよりも短く設定されてもよい。この場合、3相短絡制御の継続時間が、3相短絡制御の前回の継続時間よりも短くなる。3相短絡制御が実施されるたびに永久磁石34の磁束密度が低下する。このため、継続時間を徐々に短縮していくことにより、永久磁石34が減磁され過ぎることを好適に抑制できる。なお、図8には、シャットダウン制御の継続時間Lsdnも徐々に短縮される例を示したが、各回の継続時間Lsdnは一定であってもよい。
Further, when the three-phase short-circuit control and the shutdown control are repeated in the demagnetization control, as shown in FIG. 8, even if the determination time Lth to be compared with the elapsed time Lth is set shorter than the previous determination time Lth. good. In this case, the duration of the three-phase short-circuit control is shorter than the previous duration of the three-phase short-circuit control. The magnetic flux density of the permanent magnet 34 decreases each time the three-phase short-circuit control is performed. Therefore, by gradually shortening the duration, it is possible to suitably suppress the permanent magnet 34 from being demagnetized too much. Although FIG. 8 shows an example in which the duration Lsdn of the shutdown control is gradually shortened, the duration Lsdn of each time may be constant.
以上説明した本実施形態によれば、3相短絡制御及びシャットダウン制御といった簡易な制御により、インバータ40等の故障の発生を抑制しつつ、永久磁石34を不可逆減磁させることができる。
According to the present embodiment described above, the permanent magnet 34 can be irreversibly demagnetized while suppressing the occurrence of failure of the inverter 40 or the like by simple control such as three-phase short circuit control and shutdown control.
直流電流値Ipが電流閾値Ithよりも小さいと判定された場合、永久磁石34の減磁が必要であると判定される。このため、平滑コンデンサ41の端子間電圧が過度に上昇したり、高圧バッテリ20が過充電になったりする前に永久磁石34を減磁させることができる。
When it is determined that the DC current value Ip is smaller than the current threshold value Is, it is determined that the permanent magnet 34 needs to be demagnetized. Therefore, the permanent magnet 34 can be demagnetized before the voltage between the terminals of the smoothing capacitor 41 rises excessively or the high voltage battery 20 becomes overcharged.
電源電圧Vbが電圧閾値Vthよりも高いと判定された場合、永久磁石34の減磁が必要であると判定される。このため、高圧バッテリ20、平滑コンデンサ41、電気機器42及びインバータ40のうち少なくとも1つの耐圧を超える前に、減磁が必要であることを把握できる。これにより、高圧バッテリ20、平滑コンデンサ41、電気機器42及びインバータ40を保護することができる。
When it is determined that the power supply voltage Vb is higher than the voltage threshold value Vth, it is determined that the permanent magnet 34 needs to be demagnetized. Therefore, it can be understood that demagnetization is necessary before the withstand voltage of at least one of the high voltage battery 20, the smoothing capacitor 41, the electric device 42, and the inverter 40 is exceeded. Thereby, the high voltage battery 20, the smoothing capacitor 41, the electric device 42, and the inverter 40 can be protected.
素子温度Tdrが温度閾値Tdthよりも高いと判定された場合、永久磁石34の減磁が必要であると判定される。このため、インバータ40の構成部品を保護することができる。
When it is determined that the element temperature Tdr is higher than the temperature threshold value Tds, it is determined that the permanent magnet 34 needs to be demagnetized. Therefore, the components of the inverter 40 can be protected.
3相短絡制御が開始されてからの経過時間Ltrが判定時間Lthに到達したと判定された場合、3相短絡制御からシャットダウン制御に切り替えられる。この構成によれば、シャットダウン制御の開始タイミングの判定に電気角θeを用いる判定方法とは異なり、角度検出部44の故障等により電気角θeを把握することができなくなる異常が発生した場合であっても、シャットダウン制御の開始タイミングを適正に判定できる。
When it is determined that the elapsed time Ltr from the start of the three-phase short-circuit control has reached the determination time Lth, the three-phase short-circuit control is switched to the shutdown control. According to this configuration, unlike the determination method in which the electric angle θe is used to determine the start timing of the shutdown control, there is a case where an abnormality occurs in which the electric angle θe cannot be grasped due to a failure of the angle detection unit 44 or the like. However, the start timing of the shutdown control can be properly determined.
3相短絡制御とシャットダウン制御とが実行された後、永久磁石34の減磁が必要であるか否かが再度判定される。そして、減磁が不要であると判定されるまで、3相短絡制御及びシャットダウン制御が繰り返される。これにより、例えば、永久磁石34をどの程度減磁させる必要があるのか正確に把握することが困難な場合であっても、永久磁石34の磁束密度が所望の密度になるまで極力過不足なく減磁できる。
After the three-phase short-circuit control and the shutdown control are executed, it is determined again whether or not the permanent magnet 34 needs to be demagnetized. Then, the three-phase short-circuit control and the shutdown control are repeated until it is determined that demagnetization is unnecessary. As a result, for example, even when it is difficult to accurately grasp how much the permanent magnet 34 needs to be demagnetized, the magnetic flux density of the permanent magnet 34 is reduced as much as possible until it reaches a desired density. It can be magnetized.
なお、本実施形態によれば、減磁制御においてシャットダウン制御が実行されるため、永久磁石34が減磁され過ぎるのを防止できるのに加え、コイル31及びインバータ40の構成部品が過熱状態になるのを防止できる。このため、減磁された後の回転電機30やインバータ40を、比較的質の良い中古品としてアフターマーケットで販売することもできる。
According to the present embodiment, since the shutdown control is executed in the demagnetization control, it is possible to prevent the permanent magnet 34 from being demagnetized too much, and the components of the coil 31 and the inverter 40 are in an overheated state. Can be prevented. Therefore, the demagnetized rotary electric machine 30 and the inverter 40 can be sold in the aftermarket as relatively high-quality second-hand goods.
<第1実施形態の変形例>
・図6のステップS12において、第1条件が、直流電流値Ipの符号が負であるとの条件であってもよい。詳しくは、要否判定部57は、直流電流値Ipの符号が正であると判定した場合、平滑コンデンサ41が充電状態でないと判定し、減磁が不要であると判定する。そして、要否判定部57は、減磁指令の論理をLにする。一方、要否判定部57は、直流電流値Ipの符号が負であると判定した場合、平滑コンデンサ41が充電状態であると判定し、減磁が必要であると判定する。そして、要否判定部57は、減磁指令の論理をHにする。直流電流値Ipの符号が負である場合、平滑コンデンサ41が充電される方向に高電位側経路Lpに電流が流れていると考えられる。 <Modified example of the first embodiment>
-In step S12 of FIG. 6, the first condition may be a condition that the sign of the direct current value Ip is negative. Specifically, when thenecessity determination unit 57 determines that the sign of the DC current value Ip is positive, it determines that the smoothing capacitor 41 is not in the charged state, and determines that demagnetization is unnecessary. Then, the necessity determination unit 57 sets the logic of the demagnetization command to L. On the other hand, when the necessity determination unit 57 determines that the sign of the DC current value Ip is negative, it determines that the smoothing capacitor 41 is in a charged state, and determines that demagnetization is necessary. Then, the necessity determination unit 57 sets the logic of the demagnetization command to H. When the sign of the DC current value Ip is negative, it is considered that the current is flowing in the high potential side path Lp in the direction in which the smoothing capacitor 41 is charged.
・図6のステップS12において、第1条件が、直流電流値Ipの符号が負であるとの条件であってもよい。詳しくは、要否判定部57は、直流電流値Ipの符号が正であると判定した場合、平滑コンデンサ41が充電状態でないと判定し、減磁が不要であると判定する。そして、要否判定部57は、減磁指令の論理をLにする。一方、要否判定部57は、直流電流値Ipの符号が負であると判定した場合、平滑コンデンサ41が充電状態であると判定し、減磁が必要であると判定する。そして、要否判定部57は、減磁指令の論理をHにする。直流電流値Ipの符号が負である場合、平滑コンデンサ41が充電される方向に高電位側経路Lpに電流が流れていると考えられる。 <Modified example of the first embodiment>
-In step S12 of FIG. 6, the first condition may be a condition that the sign of the direct current value Ip is negative. Specifically, when the
・図6のステップS12において、第1条件が、dq変換部53により算出されたq軸電流値Iqrがq軸電流閾値Iqthよりも小さいとの条件であってもよい。詳しくは、要否判定部57は、q軸電流値Iqrがq軸電流閾値Iqth以上であると判定した場合、平滑コンデンサ41が充電状態でないと判定し、減磁が不要であると判定する。一方、要否判定部57は、q軸電流値Iqrがq軸電流閾値Iqthよりも小さいと判定した場合、平滑コンデンサ41が充電状態であると判定し、減磁が必要であると判定する。
In step S12 of FIG. 6, the first condition may be a condition that the q-axis current value Iqr calculated by the dq conversion unit 53 is smaller than the q-axis current threshold value Iqth. Specifically, when the necessity determination unit 57 determines that the q-axis current value Iqr is equal to or greater than the q-axis current threshold value Iqth, it determines that the smoothing capacitor 41 is not in the charged state, and determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the q-axis current value Iqr is smaller than the q-axis current threshold value Iqth, it determines that the smoothing capacitor 41 is in a charged state and determines that demagnetization is necessary.
q軸電流閾値Iqthは、0又は0よりもやや小さい値に設定されている。このため、q軸電流値Iqrがq軸電流閾値Iqthよりも小さい場合、平滑コンデンサ41が充電されていると考えられる。
The q-axis current threshold Iqth is set to 0 or a value slightly smaller than 0. Therefore, when the q-axis current value Iqr is smaller than the q-axis current threshold value Iqth, it is considered that the smoothing capacitor 41 is charged.
ちなみに、この場合、q軸電流値Iqrの算出に電気角θeを用いる必要がある。このため、ステップS11において、3相短絡制御及びシャットダウン制御の実行に必要な構成の異常に、電気角θe及び相電流検出値を取得できなくなる異常が含まれればよい。電気角θeを取得できなくなる異常には、角度検出部44の異常が含まれる。相電流検出値を取得できなくなる異常には、相電流検出部43の異常が含まれる。
Incidentally, in this case, it is necessary to use the electric angle θe to calculate the q-axis current value Iqr. Therefore, in step S11, the abnormality of the configuration necessary for executing the three-phase short-circuit control and the shutdown control may include an abnormality that makes it impossible to acquire the electric angle θe and the phase current detection value. The abnormality that makes it impossible to acquire the electric angle θe includes an abnormality of the angle detection unit 44. The abnormality in which the phase current detection value cannot be acquired includes an abnormality in the phase current detection unit 43.
なお、q軸電流値Iqrのみならず、d,q軸電流値Idr,Iqrが用いられてもよい。この場合、要否判定部57は、例えば、d,q軸電流値Idr,Iqrから定まる回転電機30のトルクが回生トルク(<0)であると判定した場合、平滑コンデンサ41が充電状態であると判定すればよい。
Note that not only the q-axis current value Iqr but also the d and q-axis current values Idr and Iqr may be used. In this case, when the necessity determination unit 57 determines, for example, that the torque of the rotary electric machine 30 determined from the d, q-axis current values Idr, Iqr is the regenerative torque (<0), the smoothing capacitor 41 is in the charged state. It may be determined that.
また、平滑コンデンサ41が充電状態であるか否かを判定するための電流値は、回転座標系(dq座標系)における電流値に限らず、固定座標系(UVW座標系)における電流値(例えば、相電流検出部43の検出値)であってもよい。また、電流値に代えて、コイル31の線間電圧又は相電圧が用いられてもよい。
Further, the current value for determining whether or not the smoothing capacitor 41 is in the charged state is not limited to the current value in the rotating coordinate system (dq coordinate system), but the current value in the fixed coordinate system (UVW coordinate system) (for example). , The detection value of the phase current detection unit 43). Further, instead of the current value, the line voltage or the phase voltage of the coil 31 may be used.
・図6のステップS12において、第1条件が、コイル31で発生する逆起電圧Vmが起電圧閾値Vαよりも高いとの条件であってもよい。起電圧閾値Vαは、例えば、電源電圧Vbよりも低い値に設定されている。要否判定部57は、逆起電圧Vmが起電圧閾値Vα以下であると判定した場合、平滑コンデンサ41が充電状態でないと判定し、減磁が不要であると判定する。一方、要否判定部57は、逆起電圧Vmが起電圧閾値Vαよりも高いと判定した場合、平滑コンデンサ41が充電状態であると判定し、減磁が必要であると判定する。なお、要否判定部57は、例えば、ロータ33の電気角速度ωeに基づいて逆起電圧Vmを算出すればよい。この場合、要否判定部57は、電気角θeに基づいて電気角速度ωeを算出すればよい。
In step S12 of FIG. 6, the first condition may be a condition that the counter electromotive voltage Vm generated in the coil 31 is higher than the electromotive voltage threshold value Vα. The electromotive voltage threshold value Vα is set to a value lower than, for example, the power supply voltage Vb. When the necessity determination unit 57 determines that the counter electromotive voltage Vm is equal to or less than the electromotive voltage threshold Vα, it determines that the smoothing capacitor 41 is not in the charged state, and determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the counter electromotive voltage Vm is higher than the electromotive voltage threshold Vα, it determines that the smoothing capacitor 41 is in a charged state and determines that demagnetization is necessary. The necessity determination unit 57 may calculate the counter electromotive voltage Vm based on, for example, the electric angular velocity ωe of the rotor 33. In this case, the necessity determination unit 57 may calculate the electric angular velocity ωe based on the electric angle θe.
このように、逆起電圧Vmが起電圧閾値Vαよりも高い場合、逆起電圧の方が平滑コンデンサ41の実際の端子間電圧よりも高くなり、平滑コンデンサ41が充電されている可能性が高い。
In this way, when the counter electromotive voltage Vm is higher than the electromotive voltage threshold Vα, the counter electromotive voltage is higher than the actual terminal-to-terminal voltage of the smoothing capacitor 41, and there is a high possibility that the smoothing capacitor 41 is charged. ..
・図6のステップS12において、直流電流値Ipの絶対値が許容電流値(>0)よりも高いとの第4条件が加えられていてもよい。この場合、要否判定部57は、第1~第4条件のいずれかが成立する場合、減磁が必要であると判定し、第1~第4条件のいずれも成立しない場合、減磁が不要であると判定する。
A fourth condition may be added in step S12 of FIG. 6 that the absolute value of the DC current value Ip is higher than the allowable current value (> 0). In this case, the necessity determination unit 57 determines that demagnetization is necessary when any of the first to fourth conditions is satisfied, and when none of the first to fourth conditions is satisfied, demagnetization is performed. Determined to be unnecessary.
<第2実施形態>
以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、インバータ制御装置50は、図6のステップS14で用いる判定時間Lthを、図9に示すように、第2温度検出部47により検出された磁石温度Tmagが低いほど長く設定する。この設定は、永久磁石34の温度が低いほど、永久磁石34の磁束密度が高くなり、減磁させる度合いを大きくする必要があることに基づくものである。 <Second Embodiment>
Hereinafter, the second embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In the present embodiment, theinverter control device 50 sets the determination time Lth used in step S14 of FIG. 6 longer as the magnet temperature Tmag detected by the second temperature detection unit 47 becomes lower, as shown in FIG. This setting is based on the fact that the lower the temperature of the permanent magnet 34, the higher the magnetic flux density of the permanent magnet 34, and it is necessary to increase the degree of demagnetization.
以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、インバータ制御装置50は、図6のステップS14で用いる判定時間Lthを、図9に示すように、第2温度検出部47により検出された磁石温度Tmagが低いほど長く設定する。この設定は、永久磁石34の温度が低いほど、永久磁石34の磁束密度が高くなり、減磁させる度合いを大きくする必要があることに基づくものである。 <Second Embodiment>
Hereinafter, the second embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In the present embodiment, the
なお、インバータ制御装置50は、判定時間Lthの設定に、第1温度検出部46の検出値に代えて、永久磁石34の温度推定値を用いてもよい。
The inverter control device 50 may use the temperature estimation value of the permanent magnet 34 instead of the detection value of the first temperature detection unit 46 for setting the determination time Lth.
<第3実施形態>
以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図10に示すように、第1条件が電気角速度ωeに関する条件に変更されている。なお、図10において、先の図6に示した処理と同一の処理については、便宜上、同一の符号を付している。 <Third Embodiment>
Hereinafter, the third embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In the present embodiment, as shown in FIG. 10, the first condition is changed to the condition relating to the electric angular velocity ωe. In FIG. 10, the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図10に示すように、第1条件が電気角速度ωeに関する条件に変更されている。なお、図10において、先の図6に示した処理と同一の処理については、便宜上、同一の符号を付している。 <Third Embodiment>
Hereinafter, the third embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In the present embodiment, as shown in FIG. 10, the first condition is changed to the condition relating to the electric angular velocity ωe. In FIG. 10, the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
ステップS16において、第1条件は、電気角速度ωeが速度閾値ωthよりも高いとの条件である。この条件は、平滑コンデンサ41が充電状態であるか否かを判定するための条件である。速度閾値ωthは、例えば、永久磁石34の温度が、取り得る温度範囲の下限値(例えば-40℃)になる場合において、コイル31の逆起電圧が、正常な高圧バッテリ20が取り得る端子間電圧範囲の下限値よりも高くなる電気角速度に設定されていればよい。
In step S16, the first condition is that the electric angular velocity ωe is higher than the velocity threshold value ωth. This condition is a condition for determining whether or not the smoothing capacitor 41 is in a charged state. The velocity threshold ωth is, for example, between terminals where the counter electromotive voltage of the coil 31 can be taken by a normal high-voltage battery 20 when the temperature of the permanent magnet 34 becomes the lower limit of the possible temperature range (for example, −40 ° C.). It suffices if the electric angular velocity is set to be higher than the lower limit of the voltage range.
要否判定部57は、電気角速度ωeが速度閾値ωth以下であると判定した場合、減磁が不要であると判定する。一方、要否判定部57は、電気角速度ωeが速度閾値ωthよりも高いと判定した場合、減磁が必要であると判定する。なお、電気角速度ωeに代えて、例えば、ロータ33の機械角速度が用いられてもよい。
When the necessity determination unit 57 determines that the electric angular velocity ωe is equal to or less than the velocity threshold value ωth, it determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the electric angular velocity ωe is higher than the velocity threshold value ωth, it determines that demagnetization is necessary. In addition, for example, the mechanical angular velocity of the rotor 33 may be used instead of the electric angular velocity ωe.
<第4実施形態>
以下、第4実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図11に示すように、第1条件が磁石温度Tmagに関する条件に変更されている。なお、図11において、先の図6に示した処理と同一の処理については、便宜上、同一の符号を付している。 <Fourth Embodiment>
Hereinafter, the fourth embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, as shown in FIG. 11, the first condition is changed to the condition relating to the magnet temperature Tmag. In FIG. 11, the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
以下、第4実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図11に示すように、第1条件が磁石温度Tmagに関する条件に変更されている。なお、図11において、先の図6に示した処理と同一の処理については、便宜上、同一の符号を付している。 <Fourth Embodiment>
Hereinafter, the fourth embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, as shown in FIG. 11, the first condition is changed to the condition relating to the magnet temperature Tmag. In FIG. 11, the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
ステップS17において、第1条件は、磁石温度Tmagが磁石閾値Tgthよりも低いとの条件である。この条件は、平滑コンデンサ41が充電状態であるか否かを判定するための条件である。磁石閾値Tgthは、例えば、ロータ33の回転速度が、取り得る速度範囲の上限値(最高回転速度)になる場合において、コイル31の逆起電圧が、正常な高圧バッテリ20が取り得る端子間電圧範囲の下限値よりも高くなる永久磁石34の温度に設定されていればよい。
In step S17, the first condition is that the magnet temperature Tmag is lower than the magnet threshold Tgth. This condition is a condition for determining whether or not the smoothing capacitor 41 is in a charged state. The magnet threshold Tgth is, for example, when the rotation speed of the rotor 33 becomes the upper limit value (maximum rotation speed) of the possible speed range, the countercurrent voltage of the coil 31 is the voltage between terminals that can be taken by the normal high-pressure battery 20. It suffices if the temperature of the permanent magnet 34 is set to be higher than the lower limit of the range.
要否判定部57は、磁石温度Tmagが磁石閾値Tgth以上であると判定した場合、減磁が不要であると判定する。一方、要否判定部57は、磁石温度Tmagが磁石閾値Tgthよりも低いと判定した場合、減磁が必要であると判定する。
When the necessity determination unit 57 determines that the magnet temperature Tmag is equal to or higher than the magnet threshold value Tgth, it determines that demagnetization is unnecessary. On the other hand, when the necessity determination unit 57 determines that the magnet temperature Tmag is lower than the magnet threshold value Tgth, it determines that demagnetization is necessary.
なお、インバータ制御装置50は、磁石閾値Tgthと比較する温度として、第1温度検出部46の検出値に代えて、永久磁石34の温度推定値を用いてもよい。
The inverter control device 50 may use the temperature estimation value of the permanent magnet 34 instead of the detection value of the first temperature detection unit 46 as the temperature to be compared with the magnet threshold value Tgs.
<第5実施形態>
以下、第5実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図12に示すように、3相短絡制御からシャットダウン制御に切り替える条件が変更されている。なお、図12において、先の図6に示した処理と同一の処理については、便宜上、同一の符号を付している。 <Fifth Embodiment>
Hereinafter, the fifth embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, as shown in FIG. 12, the condition for switching from the three-phase short-circuit control to the shutdown control is changed. In FIG. 12, the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
以下、第5実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図12に示すように、3相短絡制御からシャットダウン制御に切り替える条件が変更されている。なお、図12において、先の図6に示した処理と同一の処理については、便宜上、同一の符号を付している。 <Fifth Embodiment>
Hereinafter, the fifth embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, as shown in FIG. 12, the condition for switching from the three-phase short-circuit control to the shutdown control is changed. In FIG. 12, the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
ステップS18では、要否判定部57は、減磁指令の論理をHにする。その後、シャットダウン判定部58aは、d軸電流値Idrを取得し、取得したd軸電流値Idrが負の値であって、かつ、d軸電流値Idrの絶対値がd軸電流閾値Idth(>0)を超えたか否かを判定する。シャットダウン判定部58aは、ステップS18において肯定判定した場合、NOT回路58bに出力するシャットダウン指令の論理をHからLに切り替える。これにより、ステップS15においてシャットダウン制御が実行される。
In step S18, the necessity determination unit 57 sets the logic of the demagnetization command to H. After that, the shutdown determination unit 58a acquires the d-axis current value Idr, the acquired d-axis current value Idr is a negative value, and the absolute value of the d-axis current value Idr is the d-axis current threshold Idth (>). It is determined whether or not it exceeds 0). If the shutdown determination unit 58a makes an affirmative determination in step S18, the shutdown determination unit 58a switches the logic of the shutdown command output to the NOT circuit 58b from H to L. As a result, shutdown control is executed in step S15.
以上説明した本実施形態によれば、永久磁石34の減磁に必要なd軸電流を把握することができるため、永久磁石34を適正に減磁させることができる。
According to the present embodiment described above, since the d-axis current required for demagnetizing the permanent magnet 34 can be grasped, the permanent magnet 34 can be appropriately demagnetized.
なお、減磁制御において3相短絡制御及びシャットダウン制御が繰り返されるたびに、d軸電流閾値Idthが小さくされてもよい。
The d-axis current threshold value Idth may be reduced each time the three-phase short-circuit control and the shutdown control are repeated in the demagnetization control.
<第6実施形態>
以下、第6実施形態について、第5実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図13に示すように、3相短絡制御からシャットダウン制御に切り替える条件が変更されている。なお、図13において、先の図6に示した処理と同一の処理については、便宜上、同一の符号を付している。 <Sixth Embodiment>
Hereinafter, the sixth embodiment will be described with reference to the drawings, focusing on the differences from the fifth embodiment. In the present embodiment, as shown in FIG. 13, the condition for switching from the three-phase short-circuit control to the shutdown control is changed. In FIG. 13, the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
以下、第6実施形態について、第5実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図13に示すように、3相短絡制御からシャットダウン制御に切り替える条件が変更されている。なお、図13において、先の図6に示した処理と同一の処理については、便宜上、同一の符号を付している。 <Sixth Embodiment>
Hereinafter, the sixth embodiment will be described with reference to the drawings, focusing on the differences from the fifth embodiment. In the present embodiment, as shown in FIG. 13, the condition for switching from the three-phase short-circuit control to the shutdown control is changed. In FIG. 13, the same processing as that shown in FIG. 6 is designated by the same reference numerals for convenience.
ステップS19では、要否判定部57は、減磁指令の論理をHにする。その後、シャットダウン判定部58aは、q軸電流値Iqrを取得し、取得したq軸電流値Iqrが負の値から正の値に切り替わったか否かを判定する。シャットダウン判定部58aは、ステップS19において肯定判定した場合、回転電機30が発電状態から力行状態に切り替わったと判定し、NOT回路58bに出力するシャットダウン指令の論理をHからLに切り替える。これにより、ステップS15においてシャットダウン制御が実行される。
In step S19, the necessity determination unit 57 sets the logic of the demagnetization command to H. After that, the shutdown determination unit 58a acquires the q-axis current value Iqr, and determines whether or not the acquired q-axis current value Iqr has switched from a negative value to a positive value. When the shutdown determination unit 58a determines affirmatively in step S19, it determines that the rotary electric machine 30 has switched from the power generation state to the power running state, and switches the logic of the shutdown command output to the NOT circuit 58b from H to L. As a result, shutdown control is executed in step S15.
以上説明した本実施形態によれば、平滑コンデンサ41の端子間電圧の上昇が想定される期間においてのみ、減磁制御を実行することができる。
According to the present embodiment described above, the demagnetization control can be executed only during the period in which the voltage between the terminals of the smoothing capacitor 41 is expected to increase.
<その他の実施形態>
なお、上記各実施形態は、以下のように変更して実施してもよい。 <Other embodiments>
In addition, each of the above-mentioned embodiments may be changed and carried out as follows.
なお、上記各実施形態は、以下のように変更して実施してもよい。 <Other embodiments>
In addition, each of the above-mentioned embodiments may be changed and carried out as follows.
・3相短絡制御は、全相の上アームスイッチSWpをONするとともに、全相の下アームスイッチSWnをOFFする制御であってもよい。
The three-phase short-circuit control may be a control in which the upper arm switch SWp of all phases is turned on and the lower arm switch SWn of all phases is turned off.
・図14に示すように、各相において、上,下アームスイッチSWp,SWnの接続点とコイル31の第1端との間に接続スイッチSWφが設けられていてもよい。この場合、インバータ制御装置50は、図6のステップS15において、シャットダウン制御に代えて、各相の接続スイッチSWφをOFFにする制御(「遮断制御」に相当)を実行してもよい。
As shown in FIG. 14, in each phase, a connection switch SWφ may be provided between the connection points of the upper and lower arm switches SWp and SWn and the first end of the coil 31. In this case, in step S15 of FIG. 6, the inverter control device 50 may execute a control (corresponding to “cutoff control”) for turning off the connection switch SWφ of each phase instead of the shutdown control.
・減磁制御としては、永久磁石34を不可逆減磁させるものに限らない。例えば、減磁制御において、永久磁石34を可逆減磁できる程度の負のd軸電流が流されてもよい。
-The demagnetization control is not limited to the one that irreversibly demagnetizes the permanent magnet 34. For example, in the demagnetization control, a negative d-axis current capable of reversibly demagnetizing the permanent magnet 34 may be passed.
・インバータを構成するスイッチとしては、IGBTに限らず、例えば、ボディダイオードを内蔵するNチャネルMOSFETであってもよい。
-The switch constituting the inverter is not limited to the IGBT, and may be, for example, an N-channel MOSFET having a built-in body diode.
・回転電機及びインバータとしては、3相のものに限らず、2相のもの、又は4相以上のものであってもよい。また、回転電機としては、オンボード用のモータに限らず、車輪に内蔵されるインホイールモータであってもよい。
-The rotary electric machine and the inverter are not limited to three-phase ones, but may be two-phase ones or four-phase or more ones. Further, the rotary electric machine is not limited to the on-board motor, but may be an in-wheel motor built in the wheel.
・車両としては、四輪駆動のものに限らず、例えば、前輪11a及び後輪11bのうちいずれかが駆動輪とされるものであってもよい。
-The vehicle is not limited to a four-wheel drive vehicle, and for example, any one of the front wheel 11a and the rear wheel 11b may be a drive wheel.
・制御システムが搭載される移動体としては、車両に限らず、例えば、航空機又は船舶であってもよい。例えば、移動体が航空機の場合、制御システムを構成する回転電機は航空機の飛行動力源となる。また、例えば、移動体が船舶の場合、制御システムを構成する回転電機は船舶の航行動力源となる。
-The moving body on which the control system is mounted is not limited to a vehicle, but may be, for example, an aircraft or a ship. For example, when the moving body is an aircraft, the rotating electric machine constituting the control system is the flight power source of the aircraft. Further, for example, when the moving body is a ship, the rotary electric machine constituting the control system becomes a navigation force source of the ship.
・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
The controls and methods thereof described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.
Claims (13)
- 蓄電部(20,41)と、
永久磁石(34)を有するロータ(33)、及び複数相のコイル(31)を有するステータ(32)を備え、移動体(10)の移動動力源となる回転電機(30)と、
ダイオード(Dp,Dn)が逆並列接続された上,下アームスイッチ(SWp,SWn)を有し、前記蓄電部及び前記コイルを電気的に接続するインバータ(40)と、
を備えるシステムに適用されるインバータ制御装置(50)において、
前記永久磁石の減磁が必要であるか否かを判定する要否判定部(57)と、
前記要否判定部により減磁が必要であると判定された場合、前記上,下アームスイッチのうち、一方のアームスイッチ(SWn)を全相ONにし、かつ、他方のアームスイッチ(SWp)を全相OFFにすることにより、ONにした前記アームスイッチ及び前記コイルを含む閉回路に還流電流を流す短絡制御を実行し、前記短絡制御の実行後に、前記還流電流が流れない状態にする遮断制御を行う減磁実行部(58)と、を備えるインバータ制御装置。 Power storage unit (20, 41) and
A rotary electric machine (30) having a rotor (33) having a permanent magnet (34) and a stator (32) having a multi-phase coil (31) and serving as a moving power source for the moving body (10).
An inverter (40) having upper and lower arm switches (SWp, SWn) in which diodes (Dp, Dn) are connected in antiparallel connection and electrically connecting the power storage unit and the coil.
In the inverter control device (50) applied to the system including
The necessity determination unit (57) for determining whether or not demagnetization of the permanent magnet is necessary, and
When it is determined by the necessity determination unit that demagnetization is necessary, one of the upper and lower arm switches (SWn) is turned on in all phases, and the other arm switch (SWp) is turned on. By turning off all phases, a short-circuit control is executed in which a recirculation current is passed through the closed circuit including the arm switch and the coil that are turned on, and after the short-circuit control is executed, a cutoff control is performed so that the recirculation current does not flow. An inverter control device including a demagnetization execution unit (58). - 前記要否判定部は、前記減磁実行部により前記短絡制御及び前記遮断制御が実行された後に減磁が再度必要であるか否かを判定し、
前記減磁実行部は、前記要否判定部により減磁が不要であると判定されるまで、前記短絡制御及び前記遮断制御の実行を繰り返す、請求項1に記載のインバータ制御装置。 The necessity determination unit determines whether or not demagnetization is necessary again after the short circuit control and the cutoff control are executed by the demagnetization execution unit.
The inverter control device according to claim 1, wherein the demagnetization execution unit repeats execution of the short-circuit control and the cutoff control until it is determined by the necessity determination unit that demagnetization is unnecessary. - 前記減磁実行部は、前記短絡制御の継続時間(Lth)を、前回の前記短絡制御の継続時間よりも短くする、請求項2に記載のインバータ制御装置。 The inverter control device according to claim 2, wherein the demagnetization execution unit shortens the duration (Lth) of the short-circuit control to be shorter than the duration of the previous short-circuit control.
- 前記減磁実行部は、前記永久磁石の温度(Tmag)が低いほど、前記短絡制御の継続時間(Lth)を長くする、請求項1~3のいずれか1項に記載のインバータ制御装置。 The inverter control device according to any one of claims 1 to 3, wherein the demagnetization execution unit lengthens the duration (Lth) of the short-circuit control as the temperature (Tmag) of the permanent magnet is lower.
- 前記要否判定部は、前記蓄電部の電圧(Vb)が、前記蓄電部の耐圧よりも低い電圧閾値(Vth)を超えたと判定した場合に減磁が必要であると判定する、請求項1~4のいずれか1項に記載のインバータ制御装置。 The necessity determination unit determines that demagnetization is necessary when it is determined that the voltage (Vb) of the power storage unit exceeds the voltage threshold (Vth) lower than the withstand voltage of the power storage unit. The inverter control device according to any one of 4 to 4.
- 前記要否判定部は、前記蓄電部が充電状態であると判定したことを条件に減磁が必要であると判定する、請求項1~5のいずれか1項に記載のインバータ制御装置。 The inverter control device according to any one of claims 1 to 5, wherein the necessity determination unit determines that demagnetization is necessary on condition that the power storage unit is determined to be in a charged state.
- 前記要否判定部は、前記蓄電部及び前記インバータの間に流れる直流電流(Ip)、前記コイルから前記インバータを介して出力される逆起電圧(Vm)、前記ロータの回転速度(ωe)、又は前記永久磁石の温度(Tmag)に基づいて、前記蓄電部が充電状態であるか否かを判定する、請求項6に記載のインバータ制御装置。 The necessity determination unit includes a direct current (Ip) flowing between the power storage unit and the inverter, a countercurrent voltage (Vm) output from the coil via the inverter, and a rotation speed (ωe) of the rotor. The inverter control device according to claim 6, wherein it is determined whether or not the power storage unit is in a charged state based on the temperature (Tmag) of the permanent magnet.
- 前記要否判定部は、前記ダイオード、前記上アームスイッチ又は前記下アームスイッチの温度(Tdr)が温度閾値(Tdth)よりも高い場合に減磁が必要であると判定する、請求項1~7のいずれか1項に記載のインバータ制御装置。 The necessity determination unit determines that demagnetization is necessary when the temperature (Tdr) of the diode, the upper arm switch or the lower arm switch is higher than the temperature threshold value (Tds), claims 1 to 7. The inverter control device according to any one of the above items.
- 前記要否判定部は、前記インバータ制御装置の外部に設けられる上位制御装置(80)から前記永久磁石の減磁判定を指示されたことを条件として、減磁が必要であるか否かを判定する、請求項1~8のいずれか1項に記載のインバータ制御装置。 The necessity determination unit determines whether or not demagnetization is necessary on condition that the upper control device (80) provided outside the inverter control device instructs the demagnetization determination of the permanent magnet. The inverter control device according to any one of claims 1 to 8.
- 前記減磁実行部は、前記短絡制御を開始してからの経過時間(Ltr)が判定時間(Lth)に到達したと判定した場合に前記遮断制御を開始する、請求項1~9のいずれか1項に記載のインバータ制御装置。 Any of claims 1 to 9, wherein the demagnetization execution unit starts the cutoff control when it is determined that the elapsed time (Ltr) from the start of the short circuit control has reached the determination time (Lth). The inverter control device according to item 1.
- 前記減磁実行部は、前記短絡制御を開始した後、弱め界磁用のd軸電流(Idr)がd軸電流閾値(Idth)を上回ったと判定した場合に前記遮断制御を開始する、請求項1~9のいずれか1項に記載のインバータ制御装置。 The demagnetization execution unit starts the short-circuit control, and then starts the cutoff control when it is determined that the d-axis current (Idr) for field weakening exceeds the d-axis current threshold value (Idth). The inverter control device according to any one of 1 to 9.
- 前記減磁実行部は、前記短絡制御を開始した後、前記回転電機が発電状態から力行状態に切り替わったと判定した場合に前記遮断制御を開始する、請求項1~9のいずれか1項に記載のインバータ制御装置。 The demagnetization execution unit, after starting the short-circuit control, starts the cutoff control when it is determined that the rotary electric machine has switched from the power generation state to the power running state, according to any one of claims 1 to 9. Inverter control device.
- 前記遮断制御は、全相の前記上,下アームスイッチをOFFにする制御である、請求項1~12のいずれか1項に記載のインバータ制御装置。 The inverter control device according to any one of claims 1 to 12, wherein the cutoff control is a control for turning off the upper and lower arm switches of all phases.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-187330 | 2020-11-10 | ||
JP2020187330A JP2022076768A (en) | 2020-11-10 | 2020-11-10 | Inverter controller |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022102510A1 true WO2022102510A1 (en) | 2022-05-19 |
Family
ID=81601209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040590 WO2022102510A1 (en) | 2020-11-10 | 2021-11-04 | Inverter control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022076768A (en) |
WO (1) | WO2022102510A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008141862A (en) * | 2006-12-01 | 2008-06-19 | Honda Motor Co Ltd | Motor control method and motor controller |
JP2009017694A (en) * | 2007-07-05 | 2009-01-22 | Toshiba Corp | Variable flux drive system |
JP2009247077A (en) * | 2008-03-31 | 2009-10-22 | Mitsubishi Electric Corp | Self-demagnetization device of permanent magnet motor, and shutdown method of electric product |
WO2012063287A1 (en) * | 2010-11-10 | 2012-05-18 | 国産電機株式会社 | Control device of rotating electrical machine |
-
2020
- 2020-11-10 JP JP2020187330A patent/JP2022076768A/en active Pending
-
2021
- 2021-11-04 WO PCT/JP2021/040590 patent/WO2022102510A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008141862A (en) * | 2006-12-01 | 2008-06-19 | Honda Motor Co Ltd | Motor control method and motor controller |
JP2009017694A (en) * | 2007-07-05 | 2009-01-22 | Toshiba Corp | Variable flux drive system |
JP2009247077A (en) * | 2008-03-31 | 2009-10-22 | Mitsubishi Electric Corp | Self-demagnetization device of permanent magnet motor, and shutdown method of electric product |
WO2012063287A1 (en) * | 2010-11-10 | 2012-05-18 | 国産電機株式会社 | Control device of rotating electrical machine |
Also Published As
Publication number | Publication date |
---|---|
JP2022076768A (en) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110063012B (en) | Inverter control device | |
US8281886B2 (en) | Electric motor control device, drive device and hybrid drive device | |
JP6119475B2 (en) | In-vehicle motor controller | |
US10086706B2 (en) | Vehicle | |
EP3651353B1 (en) | Inverter control device | |
JP2004015892A (en) | Inverter controlling device and electric vehicle | |
JP2008141868A (en) | Motor system | |
JP6348424B2 (en) | Power converter | |
US10715069B2 (en) | Discharge control device | |
US9764645B2 (en) | Electric vehicle | |
JP4905204B2 (en) | Load drive device | |
JP6407382B1 (en) | Electric motor control apparatus and electric motor control method | |
WO2022102510A1 (en) | Inverter control device | |
CN111279607B (en) | Control device for rotating electrical machine | |
JP2020156223A (en) | Driving device | |
WO2021161796A1 (en) | Control circuit for power converter | |
CN112042108B (en) | Synchronous motor drive control device and vehicle equipped with synchronous motor driven and controlled by same | |
JP7468377B2 (en) | Rotating electric machine control device | |
JP6708843B2 (en) | Drive | |
JP2016067147A (en) | Electric car control device | |
US11855564B2 (en) | Control device and electric vehicle | |
US12149183B2 (en) | Inverter control device and electric vehicle system | |
US20230308035A1 (en) | Motor control device | |
US20240042867A1 (en) | Motor control device, electromechanical integrated unit, boost converter system, electric vehicle system, and motor control method | |
JP6933121B2 (en) | Converter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21891756 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21891756 Country of ref document: EP Kind code of ref document: A1 |