WO2022102571A1 - タイヤ観察装置 - Google Patents
タイヤ観察装置 Download PDFInfo
- Publication number
- WO2022102571A1 WO2022102571A1 PCT/JP2021/040979 JP2021040979W WO2022102571A1 WO 2022102571 A1 WO2022102571 A1 WO 2022102571A1 JP 2021040979 W JP2021040979 W JP 2021040979W WO 2022102571 A1 WO2022102571 A1 WO 2022102571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- information
- image pickup
- image
- pickup device
- Prior art date
Links
- 238000000034 method Methods 0.000 description 21
- 238000001514 detection method Methods 0.000 description 16
- 230000010365 information processing Effects 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000007689 inspection Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/02—Tyres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/02—Tyres
- G01M17/027—Tyres using light, e.g. infrared, ultraviolet or holographic techniques
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
Definitions
- the present invention relates to a device for observing tires by imaging the tires of a moving vehicle.
- the number of tire troubles is increasing year by year.
- the main causes are a decrease in the degree of interest in tires and a decrease in the frequency of inspections due to fuel efficiency of vehicles, and it is said that the number of tire troubles will continue to increase in the future.
- TPMS Transire Pressure Monitoring System
- Routine inspections and legal inspections are carried out by visual inspection of the tire surface.
- Patent Document 1 and Patent Document 2 disclose a system capable of observing and inspecting the condition of a tire while the actual vehicle is running without removing the tire as a means for automatically observing the condition of the surface of the tire. ing.
- an object of the present invention is to set the position and angle of the image pickup device with respect to the tire when observing the tire to a position and angle more suitable for observation.
- the tire observation device includes an image pickup device, a track estimation unit, a position adjustment unit, and a movable unit.
- the image pickup device acquires image information of a moving vehicle having tires.
- the track estimation unit estimates the track of the tire based on the image information at at least one time point and the tire information including the width of the tire, the diameter of the tire, and the tire information including at least one of the groove patterns of the tire. do.
- the position adjusting unit calculates an adjustment amount based on the track, in which the position and angle of the image pickup device when observing the state of the tire are the observation conditions.
- the movable part changes the position and angle of the image pickup device based on the adjustment amount.
- the tire trajectory is estimated using the tire information based on the characteristics such as the shape of the tire and the first image information obtained by capturing the image of the tire, so that the estimation accuracy of the tire trajectory is improved. Then, by adjusting the position and angle of the image pickup device from the estimation result of the trajectory of the tire, the adjustment accuracy of the position and angle of the image pickup device with respect to the tire is improved.
- the position and angle of the image pickup device with respect to the tire when observing the tire can be adjusted to a position and angle more suitable for observation.
- FIG. 1 is a conceptual diagram showing an overall configuration of a tire observation device 101 according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing the configuration of the tire observation device 101.
- 3 (A), 3 (B), 3 (C), and 3 (D) are views showing an example of the tire shape in the captured image frame.
- 4 (A) and 4 (B) are views showing the estimated angles of the tires to be observed from the image pickup apparatus 11.
- FIG. 5 is a plan view showing an example of time change of the tire position.
- 6 (A), 6 (B), and 6 (C) are diagrams showing the relationship between the position and the angle of the tire 20 with respect to the image pickup apparatus 11.
- FIG. 7 is a view showing a side view, a plan view, and a captured image in the front wheel search.
- FIG. 8 is a view showing a side view, a plan view, and a captured image in front wheel measurement.
- FIG. 9 is a view showing a side view, a plan view, and a captured image in the rear wheel search.
- FIG. 10 is a view showing a side view, a plan view, and a captured image in the rear wheel measurement.
- FIG. 11 is a block diagram showing a configuration of a tire observation system including a tire observation device 101.
- FIG. 12 is a diagram showing an example of a tire observation management table.
- FIG. 13 is a flowchart showing an example of the processing procedure of the vehicle to be observed, the tire observation device 101, and the information processing device 102.
- FIG. 14 is a flowchart showing an example of a processing procedure of the vehicle to be observed, the tire observation device 101, and the information processing device 102, which is connected to FIG.
- FIG. 15 is a flowchart showing the processing content of step S12 in FIG.
- FIG. 16 is a flowchart showing the processing content of step S11 in FIG.
- FIG. 1 is a conceptual diagram showing the overall configuration of the tire observation device 101 according to the embodiment of the present invention.
- the tire observation device 101 includes an image pickup device 11 and a lighting device 12.
- the image pickup device 11 takes an image so as to include the tire (tire to be observed) of the moving vehicle 1. For example, when the front wheel tire 20F of the vehicle 1 passes the position of the image pickup device 11, the image pickup device 11 images the front wheel tire 20F, and when the rear wheel tire 20R of the vehicle 1 passes the position of the image pickup device 11, the image pickup device 11 11 images the rear wheel tire 20R.
- the lighting device 12 irradiates the imaging range of the imaging device 11, that is, the imaging range including the tire to be observed, with light for imaging.
- the position and angle of the image pickup device 11 with respect to the tire are adjusted to a position and angle suitable for tire observation by using the method described later.
- the positional relationship between the image pickup device 11 and the tire during tire observation is adjusted to a positional relationship suitable for tire observation.
- FIG. 2 is a block diagram showing the configuration of the tire observation device 101.
- the tire observation device 101 includes a tire observation unit 100.
- the tire observation unit 100 includes an image pickup device 11, a lighting device 12, a lighting control unit 13, a movable unit 14, and a result output unit 15.
- the image pickup device 11 images the tire to be observed.
- the lighting device 12 illuminates the area to be imaged by the image pickup device 11.
- the lighting control unit 13 controls the lighting direction of the lighting device 12.
- the movable portion 14 controls the imaging position and angle so that the imaging device 11 images the tire to be observed from an appropriate direction (specifically, the front direction with respect to the running surface of the tire).
- the result output unit 15 outputs the result of tire observation to the outside.
- the tire observation unit 100 includes a state management unit 21, a vehicle identification unit 22, a vehicle information acquisition unit 23, a shape detection unit 24, a distance estimation unit 25, an angle estimation unit 26, a track estimation unit 27, and a position adjustment unit 28. ..
- the functions of each part are as follows.
- the state management unit 21 manages five state transitions: (a) vehicle search, (b) front wheel search, (c) front wheel measurement, (d) rear wheel search, and (e) rear wheel measurement. If the tires have not only front and rear wheels but also rear front and rear wheels, the process is repeated for each tire.
- Each state and its transition condition are as follows.
- Tire information includes at least one of the tire width, the tire diameter, and the tire groove pattern.
- the identification of the vehicle or the tire is performed by using the image captured by the image pickup apparatus 11 and the electronic tag (for example, RFID tag) arranged on the vehicle or the tire.
- the state (3) is entered.
- Condition (3) Measure the surface of the front tires.
- the state (4) is entered.
- the vehicle identification unit 22 identifies the vehicle to be observed. For example, the vehicle to be observed is identified by recognizing the license plate from the captured image. Further, for example, the vehicle to be observed is identified by reading the RFID tag provided on the vehicle.
- the vehicle information acquisition unit 23 acquires data of tire information (diameter, width, etc.) of the vehicle to be observed by referring to the output result of the vehicle identification unit 22. That is, the vehicle information acquisition unit 23 functions as a tire information acquisition unit.
- the vehicle information acquisition unit 23 may acquire data on the type of vehicle body (front / rear / left / right tire spacing, etc.) together with tire information.
- the database for collating the vehicle ID and the vehicle information is configured on the memory or the cloud in the tire observation device 101 shown later.
- the shape detection unit 24 detects the shape of the tire in the captured image.
- the shape of the tire preferably includes at least a rectangular contour of the entire tire, and preferably includes a contour of the outer circumference and a contour of the inner circumference of the tire.
- 3 (A), 3 (B), 3 (C), and 3 (D) are views showing an example of the tire shape in the captured image frame.
- FIGS. 3A and 3B when the entire tire is included in one frame, the rectangular contour of the entire tire is detected.
- FIGS. 3C and 3D when a part of the tire is included in one frame, a process of detecting a predetermined geometric shape corresponding to the groove pattern of the tire is performed. Each detection process is performed by means such as pattern matching process and machine learning. It also includes a process of detecting the position of the detected tire in the vehicle.
- the distance estimation unit 25 refers to the tire shape and tire information (diameter / width) detected by the shape detection unit 24, and estimates the distance from the image pickup device to the tire.
- the tire information may include at least the width of the tire.
- the angle estimation unit 26 refers to the tire shape and tire information (diameter / width) detected by the shape detection unit 24, and estimates the angle of the tire in the traveling direction with respect to the image pickup device.
- the track estimation unit 27 estimates the tire track based on the detection result of the shape detection unit 24 and the estimation result of the distance estimation unit 25 and the angle estimation unit 26.
- the tire track means a path in which the tire approaches the image pickup apparatus 11.
- the track estimation unit 27 estimates the tire track based on the image information (first image information) captured at the first time point and the positional relationship between the tire and the image pickup device.
- FIG. 4 (A) and 4 (B) are diagrams showing the estimated angles of the tires to be observed from the image pickup apparatus 11.
- 4 (A) shows a plan view
- FIG. 4 (B) is a side view in the state of FIG. 4 (A).
- the angle between the direction of the arrow in FIG. 4A and the reference direction is an angle (horizontal angle) of the tire 20 with respect to the image pickup apparatus 11 in the horizontal plane direction.
- the reference direction is, for example, a direction orthogonal to the direction in which the image pickup apparatus 11 is moved by the movable portion 14.
- the angle between the direction of the arrow in FIG. 4B and the horizontal plane is the angle (vertical angle) in the height direction of the tire 20 with respect to the image pickup apparatus 11. ..
- the details of adjusting the vertical angle will be described later.
- the track estimation unit 27 estimates the tire track using at least one of the following plurality of methods.
- the track estimation unit 27 estimates the tire track using the tire information and the image information of the tire.
- Tire information includes at least one of the tire width, the tire diameter, and the tire groove pattern.
- Tire information is obtained from the vehicle information acquisition unit 23. The tire information may be given manually by the operator.
- the track estimation unit 27 estimates the traveling direction of the tire and the position from the image pickup device from the comparison result between the tire width, the tire diameter, and at least one of the tire groove patterns and the image information of the tire. More specifically, the track estimation unit 27 detects at least one of the tire width, the tire diameter, and the tire groove pattern from the image information of the tire.
- the track estimation unit 27 estimates the traveling direction of the tire and the position from the image pickup device by comparing the detection result from this image with the tire information.
- the track estimation unit 27 performs the process of estimating the traveling direction of the tire and the position from the image pickup device a plurality of times, and estimates the tire track from the estimation results of the plurality of times.
- the track estimation unit 27 estimates the track of the tire based on the shape of the tire obtained from the image information of the tire.
- the track estimation unit 27 extracts at least one of the outer peripheral contour and the inner peripheral contour of the tire from the image information of the tire.
- the track estimation unit 27 estimates the width of the tire or the diameter of the tire based on the image by using the contour of the outer circumference or the contour of the inner circumference of the tire.
- the track estimation unit 27 acquires the tire width or the tire diameter from the vehicle information acquisition unit 23 as tire information.
- the track estimation unit 27 compares the tire width or the tire diameter estimated from the image with the tire width or the tire diameter in the tire information, thereby referring to the distance between the tire and the image pickup device 11 and the image pickup device 11. Calculate the tire angle (horizontal angle) and estimate the tire trajectory.
- the track estimation unit 27 estimates the track of the tire based on the overall contour shape of the tire obtained from the image information of the tire.
- the track estimation unit 27 extracts the entire contour shape of the tire from the image information of the tire.
- the track estimation unit 27 estimates the width of the tire or the diameter of the tire based on the image by using the contour shape of the entire tire.
- the track estimation unit 27 acquires the tire width or the tire diameter from the vehicle information acquisition unit 23 as tire information.
- the track estimation unit 27 compares the tire width or the tire diameter estimated from the image with the tire width or the tire diameter in the tire information, thereby referring to the distance between the tire and the image pickup device 11 and the image pickup device 11.
- the tire angle (horizontal angle) is calculated, and the positional relationship between the image pickup device 11 and the tire is calculated. From this positional relationship, the track estimation unit 27 plots the position coordinates of the tire in the coordinate system representing the horizontal plane.
- FIG. 5 is a plan view showing an example of the time change of the tire position.
- Pp indicates a plot point
- a dotted line connecting a plurality of plot points Pp is an estimated tire track.
- the track estimation unit 27 calculates the position coordinates of the tires at a plurality of time points and plots the positions of the tires at the plurality of time points (see the plot point Pp in FIG. 5).
- the track estimation unit 27 estimates the tire track (see the dotted line in FIG. 5) from the positions of the plots at the plurality of time points and the temporal arrangement of the plot positions at the plurality of points in time.
- the position adjusting unit 28 adjusts the position and angle of the image pickup device 11 based on the estimated tire trajectory so that the captured image in which the tire shape is located at the center and the front can be acquired at the second time point after the first time point. Calculate the amount. That is, the position adjusting unit 28 makes the image pickup device 11 satisfy the observation condition at the time of tire observation based on the track estimation result of the tire 20 calculated by the track estimation unit 27, in other words, the observation device 11 observes the tire. Calculate the adjustment amount so that the position and angle (horizontal angle, vertical angle) are suitable for. Further, the left and right tires may use separate image pickup devices 11 and may be adjusted so that the distance between the image pickup device 11 for the left tire and the image pickup device 11 for the right tire is equal to the distance between the left and right tires.
- the position adjusting unit 28 calculates the position adjustment amount so that the position of the image pickup device 11 in the horizontal direction is arranged in front of the tire 20 when observing the tire.
- the position adjusting unit 28 calculates the adjustment amount of the horizontal angle so that the image pickup apparatus 11 faces the front surface of the traveling surface of the tire 20 when observing the tire.
- 6 (A), 6 (B), and 6 (C) are diagrams showing the relationship between the position and angle (vertical angle) of the tire 20 with respect to the image pickup apparatus 11.
- the position adjusting unit 28 has the lighting device 12 with the center direction of the tire 20 as the center of the irradiation range, and the lighting device 12 and the tire.
- the amount of adjustment of the vertical angle of the image pickup apparatus 11 is calculated so that the intersection of the line connecting the center of 20 and the surface of the tire 20 becomes the image pickup center.
- Such adjustment of the vertical angle of the image pickup device 11 is realized after the estimation of the tire trajectory is completed and the position of the image pickup device 11 and the adjustment of the horizontal direction angle are completed.
- the vertical angle is adjusted in the same manner as the image pickup device 11.
- the movable unit 14 changes the position and angle (horizontal angle and vertical angle) of the image pickup device 11 or the lighting device 12 based on the adjustment amount calculated by the position adjustment unit 28.
- the image pickup device 11 and the lighting device 12 are arranged at positions and angles suitable for tire observation (positions and angles suitable for tire observation) when observing the tire, that is, under observation conditions.
- the tire surface measuring unit 29 measures the tire surface.
- FIG. 7 is a view showing a side view, a plan view, and a captured image in the front wheel search.
- the horizontal angle of the image pickup device 11 under the observation conditions is controlled so that the shape of the front wheel tire 20F in the captured image is located in the center and the front based on the adjustment amount of the horizontal direction angle, and the image pickup device 11 is in the left-right direction.
- the position of is controlled so that the shape of the front wheel tire 20F in the captured image is located in the center and in front of the captured image.
- FIG. 8 is a view showing a side view, a plan view, and a captured image in front wheel measurement.
- the angle of the image pickup device 11 in the horizontal plane remains the final state of the front wheel search shown in FIG. Therefore, the front wheel tire 20F to be observed passes the upper part of the image pickup apparatus 11.
- the vertical angle of the image pickup device 11 and the lighting device 12 is controlled to change to a predetermined angle based on the adjustment amount of the vertical direction angle. .. In FIG. 8, the illumination device 12 is not shown.
- FIG. 9 is a view showing a side view, a plan view, and a captured image in the rear wheel search.
- FIG. 10 is a view showing a side view, a plan view, and a captured image in the rear wheel measurement.
- the angle of the image pickup device 11 in the horizontal plane remains the final state of the rear wheel search shown in FIG. Therefore, the rear wheel tire 20R to be observed passes the upper part of the image pickup apparatus 11.
- the vertical angle of the image pickup device 11 and the lighting device 12 is controlled to change to a predetermined angle based on the adjustment amount of the vertical direction angle.
- the illustration of the lighting device 12 is omitted.
- FIG. 11 is a block diagram showing a configuration of a tire observation system including a tire observation device 101.
- the tire observation device 101, the information processing device 102, and the display terminal 103 are connected to a network such as the Internet or a telephone line network.
- the tire observation device 101 includes a tire observation unit 100, a CPU 10, a communication means 31, a memory 32, and a storage device 33.
- the CPU 10 inputs and outputs data and signals to and from each part in the tire observation device 101 to control each part and the whole.
- the communication means 31 communicates with the information processing device 102 and the display terminal 103 via the network. Further, although not shown, a tire inspection unit for determining the presence or absence of an abnormal state of the tire may be provided in the tire observation device 101.
- the information processing device 102 includes a CPU 40, a communication means 41, a memory 42, and a storage device 43. There are a plurality of tire observation devices 101, and the information processing device 102 accumulates observation results by the plurality of tire observation devices 101 and performs statistical processing.
- the CPU 40 performs various processes such as history management, exchange prediction, and progress prediction according to the program operation.
- the history management is the management of the observation history of each tire of each vehicle.
- Replacement prediction is a process of predicting the replacement time of each tire
- progress prediction is a process of predicting the condition of each tire.
- the display terminal 103 is a terminal device that displays the observation result by the tire observation device 101.
- the display terminal 103 includes a CPU 50, a communication means 51, a memory 52, a storage device 53, and an operation panel 54.
- the display terminal 103 displays the status of each tire of each vehicle according to the operation of the operation panel 54.
- the storage device 33 of the tire observation device 101, the storage device 43 of the information processing device 102, and the storage device 53 of the display terminal 103 store a tire observation management table that stores information about the tires of the vehicle to be observed.
- FIG. 12 is a diagram showing an example of the tire observation management table.
- the tire observation management table is for each vehicle to be observed, such as the license plate number of the vehicle, the distance between the left and right tires (tread), the tire diameter, the tire width, the groove depth, the state of uneven wear, and the defect. Includes data on conditions and air pressure.
- FIG. 13 is a flowchart showing an example of the processing procedure of the vehicle to be observed, the tire observation device 101, and the information processing device 102.
- the vehicle identification unit 22 of the tire observation device 101 acquires the vehicle ID (S1). For example, it is acquired based on the license plate number of the vehicle acquired by the image pickup device and the RFID information provided in the vehicle.
- the vehicle information acquisition unit 23 acquires tire information (diameter, width, spacing, etc.) of the vehicle ID by referring to the vehicle database (S2 ⁇ S3).
- the information processing device 102 transmits the tire information of the vehicle ID to the tire observation device 101.
- the position of the image pickup device 11 is adjusted according to the distance between the left and right tires (S4).
- the image information by the image pickup apparatus 11 is acquired, and the shape detection unit 24 detects the shape of the tire from the image information (S5 ⁇ S6). If a tire is present, the distance estimation unit 25 calculates the distance between the tire and the image pickup device 11 (S7 ⁇ S8), and the angle estimation unit 26 determines the traveling direction of the tire and the angle (direction) of the tire with respect to the image pickup device 11. ) Is calculated (S9).
- FIG. 14 is a flowchart showing an example of the processing procedure of the vehicle to be observed, the tire observation device 101, and the information processing device 102, which is connected to FIG.
- step S11 Details of this step S11 will be shown later. After that, the process returns to step S5 shown in FIG.
- the tire surface measuring unit 29 measures the tire surface (S12). Details of this step S12 will be shown later.
- the positions of the image pickup device 11 and the lighting device 12 are returned to the initial state (S13 ⁇ S14). Subsequently, the measurement information is transmitted to the information processing apparatus 102 (S15).
- step S5 shown in FIG. 13 (S16 ⁇ (3) ⁇ S5).
- FIG. 15 is a flowchart showing the processing content of step S12 in FIG.
- the information of the captured image is acquired, and the region other than the tire shape is removed (S21 ⁇ S22).
- the shape data generated by the lighting pattern is extracted, and the actual size three-dimensional data is calculated based on the calibration coefficient determined from the positional relationship between the tire and the image pickup device and the lighting device (S23 ⁇ S24).
- Steps S21 to S26 are performed by the tire surface measuring unit.
- FIG. 16 is a flowchart showing the processing content of step S11 in FIG.
- the distance between the tire and the image pickup device 11 calculated in step S8 and the angle in the traveling direction of the tire calculated in step S9 are acquired (S31). If there is no front frame of the moving image information, the coordinates of the tire when the observation condition is satisfied are calculated from the traveling direction of the tire on the three-dimensional coordinates (S32 ⁇ S33).
- the estimation of the traveling direction of the tire is realized by, for example, image recognition for the tire.
- an image showing the outer shape of the tire, an image showing the outer shape of the wheel, and an image of the groove of the tire are stored for each angle of the tire, and by matching processing with these stored images, the tire The angle is estimated, and the traveling direction of the tire is estimated from the angle of this tire.
- the tire positions at multiple time points are calculated from the tire images acquired at multiple time points, and the tire trajectory estimation on the three-dimensional coordinates is performed from the calculation results of the tire positions at these multiple time points. This is performed, and the coordinates of the tire when the observation conditions are satisfied are calculated (S34).
- the mode of using a moving image is shown here, it is also possible to use a still image at a plurality of time points acquired at a predetermined time interval, not limited to the moving image. It is also possible to use the moving speed of the tire to estimate the trajectory of the tire. The estimation accuracy can be improved by using the moving speed of the tire.
- the moving speed of the tire can be calculated, for example, by calculating the difference in the positions of the tires at a plurality of time points based on the images at a plurality of time points and dividing the difference in the positions by the time difference at the plurality of time points.
- the angle in the center direction of the extraction region shown in FIGS. 4 (A) and 4 (B) is calculated (S35).
- the adjustment amount of the image pickup device 11 and the lighting device 12 is acquired by referring to the calculated value or the database determined from the distance and the angle between the tire and the image pickup device 11 (S36).
- the positions and angles of the image pickup device 11 and the lighting device 12 are adjusted by the movable portion 14 based on the adjustment amount (S37). Steps S33 and S34 are performed by the track estimation unit 27, and steps S35 and subsequent steps are performed by the position adjustment unit 28.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
タイヤ観察装置(101)は、走行中の車両(1)の画像情報を取得する撮像装置(11)、軌道推定部(27)、位置調整部(28)、および可動部(14)を備える。軌道推定部(27)は、少なくとも1時点での画像情報とタイヤの幅、タイヤの径、および、タイヤの溝の少なくとも1つを含むタイヤ情報とに基づいて、タイヤの起動を推定する。位置調整部(28)は、軌道に基づいて、タイヤの状態を観察する際の撮像装置(11)の位置および角度が観察条件となる調整量を算出する。可動部(14)は、調整量に基づいて、撮像装置(11)の位置および角度を変化させる。
Description
本発明は、走行中の車両のタイヤを撮像してタイヤを観察する装置に関する。
タイヤのトラブル件数は年々増加傾向にある。その主な原因は、タイヤへの関心度の低下や、車両の低燃費化などによる点検頻度の低下であり、タイヤのトラブル件数は今後も増加傾向にあると言われている。
現状のタイヤ観察の方法としては、車両走行中の点検、日常の点検、法定点検がある。車両走行中の点検としては例えばTPMS(Tire Pressure Monitoring System)が用いられる。日常点検や法定点検は、タイヤ表面の目視による点検で行われる。
注目すべきは日常点検の頻度である。タイヤの不良は、空気圧、残溝、偏摩耗、ひび割れ等、表面検査でしか検知できないものが大部分を占めるため、日常点検の頻度の低下は致命的な問題につながることが予想される。
特許文献1、特許文献2には、タイヤの表面の状態を自動的に観察する手段については、タイヤを取り外すことなく、実車走行中にタイヤの状態を観察し検査することができるシステムが開示されている。
しかしながら、特許文献1、2の装置では、タイヤの観察時におけるタイヤに対する撮像装置の位置および角度を、観察により適した位置および角度にすることが容易でなく、高い計測精度でタイヤを観察することが難しい。
そこで、本発明の目的は、タイヤの観察時におけるタイヤに対する撮像装置の位置および角度を、観察により適した位置および角度することにある。
本開示の一例としてのタイヤ観察装置は、撮像装置、軌道推定部、位置調整部、および、可動部を備える。撮像装置は、タイヤを有する走行中の車両の画像情報を取得する。軌道推定部は、少なくとも1時点での画像情報と、前記タイヤの幅、前記タイヤの径、および、前記タイヤの溝パターンの少なくとも1つを含むタイヤ情報と、に基づいて、タイヤの軌道を推定する。位置調整部は、軌道に基づいて、タイヤの状態を観察する際の撮像装置の位置および角度が観察条件となる調整量を算出する。可動部は、調整量に基づいて撮像装置の位置および角度を変化させる。
この構成では、タイヤの形状等の特徴に基づくタイヤ情報と、タイヤが撮像された第1画像情報とを用いて、タイヤの軌道が推定されるため、タイヤの軌道の推定精度が向上する。そして、このタイヤの軌道の推定結果を撮像装置の位置および角度が調整されることで、タイヤに対する撮像装置の位置および角度の調整精度が向上する。
本発明によれば、タイヤの観察時におけるタイヤに対する撮像装置の位置および角度を、観察により適した位置および角度に調整できる。
図1は本発明の一実施形態に係るタイヤ観察装置101の全体的な構成を示す概念図である。このタイヤ観察装置101は、撮像装置11および照明装置12を備える。
撮像装置11は、走行中の車両1のタイヤ(観察対象のタイヤ)を含むように撮像する。例えば、車両1の前輪タイヤ20Fが撮像装置11の位置を通過するとき、撮像装置11は前輪タイヤ20Fを撮像し、車両1の後輪タイヤ20Rが撮像装置11の位置を通過するとき、撮像装置11は後輪タイヤ20Rを撮像する。照明装置12は、撮像装置11の撮像範囲、すなわち、観察対象のタイヤを含む撮像範囲に撮像用の光を照射する。
この際、後述する方法を用いて、撮像装置11のタイヤに対する位置および角度は、タイヤ観察に適する位置および角度に調整される。言い換えれば、タイヤ観察時における撮像装置11とタイヤとの位置関係は、タイヤ観察に適する位置関係に調整される。
図2はタイヤ観察装置101の構成を示すブロック図である。このタイヤ観察装置101は、タイヤ観察部100を備える。タイヤ観察部100は、撮像装置11、照明装置12、照明制御部13、可動部14および結果出力部15を備える。
撮像装置11は観察対象のタイヤを撮像する。照明装置12は撮像装置11の撮像する領域を照明する。照明制御部13は照明装置12の照明方向を制御する。可動部14は、撮像装置11が観察対象のタイヤを適正な方向(具体的にはタイヤの走行面に対する正面方向)から撮像するように撮像位置および角度を制御する。結果出力部15はタイヤ観察の結果を外部へ出力する。
また、タイヤ観察部100は、状態管理部21、車両識別部22、車両情報取得部23、形状検出部24、距離推定部25、角度推定部26、軌道推定部27、位置調整部28を備える。各部の機能は次のとおりである。
[状態管理部]
状態管理部21は、(a)車両探索、(b)前輪探索、(c)前輪計測、(d)後輪探索、(e)後輪計測の5つの状態遷移を管理する。なお、単に前輪・後輪だけでなく、後前輪や後後輪を有する場合は、それらタイヤごとに繰り返す。それぞれの状態とその遷移条件は以下とする。
状態管理部21は、(a)車両探索、(b)前輪探索、(c)前輪計測、(d)後輪探索、(e)後輪計測の5つの状態遷移を管理する。なお、単に前輪・後輪だけでなく、後前輪や後後輪を有する場合は、それらタイヤごとに繰り返す。それぞれの状態とその遷移条件は以下とする。
状態(1):計測対象となる車両を認識するまで待機し、認識したら車両を識別し、タイヤ情報を取得する。タイヤ情報は、タイヤの幅、タイヤの径、および、タイヤの溝パターンの少なくとも1つを含む。車両またはタイヤの識別は、撮像装置11で撮像した画像、車両やタイヤに配置された電子タグ(例えば、RFIDタグ)を用いて行われる。
状態(1)において観察対象の車両を識別し、車両情報取得部23からタイヤ情報を取得した場合、状態(2)へ遷移する。
状態(2):前輪タイヤの位置検出、角度検出、軌道推定と、それに応じた撮像装置・照明装置の位置制御および角度制御を行う。
状態(2)において前輪タイヤと撮像装置11との距離が閾値以下になった場合、状態(3)へ遷移する。
状態(3):前輪タイヤの表面計測を実施する。
状態(3)において前輪タイヤの計測範囲が終了した場合、状態(4)へ遷移する。
状態(4):後輪タイヤの位置検出、角度検出、軌道推定と、それに応じた撮像・照明装置の位置制御および角度制御を行う。
状態(4)にて、後輪タイヤと撮像装置との距離が閾値以下になった場合、状態(5)へ遷移する。
状態(5):後輪タイヤの表面計測を実施する。
状態(5)において後輪タイヤの計測範囲が終了した場合、状態(1)へ遷移する。
[車両識別部]
車両識別部22は、観察対象の車両を識別する。例えば、撮像画像からナンバープレートを認識することによって観察対象の車両を識別する。また、例えば車両に設けられているRFIDタグを読み取ることによって観察対象の車両を識別する。
車両識別部22は、観察対象の車両を識別する。例えば、撮像画像からナンバープレートを認識することによって観察対象の車両を識別する。また、例えば車両に設けられているRFIDタグを読み取ることによって観察対象の車両を識別する。
[車両情報取得部]
車両情報取得部23は、車両識別部22の出力結果を参照して、観察対象の車両のタイヤ情報(径、幅など)のデータを取得する。すなわち、車両情報取得部23は、タイヤ情報取得部として機能する。なお、車両情報取得部23は、タイヤ情報とともに車体の種類(前後左右のタイヤ間隔など)のデータを取得してもよい。車両IDと車両情報とを照合するデータベースは、後に示すタイヤ観察装置101内のメモリ又はクラウド上に構成する。
車両情報取得部23は、車両識別部22の出力結果を参照して、観察対象の車両のタイヤ情報(径、幅など)のデータを取得する。すなわち、車両情報取得部23は、タイヤ情報取得部として機能する。なお、車両情報取得部23は、タイヤ情報とともに車体の種類(前後左右のタイヤ間隔など)のデータを取得してもよい。車両IDと車両情報とを照合するデータベースは、後に示すタイヤ観察装置101内のメモリ又はクラウド上に構成する。
[形状検出部]
形状検出部24は、撮像した画像におけるタイヤの形状を検出する。タイヤの形状は、少なくともタイヤ全体の矩形輪郭が含まれ、タイヤの外周の輪郭、内周の輪郭が含まれていることが好ましい。図3(A)、図3(B)、図3(C)、図3(D)は、撮像された画像フレームにおけるタイヤ形状の例を示す図である。図3(A)、図3(B)に示すように、1フレームにタイヤ全体が含まれる場合、タイヤ全体の矩形輪郭を検出する。また、図3(C)、図3(D)に示すように、1フレームにタイヤの一部が含まれる場合、タイヤの溝のパターンに相当する所定の幾何学形状を検出する処理を行う。それぞれの検出処理は、例えばパターンマッチング処理や機械学習などの手段で行う。また、検出したタイヤが車両のどの位置に設置されているタイヤであるのかを検出する処理をも含む。
形状検出部24は、撮像した画像におけるタイヤの形状を検出する。タイヤの形状は、少なくともタイヤ全体の矩形輪郭が含まれ、タイヤの外周の輪郭、内周の輪郭が含まれていることが好ましい。図3(A)、図3(B)、図3(C)、図3(D)は、撮像された画像フレームにおけるタイヤ形状の例を示す図である。図3(A)、図3(B)に示すように、1フレームにタイヤ全体が含まれる場合、タイヤ全体の矩形輪郭を検出する。また、図3(C)、図3(D)に示すように、1フレームにタイヤの一部が含まれる場合、タイヤの溝のパターンに相当する所定の幾何学形状を検出する処理を行う。それぞれの検出処理は、例えばパターンマッチング処理や機械学習などの手段で行う。また、検出したタイヤが車両のどの位置に設置されているタイヤであるのかを検出する処理をも含む。
[距離推定部]
距離推定部25は、形状検出部24で検出したタイヤの形状およびタイヤ情報(径・幅)を参照し、撮像装置からタイヤまでの距離を推定する。なお、タイヤ情報は、少なくともタイヤの幅を含んでいればよい。
距離推定部25は、形状検出部24で検出したタイヤの形状およびタイヤ情報(径・幅)を参照し、撮像装置からタイヤまでの距離を推定する。なお、タイヤ情報は、少なくともタイヤの幅を含んでいればよい。
[角度推定部]
角度推定部26は、形状検出部24で検出したタイヤの形状およびタイヤ情報(径・幅)を参照し、撮像装置に対するタイヤの進行方向の角度を推定する。
角度推定部26は、形状検出部24で検出したタイヤの形状およびタイヤ情報(径・幅)を参照し、撮像装置に対するタイヤの進行方向の角度を推定する。
[軌道推定部]
軌道推定部27は、形状検出部24の検出結果および距離推定部25・角度推定部26の推定結果に基づいて、タイヤ軌道を推定する。タイヤ軌道とは、タイヤが撮像装置11に近づく経路を意味する。軌道推定部27は、第1時点で撮像された画像情報(第1画像情報)と、タイヤと撮像装置との位置関係とに基づいて、タイヤ軌道を推定する。
軌道推定部27は、形状検出部24の検出結果および距離推定部25・角度推定部26の推定結果に基づいて、タイヤ軌道を推定する。タイヤ軌道とは、タイヤが撮像装置11に近づく経路を意味する。軌道推定部27は、第1時点で撮像された画像情報(第1画像情報)と、タイヤと撮像装置との位置関係とに基づいて、タイヤ軌道を推定する。
図4(A)、図4(B)は、撮像装置11から観察対象のタイヤの推定角度を示す図である。図4(A)は平面図を示し、図4(B)は、図4(A)の状態での側面図である。図4(A)中の矢印の方向と基準方向(図4(A)の一点鎖線の方向)との角度は、撮像装置11に対するタイヤ20の水平面方向における角度(水平方向角度)である。なお、基準方向は、例えば、可動部14によって撮像装置11が移動する方向に対して直交する方向である。図4(B)中の矢印の方向と水平面(図4(B)の二点鎖線を含む面)との角度は、撮像装置11に対するタイヤ20の高さ方向における角度(鉛直方向角度)である。なお、鉛直方向角度の調整については、詳細は後述する。
軌道推定部27は、次に示す複数の方法のうち少なくとも1種類の方法を用いて、タイヤ軌道を推定する。
(A)軌道推定部27は、タイヤ情報とタイヤの画像情報とを用いて、タイヤ軌道を推定する。タイヤ情報は、タイヤの幅、タイヤの径、および、タイヤの溝パターンの少なくとも1つを含む。タイヤ情報は、車両情報取得部23から得られる。なお、タイヤ情報は、オペレータの手入力によって与えられてもよい。
軌道推定部27は、タイヤの幅、タイヤの径、および、タイヤの溝パターンの少なくとも1つとタイヤの画像情報との比較結果から、タイヤの進行方向、撮像装置からの位置を推定する。より具体的には、軌道推定部27は、タイヤの画像情報から、タイヤの幅、タイヤの径、および、タイヤの溝パターンの少なくとも1つを検出する。
軌道推定部27は、この画像からの検出結果と、タイヤ情報とを比較することで、タイヤの進行方向、撮像装置からの位置を推定する。軌道推定部27は、このタイヤの進行方向、撮像装置からの位置の推定処理を複数回行い、複数回の推定結果からタイヤ軌道を推定する。
(B)軌道推定部27は、タイヤの画像情報から得られるタイヤの形状に基づいて、タイヤの軌道を推定する。
より具体的には、軌道推定部27は、タイヤの画像情報から、タイヤの外周の輪郭および内周の輪郭の少なくとも一方を抽出する。軌道推定部27は、タイヤの外周の輪郭または内周の輪郭を用いて、画像によるタイヤの幅またはタイヤの径を推定する。軌道推定部27は、タイヤ情報として、車両情報取得部23からタイヤの幅またはタイヤの径を取得する。
軌道推定部27は、画像から推定したタイヤの幅またはタイヤの径と、タイヤ情報におけるタイヤの幅またはタイヤの径とを比較することで、タイヤと撮像装置11との距離、および撮像装置11に対するタイヤの角度(水平方向角度)を算出し、タイヤ軌道を推定する。
(C)軌道推定部27は、タイヤの画像情報から得られるタイヤの全体の輪郭形状に基づいて、タイヤの軌道を推定する。
より具体的には、軌道推定部27は、タイヤの画像情報から、タイヤの全体の輪郭形状を抽出する。軌道推定部27は、タイヤの全体の輪郭形状を用いて、画像によるタイヤの幅またはタイヤの径を推定する。軌道推定部27は、タイヤ情報として、車両情報取得部23からタイヤの幅またはタイヤの径を取得する。
軌道推定部27は、画像から推定したタイヤの幅またはタイヤの径と、タイヤ情報におけるタイヤの幅またはタイヤの径とを比較することで、タイヤと撮像装置11との距離、および撮像装置11に対するタイヤの角度(水平方向角度)を算出し、撮像装置11とタイヤとの位置関係を算出する。軌道推定部27は、この位置関係から、水平面を表す座標系においてタイヤの位置座標をプロットする。
図5は、タイヤの位置の時間変化の一例を示す平面図である。図5において、Ppはプロット点を示し、複数のプロット点Ppを結ぶ点線は、推定されるタイヤ軌道である。軌道推定部27は、複数時点においてタイヤの位置座標の算出し、複数時点てのタイヤの位置をプロットする(図5のプロット点Pp参照)。軌道推定部27は、複数時点のプロットの位置および複数時点のプロット位置の時間的な並びから、タイヤ軌道(図5の点線参照)を推定する。
[位置調整部]
位置調整部28は、第1時点より後の第2時点において、タイヤ形状が中央かつ正面に位置する撮像画像を取得できるよう、推定されたタイヤ軌道に基づいて撮像装置11の位置および角度の調整量を算出する。すなわち、位置調整部28は、軌道推定部27で算出されたタイヤ20の軌道推定結果に基づいて、タイヤ観察時に撮像装置11が観察条件を満たすように、言い換えれば、観察装置11がタイヤの観察に適する位置および角度(水平方向角度、鉛直方向角度)になるように調整量を算出する。また、左右のタイヤは別々の撮像装置11を使用し、左タイヤ用の撮像装置11と右タイヤ用の撮像装置11との間隔が左右のタイヤの間隔と等しくなるように調整してもよい。
位置調整部28は、第1時点より後の第2時点において、タイヤ形状が中央かつ正面に位置する撮像画像を取得できるよう、推定されたタイヤ軌道に基づいて撮像装置11の位置および角度の調整量を算出する。すなわち、位置調整部28は、軌道推定部27で算出されたタイヤ20の軌道推定結果に基づいて、タイヤ観察時に撮像装置11が観察条件を満たすように、言い換えれば、観察装置11がタイヤの観察に適する位置および角度(水平方向角度、鉛直方向角度)になるように調整量を算出する。また、左右のタイヤは別々の撮像装置11を使用し、左タイヤ用の撮像装置11と右タイヤ用の撮像装置11との間隔が左右のタイヤの間隔と等しくなるように調整してもよい。
例えば、位置調整部28は、タイヤの観察時に、水平方向における撮像装置11の位置がタイヤ20の正面に配置されるように、位置の調整量を算出する。位置調整部28は、タイヤの観察時に、撮像装置11がタイヤ20の走行面の正面に向き合うように、水平方向角度の調整量を算出する。
図6(A)、図6(B)、図6(C)は、撮像装置11に対するタイヤ20の位置および角度(鉛直方向角度)の関係を示す図である。図6(A)、図6(B)、図6(C)に示すように、位置調整部28は、照明装置12がタイヤ20の中心方向を照射範囲の中心とし、この照明装置12とタイヤ20の中心とを結ぶ線とタイヤ20の表面との交点が撮像中心となるように撮像装置11の鉛直方向角度の調整量を算出する。
このような撮像装置11の鉛直方向角度の調整は、タイヤ軌道の推定が終了し、撮像装置11の位置、および、水平方向角度の調整が終わった後に実現される。なお、照明装置12についても、撮像装置11と同様に鉛直方向角度が調整される。
[可動部]
可動部14は、位置調整部28で算出された調整量に基づいて、撮像装置11又は照明装置12の位置および角度(水平方向角度および鉛直方向角度)を変化させる。これにより、撮像装置11および照明装置12は、タイヤの観察時、すなわち、観察条件において、タイヤ観察に適する位置および角度(タイヤ観察に適正な位置および角度)で配置される。
可動部14は、位置調整部28で算出された調整量に基づいて、撮像装置11又は照明装置12の位置および角度(水平方向角度および鉛直方向角度)を変化させる。これにより、撮像装置11および照明装置12は、タイヤの観察時、すなわち、観察条件において、タイヤ観察に適する位置および角度(タイヤ観察に適正な位置および角度)で配置される。
[タイヤ表面計測部]
タイヤ表面計測部29は、タイヤ表面を計測する。
タイヤ表面計測部29は、タイヤ表面を計測する。
次に、タイヤ観察装置101の各部の制御について示す。図7は、前輪探索における、側面図、平面図および撮像画像を示す図である。観察条件における撮像装置11の水平方向角度は、水平方向角度の調整量に基づいて、撮像画像における前輪タイヤ20Fの形状が中央かつ正面に位置するように制御され、かつ、撮像装置11の左右方向の位置は撮像画像における前輪タイヤ20Fの形状が撮像画像の中央かつ正面に位置するように制御される。
図8は、前輪計測における、側面図、平面図および撮像画像を示す図である。撮像装置11の水平面における角度は、図7に示した前輪探索の最後の状態のままである。したがって、観察対象の前輪タイヤ20Fは撮像装置11の上部を通過する。前輪タイヤ20Fと撮像装置11との距離が閾値より近づいたとき、撮像装置11および照明装置12の鉛直方向角度は、鉛直方向角度の調整量に基づいて、所定角度に変化するように制御される。図8では照明装置12の図示を省略している。
図9は、後輪探索における、側面図、平面図および撮像画像を示す図である。前輪タイヤ20Fと撮像装置11との距離が閾値より離れたとき、後輪タイヤ20Rの探索を開始する。後輪タイヤ20Rの探索方法は前輪タイヤ20Fの探索方法と同様である。
図10は、後輪計測における、側面図、平面図および撮像画像を示す図である。撮像装置11の水平面における角度は、図9に示した後輪探索の最後の状態のままである。したがって、観察対象の後輪タイヤ20Rは撮像装置11の上部を通過する。後輪タイヤ20Rと撮像装置11との距離が閾値より近づいたとき、撮像装置11および照明装置12の鉛直方向角度は、鉛直方向角度の調整量に基づいて、所定角度に変化するように制御される。図10でも照明装置12の図示は省略している。
図11はタイヤ観察装置101を含むタイヤ観察システムの構成を示すブロック図である。この例では、タイヤ観察装置101、情報処理装置102および表示端末103がインターネットや電話回線網等のネットワークに接続されている。
タイヤ観察装置101は、タイヤ観察部100、CPU10、通信手段31、メモリ32および記憶装置33を備える。CPU10はタイヤ観察装置101内の各部との間でデータおよび信号の入出力を行って各部および全体の制御を行う。通信手段31はネットワークを介して情報処理装置102および表示端末103との間で通信を行う。また、図示は省略するがタイヤ観察装置101内にタイヤの異常状態の有無を判断するタイヤ検査部を設けてもよい。
情報処理装置102は、CPU40、通信手段41、メモリ42および記憶装置43を備える。タイヤ観察装置101は複数存在し、情報処理装置102は複数のタイヤ観察装置101による観察結果を蓄積および統計処理を行う。情報処理装置102において、CPU40はそのプログラム動作によって、履歴管理、交換予測、経過予測などの各種処理を行う。ここで履歴管理は各車両の各タイヤの観察履歴の管理である。交換予測は各タイヤの交換時期を予測する処理であり、経過予測は各タイヤの状況を予測する処理である。
表示端末103はタイヤ観察装置101による観察結果を表示する端末装置である。表示端末103は、CPU50、通信手段51、メモリ52、記憶装置53および操作パネル54を備える。表示端末103は、操作パネル54の操作に応じて各車両の各タイヤの状況等を表示する。
タイヤ観察装置101の記憶装置33、情報処理装置102の記憶装置43および表示端末103の記憶装置53には、観察対象の車両のタイヤについての情報を記憶するタイヤ観察管理テーブルが記憶されている。
図12は上記タイヤ観察管理テーブルの一例を示す図である。この例では、タイヤ観察管理テーブルは、観察対象の車両ごとに、車両のナンバープレートの番号、左右のタイヤ間距離(トレッド)、タイヤ径、タイヤ幅、溝深さ、偏摩耗の状態、欠損の状態および空気圧に関するデータを含む。
図13は、観察対象の車両、タイヤ観察装置101および情報処理装置102の処理手順の例を示すフローチャートである。待機状態において、車両がタイヤ観察装置101に接近すればタイヤ観察装置101の車両識別部22は車両IDを取得する(S1)。例えば撮像装置で取得した車両のナンバープレートの番号や車両が備えるRFIDの情報を基に取得する。車両情報取得部23は、観察対象の車両が存在すれば、車両データベースを参照して車両IDのタイヤ情報(径・幅・間隔等)を取得する(S2→S3)。情報処理装置102は車両IDのタイヤ情報をタイヤ観察装置101へ送信する。
続いて、左右のタイヤの間隔に合わせて撮像装置11の位置を調整する(S4)。その後、撮像装置11による画像情報を取得し、形状検出部24が、その画像情報からタイヤの形状を検出する(S5→S6)。タイヤが存在すれば、距離推定部25が、そのタイヤと撮像装置11との距離を算出する(S7→S8)そして、角度推定部26がタイヤの進行方向と撮像装置11に対するタイヤの角度(方向)を算出する(S9)。
図14は、図13に繋がる、観察対象の車両、タイヤ観察装置101および情報処理装置102の処理手順の例を示すフローチャートである。
その後、車両がタイヤ観察装置101の上部を通過することになるが、撮像装置11とタイヤとの距離がまだ閾値を超えている段階では、撮像装置11および照明装置12の位置および角度を適正に調整する(S11)。このステップS11の詳細は後に示す。その後、図13に示したステップS5へ戻る。
撮像装置11とタイヤとの距離が閾値以下になれば、タイヤ表面計測部29がタイヤ表面を計測する(S12)。このステップS12の詳細は後に示す。計測範囲の計測を終了すれば、撮像装置11および照明装置12の位置を初期状態に戻す(S13→S14)。続いて、計測情報を情報処理装置102へ送信する(S15)。
その後、後輪の観察が未だであれば、図13に示したステップS5へ戻る(S16→(3)→S5)。後輪についての観察も終了すれば、一連の処理を終了する。
図15は図14におけるステップS12の処理内容を示すフローチャートである。まず、撮像した画像の情報を取得し、タイヤ形状以外の領域を取り除く(S21→S22)。続いて、照明パターンが生成する形状のデータを抽出し、タイヤと撮像装置および照明装置との位置関係から定まる校正係数に基づき、実寸の3次元データを算出する(S23→S24)。
その後、上記3次元データを基に、形状認識のための特徴点を検出する(S25)そして、その特徴点からタイヤ表面の寸法および輪郭を認識し、残り溝および偏摩耗を計測する(S26)。ステップS21からステップS26まではタイヤ表面計測部で行われる。
図16は図14におけるステップS11の処理内容を示すフローチャートである。まず、ステップS8で算出したタイヤと撮像装置11との距離、およびステップS9で算出したタイヤの進行方向の角度を取得する(S31)。動画情報の前フレームがなければ、3次元座標上におけるタイヤの進行方向から観察条件を満たすときのタイヤの座標を算出する(S32→S33)。タイヤの進行方向の推定は、例えば、タイヤに対する画像認識によって実現される。具体的には、タイヤの外形形状を示す画像、ホイールの外形形状を示す画像、タイヤの溝の画像が、タイヤの角度毎に記憶されており、これらの記憶画像とのマッチング処理によって、タイヤの角度が推定され、このタイヤの角度からタイヤの進行方向が推定される。
前フレームがあれば、複数の時点で取得したタイヤの画像から複数の時点でのタイヤの位置を算出し、これら複数時点のタイヤの位置の算出結果から、3次元座標上におけるタイヤの軌道推定を行い、観察条件を満たすときのタイヤの座標を算出する(S34)。
なお、ここでは動画を用いる態様を示したが、動画に限らず、所定時間間隔で取得される複数時点の静止画を用いることも可能である。また、タイヤの軌道推定に、タイヤの移動速度を用いることも可能である。タイヤの移動速度を用いることで、推定精度を向上できる。タイヤの移動速度は、例えば、複数の時点での画像に基づいて、複数の時点のタイヤの位置の差を算出し、この位置の差を複数の時点の時間差で除算することで算出できる。
その後、図4(A)、図4(B)に示した抽出領域の中心方向の角度を算出する(S35)。そして、タイヤと撮像装置11との距離と角度から決まる計算値又はデータベースを参照して、撮像装置11および照明装置12の調整量を取得する(S36)。そして、調整量に基づいて、可動部14によって撮像装置11および照明装置12の位置と角度を調整する(S37)。ステップS33、S34は軌道推定部27にて行われ、ステップS35以降は位置調整部28にて行われる。
最後に、本発明は上述した実施形態に限られるものではない。当業者によって適宜変形および変更が可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変形および変更が含まれる。
1…車両
10…CPU
11…撮像装置
12…照明装置
13…照明制御部
14…可動部
15…結果出力部
20…タイヤ
20F…前輪タイヤ
20R…後輪タイヤ
21…状態管理部
22…車両識別部
23…車両情報取得部
24…形状検出部
25…距離推定部
26…角度推定部
27…軌道推定部
28…位置調整部
31…通信手段
32…メモリ
33…記憶装置
40…CPU
41…通信手段
42…メモリ
43…記憶装置
50…CPU
51…通信手段
52…メモリ
53…記憶装置
54…操作パネル
100…タイヤ観察部
101…タイヤ観察装置
102…情報処理装置
103…表示端末
10…CPU
11…撮像装置
12…照明装置
13…照明制御部
14…可動部
15…結果出力部
20…タイヤ
20F…前輪タイヤ
20R…後輪タイヤ
21…状態管理部
22…車両識別部
23…車両情報取得部
24…形状検出部
25…距離推定部
26…角度推定部
27…軌道推定部
28…位置調整部
31…通信手段
32…メモリ
33…記憶装置
40…CPU
41…通信手段
42…メモリ
43…記憶装置
50…CPU
51…通信手段
52…メモリ
53…記憶装置
54…操作パネル
100…タイヤ観察部
101…タイヤ観察装置
102…情報処理装置
103…表示端末
Claims (13)
- タイヤを有する走行中の車両の画像情報を取得する撮像装置と、
少なくとも1時点での前記画像情報と、前記タイヤの幅、前記タイヤの径、および、前記タイヤの溝パターンの少なくとも1つを含むタイヤ情報と、に基づいて、前記タイヤの軌道を推定する軌道推定部と、
前記軌道に基づいて、前記タイヤの状態を観察する際の前記撮像装置の位置および角度が観察条件となる調整量を算出する位置調整部と、
前記調整量に基づいて、前記撮像装置の位置および角度を変化させる可動部と、
を備える、
タイヤ観察装置。 - 前記タイヤ情報を取得するタイヤ情報取得部を備え、
前記タイヤ情報取得部は、
前記画像情報から得られる前記車両の識別情報、または、予め入力された前記車両の識別情報に基づいて、前記タイヤ情報を取得する、
請求項1に記載のタイヤ観察装置。 - 前記車両の識別情報は、前記車両のナンバープレート、前記車両または前記タイヤに装着された電子タグの少なくとも1つから得られる情報である、
請求項2に記載のタイヤ観察装置。 - 前記軌道推定部は、
前記画像情報から得られる前記タイヤの形状に基づいて、前記タイヤの軌道を推定する、
請求項1乃至請求項3のいずれかに記載のタイヤ観察装置。 - 前記軌道推定部は、
前記タイヤの形状としての、前記画像情報から得られた前記タイヤの外周および内周の輪郭と、前記タイヤ情報としての、前記タイヤの幅または前記タイヤの径に基づいて、前記タイヤの軌道を推定する、
請求項1乃至請求項4のいずれかに記載のタイヤ観察装置。 - 前記軌道推定部は、
前記タイヤの形状としての、前記画像情報から得られたタイヤの溝の幾何学的形状と、前記タイヤ情報としての、前記タイヤの溝パターンとに基づいて、前記タイヤの軌道を推定する、
請求項1乃至請求項5のいずれかに記載のタイヤ観察装置。 - 前記軌道推定部は、
前記タイヤの形状としての、前記画像情報から得られた複数時刻の前記タイヤの全体の輪郭形状と、前記タイヤ情報としての、前記タイヤの幅または前記タイヤの径とに基づいて、前記タイヤの軌道を推定する、
請求項1乃至請求項5のいずれかに記載のタイヤ観察装置。 - 前記軌道推定部は、
前記画像情報と前記タイヤ情報とに基づいて、前記タイヤと前記撮像装置との位置関係を算出し、
前記位置関係に基づいて、前記タイヤの軌道を推定する、
請求項1乃至請求項7のいずれかに記載のタイヤ観察装置。 - 前記タイヤと前記撮像装置との位置関係は、前記タイヤと前記撮像装置との水平距離および水平方向角度である、
請求項8に記載のタイヤ観察装置。 - 前記軌道推定部は、
複数時点の前記画像情報から前記タイヤの移動速度を算出し、
前記タイヤの移動速度に基づいて前記タイヤの軌道を推定する、
請求項1乃至請求項9のいずれかに記載のタイヤ観察装置。 - 前記軌道推定部は、
複数時点の前記画像情報から、水平面での前記複数時点のタイヤの位置を時系列に取得して、前記タイヤの軌道を推定する、
請求項1乃至請求項10のいずれかに記載のタイヤ観察装置。 - 前記撮像装置は、
前記画像情報を、左右のタイヤについて個別に取得し、
前記軌道推定部は、
前記左右のタイヤの距離に基づいて、前記タイヤの軌道を推定する、
請求項1乃至請求項11のいずれかに記載のタイヤ観察装置。 - 前記位置調整部は、
前記タイヤの状態を観察する際に、前記撮像装置が撮像する画像の中央に前記タイヤの画像が位置するように、前記調整量を算出する、
請求項1乃至請求項12のいずれかに記載のタイヤ観察装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022561903A JP7435822B2 (ja) | 2020-11-10 | 2021-11-08 | タイヤ観察装置 |
US18/138,209 US20230258534A1 (en) | 2020-11-10 | 2023-04-24 | Tire observation apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020186957 | 2020-11-10 | ||
JP2020-186957 | 2020-11-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/138,209 Continuation US20230258534A1 (en) | 2020-11-10 | 2023-04-24 | Tire observation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022102571A1 true WO2022102571A1 (ja) | 2022-05-19 |
Family
ID=81601308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040979 WO2022102571A1 (ja) | 2020-11-10 | 2021-11-08 | タイヤ観察装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230258534A1 (ja) |
JP (1) | JP7435822B2 (ja) |
WO (1) | WO2022102571A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09277806A (ja) * | 1996-04-18 | 1997-10-28 | Toyota Motor Corp | タイヤ種別判別方法及び装置 |
JP2012176656A (ja) * | 2011-02-25 | 2012-09-13 | Fuji Heavy Ind Ltd | 駐車支援装置 |
US20170030806A1 (en) * | 2015-07-29 | 2017-02-02 | Hon Hai Precision Industry Co., Ltd. | Tread depth measuring system |
JP2018537655A (ja) * | 2015-10-09 | 2018-12-20 | ホイールライト・リミテッドWheelright Limited | タイヤ状態解析 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4454257B2 (ja) | 2003-06-23 | 2010-04-21 | パナソニック株式会社 | 車載カメラ校正治具及び車載カメラ校正方法 |
-
2021
- 2021-11-08 WO PCT/JP2021/040979 patent/WO2022102571A1/ja active Application Filing
- 2021-11-08 JP JP2022561903A patent/JP7435822B2/ja active Active
-
2023
- 2023-04-24 US US18/138,209 patent/US20230258534A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09277806A (ja) * | 1996-04-18 | 1997-10-28 | Toyota Motor Corp | タイヤ種別判別方法及び装置 |
JP2012176656A (ja) * | 2011-02-25 | 2012-09-13 | Fuji Heavy Ind Ltd | 駐車支援装置 |
US20170030806A1 (en) * | 2015-07-29 | 2017-02-02 | Hon Hai Precision Industry Co., Ltd. | Tread depth measuring system |
JP2018537655A (ja) * | 2015-10-09 | 2018-12-20 | ホイールライト・リミテッドWheelright Limited | タイヤ状態解析 |
Also Published As
Publication number | Publication date |
---|---|
JP7435822B2 (ja) | 2024-02-21 |
JPWO2022102571A1 (ja) | 2022-05-19 |
US20230258534A1 (en) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108394426B (zh) | 铁路车轮监测系统及方法 | |
US10241195B1 (en) | Method for assessing a condition of an axle of a moving vehicle | |
EP2500686B1 (en) | Device and method for inspecting tyre shape | |
US9188439B2 (en) | Method and device for determining distances on a vehicle | |
US20190154442A1 (en) | High speed stereoscopic pavement surface scanning system and method | |
US10760898B2 (en) | Optical device and method for inspecting tires | |
US9109974B2 (en) | Tire shape inspection method and tire shape inspection apparatus | |
CN108778889B (zh) | 用于检测轨道旁的固定点的方法和测量系统 | |
KR102299086B1 (ko) | 롤링 가상의 휠 스핀들 캘리브레이션 | |
US10475201B1 (en) | Method and apparatus for determining wheel rim and tire dimensions on a moving vehicle | |
WO2023045299A1 (zh) | 基于三维轮廓的路面技术状况检测方法及设备 | |
EP3084348B1 (en) | Apparatus and method for diagnostic assessment of the set-up of a vehicle through trajectory estimation | |
US20190120722A1 (en) | Wear inspection apparatus and wear inspection method | |
KR20020035154A (ko) | 차량바퀴의 회전반경을 측정하는 방법 및 장치 | |
US8284251B2 (en) | Tire type determination method and vehicle inspection method and system using the same | |
US10068389B1 (en) | Method and apparatus for evaluating an axle condition on a moving vehicle | |
US20200011653A1 (en) | Abrasion inspection apparatus, abrasion inspection method, and program | |
CN114758322B (zh) | 基于机器识别的道路质量检测系统 | |
US10408610B1 (en) | Method and system for displacement measurement of surfaces on a moving vehicle | |
US10697766B1 (en) | Method and apparatus for compensating vehicle inspection system measurements for effects of vehicle motion | |
KR101902068B1 (ko) | 타이어 완제품의 트레드 프로파일 편차 분석방법 | |
JP2023543453A (ja) | トレッド深さ推定システム及びその方法 | |
KR20180115646A (ko) | 비전 카메라를 이용한 비드 인식 장치 및 그 방법 | |
KR20180085574A (ko) | 3d 모델링 기반의 타이어 점검시스템 | |
US20050195409A1 (en) | Measuring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21891817 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022561903 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21891817 Country of ref document: EP Kind code of ref document: A1 |